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Preface

Proteases (also termed as proteolytic enzymes or proteinases) refer to a group of 
enzymes whose catalytic function is to hydrolyze peptide bonds of proteins. These 
enzymes are widely distributed in all plants, animals and microorganisms. Proteases 
fields of application are very diverse, including food science and technology, phar-
maceutical industries and detergent manufacturing.

This book is a review about the results obtained during the last decade in biotech-
nological application of plant proteolytic enzymes. In the last years, plant proteo-
lytic enzymes are the object of renewed attention from the pharmaceutical industry 
and biotechnology not only because of their proteolytic activity on a wide variety of 
proteins but also because often they are active over a range of temperatures and pHs. 
All these have stimulated the research and increased the number of works on plant 
proteolytic enzymes.

Mar del Plata, Argentina María Gabriela Guevara 
 Gustavo Raúl Daleo 
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1.1  Introduction

Enzymes are proteins that act as highly efficient catalysts in biochemical reactions. 
This catalytic capability is what makes enzymes unique and they work efficiently, 
rapidly, and are biodegradable. The use of enzymes frequently results in many ben-
efits that cannot be obtained with traditional chemical treatments. These often 
include higher product quality and lower manufacturing cost, less waste, and reduced 
energy consumption. Industrial enzymes represent the heart of biotechnology 
processes and biotechnology (Whitehurst and van Oort 2009; Sabalza et al. 2014)
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Proteases are enzymes that hydrolyze peptide bonds of proteins and, from the 
point of view of industry, are the most important type of enzymes because they 
represent ca. 60% of all commercialized enzymes in the world (Feijoo-Siota and 
Villa 2011). These enzymes polarize the carbonyl group of the substrate peptide 
bond by stabilizing the oxygen in an oxyanion hole, which makes the carbon atom 
more vulnerable for attack by an activated nucleophile. Proteases can do this in four 
major ways, which gives the names to four catalytic classes: cysteine proteases, 
serine proteases, metalloproteases, and aspartic proteases (Dunn 2002).

These enzymes are widely distributed in all plants, animals, and microorgan-
isms. Proteases account for approximately 2% of the human genome and 1–5% of 
genomes of infectious organisms (Puente et al. 2003). In plants, the Arabidopsis 
genome encodes over 800 proteases, which are distributed over almost 60 families, 
which belong to 30 different clans (van der Hoorn 2008). The distribution and the 
family size are well conserved within the plant kingdom because poplar and rice 
have similar distributions (García-Lorenzo et al. 2006).

1.2  Classification of Proteases

1.2.1  Catalyzed Reaction

This is the main property established by the Enzyme Nomenclature of the Committee 
of the International Union of Biochemistry and Molecular Biology (ENCIUBMB) 
that classifies these enzymes within group 3 (hydrolases) and subgroup 4 (hydro-
lases of peptide bonds). Subclass 3.4 may be in turn subdivided into endo- or exo-
peptidases (amino-terminal or carboxy-terminal) depending on their ability to 
hydrolyze internal peptide bonds or bonds located at the ends; endopeptidases are 
by far more important from the industrial point of view (Barrett 1994).

1.2.2  Nature of the Active Site

Hartley set a classification of proteases according to their catalytic site (Hartley 
1960), in which proteases were divided into six mechanistic classes: serine endo-
peptidases (EC 3.4.21); cysteine endopeptidases, formerly denoted as thiol prote-
ases (EC 3.4.22); aspartic endopeptidases, first known as acid proteases; glutamic 
endopeptidases (EC 3.4.23); metalloendopeptidases (EC 3.4.24); and threonine 
endopeptidases (EC 3.4.25), with a fifth group including peptidases with unidentified 
mode of action (EC 3.4.99).

Serine, threonine, and cysteine proteases are catalytically very different from 
aspartic and metalloproteases in that the nucleophile of catalytic site of the former 
group is part of an amino acid, whereas it is an activated water molecule for the last 
two types.

D. Sebastián et al.
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1.2.3  Structure-Based Evolutive Relationships

Rawlings and Barrett (1994) classified proteases according to their amino acidic 
sequence and relationships in families and clans. Proteases were placed within the 
same family if they shared sufficient sequence homology, and families believed to 
have a common ancestor placed within the same clan. The names of clans and fami-
lies in the MEROPS database are built on the letters S, C, T, A, G, M, and U, which 
refer to the catalytic types. However, some of the clans are mixed type and contain 
families with two or more catalytic types and designated with the letter “P.” This 
classification resulted in the creation of the MEROPS peptidase database, which is 
constantly revised: http://merops.sanger.ac.uk (Rawlings et al. 2010). The plant 
proteases most frequently used belong to the groups of cysteine, aspartic, and serine 
proteases (SPs).

1.3  Plant Proteases

Plant proteases are involved in many aspects of plant physiology and development 
(van der Hoorn 2008). They play a pivotal role in processes such as protein turnover, 
degradation of misfolded proteins, senescence, and the ubiquitin/proteasome path-
way (Beers et  al. 2000). Proteases are also responsible for the posttranslational 
modification of proteins by limited proteolysis at highly specific sites (Schaller 
2004). They are involved in a great diversity of cellular processes, including photo-
inhibition in the chloroplast, defense mechanisms, programmed cell death, and 
photomorphogenesis in the developing seedling (Estelle 2001). Proteases are thus 
involved in all aspects of the plant life cycle ranging from mobilization of storage 
proteins during seed germination to the initiation of cell death and senescence 
programs (Schaller 2004).

1.3.1  Plant Cysteine Proteases

Fourthly, Cysteine proteases (CPs) family are recognized until today in which the 
nucleophile is the sulfhydryl group of a cysteine residue. The catalytic mechanism is 
similar to that of serine-type peptidases in that the nucleophile and a proton donor/
general base are required, and the proton donor in all cysteine peptidases is a histidine 
residue as in the majority of the serine entered forms (Domsalla and Melzig 2008). 
Although there is evidence in some families that a third residue is required to orientate 
the imidazolium ring of the histidine, a role analogous to that of the essential aspar-
tate seen in some serine peptidases. There are a number of families in which only a 
catalytic dyad is necessary (Barrett et al. 1998).

1 An Overview of Plant Proteolytic Enzymes
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According to the MEROPS database, CPs are divided into ten clans: CA, CD, 
CE, CF, CH, CL, CM, CN, CO, and C-, and to date, plant CPs have been described 
as belonging to five of these clans (CA, CD, CF, CO, and CE). Most plant CPs 
belong to the C1 family, also known as the papain family (clan CA). A complete list 
of CPs may be found in the MEROPS database (Rawlings et al. 2010).

Plants offer an attractive alternative for the production of CPs as they occur natu-
rally in different tissues, in some cases in excessive amount (González-Rábade 
et al. 2011). CPs of the tropical plants Carica papaya (papain, chymopapain, caric-
ain, and glycyl endopeptidase), Ananas comosus (fruit bromelain, stem bromelain, 
ananain, and comosain), and Ficus glabrata (ficin) are of considerable commercial 
importance, due to their strong proteolytic activity against a broad range of protein 
substrates and because they are active over a broad range of pH and temperature 
(Feijoo-Siota and Villa 2011). CPs have been isolated from: PsCYP15A from pea 
roots (Vincent and Brewin 2000); GP2 and GP3 from ginger rhizomes (Kim et al. 
2007), from sweet potato (Ipomoea batatas) roots (Huang and McDonald 2009); 
FLCP-1 and FLCP-3 from Phaseolus leaves (Popovič et al. 2002); and bromelain 
(Rowan et al. 1990) and ananain (Lee et al. 1997) from stems. The most ubiquitous 
group are found in fruits, i.e., balansain I, macrodontain I in Bromeliaceae (Pardo 
et  al. 2000; López et  al. 2000), araujiain in Asclepiadaceae (Priolo et  al. 2000); 
papain, chymopapain, papaya glycyl endopeptidase, and caricain from C. papaya 
latex (Azarkan et al. 2003). Papain-like cysteine proteases are usually lysosomal 
(vacuolar) or secreted proteins (Dubey et al. 2007).

According to the review by González-Rábade et al. (2011), proteases like papain, 
bromelain, and ficin are employed in different industrial processes and medicines 
(Uhlig and Linsmaier-Bednar 1998). Some of these proteases are used in the food 
industry for cheese, brewing and beverage industries for the preparation of highly 
soluble and flavored protein hydrolysates (papain-like proteases), as a food comple-
ment (Kleef et al. 1996; La Valle et al. 2000; Losada Cosmes 1999) to soften meats 
and dehydrated eggs (Bailey and Light 1989; Lawrie 1985; Miller 1982), and for the 
production of emulsifiers, among other uses (Pardo et al. 2000). Uses in other indus-
tries include culture medium formulation (Headon and Walsh 1994), isolation of 
genetic material (Genelhu et  al. 1998), and the use of keratinases in the leather 
industry for dehairing and bating of hides to substitute toxic chemicals (Foroughi 
et al. 2006). Also, they are used in the production of essential amino acids such as 
lysine and for the prevention of clogging of wastewater systems (Rao et al. 1998). 
Proteases also have an important application in the pharmaceutical industry. Plant 
extracts with a high content of proteolytic enzymes have been used in traditional 
medicine for a long time. They have been used for the treatment of cancer (Batkin 
et al. 1988; Targoni et al. 1999), as antitumorals (Guimarães-Ferreira et al. 2007; 
Otsuki et  al. 2010), for digestion disorders (Kelly 1996; Mello et  al. 2008), and 
swelling and immune-modulation problems (Leipner et al. 2001; Lotti et al. 1993; 
Melis 1990; Otsuki et  al. 2010). A good example is bromelain, derived from 
pineapple, which has been shown to be capable of preventing edema, platelet aggre-
gation, and metastasis due to its capacity of modifying cell surface structures by 

D. Sebastián et al.
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peptide cleavage. Salas et al. (2008) reviewed the pharmacological activity of plant 
cysteine proteases, emphasizing their role in mammalian wound healing, immuno-
modulation, digestive conditions, and neoplastic alterations.

1.3.2  Plant Aspartic Proteases

Aspartic proteases (APs, EC 3.4.23) are a family of proteolytic enzymes widely 
distributed among living organisms and are found in vertebrates, plants, yeast, nem-
atodes, parasites, fungi, and viruses (Rawlings and Salvesen 2013). Aspartic prote-
ases differ from the serine and cysteine peptidases in the way that the nucleophile 
that attacks the scissile peptide bond is an activated water molecule rather than the 
nucleophilic side chain of an amino acid (Domsalla and Melzig 2008).

Plant APs have been characterized and purified from a variety of tissues such as 
seeds, flowers, and leaves: (1) seeds of Arabidopsis thaliana (Mutlu et al. 1999), 
rice (Asakura et al. 1997; Doi et al. 1980), barley (Kervinen et al. 1999; Runeberg- 
Roos et al. 1991; Sarkkinen et al. 1992), hempseed (St. Angelo et al. 1969, 1970), 
cucumber, and squash (Polanowski et  al. 1985); (2) leaves of the tomato plant 
(Rodrigo et al. 1989); (3) leaves and tubers of the potato plant (Guevara et al. 2001, 
2004); (4) maize pollen (Radlowski et  al. 1996); and (5) flowers of thistle 
(Heimgartner et al. 1990; Verissimo et al. 1996), among others. Some of these APs, 
like the ones found in barley, resemble mammalian cathepsin D. It has been sug-
gested that plant APs are involved in the digestion of insects in carnivorous plants 
(Garcia-Martinez and Moreno 1986; Takahashi et al. 2009; Tökés et al. 1974), in the 
degradation of plant proteins in response to pathogens (Rodrigo et al. 1989, 1991), 
during development processes (Asakura et al. 1997; Runeberg-Roos et al. 1994), 
protein-storage processing mechanisms (Doi et al. 1980; Hiraiwa et al. 1997), stress 
responses (de Carvalho et  al. 2001; Guevara et  al. 1999, 2001), and senescence 
(Bhalerao et al. 2003; Buchanan-Wollaston 1997; Cordeiro et al. 1994; Lindholm 
et al. 2000; Panavas et al. 1999). These enzymes are distributed among families A1, 
A3, A11, and A12 of clan AA and family 22 of clan AD (Faro and Gal 2005; Mutlu 
et al. 1999; Rawlings et al. 2014; Simões and Faro 2004). The majority of plant APs 
have common characteristics as that of AP A1 family, are active at acidic pH, are 
specifically inhibited by pepstatin A, and have two aspartic acid residues responsible 
for the catalytic activity (Simões and Faro 2004).

Plant APs are classified into three categories: typical, nucellin-like, and atypical 
(Faro and Gal 2005). The swaposin domain is only present in typical plant APs 
inserted into the C-terminal domain as an extra region of approximately 100 amino 
acids known as “plant-specific insert” (PSI) (Simões and Faro 2004). The PSI 
domain has a high structural homology with saposin-like proteins (SAPLIPs), a 
large protein superfamily widely distributed from primitive eukaryotes to mamma-
lians (Bruhn 2005; Michalek and Leippe 2015). Individual SAPLIPs generally 
share little amino acid sequence identity. However, SAPLIP protein sequences 
include highly conserved cysteine residues that form disulfide bonds and give 

1 An Overview of Plant Proteolytic Enzymes
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SAPLIPs a stable structure; secondary protein structure consists mainly of α-helices 
joined by loops (Andreu et  al. 1999; Bruhn 2005; Munford et  al. 1995). The 
SAPLIPs or Sap domains may exist for itself independently as a functional unit or 
as a part of a multidomain protein; they are autonomous domains with a variety of 
different cellular functions, all of them associated with lipid interaction. SAPLIP 
activities are classified into three major groups: (1) membrane targeting by the 
SAPLIP domain; (2) presentation of lipids as substrate for an independent enzyme, 
either by extraction from the membrane or by disturbance of the well-packed lipid 
order; and (3) membrane permeabilization by perturbation owing to single mole-
cules or by pore formation of oligomeric proteins (Bruhn 2005). The SAPLIP fam-
ily includes saposins, which are lysosomal sphingolipid-activator proteins (O’Brien 
and Kishimoto 1991), NK-lysin, granulysin, surfactant protein B, amoebapores, 
domains of acid sphingomyelinase and acyloxyacyl hydrolase, and the PSI domain 
of plant APs (Munford et al. 1995; Stenger et al. 1998; Vaccaro et al. 1999).

The PSI domains of plant APs are named swaposins since they arise from the 
exchange (swap) of the N- and C-terminal portions of the saposin-like domain, 
where the C-terminal portion of one saposin is linked to the N-terminal portion of 
the other saposins (Simões and Faro 2004). This segment is usually removed during 
the proteolytic maturation of the heterodimeric typical plant APs (Davies 1990; 
Domingos et al. 2000; Faro and Gal 2005; Glathe et al. 1998; Mutlu et al. 1999; 
Ramalho-Santos et al. 1997; Törmäkangas et al. 2001; White et al. 1999). However, 
in monomeric typical plant APs, the PSI domain is present in the mature protein 
(Guevara et al. 2005; Mendieta et al. 2006). Solanum tuberosum APs 1 and 3 (StAPs 
1 and 3) are included into the group of monomeric typical plant APs (Guevara et al. 
1999, 2001, 2005).

All enzymes employed commercially in milk coagulation are APs, with acidic 
optima pH, and high levels of homology between their primary structures and simi-
larity between their catalytic mechanisms (Silva and Malcata 2005).

The most widely used AP is rennet, which has chymosin as its active component 
(Vioque et al. 2000). Rennet is obtained from the stomach of calves but it is costly 
and scarce. Most companies produce recombinant rennet of calf origin in different 
microbial hosts (Seker et al. 1999). Some plant APs have shown to possess similar 
characteristics to calf-derived rennet and hence have attracted attention in the food 
industry. In Portugal and some regions of Spain, the use of extracts from dried flow-
ers of C. cardunculus L. has been successfully maintained since ancient times for 
the production of many traditional varieties of sheep and goat cheeses, further 
strengthening the suitability of this rennet for the production of high-quality cheeses 
(Reis and Malcata 2011; Roseiro et  al. 2003a, b; Sousa and Malcata 2002). 
Therefore, over the last decades, much effort has been made in understanding the 
properties of this unique plant coagulant. Several authors have dedicated their 
research efforts to characterize the milk-clotting enzymes present in cardoon 
 flowers, their role in the hydrolysis of caseins in vitro, and their effect in the prote-
olysis process during ripening (Agboola et al. 2004; Brodelius et al. 1995; Esteves 
et  al. 2001; Esteves et  al. 2003; Faro et  al. 1992; Ramalho-Santos et  al. 1996; 
Roseiro et al. 2003a, b; Silva et al. 2003; Silva and Xavier Malcata 1998; Silva and 
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Malcata 1999, 2000, 2005; Sousa and Malcata 1997, 1998, 2002). Due to the potential 
of these cardoon enzymes to serve as alternative rennets in larger-scale production 
processes, several strategies have also been undertaken in more recent years to 
either develop more standardized formulations of the native enzymes or explore 
their production in heterologous systems to generate synthetic versions of these 
proteases (Almeida and Simões 2018).

Several APs from Cynara sp. have been cloned and expressed successfully in 
bacterial and eukaryotic expression systems. The production by yeast of the cypro-
sin B (cynarase 3) has been patented (Planta et al. 2000). This was the first clotting 
protease of plant origin produced by fermentation technology (Sampaio et al. 2008). 
Recombinant cyprosin produces a proteolysis similar to that obtained with natural 
enzymes present in the crude extract from C. cardunculus (Fernández-Salguero 
et al. 2003).

In this regard, studies with APs from Solanum tuberosum have revealed their 
antimicrobial activity (Guevara et al. 2002) including antifungal activity (Mendieta 
et al. 2006). The authors cloned, expressed, and purified PSI (swaposin domain) 
from StAPs (StAsp-PSI) and found that the recombinant protein still maintained its 
cytotoxic activity (Muñoz et al. 2010). Both StAPs and StAsp-PSI were able to kill 
human pathogenic bacteria in a dose-dependent manner but were not toxic to human 
red blood cells under the experimental conditions tested. Therefore, StAPs and 
StAsp-PSI could contribute to the generation of new tools to solve the growing 
problem of resistance to conventional antibiotics (Zasloff 2002).

1.3.3  Plant Serine Proteases

Serine proteases (SPs)  use the active site Ser as a nucleophile. The catalytic mecha-
nism is very similar to that of cysteine proteases, and some serine proteases are even 
evolutionarily related to cysteine proteases. With more than 200 members, serine 
proteases are the largest class of proteolytic enzymes in plants. Plant serine prote-
ases are divided into 14 families. These families belong to nine clans that are evolu-
tionarily unrelated to each other. Families S8, S9, S10, and S33 are the largest serine 
protease families in plants, with each containing approximately 60 members. 
Biological functions for serine proteases have been described for some of the subti-
lases (SDD1 and ALE1; family S8, clan SB), carboxypeptidases (BRS1 and 
SNG1/2; family S10, clan SC), and plastid-localized members of the S1, S26, and 
S14 families (DegPs, Plsp1, and ClpPs) (van der Hoorn 2008).

Feijoo-Siota and Villa (2011) have reviewed several origins to SPs. These enzymes 
have been found and extracted from the seeds of barley (Hordeum vulgare), soybean 
(Glycine max), and rice (Oryza sativa), from the latex of Euphorbia supina, Wrightia 
tinctoria, dandelion (Taraxacum officinale), African milkbush (Synadenium grantii), 
and jackfruit (Artocarpus heterophyllus); from the flowers, stems, leaves, and roots 
of Arabidopsis thaliana; from the storage roots of sweet potato (I. batatas) and corn 
(Zea mays); from the sprouts of bamboo (Pleioblastus hindsii); from the leaves of 
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tobacco (Nicotiana tabacum), lettuce (Lactuca sativa), common bean (Phaseolus 
vulgaris), and tomato (Lycopersicon esculentum); and from the fruits of melon 
(Cucumis melo), Cucurbita ficifolia, osage orange (Maclura pomifera), suzumeuri 
(Melothria japonica), “Ryukyu white gourd” (Benincasa hispida), Japanese large 
snake gourd (Trichosanthes bracteata), and yellow snake gourd (Trichosanthes 
kirilowii) (Antão and Malcata 2005).

SPs are usually considered to act principally as degradative enzymes. Plant 
subtilases (subtilisin-like SPs), however, have been documented to be involved in 
several physiological processes including symbiosis (Takeda et al. 2007), hypersen-
sitive response, the infection of plant cells (Laplaze et al. 2000), pathogenesis in 
virus infected plants (Tornero et al. 1997), germination (Sutoh et al. 1999), signal-
ing (Déry et al. 1998), tissue differentiation (Groover and Jones 1999), xylogenesis 
(Ye and Varner 1996), senescence (Distefano et  al. 1999; Huffaker 1990), pro-
grammed cell death (Beers et al. 2000), and protein degradation/processing (Antão 
and Malcata 2005).

Cucumisin, an enzyme derived from melon, remains the best plant SP character-
ized to date (Antão and Malcata 2005), purified from Cucumis melo (Kaneda and 
Tominaga 1975). Plant subtilisins, also referred to as cucumisin-like proteases (in 
recognition of the first subtilisin isolated from a plant (Yamagata et al. 1994)), have 
been isolated from Cucumis melo (Yamagata et al. 1994), Solanum lycopersicum 
(Meichtry et al. 1999), Alnus glutinosa (Ribeiro et al. 1995), and Arabidopsis (Zhao 
et al. 2000). Cucumisin-like SPs have also been isolated from other sources, like the 
latex of E. supina (Arima et al. 2000a; Taylor et al. 1997), the sprouts of bamboo 
(Pleioblastus hindsii Nakai) (Arima et al. 2000b), and the fruits of Melothria japon-
ica (Uchikoba et al. 2001). A cucumisin-like protease from kachri fruit (Cucumis 
trigonus Roxburghi) is used as a meat tenderizer in the Indian subcontinent (Asif- 
Ullah et al. 2006).

Macluralisin, from the fruits of M. pomifera (Raf.) Schneid (Rudenskaya et al. 
1995), taraxilisin, from the latex of dandelion (T. officinale Webb s. I.) roots 
(Rudenskaya et al. 1998), SP A and B, from the sarcocarp of yellow snake gourd 
(Trichosanthes kirilowii) (Uchikoba et al. 1990), an SP from the seeds of tropical 
squash (C. ficifolia) (Dryjanski et  al. 1990), and several other SPs from barley 
(Fontanini and Jones 2002), oat (Coffeen and Wolpert 2004), soybean (Tan-Wilson 
et al. 1996), and common bean (Popovič et al. 2002) are other SPs isolated from plants.

Some SPs have been studied for their medicinal properties (Andallu and 
Varadacharyulu 2003; Andallu et al. 2001; Doi et al. 2000; Jang et al. 2002; Andallu 
and Varadacharyulu 2003; Andallu et al. 2001; Doi et al. 2000; Jang et al. 2002), 
examples of these are the a subtilisin-like SP, named as indicain, isolated from the 
latex of Morus indica by Singh et al. (2008) and milin, an SP purified from the 
latex of Euphorbia milii (Yadav et al. 2006). Many of the medicinal applications 
have been proved by clinical studies (Asano et al. 2001; Cheon et al. 2000; Doi 
et al. 2001; Nomura 1999). Milin, another SP of plant origin, isolated from E. milii, 
is a good candidate for applications in the food industry (Souza et al. 1997; Schall 
et al. 2001).

D. Sebastián et al.
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1.3.4  Plant Metalloproteases

Metalloproteases contain catalytic metal ions that activate water for nucleophilic 
attack while stabilizing the oxyanion hole. Of the different types of proteases, 
metalloproteases are the most diverse in terms of both structure and function. More 
than 50 families have been identified in 24 clans. MPs in plants include exo- and 
endoproteases in many different subcellular locations, with degradative or highly 
specific processing function (Schaller 2004).

In plants, MPs are involved in nodulation, plastid differentiation, thermotoler-
ance, regulation of root and shoot meristem size, sensitivity to auxin conjugates, and 
meiosis (Casamitjana-Martı́nez et al. 2003; Bartel and Fink 1995; Bölter et al. 2006; 
Chen et al. 2000, 2005, 2006; Combier et al. 2007; Davies et al. 1999; Golldack 
et al. 2002; Helliwell et al. 2001; Sakamoto et al. 2002; Sanchez-Moran et al. 2004; 
Sjögren et al. 2006).

Leucine aminopeptidases (LAPs)  are ubiquitous MPs, thought to be involved 
in the regulation of protein half-life in plants, which is largely influenced by the 
N-terminal amino acid residue (Varshavsky 1996). In addition to the common 
LAP, which is constitutively present in all plant species (Bartling and Nosek 1994; 
Chao et al. 2000), some plants of the nightshade family (Solanaceae) have addi-
tional LAPs expressed in the reproductive organs upregulated under several stress 
conditions, including osmotic stress, wounding, and pathogen infection (Chao 
et al. 1999; Gu et al. 1999; Hildmann et al. 1992; Pautot et al. 1993, 2001; Schaller 
et al. 1995).

Matrix metalloproteinases (MMPs)  are a family of zinc- and calcium-dependent 
proteases belonging to the metzincin clan of metalloendopeptidases, EC subclass 
3.4.24, MA (M) clan according to the MEROPS database (Rawlings et al. 2010). 
This family is characterized by a highly conserved catalytic domain containing an 
HEXXHXX GXX(H/D) zinc-binding sequence followed by a conserved methio-
nine that forms a tight 1,4-β turn called “Met-turn” (Rawlings et al. 2014).

Members of this family have mainly been studied in mammals but have also been 
found in simpler animals and plants (Massova et al. 1998). Members of the MMP 
family have been also identified in plants, but only few of them have been character-
ized. Ragster and Chrispeels (1979) described the first MMP in higher plants, and 
ethylenediaminetetraacetic acid (EDTA)-sensitive Azocoll-degrading enzyme in 
leaves of soybean (Glycine max). This protein was purified and characterized only 
in 1991 and was named soybean metalloendoproteinase-1 (SMEP-1) because of 
structural and biochemical similarities to vertebrate MMPs (Graham et al. 1991; 
McGeehan et  al. 1992; Pak et  al. 1997). Other MMPs were then studied in 
Arabidopsis (Maidment et al. 1999; Golldack et al. 2002), cucumber (Delorme et al. 
2000), Medicago (Combier et  al. 2007), soybean (Liu et  al. 2001), tobacco 
(Schiermeyer et al. 2009; Mandal et al. 2010), and loblolly pine (Ratnaparkhe et al. 
2009). Members of the MMP family have been identified in plants, but only few of 
them have been characterized.

1 An Overview of Plant Proteolytic Enzymes
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2.1  Introduction

Cheesemaking represents one of the most important processes in modern dairy 
industry and a daily practice in familiar farms. Cheese is a basic food in the diet of 
many cultures, highly appreciated by its sensory attributes, nutritional characteris-
tics, and bioactive components (López-Expósito et  al. 2017). Transformation of 
milk into cheese is more than a simple process since it involves several complex 
physicochemical and biochemical steps, which will define the final characteristics 
of the different types of cheeses. Milk coagulation is the first step in cheesemaking 
where the enzymatic coagulation represents the most used mechanism in cheese 
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production. Rennet from animal sources contains the chymosin enzyme as the main 
clotting agent. Several efforts have been put in the development of new, suitable 
chymosin substitutes to supply the demand of the increasing cheese production, 
counteracting the decay in its production from its natural source (Fox et al. 2017). 
Microbial proteases and recombinant chymosin have supplied in part this demand; 
however, due to ethical, religious, and cultural reasons, natural sources are pre-
ferred. Recently, special interest has focussed in the use of plant proteases as rennet 
substitute. The use of some plant proteases in the manufacture of artisanal cheeses 
has been successfully applied and gained acceptance leading to the valorization of 
some cheeses produced in some world regions (Shah et al. 2014; Ben Amira et al. 
2017a). This chapter describes the milk-clotting properties of some plant coagulants 
used for cheese production at artisanal, experimental, and commercial scale in some 
world regions. Some technological aspects for the formulation and standardization 
of coagulants from plant origin and its impact in physicochemical, technological, 
and sensorial properties of curds and cheeses are also considered. Cheese produc-
tion is in constant growth and it is expected that in the near future the use of plant 
proteases in cheesemaking will increase, producing new specialty cheese favoring 
the cheese market.

2.2  Rennet for Cheese Production

Milk provides a variety of functional compounds (protein, fat, carbohydrates, min-
erals, and vitamins) essential for human nutrition. Worldwide milk production was 
estimated in 750 million tons in 2016, mostly from cows (85%) and other significant 
quantities from buffalo, sheep, goat, and camel produced in countries such as India, 
Pakistan, Egypt, Iran, Italy, France, and Spain (IDF 2017). A great diversity of 
cheeses with distinctive flavors, texture, and forms are produced daily worldwide 
using these sources. The exact number of cheese varieties is unknown. However, 
around 80% of the global cheese production (estimated in 20 million tons) is from 
cow’s milk (IDF 2017). Cheese from buffalo, goat, and sheep milk is almost limited 
to little farms at artisanal scale production. Transformation of milk to cheese is an 
important activity in the dairy industry with a constant annual growth of 3.5% in EU 
and American countries. This growth has been associated to an increase in global 
population, per capita incomes, eating trends, and lifestyles changes, in addition to 
the market development for cheese-based products and ingredients.

From the technical point of view, cheese production involves the separation of 
milk solids (mainly casein protein and fat) from whey. In most cases, proteolytic 
enzymes are added to milk for clotting, where caseins are separated as a coagulum 
(with fat trapped in the gel network) with a consequent whey release. Historically, 
the earliest cheese was accidentally produced around 5000 BC during milk trans-
portation in bags made from stomachs of animals. Since then, natural rennet from 
calf abomasum (main source of chymosin) is the preferred milk-clotting agent due 
to its high efficiency to clot milk, resulting in an appropriate curd texture and high 

M. A. Mazorra-Manzano et al.



23

yield of cheese produced. However, the increase in cheese production coupled with 
the decrease in chymosin supply from its natural source has increased the milk- 
clotting enzymes demand, incentivizing the screening of microbial and plant sources 
as calf rennet substitutes. Fermentative processes using selective fungal strains such 
as Rhizomucor miehei, Rhizomucor pusillus, and Cryphonectria parasitica have 
resulted adequate to produce proteases with high similarity in structure and catalytic 
properties of chymosin. In addition, genetically engineered strains of Escherichia 
coli, Aspergillus niger, and Kluyveromyces lactis, carrying the calf Bos taurus chy-
mosin gene, have been successfully used to produce recombinant chymosin 
(fermentation- produced chymosin, FPC) (Andrén 2011). Nowadays, most cheeses 
(around 80%) produced worldwide use standardized FPC as the milk-clotting 
enzyme. However, plant proteases represent an attractive option and are recently 
emerging as new milk-clotting agents in cheesemaking. Political, religious, or cul-
tural restrictions for the consumption of animal-derived ingredients or genetically 
engineered foods in some countries have incentivized the research and use of plant 
proteases (Roseiro et al. 2003). Plant origin coagulants in cheesemaking represent 
an artisanal practice in many regions of the world, in which knowledge is crossing 
frontiers and expanding their use in the production of specialty cheese.

