
Chapter 6

Steady-State Analysis

Classical iterative methods for the solution of a linear system of equations as
in (1.3) start with an initial approximation. At each iteration, they modify
the entries of the current approximation in a particular way to obtain a new
approximation with the objective that the approximations eventually con-
verge to the true solution [168, 280]. These methods are the building blocks
of all advanced iterative methods and can be expressed through the multi-
plication of the current solution vector at a given iteration with a particular
matrix that can be obtained at the outset by splitting the coefficient matrix
of the linear system [305, 322], which is Q in our setting. Therefore, we be-
gin by splitting the smaller matrices that form the Kronecker products as in
[315] and show how classical iterative methods can be formulated in terms of
these smaller matrices. We present block versions of the methods since point
versions follow from the block versions by considering blocks of order one.

We continue the discussion with projection (or Krylov subspace) methods
for MCs based on Kronecker products in which approximate solutions sat-
isfying various constraints are extracted from small dimensional subspaces
[17, 278, 305]. Being iterative, their basic operation is also vector–Kronecker
product multiplication. However, compared to block iterative methods, they
require a larger number of supplementary vectors of length equal to the reach-
able state space size. But, more importantly they need to be used with pre-
conditioners to result in effective solvers. Fortunately, the first term of the
splitting associated with block iterative methods can be used as precondi-
tioner [60].

In [43, 49, 50, 52], aggregation–disaggregation steps are coupled with var-
ious iterative methods for MCs based on Kronecker products to accelerate
convergence. An iterative aggregation–disaggregation (IAD) method for MCs
based on Kronecker products and its adaptive version, which analyzes aggre-
gated systems for those parts where the error is estimated to be high, are
proposed in [47] and [48], respectively. The adaptive IAD method in [48] is

© Springer Nature Switzerland AG 2018

T. Dayar, Kronecker Modeling and Analysis of Multidimensional
Markovian Systems, Springer Series in Operations Research and Financial
Engineering, https://doi.org/10.1007/978-3-319-97129-2 6

179

https://doi.org/10.1007/978-3-319-97129-2_6

180 6 Steady-State Analysis

improved in [53] through a recursive definition and called multilevel (ML).
Here, we present this simple ML method and then discuss a class of ML
methods based on it which are shown to be quite effective [59, 61] in solving
a large number of problems in the literature. ML methods can easily use iter-
ative methods based on splittings at each level before aggregation and after
disaggregation.

Matrix analytic methods are geared toward MCs having state spaces that
can be partitioned into subsets called levels. For such MCs, the transition
matrix when symmetrically permuted according to increasing level number
should also have a particular nonzero structure, such as block tridiagonal
or block Hessenberg. For instance, the well-known quasi-birth-and-death pro-
cesses (QBDs) fall under the class of processes which lend themselves to
steady-state analysis with matrix analytic methods. In this context, matrix
analytic methods are those for which equations involving matrices are set up
and solutions are expressed in terms of matrices [166]. These methods were
originally proposed [251, 252] for processes with PH distributions and then
improved over the years [32, 166, 214]. They characterize the solution by ma-
trices having stochastic interpretations and sizes determined by the number
of states within levels. Here, we consider CTMCs and concentrate on the class
of level-dependent QBDs (LDQBDs). We show how the systems of stochastic
chemical kinetics modeled using Kronecker products can be expressed as infi-
nite LDQBDs, and analyzed for their steady-state with the help of Lyapunov
functions. In passing, we remark that the concept of level introduced here
has nothing to do with the level concept introduced during the discussion of
iterative solution methods.

Decompositonal iterative methods compute steady-state solutions by de-
composing a model into its submodels, analyzing the submodels individually
for their steady-state, and putting back the individual solutions together in
an iterative computational framework. As such, they may aim at obtaining
the steady-state solution exactly up to computer precision, approximatively
when a few digits of accuracy is sufficient, or within upper and lower bounds.
Methods of the first two kinds are discussed on the simple availability model
in Example 1 [15] and a class of closed queueing networks [104].

Finally, we describe how compact solution vectors in HTD format can
be used in the analysis of point iterative methods and projection methods
following the recent results in [64, 66].