2.3  Plant Origin Coagulants in Cheesemaking

Cheese production involves the use of chymosin and chymosin-like proteases for 
milk coagulation. Enzymatic coagulation is an essential step in most cheese manu-
facture where the casein component of the milk protein system forms a gel network 
that entraps fat. The bovine chymosin has been the preffered enzyme used for this 
purpose; however, proteases from animal, microbial and plant sources have also 
been used successfully. In this regard, plant proteases, obtained from different tis-
sues including fruits, flowers, stems, latex, etc., possess attractive catalytic proper-
ties with diverse optimum conditions of pH and temperature to clot milk (Table 2.1). 
Flowers from cardoon plant species (C. cardunculus and C. scolymus) contain high 
amount of milk-clotting proteases (cardosins and cynarases) with similar catalytic 
properties to chymosin. They belong to the same group of chymosin (aspartic pro-
teinase, EC. 3.4.23), so far considered the most suitable proteases for cheesemaking 
(Yegin and Dekker 2013). However, proteases from other catalytic groups are also 
considered as an attractive option to diversify the characteristics of cheeses pro-
duced. Cysteine proteases (EC. 3.4.22) such as papain, bromelain, zingibain, and 
actinidin from papaya, pineapple, ginger, and kiwi, respectively, and serine prote-
ases (EC. 3.4.21) from melon (i.e., cucumisin),

Cucurbita ficifolia, and Solanum dubium are some examples of plant proteolytic 
enzymes with attractive properties for cheesemaking and food processing (Pardo 
et al. 2010; Mazorra-Manzano et al. 2013a). In Mediterranean countries, the use of 
plant coagulants represents a traditional practice for the production of artisanal 
cheeses, where extracts from cardoon flowers represent the most successful case. 
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Traditional cheeses such as Serra da Estrela, Serpa, La Serena, and Torta del Casar 
are some examples of cheeses elaborated with cardoon flower extract; these are 
highly valuated products in Portugal and Spain that some have been protected with 
a denomination of origin (PDO). In Sudan, the berries from Solanum dubium has 
been used for many years to make white-soft goat and sheep cheeses, while in 
Mexico, the ripened berries from wild “trompillo” (Solanum elaeagnifolium) have 
been used for production of pasta filata cheese type, known as “Asadero” (Chávez- 
Garay et al. 2016).

Table 2.1 Physicochemical properties of plant proteases with milk-clotting activity

Plant source Enzyme Type Tissue

Optimum 
conditions

Reference
Temp 
(°C) pH

Asclepias 
curassavica

Asclepian cI, 
cII

CP Latex 50.0 8.5 Liggieri et al. (2009)

Bromelia 
hieronymi

Hieronymain 
III

CP Fruit 40 7.3–
10.7

Bruno et al. (2008)

Bromelia 
pinguin

Pinguinain CP Fruit 20–70 7.2–
8.8

Payrol et al. (2008)

Calotropis 
procera

Procerain
Procerain B

CP Latex 55
50

7.0–
9.0
6.5–
8.5

Kumar and 
Jagannadham (2003), 
Singh et al. (2010a)

Citrus 
aurantium

Citrus 
proteases

AP;CP;SP Flower 65 4–9 Mazorra-Manzano 
et al. (2013b)

Crinum 
asiaticum

Crinumin SP Latex 70 8.5 Singh et al. (2010b)

Euphorbia 
milii

Milin SP Lx 60 8.0 Yadav and 
Jagannadham (2009)

Euphorbia 
nivulia

Nivulian-II CP Latex 50 6.3 Badgujar and Mahajan 
(2014)

Moringa 
oleifera

AP Flower 70 NR Pontual et al. (2012)

Morus indica Indicain SP Latex 80 8.5 Singh et al. (2008)
Solanum 
dubium

Dubiumin SP Seed 70 11 Mohamed et al. 
(2009a)

Streblus asper Streblin AP Stem 55 5.5 Tripathi et al. (2011)
Withania 
coagulans

WcAP AP Fruit 60 5.5 Salehi et al. (2017)

Zingiber 
officinale

Zingibain CP Rhizobium 60 5.0 Hashim et al. (2011)

Abbreviations: AP aspartic proteinase, CP cysteine protease, and SP serine protease
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2.3.1  Milk-Clotting Properties of Plant Proteases

Plant extracts, with enough amount of proteolytic enzymes, have the capacity to clot 
milk under optimum enzymatic activity conditions. Their milk-clotting enzymatic 
mechanism is initiated, in most cases, similar to chymosin, this is, by the hydrolysis 
of the Phe105-Met106 peptide bond in the casein micelle-protective protein, κ-casein 
(κ-CN). This enzymatic reaction conduces to the release of the hydrophilic portion 
known as glycomacropeptide (f106-169), located at the casein micelle surface, causing 
a decrease in electrostatic and steric repulsion forces between micelles, conducing 
to casein aggregation and clot formation (nonenzymatic phase) (Horne and Lucey 
2017).

Milk-clotting activity (MCA) is an important parameter for the evaluation of 
enzymatic preparations used as coagulants in cheesemaking. The conventional 
MCA protocol includes the evaluation of rennet strength, referring to the amount of 
enzyme able to clot a volume of milk in 40 min at a reference temperature (32–
35 °C) using standardized skim milk as substrate. Differences in optimum pH/tem-
perature for activity among plant proteases require of a comparative evaluation with 
standardized chymosin, employing the same protocol. To evaluate the milk-clotting 
activity in of a new plant extract, this must be capable to transform milk into curd in 
suitable times (about 40–60 min) and have a comparable specificity to chymosin 
(Harboe et  al. 2010). Under conventional cheesemaking process conditions (32–
37 °C/pH 6.3–6.8), the milk-clotting performance of rennet candidate will depend 
of the amount, type of protease, specificity, and optimum conditions for its activity. 
Cysteine protease found in raw extracts from kiwifruit (A. deliciosa), ginger rhi-
zome (Z. officinale), and aguama fruit (B. pinguin) presented appropriate specific 
MCA (2.7, 2.3, 2.59, and 1.5 U mg−1, respectively). However, the MCA of these 
extract was temperature-dependent obtaining maximum activity at temperatures 
above 40  °C (Mazorra-Manzano et  al. 2013a; Moreno-Hernández et  al. 2017a). 
Other protease sources such as cardoon extracts (C. cardunculus and C. scolymus) 
presented higher MCA values (61  IMCU  mL−1) under standard temperature/pH 
conditions, increasing its activity at lower pH due to the presence of acidic (aspar-
tic) proteolytic enzymes (Chazarra et al. 2007; García et al. 2014).

Table 2.2 describes the milk-clotting characteristics of some crude enzymatic 
preparations and partially purified proteases from plant sources. In contrast with 
pure enzymes, some crude extracts are complex in proteinase composition resulting 
in low specificity ratio (MCA/proteolytic activity). Therefore, the presence and 
activity of different proteases over milk caseins can affect the milk-clotting perfor-
mance of plant rennet. Hydrolysis of caseins other than k-CN affects the cheese 
yield and functional properties of curd. Nonspecific hydrolytic reactions could 
result in excessive proteolysis; however, these characteristics could result attractive 
for some type of cheeses due to the development of cheese flavors and/or accelera-
tion of cheese ripening (Roa et al. 1999; Delgado et al. 2010).
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In addition to the type of protease and complexity of the enzymatic preparations, 
other factors such as enzyme concentration, pH, temperature, calcium ions, and 
salts, among others affect the milk-clotting process. Enzymatic milk coagulation 
(clot formation) is observed when approximately 70–80% of the κ-CN has been 
hydrolyzed. Typically, the milk-clotting time (Ct) shows linearity with the inverse 
of rennet activity (within a range of concentration) (McMahon and Brown 1984). 
Since temperature and pH affect the proteolytic activity, Ct will depend of the 
enzymes and reaction conditions. These factors strongly affect the interaction 
between rennet-destabilized micelles for transition to gel in the second phase of 
milk coagulation. Generally, Ct decreases if the temperature increases and/or the pH 
decreases (Chazarra et al. 2007; Beka et al. 2014). As milk clotting progresses, cal-
cium ions are essential for the development of gel matrix (nonenzymatic phase). 
Therefore, addition of calcium chloride (CaCl2) to milk (10–40 g CaCl2 100 kg−1) is 
a common practice in cheesemaking. Its effect in gel behavior is associated with the 
reduction of repulsive forces between rennet-altered micelles promoting hydropho-

Table 2.2 Milk-clotting properties of plant proteases in comparison with chymosin

Plant source
Milk-clotting activity 
(MCA)

MCA/PA 
ratio Reference

Raw extracts

Cardoon flowers (C. 
cardunculus)

61 IMCU mL−1 NA García et al. (2014)

Kiwifruit mesocarp (A. 
deliciosa)

2.7 U mg−1 5 (104) Mazorra-Manzano et al. 
(2013a)

Rhizome (Z. officinale) 2.3 U mg−1 3.2 (162)
Melon mesocarp (C. 
melo)

1.5 U mg−1 2.5 (208)

Fruit mesocarp (B. 
pinguin)

2.59 U mg−1 1.3 (162) Moreno-Hernández et al. 
(2017b)

Berries (S. 
elaeagnifolium)

818 U mg−1 (whole) 584 (11.7) Chávez-Garay et al. (2016)
1089 U mg−1 (seeds) 837 (8.2)

Berries (W. coagulans) 5.71 U mg−1 47.6 (NA) Salehi et al. (2017)
Latex (C. procera) 566 U mg−1 1788 (1) Freitas et al. (2016)
Purified enzymes

Cardosin A (C. 
cardunculus)

1160 IMCU g−1 NA Silva et al. (2003)

Cardosin B (C. 
cardunculus)

7556 IMCU g−1 NA

Cynarase A (C. scolymus) 4651 IMCU g−1 22.91 (25) Sidrach et al. (2005), 
Chazarra et al. (2007)Cynarase B (C. scolymus) 30,000 IMCU g−1 22.42 (3.8)

Cynarase C (C. scolymus) 43,000 IMCU g−1 34.87 (2.7)
Actinidin (A. deliciosa) 1 RU mg−1 0.46 (10.2) Grozdanovic et al. (2013)
GP-II (Z. officinale) 314 U mg−1 1653 (2.1) Hashim et al. (2011)
Cucumisin (C. melo) 117 TMCA 109 (NA) Uchikoba and Kaneda (1996)
Dubiumin (S. dubium) 3520 U mg−1 2490 (2) Mohamed et al. (2009a)

Values in parenthesis for MCA/PA ratio represent a relative factor between chymosin and plant 
coagulant evaluated in the same study. NA not available
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bic interactions (increasing the speed of curd formation) (Harboe et al. 2010; Freitas 
et al. 2016). All factors described above affect the milk-clotting properties of plant 
proteases similarly to chymosin and microbial proteases (Mohamed et  al. 2010; 
García et al. 2014).

2.3.2  Preference and Specificity of Plant Proteases  
Over Milk Proteins

The use of proteolytic enzymes for milk coagulation represents the most common 
process in cheesemaking. The hydrolytic events that take place define the protease 
properties as coagulant and its potential as chymosin substitute. The direct observa-
tion of the casein protein profile after milk coagulation (by SDS-PAGE or Urea- 
PAGE) allows a rapid exploration of the preference of proteases over different 
caseins. Most studies have evidenced that plant proteases such as those found in 
Centaurea calcitrapa, Citrus aurantium, and Bromelia penguin extracts hydrolyze 
preferentially κ-CN in the Phe105-Met106 peptide bond during early proteolytic 
phases, producing the amino para-kappacasein fragment (F1-105 κ-CN) and the gly-
comacropeptide (F106-169 κ-CN) (Tavaria et al. 1997; Mazorra-Manzano et al. 2013b; 
Moreno-Hernández et al. 2017a). Liquid chromatography-mass spectrometry anal-
ysis has also showed that proteases have a higher preference to cleavage this site; 
however, other peptide bonds in αs1-CN, β-CN, and κ-CN can also be cleaved during 
the milk-clotting process. Cardosins A and B hydrolyze with high-preference 
hydrophobic regions such as Phe23-Phe24, Phe153-Tyr154, and Typ164-Tyr165 in αs1-CN, 
and Leu127-Thr128, Leu165-Ser166, and Leu192-Tyr193 peptide bonds in β-CN. Minor dif-
ferences between casein preparations from bovine, caprine, or ovine have been 
observed (Silva and Malcata 1999; Vairo et al. 2013). Figure 2.1 shows the cleavage 
preference of some plant proteases on peptide bonds of caseins.

The specificity of milk-clotting proteases, determined by its milk-clotting/pro-
teolytic activity ratio (MCA/PA) (Table 2.2), is an important parameter that defines 
its potential use as chymosin substitute in cheesemaking. Proteases showing high 
values of MCA/PA (i.e., chymosin) are associated with high yield of curds, and 
good textural and flavor characteristics of cheeses. On the contrary, a low ratio 
results in weak curds, low yield (increases the loss of protein in whey), present a 
soft texture, and often produce bitter cheeses. Most plant rennets had showed lower 
MCA/PA ratios than chymosin. However, some plants such as Cynara sp. flowers, 
Solanum sp. berries, and C. procera latex have MCA/PA ratio values similar to 
chymosin (García et al. 2014; Chávez-Garay et al. 2016; Freitas et al. 2016). Crude 
extracts from kiwifruit, ginger rhizome, and melon mesocarp have MCA/PA ratios 
lower (104, 162, and 208 times, respectively) than calf rennet; however, formed 
curds still present good characteristics and rheological properties comparable to 
those obtained with chymosin (Mazorra-Manzano et  al. 2013a). This parameter 
(MCA/PA ratio) improves when proteases used are partially purified (Uchikoba and 
Kaneda 1996; Hashim et al. 2011; Grozdanovic et al. 2013).
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2.3.3  Plant Origin Coagulants and Cheese Properties

Several systematic research on the curd properties, yield, and sensory quality of 
cheeses produced with plant proteases has been recently conducted (Ordiales et al. 
2014; García et al. 2016; Wang et al. 2017). Plant protease activities over milk pro-
teins have a significant effect on curd and cheese properties. A high rate of κ-casein 
hydrolysis results in low milk-clotting time. Long exposition to proteases can cause 
proteolytic degradation of the casein network, thus reducing approximately 0.3–
0.7% the curd yield (Jacob et al. 2011). In addition, enzymatic preparations with 
high proteolytic activity can affect dramatically the yield and curd properties. 
Commonly, dynamic rheometry (dynamic oscillating shear deformation) is used to 
study the behavior of candidate “rennet substitute” during milk curd formation (Ben 
Amira et al. 2017a). Properties such as standard gelation time, gelation time rate, 
set-to-cut time, and gel hardness are determined. Temperature affects the curd for-
mation through the regulation of enzyme activity and micelle hydrophobic interac-
tions. Some plant coagulants show shorter gelation times in comparison with calf 
chymosin when clotting temperature increases. Confocal microscopy analysis has 
revealed that plant proteases clot milk better at low temperatures (by a mechanism 
where a gel network is better-interconnected and smaller pores are formed) than at 
high coagulation temperatures (Esteves et al. 2003). Higher clotting temperatures 

Fig. 2.1 Specificity of plant proteases toward milk caseins. Primary cleavage sites in αs1-casein 
(αs1-CN), β-caseins (β-CN), and κ-casein (κ-CN) by milk-clotting plant proteases. Most clotting 
proteases hydrolyze at high frequency the Phe105-Met106 in κ-CN during early stages of coagula-
tion. Arrows indicate susceptible bond to cleavage by chymosin on αs1-CN (Phe24-Phe25, Arg100- 
Leu101, and Trp164-Tyr165), β-CN (Leu165-Ser166, Ala189-Phe190, and Leu192-Tyr193), and κ-CN 
(Phe105-Met106) (Moller et  al. 2012); Cardosin A on αs1-CN (Phe24-Phe25, Arg100-Leu101, Phe153- 
Tyr154, Trp164-Tyr165, and Tyr165-Tyr166), β-CN (Leu127-Thr128, Leu165-Ser166, and Leu192-Tyr193), and 
κ-CN (Phe105-Met106); Cardosin B on αs1-CN (Phe24-Phe25, Phe150-Arg151, and Phe153-Tyr154), β-CN 
(Leu165-Ser166 and Leu192-Tyr193), and κ-CN (Phe105-Met106) (Vairo et  al. 2013); Cenprosin on 
αs1-CN (Phe24-Phe25), β-CN (Ala189-Phe190 and Leu192-Tyr193), and κ-CN (Phe105-Met106) (Tavaria 
et al. 1997); Actinidin on κ-CN (Arg97-Hist98, Phe105-Met106, Phe105-Met106, and Lys111-Lys112) (Lo 
Piero et al. 2011); Albizia lebbeck protease on κ-CN (Phe105-Met106 and Asp115-Lys116) (Egito et al. 
2007); Macluralisin on αs1-CN (GLy33-Lys34, Asn38-Glu39, Ser48-Thr49, Thr49-Glu50, Lys102-Lys103, 
and Pro107-Gln108) β-CN (Ser22-Ile23, Lys32-Phe33, and Ile207-Ile208), and κ-CN (Ala85-Lys86, His102- 
Leu103, Phe105-Met106, Pro110-Lys111, and Ile119-Pro120) (Corrons et al. 2017)
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(70  °C) cause over-proteolysis of the gel network, thus affecting its rheological 
properties and resulting in a poorly interconnected structure and curd firmness. A 
rheological analysis of curds elaborated with Withania coagulans proteases sug-
gested that short clotting times do not necessarily correlate with good gel properties. 
Hence, temperature range and enzyme concentration are important parameters to 
consider in cheese manufacture (Beigomi et al. 2014).

After milk coagulation, the cutting time (Tc) results crucial to maximize protein 
and fat transfer from milk to casein curd, thus curd can have the right technological 
properties. Cutting the curd facilitates whey removal; however, cutting the curd too 
early can lead to the loss of fines (some milk solids), while late Tc affects whey 
removal and more water get trapped, yielding high-moisture cheeses. Besides, fac-
tors such as pH at draining, cooking temperature, and curd processing (press, salted) 
affect cheese yield (Jacob et  al. 2010). The use of plant rennet from Cynara sp. 
showed similar gel building rates and higher curd stiffness than microbial rennet 
from R. miehei (Esteves et  al. 2003; Zhao et  al. 2004). However, texture profile 
analysis of miniature fresh curds, elaborated with proteases from kiwifruit, melon, 
and ginger, presented similar hardness and cohesiveness than those prepared with 
chymosin. However, cheese elaborated with plant coagulants presented lower curd 
yields (2–5% reduction) than chymosin (Mazorra-Manzano et al. 2013a). On the 
other side, proteases from Dregea sinensis stems, Withania coagulans berries, and 
kiwifruit Actinidia chinensis were adequate to produce high-quality mozzarella- 
type cheeses from buffalo milk. Although they presented similar physiochemical 
composition, cheese elaborated with plant coagulant presented a higher and com-
plex presence of flavored compounds (Nawaz et al. 2011; Puglisi et al. 2014; Wang 
et al. 2017). Table 2.3 shows some characteristics of cheeses produced with plant 
proteases under commercial and experimental conditions.

2.3.4  Plant Proteases and Cheese Ripening

Enzymatic reactions occurring during cheese manufacture are complex but essential 
for the development of flavors in matured cheeses. Conversion of fresh curd into 
ripened cheese occurs by diverse biochemical reactions where proteolysis, lipolysis, 
and microbial fermentation are involved. Free amino acids and peptides are impor-
tant in the development of cheese flavor, therefore protease action is an important 
factor for their release and subsequent flavor development. During cheese ripening, 
proteolytic events by the action of proteases from coagulants, microflora (starter 
culture and natural microbiota), and endogenous enzymes (e.g., plasmin and cathep-
sin D) take place. Residual coagulant in curd after whey drainage represents the 
major source of proteolytic enzymes in many cheeses. A proportion between 15 and 
30% of clotting protease added to milk remains active in the casein gel. They also 
contribute to textural changes by breakdown of the protein network and flavor 
development during cheese storage (Visser 1993; Sousa et al. 2001). Besides, poly-
peptides and small peptides formed (depending of enzyme specificity) can 
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Table 2.3 Experimental and commercial cheeses made with plant coagulants

Cheese 
type Country

Milk 
source Plant coagulant

Production 
scale

Cheese 
properties Reference

Asadero Mexico Cow Powder or 
extracts from 
Solanum 
elaeagnifolium 
berries

Artisanal Pasta 
filata-type, 
melt 
properties, 
tangy flavor, 
stringy 
texture, and 
minimal aged

Martínez- 
Ruiz et al. 
(2013), 
Chávez- 
Garay 
et al. 
(2016)

Caciofiore 
della Sibilla

Italy Ewe Raw extract 
from Carlina 
acanthifolia 
petioles

Artisanal Soft texture, 
bitter flavor, 
and aromatic

Cardinali 
et al. 
(2016)

Casteloes Portugal Bovine Raw extract 
from Centaurea 
calcitrapa

Experimental Semisoft 
cheese, 
slightly bitter 
flavor, and 
clean taste

Reis et al. 
(2000)

Dangke Indonesia Cow Raw latex from 
papaya (Carica 
papaya) tree

Artisanal Yellowish- 
white, 
cottage-type, 
smooth 
surface, and 
free from 
cracks and 
mold

Rana et al. 
(2017)

Domiati Egypt Buffalo, 
cow and 
mixtures

Coagulant from 
Albizia lebbeck 
and Sunflower 
(H. annuus) 
seeds

Artisanal/
semi- 
industrial

Salty 
fresh-type, 
high- 
moisture, 
semisoft, and 
springy 
texture

Darwish 
(2016)

Fresco Mexico Cow Kiwifruit 
(Actinidia 
deliciosa) 
extract

Experimental Semisoft and 
creamy taste

Mazorra- 
Manzano 
et al. 
(2013a)

Ginger rhizome 
extract

Experimental Soft texture

Fresco Spain Goat Cardoon 
(Cynara 
cardunculus) 
extract

Experimental/
Semi- 
industrial

Vegetal odor, 
slightly hard 
texture, and 
bitter and 
salty with 
goat taste

Garcia 
et al. 
(2012)

(continued)
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Table 2.3 (continued)

Cheese 
type Country

Milk 
source Plant coagulant

Production 
scale

Cheese 
properties Reference

Jibna-beida Sudan Goat, 
sheep

Extract from 
Solanum 
dobium berries

Artisanal White 
fresh-type, 
crumbly 
texture, and 
slightly bitter 
taste

Mohamed 
et al. 
(2009b), 
Yousif 
et al. 
(1996)

Manchego Spain Ewe, 
goat, 
cow, 
sheep, 
and 
mixtures

Coagulant 
powder from 
cardoon (C. 
cardunculus)

Experimental Soft texture, 
intense bitter 
and creamy 
taste

Prados 
et al. 
(2006)

Mozzarella Italy Cow Kiwifruit 
(Actinidia 
chinensis) 
extract

Experimental Pasta 
filata-type, 
lack 
bitterness, 
and similar 
flavor of 
Mozzarella 
(PDO)

Puglisi 
et al. 
(2014)

Mozzarella Pakistan Buffalo Raw extract 
from paneer 
booti (Withania 
coagulans) 
berries

Experimental Pasta-filata 
type, fatty 
cheese, 
lightly bitter 
taste, and 
semihard 
texture

Nawaz 
et al. 
(2011)

Mozzarella China Buffalo Raw extract 
from Dregea 
sinensis stem

Experimental Compact, 
smooth, and 
uniform 
shape, 
semihard 
texture, 
butterfat 
flavor, and 
intense 
fruity-sweet 
aromas

Wang 
et al. 
(2017)

Nettle Spain Cow Extract from 
fresh nettle 
leaves (Urtica 
dioica)

Experimental Fresh-type, 
soft- 
spreadable 
and creamy 
texture, 
flavored and 
aromatic curd

Fiol et al. 
(2016)

(continued)
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contribute to cheese flavor characteristics (although some peptides present bitter 
flavor). In addition, these protein fragments act as flavor precursors as they serve as 
substrates for microbiota metabolism during flavor formation (McSweeney 2004). 
Proteolytic activity of proteases is a catalytic parameter that will depend on the 
protein substrate used for its evaluation. The capacity of plant protease to degrade 
caseins determines its caseinolytic activity and represents an attractive feature to 
improve and accelerate cheese ripening. The susceptibility of caseins to the proteo-
lytic action of different rennet affects the ripening process. The proteolytic action of 
residual cardoon (thistle) proteases on caseins during ripening of La Serena cheese 
has a stronger relationship with flavor development than prevailing microflora or 
native enzyme activity (Roa et al. 1999). Bovine and caprine caseins resulted more 
susceptible to the cardosin action than ovine caseins. Proteolysis and textural 
changes occurring during ripening of cheese elaborated with cardoon extracts 
results in softer and creamy cheeses than those obtained with chymosin  

Table 2.3 (continued)

Cheese 
type Country

Milk 
source Plant coagulant

Production 
scale

Cheese 
properties Reference

Peshawari Pakistan Cow, 
buffalo

Purified ginger 
rhizome 
protease 
(Zingiber 
officinale)

Experimental Semihard 
texture

Hashim 
et al. 
(2011)

Serra da 
Estrela

Portugal Ewe, 
sheep

Dried thistle 
flower from 
Cynara 
cardunculus or 
C. humilis

Artisanal/
Semi- 
industrial 
(PDO)

Yellow-white 
color, young 
age but 
soft-sliceable, 
solid at 
ripening, 
aromatic and 
flavored notes 
creamy 
consistency 
with slightly 
bitterness

Guiné 
et al. 
(2016)

Torta del 
Casar

Spain Ewe, 
sheep

Dried flowers 
of C. 
cardunculus

Artisanal/
semi- 
industrial 
(PDO)

Soft-bodied 
cheese, 
slightly bitter 
and salty 
taste, ripened 
and creamy 
consistency

Ordiales 
et al. 
(2014)

Warankashi Nigeria Cow Sodom apple 
leaf (Calotropis 
procera) or 
pawpaw 
(Carica 
papaya)

Artisanal Soft-bodied 
cheese, sweet 
flavor

Hussein 
et al. 
(2016)

PDO protected by a denomination of origin
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(O’Mahony et al. 2003; Pino et al. 2009; García et al. 2016). The high hydrolysis 
rate on αs-1 and β caseins conduces to the development of the cheese sensory char-
acteristics and shorter ripening time. These important features of cardoon proteases 
had resulted essential in the development of the distinctive flavor in Torta del Casar 
and La Serena cheeses, a key characteristic for the Designation of their Origin 
Status (Sousa and Malcata 2002; Delgado et al. 2010; Ordiales et al. 2014).

2.4  Milk-Clotting Enzyme Preparations Based on Plants

The high concentration of proteases in some parts of plants has attracted the atten-
tion of the researcher community as well as the industrial and pharmaceutical sec-
tors. The evaluation of extraction processes, purification, characterization, and 
stabilization of enzymatic preparations with potential use in cheesemaking has 
recently increased. The standardization and stabilization of enzymatic formulations 
in liquid or powder form is essential for their commercialization and industrial 
application. However, in addition to its natural abundance, other parameters have to 
be considered for its utilization. Generally, before the purification and standardiza-
tion process, some proteases, even the animal calf rennet or recombinant chymosin, 
require additional steps for its activation or refolding steps to recover the enzyme in 
its functional form (Marston et al. 1984; Gasser et al. 2008). Most plant sources 
have proteases in its active form and can be easily extracted and isolated from dif-
ferent tissues (i.e., flowers, roots, fruits, stems, leaves, and latex). Most of the times, 
its direct application in cheesemaking is technologically feasible (Sun et al. 2016). 
However, factors such as variation in concentration, distribution in ecotypes, sea-
son, and physiological stage can affect their coagulant performance. Therefore, sev-
eral strategies to standardize enzymatic preparations are considered. Figure  2.2 
outlines the typical steps for analysis, purification, and characterization of milk- 
clotting plant preparations for cheesemaking.

2.5  Extraction and Concentration

In addition to proteases, plant tissues have diverse biological compounds like poly-
phenols, gums, polysaccharides, inhibitors, prooxidant metals, and non-proteolytic 
enzymes (i.e., phenoloxidases) that can interfere with protease activity and stability. 
Several strategies to improve proteolytic enzymes extraction, purification, and sta-
bilization have been developed. The type of buffer used for extraction (e.g., chemi-
cal nature, pH, and ionic strength), temperature, and time of extraction, in addition 
to the biochemical properties of proteases, are some factors to be considered. 
Acetate or citrate buffers are commonly employed to improve activity and stability 
of aspartic proteinases (Mazorra-Manzano and Yada 2008; Beka et al. 2014), while 
Tris(hydroxymethyl)aminomethane buffer is frequently employed for the extraction 
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of cysteine or serine proteases. Reducing agents like dithiothreitol (DTT) and cys-
teine are also important to stabilize cysteine protease activity. Other compounds like 
ethylendiaminetetraacetic acid (EDTA)  and polyvinylpyrrolidone (PVP) as metal 
and polyphenol chelating agents, respectively, are used to prevent oxidation and 
tannin–protein aggregation during enzyme extraction (Priolo et al. 2000; Liggieri 
et al. 2009; Babazadeh et al. 2011). Crude cardoon coagulants prepared at different 
pH show significant changes in protein content and activity, producing skim milk 
gels with different firmness, rheological properties, and water holding capacity. 