6.1 Block Iterative Methods

We begin by splitting submodel transition matrices into three terms as in

Q
phq
k “ D

phq
k ` U

phq
k ` L

phq
k for k P K and h “ 1, . . . , H , (6.1)

6.1 Block Iterative Methods 181

where D
phq
k , U

phq
k , and L

phq
k are respectively the diagonal, strictly upper-

triangular, and strictly lower-triangular parts of Q
phq
k . Observe that D

phq
k ě 0,

U
phq
k ě 0, and L

phq
k ě 0 since Q

phq
k ě 0.

Now, let us denote the off-diagonal part of Q in (2.10) as

QO “ Q ´ QD so that QOpp, wq “
ÿ

kPKp,w

Qkpp, wq, (6.2)

where

Qkpp, wq “ αk

Hâ

h“1

Q
phq
k pRphq

p ,Rphq
p q for p, w “ 0, . . . , N ´ 1 .

Observe that QOpp, wq for p ą w is in the strictly block lower-triangular part
of QO, while QOpp, wq for p ă w is in the strictly block upper-triangular
part of QO. Hence, all that needs to be done is to provide block splittings of
QOpp, pq for p “ 0, . . . , N ´ 1.

Using Lemma A.8 in [315], which rests on the associativity of Kronecker
product and the distributivity of Kronecker product over matrix addition, it
is possible to express diagonal block QOpp, pq in QO at level l “ 0, . . . , H
using (6.1) as

QOpp, pq “ Qpp, pqUplq ` Qpp, pqLplq ` Qpp, pqDUplq ` Qpp, pqDLplq , (6.3)

where

Qpp, pqUplq “
ÿ

kPKp,p

lÿ

h“1

αk

˜
h´1â

h1“1

D
ph1q
k pRph1q

p ,Rph1q
p q

¸
b U

phq
k pRphq

p ,Rphq
p q

b
˜

Hâ

h1“h`1

Q
ph1q
k pRph1q

p ,Rph1q
p q

¸
, (6.4)

Qpp, pqLplq “
ÿ

kPKp,p

lÿ

h“1

αk

˜
h´1â

h1“1

D
ph1q
k pRph1q

p ,Rph1q
p q

¸
b L

phq
k pRphq

p ,Rphq
p q

b
˜

Hâ

h1“h`1

Q
ph1q
k pRph1q

p ,Rph1q
p q

¸
(6.5)

correspond, respectively, to the strictly block upper- and block lower-triangular
parts of QOpp, pq at level l, and

Qpp, pqDUplq “
ÿ

kPKp,p

Hÿ

h“l`1

αk

˜
h´1â

h1“1

D
ph1q
k pRph1q

p ,Rph1q
p q

¸
b U

phq
k pRphq

p ,Rphq
p q

b
˜

Hâ

h1“h`1

Q
ph1q
k pRph1q

p ,Rph1q
p q

¸
, (6.6)

182 6 Steady-State Analysis

Qpp, pqDLplq “
ÿ

kPKp,p

Hÿ

h“l`1

αk

˜
h´1â

h1“1

D
ph1q
k pRph1q

p ,Rph1q
p q

¸
b L

phq
k pRphq

p ,Rphq
p q

b
˜

Hâ

h1“h`1

Q
ph1q
k pRph1q

p ,Rph1q
p q

¸
. (6.7)

correspond, respectively, to the strictly upper- and strictly lower-triangular
parts of the block diagonal of QOpp, pq at level l. Observe that Qpp, pqUplq ě 0,
Qpp, pqLplq ě 0, Qpp, pqDUplq ě 0, and Qpp, pqDLplq ě 0. Furthermore, we
remark that l “ 0 implies QOpp, pq is a single block for which Qpp, pqUp0q “
Qpp, pqLp0q “ 0, whereas l “ H corresponds to a point-wise partitioning of
QOpp, pq for which Qpp, pqDUpHq “ Qpp, pqDLpHq “ 0. Hence, for iterative
methods based on block partitionings l “ 1, . . . , H ´ 1 should be used. In
passing to an example, we remark that in a non-Kronecker setting, one could
obtain block partitionings of Q as discussed in [78, 123, 253]. Here, it is the
Kronecker structure of Q that suggests suitable block partitionings.

Example 2. (ctnd.) Consider the block partitioning of our problem at level 0
for which l “ 0 and QO is viewed as a p4 ˆ 4q block matrix with four blocks,
respectively, of order 4, 2, 4, and 2 along the diagonal. Then for p “ 0, 1, 2, 3
from (6.4) and (6.5), we have

Qpp, pqUp0q “ 0 , Qpp, pqLp0q “ 0 , Qpp, pqUp0q ` Qpp, pqLp0q “ 0 ,

whereas from (6.6) and (6.7), we have

Qpp, pqDUp0q“
ÿ

kPKp,p

αk

´
U

p1q
k pRp1q

p ,Rp1q
p q b Q

p2q
k pRp2q

p ,Rp2q
p q b Q

p3q
k pRp3q

p ,Rp3q
p q

`D
p1q
k pRp1q

p ,Rp1q
p q b U

p2q
k pRp2q

p ,Rp2q
p q b Q

p3q
k pRp3q

p ,Rp3q
p q

`D
p1q
k pRp1q

p ,Rp1q
p q b D

p2q
k pRp2q

p ,Rp2q
p q b U

p3q
k pRp3q

p ,Rp3q
p q

¯
,

Qpp, pqDLp0q“
ÿ

kPKp,p

αk

´
L

p1q
k pRp1q

p ,Rp1q
p q b Q

p2q
k pRp2q

p ,Rp2q
p q b Q

p3q
k pRp3q

p ,Rp3q
p q

`D
p1q
k pRp1q

p ,Rp1q
p q b L

p2q
k pRp2q

p ,Rp2q
p q b Q

p3q
k pRp3q

p ,Rp3q
p q

`D
p1q
k pRp1q

p ,Rp1q
p q b D

p2q
k pRp2q

p ,Rp2q
p q b L

p3q
k pRp3q

p ,Rp3q
p q

¯
,

Qpp, pqDUp0q ` Qpp, pqDLp0q “ QOpp, pq .
Now consider the block partitioning of the problem at level 1 for which

l “ 1 and QOp0, 0q is viewed as a p2ˆ 2q block matrix with blocks of order 2,
QOp1, 1q is viewed as a p1ˆ 1q block matrix with a block of order 2, QOp2, 2q
is viewed as a p2 ˆ 2q block matrix with blocks of order 2, and QOp3, 3q is
viewed as a p2ˆ 2q block matrix with blocks of order 1 (see Table 2.1). Then
from (6.4) and (6.5), we have

6.1 Block Iterative Methods 183

Qpp, pqUp1q “
ÿ

kPKp,p

αkU
p1q
k pRp1q

p ,Rp1q
p q b Q

p2q
k pRp2q

p ,Rp2q
p q b Q

p3q
k pRp3q

p ,Rp3q
p q ,

Qpp, pqLp1q “
ÿ

kPKp,p

αkL
p1q
k pRp1q

p ,Rp1q
p q b Q

p2q
k pRp2q

p ,Rp2q
p q b Q

p3q
k pRp3q

p ,Rp3q
p q .