Fig. 2.2 Plant origin coagulants preparations, characterization, and application in cheesemaking 
process
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Surface response methodology indicated that grinding time and plant tissue- 
extraction solution ratio affected parameters such as MCA/PA ratio, coagulant effi-
ciency, and viscoelastic properties of casein gels (Ben Amira et  al. 2017b, c). 
Enzyme isolation from raw extracts requires the use of concentration and purifica-
tion technics. In this way, ultrafiltration and ammonium sulfate precipitation for 
enzyme pre-concentration are commonly used. Pre-concentrated enzymes are fur-
ther subjected to chromatographic methods including ion-exchange (anionic or cat-
ionic), size-exclusion, and affinity chromatography (Mahajan and Badgujar 2010; 
Huang et al. 2011; Tripathi et al. 2011; Kumari et al. 2012; Salehi et al. 2017).

Recently, a three-phase partitioning system (TPP) has been used for simple and 
quick enzyme recovery and purification. This non-chromatographic method is a 
versatile tool for one-step bioseparation of target proteins in complex mixtures. The 
procedure involves the mixing of crude plant extracts with ammonium sulfate 
(NH4)2SO4) and an organic solvent, usually tert-butanol (t-BuOH). After centrifuga-
tion, enzymes or proteins are selectively partitioned as an interfacial precipitate 
between aqueous phase (rich in saccharides and polar compounds) and solvent layer 
rich in pigments, lipids, and other nonpolar compounds (Gagaoua et  al. 2017). 
Recently, the use of a single TPP step has been employed successfully for recovery 
of proteolytic enzymes with milk-clotting properties, including zingibain, cucu-
misin, actinidin, calotropain, and ficin, with high purification factors (4 to 14-folds) 
and recovery yields (120–250%) (Gagaoua et  al. 2014; Gagaoua et  al. 2015; 
Gagaoua and Hafid 2016; Gagaoua et al. 2017).

2.6  Liquid and Powder Preparations

Artisanal cheese production represents an important proportion of cheeses mar-
keted worldwide. The recent artisanal cheese valorization has motivated the devel-
opment of new varieties and the standardization of processes for its industrial 
production. Several milk-clotting proteases extracted from some fresh or dried plant 
tissues are used directly for cheesemaking at artisanal level. Dried flowers of C. 
cardunculus and berries from Solanum dubium are some examples of milk-clotting 
proteases sources used to manufacture traditional ovine and bovine cheeses. On the 
other hand, liquid plant coagulants preparations for cheesemaking are also used. 
The extraction procedure from some plant sources is simple, of low cost, and suit-
able for its local distribution. Liquid enzymatic preparations distribute more homo-
geneously in milk to perform milk coagulation. However, they are more sensitive to 
thermal denaturalization, pH changes, proteolysis, and microbial spoilage. For this 
reason, several food additives and preservatives are added to extracts in order to 
avoid the loss of enzyme activity. Sodium chloride, pH buffering chemicals, and 
stabilizers (glycol, glycerol, and sorbitol) are some of the preservative substances 
added to extend their shelf life (Harboe et al. 2010). The knowledge of the optimum 
pH/temperature range and the effect of different salts and denaturant substances are 
key factors in formulation and stabilization of enzymatic preparations. Many 

2 Milk-Clotting Plant Proteases for Cheesemaking



36

researches have documented the stability of plant proteases in high ionic strength 
buffers, surfactants (e.g., SDS and Tween-80), reducing agents, and organic sol-
vents (methanol, ethanol, and acetone) (Tripathi et al. 2011; Prakash et al. 2012; 
Moreno-Hernández et al. 2017b).

On the other hand, coagulants in the form of powder are well suited for shipment 
at warm temperature and over long distances. Freeze-drying (lyophilization) of 
enzymatic liquid preparations improves enzyme stability and extends its shelf life. 
Freeze-drying causes minimal structural changes in enzymes and its activity is usu-
ally better preserved. Cardoon rennet (C. cardunculus) powder (by freeze-dryer) did 
not show significant changes in milk-clotting activity, improved its microbial qual-
ity, and was stable for one-year storage. Moreover, ewe cheeses made with powder 
vegetable coagulant showed similar organoleptic characteristics and textural attri-
butes than those cheeses produced with fresh crude extracts (Fernández-Salguero 
et al. 2002; Tejada et al. 2007; Tejada et al. 2008). In addition, its powdered form 
offered a more standardized dosage for cheesemaking.

2.7  Conclusions, Trends in Future Research

The successful application of some plant proteases sources (e.g., cardoon flower, 
and solanum dubium and S. elaeagnifolium berries) as milk-clotting agents for 
cheesemaking has represented a traditional practice in some world regions such as 
in Mediterranean, Indian, and Latin America countries. The worldwide shortage of 
calf rennet and the increase in cheese production have increased the demand for new 
sources of coagulant enzymes, problem partially solved by the use of recombinant 
chymosin. Preference for natural coagulant sources will impulse the search for 
novel, natural, stable, and efficient coagulants. Trends in consumption of clean label 
(e.g., non-GMO and natural) foods warrant the attention toward the screening of 
efficient and stable milk-clotting enzymes from novel sources that meet industrial 
and market demand. The great availability and diversity of plant proteases sources 
with potential use in cheesemaking will lead to explore new strategies to reduce 
limitations associated with source availability, natural concentration variation (e.g., 
plant tissue culture), and stability under storage. The presence of proteases with 
limited specificity in some plant extracts will be resolved by its characterization and 
use of new purification strategies to obtain reproducible and stable preparations for 
successful cheese production. In addition, the screening of new plant sources by 
proteomics and genomic approaches will facilitate the identification of new promis-
ing sources of plant proteases with potential application in other biotechnological 
processes such as the production of protein hydrolysates with functional and/or bio-
active properties.
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3.1  Introduction

Meat scientists and industries are constantly searching for natural and environmen-
tally friendly ways to improve the tenderness of their meat products. There is also a 
search for appropriate strategies for treating or valorizing protein wastes generated 
from meat-processing operations. A promising way to achieve both goals is by 
applying proteases obtained from plant sources. Plant proteases are preferred over 
proteases of microbial origin for many reasons such as: (1) plant proteases are func-
tional over a broad range of temperature and pH; (2) there are less concerns sur-
rounding possible toxicity or biohazard risk as their source of origin are often from 
readily consumable food materials; and (3) they may provide additional incomes for 
farmers. Therefore, with such specifications, plant-based proteases with properties 
suitable for applications in meat industries remain an interesting field of research. 
This chapter will provide an overview of discovered plant proteases and their appli-
cations in meat processing and meat waste utilization.

3.2  Meat Tenderization

Toughness in meat is a characteristic resulting primarily from the effect of connective 
tissue combined with interaction of myofibrillar proteins. The meat tenderization pro-
cess involves the controlled limited hydrolysis of connective tissue proteins and the 
myofibrillar structure. Meat myofibrils are primarily composed of actin and myosin, 
and connective tissue is composed primarily of collagen and elastin (Bailey and Light 
1989; Lawrie 1998). The relative proportion of these components determines the struc-
tural composition of a meat cut and therefore influences its tenderness. Consequently, 
disruption of these structural proteins leads to the tenderization of meat (Wheeler et al. 
2000). Various methods have been evaluated for achieving the tenderization of meat. 
These approaches have been mainly directed to reducing the amount of intact connec-
tive tissue without causing extensive degradation of myofibrillar proteins. Treatment 
by proteolytic enzymes is one of the more popular methods of meat tenderization 
(Qihe et al. 2006). A variety of proteases that have different hydrolytic specificity are 
available from various plant species, as summarized in Fig. 3.1. Several of these prote-
ases have not been fully evaluated in applications such as meat tenderizing.

Numerous studies have suggested that the most important quality feature of 
meat and determinant of eating satisfaction is tenderness. Achieving tenderness in 
tougher meat cuts is therefore the main challenge in terms of consumer acceptabil-
ity (Jeremiah 1981; Miller et al. 2001). A number of reviews have suggested that 
the most common cause of unacceptability in beef, pork, and lamb was the tough-
ness of the meat (Bekhit et al. 2017; Jeremiah 1982; Miller et al. 2001). In addition 
to that, Miller et al. (2001) found that approximately 78% of meat consumers in 
five cities across the USA are willing to pay a premium price for tender beefsteaks. 
Consumers also recognize the inherent tenderness variability in different meat 
cuts. Additionally, consumers tend to associate the differences in tenderness with 
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price where the more tender the cut, the higher the price. Consumers also associate 
different cooking methods for different meat cuts as there is a wide variation in the 
texture of meat within a carcass that in part relates to the amount of connective tis-
sue that is present. Polkinghorne et al. (2008) estimated that less than 10% of the 
meat of a carcass is considered to be prime grilling cuts that fetch a premium price. 
There is a considerable commercial difference between tender and less tender meat 
cuts. For example, a kilogram of beef fillet is currently sold in New Zealand for 
NZ$45–60/kg while a kilogram of beef silverside has a market value of NZ$10–12. 
Thus, increasing the tenderness of tougher meat cuts can increase the value of the 
remaining 90% of the carcass if the tenderness level can be improved through meat 
tenderizing interventions (Bekhit et al. 2017). Improving the tenderness of meat 
cuts and maintaining consistency in meat quality would result in attracting a larger 
consumer base, a higher retail price, and more frequent consumption (Feldkamp 
et  al. 2005; Lusk et  al. 2001; Platter et  al. 2005; Polkinghorne et  al. 2008). 
Therefore, the search for innovative meat tenderization techniques is of significant 
interest to the meat industry.

3.2.1  Factors Influencing Meat Texture

Inconsistency and variability in the texture of meat cuts are two of the major issues 
facing the meat industry. This is due to the wide biological diversity of skeletal 
muscle between animal species (Pette and Staron 1990). This difference in the 
structural and contractile properties of muscle tissue reflects the high degree of 
functional specialization that forms the basis of the structure, and functional plasticity 
and adaptability of muscle tissue (Sentandreu et  al. 2002). Therefore, meat cuts 

Plant proteases

Cysteine Proteases (CP) Serine Proteases (SP)

Aspartic Proteases (AP) Metalloproteases (MP)

Best studied Plant CPs:
• Papain
• Stem Bromelain
• Ficin
• Actinidin
• Zingibain

Less studied
Plant CPs:
• Ananain
• Comosain
• Chymopapain
• Capparin
• Caricain
• Asparagus proteases

Less studied Plant SPs:
• Asian pumpkin protease
• Pomiferin (o 

Macluralisin)
• Bengalensin
• Cucumin
• Crinumina
• Dobiumin
• Emiliin
• Hordolisin
• Nerifolin
• Tamarillin
• Strebilin

Best studied Plant SP:
• Cucumisin

Less studied
Plant APs:
• Cardosin
• Cenprosin
• Cyanarase
• Cyprosin
• Phytepsin
• Nephentesin
• Nucellin
• Oryzasin
• SoyAP1 & SoyAP2

Best studied Plant APs:
• Fruit Bromelain
• Phytepsin (PDB 1qdm)
• Cardosin A (PDB 1b5f)

Known Plant MPs:
• Cotinifolin
• Plant metzincin

Fig. 3.1 Plant proteases, their classifications, and level of investigation in meat studies
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from different parts of an animal carcass, aside from differences relating to animal 
species, will respond differently to any postmortem aging process, which in part is 
controlled by the effect of endogenous proteases on the meat structure. Hence, any 
exogenous meat tenderizing strategy using proteases needs to be tailored to the 
characteristics of the particular meat cut.

3.2.2  The Mechanism of Meat Tenderization

The endogenous process postmortem of converting muscle into meat product is a 
three-step process: (1) pre-rigor phase, (2) rigor phase, and (3) tenderizing phase. 
The pre-rigor phase is the first stage after postmortem where the muscle remains 
excitable, depending on the duration of survival of the nervous system, and may last 
up to 30 minutes in beef (Chrystall and Devine 1985). During the rigor second 
phase, the cellular energy currency and energy storage compounds such as adenos-
ine triphosphate (ATP), phosphocreatine (PC), muscle glycogen, etc., become 
depleted. The duration of this phase is highly variable, depending on meat storage 
conditions, species of animal, and muscle type. Upon rigor onset, the elasticity of 
the muscle is reduced and the toughness of the muscle increases. The tenderizing 
phase is dictated by the chilling conditions used, as well as biological variations 
between muscle group and animal species. The difference in the toughness of meat 
cuts is defined by the degree of crosslinking of collagen in the connective tissue 
which defines the background toughness (Sentandreu et  al. 2002). Traditionally, 
two factors that influence the tenderness of cooked meat are the cooking method 
used and the humidity during the cooking process, which affects the extent of con-
version of collagen to gelatin (Sentandreu et al. 2002).

Animal muscles contain endogenous proteases and protease inhibitors that have 
important roles in the maintenance and development of muscle tissue in the live 
animal. The hydrolytic capability of these endogenous proteases has been utilized 
during traditional aging of muscle postmortem in the process of converting muscle 
to meat. The levels of endogenous protease and protease inhibitors control the 
extent to which a meat cut is tenderized during the aging process.

The main endogenous proteases in muscle such as calpains are thought to be 
responsible for the tenderization of meat during postmortem (Bernard et al. 2007; 
Goll et al. 2003; Koohmaraie and Geesink 2006; Neath et al. 2007; Nowak 2011). 
Calpains are a subfamily of 14 calcium-dependent cysteine proteases, whose physi-
ological role in muscle is to break down myofibrillar proteins (tropomyosin, tropo-
nin I, troponin T, C-protein, connectin (titin), and desmin) as part of the maintenance 
and remodelling of muscle tissue in the live animal. Postmortem meat tenderness is 
influenced by calpain I (μ) and calpain II (m) as well as the activity of calpastatin, 
which act as a calpain inhibitor (Goll et al. 2003; Koohmaraie and Geesink 2006; 
Moldoveanu et al. 2008). The majority of μ calpain resides in the Z-line (~66%), 
while the rest is situated in the I-band (~20%) and the A-band (~14%) (Nowak 
2011). Calpain II is also mainly (~52%) situated in the Z-line, and about 27% and 
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21% are found in the I-band and A band regions of the sarcomere, respectively 
(Koohmaraie 1994; Kumamoto et al. 1992). The proteolytic activity of endogenous 
calpain in muscle is modulated by an inhibitor, calpastatin, which forms a complex 
with calpain. Calpastatin has a molecular mass of ~60–70 kDa and is comprised of 
four inhibitory domains (Maki et al. 1987; Nowak 2011). There are three regions 
(A, B, and C) within these domains. Besides the inhibitory activity of calpastatin 
region B, regions A and C were found to be capable of activating calpain I and cal-
pain II (Tompa et al. 2002). Calpastatin can be inactivated by heat treatment during 
the cooking process. However, they are unable to inhibit the activity of other exog-
enous proteases such as trypsin, chymotrypsin, and papain (Nishiura et al. 1978). 
Apart from calpastatin, little is known about other endogenous inhibitors of other 
peptidases present such as the cystatins (a family of cysteine peptidase inhibitors) 
(Ouali and Talmant 1990; Shackelford et al. 1991), and serine peptidase inhibitors 
(Ouali 1999; Zamora et al. 1996) in skeletal muscle cells. As the concentration of 
endogenous proteases in muscle varies between animal species, this will affect the 
degree of tenderness achieved by these endogenous proteases during traditional 
aging of meat (Chéret et al. 2007; Gerelt et al. 2005).

3.3  Waste Generated from Meat Industries

Industrial processing of livestock and poultry generates a large amount of by- 
products such as blood, hair, wool, feather, skin, beak, horn, nail, hoof, bone (con-
taining collagen), meat trimmings, and internal organs. These by-products are either 
disposed of by landfill or incinerated, or utilized in various ways mainly as animal 
feed and production of glue. Meat-processing waste was ranked as the second larg-
est waste category in commercial and industrial food in New Zealand waste streams 
after dairy product waste, with an estimate of 17,182  tons generated in 2011 
(Reynolds et al. 2016).

Some of this waste material is disposed of in landfill or by incineration which has 
potential damaging effects on the environment. As a result, meat industries are 
incurring considerable disposal costs and are missing out on potential revenue 
streams that could be generated by better utilization of this waste.

Some of this meat waste is being converted into relatively low-value by-products 
such as animal feed, organic fertilizers, and pet foods (Adel et al. 2002). There is 
also the possibility to utilize the protein component of this waste, including produc-
tion of protein hydrolysates, that can be utilized in higher value-added products 
(Gbogouri et  al. 2004). Protein hydrolysates have been shown to have enhanced 
functional properties such as increased solubility, fat absorption, foaming stabiliza-
tion, and emulsifying properties that can contribute valuable characteristics to pro-
cessed food products (Klompong et al. 2007).

Hydrolysates of protein containing animal by-products are reported to have 
potential health-enhancing effects and therefore are finding uses as nutraceutical 
ingredients in food and pharmaceutical formulations (Khan et  al. 2011; Lasekan 
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et  al. 2013; Toldrá et  al. 2012). Antioxidant, antimicrobial, and antihypertensive 
(ACE inhibitor) activities are the most extensively studied functional properties of 
bioactive peptides from meats and meat-processing by-products.

In addition, protein hydrolysates derived from meat waste can be used as a nutri-
tional source for patients who are not able to digest intact protein. These protein 
hydrolysates also have potential application in food products as flavorings, as well 
as presenting a considerable source of essential amino acids (Martínez-Alvarez 
et al. 2015; van Boekel 2006). For this reason, the flavor industry is interested in 
finding novel protein hydrolysates generated from cheap and abundant underuti-
lized protein sources which may be used as a supplement to develop new flavors.

In addition, such protein hydrolysates can be used to provide an essential source 
of nitrogen in large-scale biotechnology cultivation of microorganisms to produce 
high-demand useful industrial products such as antibiotics, organic acids, and 
enzymes (Brandelli and Riffel 2005). A common ingredient in commercial growth 
media is peptone which provides the essential carbon and nitrogen source for the 
microorganism. All of these properties make animal protein hydrolysates of interest 
for manufacture of products for human consumption or for animal feed.

However, in the 1990s, the outbreak of bovine spongiform encephalopathy (BSE) 
in Europe coupled with the link established between consumption of BSE- infected 
meat and the development of Creutzfeldt–Jakob disease led to a sharp decline and/or 
ban in the use of slaughterhouse waste material as a food ingredient. Meat waste was 
considered to be a possible transmission pathway for the above mentioned disease. 
In addition, legislations in some countries does not allow animal waste disposal in 
landfill. Although BSE has been eliminated in most countries, the use of animal by-
products directly as animal feed ingredients is currently legally restricted. In Europe, 
only third category by-products (EC Regulation No. 1069/2009, Article 33) can be 
utilized after appropriate technological processing to produce low value-added prod-
ucts such as animal feeds, silages, and fertilizers, etc., or derived products of greater 
added value in cosmetic, sanitary, or veterinary medicinal products. In the USA, the 
use of animal by-products is also restricted for various purposes such as food, medic-
inal, pharmaceutical, and cosmetic purpose (Liu 2002; Martínez-Alvarez et al. 2015).

Worldwide, it is estimated that approximately 60 million tonnes of animal by- 
products (Hamilton and Consultation 2004) are being processed by the rendering 
industry each year, of which ~42% are processed in North America, ~25% in the 
European Union, and ~17% are processed in Argentina, Australia, Brazil, and New 
Zealand combined (Martínez-Alvarez et al. 2015). Data on the amount of animal by-
product waste derived from slaughter and processing fluctuate but are estimated at 
33–43% (w/w) of the live animal weight (Hamilton and Consultation 2004). Meeker 
(2009) reported that the amount of by-products derived from slaughter and processing 
of cattle, pigs, and broilers may be up to about 49%, 44%, and 37% of the live animal 
weight, respectively. In the specific case of chickens, blood and feather accounts for 
2–6% and up to 10% of the total bird weight, respectively (Meeker 2009).

As indicated above, protein by-products from meat industries are being gener-
ated in considerable quantity each year by meat-processing industries. These 
 by- products present a remarkable resource of underutilized protein. By breaking 
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down or modifying their structure and converting them into hydrolysates using pro-
teases, a range of biological activities and functional properties are generated that 
have considerable potential for utilization in a range of products. The potential of 
many plant proteases has not been fully evaluated for application in meat tenderiz-
ing or for the processing of meat waste. While some plant proteases have been 
evaluated for meat tenderization, it may be that plant proteases will have better 
application with processing of meat waste.

3.4  Plant Proteases: Sources and Classifications

Proteases have been isolated from a variety of plants and documented in the lit-
erature, as summarized in Fig. 3.1. The most well-studied plant proteases include 
papain from papaya latex, bromelain from pineapple stem, ficin from fig fruit, 
actinidin from kiwifruit, and zingibain from ginger rhizome and are currently the 
most well-studied plant proteases. Other plant sources such as asparagus (Ha 
et al. 2013; Yonezawa et al. 1998) and tamarillin from tamarillo (Li et al. 2018a, 
b) contain new emerging proteases which have not been well studied and may 
have potential useful applications in meat-processing industry. Plant proteases 
can be categorized according to their catalytic mechanism. Several of the plant 
proteases are thiol proteases (CP), having cysteine in the active site, and are the 
most studied and commonly used. In addition, serine (SP), aspartic (AP), and 
metallo (MP) proteases are represented among the plant proteases. Although a 
wide range of plant proteases have been documented in the literature, several of 
them have not been given an appropriate EC classification such as asparagus  
proteases (Ha et al. 2013).

3.4.1  Plant Cysteine and Serine Proteases

Papain (EC 3.4.22.2), bromelain (EC 3.4.22.32), and ficin (EC 3.4.22.3) are the 
most well-known plant cysteine proteases (CP) used in food processing, pharma-
ceutics, and other industrial processes. These three enzymes accounted for approx-
imately 5% of the global sales of commercial proteases in 2008 (Illanes 2008). 
This is in part because these proteases are highly abundant and obtained from rela-
tively accessible plant material sources. Two other CPs that have emerging poten-
tial are actinidin (also known as kiwillin) and zingibain (EC 3.4.22.67) (Choi et al. 
1999; Ha et al. 2012; Teh et al. 2016). Cysteine proteases are more abundant in 
plants even though the total number of serine proteases (SPs) known is greater 
across all of the plant genomes (Schaller 2004). Some Cucurbitaceae species con-
tain significant serine protease activity and could represent up to 50% of the total 
protein extracted from fruits and latex (Antão and Malcata 2005; Sharma et  al. 
2009). Cucumisin (EC 3.4.21.25) from melon Cucumis melo fruit is the best known 
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of the plant SPs (Antão and Malcata 2005; Arima et al. 2013). Other SPs identified 
in plants include pomiferin (or macluralisin) from Maclura pomifera latex (Corrons 
et al. 2012), SPs from Asian pumpkin (Babij et al. 2014), bengalensin from Ficus 
benghalensis (Sharma et al. 2009), cucumin from Cucumis trigonus Roxb (Asif-
Ullah et al. 2006), dobiumin from Solanum dobium (Ahmed et al. 2009), hordoli-
sin from barley Hordeum vulgare (Terp et  al. 2000), crinumin from Crinum 
asiaticum (Singh et al. 2010), nerifolin from Euphorbia neriifolia L. (Yadav et al. 
2012), tamarillin from tamarillo or tree tomato (Cyphomandra betacea (F)) (Li 
et al. 2018b), streblin from Streblus asper (Tripathi et al. 2011), and others (Antão 
and Malcata 2005; Domsalla and Melzig 2008). In comparison with cysteine pro-
teases, serine proteases do not require the use of reductants and chelating agents 
for their hydrolytic reaction. Moreover, serine proteases were also found to have 
high stability under elevated temperature and the presence of oxidizing agents and 
the surfactants (Ahmed et al. 2009).

3.4.2  Plant Aspartic Proteases

The only plant APs that have been characterized and their three-dimensional struc-
tures analyzed are phytepsin (PDB 1qdm) and cardosin A (PDB 1b5f) from barley 
Hordeum vulgare L. and Cynara cardunculus, respectively (Frazão et  al. 1999; 
Kervinen et al. 1999). These enzymes are heterodimeric with different conserved 
catalytic motifs: Asp-Thr-Gly (DTG) and Asp-Ser-Gly (DSG) at the substrate bind-
ing cleft, that differ from the characteristic animal and microbial catalytic motifs 
DTG/DTG counterpart (Faro and Gal 2005; Rawlings et  al. 2013). The general 
name “phytepsins” (EC 3.4.23.40) has been adopted by the Enzyme Commission 
(EC) of the International Union of Biochemistry and Molecular biology (IUBMB) 
for all typical APs. However, the name of the species or tissue from which each 
enzyme has been purified is used as the basis for naming the extracted enzymes 
(Cavalli et al. 2013). The phytepsins (family A1), include all the typical Aps, includ-
ing the A1, A2, and A3 protease isoforms from Arabidopsis thaliana (Chen et al. 
2002), the cardosins and cyprosins from Cynara cardunculus (Pissarra et al. 2007; 
Sarmento et al. 2009), the cenprosins from Centaurea calcitrapa (Domingos et al. 
2000), cirsin from Cirsium vulgare (Lufrano et al. 2012), oryzasin from rice Oryza 
sativa (Asakura et  al. 1995), the AP1 and AP2 isoforms from soy Glycine max 
(Terauchi et  al. 2006), and others. The plant APs grouped in subfamily A1B are 
atypical. Examples in this family include the constitutive disease resistance CDR1 
and PCS1, which promotes cell survival, proteases from Arabidopsis, as well as the 
nucellin-like proteinases such as nephentesin from the insectivorous plant 
Nepenthes, and nucellin from Oryza sativa, respectively (An et al. 2002; Faro and 
Gal 2005; Ge et al. 2005; Xia et al. 2004).
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3.4.3  Plant Metalloproteases

Among all plant proteases, the metalloproteases (MPs) are the least characterized 
(Sun et al. 2007). However, the proteolytic activity of plant MPs has been detected 
in several sources such as wheat, buckwheat seed, pea seeds, germinated maize, 
sugarcane, soybean leaves, sorghum, and Arabidopsis thaliana (Macedo et al. 1999; 
Marino et al. 2014; Ramakrishna et al. 2010; Ramos and Selistre-de-Araujo 2001). 
The matrix metalloproteases (MMP) family belonging to the metzincins clan have 
a dependence on metal ion cofactors, generally zinc (Zn2+) (Marino and Funk 2012; 
Marino et al. 2014). Although many plant MPs have been discovered, the use of 
plant MPs is still limited due to a lack of their characterization. The potential abun-
dance and knowledge of the catalytic properties of cotinifolin from Euphorbia 
cotinifolia, a native broadleaf red shrub from Mexico and South America, opens the 
possibilities to explore the utilization of MPs in biotechnology and industrial appli-
cations in the near future (Kumar et al. 2011).

3.5  Applications of Plant Proteases in Meat Tenderization

The process of meat tenderization involves essentially a limited proteolysis of 
higher order protein structures in meat. The endogenous proteases present in 
meat are responsible for the tenderization effect that is achieved during the aging 
of meat postmortem. There is the potential for adding exogenous proteases from 
different sources to achieve additional tenderization (Lantto et al. 2009). Studies 
have shown that connective tissues and muscle proteins can be digested by exog-
enous proteases (Abdel-Naeem and Mohamed 2016; Grzonka et  al. 2007). 
Although there are a wide variety of proteases available from plants, bacteria, 
and fungi, the plant proteases have been the most studied. Approximately, 95% 
of the commercial proteases used in the USA are plant-derived. Microbial-
derived tenderizers have not been used widely due to the preference for proteases 
sourced from readily consumable products from plants (Ionescu et al. 2008a, b). 
Several plant proteases have been documented in the literature to have the capa-
bility of hydrolyzing muscle proteins. Examples of plant proteases are summa-
rized in Fig.  3.1. The most commonly used proteases for commercial meat 
tenderization are papain, bromelain, ficin, and actinidin (Abdel-Naeem and 
Mohamed 2016). Reports by Garg and Mendiratta (2006) and Naveena et  al. 
(2004) also suggested that proteases sourced from ginger rhizome (Zingibain) 
and fruits of Cucumis trigonus Roxb (Cucumin) plant were effective in tender-
izing meat products. The pH, temperature, and hydrolysis capability of well-
studied plant proteases used in proteolytic degradation of myofibrillar proteins 
and collagen are summarized in Table 3.1.

Although, some plant proteases have been demonstrated to have relatively 
broad substrate specificity as well as exceptional hydrolytic capability, the extent 
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of proteolysis can be difficult to control, and the proteases often excessively 
hydrolyze a protein substrate leading to an undesirable, overly proteolyzed prod-
uct (Schaller 2004). The results from a study conducted by Ha et  al. (2012) 
showed considerable differences in protease activity depending on the substrate 
used for assay and that protease assays with connective tissue and meat myofibril 
extracts provide a realistic evaluation of the potential of a protease for applica-
tion in meat tenderization. The actinidin protease preparation was found to be 
most effective at hydrolyzing beef myofibril proteins due to mild hydrolytic 
capability and the zingibain protease preparation was found to the most effective 
at hydrolyzing connective tissue proteins. This indicates the potential uses of 
these plant-derived proteases for meat tenderization applications, as opposed to 
the challenge of trying to control the degree of meat tenderization with the more 
active papain and bromelain proteases. Another additional consideration with 
plant proteases is that the reliability of the protease source is governed by several 
factors such as variation in climatic conditions and the availability of land for 
plant growth (Rao et al. 1998).

3.5.1  Papain

Papain (EC 3.4.22.2) (molecular weight of 23.4 kDa) is a cysteine protease of the 
peptidase C1 family. It is sourced from the papaya plant (Carica papaya), particu-
larly from papaya fruit latex. The functional role of papain in plant physiology is 
thought to provide protection for the plants against insects (Konno et al. 2004). The 
three-dimensional structure of papain was determined by Kamphuis et al. (1984). 
Papain has optimum activity at approximately 65 °C and pH 6.0–7.0, depending on 
the substrate (Kilara et  al. 1977; Smith and Hong-Shum 2011). Papain has been 
shown to have a broad spectrum of proteolytic activity over a relatively wide range 
of pH (5.0–8.0) and retains activity above 65 °C (Smith and Hong-Shum 2011). A 
study by Berger and Schechter (1970) showed that papain has a specificity for 
amino acids with aromatic side chains such as Phe and Tyr at the P2 position. 
Synthetic peptides and inhibitors were used to map the active sites of papain. Within 
the active site, Cys25 and His159 are the two essential residues for the protease 
activity (Bekhit et al. 2014).