Consequently,

Qp0, 0qUp1q ` Qp0, 0qLp1q “

¨

˚̊
˝

λ1

λ1

μ1

μ1

˛

‹‹‚ , Qp1, 1qUp1q ` Qp1, 1qLp1q “ 0,

Qp2, 2qUp1q ` Qp2, 2qLp1q “

¨

˚̊
˝μ1

μ1

˛

‹‹‚ , and

Qp3, 3qUp1q ` Qp3, 3qLp1q “
ˆ

μ1

˙
,

whereas from (6.6) and (6.7), we have

Qpp, pqDUp1q“
ÿ

kPKp,p

αk

´
D

p1q
k pRp1q

p ,Rp1q
p q b U

p2q
k pRp2q

p ,Rp2q
p q b Q

p3q
k pRp3q

p ,Rp3q
p q

` D
p1q
k pRp1q

p ,Rp1q
p q b D

p2q
k pRp2q

p ,Rp2q
p q b U

p3q
k pRp3q

p ,Rp3q
p q

¯
,

Qpp, pqDLp1q“
ÿ

kPKp,p

αk

´
D

p1q
k pRp1q

p ,Rp1q
p q b L

p2q
k pRp2q

p ,Rp2q
p q b Q

p3q
k pRp3q

p ,Rp3q
p q

` D
p1q
k pRp1q

p ,Rp1q
p q b D

p2q
k pRp2q

p ,Rp2q
p q b L

p3q
k pRp3q

p ,Rp3q
p q

¯
.

Consequently,

Qp0, 0qDUp1q ` Qp0, 0qDLp1q “

¨

˚̊
˝

2λ3

μ3

2λ3

μ3

˛

‹‹‚ ,

Qp1, 1qDUp1q ` Qp1, 1qDLp1q “
ˆ

μ3

˙
,

Qp2, 2qDUp1q ` Qp2, 2qDLp1q “

¨

˚̊
˝

μ3

μ3

˛

‹‹‚ , and

Qp3, 3qDUp1q ` Qp3, 3qDLp1q “ 0 .

184 6 Steady-State Analysis

Finally, consider the block partitioning of the same example at level 2 for
which l “ 2. Then from (6.4) and (6.5), we have

Qpp, pqUp2q“
ÿ

kPKp,p

αk

´
U

p1q
k pRp1q

p ,Rp1q
p q b Q

p2q
k pRp2q

p ,Rp2q
p q b Q

p3q
k pRp3q

p ,Rp3q
p q

`D
p1q
k pRp1q

p ,Rp1q
p q b U

p2q
k pRp2q

p ,Rp2q
p q b Q

p3q
k pRp3q

p ,Rp3q
p q

¯
,

Qpp, pqLp2q“
ÿ

kPKp,p

αk

´
L

p1q
k pRp1q

p ,Rp1q
p q b Q

p2q
k pRp2q

p ,Rp2q
p q b Q

p3q
k pRp3q

p ,Rp3q
p q

`D
p1q
k pRp1q

p ,Rp1q
p q b L

p2q
k pRp2q

p ,Rp2q
p q b Q

p3q
k pRp3q

p ,Rp3q
p q

¯
,

whereas from (6.6) and (6.7), we have

Qpp, pqDUp2q“
ÿ

kPKp,p

αkD
p1q
k pRp1q

p ,Rp1q
p q b D

p2q
k pRp2q

p ,Rp2q
p q b U

p3q
k pRp3q

p ,Rp3q
p q,

Qpp, pqDLp2q“
ÿ

kPKp,p

αkD
p1q
k pRp1q

p ,Rp1q
p q b D

p2q
k pRp2q

p ,Rp2q
p q b L

p3q
k pRp3q

p ,Rp3q
p q.

Note that at this level, as in l “ 1, for this particular example QOp0, 0q is
viewed as a p2ˆ2q block matrix with blocks of order 2, QOp1, 1q is viewed as
a p1ˆ 1q block matrix with a block of order 2, QOp2, 2q is viewed as a p2ˆ 2q
block matrix with blocks of order 2, and QOp3, 3q is viewed as a p2ˆ2q block
matrix with blocks of order 1 (see Table 2.1). Hence,

Qp0, 0qUp2q ` Qp0, 0qLp2q “ Qp0, 0qUp1q ` Qp0, 0qLp1q ,
Qp1, 1qUp2q ` Qp1, 1qLp2q “ Qp1, 1qUp1q ` Qp1, 1qLp1q “ 0,

Qp2, 2qUp2q ` Qp2, 2qLp2q “ Qp2, 2qUp1q ` Qp2, 2qLp1q ,
Qp3, 3qUp2q ` Qp3, 3qLp2q “ Qp3, 3qUp1q ` Qp3, 3qLp1q ,

Qp0, 0qDUp2q ` Qp0, 0qDLp2q “ Qp0, 0qDUp1q ` Qp0, 0qDLp1q ,
Qp1, 1qDUp2q ` Qp1, 1qDLp2q “ Qp1, 1qDUp1q ` Qp1, 1qDLp1q ,
Qp2, 2qDUp2q ` Qp2, 2qDLp2q “ Qp2, 2qDUp1q ` Qp2, 2qDLp1q ,
Qp3, 3qDUp2q ` Qp3, 3qDLp2q “ Qp3, 3qDUp1q ` Qp3, 3qDLp1q “ 0.