Papain has a high thermal and pressure stability which requires intense process 
conditions for adequate inactivation, as to achieve 95% inactivation of papain, 
22 min processing at 900 MPa and 80 °C was required (Arshad et al. 2016; Maróstica 
and Pastore 2010). Papain has been used in the meat industry as a tenderizer owing 
to its proteolytic effect and capability to hydrolyze myofibrillar proteins. 
Additionally, the hydrolytic capability of papain is enhanced with heat-denatured 
collagen. Papain has therefore been applied to meat cuts from older animals as when 
the meat reaches higher temperatures during cooking, the highly cross-linked col-
lagen characteristic of older animals shrinks and begins to convert to gelatin and is 
more susceptible to hydrolysis by papain (Wilson et  al. 1992). For many years, 
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papain has been used to breakdown tough fibers. However, papain proteolysis can 
be challenging to control and tends to over-hydrolyze meat due to over-proteolysis 
of myosin which gives rise to a “mushy and/or grainy” texture in the tenderized 
meat. This has limited the use of papain as a commercial meat tenderizer.

3.5.2  Bromelain

Bromelain or bromelin comprises a group of endopeptidases present in the leaves, 
stems, and root, and in high abundance in the fruit of the Bromeliacea family. Of the 
Bromeliacea family, bromelain from the pineapple plant (Ananas comosus) is the 
best-known and well-studied member. Fruit and stem bromelain are immunologi-
cally different where stem bromelains (EC 3.4.22.32) are cysteine endopeptidases, 
whereas fruit bromelains (EC 3.4.22.33) are aspartic endopeptidases. Crude extracts 
of stem bromelain (EC 3.4.22.32) contain a mixture of other minor cysteine endo-
peptidases such as ananain and comosain. Bromelain is a glycosylated single-chain 
protein with a molecular weight of 24.5 kDa. Its structure consists of 212 amino 
acid residues and includes seven cysteines, of which one is involved in catalysis. 
The remaining six cysteines form three disulfide bridges. Purified bromelain is sta-
ble when stored at −20 °C; it has an optimum activity at pH 6–8.5 and within a 
temperature range of 50–60 °C. Although the structures of the bromelains are simi-
lar, in that they are both single-chain glycosylated proteins with similar molecular 
weights (fruit bromelain MW = 25 kDa), fruit bromelain has a much higher proteo-
lytic activity and a broader specificity for peptide bonds in comparison to stem 
bromelain (Kim and Taub 1991). The hydrolytic specificity of bromelain is slightly 
less than that of papain as has been determined by proteolysis of synthetic peptides 
at pH 5.0–7.0 and optimal temperature of 50  °C (Smith and Hong-Shum 2011). 
While only two main proteases have been detected in pineapple fruit, up to four 
protease components have been separated by chromatography of the crude extracts 
of pineapple stem (Rowan et al. 1990). The catalytic activity of most of these prote-
ases has been extensively investigated in multiple studies using various synthetic 
peptides (Inagami and Murachi 1963; Napper et  al. 1994; Rowan et  al. 1990). 
Results from these studies have shown that although the proteases are related, they 
are distinctive in terms of hydrolytic specificity and have small sequence differences 
(Lee et al. 1997). Bromelain is important for tenderization of meat in industries with 
controlled environment and is useful for assurance of the microbiological quality 
and purity. Like other proteases, bromelain degrades myofibrillar proteins and col-
lagen, often resulting in over-tenderization of meat (Melendo et al. 1996). Ionescu 
et al. (2008a, b) investigated the use of bromelain with adult beef cuts, with the best 
results being achieved using 10 mg protease/100 g meat, with a tenderization time 
of 24 h at 4 °C, followed by thermal inactivation at a rate of 1 °C/min to 70 °C.
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3.5.3  Ficin

Ficin (EC 3.4.22.3) is a class of cysteine (with thiol functional group) or sulfhydryl 
proteases from the genus Ficus. Ficin is a well-known plant protease used in meat ten-
derization (Maróstica and Pastore 2010) as well as an enhancer of the solubility of 
muscle proteins (Ramezani et al. 2003). Crude ficin extracts have been shown to con-
tain 10 proteases (Kramer and Whitaker 1964). These proteases have different proper-
ties, including molecular weight and conditions for optimum activity. The most 
extensively studied ficins are the cysteine endopeptidases found in the latex of Ficus 
glabrata and Ficus carica. Proteases from other species sourced from the latex of Ficus 
glabrata, Ficus anthelmintica, and Ficus laurifolia are less well known. In 2008, it was 
shown that ficin obtained from F. racemose has a molecular weight of 44.5 kDa and 
showed a maximum activity in the optimal pH range of 4.5–6.5 at 60 °C (Arshad et al. 
2016; Maróstica and Pastore 2010). Ficin protease had optimal activity over a range of 
pH 5–8 and temperature 45–55  °C making it suitable for fresh meat processing. 
Previous studies on ficin observed that the pH is dependent on the substrate concentra-
tion and has a half-life at 60 °C of 1.5 h (Kramer and Whitaker 1964). These properties 
make ficins a beneficial class of plant protease for use in meat tenderization.

3.5.4  Actinidin

Actinidin (EC 3.4.22.14, also known as actinidain or actinidia anionic protease) is a 
novel sulfhydryl or cysteine protease extracted from kiwifruit. The Actinidia delici-
osa variety is the most commonly used plant source for actinidin. It also belongs to 
the papain family due to its sequence and structural similarities with papain proteases 
(Baker 1980; Carne and Moore 1978; Kamphuis et  al. 1985). Actinidin has been 
fractionated by ion exchange chromatography into six isoforms of similar molecular 
weight of 23.5 kDa with isoelectric points (pIs) ranging from 3.9 to 9.3, and the 
acidic isoforms being the more prominent species (Nieuwenhuizen et  al. 2007; 
Sugiyama et al. 1996). The specific activity of actinidin has been well characterized 
and shows a wide substrate specificity and pH range (4.5–6.0) (McDowall 1970) with 
the optimal temperature being 58–62 °C (Dufour 1988). Despite the striking similar-
ity in structural homology, the specificity of actinidin is somewhat different to that of 
papain. Substrates with aromatic N-substituents had higher Km values for actinidin 
in comparison with papain, indicating differences in substrate–enzyme affinity 
between the two proteases. This variance was ascribed to amino acid differences 
within the active site of actinidin, especially the substitution of Ser 205 in papain with 
a Met in actinidin (Met 211), which makes the hydrophobic pocket at the S2 subsite 
notably shorter. It has a molecular weight of 32 kDa. Actinidin is used commercially 
in the meat industry to tenderize meat (Varughese et al. 1992) and enhance the chemi-
cal processes related to degradation of the myofibrillar proteins into peptides. It is 
also involved in the activation of m- calpain throughout postmortem aging (Ha et al. 
2012). Actinidin has many applications in the food industry because of its advantages 
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over other plant proteases such as papain and ficin. Actinidin shows mild tenderizing 
activity, even at high concentrations, preventing surface mushiness. It has a relatively 
low inactivation temperature (60 °C) which makes the tenderization process easier to 
control (Eshamah et al. 2014; Tarté 2009). With previous application to meat, it has 
been found that actinidin has a milder tenderizing effect (Han et al. 2009) on collagen 
than other traditionally used proteases such as papain (Lewis and Luh 1988). This 
may limit its usefulness for underutilized cuts with high connective tissue content; 
however, it exhibits a more controlled tenderizing action on the myofibrillar struc-
ture, which is advantageous in terms of minimizing the mushy texture and off-flavors 
often experienced with the use of papain proteases (Ashie et al. 2002).

3.6  Applications of Plant Proteases on the Production 
of Protein Hydrolysates from Meat and Meat-processing 
By-products

Meat trimmings and by-products are in many countries taken out of production for 
the human consumption due to various reasons such as being not commonly con-
sumed by customers (e.g., intestines, feet, and stomach), have low value (liver, and 
kidney) or due to hygienic and religious reasons (e.g., blood). There has been an 
increasing interest in utilizing these by-products with the aim of reducing waste of 
natural resources and adding-value to the processing of animals (Lafarga and Hayes 
2014; Mora and Toldrá 2014). The production of bioactive compounds has been one 
of the most promising processing options as it generates compounds that have 
health and functional roles in food systems and could potentially have high value 
that justify the additional cost and efforts in processing the by-products. Bioactive 
peptides are short amino acid sequences (between 2 and 20 amino acid residues) 
that exhibit a physiological effect upon consumption in a food system. The genera-
tion of bioactive peptides is achieved by the hydrolysis of proteins due to the actions 
of proteases (either during the digestion of food after consumption, use of a fermen-
tation process or use of purified or semi-purified protease preparations). Some of the 
biological activities that could be exerted by bioactive peptides are summarized in 
Fig.  3.2. Selected bioactivities of peptides obtained by plant proteases that have 
been reported for meat and meat industry by-products will be described below.

3.6.1  Muscle Proteins

3.6.1.1  Antioxidant Peptides

The production of highly reactive species of oxygen and nitrogen (known as ROS and 
RNS, respectively) in biological systems, including in food, is well known and has been 
reviewed by Bekhit et al. (2013) for meat. Oxidative stress caused by ROS and RNS 
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lead to several pathological diseases and deterioration of foods. Antioxidants are capa-
ble of delaying oxidative processes and improve the healthiness and the quality of foods.

Antioxidant peptides were generated from pork myofibrillar proteins (Saiga 
et al. 2003) using papain (hydrolysis was carried out for 24 h at 37 °C and pH 7). 
The antioxidant activities of crude protein hydrolysate were better than those 
obtained by actinase E and were comparable to α-tocopherol in a linoleic acid per-
oxidation assay, but lower activities were found with the DPPH radical-scavenging 
activity and the metal-chelating activity assays. The hydrolysate obtained from 
papain treatment was purified and 5 peptides (D–S–G–V–T; I–E–A–E–G–E; D–A–
Q–E–K–L–E; E–E–L–D–N–A–L–N; and V–P–S–I–D–D–Q–E–E–L–M) were 
identified. The D–A–Q–E–K–L–E peptide that originated from tropomyosin had 
the highest antioxidant activity. Under similar conditions, but lower pH (6.0), Kim 
et al. (2007) used papain and generated very high antioxidant activities in venison 
hydrolysate. The antioxidant activity (DPPH, hydroxyl, superoxide, and peroxyl 
radical- scavenging activity assays) of the papain hydrolysate was better than alca-
lase, neutrase pepsin, trypsin and chymotrypsin hydrolysates. Kim et  al. (2007) 
reported the active peptides to be M–Q–I–F–V–K–T–L–T–G and D–L–S–D–G– 
E–Q–G–V–L.

Similarly, Arihara et al. (2005) reported three peptides (D–L–Y–A, S–L–Y–A, 
and V–W) obtained from pork actomyosin hydrolyzed with papain with high in vitro 
and in vivo antioxidant activity. The peptides showed anti-fatigue activity in mice 
subjected to treadmill exercise. The use of papain in addition to microbial proteases 
from Streptomyces and Bacillus polymixa generated pig collagen hydrolysates that 
had better antioxidant activity than the individual proteases (Li et al. 2007). Four 
peptide sequences (Q–G–A–R, L–Q–G–M, L–Q–G–M–Hyp, and Hyl–C) were iso-
lated from the hydrolysate.

3.6.1.2  Other Activities

Prebiotic activity was reported by Liepke et  al. (2002) and Arihara et  al. (2013) 
reported papain hydrolyzed pork actomyosin to enhance the growth of 
Bifidobacterium strains. The peptide with E-L-M was found to be very active in 

Fig. 3.2 Schematic representation of production of peptides from the meat industry and their 
potential bioactivities. Modified from Agyei et al. (2017)
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Fig. 3.3 SDS–PAGE profiles of deer plasma (DP), sheep plasma, and pig plasma treated with 
papain and bromelain for 1, 2, 4, and 24 h, respectively. The numbers within the figure indicate the 
time of hydrolysis (h). M standard protein markers. Modified from Bah et al. (2016a)

promoting the growth of 11 Bifidobacterium strains in skim milk. Papain hydro-
lyzed pork muscle exhibited cholesterol-lowering activity (Morimatsu et al. 1996) 
and antithrombotic activity (Shimizu et al. 2009).

3.6.2  Blood Proteins

Blood generated in abattoirs each year accounts to 4% of the live animal weight or 
6–7% of the lean meat content of the carcass (Bah et al. 2013), which ends up as 
blood meal for low-value animal feed and fertilizer or discarded as effluent. Blood 
contains approximately 18% protein that can be recovered and used as a source of 
bioactives. Hydrolysates of blood proteins displayed antihypertensive, antioxidant, 
antimicrobial, and opioid activity and a comprehensive review on the topic is avail-
able (Bah et al. 2013). The aim of the following section is to provide an update for 
this information focussing on peptides generated using plant proteases. Lafarga 
et al. (2016a, b) reported bovine serum albumin hydrolysates obtained by papain 
treatment that demonstrated in vitro and in vivo antihypertensive activity. The pep-
tides S-L-R, Y-Y, E-R, and F-R had ACE inhibitory activity (EC50) of 0.17, 0.04, 
0.27, and 0.42 (mM), respectively (Lafarga et al. 2016a).

Plasma from deer, sheep, and pig blood was hydrolyzed using papain and brome-
lain as well as with microbial proteases individually. The peptide hydrolysates were 
obtained after 1, 2, 4, and 24 h of hydrolysis (Fig. 3.3) and were investigated for 
their antioxidant and antimicrobial activities. Papain resulted in more extensive 
hydrolysis of the proteins than bromelain (Fig. 3.4). Plasma hydrolysates generated 
by microbial protease exhibited higher DPPH radical-scavenging, oxygen radical- 
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Fig. 3.4 SDS–PAGE profiles of: (a) deer RBCF, (b) sheep RBCF, (c) pig RBCF, and (d) cattle RBCF 
treated with papain and bromelain for 1, 2, 4, and 24 h, respectively. The numbers above the lanes 
indicate the time of hydrolysis (h). M standard protein markers. Modified from Bah et al. (2016b)

scavenging capacity (ORAC), and ferric-reducing antioxidant power (FRAP) than 
those generated with plant proteases for all three animal plasmas. No antimicrobial 
activity was found for all the hydrolysates. In a subsequent study, the red blood cell 
fraction (RBCF) of cattle, pig, sheep, and deer blood were hydrolyzed using the 
same protease to generate peptide hydrolysates (Bah et al. 2016b). Unlike plasma, 
red blood cell hydrolysates generated with papain had higher ferric-reducing anti-
oxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) compared 
to those produced with bromelain and other microbial proteases (Figs. 3.4 and 3.5). 
Antibacterial activity against E. coli, S. aureus, and P. aeruginosa growth was found 
in hydrolysates obtained with the microbial proteases only.
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3.7  Conclusion

The information presented in this chapter indicates that traditional plant proteases 
such as papain and bromelain are not really best suited as meat tenderizers due to 
their extensive hydrolyzing activity that can lead to mushy texture and off-flavors, 
whereas mild acting plant proteases such as actinidin may offer better tenderizing 
ability for fresh meat. On the other hand, papain seems to have better ability than 
many plant and microbial protease in generating peptides with antioxidant activity. 
As shown in Fig. 3.1, a very small fraction of plant proteases have been investigated 
in meat tenderization applications and even less have been investigated for the gen-
eration of bioactive peptides. More research is required for characterization and 
benchmarking the potential use of the lesser-known plant proteases for meat and 
meat by-product processing applications.

Fig. 3.5 DPPH radical-scavenging (a, b) and FRAP (c, d) antioxidant activity interaction plots. 
(a, c) Interaction between animal species and type of protease preparation. Means with different 
letters differ significantly (p < 0.05). (b, d) Interaction between protease preparation and time 
of hydrolysis. Means with different letters differ significantly (p < 0.05). Modified from Bah 
et al. (2016b)
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4.1  Proteases: Physiological and Industrial Significances

Proteolytic enzymes (proteases) comprise a group of hydrolases (EC 3.4, 
NC-IUBMB) which share the common feature of acting on peptide bonds. Proteases 
are among the best-studied enzymes in terms of structure–function relationship 
(Krowarsch et al. 2005). Proteases, by catalyzing the cleavage of other proteins and 
even themselves, have an enormous physiological significance, their coding genes 
representing as much as 2% of the total human genome (Schilling and Overall 2008).

Proteases, together with lipases, represent the most important family of enzymes 
at industrial level, accounting for well over 50% of the enzyme market (Feijoo-Siota 
and Villa 2011). Proteases have been used industrially since the onset of enzyme 
technology in the first decades of the twentieth century; many of the early patents 
issued for the use of enzymes with commercial purposes were proteases, mostly 
from plant (papain and bromelain) and animal (trypsin and pepsin) origin. Intended 
uses were in brewing and in leather and rubber manufacturing (Neidelman 1991). In 
the decades that follow, many large-scale industrial processes were developed using 
now mostly microbial proteases. A common feature of them was the degradation of 
proteins and most relevant areas of applications were the food and beverage 
(Sumantha et al. 2006), detergent (Maurer 2004), leather (Foroughi et al. 2006), and 
pharmaceutical sectors (Monteiro de Souza et al. 2015). Acid and neutral proteases 
are relevant to the food industry for the production of protein hydrolyzates (Nielsen 
and Olsen 2002), beer chill-proofing (Monsan et  al. 1978), meat tenderization 
(Ashie et al. 2002), and above all, for cheese production (Kim et al. 2004). Alkaline 
proteases are of paramount importance for the detergent industry (Sellami-Kamoun 
et al. 2008) and also in tannery (Varela et al. 1997; Thanikaivelan et al. 2004) and 
fish-meal production (Schaffeld et al. 1989; Chalamaiah et al. 2012). These conven-
tional applications are by no means outside of continuous technological develop-
ment (Monteiro de Souza et  al. 2015). This is illustrated by the optimization of 
detergent enzyme performance under the harsh conditions of laundry at high and 
low temperatures, which has been a continuous challenge tackled by the construc-
tion of subtilisin (alkaline protease) variants by random and site-directed mutagen-
esis and by directed evolution (Kirk et al. 2002; Jares Contesini et al. 2018). It is 
also illustrated by the production of chymosin in microbial hosts by recombinant 
DNA technology and further improvement by protein engineering (Mohanty et al. 
1999). Therapeutic application of proteases acting as protein hydrolases goes from 
conventional digestive-aids and anti-inflammatory agents to more sophisticated 
uses as thrombolytic drugs (i.e., urokinase and tissue plasminogen activator) and 
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more recently for the treatment of hemophilia. A comprehensive review on the ther-
apeutic uses of proteases is suggested for the interested reader (Craik et al. 2011).

The potential of hydrolytic enzymes for catalyzing reverse reactions of bond 
formation has been known for quite some time. However, its technological potential 
as catalysts for organic synthesis was developed in the 1980s (Bornscheuer and 
Kazlauskas 1999) paralleling the outburst of biocatalysis in nonconventional (non-
aqueous) media (Illanes 2016).

Proteases can not only catalyze the cleavage of peptide bonds but, in a proper 
reaction medium, they can also catalyze the reaction of peptide bond formation. 
Proteases are highly stereo- and regiospecific, active under mild reaction conditions, 
do not require coenzymes, and are readily available as commodity enzymes; these 
properties make them quite attractive catalysts for organic synthesis (Bordussa 
2002; Kumar and Bhalla 2005). Such reactions will not proceed efficiently in aque-
ous medium where the hydrolytic potential of the enzyme will prevail, so reaction 
media at low, and hopefully controlled, water activity is necessary for peptide syn-
thesis. This is a major threat since proteases, different from lipases, are not structur-
ally conditioned to act in such environments. The use of proteases in peptide 
synthesis is analyzed in depth in section 3.4.

4.2  Peptides: Technological Impact

Peptides are amazing functional molecules whose technological potential has been 
developed vigorously in recent decades. Most current applications are related to 
healthcare, where bioactive peptides are increasingly being used as therapeutic 
agents, including peptide drugs, antimicrobial agents, vaccines, cosmetic ingredi-
ents, drug carriers, and diagnostic reagents (Albericio and Kruger 2012). Beyond 
that, peptides are used as taste enhancers in foods (Temussi 2012) and as nutritional 
supplements (Schaafsma 2009); they are also considered as valuable devices in 
nanotechnology (de la Rica and Matsui 2010; Seabra and Durán 2013).

4.2.1  Bioactive Peptides

In this section, the current applications of bioactive peptides as therapeutic vaccines, 
as cosmetic agents, and as drug delivery reagents will be reviewed.

4.2.2  Therapeutic Peptides

This is certainly the most ample and promising area for peptide research, development, 
and application. Peptides exhibit a remarkable specificity of action and interaction 
with the target, which has been attributed to their structure (Nguyen et  al. 2011). 
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However, peptides can be readily degraded inside the human body due to the presence 
of multiple proteases, being this a major hurdle making peptides inferior to small-
molecule drugs (Vlieghe et al. 2010); this is though a double-edged sword situation, 
since because of its degradability (and also by their target specificity) toxicity of pep-
tides is quite low, which is certainly an asset for any drug (Kaspar and Reichert 2013). 
In fact, almost 40% of the small-molecule drug candidates are abandoned after phase 
I clinical trials because of toxicity (Vlieghe et al. 2010).

An interesting SWOT analysis of naturally occurring peptides as therapeutics 
has been raised where most of the weaknesses and resulting threats annotated point 
out to the need for peptide design (Fosgerau and Hoffmann 2015). In fact, therapeu-
tic use of peptides has experienced an impressive development in recent years 
because of technological advances allowing the discovery of novel peptides with 
pharmaceutical potential, but mostly by creating artificial peptide variants using 
solid-phase peptide synthesis and combinatorial chemistry (Uhlig et  al. 2014). 
Nature is an endless source of peptides with therapeutic potential and their study is 
on the basis of peptidomics (Dallas et al. 2015). However, natural peptides are not 
active enough; their physicochemical properties may be inadequate for medical use 
(i.e., tendency to aggregation or poor solubility) and may exhibit short circulating 
plasma half-life due to fast renal clearance (Werle and Bernkop-Schnürch 2006). 
These peptides are though excellent starting points for developing therapeutic pep-
tides. Research and development is then mostly focused on synthetic peptides over-
coming such constraints and rational design of peptides is meant to such purpose. 
Alanine scanning allows identifying key amino acid residues within the peptide as 
candidates for substitution and also allows identifying chemically labile or too reac-
tive residues. Aggregation can be avoided by intervening hydrophobic spots, by 
amino acid substitution or methylation, while solubility may be modified by alter-
ing the charge distribution of the peptide. Physicochemical properties of the peptide 
can also be acted upon by introducing stabilizing α-helices, salt bridge formation, 
and other chemical modifications. Plasma half-life can be extended by protecting 
against proteolytic cleavage that can be done by identifying the possible cleavage 
sites and substituting the target amino acids, and by binding the peptide to albumin 
or to polyethylene glycol in order to avoid renal clearance, the latter binder being 
safer and more tolerable. These second-generation peptide drugs optimized for 
medical use by rational design are on the forefront of peptide research and develop-
ment (Fosgerau and Hoffmann 2015).

β-Peptides are quite interesting candidates for medical use since they act in a way 
similar to common α-peptides with the advantage of lower affinity for blood cells and 
reluctance to proteolysis (Heck et  al. 2010). The case of the dipeptide carnosine 
(β-alanyl-l-histidine) is illustrative, since several physiological functionalities have 
been ascribed to it, such as physiological buffer, metal ion chelator, immunomodulator, 
neurotransmitter, and antitumor agent, being considered as a prominent antioxidant 
and free-radical scavenger (Hipkiss and Brownson 2000; D’Arrigo et al. 2009); it has 
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also been claimed to prevent cell damage caused by β-amyloid protein, which is 
 connected to Alzheimer's disease (Hipkiss 2007).

Administration route varies from case to case: most of therapeutic peptides are 
injectables, but oral, intranasal, and subcutaneous routes are most attractive alterna-
tives for peptide drugs delivery. Biocompatible carrier materials, like chitosan 
(Prego et al. 2005), and nanoparticles of different types have also been proposed for 
oral delivery of peptides (Almeida and Souto 2007; Singh and Lillard 2009; 
Sheridan 2012). Orally administered peptides are obviously convenient to the 
patient, but it is challenging since degradation by their passage through the gastro-
intestinal tract has to be avoided. This can be also tackled by rational peptide design 
aiming to stabilize the secondary structure and also by the use of proper excipients 
and adjuvants. Anyhow, the efficacy of orally administered peptides is likely to be 
lower due to the difficulty in arriving to their targets, so that delivery by injection 
will probably continue to be the most-used route for peptide delivery.

Looking at the market, a US-FDA survey on 2012 showed that 8 out of the 76 
(10.5%) new drugs approved in the period 2009–2011 were peptides intended for 
the treatment of lymphomas, hepatitis, type 2 diabetes, angioedema, and skin infec-
tions (Albericio and Kruger 2012). A recent survey on global peptide drug market 
predicted an increase from US$ 14.1 billion in 2011 to US$ 25.4 billion in 2018, 
which is an impressive increase of 8.5% per year in that period. This prediction is 
well sustained: in 2012 five new peptide drugs, namely lucinactant, pasireotide, 
carfilzomib, linaclotide, and teduglutide, were approved both in the USA and in the 
European Union (EU). Another one, peginesatide, was approved in the USA, but a 
year later was voluntarily recalled by the producing company because of hypersen-
sitivity reactions in several patients under treatment (Kaspar and Reichert 2013). 
Administration route varied from case to case: from those five peptides, one is to be 
administered intravenously, two subcutaneously, one by inhalation, and one orally. 
By 2013, 128 peptide drugs were under clinical trial: 40 in phase I, 74 in phase II, 
and 14 in phase III. A significant part (about 40%) of the drug peptides under evalu-
ation is represented by G-protein-coupled receptor (GCPR)  agonists which, beyond 
application as agonists for type-2 diabetes, have potential applications in neurode-
generative disorders (i.e., Alzheimer’s disease), cardiovascular conditions, and body 
weight management (Kaspar and Reichert 2013). By 2015, more than 60 peptide 
drugs have been approved by the US Food and Drug Administration and were in the 
market, 140 were under clinical trials and more than 500 were in preclinical studies; 
metabolic disorders and cancer were the main targets. Including also diagnostic 
applications, more than 100 peptides for medical use are in the market in the USA, 
EU, and Japan. The average number of related patents has been over 10,000/year in 
the last decade so a significant increase in the number of peptide drugs entering the 
market is to be expected in the forthcoming years; commercial success of some 
blockbuster peptide drugs is also a driving force for expanding the peptide market 
(Albericio and Kruger 2012).
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Examples of synthetic therapeutic peptides that are currently in the market include 
the well-known hormones oxytocin (Pitocin®) and vasopressin (Pitressin®), both 
produced by JHP Pharmaceuticals, Leuprorelin/Leuprolide (Lupron™, Abbot 
Laboratories), a peptide used for the treatment of prostate cancer which generated in 
2013 US$ 1.7 billion in sales worldwide (Fosgerau and Hoffmann 2015), and bivali-
rudin (Angiomax®, The Medicines Company), a direct thrombin inhibitor (DTI) with 
sales up to US$ 7.8 billion in the last quarter of 2016 (The Medicines Company 
Reports 2016). Other therapeutic peptides, larger in size and more complex in struc-
ture, are produced by recombinant DNA technology. Primary examples of these 
include insulin glargine (Lantus™, Sanofi) that generated US$ 7.9 billion in sales in 
2013, and liraglutide (Victoza™, Novo Nordisk), a multifunctional glucagon- like 
peptide (GLP-1) and the most important member of a family of similar drugs used 
for the treatment of both type-2 diabetes and obesity (Fosgerau and Hoffmann 2015).

4.2.3  Peptide Vaccines

Conventional vaccines (those including whole cells or large proteins) incorporate an 
unnecessary antigenic load that sometimes induces over response. Peptide vaccines 
are an attractive option for being based on short peptide fragments inducing highly 
targeted immune responses. When large proteins are used, they contain many anti-
genic epitopes which, besides unnecessary, may become detrimental for the induc-
tion of immunity. Peptides, on the other side, may contain only epitopes causing 
positive immune responses (Noguchi et  al. 2003). Peptides used in vaccines are 
small molecules, usually not exceeding 30 amino acid residues, so they are often 
poorly immunogenic, and proper carriers and adjuvants are required to provide 
chemical stability and induction of robust immune response (Purcell et al. 2007). 
Carriers may also act as adjuvants (Bolhassani et al. 2011). Several delivery systems 
for peptide vaccines have been studied including emulsions, liposomes, virosomes, 
polymers (i.e., polylactic acid, polyglycolic acid, and polyhydroxybutyrate), and 
nanoparticles of several kinds (Li et al. 2014).

Since the pioneering work of development of a synthetic peptide vaccine against 
malaria (Patarroyo et al. 1988), many peptide vaccines have been developed to pro-
tect against different diseases like human immunodeficiency (HIV), hepatitis C 
(HCV), foot and mouth disease, swine fever, influenza, and human papilloma (Li 
et  al. 2014). However, most of them are related to cancer therapy, alone and as 
complements in interleukine treatment (Schwartzentruber et  al. 2011; Slingluff 
2011; Aranda et al. 2013; Cerezo et al. 2015).

As of 2014, 270 peptide vaccines were in Phase I stage of development, 224 were 
in Phase II, and only 12 have moved to Phase III being all these 12 related to cancer 
therapy (Li et al. 2014). At that time, none had been launched into market. Strategies 
for improving peptide vaccines include the use of long peptides, modification of 
adjuvants, incorporations of new antigens, and combination therapy with other 
immunologically active agents (Slingluff 2011). Developing novel safe adjuvants 
stimulating stronger immune response is a major challenge for peptide vaccines.
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4.2.4  Cosmetic Peptides

There is a growing concern about skin deterioration (skin loss, loss of elasticity, and 
wrinkle appearance) as the world population is aging. Skin care is not merely a 
hedonistic or esthetic matter, but a matter of health for the elderly. This process 
involves a number of genetic, constitutional, hormonal, nutritional, and environ-
mental factors, but extrinsic factors like UV-irradiation, smoking, and repeated 
facial movements are also relevant.

The increasing knowledge of skin-related aging at the molecular level is allow-
ing the exploration of novel antiaging agents. In this scenario, peptides appear as 
quite relevant since they are most certainly involved in all aspects of skin homeosta-
sis. Peptides can be readily modified by amino acid substitution and modification, 
building up a platform to deal with potency, solubility, toxicity, skin penetration, 
and cost, which are distinctive features for skin care ingredients (Fields et al. 2009). 
Therefore, peptides are gaining considerable attention within the cosmetic industry 
because of their well-documented effect as antiaging agents, reducing the onset of 
skin wrinkles and making skin smoother and tauter (Zhou et al. 2011).

According to their mode of action on skin, peptides (sometimes named cosme-
ceutical peptides) can be grouped into four categories: signal peptides, enzyme- 
inhibitor peptides, neurotransmitter-inhibitor peptides, and carrier peptides (Gorouhi 
and Maibach 2009). Signal peptides act by stimulating skin cells, mostly fibroblasts 
(Powers et al. 2000), with the consequent increase in collagen, and also stimulating 
elastin synthesis, then providing firmness and elasticity to the skin. Some reported 
signal peptides are the pentapeptides Val-Gly-Ala-Pro-Gly and Lys-Thr-Phe-Lys-
Ser, and the tripeptide Gly-His-Lys. Enzyme-inhibitor peptides act by inhibiting 
metalloproteases involved in the degradation of collagen and elastin (Park et  al. 
2009); one salient example is the 37 amino-acid residue peptide LL-37 (Dürr et al. 
2006). Neurotransmitter-inhibitor peptides inhibit acetylcholine release at the neu-
romuscular junction so inhibiting signal transduction pathways at that level (Lupo 
and Cole 2007) in a way similar to botulinum toxin (Botox), with the consequent 
attenuation of the repetitive contraction of the muscles involved in facial expres-
sion; one example is the hexapeptide Botox mimic Ac-Glu-Glu-Met-Gln-Arg-
ArgNH2. Carrier peptides are those delivering important substances, specifically 
trace elements like Cu and Mn, which are cofactors of enzymes involved in collagen 
and elastin formation and in wound healing processes; one example is the tripeptide 
Gly-Gln-Pro-Arg (Bachem Product Monographs 2017). Several peptides used in 
cosmetics act by other mechanisms associated with skin appearance and aging 
delay, such as scavenging reactive oxygen species, organizing collagen fibers, and 
acting as anti-inflammatory agents. For instance, carnosine is a natural dipeptide 
with well-documented antioxidant activity that, beyond being used in dietary 
 supplements, is used in cosmetic applications (Babizhayev 2006). Synthetic carno-
sine derivatives have also been used for that purpose (Stvolinsky et al. 2010).

Beneficial effects of cosmetic peptides are mostly based on in vitro studies and 
the efficacy of peptides absorption in a stable form into the dermis is a matter to deal 
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with when using these compounds for skin care. However, soft clinical data are 
strongly supporting their beneficial effect, and, in fact, peptides have now become 
important ingredients in several cosmetic products. Commercial cosmetic products 
containing peptide ingredients like the acetylated hexapeptide Argireline®, the pal-
mitoyl oligopeptide Matrixyl™, the pentapeptides Leuphasyl®, and Vialox® have 
already well-established markets (Fields et al. 2009). It is estimated that more than 
25 peptides are currently being used in cosmetic preparations and many more are in 
advanced stages of development (Bachem Product Monographs 2017). Lipopeptides 
are particularly interesting cosmetic ingredients because they combine anti-wrinkle 
and surfactant properties, being key components in moisturizing and cleansing 
cosmetics (Kanlayavattanakul and Lourith 2010). They are amphiphilic cyclic pep-
tides of no more than 10 amino acid residues linked to β-hydroxy acids; their struc-
ture confers them multifunctionality: detergency, emulsification, foaming, hydration, 
and antimicrobial activity, so they are well-appreciated as cosmetic ingredients for 
skin care (Varvaresou and Iakovou 2015).

4.2.5  Peptides as Drug Carriers and Diagnostic Reagents

The selective permeability of the cell membrane is a major hurdle for drug delivery 
to their target. Internalization is essential to many drugs so that effective transport-
ers are required. Cell-penetrating peptides are small cationic, often amphipathic, 
molecules with outstanding capacity for cell membrane translocation being good 
candidates for drug delivery. Mechanism of cell penetration may vary according to 
the peptide length and the properties of the carried molecule (Mueller et al. 2008), 
but penetration systems can be categorized in energy-dependent endocytosis and 
energy-independent direct translocation across the membrane, both depending on 
peptide–membrane interactions (Yeung et al. 2011). As drug transporters, peptides 
have some drawbacks due to their poor stability, short half-life, and susceptibility to 
protease digestion. However, extensive research is aimed to overcome these barriers. 
Recent advances in elucidating the mechanisms of cell penetration and in peptide 
design using rational strategies are placing peptides in a prominent position for 
accurate and safe delivery of bioactive molecules to target cells (Copolovici et al. 
2014). In addition, advances in peptide synthesis and scale-up have reduced their cost 
(Bray 2003; Vlieghe et al. 2010), so becoming attractive components of drugs and 
diagnostic reagents. An interesting application of cell-penetrating peptides is in the 
delivery of imaging agents and biosensors. Delivery of quantum dots across the 
blood–brain barrier, delivery of radio-immunoconjugates, visualization of viral 
infections, and delivery of intracellular biosensors are among the fascinating oppor-
tunities that peptides offer for medical and biological applications (Fonseca et al. 
2009). The impressive development of nanotechnology has opened also attractive 
opportunities for peptides. Properties of peptides and nanoparticles make a virtuous 
coupling for application in cancer nanomedicine as drug carriers, targeting ligands, 
and protease substrates (Zhang et al. 2012a, b). Nontargeted distribution of drugs is 
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not only unsafe but also inefficient and peptides have shown to be quite convenient 
ligands for increasing the specificity of targeting systems, which may be applied 
advantageously for both therapy and diagnosis. Carrier peptides delivering thera-
peutic peptides represent another fascinating line of research. Peptides which are 
substrates for the proteolytic action of cancer-associated proteases (a set of prote-
ases present in high amounts in cancer cells, but virtually absent in normal cells) if 
linked to a chemotherapeutic agent will deliver the drug upon protease hydrolysis of 
the conjugate. As an example, the peptide Pro-Val-Gly-Leu-Ile-Gly was conjugated 
with dextran and the methotrexate anticancer drug, and upon the action of the 
cancer- associated matrix metalloproteases (MMP-2 and MMP-9) released the drug 
to inhibit tumor growth (Chau et al. 2006).

4.2.6  Taste Peptides

Among the many relevant properties of peptides, taste is seldom highlighted. However, 
it is well known that short peptides, mainly derived from the hydrolysis of proteins, 
play an important role in the sensory appreciation of food taste and are, in fact, taste-
endowed molecules comprising the whole spectrum of taste: sweet, bitter, sour, salty, 
and umami. Sweet taste in foods is associated with acceptance, while bitter taste is 
mostly linked to rejection. Umami (Japanese word for delicious) taste has been added 
to the four traditional categories to designate a meaty pleasant taste (Kurihara 2015). 
Taste of peptides is unrelated to the taste of its individual amino acid components and 
hard to correlate with its amino acid composition (Solms 1969). Table 4.1 provides a 
list of peptide sequences and their taste properties (Gill et al. 1996).

Taste of peptides acquired renown at the end of the 1960s with the discovery of 
the potent sweetener aspartame (Mazur et al. 1969). This serendipitous discovery 
was rather surprising at the time because no peptides were associated with sweet 
taste. Aspartame (N-(l-α-aspartyl)-l-phenylalanine 1-methyl ester) is certainly an 
icon of taste peptides with a sweetening power 200 times higher than sucrose. 
Impact of aspartame prompted the research in structure–taste relationships and sev-
eral topological models were proposed to explain its mode of eliciting sweetness 
(Yamazaki et al. 1994; Morini et al. 2005). Peptides having hydrophobic amino acid 
residues in their chains are usually bitter and models for structure–bitterness rela-
tionship have been built mostly based on the resemblance between sweet and bitter 
receptors, but now it is accepted that different receptors exist for detecting the five 
basic tastes (Chandrashekar et al. 2006). As far as umami taste, there is no convinc-
ing evidence that short peptides bear such taste, which instead could be due to its 
partial hydrolysis into glutamic and aspartic acid. A thorough insight in taste  receptor 
and interaction with peptides can be found in the review article by Temussi (2012).

Aspartame clearly stands out among taste peptides with a market volume exceed-
ing 40,000 tons per year (more than 60% of the total market for noncaloric sweeten-
ers). Alitame (l-α-aspartyl-N-(2,2,4,4-tetramethyl-3-thietanyl)-d-alaninamide) is 
another potent low-calorie dipeptide sweetener not producing toxic compounds 
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(Kim and Shin 2001) which has been approved for food use and is currently being 
marketed in several countries. The aspartyl residue is key to its sweetening power as 
early predicted by Mazur et al. (1969).

4.2.7  Nutritional Peptides

The use of peptides as nitrogen source in the formulation of foodstuffs for patients 
recovering from surgery, suffering malnourishment, and poor protein digestibility 
or absorption is considered a better alternative than supplying the free amino acids 
or large polypeptides. Peptides are less hypertonic and better absorbed in the intes-
tine than free amino acids, and have better sensory properties and are less antigenic 
than larger polypeptides or proteins (Gill et al. 1996). Peptides can be used in oral, 
enteral, or parenteral nutrition (Kreymann et al. 2006). In the case of patients with 
functional gastrointestinal tract, oral or enteral are preferred routes than parenteral 
for the administration of peptides (Zaloga 2006). Beyond nutrition, many of these 
dietary peptides have shown to display other biological functions affecting the car-
diovascular, endocrine, immune, and nervous systems (Korhonen and Pihlanto 
2003; Zaloga and Siddiqui 2004).

An outstanding case of nutritional peptide is the dipeptide l-alanyl-l-glutamine, 
which has proved to be a very good vehicle for glutamine supply (Harris et  al. 
2012). Glutamine is the most abundant amino acid in blood plasma, but under stress 
conditions due to illness, trauma, or overtraining, glutamine concentrations in 
plasma and skeletal muscle may fall below normal levels and the requirement for 

Table 4.1 Some relevant 
taste peptides

Peptide structure Taste

Gly-Leu Bitter
Lys-Pro Bitter
Ser-Leu-Ala Bitter
Gly-Pro-Phe-Pro-Val-Ile Bitter
Lys-GlyHCl Salty
Orn-GlyHCl Salty
Glu-γ-Ala Sour
Glu-γ-Glu Sour
Asp-Glu-Glu Sour
Asp-PheOMe Sweet
l-Asp-d-AlaNH2 Sweet
N-Ac-Phe-Lys Sweet
N-Ac-Gly-Lys Sweet
Ser-Glu-Glu Umami
Gly-Asp-Gly Umami
Ala-Glu-Ala Umami
Val-Glu-Val Umami
Lys-Gly-Asp-Glu-Glu-Ser-Leu-Ala Umami
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glutamine may exceed its de novo synthesis capacity, becoming then a conditionally 
essential amino acid (Wang et al. 2015). In such cases, exogenous glutamine intake 
becomes necessary. This has opened a buoyant market for this dipeptide which is 
marketed under the trade name Sustamine® by Kyowa Hakko Bio (Japan). 
Sustamine-based products aimed for athlete endurance have been launched in recent 
years with great success (Schultz 2013). The dipeptide carnosine (β-alanyl-l- 
histidine) is another striking example of nutritional peptide that has a well- developed 
market as a food supplement (Mahmood et al. 2007). Carnosine and β-alanine are 
currently used by athletes and bodybuilders (Culbertson et al. 2010); carnosine neu-
tralizes the accumulation of lactic acid during highly intense exercise, accelerating 
the working capacity of muscle exhausted by preceding exercise (Murray 2016). 
As previously stated, carnosine is considered a powerful natural antiaging agent 
with many reported functionalities.

4.3  Production of Peptides: Available Technologies

Available technologies for the production of peptides are: extraction from natural 
sources, production by recombinant DNA technology, chemical synthesis, and 
enzyme biocatalysis (Guzmán et al. 2007).

4.3.1  Extraction from Natural Sources

Dietary proteins are a rich source of peptides, but their functionalities are hidden 
within the protein sequence. Release of peptides from their protein matrix can be 
obtained through hydrolysis by digestive enzymes, by proteolytic microorganisms 
or by proteolytic enzymes. Biologically active peptides are physiologically pro-
duced during the gastrointestinal digestion and fermentation of foods (Korhonen 
and Pihlanto 2006). In principle, peptides can be produced from any high-protein 
food but in practice most-used foodstuffs are milk (Nagpal et  al. 2011), whey 
(Madureira et al. 2010; Welderufael and Jauregi 2010), and soy (Kong et al. 2008). 
Other sources, like marine organisms (Wilson et  al. 2011) and microalga (Sheih 
et al. 2009), have been proposed as natural sources for peptide production. Enzymes 
used for the hydrolysis of proteins are from animal (i.e., α-chymotrypsin, trypsin, 
and pepsin), plant (i.e., papain and bromelain), and microbial sources (i.e., subtilisin 
and thermolysin) and the type of peptides produced is very much dependent on the 
enzyme used. Microbial enzymes are in general preferred for being cheaper, readily 
available, and quite diverse in their mode of action; use of these enzymes in immo-
bilized form may contribute to a better catalyst performance because of increased 
stability and reuse, even though the macromolecular nature of the substrate 
may produce considerable mass-transfer limitations (Tavano 2013). However, many 
of the well-known bioactive peptides have been produced with animal enzymes. 
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This is the case of the angiotensin-converting enzyme-inhibitor peptides (Gobbetti 
et al. 2004) and metal-binding phosphopeptides (Meisel and FitzGerald 2003) that 
are produced by milk hydrolysis with trypsin and chymotrypsin.

The production of peptides from natural sources considers a first step of enzy-
matic hydrolysis of the protein-rich raw material, which can be done either by fer-
mentation or enzymatic reaction with commercial proteases; the latter, being more 
specific and producing less contaminant materials to remove, is the preferred choice 
(Kim and Wijesekara 2010). This step will determine the type of peptide produced 
and the composition of the hydrolyzate. Recovery and purification of the peptide 
from the hydrolyzate may be the more complex and demanding production steps 
and several operations involving membrane and chromatographic fractionation 
have been tested (Agyei and Danquah 2011).

Production of peptides by extraction from natural sources is probably the less 
studied and less relevant strategy. Despite the enormous source of peptide function-
alities treasured within the protein structures, technological development has been 
challenged by problems of large-scale separation, purification, and characterization 
of the resulting peptides, most information being referred to hardly scalable labora-
tory protocols (Bougatef et al. 2010; Agyei and Danquah 2011).

4.3.2  Production by Recombinant DNA Technology

Recombinant DNA technology can be regarded as a valuable alternative, but only in 
the case of large peptides whose production by other strategies can be cumbersome 
or unfeasible (Vlieghe et al. 2010). Insulin is the most demanded hormone world-
wide; it is a 51 amino-acid residue polypeptide lying in the size borderline between 
peptides and proteins. Human insulin (Humulin™) was the first commercial phar-
maceutical produced by recombinant DNA technology in the early 1980s (Keen 
et al. 1980; Johnson 1983), representing a striking example of peptide production by 
this route. The enormous commercial and social success of recombinant insulin has 
been a driving force for the development of drugs from recombinant DNA technol-
ogy (Walsh 2005), but recombinant DNA technology has been mostly applied for 
the production of proteins where its technological impact is significant (Demain and 
Vaishnav 2009). However, some small peptides have been produced by recombinant 
DNA technology. The production of aspartame is an illustrative example: the 
12-nucleotide sequence coding aspartyl-phenylalanine was chemically synthesized 
and cloned as multiple repeating units close to a tryptophan controlled promoter; 
the recombinant host cell produced the polypeptide that was further cleaved enzy-
matically to yield the dipeptide (Murata et al. 1993; Lee 2015). DNA sequences 
corresponding to small peptides should be cloned as repeated copies; otherwise, the 
expression efficiency attainable is low (Gill et al. 1996). Other drawbacks for the 
synthesis of small to medium size peptides by recombinant DNA technology are the 
complex extraction and purification of the product that drives into noncompetitive 
production costs; besides, peptides containing unnatural amino acids cannot be 
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produced by this route. AMPs have been produced by recombinant DNA technology 
using mostly Escherichia coli as host under the rationale that this is a sound technol-
ogy for producing workable quantities (Ingham and Moore 2007). In this case, 
besides the abovementioned limitations, two additional challenges have to be faced 
since in this case the product may be toxic to the producing host and highly suscep-
tible to degradation by endogenous proteases; this has been overcome by fusing the 
peptide to a carrier protein that can be afterwards cleaved at the peptide–protein 
junction either chemically or enzymatically (Li 2011). Summing up, recombinant 
DNA technology is likely to be competitive only in the case of large peptides where 
other strategies may render inapplicable.

4.3.3  Production by Chemical Synthesis

Chemical synthesis is the most mature technology for the synthesis of small to 
medium size peptides. It was originally conducted in solution, but later on replaced 
by solid-phase peptide synthesis (SPPS), which consists in the stepwise addition of 
the amino acids in the preestablished order to a solid matrix that holds the growing 
peptide chain (Merrifield 1986). SPPS can be conducted by the Fmoc/tBu or t-Boc/
Bzl systems. In the former, the Fmoc (9-fluorenyl methoxycarbonyl) group is used 
for the protection of the Nα amino group and the tert-butyl group (tBu) for the pro-
tection of the side chains of several amino acids. In the latter, t-Boc (tert- 
butoxycarbonyl) and benzyl ester or cyclohexyl ester (Bzl) perform the respective 
functions of Fmoc and tBu in the former (Albericio 2000). In the first step, the 
C-terminal amino acid is linked to the solid matrix and then Nα group is removed 
(with trifluoroacetic acid in the t-Boc system and with piperidine in the Fmoc sys-
tem). Then, the Nα protected amino acids are added according to the desired 
sequence and after each coupling a deprotection step follows. Upon completion of 
the peptide sequence, the peptide–matrix complex is cleaved and the side chain 
protecting groups are removed to yield the peptide (Illanes et al. 2009a, b).

The two most-used strategies for SPPS strategies are sequential and convergent 
synthesis. The former involves the stepwise addition of amino acids until the desired 
sequence is synthesized and it is used mainly for the synthesis of small to medium 
size peptides; in the latter, peptides are separately produced by sequential synthesis 
and then linked in solution or in solid phase to obtain the desired higher molecular 
weight peptide or protein. The advantage of convergent synthesis is that each  peptide 
fragment is purified and characterized before being linked; however, reaction rates 
for the coupling of fragments are substantially lower than for the coupling of the 
activated amino acids in sequential synthesis and the C terminal of each peptide 
fragment may be racemized during coupling. Such problems can be circumvented 
by prolonged coupling reaction times and by using glycine or proline at the 
C-terminal (Lloyd-Williams et  al. 1993; Lloyd-Williams and Giralt 2000). 
Convergent synthesis represents the best option for the chemical synthesis of large 
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peptides, which is illustrated by the large-scale synthesis of the antiviral peptide 
T-20 (Bray 2003).

SPPS has limitations inherent to the chemical procedures involved, which for a 
long time have made it a less desirable approach in the large-scale production of 
peptides over a certain number of amino acid residues, where recombinant DNA 
might be the preferred choice. Such problems include aspartimide formation, His 
and Cys racemization, low production efficiency of certain peptide sequences due to 
hydrophobicity or aggregation (amyloid peptides are a primary example of this 
problem), and poor solubility of the final product in some cases. However, these 
problems are constantly being studied and addressed by peptide chemists. For 
example, different protecting groups suitable for the Fmoc/tBu strategy have been 
developed for Asp to minimize aspartimide formation (Ruczyńsky et al. 2008), for 
His/Cys to minimize racemization and for Arg to decrease the lengthy deprotection 
times associated with its large side chain protecting groups, obtaining variable 
degrees of success (Behrendt et al. 2016). Backbone protection schemes and the use 
of pseudoprolines (modified Ser, Thr, and Cys residues) have improved production 
efficiency of lengthy sequences like ubiquitin (El Oualid et al. 2010) and the bovine 
pancreatic trypsin inhibitor (Burlina et al. 2014). Moreover, several building blocks 
are available to introduce posttranslational modifications (PTMs)  to the sequence, 
which are possible to generate in the mild environment of Fmoc chemistry. These 
include phosphorylated Ser/Thr/Tyr, methylated Arg/Lys, O-glycosylated Ser/Thr, 
and N-glycosylated Asn, to name a few (Behrendt et al. 2016). Nonconventional 
amino acids, like citrulline or β-alanine, are also building blocks available for Fmoc/
tBu synthesis. Impressive advances in SPPS have occurred recently with respect to 
peptide-coupling reactions driven by the development of new coupling reagents, 
which are paving the way for the facile and routine preparation of any desired pep-
tide. This is expected to expand the use of peptides and peptidomimetics as drugs 
for the treatment of a broad spectrum of diseases (El-Faham and Albericio 2011).

Among the various strategies to improve key pharmacokinetic properties of syn-
thetic peptides for their therapeutic use, especially cell-penetrating capabilities and 
increased structural and chemical stability in order to expand therapeutic targets to 
the intracellular environment, hydrocarbon stapling and β-hairpin mimetics 
(Tsomaia 2015) show promising results. For example, the stapled peptide ALRN- 
5281 successfully entered Phase I in 2013 as a novel growth-hormone releasing 
factor agonist, and ATSP-7041, a p53-related in vitro and in vivo tumor suppressor 
peptide is planned to enter Phase I trials. Both these synthetic products are being 
developed by Aileron Therapeutics Inc. As mentioned before, the β-hairpin antibi-
otic drug, POL7080 developed by Polyphor, is already in human clinical trials.

Manual and automated systems are available for single or multiple peptide syn-
thesis. Most of them are laboratory devices for small-scale operation, but automated 
t-Boc/Bzl and Fmoc/tBu SPPS systems delivering peptides at the several kg scale 
are available from different suppliers (Chan and White 2000; Bruckdorfer et  al. 
2004). A didactic manual for SPPS by Fmoc/tBu system was published by Amblard 
et al. (2006).
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Most peptides produced by SPPS are intended for pharmacological use so that 
degradation by endogenous proteases, hepatic clearance, interaction with different 
receptors, and low membrane permeability are barriers that attempt against their 
efficacy. Changes of single amino acids in the peptide sequence and modification of 
the peptide chain backbone may assist in solving the problem (Ahn et al. 2002). 
Peptidomimetics, in which the peptide is bound by either the C- or N-terminal 
amino acid to a nonprotein ligand, may also enhance the biological activity and 
efficacy (Radzishevsky et al. 2007).

As of 2015, more than 40 therapeutic peptides were already in the market being 
produced by SPPS and many more are now in different phases of approval; some of 
them are being produced at a very large scale (Albericio and Kruger 2012; Makowski 
et al. 2016).

4.3.4  Production by Enzymatic Synthesis

Peptides can be synthesized by nonribosomal synthetases and some peptide antibi-
otics, like gramicidin and bacitracin, are produced by fermentation with proper bac-
terial strains bearing such synthetases. However, synthetases are complex, labile, 
coenzymes requiring enzymes so their use as biocatalysts for the production of 
peptides is unlikely (Matteo et al. 1976; Martin and Demain 1980; Marahiel 2009). 
Proteolytic enzymes on the other hand may, under certain reaction conditions, act in 
reverse catalyzing peptide bonds formation instead of cleaving them, which is a 
more attractive technological option, since these enzymes are easy to produce, 
robust, do not require coenzymes, and are commercially available at low prices.

Peptide synthesis catalyzed by proteases can proceed by thermodynamic and 
kinetic control (Kumar and Bhalla 2005). The thermodynamically controlled syn-
thesis of peptides (TCS) with proteases represents the reverse of the hydrolytic 
breakage of peptide bond catalyzed by those enzymes, as shown in the scheme 
(Jakubke et al. 1985):

 
′ ′′ ′ ′′ ′ ′′+ + +− +R COO H NR R CO H H NR R CO NHR H O

ion con

3 2 2 2 

K K

  

Kion and Kcon are the equilibrium constant of ionization and conversion, respec-
tively. The synthesis and the hydrolysis of the peptide bond proceed by the same 
mechanism, through the acyl intermediate from a carboxylic acid which is the rate 
limiting step in TCS (Bordussa 2002).

This mechanism allows to use any type of protease and an acyl donor with the 
free carboxylic group, but the reaction rates and product yields are usually low, due 
to they are conditioned by the reaction equilibrium constant, and a great amount of 
enzyme is often required. Besides, it is necessary to carefully study the reaction 
conditions that lead to the displacement of the reaction equilibrium towards 
synthesis, i.e., by product precipitation or by modification of reaction medium 
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composition. The addition of organic cosolvents and the use of aqueous-organic 
biphasic systems are good strategies to displace the equilibrium towards synthesis, 
but they can produce severe compromises with enzyme activity and stability. 
Organic cosolvents reduce the activity of water and modify physical–chemical 
parameters of reaction media, but high concentrations of them are usually detrimen-
tal for enzyme activity (Halling 1994).

Aqueous-organic biphasic systems allow the peptide product partition from the 
aqueous phase (containing the enzyme) to the organic phase, driving the equilib-
rium towards synthesis and avoiding the peptide hydrolysis. However, the water–
solvent interface can decrease the reaction rates because there may be denaturation 
of the enzymes and limitations due to the diffusion of substrates (Barberis et al. 
2008). Neat hydrophobic solvents with very low water activity can be effective 
media for peptide synthesis by reducing product hydrolysis. However, proteases 
show usually low activity and stability in those media, while the most substrates 
(amino acids) and products (peptides) have low solubility in neat organic solvents 
(Quiroga et al. 2005).

The kinetically controlled synthesis of peptides (KCS) with proteases can be 
schematized as follows (Bordussa 2002):

EH   +   Ac-X 
K s

[E...Ac-X] Ac-E 
k2 k3

K NHX

+HN-HN

EH  +  Ac-OH

[Ac-E...HN]

HN

k4 EH  + Ac-N

H2O

H2O

 

EH is free enzyme; Ac-X is acyl donor substrate; [E…Ac-X] is Michaelis–
Menten acyl–enzyme complex; HX is the release group; Ac-E is acyl–enzyme inter-
mediate, HN is acceptor substrate (nucleophile), Ac-N is product of synthesis 
(peptide), and Ac-OH is product of hydrolysis.

The acyl donor needs to be activated as an ester or an amide in order to react with 
the enzyme and form a tetrahedral enzyme–substrate complex [E...Ac-X] which 
yields the covalent acyl–enzyme intermediate [Ac-E]. The latter can be attacked by 
water or other nucleophile (HN: amine, alcohol, or thiol), competing for the deac-
ylation reaction. The success of the peptide synthesis will depend on the kinetics of 
those nucleophilic reactions. Generally, KCS proceeds faster and requires lower 
enzyme than TCS (Barberis et al. 2002, 2006). Serine or cysteine proteases can be 
used only as catalyst in the KCS, because they act as transferases of acyl moieties 
from acyl donor to nucleophile, through an acyl–enzyme intermediate (Quiroga 
et al. 2005, 2008).

Nevertheless, such reactions will not proceed efficiently if the reaction media is 
not carefully designed and evaluated. Appropriated and hopefully controlled water 
activities at low levels are necessary for peptide synthesis. This is the major threat 
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since proteases are not structurally conditioned in nature to act in such environments. 
Then, it was necessary to develop the media engineering and the catalyst engineering 
to overcome these drawbacks.

4.3.5  Media Engineering

Media engineering is related with the rational manipulation of the reaction media in 
order to find the best condition to the peptide synthesis (Illanes et  al. 2012). 
Frequently, water is replaced for nonconventional media, such as organic solvents, 
ionic liquids, supercritical fluids, and deep eutectic mixtures.

4.3.5.1  Organic Solvents

Organic solvents, containing a controlled amount of water, can increase the solubil-
ity of substrates, especially of hydrophobic amino acids, reduce the hydrolysis of 
the products, improve the recovery of the products/biocatalyst, and increase the 
thermal stability of biocatalyst (Illanes et al. 2009a).

There are two types of biocatalytic systems using organic solvents: homogeneous 
systems, formed by a mixture of water and a miscible organic solvent, and heteroge-
neous systems in which a second phase is formed by an organic solvent immiscible with 
water (Barberis et al. 2008). Heterogeneous systems can be macroheterogeneous, if two 
immiscible liquid phases are evident, or microheterogeneous if one of the two phases 
(usually the aqueous phase surrounding the enzyme) is not visible to the naked eye. 
Both, homogeneous and heterogeneous systems, can be carried out with the free enzyme 
or insolubilized in the reaction medium, either because the enzyme is insoluble in the 
reaction medium or because it is immobilized in a solid support (carrier) (Illanes et al. 
2009b). In this last case, the system will always be heterogeneous in nature.

Miscible organic solvents at moderately high concentrations are usually detrimen-
tal to enzyme activity and stability, because they tend to penetrate into aqueous 
microenvironment surrounding the enzyme molecules, altering the interaction pat-
terns of the enzyme with the media and distorting its three-dimensional structure 
(Toth et al. 2010; Stepankova et al. 2015; Doukyu and Ogino 2010). However, poly-
ols and glymes are notable exceptions among cosolvents (Castro 2000; Illanes and 
Fajardo 2001). Another way to circumscribe the problem of enzyme inactivation is 
the enzyme immobilization. There are several examples of proteases and other immo-
bilized enzymes that form peptide bonds that have been successfully used for the 
synthesis of peptides in such media (Illanes et al. 2009b; Yazawa and Numata 2014).

Heterogeneous systems, the so-called biphasic systems, are composed of two 
immiscible liquids which are usually water and a hydrophobic organic solvent 
(Xu et al. 2013). The substrates can be dissolved in the organic phase or in the aque-
ous phase, but regardless of the partition of the substrate, the biocatalyst will be 
always in the aqueous phase. The peptide product formed can partition in the organic 
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phase, which is highly desirable to avoid its hydrolysis and to lead the equilibrium 
towards the synthesis (Bordussa 2002). Biphasic systems have been extensively 
used for the enzymatic synthesis of peptides and represent a good strategy because 
they are highly flexible and can accommodate the properties of substrates and prod-
ucts (Barberis et al. 2002, 2006, 2008; Trusek-Holownia 2003). The main drawback 
of biphasic systems is the presence of an interface that can produce diffusional 
restrictions of substrates, reducing the reaction rate. Although this effect can be 
improved with intense agitation, it can promote inactivation at the interface (Illanes 
et al. 2012). However, this effect has not been observed in the synthesis of peptides 
carried out in our laboratory using indigenous plant proteases (Morcelle del Valle 
et al. 2006; Quiroga et al. 2008).