At l “ 3, diagonal blocks QOp0, 0q, QOp1, 1q, QOp2, 2q, and QOp3, 3q of
QO are, respectively, p4ˆ 4q, p2ˆ 2q, p4ˆ 4q, and p2ˆ 2q block matrices with
blocks of order 1.

Now, let Q in (2.10) be irreducible and split at level l using (6.3) as

Q “ QO ` QD “ QUplq ` QLplq ` QDUplq ` QDLplq ` QD “ M ´ W , (6.8)

where

6.1 Block Iterative Methods 185

QUplq “

¨

˚̊
˚̋

Qp0, 0qUplq Qp0, 1q ¨ ¨ ¨ Qp0, N ´ 1q
Qp1, 1qUplq ¨ ¨ ¨ Qp1, N ´ 1q

. . .
...

QpN ´ 1, N ´ 1qUplq

˛

‹‹‹‚

is the strictly block upper-triangular part of QO at level l,

QLplq “

¨

˚̊
˚̋

Qp0, 0qLplq
...

. . .

QpN ´ 2, 0q ¨ ¨ ¨ QpN ´ 2, N ´ 2qLplq
QpN ´ 1, 0q ¨ ¨ ¨ QpN ´ 1, N ´ 2q QpN ´ 1, N ´ 1qLplq

˛

‹‹‹‚

is the strictly block lower-triangular part of QO at level l,

QDUplq “
¨

˚̋
Qp0, 0qDUplq

. . .

QpN ´ 1, N ´ 1qDUplq

˛

‹‚

is the strictly upper-triangular part of the block diagonal of QO at level l,

QDLplq “
¨

˚̋
Qp0, 0qDLplq

. . .

QpN ´ 1, N ´ 1qDLplq

˛

‹‚

is the strictly lower-triangular part of the block diagonal of QO at level l, and
M is nonsingular (i.e., M´1 exists).

Then power, block Jacobi over-relaxation (BJOR), and block successive
over-relaxation (BSOR) methods are based on different splittings of Q [322],
and each method is in the form

πpit`1q :“ πpitqT for it “ 0, . . . , maxit ´ 1

with the sequence of approximations πpit`1q to the steady-state vector π

in (1.3), where πp0q P R
1ˆ|R|
ą0 is the initial approximation such that πp0qe “ 1

and
T “ WM´1

is the iteration matrix.
Note that T does not change from iteration to iteration, and only the cur-

rent approximation πpitq is used to compute the new approximation πpit`1q.
Hence, these methods based on splittings of the coefficient matrix are also
known as stationary iterative methods. Since Q is a singular matrix and as-
sumed to be irreducible, the largest eigenvalue [158, 242] of T in magnitude
is 1, that is, the spectral radius of T , ρpT q, is equal to 1. In order to ensure
convergence, T should not have other eigenvalues with magnitude 1, that is,

186 6 Steady-State Analysis

T should be aperiodic. For a converging iteration, the magnitude of the eigen-
value of T closest to 1, that is, its subdominant eigenvalue, determines the
rate of convergence [17, 30, 229, 305, 322]. When the subdominant eigenvalue
of T is close to 1 in magnitude, slow convergence is witnessed.

Given a DTMC with one-step transition probability matrix P such that

P P R
|R|ˆ|R|
ě0 and Pe “ e [194, 305], one can conceive of block iterative

methods for Q “ P ´ I as those defined by (6.8) to compute the steady-state
vector π which satisfies

πP “ π, πe “ 1. (6.9)

In practice, an explicit inversion of M does not take place. Instead, at
iteration it, one solves the consistent linear system

πpit`1qM “ πpitqW

with coefficient matrix M for the unknown vector πpit`1q using the right-
hand side vector πpitqW . The iteration stops if the norm of the error vector
(or alternatively, the norm of the residual vector) (see (5.4)) is less than a
prespecified tolerance, stop tol, a run time limit, time limit, is reached,
or a maximum number of iterations, maxit, is performed. Otherwise, the
iteration number it is incremented and the iteration continues.