The suspension of almost anhydrous enzymes in hydrophobic organic solvents 
can be considered as a microheterogeneous system, due to the liquid phase looks 
like homogeneous to the naked eye but it is a microscopically heterogeneous system 
since the solid enzyme is covered with a thin layer of water tightly bound to it and 
inside the hydrophobic organic solvent that surrounds it. The enzyme is protected 
from the hydrophobic organic solvent, which is very aggressive, by a layer of dena-
tured enzyme. This system was considered as the simplest and most promising strat-
egy for the enzymatic synthesis of peptides, since it exploits the greatest advantages 
of working in unconventional media, mainly high stability, easy to recover the bio-
catalyst, and sometimes favorable changes in substrate specificities (Klibanov 
2001). The biocatalyst is simply acetonic precipitates or lyophilized of the enzyme, 
which are suspended in an organic medium in which it is completely insoluble 
(Vossenberg et al. 2012a, 2013). Immobilization is not required because the enzyme 
is insoluble in the reaction medium although it may be appropriated to offer a 
greater surface area to the substrate and provide an additional stabilization (Barberis 
et al. 2008). The best results were obtained with very hydrophobic solvents (log 
P > 4, where P is the partition coefficient between n-octanol and water) because of 
the organic solvents do not enter into the water layer and consequently, the enzyme 
it is more protected from direct contact with them. This strategy has serious draw-
backs, such as the dramatic decrease of the enzyme activity and the low solubility 
of the substrate in hydrophobic solvents (Quiroga et al. 2005). However, by adding 
formamide or ethylene glycol (water-mimetic solvents) to the reaction medium or 
crown ethers during the preparation of lyophilized enzymes, better results have been 
achieved (van Unen et al. 2002).

Another system that can be considered as microheterogeneous are the reverse 
micelles, which are formed spontaneously when small amounts of water are added to 
the hydrophobic solvent in the presence of a surfactant under agitation (Gómez- Puyou 
and Gómez-Puyou 1998). However, micelles have several drawbacks: they are 
mechanically weak, the optimization has not been standardized and the recovery and 
purification of products is impaired by the surfactant (Bordussa 2002). An alternative 
to the classical reverse micelles are the micelles formed by water in oil (W/O), but 
with a high water content (95%) (Clapés et al. 2001).

Conventional organic solvents, in spite of a large number of self-evident advan-
tages as reaction media, are generally volatile, flammable, explosive, and hazardous 
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to the environment and they can produce acute and chronic toxicity and carcinoge-
nicity. To improve the human health and the environment risks associated with the 
use of hazardous organic solvents, tremendous efforts have been devoted for to 
develop alternative green reaction media (Gu 2012).

There is growing interest in developing new environmental friendly solvents 
with similar or even better properties than organic solvents. Thus, supercritical flu-
ids, ionic liquids, and deep eutectic mixtures have emerged in the field of biocataly-
sis as new green solvents (Shanab et al. 2013).

4.3.5.2  Ionic Liquids

The ionic liquids (ILs) can be hydrophilic or hydrophobic in nature, and the main 
advantages that are attributed to them are ease preparation and extraction at the end 
of the process (Franco-Vega et al. 2014; Cao and Matsuda 2016; Hayes et al. 2015; 
Sprenger et al. 2015).

ILs are commonly composed of an organic cation (imidazolium, pyrrolidinium, 
pyridinium, and many other exotic cations) with a variety of substituents and an 
inorganic or organic anion, such as halides, tetrafluoroborate (BF4

-), hexafluoro-
phosphate (PF6

-), bis(trifluoromethane)sulfonimide (NTf2−), and larger anions con-
taining sulfonyl or fluoroalkyl groups. Dialkylimidazolium cations with BF4

− and 
PF6

− anions are the most classic ILs used in biocatalysis, more specifically 1-alkyl- 
3-methylimidazolium salts and derivatives (Caminiti and Gontrani 2014; Sudhakar 
et al. 2012; Hallett and Welton 2011; Domínguez de María 2012).

ILs are classified as green solvents because they have unique physical and chem-
ical properties such as low vapor pressure, lower volatility than organic solvents, no 
flammability, and high thermal and chemical stability. They are usually viscous 
liquids with m.p. below 100 °C. Some ILs remain liquids below 400 °C due to their 
strong ionic interactions (Erbeldinger et al. 2010). Besides, they can be finely tuned 
by means of structural changes of cation or anion, of polar or nonpolar compounds, 
in order to improve solvation of reagents which are sparingly soluble in water and 
in polar organic solvents (Sawant et al. 2011; Earle et al. 2006; Ludwig and Kragl 
2007; Ahrenberg et al. 2014; Kosmulski et al. 2004; Chiappe and Rajamani 2011). 
The solubility of chemical compounds in ILs usually depends on the ability of them 
to form hydrogen bond with the anions (Novoselov et al. 2007).

Enzymes in ILs have presented higher enantioselectivity, stability, recyclability, 
and conversion rates than in organic solvents (Muhammad et al. 2010; Jaeger et al. 
2015). Activity and operational stability of enzymes in ILs can also be increased by 
tuning the physicochemical properties of them (Gorke et al. 2010; van Rantwijk and 
Sheldon 2007).

Madeira Lau et  al. (2000) discussed the catalytic activity of lipase B from 
Candida antarctica (CAL-B), free and immobilized, in anhydrous ILs. Other 
lipases, proteases, oxidoreductases, peroxidases, and entire cells were examined in 
ILs to test their activities and stabilities, and it was found that they were not dena-
tured or deactivated. The physicochemical properties of ILs play an important role 
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on the stability, activity, and structure of enzymes. ILs containing anions BF4
−, PF6

−, 
or NTf2

− allowed to express high enzyme activity, enantioselectivity, recyclability, 
and conversion rates (Remsing et al. 2008; Diego et al. 2009; Hussain et al. 2008; 
Braeutigam et al. 2007; Abe et al. 2008).

4.3.5.3  Deep Eutectic Solvents

Deep eutectic solvents (DES) are promising reaction media based on their low melt-
ing points, easy availability, biodegradability, recyclability, and low cost. They are 
usually formed by a quaternary ammonium or metal salt and a simple hydrogen bond 
donor (HDB), such as acids, amides, amines, and alcohols (Maugeri and Dominguez 
de Maria 2012).

DES show similar physical–chemical properties to ILs, but they are cheaper and 
safer solvents than ILs for synthetic biotransformation. They are mostly liquid at or 
below 100 °C and have higher density and viscosity than water at room temperature, 
poor ionic conductivity, and high polarity due to the extensive hydrogen bonds that 
they can form. Melting point is drastically reduced after mixing the two components, 
as compared to the melting points of the original ones (Khandelwal et al. 2016).

Like ILs, one of the most promising advantages of DES is their extremely low 
vapor pressure (low volatility) which is very attractive for using in green biocata-
lytic technologies (Zhang et al. 2012a, b; Abbott et al. 2011; Rub and Konig 2012). 
Besides, DES can be prepared from readily accessible chemicals and they have low 
toxicity, especially when they are derived from choline chloride (ChCl) and renew-
able chemicals. ChCl is a commonly used organic salt for DES since it is biocom-
patible with most HBD (urea, glycerol, or carboxylic acids) which are cheap and 
environmentally benign. Moreover, DES do not produce toxic metabolites and they 
are biodegradable (Smith et al. 2014; Pham et al. 2010; Angell et al. 2012).

An enzymatic process of industrial relevance is the synthesis of the protected 
N-Ac-Phe-Gly-NH2 peptide in different DES (ChCl/Gly, ChCl/urea, ChCl/isosor-
bide, ChCl/xylitol), catalyzed by α-chymotrypsin (Maugeri et al. 2013). Besides, 
immobilized papain on a magnetic material was successfully used for the synthesis 
of N-(benzyloxycarbonyl)-alanyl-glutamine (Z-Ala-Gln) in ChCl/urea (1:2) with a 
yield of 71.5% (Cao et al. 2015).

4.3.5.4  Supercritical Fluids

The supercritical fluids (SCF) are substances with a vapor pressure and temperature 
above the critical values. The special combination of the liquid and gas properties, 
such as viscosity and diffusivity of the gases, and density and solvating properties 
of the liquids, become SCF in excellent solvents for various applications. The pro-
cesses involving SCF are sustainable, environmental friendly and they have low 
cost. Their main advantage lays in the possibility of separating and drying the prod-
uct by simple expansion, while the gas can be recovered, recycled, and reused 
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without purification steps. The environmental benefits of using SCF in industrial 
processes, and the low energy consumption during operation, are the main issues for 
replacing the conventional organic solvents by them. Therefore, SCF are called 
“green solvents for the future” (Aymonier et  al. 2011; Brunner 2010; Loppinet- 
Serani et al. 2010).

Health and safety benefits are evident in the use of CO2 and H2O, the most 
important SCF. They are noncarcinogenic, nontoxic, nonmutagenic, nonflamma-
ble, and thermodynamically stable. Another major benefit refers to the possibility 
of adjusting the thermophysical properties of SCF, such as diffusivity, viscosity, 
density, or dielectric constant, by simply varying the operating pressure and/or 
temperature. Moreover, SCF have excellent heat transfer properties, and they have 
been studied as healthy environmental heat transfer fluids (Knez et al. 2014). CO2 
is an SCF utilized as an environmentally benign solvent for enzymatic reactions. 
Surfactant- coated α-chymotrypsin complexes were used to synthesize dipeptides 
as N-acetyl-Phe-OEt and Gly-NH2 in supercritical CO2 at 308.2  °K (Mishima 
et al. 2003).

4.3.5.5  Aqueous Solutions

Finally, an efficient approach for hydrophobic amino acids polymerization in aque-
ous solution was also developed. The catalysis efficiency of papain and bromelain for 
oligomer peptides synthesis in aqueous solution was investigated. A set of reaction 
conditions (protease type, temperature, reaction time, and pH) has been tested for the 
polymerization reaction of l-phenylalanine methyl ester. Papain was the most effi-
cient biocatalyst in 0.2M phosphate buffer pH 8 at 40 °C, after 3 h (Yu et al. 2016).

4.3.6  Catalyst Engineering

Proteases offer great opportunities as biocatalyst for the peptide synthesis, due to 
their impressive stereo- and regiospecificity, allowing for the reaction happen with-
out protection of the amino acid lateral chains and with minimal racemization. 
However, proteases are usually labile enzymes and they must be converted into 
robust catalysts for industrial processes (Illanes 2016).

Enzyme immobilization is the best approach for increasing the enzyme stability, 
preventing the modification of its active site, and making possible its separation and 
reutilization, with considerable advantages for the bioreactor design in continuous 
processes (Agyei and Shanbhag 2015; Madhu and Chakraborty 2017; Kosseva 
2013). However, the main drawbacks in the immobilization process are the loss of 
enzymatic activity and high costs (Sheldon and van Pelt 2013).

The immobilization methods can be divided into two categories: (1) immobiliza-
tion in an inert matrix (carrier bound) and (2) free-support immobilization (carrier 
free) (Cao et al. 2003).
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4.3.6.1  Immobilization in an Inert Matrix

4.3.6.1.1 Covalent Immobilization

The covalent bound is based on the activation of chemical groups of the support to 
react with amino acid residues of the protein. Among the 20 amino acids that make 
up the structure of the enzymes, the most involved in the formation of bonds with 
the support are Lys, Cys, Tyr, and His, and to a lesser extent Met, Trp, Arg, Asp, and 
Gln. The rest of the amino acids are not exposed to the outside of the protein surface 
due to their hydrophobic nature (Tran and Balkus 2011; Barbosa et al. 2015). This 
method has high operational stability and is quite flexible. That is the reason why it 
can be adapted to particular process characteristics (Illanes et al. 2012).

4.3.6.1.2 Immobilization by Adsorption

It is carried out by adsorption of the enzyme on a solid support through van der 
Waals, electrostatic, and/or hydrophobic interactions. This is a simple method, 
which does not involve harmful reagents for the environment and the support can be 
easily recovered after the enzyme has no more activity by the protein desorption. 
This method leads to high immobilization yields but its main drawback is that the 
enzyme can easily be desorbed from support, even by slight changes in the reaction 
medium (Stepankova et al. 2013).

4.3.6.1.3 Immobilization by Entrapment

It consists on the physical retention of the enzyme into the porous of a solid matrix 
generally constituted by polymers such as polyacrylamide, collagen, alginate, car-
rageenan, or polyurethane resins. The enzyme entrapment can be carried out inside 
a gel or into microcavities of a synthetic fiber by occlusion of the protein, which 
tends to be more resistant than gels. The entrapment is a simple method, requires 
little amount of enzyme and it does not undergo any alteration in its structure; but 
the polymerization conditions require a rigorous control in order to avoid alterations 
of the reactive groups of the protein (Arroyo 1998).

4.3.6.1.4 Immobilization in Nanosupports

It is based on the immobilization of enzymes in nanomaterials; which have well- 
established characteristics such as pore diameter (5–100  nm), defined geometry, 
hardness, hydrophobicity/hydrophilicity ratio, magnetic properties, and conductiv-
ity, among others; which allows the design of robust biocatalysts with greater bio-
logical activity (Illanes et al. 2012). The nanostructures for enzyme immobilization 
can be particles with spherical shapes, fibers, or tubes (Gutarra et  al. 2016). 
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The main advantage is the high surface/volume ratio of the nanoparticles, allowing 
high load of enzyme. The lowest the size of the nanovehicle, the highest the expo-
sure of the biocatalyst to the reaction media.

Enzyme immobilization in nanomaterials can be carried out by: enzyme adsorp-
tion on the surface, and enzyme encapsulation and entrapment in defined materials 
(Kim et al. 2010; Zhao et al. 2011).

Magnetic nanoparticles made of iron oxide are the most popular nanostructure 
for enzyme immobilization since they can be recovered easily by proximity to a 
magnetic field and reused for multiple cycles. Iron oxide nanoparticles have been 
used to immobilize a wide variety of enzymes including lipases, cellulases, pectin-
ase, esterase, glucose oxidase, catalase, and others (Feng and Ji 2011). Stolarow 
et al. (2015) compared synthetic and hydrolytic activities of immobilized trypsin on 
magnetic microparticles, using both organic solvents and aqueous media. The 
immobilized enzyme showed 90% and 87% of residual activity after ten cycles in 
peptide synthesis reactions and in hydrolysis reactions, using 80% (v/v) ethanol and 
buffered aqueous solution, respectively.

Besides, nonmagnetic nanoparticles made from gold, silica, chitosan, zirconia, 
and other materials have also been used for enzyme immobilization. Gold nanopar-
ticles are nontoxic and biocompatible, allowing them to be used for medical appli-
cations such as drug delivery. Chitosan is used for enzyme immobilization as 
membranes, fibers, and particles. Nano chitosan has shown good physical and 
chemical properties such as high surface area, porosity, strength, conductivity, and 
increased mechanical properties. Silica is largely used to produce enzyme carriers 
as nanoparticles, porous nanotubes, and mesoporous preparations (Ahmad and 
Sardar 2015). Carbon nanotubes have been frequently used to immobilize several 
enzymes because their preparation is relatively simple and they offer great mechani-
cal and thermal stabilities as well as biocompatibility. The enzyme immobilization 
can be performed by adsorption or covalent bond into graphite tubes of cylindrical 
shape with diameters up to 100 nm and lengths ranging up to micrometers (Majeric 
et al. 2012). Cellulose nanofibers have interesting properties when compared with 
other nanostructures, such as reduced-mass-transfer problems due to their thinness 
and easy recovery (Dana et al. 2017).

4.3.6.2  Free-support Immobilization

In this method, the enzyme constitutes its own support so that concentrations close 
to the theoretical packaging limit are obtained (Cao and Schmid 2005). Free-
support immobilized enzymes are prepared by chemical cross-linking of the pro-
tein, using glutaraldehyde as the main cross-linking agent. This strategy has been 
applied for the cross-linking of enzymes in solution (CLEs), of enzyme crystals 
(CLEC), and, more recently, of enzyme aggregates (CLEAs) (Illanes et al. 2012; 
Vossenberg et al. 2012b).
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4.3.6.2.1 Cross-linking of Enzymes in Solution (CLEs)

CLEs are obtained by cross-linking of the dissolved enzymes, through the reaction 
of the surface NH2 groups with a bifunctional chemical reagent, such as glutaralde-
hyde (Sheldon and van Pelt 2013). Currently, they are no longer used, mainly due to 
their poor mechanical properties and severe mass-transfer limitations for industrial 
applications (Illanes et al. 2012).

4.3.6.2.2 Cross-linking Enzymatic Crystals (CLEC)

CLECs are formed by crystallization of the enzyme protein and subsequent cross- 
linking with a bifunctional reagent, usually glutaraldehyde (Stepankova et al. 2013; 
Abraham et al. 2004). They are robust catalysts, highly active, and of controllable 
particle size, varying from 1 to 100 μm (Sheldon and van Pelt 2013). CLECs are 
significantly more stable than soluble enzyme to heat denaturation, organic sol-
vents, and proteolysis. Its high operational stability and catalytic productivity as 
well as its ease of recycling makes them ideal for industrial biotransformation 
(Amorim Fernandes et al. 2005). However, an inherent disadvantage of CLECs is 
the need to crystallize the enzyme previously, which translates into high costs for 
many applications. For this reason, CLECs are no longer available in the market and 
have been replaced by CLEAs (Fernandez-Lorente et al. 2011).

4.3.6.2.3 Enzymatic Cross-linked Aggregates (CLEAs)

CLEAs are produced by cross-linking enzymatic aggregates obtained by simple 
conventional techniques of protein precipitation, such as salts (ammonium and 
sodium sulfate), organic solvents (ethanol and acetone), or nonionic polymers 
(polyethylene glycol) (Sheldon et  al. 2007). CLEAs of multimeric enzymes and 
combi-CLEAs were also obtained (Wilson et al. 2006a, b). They showed increased 
stability by prevention of the subunit dissociation and allowed multiple cascade 
reactions (Dalal et al. 2007). CLEAs have better mechanical properties and higher 
activity yields than CLEs. Its production is simpler and cheaper because purified 
and crystallized protein is not required as starting material (Sheldon 2011; Roessl 
et al. 2010).

4.3.6.3  Choice of the Best Immobilization Method

Although many immobilization techniques have been developed and applied to 
numerous enzymes, it is recognized that there is no universal method valid for all 
enzymes in all cases. However, there is a lot of information currently available and 
some generalizations about immobilization methods can be made, which allow to 
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select the most appropriate method for each specific application. They are summa-
rized in Table  4.2. In general, the more expensive the preparation methods, the 
higher the stability of the biocatalyst. Simple immobilization methods such as 
entrapment or adsorption provide weak bonds between enzyme and support, pro-
ducing catalysts that quickly loss activity and require to be replaced continuously 
(Arroyo 1998).

4.4  Large-Scale Production of Peptides

Most relevant technologies for peptide production are the extraction from natural 
sources, the production by recombinant DNA technology, the production by chemi-
cal synthesis, and the production by enzymatic synthesis. The size of the peptide 
determines to a great extent the technology most suitable for its production.

Extraction from natural protein sources is a plentiful reservoir for obtaining 
functional peptides. Problems associated to the large-scale separation, purification, 
and characterization of the resulting peptides have precluded a more significant 
impact of this strategy.

Recombinant DNA technology is quite important for the production of proteins 
and may be an option for the synthesis of large peptides where alternative technolo-
gies may be cumbersome and costly. In the case of small size peptides, repeated 
sequences of the coding nucleotides have to be cloned to be expressed and even so 
yields are rather low and the synthesized polypeptide has to be further processed to 
obtain the peptide product.

Solid-phase chemical synthesis of peptides is certainly the most mature technol-
ogy, especially for producing medium size peptides (up to one hundred amino acid 
residues) which encompasses most of the therapeutic and cosmetic peptides. 
Protocols have been well established, which are amenable for automation and scale-
 up to match the production levels required by the market. Major drawbacks of 
chemical synthesis is the number of unit operations required for synthesis since 
protection and deprotection reactions are required in each step of amino acid addi-
tion, and the use of offensive solvents and reagents outside the context of sustain-
able chemistry, representing nowadays the major challenges that the commercial 

Table 4.2 Comparison between different immobilization methods

Method Entrapment Cross-linking Adsorption Covalent bonding

Preparation Difficult Intermediate Easy Difficult
Bond strength Medium Weak-medium Medium Strong
Enzymatic activity Low Low Medium High
Support regeneration Impossible Impossible Possible Difficult
Cost of the process Medium Medium Low High
Stability High High Low High
Microbial resistance Yes Yes No No
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production of peptides by chemical synthesis is facing. At the latter scale, costs of 
reagents involved in the chemical synthesis of peptides are usually high; therefore, 
the use of large excess, frequently used at laboratory scale and in the early stages of 
development for saving time and increasing yield, is inadequate for large-scale pro-
duction since large amounts of reagents cannot be wasted, not only for cost but also 
for environmental considerations; so, reagents should be used as close to stoichiom-
etry as possible (Bruckdorfer et al. 2004). Productivity and yield of peptide synthe-
sis will have to be balanced with production cost, purity of the product, and security 
and environmental impact of the process (Guzmán et al. 2007). Process validation 
is another key aspect at production scale; validation implies reproducibility in terms 
of yields of intermediate and final products and consistency in the final composition 
of the product. This is a major threat in peptide synthesis because of the complexity 
and the number of unit operations involved in the production process. The very 
stringent requirements for validation, despite the high cost and long time required, 
stem from the unavoidable need of granting the high standards of quality and safety 
required by the final consumer (Andersson et al. 2000).

Enzymatic synthesis of peptides is a technological option for the synthesis of 
small peptides. The enzymatic synthesis, using protease as catalyst and one pro-
tected amino acid as substrate, has proven to be a scalable option for producing 
dipeptides, which is neatly illustrated by the commercial success of the synthesis of 
the sweetener aspartame using thermolysin (Yagasaki and Hashimoto 2008), and 
some others like the precursor of the pain reliever kyotorphin with α-chymotrypsin 
(Bahamondes et al. 2016). When scaling-up to production level, the advantages of 
enzyme processes in terms of molecular precision (implying less unit operations) 
and environmental sustainability (potentially low E-factor and high atomic effi-
ciency) have to be confronted with the cost of the enzyme catalyst and the need for 
avoiding organic solvents as much as possible. These are major technological chal-
lenges that are being confronted by protein, catalyst, and media engineering 
approaches. More robust enzyme structures and immobilized enzyme catalysts are 
required for the efficient use of the enzyme leading to the decrease of the impact of 
the catalyst cost on the peptide production cost. Use of organic solvents, which are 
required to depress the activity of water and the hydrolytic potential of proteases 
(Vossenberg et al. 2013), is contradicting the principles of green chemistry which 
enzymatic processes are supposed to fulfill so that their replacement by neoteric 
solvents and other environmentally sound nonconventional reaction media is also 
another important challenge to be dealt with.

4.5  Concluding Remarks

Enzyme biocatalysis has evolved from reactions of molecular cleavage in aqueous 
medium, catalyzed mostly by hydrolases dissolved in the reaction medium, to reac-
tions of molecular synthesis in mostly nonconventional media. The latter have a 
higher potential added value, so most research efforts in recent decades have been 
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devoted to establishing technological platforms for biocatalysis in nonaqueous 
media: organic solvents, ionic liquids, supercritical fluids, and deep eutectic sol-
vents. Robust and readily available hydrolases can catalyze the reverse reactions of 
synthesis when performed in low water activity environments, opening up the 
opportunity for these well-known catalysts to be used in high added value processes 
for the synthesis of fine chemicals, pharmaceuticals, and other high-value bioactive 
molecules (Illanes 2016).

Several strategies of enzyme stabilization and activation have been developed 
and successfully applied to reactions in organic synthesis of potential industrial 
interest. A variety of enzymes produced by recombinant techniques, the develop-
ment of mimetic substrates, and new reaction media have broadened the scope of 
enzymatic peptide synthesis (Yazawa and Numata 2014). Enzyme immobilization 
onto different carriers is the most usual strategy for increasing enzyme stability and 
reusability in biotechnological and pharmaceutical applications. However, some 
immobilization techniques are associated with loss of enzymatic specificity and/or 
activity, due probably to mass transport limitations or enzyme structural changes. 
For this reason, the most appropriated immobilization method must be carefully 
selected.

The latest scientific reports focus on the extremophile proteases as catalysts, due 
to their synthetic potential does not seem to have been fully appreciated to date. The 
structure of these proteins is somewhat different from that of commercial enzymes, 
making them effective at high salinity and high or low temperatures, which are often 
favorable to peptide synthesis. Examples of such enzymes include halophilic, ther-
mophilic, and psychrophilic proteases (Białkowska et al. 2017).

As example, in order to explore the use of proteases from thermophiles for pep-
tide synthesis under such conditions, putative protease genes of the subtilase class 
were cloned from Thermus aquaticus and Deinococcus geothermalis and expressed 
in Escherichia coli. The purified enzymes were highly thermostable and catalyzed 
efficiently the peptide bond synthesis at 80 °C in neat acetonitrile with excellent 
conversion (>90%). The enzymes keep high activity in (40–50% v/v) N,N- 
dimethylformamide, which improved substrate solubility and allowed good yields 
in 5+3 peptide condensation reactions. According to these results, proteases from 
thermophiles are promising biocatalysts to be used for peptide synthesis under 
harsh reaction conditions (Toplak et al. 2015).

The most relevant industrial application of peptide synthesis catalyzed by prote-
ases is the noncaloric sweetener aspartame. A solvent-stable protease from the high- 
yield protease producer Pseudomonas aeruginosa PT121, and its mutant Y114S, 
enabled the pH modulation of the reaction medium to shift the thermodynamic 
equilibrium towards product synthesis. At lower pH, the higher solubility of the 
substrates (L-Phe.OMe and Z-L-Asp) was obtained, while the solubility of the prod-
uct was dramatically lowered, allowing in situ product removal. The reaction- 
separation coupling provided the driving force for the enzymatic synthesis and 
resulted in high yields of 88.5%, without further purification for removing protection 
group of Z-aspartame (Liu et al. 2015).
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The recent advances in peptide macrocycles as promising therapeutics create a 
need for novel methodologies for their efficient synthesis and large-scale produc-
tion. Within this context, enzyme-mediated methodologies have gained great inter-
est. Enzymes such as sortase A, butelase 1, peptiligase, and omniligase-1 represent 
extremely powerful and valuable enzymatic tools for peptide ligation, since they 
can be applied to generate complex cyclic peptides with exquisite biological activ-
ity. Therefore, the use of enzymatic strategies will effectively supplement the scope 
of existing chemical methodologies and will accelerate the development of future 
cyclic peptide therapeutics (Schmidt et al. 2017).

Lack of specificity and environmental burden associated to the chemical synthe-
sis of peptides can in principle be overcome by enzyme biocatalysis, but strategies 
for enzymatic synthesis are for the most part in developmental stage and no proto-
cols exist for validation and scale-up. In practice, this means that only small pep-
tides (mostly dipeptides) can be efficiently synthesized in a cost-effective manner. 
Efforts for the enzymatic synthesis of larger peptides have been mostly unsuccess-
ful since different enzymes and reaction protocols have to be used in each step, 
which is a complex task (Fité et al. 2002). This situation may evolve in the near 
future associated with the impressive developments in enzyme biocatalysis. 
Combination of chemical and enzymatic synthesis has proven to be a valuable tech-
nological option in organic synthesis since the good properties of each technology 
can be synergistically used in the context of one process objective (Clouthier and 
Pelletier 2012). This strategy is certainly applicable to the synthesis of peptides 
(Hou et al. 2005; Baker and Numata 2012).
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5.1  Introduction

Proteases or proteinases are enzymes that catalyze cleavage of proteins at peptide 
bonds generating smaller peptides. Some of them are very specific in their choice of 
target site while others act rather nonspecifically and hydrolyze the protein substrate 
if conditions allow into short peptides. They must have appeared early in evolution 
along with proteins, to keep a balance between synthesis and protein degradation. 
Their early emergence is confirmed by their ubiquitous presence in most living 
forms including viruses, plants, and animals.
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Proteases involve two groups of enzymes: exoproteases, which cleave the initial 
or terminal peptide bonds of substrates, designated as amino- or carboxy- peptidases, 
respectively, and endoproteinases cleaving at inner bonds of the protein.

Classification of proteases is based upon the type of residue relevant at the active 
site. The hydroxyl group of serine or threonine proteinases and the cysteine group 
in cysteine proteinases are the nucleophiles during catalysis of these groups of 
endoproteinases, while activated water is the nucleophile for aspartic-, glutamic-, 
and metalloproteinases.

As of December 04, 2017, the database (release 12.0) lists 912,290 sequences 
and provides links to 1022 PDB (Protein Data Bank) (http://www.pdb.org/pdb/
home/home.do) entries distributed among 268 families and 62 clans.

The MEROPS database (https://www.ebi.ac.uk/merops/), is a resource for anno-
tation of proteases, their substrates, and their inhibitors. This database is hosted at 
EMBL-EBI since 2017.  PANTHER (Protein Analysis Through Evolutionary 
Relationships) (http://www.pantherdb.org/) is another tool that classifies proteases 
by families and subfamilies, their biochemical function, the biological processes, 
and metabolic pathways in which participate to facilitate high-throughput analysis.

Most annotated sequences belong to the serine group (36.6%), followed by 
metallo- (32.6%), cysteine-, (19.5%), aspartic-, (4.9%), threonine- (3.8%), plus 
minor groups including mixed-type proteases, and unclassified and unknown 
sequences.

As stated above, proteases like most proteins must have arisen early in evolution 
since primeval life forms required them for the digestion of food. In fact, a compari-
son of digestive proteases in evolved species shows similarities with those found in 
prokaryotic organisms arguing for a common origin.

Once proteins became constituents of cellular structure, they were required to 
metabolize endogenous proteins. With advances in genomic sequencing, it is now 
estimated that about 2% of structural genes in an organism code for these enzymes 
(Barrett and Fred Woessner 2013). For instance, it is estimated the presence in rice 
(Oryza sativa) of >650 genes and in Arabidopsis thaliana >800 genes coding for 
proteases (van der Hoorn 2008). A similar distribution is projected in animal organ-
isms. Despite these impressive figures, the lack of information about their physio-
logical function and their cognate substrates limit our knowledge of these enzymes. 
A further problem during dissection of a single proteolytic activity is encountered 
as most proteolytic enzymes act as a group of related members for a reaction(s) to 
take place, thus coining the concept of “protease web” (Fortelny et al. 2014).

In plants, proteolytic enzymes are found in most cell compartments participating 
in most stages of plant life, including growth, homeostasis, germination, breakdown 
of storage proteins during seed germination, organ senescence, and programmed 
cell death (Huffaker 1990).

An important function is their involvement in the proteasome proteolytic 
pathway affecting several metabolic processes, such as hormone signaling, cell 
cycle, embryogenesis, morphogenesis, and plant-environment interactions (van 
Wijk 2015).
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A major source of proteolytic activities is detected in latex producing plants. 
Laticifers are specialized cells found in 20 plant families from angiosperm orders 
representing between 15 and 20,000 species (Lewinsohn 1991). The cytoplasm of 
laticifers stores latex containing defense metabolites which are released in response 
to physical damage. By analogy, the proteolytic enzymes found in some laticifers 
resemble the functionality of proteolytic enzymes present in mammalian circulatory 
system.

In this review, that focuses in the last ten years, we present evidence supporting 
the role of plant proteolytic enzymes as therapeutic options to treat several symp-
toms. Two early compilations described the advances in this field in 2008 (Domsalla 
and Melzig 2008; Salas et  al. 2008) and recently, while we were preparing this 
review a revision covered this subject (Balakireva et al. 2017).

It is well established that species of Caricaceae family (C. papaya and C. pubes-
cens, syn C. candamarcensis, syn Vasconcellea pubescens, and syn V. cundinamar-
censis) have been used ethnopharmacologically to treat digestive disorders and skin 
fungal ailments by native American populations (Soplin et al. 1995). Similarly, 
A. comosus the source of bromelains was used as medicine by indigenous cultures 
and in 1957 Heinicke and Gortner (1957) initiated its therapeutic use. In this revi-
sion, we mainly focus on the scientific developments within this field covering the 
last decade. A listing of pharmacological applications discussed here is shown in 
Table 5.1.

5.2  Proteolytic Enzymes Inflammation 
and Immunomodulation

Inflammation and immunomodulation are intertwined processes in which the 
immune response, both innate and adaptive lead to inflammatory outcomes. The 
plant proteases (papain, bromelain, ficin, etc.) have been used as anti-inflammatory 
and especially bromelain is used as alternative and/or complementary therapy to 
glucocorticoids, nonsteroidal antirheumatics, and immunomodulators.

For instance, different doses of the cysteine proteinases from Bromelia hiero-
nymi and bromelain used as reference on carrageenan- and serotonin-induced rat 
paw edema, as well as cotton pellet granuloma model, induced 40–50% inhibition 
of the inflammatory effect. If the enzyme fractions were treated with E-64 (cysteine 
proteases inhibitor), the anti-inflammatory effect disappeared, demonstrating that 
the effect was mediated by cysteinyl enzymes (Errasti et al. 2013). A similar result 
was observed using the proteolytic fraction of V. cundinamarcensis using the rat 
paw edema model. The anti-inflammatory response was equivalent to the dexameth-
asone positive control (unpublished data).

The anti-inflammatory action of bromelain has been linked to decreased secre-
tion of pro-inflammatory cytokines and chemokines [granulocyte–macrophage 
colony-stimulating factor (GM-CSF), IFN-γ, CCL4/macrophage inhibitory protein 
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Table 5.1 List of plant proteolytic enzymes with pharmacological applications

Protease Species Biological activity Reference

Bromelain, CP Ananas comosus Dermatology Ho et al. (2016)
Bromelain, CP Ananas comosus Chronic rhinosinusitis Büttner et al. (2013)
Bromelain, CP Ananas comosus Anti-inflammatory Shing et al. (2015)

Amini et al. (2013)
Secor et al. (2012)

CP Bromelia hieronymi Anti-inflammatory Errasti et al. (2013)
Bromelain, CP Ananas comosus Digestive disorders Zhou et al. (2017)

Sahbaz et al. (2015)
Papain, CP Carica papaya Digestive disorders Levecke et al. (2014)

Mansur et al. (2014)
Luoga et al. (2015)

Bromelain, CP Ananas comosus Wound healing/
mitogenic activity

Rosenberg et al. 
(2012)
Cordts et al. (2016)
Golezar (2016)
Wu et al. (2012)
Aichele et al. (2013)
Iram et al. (2017)

SP Wrightia tinctoria 
R. Br. (Apocynaceae)

Wound healing/
mitogenic activity

Yariswamy et al. 
(2013)

P1G10, CP Vasconcellea 
cundinamarcensis

Wound healing/
mitogenic activity

Freitas et al. (2017)
Araujo e Silva et al. 
(2015)

Papain, CP Carica papaya Wound healing/
mitogenic activity

Aranya et al. (2012)
Chen et al. (2017)
Shoba et al. (2017)

Heynein, CP Ervatamia heyneana 
latex

Thrombolytic activity Uday et al. (2017)

SP Solanum tuberosum 
leaves

Thrombolytic activity Pepe et al. (2016)

Euphorbia cf. lactea 
latex

Siritapetawee et al. 
(2015)

Petasites japonicus Kim et al. (2015)
Curcuma aromatica 
Salisb

Shivalingu et al. 
(2016)

MP-like Aster yomena (Kitam.) 
Honda

Thrombolytic activity Choi et al. (2014)

P1G10, CP Carica 
candamarcensis

Thrombolytic activity Bilheiro et al. (2013)

CP Cnidoscolus urens (L.) 
leaves

Thrombolytic activity de Menezes et al. 
(2014)

(continued)
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Table 5.1 (continued)

Protease Species Biological activity Reference

CP Pseudananas 
macrodontes
Bromelia balansae
Bromelia hieronymi

Thrombolytic activity Errasti et al. (2016)

Bromelain, CP Ananas comosus Antitumoral Amini et al. (2013)
Pillai et al. (2013)
Romano et al. (2014)
Miranda et al. (2017)
 Bhatnagar et al. 
(2015)
Pillai et al. (2013)

P1G10, CP Vasconcellea 
cundinamarcensis

Antitumoral Dittz et al. (2015)

SP Asian pumpkin Bioactive peptides Dąbrowska et al. 
(2013)

Papain, CP Carica papaya Bioactive peptides Wang et al. (2012)
Papain–Bromelain, 
CP

Ananas comosus/
Carica papaya

Bioactive peptides Gajanan et al. (2016)

Bromelain, CP Ananas comosus Bioactive peptides Li-Chan et al. (2012)
CP Latex Jacaratia 

corumbensis
Bioactive peptides Arruda et al. (2012)

Bromelain, CP Ananas comosus Antibacterial Pu and Tang (2017)
Papain, CP Carica papaya Antifibrotic Sahu et al. (2017)
Papain, CP Carica papaya Drug carrier Menzel and 

Bernkop-Schnürch 
(2018)

Bromelain, CP Ananas comosus Drug carrier Parodi et al. (2014)
Papain, CP 
nanoparticles

Carica papaya Antibacterial Atacan et al. (2018)

Papain/Bromelain, CP Carica papaya/Ananas 
comosus

Oral applications Waleed Majid and 
Al-Mashhadani 
(2014)
Ordesi et al. (2014)
 Divya et al. (2015)
Mugita et al. (2017)
Sahana et al. (2016)
Tadikonda et al. 
(2017)
Motta et al. (2014)
Abdul Khalek et al. 
(2017)
Patil et al. (2015)

(continued)
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(MIP-1ß)], and TNF by inflamed tissue in inflammatory bowel disease using an 
in  vitro human colon model. Bromelain also enhanced the expression of partly 
inflammatory cytokines IL-2 and IL-4 and IFN-γ leukocytes (Onken et al. 2008).

Fitzhugh et  al. (2008) reported that bromelain decreases neutrophil migration 
during acute inflammation and specifically removes chemokine receptor CD128 
suggesting a reduction in leukocyte binding to blood vessels that consequently 
impairs cell extravasation. Leukocyte migration is viewed as crucial for the inflam-
matory response. Furthermore, in some cases bromelain is being used to treat 
inflammatory symptoms in osteoarthritis or asthma (Brien et al. 2006; Secor et al. 
2012).

Instead, it is not clear if papain shares the anti-inflammatory effect attributed to 
bromelain-like cysteine proteases, as a report shows that this protease activates 
human mast cells via PAR-2 cell receptors. The induced activation of mast cell is 
related to release of tryptase and ß-hexosaminidase (Seaf et al. 2016). Also, papain 
is currently used as a model substance to develop experimental osteoarthritis, lung 
inflammation, and rhinosinusitis, and all these conditions are associated to inflam-
matory processes (Patel et al. 2015; Agoro et al. 2016; Tharakan et al. 2018). Also, 
epicutaneous administration of papain may induce a dysfunction of the skin barrier 
and increase circulatory IgE and IgG. In this study, the presence of papain in serum 
is confirmed by identification of papain-specific IGs antibodies (Iida et al. 2014). 
These data suggest that papain may act as inflammatory protease departing from 
other cysteine proteases. Meanwhile, topical application of papain to volunteers 
stung by jellyfish Chrysaora chinensis showed pain remission and inhibition of 
nematocyst discharge (DeClerck et  al. 2016) and another report described that 
papain at doses of 0.325 and 0.75 mg/kg possesses marked anti-inflammatory action 
against infectious arthritis, like butadion and indomethacin (Rakhimov 2001). 
Meanwhile, excepting for an early report describing allergic reactions and asthma 
during occupational exposure to bromelain (Baur and Fruhmann 1979), no  additional 
evidence of inflammatory effect induced by bromelain was described. More recently, 

Table 5.1 (continued)

Protease Species Biological activity Reference

Protease inhibitor

Kunitz-type inhibitor Tamarindus indica L. 
seeds

Biotechnological 
health-related 
application.

Medeiros et al. 
(2018)

Kunitz family of 
protease inhibitors

– Antithrombogenic Salu et al. (2018)

Trypsin and 
chymotrypsin 
inhibitors

Erythrina velutina 
seeds

Gastroprotective 
antielastase

Oliveira de Lima 
et al. (2017)

Purified protease 
inhibitors LC-pi I, II, 
III, and IV

Lavatera cashmeriana Anticancer activity Rakashanda et al. 
(2015)

CP cysteine protease, SP serine protease, MP metalloprotease
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Dutta and Bhattacharyya (2013) rule out the presence of toxic substances in  
A. comosus crown-leaf extracts containing bromelain. It is paradoxical that brome-
lain is used to treat symptoms, some of which appear to be triggered by papain.  Since 
both papain and bromelain belong to the same group of cysteine proteases (C1A), it 
is conjectured that unaccounted structural differences must exist between these pro-
teases that justify their different biological role. It is also possible that papain and/
or bromelain containing fractions contain contaminating proteolytic isoforms 
responsible for these “unexpected” effects.

A condition known as endometriosis displaying inflammatory symptoms and 
affecting around 10% of females is apparently caused by estrogen in which 
endometrium- like tissue grows outside the uterine cavity (Eskenazi and Warner 
1997). The disease is accompanied by increased level of inflammatory cytokines 
IL-1β, IL-6 (Harada et al. 1997), IL-8, TNF-α, and monocyte chemoattractant pro-
tein- 1 (MCP-1) (Burney and Giudice 2012). Bromelain has been used in combina-
tion with N-acetyl cysteine and α-lipoic acid as successful treatment for 
endometrioses both in vitro and in a rodent model (Agostinis et al. 2015).

5.3  Digestive Disorders

The efficacy of proteinases has been studied at least in three digestive disorders: 
ulcerative colitis, inflammatory bowel disease, and Crohn’s disease. Oral bromelain 
was initially reported to reduce the severity of colon inflammation in a rodent model 
(Hale et  al. 2005) and fresh pineapple juice decreases inflammation in IL-10- 
deficient mice with colitis (Hale et  al. 2010). Colon biopsies from patients with 
ulcerative colitis and Crohn’s disease had decreased levels of inflammatory cyto-
kines if treated with bromelain (Onken et al. 2008). Meanwhile, bromelain effec-
tively decreases neutrophil migration to sites of acute inflammation and support the 
specific removal of the CD128 chemokine receptor responsible for activation of 
IL-8 (Fitzhugh et al. 2008). A recent report suggests participation of TNF-α recep-
tors in the anti-inflammatory effect of bromelain (Zhou et al. 2017). In a related 
study, papain applied peritoneally or oral bromelain was used to reduce or prevent 
intraperitoneal adhesions mainly resulting from abdominal surgery (Ochsner and 
Storck 1936; Sahbaz et al. 2015). However, Stevens (1968) could not confirm the 
protective effect of papain in an animal model.

Intestinal disorders caused by parasites have been treated with proteolytic plant 
enzymes. The anthelmintic efficacy of papain and bromelain against rodent ces-
todes Hymenolepis diminuta and Hymenolepis microstoma and Trichuris suis was 
demonstrated in vitro and in vivo (Levecke et al. 2014; Mansur et al. 2014; Luoga 
et al. 2015). In a study analyzing the efficacy of bromelain, actinidin, and papain 
against Heligmosomoides bakeri, papain was more efficacious than bromelain or 
actinidin as anthelmintic (Luoga et al. 2015).
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5.4  Wound Healing and Mitogenic Activity

Initially, the ethnopharmacological properties attributed to plant proteases from the 
genus Caricaceae were: wound healing of fungal or viral lesions and resolution of 
digestive problems (Soplin et al. 1995). In most instances, the proteases bromelain 
and papain, alone or in combination, are nowadays applied in commercial formula-
tions (NexoBrid™ (NXB, Debriding Gel Dressing-DGD, Debrase®) or as isolated 
active complex fractions in surgical wounds, experimentally induced wounds or 
burns, as healing enhancers (Singer et al. 2010; Rosenberg et al. 2012; Rosenberg 
et al. 2014; Cordts et al. 2016; Schulz et al. 2017).

Bromelain has been used to treat symptoms linked to healing: to reduce pain and 
manage healing after episiotomy (Golezar 2016), improving healing caused by fire-
arm wounds (Wu et al. 2012) and healing of acute crush tendon injury (Aiyegbusi 
et al. 2010). For a recent review covering the surgical applications of bromelain, we 
refer to Muhammad and Ahmad (2017). In addition, other proteins like a serine 
protease from Wrightia tinctoria R. Br enhances healing in experimental wound 
incisions in mice (Yariswamy et al. 2013), and latex of rubber tree Hevea brasilien-
sis increased vascular permeability, angiogenesis, and wound healing in animal 
model (Mendonça et al. 2010).

Studies by our group using P1G10, the proteinase fraction from V. cundinamar-
censis (equivalent to bromelain or papain) show that its topical application increases 
healing, in dermabrasion (Lemos et al. 2011), burns (Gomes et al. 2010), and inci-
sional (Freitas et al. 2017) skin models. It also enhances protection and healing of 
induced gastric ulcers in animal model (Mello et  al. 2008; Araujo e Silva et  al. 
2015). Interestingly, we observed that except for the dermabrasion model, in the 
other injury models  the proteolytic activity is required to achieve efficacy. 
Also, along with the debriding effect, there is a mitogenic stimulus at the wounding 
site. The mitogenic property was demonstrated earlier in two of the isoforms 
(CMS2MS2, CMS2MS3) present in P1G10 fraction (Gomes et al. 2005). We dem-
onstrated that the mitogenic effect found in P1G10 is independent of the proteolytic 
activity, as CMS2MS2 inhibited with iodoacetamide retained the mitogenic activity 
(Gomes et al. 2009). Therefore, we proposed that along with the debriding action 
induced by the proteolytic activity, a mitogenic stimulus triggered by these isoforms 
is contributing to the healing process (Freitas et al. 2017). Remarkably, almost 50 
years before, a study anticipated the mitogenic activity of bromelain, but no further 
reports confirmed or rebutted this finding (Zetter et al. 1976). Meanwhile, a mito-
genic action has been described in thrombin, the serine protease involved in the 
coagulation cascade, which acts as a mitogen in many cells, following proteolytic 
cleavage and activation of its cognate PAR receptor (Déry et al. 1998). Also, a cys-
teine protease in plerocercoid Spirometra mansonoides displays growth hormone- 
like properties (Phares and Kubik 1996). Therefore, involvement of proteases from 
different sources in proliferative effects is part of the function repertoire. The 
detailed analysis of structural features of purified proteases unrelated to the canoni-
cal proteolytic role is required to identify these novel biological actions.

C. E. Salas et al.
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5.5  Thrombolytic Activity

The thrombolytic role of plant proteases can be examined in two ways; by direct 
action of proteases within the circulatory network or by indirect action through 
cleavage of target protein substrates releasing peptides with antithrombotic or pro-
thrombotic action. The first group encompasses two activities; procoagulant and 
anticoagulant, yet, there is a third group of enzymes which can act both as proco-
agulant and as anticoagulant depending on the concentration used in the assay.

The thrombolytic effect of plant cysteine proteases has been demonstrated in 
many cases; heynein—a protease from Ervatamia heyneana latex (Uday et  al. 
2017), a serine-like protease from Solanum tuberosum (StSBTc-3) (Pepe et  al. 
2016), a glycosylated serine protease from Euphorbia cf. lactea latex (Siritapetawee 
et  al. 2015), a serine-like protease from Petasites japonicas (Kim et al. 2015), a 
metalloprotease-like enzyme from the edible and medicinal plant Aster yomena 
Kitamura-Honda (Choi et  al. 2014), and the proteolytic fraction P1G10 from V. 
cundinamarcensis (Bilheiro et al. 2013). On the other hand, a procoagulant activity 
was described in a serine protease from Curcuma aromatica Salisb (Shivalingu 
et al. 2016), a cysteine protease in Cnidoscolus urens (L.) leaves (de Menezes et al. 
2014), and in a thrombin-like activity in latex of Asclepias curassavica L. 
(Shivaprasad et al. 2009). Meanwhile, both prothrombotic and thrombolytic activity 
have been described in cysteine proteases from Bromelia balansae, Pseudananas 
macrodontes, and B. hieronymi (Errasti et  al. 2016). In sum, plant proteolytic 
enzymes can act both as procoagulant and as anticoagulant factors.

5.6  Antitumoral 

Proteases from different families and sources have been traditionally used in folk 
medicine for tumor treatment (Guimarães-Ferreira et  al. 2007; Beuth 2008). 
Cysteine endoproteinases such as bromelain and papain and serine endopeptidases 
such as trypsin or chymotrypsin, alone or in combination, are some of the proteases 
with described antitumor activity (Beuth 2008). Despite the studies about their 
activity in cancer, the underlying mechanism of action is unclear.

Among the proteases with antitumor property, bromelain is the best studied. Its 
activities include modulation of cell adhesion molecules, reduction of reactive oxy-
gen species (ROS) formation, antiproliferative effect, and induction of apoptosis. 
Amini et al. (2013) showed that bromelain reduced glycoprotein MUC1 in cells of 
gastric carcinoma. This adhesion molecule provides invasive, metastatic, and che-
moresistant properties to tumor cells. When exposed to bromelain, cells with high 
level of MUC1 (such as gastric, pancreatic, and breast cells) displayed reduced 
survival as result of a cascade mediated by ER, EGFR, and PDGFR, as these 
receptors are stabilized by the external domain of MUC1 (Pillai et al. 2013).
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In Caco-2 cells, bromelain also reduced ROS production, which is linked to gas-
trointestinal tumor development. This activity was observed in a concentration and 
proteolytically dependent manner, since inhibition of proteolytic activity by iodo-
acetamide did not decrease ROS production (Romano et al. 2014). Recently, the 
bromelain antiproliferative effect has been reported in murine melanoma as well as 
human gastric carcinoma and colon adenocarcinoma cells (Amini et  al. 2013; 
Romano et al. 2014; Miranda et al. 2017).

In B16F10, a highly metastatic murine melanoma cell line, 50 and 25 μg/mL 
bromelain dose inhibited proliferation at 99.4% and 51.7%, respectively (Miranda 
et al. 2017). Bromelain also reduced the proliferation in human gastric carcinoma 
cell lines (KATO-III and MKN45) and in two chemoresistant subpopulations of 
colon adenocarcinoma (HT29-5M21 and HT29-5F12) with half-maximal inhibi-
tory concentration at 142, 94, 34, and 29 μg/mL, respectively. In MKN45 cells, 
treatment with bromelain (100 and 200 μg/mL) up to 72 h interrupted Akt signaling 
pathway (Amini et al. 2013). Both bromelain (3 μg/mL) and iodoacetamide inacti-
vated bromelain (1 μg/mL) reduced proliferation of human colon adenocarcinoma 
cells (Caco-2) suggesting that proteolytic activity is not involved in antiproliferative 
effect in this cell line. The downregulation of p-Akt/Akt, ERK, and total expression 
of p-ERK1/2/, as well as reduction of ROS production was associated to the antip-
roliferative effect of bromelain (Romano et al. 2014).

The proapoptotic effect of bromelain is largely described in different tumor cell 
lines. In MCF-7 (human breast carcinoma) cells, bromelain induced autophagy, 
positively regulated by p38 and JNK but, negatively regulated by ERK1/2  and 
ensued by apoptosis. This effect is evidenced by chromatin condensation, DNA 
fragmentation, and nuclear cleavage (Bhui et  al. 2010). Likewise, an increase in 
caspase-9 and caspase-3 activity was observed when GI-101A (human breast carci-
noma cells) were exposed to bromelain for 24 h in a dose-dependent manner (5, 10, 
and 20  μg/mL) achieving 95% of cell death at the highest concentration. The 
increase in caspase activity was related to an increase of cleaved cytokeratin 18 
(CK18), a caspase substrate, and DNA fragmentation (Dhandayuthapani et  al. 
2012). At 1 and 10 μg/mL, bromelain, but not proteolytically inactive bromelain, 
increased caspase 3 and 7 in Caco-2 cells. In these cells, the proapoptotic effect of 
bromelain was not a consequence of its antiproliferative activity, since the protease 
at 1 μg/mL did not inhibit Caco-2 proliferation (Romano et  al. 2014). In gastric 
cancer cells (MKN45), bromelain reduced levels of Bcl-2, activated the caspase 
system, and led to an overexpression of cytochrome c which, in association to a 
reduction in phospho-Akt, contributed to cell death (Amini et al. 2013).

Bromelain also shows a chemopreventive effect in a murine model of colon and 
skin cancer (Romano et  al. 2014; Bhatnagar et  al. 2015). In mice colon cancer 
induced with azoxymethane, intraperitoneal (IP) bromelain reduced crypt foci, pol-
yps, and tumors at 1 mg/kg dose. This dose is 40-fold lower than the documented 
lethal IP dose of bromelain (Romano et  al. 2014). Nanoparticles of bromelain 
(loaded with lactic-co-glycolic acid) also have chemopreventive action in 
anthracene- induced skin carcinogenesis murine model. In this model, topical appli-
cation of formulated nanoparticles containing bromelain delayed onset of 
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 tumorigeneses about 4 weeks, plus mortality rate as well as tumor volume were 
decreased by 70% and 45%, respectively (Bhatnagar et al. 2015). Compared to the 
chemotherapeutic effect in animals treated after tumor induction, the chemopreven-
tive activity of bromelain nanoparticles was higher using a 10-fold lower dose than 
the protocol using free bromelain. Also, bromelain nanoparticles enhanced DNA 
protection from DMBA-induced damage, as assessed by alkaline unwinding assay 
and upregulating proapoptotic protein p53 and BAX and downregulating Bcl-2 anti-
apoptotic protein (Bhatnagar et al. 2015).

Müller et al. (2016) compared the antitumor effects of bromelain and papain in 
cholangiocarcinoma (CC) cell lines. Both proteases decreased proliferation, inva-
sion, and migration of tumor cells acting downstream of NFkB/AMPK pathway, 
though bromelain was more effective than papain. Apoptosis was induced after bro-
melain and papain treatment, attaining 70% and 50% of cell death for bromelain 
and papain, respectively. Bromelain, but not papain, increased E-cadherin and 
downregulated N-cadherin in CC cell lines, in a dose- and time-dependent manner, 
demonstrating an inhibitory effect during the epithelial–mesenchymal transition.

In studies using the proteolytic fraction P1G10, from V. cundinamarcensis we 
confirmed the antitumoral effect. Mice bearing B16F1, a low metastasizing mela-
noma, subcutaneous injection of 5 mg/kg of P1G10 reduced ~70% the tumor mass 
and survival rate increased ~97% compared to the control. In tumor, P1G10 reduced 
hemoglobin and vascular endothelial growth factor (VEGF), resulting in antiangio-
genic effect, and increased N-acetylglucosaminidase (NAG) which was linked to 
macrophage activation. P1G10 also induced around 60% of DNA fragmentation in 
B16F1 cells after 24 h of exposure (50 μg/mL) leading to apoptosis, as pretreatment 
with the pan-caspase inhibitor (ZVAD) abolishes this effect. A cell rounding and 
reduced ability to adhere to ECM components was initially observed after 15 min 
exposure to P1G10 (Dittz et al. 2015).

In clinical trials, there are evidences that proteases improve cancer treatment as 
a complementary systemic enzyme therapy. Stage II clinical studies demonstrate 
that systemic enzyme therapy (trypsin, chymotrypsin, and papain) decrease tumor—
and/or side effects—therapy induced in plasmocytoma, and breast and colorectal 
cancer patients (Beuth 2008). These findings motivate further studies to unravel the 
mechanism underlying the antitumoral effect of plant proteases.

5.7  Production of Bioactive Peptides

Enzymatic hydrolysis to produce bioactive peptides with nutraceutical activity is an 
area of intense research. Use of plant proteases for production of bioactive peptides 
from food proteins is being investigated. Papain, bromelain, ficin, or pumpkin ser-
ine protease have been used separately or in combination with other proteolytic 
enzymes to produce antihypertensive peptides inhibiting the angiotensin-converting 
enzyme (Tavares et al. 2011), peptides with antithrombotic activity whose efficacy 
was like aspirin (Shimizu et  al. 2009), peptides with antioxidant activity (Wang 
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et al. 2012; Gajanan et al. 2016), peptides that inhibit dipeptidyl-aminopeptidase IV 
and a-glucosidase during diabetes (Li-Chan et al. 2012; Lacroix and Li-Chan 2012; 
Nongonierma and FitzGerald 2014), peptides with hypolipidemic hypocholesterol-
emic activity (Morimatsu et  al. 1996), antimicrobial peptides (Salampessy et  al. 
2010; Arruda et al. 2012; Dąbrowska et al. 2013), and immunomodulating peptides 
(Kong et al. 2008) are described. We refer here to a recent report reviewing the 
production of bioactive peptides (Mazorra-Manzano et al. 2017).

5.8  Other Applications

Without doubt, the applications of proteolytic enzymes are not restricted to the uses 
described above. New promising applications appear in the literature and are men-
tioned now.

Liposomes or nanoparticles to deliver proteolytic enzymes or products obtained 
by hydrolysis with plant proteases have been recently developed and described 
here: fabrication of core-shell nanofibers for controlled delivery of bromelain and 
salvianolic acid B for skin regeneration used in wound therapeutics (Shoba et al. 
2017) magnetic nanoparticles containing papain as antibacterial (Atacan et  al. 
2018), papain-containing liposomes for treatment of skin fibrosis resulting from 
second degree burn (Sahu et al. 2017), a liposome for skin application of papain on 
hypertrophic scar (Chen et al. 2017), liposomes containing papain hydrolyzed bio-
active peptides with antioxidative and ACE-inhibitory properties, from bean seeds 
protein (Chay et al. 2015), a bromelain hydrolyzed antibacterial liposomal peptide 
from rice bran protein against Listeria monocytogenes (Pu and Tang 2017), antihy-
pertensive biopeptides from stone fish (Actinopyga lecanora) protein hydrolyzed 
with bromelain and stabilized by encapsulation in chitosan nanoparticles (Auwal 
et al. 2017), nanoparticles as well as self-emulsifying drug delivery systems dis-
playing papain or bromelain to cleave mucin (Menzel and Bernkop-Schnürch 2018), 
encapsulated gold nanoparticles containing bromelain, cisplatin, and doxorubicin 
for treatment of osteosarcoma (Iram et al. 2017), bromelain hybrid nanoparticles on 
lactobionic acid conjugated to chitosan in an antitumoral study (Wei et al. 2017), 
nanofibers for delivery of bromelain and salvianolic acid B during skin regeneration 
after wounding (Shoba et al. 2017), bromelain-functionalized lipid-core nanocap-
sules to investigate their effect against human breast cancer cells (Oliveira et  al. 
2017), hyaluronic acid nanoparticles to enhance targeted delivery of bromelain in 
Ehrlich’s ascites carcinoma (Bhatnagar et  al. 2016), katira gum nanoparticles to 
enhance the anti-inflammatory effect of bromelain (Bernela et al. 2016), to enhance 
the therapeutic effect of the antibiotic levofloxacin (Bagga et al. 2016), as nanopar-
ticles to protect against 7,12-dimethylbenz[a]anthracene-induced skin carcinogen-
esis (Bhatnagar et al. 2015), as oral anticancer treatment formulated as nanoparticles 
(Bhatnagar et al. 2014), to enhance diffusion of silica nanoparticles at the tumor 
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extracellular matrix (Parodi et al. 2014), and both papain and bromelain to decrease 
the toxicity of elastic niosomes (a microsphere used for drug delivery) and to 
increase the activity of metalloprotease-2 (Manosroi et al. 2012).

5.9  Protease Inhibitors

Protease inhibitors from Tamarindus indica L. seeds have been described with the 
ability to reduce levels of plasmatic leptin (Medeiros et al. 2018), two proteins from 
Delonix regia and Acacia schweinfurthii, of the Kunitz protease family, inhibited 
blood coagulation, platelet aggregation, and thrombus formation (Salu et al. 2018), 
two proteins fractions with gastroprotective and antielastase properties were 
described in Erythrina velutina seeds (Oliveira de Lima et al. 2017), protease inhib-
itors in Lavatera cashmeriana preventing human lung cancer cell proliferation in 
vitro (Rakashanda et al. 2015) and lupin seeds peptides inhibitors of metalloprotein-
ases (Carrilho et al. 2009). In addition to these plant proteins, many nonprotein plant 
metabolites have been isolated and display inhibitory properties. Their analysis is 
not included here.

5.10  Oral Applications

Following an initial account describing the application of papain to remove dental 
decayed tissue (Bussadori et al. 2005), more than 40 reports confirm the initial find-
ing. Several commercial preparations containing proteases, such as Papacarie® and 
Carie Care™: are now available and used alone or in combination, as alternatives to 
mechanical drilling for caries (Divya et al. 2015; Sahana et al. 2016).