The particular splittings corresponding to power, BJOR, and (forward)
BSOR methods are

MPower “ ´ΓI ,

WPower “ ´Γ

ˆ
I ` 1

Γ
Q

˙
,

MBJOR “ 1

ω
pQD ` QDUplq ` QDLplqq ,

WBJOR “ 1 ´ ω

ω
pQD ` QDUplq ` QDLplqq ´ QUplq ´ QLplq ,

MBSOR “ 1

ω
pQD ` QDUplq ` QDLplqq ` QUplq ,

WBSOR “ 1 ´ ω

ω
pQD ` QDUplq ` QDLplqq ´ QLplq ,

where Γ P rmaxiPR |qDpi, iq|,8q is the uniformization parameter of power
method and ω P p0, 2q is the relaxation parameter of BJOR and BSOR meth-
ods. Here, forward iteration refers to computing unknowns ordered toward
the beginning of the reachable state space earlier than unknowns ordered
later in the reachable state space. Power method works at level l “ H since
it is a point method. Furthermore, BJOR and BSOR reduce to block Jacobi
(BJacobi) and block Gauss–Seidel (BGS) methods for ω “ 1, and they be-
come point JOR and point SOR methods for l “ H. We remark that [173]
shows how one can find maxiPR |qDpi, iq| in the presence of functional tran-
sitions when QD is given as a sum of Kronecker products. It is possible to
use the same approach in each QDpp, pq for p “ 0, . . . , N ´ 1 when there are
multiple reachable state space partitions.

6.1 Block Iterative Methods 187

When Q is irreducible and ω P p0, 1q, for JOR and SOR we have M´1,W P
R

|R|ˆ|R|
ě0 , ρpT q “ 1, T is irreducible and aperiodic. Hence, JOR and SOR

can be made to converge by choosing ω P p0, 1q. To avoid periodicity of
TGS for the point GS method, one can symmetrically permute Q such that
it is in block lower-Hessenberg form (i.e., Qpp, wq “ 0 if p ` 1 ă w) and
all subdiagonal blocks have at least one nonzero in each row with the last
diagonal block being p1ˆ 1q [96]. When Q is irreducible, TBJacobi and TBGS

satisfy M´1,W P R
|R|ˆ|R|
ě0 and ρpT q “ 1 is a simple eigenvalue [16, 230, 232,

233, 249].

Now, let us assume that T P R
|R|ˆ|R|
ě0 is irreducible, but periodic having

N 1 P Zą0 periodic classes, without loss of generality, as in

T “

¨

˚̊
˚̋

T p0, 1q
. . .

T pN 1 ´ 2, N 1 ´ 1q
T pN 1 ´ 1, 0q

˛

‹‹‹‚.

Note that N 1 “ 1 is the aperiodic case. BJacobi and BGS may yield a periodic
T with N 1 ą 1 when

Q “

¨

˚̊
˚̋

Qp0, 0q Qp0, 1q
. . .

. . .

QpN 1 ´ 2, N 1 ´ 2q QpN 1 ´ 2, N 1 ´ 1q
QpN 1 ´ 1, 0q QpN 1 ´ 1, N 1 ´ 1q

˛

‹‹‹‚.

An often overlooked result in this context is that when none of the diagonal
blocks of Q can be symmetrically permuted to block diagonal form, TBJacobi

and TBGS will have states of each partition in the same periodic class [87].
Researchers have looked into ways of avoiding periodicity of T and accelerat-
ing convergence. This is something to which we return in the next sections.

Since Q “ QO ` QD, power method at iteration it can be expressed as

πpit`1q :“ πpitq ` 1

Γ

`
πpitqQD ` πpitqQO

˘
. (6.10)

Observe that the second term in (6.10) poses no problem from a computa-
tional point of view since QD is diagonal, and the third term can be efficiently
implemented using the vector–Kronecker product multiplication algorithm
since QO is expressed using sums of Kronecker products (see (6.2)).