It is claimed that Papacarie® does not adversely affect the microleakage of com-
posite restorations and provides a suitable surface for bonding like conventional 
tooth drilling (Hafez et al. 2017), it offers a less painful alternative among children 
for caries removal, Carie Care™ a papain-containing formulation demonstrates 
antimicrobial action against A. actinomycetemcomitans, a major periodontal dis-
ease causing pathogen (Kush et al. 2015), local application of actinidin or papain 
prevents or reduces dental plaque formation and reduces oral biofilm on the tongue 
in elder subjects in vivo and in vitro (Mugita et al. 2017) and three randomized 
controlled trials; one using papain, bromelain and Miswak (teeth cleaning twig 
made from the Salvadora persica) containing dentifrice to combat dental plaque 
formation and gingivitis in human subjects (Tadikonda et al. 2017); the other two 
controlled clinical trials evaluating the long-term chemo-mechanical removal of 
caries and pain using Papacarie® confirming the absence of pain during the inter-
vention and the preservation of intact dental tissue (Motta et al. 2014; Abdul Khalek 
et al. 2017).
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5.11  Final Statement

The number of therapeutic applications involving plant proteolytic enzymes 
increased significantly within the last 10 years. Reports on oral applications involv-
ing Papacarie® and Carie Care™ experienced a significant increase suggesting a 
possible future commercial use. On the other hand, reports highlighting the use of 
bromelain to treat several conditions are on the rise. Treatment of digestive disor-
ders, as anti-inflammatory and as immunomodulator, deserves attention for their 
link with cancer. A possible drawback is that most studies involve a proteolytic frac-
tion composed of isoforms with diverse properties. Assessment of the biological 
properties of each isoform is necessary to precisely adjust formulations with the 
appropriate combination of isoforms to treat specific conditions.
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6.1  Introduction

Hemostasis is defined as the maintenance of the fluidity of circulating blood while 
at the same time protecting the organism from life-threatening bleeding at sites of 
vascular injury. The cell-mediated system of proteolysis of plasma coagulation pro-
teins is essential for the survival of the organism. They propagate several enzymatic 
reactions that lead to the formation of a thrombus that stop bleedings. It can be 
divided into the processes of platelet plug formation, blood coagulation, anticoagu-
lation, and fibrinolysis (Walsh and Ahmad 2002).

Considerable efforts have been made in recent years to unravel the suppressor 
mechanisms of the coagulation process. Studies with patients showing deficiency in 
specific coagulation inhibitors and genetically modified mice have clearly shown 
that extensive negative control of coagulation is essential, to prevent uncontrolled, 
widespread clot formation. First, circulating protease inhibitors, such as antithrom-
bin, heparin cofactor II, TFPI, and C1 inhibitor, eliminate activated coagulation 
factors by attacking their active sites. The second anticoagulant modality is pro-
vided by the enzyme-based protein C/protein S pathway. Interestingly, the latter is 
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implicated in endothelial-based pathways of coagulation inactivation (Versteeg 
et al. 2013).

Anticoagulant drugs are taken by millions of patients throughout the world. 
Warfarin has been the most widely prescribed anticoagulant for decades. In recent 
years, new oral anticoagulants have been approved for use, are being positioned as 
alternatives to warfarin, and represent an enormous market opportunity for pharma-
ceutical companies. Requests for urgent reversal of anticoagulants are not uncommon 
especially in the setting of critical bleeding (Dzik 2012).

Same problem occurs with the fibrinolytic therapy. There are numerous drugs, 
all of them associated with bleeding risk. t-PA is one of the most used drugs for the 
treatment of acute myocardial infarct but it is associated with brain bleeding disor-
ders (Caldwell et al. 2006).

In this context, plant proteases and extracts are being investigated as new anti-
coagulant, antiplatelet, and fibrinolytic drugs. Proteases are enzymes able to 
hydrolyze peptide bonds. This group includes exopeptidases and endopeptidases, 
differentiated by where they act on the polypeptide chain. The differences between 
peptidases and proteases are subtle and they share the same chemical features. 
The term protease will be used throughout this chapter.

Proteases are divided into several subclasses: serine proteases (a Ser residue in 
the active site), cysteine proteases (a Cys residue in the active site), aspartic prote-
ases (Asp is needed for catalytic activity), and metalloproteases (use a metal ion in 
the mechanism). Serine and cysteine proteases form covalent complexes, aspartic 
and metalloproteases rely on acid/base reactions (Antão and Malcata 2005).

All these types of proteases are present in plants and were linked to numerous 
process such as photosynthesis (Wittenbach et  al. 1982), embryogenesis (Kim 
et al. 2009), immune response (Rodríguez-Herva et al. 2012), cell death (Lazebnik 
et al. 1995), and others. Not only proteases have very different activities in plants, 
but also have wide range of working temperature and pH levels. It makes plant 
proteases suitable for several uses in biotechnology and medicine (Feijoo-Siota 
and Villa 2010). Here we are reviewing current advances in plant proteases uses in 
antiplatelet, anticoagulant, and fibrinolytic applications, and also we mention some 
plant proteases with procoagulant activity.

6.2  Procoagulant Plant Proteases

Several procoagulant compounds have been found from a variety of species. The vast 
majority are proteases. For example, all the procoagulants from snake venoms 
characterized are proteases. It is similar to what happens in plants. Almost all pro-
coagulants discovered up to date are proteases, although in most cases their specific 
mechanisms of action have not been elucidated yet (Shivaprasad et al. 2010).

Cysteine proteases from x latex exhibited strong and specific procoagulant 
action. The latex enzyme fraction exhibited strong proteolytic activity when com-
pared to trypsin and exerted procoagulant action by reducing plasma clotting time. 
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Trypsin failed to induce any fibrin clot under similar conditions. The electrophoretic 
pattern of latex enzyme fraction-induced fibrin clot was very much similar to that of 
thrombin-induced fibrin clot and mimic thrombin-like action. The proteolytic activity 
including thrombin-like activity of Asclepias curassavica latex enzyme fraction was 
completely inhibited by iodoacetic acid (IAA) (Shivaprasad et al. 2009).

Pergularain, a cysteine protease with thrombin-like activity, was purified by ion- 
exchange chromatography from the latex of Pergularia extensa. Its homogeneity 
was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS–PAGE), native PAGE, and reverse-phase high-performance liquid chroma-
tography (RP-HPLC). The molecular mass of pergularain by matrix-assisted laser 
desorption ionization–time of flight (MALDI–TOF) was found to be 23.356 kDa. 
Pergularain is a glycoprotein containing 20% of carbohydrate. Proteolytic activity 
of the pergularain was inhibited by iodoacetic acid (IAA). Pergularain exhibited 
procoagulant activity with citrated plasma and fibrinogen similar to thrombin and 
increases the absorbance of fibrinogen solution in concentration-dependent and 
time-dependent manner. The authors established that thrombin-like activity of 
pergularain is because of the selective hydrolysis of Aα and Bβ chains of fibrino-
gen while γ-chain was observed to be insusceptible to hydrolysis (Shivaprasad 
et al. 2010).

Proteins derived from the latex (LP) of Calotropis procera are known for their 
anti-inflammatory property and they were evaluated for their efficacy in maintain-
ing coagulation homeostasis in sepsis. In mice infected with salmonella, LP reduced 
the thrombocytopenia and procoagulation, while in normal mice LP showed proco-
agulant effect. Three latex subfractions were tested, some of them exhibited proteo-
lytic effect on azocasein and exhibited procoagulant effect on human plasma in a 
concentration-dependent manner. Like trypsin and plasmin, these subfractions pro-
duced both fibrinogenolytic and fibrinolytic effects that were mediated through the 
hydrolysis of the Aα, Bβ, and γ chains of fibrinogen and α-polymer and γ-dimer of 
fibrin clot, respectively (Ramos et al. 2012).

Satish et al. characterized aqueous extracts of Moringa oleifera (Moringaceae) 
leaf and root. Caseinolytic activity of leaf extract was significantly higher than that 
of root extract. Similar observations were found in case of human plasma clot 
hydrolyzing activity, wherein leaf extract caused significantly higher plasma clot 
hydrolysis than root extract. Zymographic techniques were used to detect proteo-
lytic enzymes following electrophoretic separation in gels. Further, both the extracts 
exhibited significant procoagulant activity as reflected by a significant decrease in 
recalcification time, accompanied by fibrinogenolytic and fibrinolytic activities; 
clotting time was decreased from 180 ± 10 s to 119 ± 8 s and 143 ± 10 s by leaf and 
root extract, respectively, at a concentration of 2.5 mg/mL. Fibrinogenolytic (human 
fibrinogen) and fibrinolytic activity (human plasma clot) was determined by sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), plate method, 
and colorimetric method. Zymographic profile indicated that both the extracts 
exerted their procoagulant activity by selectively hydrolyzing Aα and Bβ subunits 
of fibrinogen to form fibrin clot, thereby exhibiting fibrinogenolytic activity. 
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However, prolonged incubation resulted in degradation of the formed fibrin clot, 
suggesting fibrinolytic like activity (Satish et al. 2012).

Other plant extracts showed also procoagulant activity, Euphorbia nivulia latex 
protease has noticeable blood clotting activity followed by Pedilanthus tithymaloi-
des and Synadenium grantii. Stem latex protease of Pedilanthus tithymaloides 
exhibits superior procoagulant activity in different mammal's blood samples. The 
plant latex protease could significantly reduce whole blood clotting time of human 
and mice blood samples. These protease fraction of lattices possesses phytocon-
stituents capable of arresting wound bleeding and accelerating whole blood coagu-
lation process. It suggests good potentiality for use of latex proteases in wound 
management. Also, the finding of this study showed that the protease enzyme of 
Pedilanthus tithymaloides has the most potent hemostatic agent. Further character-
ization of these extracts is yet to be performed (Badgujar 2014).

Pharmacological properties exhibited by latex of plants are due to various 
biologically active compounds. As is mentioned before, this chapter is focused on 
proteolytic enzymes. A study conducted by Singh et al. evaluates hemostatic poten-
tial of Tabernaemontana divaricata and Artocarpus altilis from Apocynaceae and 
Moraceae families, respectively. The latex of these plants was initially subjected to 
dialysis and crude extracts were estimated for proteolytic activity using casein as 
the substrate. Caseinolytic activity by both the plant extracts was higher than stan-
dard proteases, papain and trypsin. However the difference was significant with 
papain alone. Crude enzymes (CE) from both plants exhibited coagulant activity on 
human platelet poor plasma by recalcification time. A significant reduction in clot-
ting time was exhibited by T. divaricata compared to A. altilis. These results were 
further substantiated with fibrinogen agarose plate assay. Crude enzyme of both 
plants also hydrolyzed blood clot. Inhibition studies confirmed cysteine protease 
nature of CE. Comparative analysis revealed T. divaricata to be the best among the 
two for its hemostatic potential (Singh et al. 2015).

The procoagulant activity reviewed was due to proteolytic activity of plant 
lattices. In some cases proteases were isolated and resulted to be cysteine proteases 
(Table 6.1).

6.3  Plant Proteases with Anticoagulant Activity

Anticoagulants prolong clot formation, they are enzymes, such as serine and cyste-
ine proteases, or nonenzymatic proteins like protease inhibitors. In this context we 
briefly address the difference between the most common assays used to characterize 
the procoagulant activity: activated partial thrombin time (APTT) and prothrombin 
time (PT) tests. A basic understanding of the coagulation pathway is required to 
interpret these tests (Fig. 6.1).

The division of coagulation in two pathways is mainly artificial, it originates 
from laboratory tests in which clotting times were measured after the clotting was 
initiated by glass (intrinsic pathway) or by thromboplastin (a mix of tissue factor 
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and phospholipids). Thrombin is present from the very beginning, already when 
platelets are making the plug. Thrombin has a large array of functions, not only the 
conversion of fibrinogen to fibrin, but also the building block of a hemostatic plug. 
In addition, it is the most important platelet activator and on top of that it activates 
Factors VIII and V and their inhibitor protein C (in the presence of thrombomodu-
lin), and it activates Factor XIII, which forms covalent bonds that crosslink the 
fibrin polymers that form from activated monomers (Pallister and Watson 2011).

The activated partial thromboplastin time (APTT) assay is used as a screening 
test to evaluate the overall integrity of the intrinsic/common coagulation pathway 
and to monitor patients on heparin therapy. This test reflects the activities of most of 
the coagulation factors in the intrinsic and common procoagulant pathway, but not 
the extrinsic procoagulant pathway that includes Factor VII and tissue factor, nor 
the activity of Factor XIII (fibrin stabilizing factor). The prothrombin time is a 
 measure of the integrity of the extrinsic and final common pathways of the coagula-
tion cascade. This consists of tissue factor and Factors VII, II (prothrombin), V, X, 
and fibrinogen. The test is performed by adding calcium and thromboplastin, an 
activator of the extrinsic pathway, to the blood sample then measuring the time (in 
seconds) required for fibrin clot formation (Greaves and Preston 2001).

Many recent studies showed that many plant proteases and extracts possessed 
anticoagulant activity. The mechanisms of action are not well understood yet, but 
they confirm a potential source of new therapeutic options.

A thrombolytic protease named kitamase possessing anticoagulant property was 
purified from edible and medicinal plant Aster yomena (Kitam.) Kitamase showed 
a molecular weight of 50 kDa by SDS-PAGE and displayed a strong fibrin zymo-
gram lysis band corresponding to the similar molecular mass. The enzyme was 
active at high temperatures (50  °C). The fibrinolytic activity of kitamase was 
strongly inhibited by EDTA, EGTA, TPCK, and PMSF. The Km and Vmax values 
for substrate S-2251 were determined as 4.31 mM and 23.81 mM/mg, respectively. 
It dissolved fibrin clot directly and specifically cleaved the Aα and γ chains of fibrin 
and fibrinogen. In addition, kitamase delayed the coagulation time and increased 
activated partial thromboplastin time and prothrombin time. Kitamase exerted a 

Fig. 6.1 Simplified scheme of hemostasis and the process that are conformed by formation of the 
platelet plug (yellow), coagulation (salmon), and fibrinolysis (grey)
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significant protective effect against collagen and epinephrine induced pulmonary 
thromboembolism in mice (Choi et al. 2014).

Gangaraju et  al. characterized anticoagulant and antiplatelet activities of 
Artocarpus heterophyllus aqueous seed extracts (AqSEJ). They enhanced the clot-
ting time of citrated human. The anticoagulant activity of AqSEJ was further strength-
ened by in-vivo mouse tail bleeding assay. The intravenous injection of AqSEJ 
significantly prolonged the bleeding time in a dose-dependent manner. Interestingly, 
AqSEJ specifically prolonged the clot formation process of only APTT but not PT, 
revealing the anticoagulation triggered by the extract could be due to its interference 
in an intrinsic pathway of the blood coagulation cascade. Furthermore, AqSEJ inhib-
ited the agonists such as ADP, epinephrine, and collagen induced platelet aggregation 
(Gangaraju et al. 2015).

Table 6.2 summarizes the proteases and plant extracts with anticoagulant 
activity.

6.4  Plant Proteases with Fibrinolytic Activity

Physiologically, plasmin plays a pivotal role in fibrinolysis. Some plant proteases 
contribute to fibrinolysis by the activation of plasminogen to plasmin and others 
have fibrinolytic activity by their own (see below). During the final common path-
way, thrombin promotes clot formation through fibrinogen polymerization. When 
fibrin forms in plasma, a small amount of plasminogen is bound (Fig.  6.1). 
Plasminogen activator is strongly adsorbed to the fibrin and activates bound plas-
minogen in situ. The plasmin released is rapidly and irreversibly neutralized by 
α2-antiplasmin (Peeters 1980).

Crinum species have been extensively used by traditional medical practitioners 
to treat various illnesses all around the world. Crinumin, a stable and active in many 
adverse condition serine protease from Crinum asiaticum, shows plasmin-like fibri-
nolytic activity and inhibits platelet aggregation and P-selectin exposure, as estab-
lished by photography, phase contrast microscopy, whole blood optical 
lumi-aggregometry, and flow cytometry. Crinumin could be an efficient and inexpen-
sive therapeutic agent for the treatment and prevention of thromboembolic diseases 
(Singh et al. 2011).

A protease was isolated and purified from Artocarpus heterophyllus (jackfruit) 
latex and designated as a 48-kDa antimicrobial protease (AMP48). Enzyme activity 
of AMP48 was strongly inhibited by phenylmethanesulfonyl fluoride and soybean 
trypsin inhibitor, indicating that the enzyme was a plant serine protease. AMP48 
had fibrinogenolytic activity with maximal activity between 55 and 60 °C at pH 8. 
The enzyme efficiently hydrolyzed α followed by partially hydrolyzed β and γ sub-
units of human fibrinogen. In addition, the fibrinolytic activity was observed through 
the degradation products by SDS-PAGE and emphasized its activity by monitoring 
the alteration of secondary structure of fibrin clot after enzyme digestion using 
ATR-FTIR spectroscopy (Siritapetawee et al. 2012).

6 Potential Use of Plant Proteolytic Enzymes in Hemostasis
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A 34  kDa serine protease, designated as hirtin, with fibrinolytic activity was 
purified to homogeneity from the latex of Euphorbia hirta by the combination of 
ion-exchange and gel filtration chromatography. Hirtin exhibited esterase and ami-
dase activities along with azocaseinolytic, gelatinolytic, fibrinogenolytic, and fibri-
nolytic activities. It preferentially hydrolyzed Aα and α-chains, followed by Bβ and 
β, and γ and γ-γ chains of fibrinogen and fibrin clot, respectively. The optimum pH 
and temperature for enzyme activity were found to be pH 7.2 and 50 °C, respec-
tively. Enzymatic activity of hirtin was significantly inhibited by PMSF and AEBSF 
(Patel et al. 2012).

A direct-acting chymotrypsin-like fibrinolytic serine protease was purified from 
Petasites japonicus, a medicinal herb. The molecular mass of the discovered enzyme 
was estimated to be 40.0  kDa as determined using sodium dodecyl sulfate 
 polyacrylamide gel electrophoresis, fibrin zymography, and gel filtration chroma-
tography. The proteolytic activity of the enzyme was found to be inhibited by serine 
protease inhibitors, phenylmethylsulfonyl fluoride, and 4-(amidinophenyl) meth-
anesulfonyl fluoride. An assay of enzyme activity on fibrin plates revealed that it 
could hydrolyze the fibrin directly. The enzyme displayed a potent fibrin(ogen)
olytic activity, hydrolyzing the Aα, γ, and Bβ subunits of the human fibrinogen. The 
enzyme prolonged activated partial thromboplastin time and had little effect on pro-
thrombin time (Kim et al. 2015).

StSBTc-3 is a potato 72 kDa subtilisin like serine protease. It degrades all chains 
of human fibrinogen and produces fibrin clot lysis in a dose-dependent manner. The 
enzyme efficiently hydrolyzes Bβ subunit followed by partially hydrolyzed Aα and 
γ subunits of human fibrinogen. Assays performed to determine StSBTc-3 substrate 
specificity using oxidized insulin β-chain as substrate show seven cleavage sites: 
Asn3-Gln4; Cys7-Gly8; Glu13-Ala14; Leu15-Tyr16; Tyr16-Leu17; Arg22-Gly23, 
and Phe25-Tyr26, all of them were previously reported for other serine proteases 
with fibrinogenolytic activity. The maximum StSBTc-3 fibrinogenolytic activity 
was determined at pH 8.0 and 37 °C. Additionally, StSBTc-3 inhibits platelet aggre-
gation and does not exert cytotoxic activity on human erythrocytes in vitro at all 
concentrations assayed (Pepe et al. 2016).

A protease designated Eumiliin was isolated from the latex of Euphorbia milii 
var. hislopii by a combination of ion-exchange chromatographic steps. Eumiliin is a 
monomeric protein with an apparent molecular mass of 30 kDa. It has caseinolytic 
and fibrinogenolytic activities, but no hemorrhagic or defibrinating activities. The 
enzyme readily hydrolyzes the Aα-chain of fibrinogen and, more slowly, the 
Bβ-chain. Its fibrinogenolytic activity is inhibited by beta-mercaptoethanol and leu-
peptin. In contrast, EDTA and benzamidine did not affect the activity of Eumiliin. 
Intraplantar injection of Eumiliin caused a dose- and time-dependent hyperalgesia, 
which peaked 1–5  h after enzyme injection. Morphological analyses indicated 
that Eumiliin induced an intense myonecrosis, with visible leukocyte infiltrate and 
damaged muscle cells 24 h after injection (Fonseca et al. 2010).

A dimeric protease designated as EuP-82 was purified from Euphorbia lactea 
latex. Since, EuP-82 proteolytic activity was inhibited by the serine protease inhibi-
tor (PMSF), EuP-82 was classified as a serine protease. N-glycan deglycosylation 
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tests revealed that EuP-82 is a glycosylated protein. MALDI-TOF MS showed that 
EuP-82 was a homodimer, which was its active form. The optimal conditions for 
fibrinogenolytic activity were at pH 11 and 35 °C. EuP-82 enzyme had broad range 
of pH stability from pH4 to pH12. Moreover, the enzyme was still active in the pres-
ence of reducing agent b-mercaptoethanol. EuP-82 was a proline-rich enzyme 
(about 20.69 mol%). Increased proline production can be found in higher plants in 
response to both biotic and abiotic stresses, high proline in the molecule of EuP-82 
might stabilize its activity, structure, and folding. The enzyme was identified as a 
new serine protease. The digested products from EuP-82 cleavage of human fibrino-
gen were analyzed by SDS-PAGE and PMF.  The results confirmed that EuP-82 
could digest all subunits of human fibrinogen (Siritapetawee et al. 2015).

The proteases from turmeric species have procoagulant and fibrinogenolytic 
activity. Shivalingu et al. purified a protein with potent proteolytic activity named as 
C. aromatica protease-II (CAP-II). It is a monomeric protein, showing sharp peak 
in RP-HPLC and its relative molecular mass was found to be 12.378  kDa. The 
caseinolytic and fibrinolytic activity of CAP-II was completely inhibited by phenyl-
methylsulfonyl fluoride (PMSF). The CAP-II exhibited optimum temperature of 
45 °C and optimum pH of 7.5. The CAP-II showed hydrolysis of all three subunits 
of fibrinogen in the order A α > Bß > γ. The CAP-II exhibited strong procoagulant 
activity by reducing the human plasma clotting time. It also showed fibrinolytic 
activity by complete hydrolysis of α-polymer and γ–γ dimer present in the fibrin 
(Shivalingu et al. 2016).

Proteases with fibrin(ogen)olytic activity are summarized in Table 6.3.

6.5  Discussion

Hemostasis is a complex process that includes platelet plug formation, coagulation, 
and fibrinolysis (Fig. 6.1). There is a broad spectrum of proteases with hemostatic 
activities, some of them are purified but others are extracts with proteolytic activity. 
The vast majority of these enzymes and extract do not act at only one level. It is 
important to distinguish between the fibrinolytic and fibrinogenolytic activity. The 
fibrinolytic activity is the ability to degrade the fibrin clot. The fibrinogenolytic 
activity is the ability to degrade fibrinogen. Neither both of these activities are 
directly related with pro or anticoagulants activities. There are fibrinolytic proteases 
with procoagulant (Table 6.1) or anticoagulant activities (Table 6.2). This is relevant 
for the decision making of what proteases are better for each therapeutic goal. 
The lack of a standardized test to address the biochemical characterization of these 
proteins makes the comparison between them very difficult. It is necessary to think 
about what questions the field need to address in order to characterize these novel 
plant proteases in such way that can contribute to the biomedical investigation of 
new therapies.
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fibrinolytic and fibrinogenolytic activity, 138
fibrinolytic therapy, 130
hemostasis, 129
pharmacological applications, 110–112
procoagulant plant proteases, 130–133
proteases, 130
role of, 109
therapeutic applications, 120

Polyvinylpyrrolidone (PVP), 34
Posttranslational modifications (PTMs), 82
Procoagulants

anti-inflammatory property, 131
azocasein, 131
caseinolytic activity, 132
cysteine proteases, 130
fibrinogenolytic and fibrinolytic activity, 131
pergularain, 131
plant extracts, 132
plant latex protease, 132
proteases, 130, 133
thrombin-induced fibrin clot, 131
zymographic techniques, 131

Protease inhibitor, 112, 119
Proteases

active site, 2
aspartic, 5–7
catalyzed reaction, 2
cysteine, 3, 4
metalloproteases, 9
physiological and industrial  

significances, 70, 71
plant, 3
serine, 7, 8
structure-based evolutive relationships, 3

Protein Analysis Through Evolutionary 
Relationships (PANTHER), 108

Protein hydrolysates
antioxidant activities, 57
functional properties, 47
human consumption, 48
meat waste, 48
source of nitrogen, 48

Prothrombin time (PT), 132

R
Red blood cell fraction (RBCF), 59
Rennet

cardoon, 35
cheese production, 22, 23
Cynara sp., 29
MCA/PA ratios, 27
milk-clotting performance, 25
repulsive forces, 26

Reverse-phase high-performance liquid 
chromatography (RP-HPLC), 131

S
Saposin-like proteins (SAPLIPs), 5
Saposins, 6
Serine endopeptidases, 2
Serine proteases (SPs), 7, 8
Sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE), 131, 134, 
135

Solid-phase peptide synthesis (SPPS), 81–83
Supercritical fluids (SCF), 88
Swaposin domain, 7

T
Taste peptides

alitame, 77
aspartame, 77
hydrophobic amino acid, 77
taste properties, 77
Umami taste, 77

Therapeutic peptides, 71–74, 77, 83
Thermodynamically controlled synthesis of 

peptides (TCS), 83
Thiol proteases, 2
Three-phase partitioning system (TPP), 35
Thrombolytic activity, 115
Thrombomodulin, 134
Tris(hydroxymethyl)aminomethane buffer, 33
Trypsin, 117

U
Ulcerative colitis, 113

V
Vascular endothelial growth factor (VEGF), 117

W
Wound healing, 114

Z
Zymographic techniques, 131

Index


	Preface
	Acknowledgements
	Contents
	Chapter 1: An Overview of Plant Proteolytic Enzymes
	1.1 Introduction
	1.2 Classification of Proteases
	1.2.1 Catalyzed Reaction
	1.2.2 Nature of the Active Site
	1.2.3 Structure-Based Evolutive Relationships

	1.3 Plant Proteases
	1.3.1 Plant Cysteine Proteases
	1.3.2 Plant Aspartic Proteases
	1.3.3 Plant Serine Proteases
	1.3.4 Plant Metalloproteases

	References

	Chapter 2: Milk-Clotting Plant Proteases for Cheesemaking
	2.1 Introduction
	2.2 Rennet for Cheese Production
	2.3 Plant Origin Coagulants in Cheesemaking
	2.3.1 Milk-Clotting Properties of Plant Proteases
	2.3.2 Preference and Specificity of Plant Proteases Over Milk Proteins
	2.3.3 Plant Origin Coagulants and Cheese Properties
	2.3.4 Plant Proteases and Cheese Ripening

	2.4 Milk-Clotting Enzyme Preparations Based on Plants
	2.5 Extraction and Concentration
	2.6 Liquid and Powder Preparations
	2.7 Conclusions, Trends in Future Research
	References

	Chapter 3: Use of Plant Proteolytic Enzymes for Meat Processing
	3.1 Introduction
	3.2 Meat Tenderization
	3.2.1 Factors Influencing Meat Texture
	3.2.2 The Mechanism of Meat Tenderization

	3.3 Waste Generated from Meat Industries
	3.4 Plant Proteases: Sources and Classifications
	3.4.1 Plant Cysteine and Serine Proteases
	3.4.2 Plant Aspartic Proteases
	3.4.3 Plant Metalloproteases

	3.5 Applications of Plant Proteases in Meat Tenderization
	3.5.1 Papain
	3.5.2 Bromelain
	3.5.3 Ficin
	3.5.4 Actinidin

	3.6 Applications of Plant Proteases on the Production of Protein Hydrolysates from Meat and Meat-processing By-products
	3.6.1 Muscle Proteins
	3.6.1.1 Antioxidant Peptides
	3.6.1.2 Other Activities

	3.6.2 Blood Proteins

	3.7 Conclusion
	References

	Chapter 4: Peptide Synthesis Using Proteases as Catalyst
	4.1 Proteases: Physiological and Industrial Significances
	4.2 Peptides: Technological Impact
	4.2.1 Bioactive Peptides
	4.2.2 Therapeutic Peptides
	4.2.3 Peptide Vaccines
	4.2.4 Cosmetic Peptides
	4.2.5 Peptides as Drug Carriers and Diagnostic Reagents
	4.2.6 Taste Peptides
	4.2.7 Nutritional Peptides

	4.3 Production of Peptides: Available Technologies
	4.3.1 Extraction from Natural Sources
	4.3.2 Production by Recombinant DNA Technology
	4.3.3 Production by Chemical Synthesis
	4.3.4 Production by Enzymatic Synthesis
	4.3.5 Media Engineering
	4.3.5.1 Organic Solvents
	4.3.5.2 Ionic Liquids
	4.3.5.3 Deep Eutectic Solvents
	4.3.5.4 Supercritical Fluids
	4.3.5.5 Aqueous Solutions

	4.3.6 Catalyst Engineering
	4.3.6.1 Immobilization in an Inert Matrix
	4.3.6.1.1 Covalent Immobilization
	4.3.6.1.2 Immobilization by Adsorption
	4.3.6.1.3 Immobilization by Entrapment
	4.3.6.1.4 Immobilization in Nanosupports

	4.3.6.2 Free-support Immobilization
	4.3.6.2.1 Cross-linking of Enzymes in Solution (CLEs)
	4.3.6.2.2 Cross-linking Enzymatic Crystals (CLEC)
	4.3.6.2.3 Enzymatic Cross-linked Aggregates (CLEAs)

	4.3.6.3 Choice of the Best Immobilization Method


	4.4 Large-Scale Production of Peptides
	4.5 Concluding Remarks
	References

	Chapter 5: Plant Proteolytic Enzymes: Their Role as Natural Pharmacophores
	5.1 Introduction
	5.2 Proteolytic Enzymes Inflammation and Immunomodulation
	5.3 Digestive Disorders
	5.4 Wound Healing and Mitogenic Activity
	5.5 Thrombolytic Activity
	5.6 Antitumoral
	5.7 Production of Bioactive Peptides
	5.8 Other Applications
	5.9 Protease Inhibitors
	5.10 Oral Applications
	5.11 Final Statement
	References

	Chapter 6: Potential Use of Plant Proteolytic Enzymes in Hemostasis
	6.1 Introduction
	6.2 Procoagulant Plant Proteases
	6.3 Plant Proteases with Anticoagulant Activity
	6.4 Plant Proteases with Fibrinolytic Activity
	6.5 Discussion
	References

	Index