The BJOR method with a level l block partitioning at iteration it satisfies

πpit`1qpQD ` QDUplq ` QDLplqq
“ p1 ´ ωq `

πpitqQD ` πpitqQDUplq ` πpitqQDLplq
˘

(6.11)

´ω
`
πpitqQUplq ` πpitqQLplq

˘
.

188 6 Steady-State Analysis

This is a block diagonal linear system with nonsingular coefficient matrix
pQD ` QDUplq ` QDLplqq and a nonzero right-hand side which can be ef-
ficiently computed using the vector–Kronecker product multiplication al-
gorithm, since QUplq, QLplq, QDUplq, and QDLplq are expressed using sums
of Kronecker products (see (6.4), (6.5), (6.6), and (6.7)). In particular,

there are
śl

h“1 |Rphq
p | blocks of order

śH
h“l`1 |Rphq

p | along the diagonal of
QDpp, pq ` Qpp, pqDUplq ` Qpp, pqDLplq for p “ 0, . . . , N ´ 1. Hence, (6.11)

is equivalent to
řN´1

p“0

śl
h“1 |Rphq

p | independent, nonsingular linear systems
with nonzero right-hand sides where the linear systems with coefficient matri-

ces in QDpp, pq `Qpp, pqDUplq `Qpp, pqDLplq are each of order
śH

h“l`1 |Rphq
p |.

If there is space, one can generate and factorize in sparse storage the nonsin-
gular blocks of the form

Qppi1, . . . , ilq, pi1, . . . , ilqq“
ÿ

kPKp,p

αk

˜
lź

h“1

q
phq
k pih, ihq

¸ ˜
Hâ

h“l`1

Q
phq
k pRphq

p ,Rphq
p q

¸

` QDppi1, . . . , ilq, pi1, . . . , ilqq for pi1, . . . , ilq P
lą

h“1

Rphq
p and p “ 0, . . . , N´1

(6.12)
along the diagonal (see (2.4)) of pQD ` QDUplq ` QDLplqq at the outset and

solve the
řN´1

p“0 | Śl
h“1 Rphq

p | systems directly at each iteration. Otherwise,
one can use an iterative method, even a block iterative method, such as
BJOR, since the off-diagonal parts of diagonal blocks given by

ÿ

kPKp,p

αk

˜
lź

h“1

q
phq
k pih, ihq

¸ ˜
Hâ

h“l`1

Q
phq
k pRphq

p ,Rphq
p q

¸

are sums of Kronecker products.
The situation with the BSOR method is not very different from that of

BJOR. For BSOR with a level l block partitioning, at iteration it, we have

πpit`1qpQD ` QDUplq ` QDLplq ` ωQUplqq (6.13)

“ p1 ´ ωq `
πpitqQD ` πpitqQDUplq ` πpitqQDLplq

˘ ´ ωπpitqQLplq .

This is a block upper-triangular linear system with the nonsingular coeffi-
cient matrix pQD `QDUplq `QDLplq `ωQUplqq and a nonzero right-hand side
which can be efficiently computed using the vector–Kronecker product multi-
plication algorithm, since QLplq, QDUplq, and QDLplq are expressed using sums

of Kronecker products. In particular, there are
śl

h“1 |Rphq
p | blocks of order

śH
h“l`1 |Rphq

p | along the diagonal of QDpp, pq `Qpp, pqDUplq `Qpp, pqDLplq `
ωQpp, pqUplq for p “ 0, . . . , N ´ 1. In [315], a recursive algorithm is given for
a nonsingular linear system with a lower-triangular coefficient matrix in the

6.1 Block Iterative Methods 189

form of a sum of Kronecker products and a nonzero right-hand side. Such a
system arises in backward SOR. Therein, a version of the same algorithm for
backward BSOR is also discussed. Here we remark that a non-recursive block
upper-triangular solution algorithm for (6.13) is also possible [58] and a block
row-oriented version is preferable in the presence of functional transitions as
in Algorithm 6.

Observe in Algorithm 6 that initially the nonzero right-hand side subvector
bpRpq can be efficiently computed using the vector–Kronecker product mul-
tiplication algorithm, since QLplq, QUplq, QDLplq, and QDUplq are expressed
using sums of Kronecker products. Furthermore, Qppi1, . . . , ilq, pi1, . . . , ilqq
for pi1, . . . , ilq P Śl

h“1 Rphq
p and p “ 0, . . . , N ´ 1 is given in (6.12) in

terms of a sum of Kronecker products, and Qppi1, . . . , ilq, pj1, . . . , jlqq for

pj1, . . . , jlq P Śl
h“1 Rphq

p and pj1, . . . , jlq ą pi1, . . . , ilq can be expressed in
terms of a sum of Kronecker products using (6.4) as

Qppi1, . . . , ilq, pj1, . . . , jlqq

“
ÿ

kPKp,p

αk

lÿ

h“1

˜
h´1ź

h1“1

d
ph1q
k pih1 , ih1q

¸
u

phq
k pih, jhq

˜
lź

h1“h`1

q
ph1q
k pih1 , jh1q

¸

˜
Hâ

h1“l`1

Q
ph1q
k pRphq

p ,Rphq
p q

¸
.

Algorithm 6. Non-recursive block upper-triangular solution at level l in
iteration it of BSOR for MCs based on Kronecker products.

For reachable state space partition p :“ 0, . . . , N ´ 1,
bpRpq :“ p1 ´ ωq `

πpitqpRpqQDpp, pq ` πpitqpRpqQpp, pqDUplq
`πpitqpRpqQpp, pqDLplq

˘

´ω
´
πpitqpRpqQpp, pqLplq ` řN´1

w“p`1 πpitqpRwqQpw, pq
` řp´1

w“0 πpit`1qpRwqQpw, pq
¯
;

For row of blocks pi1, . . . , ilq P Śl
h“1 Rphq

p lexicographically,
Solve πpit`1qppi1, . . . , ilqqQppi1, . . . , ilq, pi1, . . . , ilqq “ bppi1, . . . , ilqq;
For column of blocks pj1, . . . , jlq P Śl

h“1 Rphq
p

such that pj1, . . . , jlq ą pi1, . . . , ilq,
bppj1, . . . , jlqq :“ bppj1, . . . , jlqq

´ωπpit`1qppi1, . . . , ilqqQppi1, . . . , ilq, pj1, . . . , jlqq.

To the contrary of BJOR, the nonsingular diagonal blocks Qppi1, . . . , ilq,
pi1, . . . , ilqq in BSOR must be solved in lexicographical order. If there is space,
one can generate and factorize in sparse storage these blocks as in BJOR at

the outset and solve the
řN´1

p“0

śl
h“1 |Rphq

p | systems directly at each iteration.

190 6 Steady-State Analysis

Otherwise, one can use an iterative method such as BSOR, since the off-
diagonal parts of diagonal blocks are also sums of Kronecker products. After
each block is solved for the unknown subvector πpit`1qppi1, . . . , ilqq, bpRpq is
updated by multiplying the computed subvector with the corresponding row
of blocks above the diagonal.

Note that when N “ 1, hence, p “ 0, the two summations on the right-
hand side of bpRpq in Algorithm 6 disappear, and since there is a single
reachable state space partition in this case, R0 can be dropped from the ar-
gument lists of πpitq and b; furthermore, Qp0, 0qLplq becomes QLplq, implying
the fourth term on the right-hand side of b reduces to ´ωπpitqQLplq as in
Algorithm 2 of [101]. Finally, we emphasize that BSOR at level l reduces to
SOR if QDLplq “ 0 (see Remark 4.1 in [315]).

The block iterative solvers, which are sometimes called two-level (or two-
stage) iterative solvers [243], discussed in this section are coded within the
NSolve package of the APNN toolbox [7, 22]. These solvers are shown to be
more effective than point solvers on many test cases [58, 315]. Furthermore, to
the contrary of block partitionings considered in [123] for sparse MCs, block
partitionings of Kronecker products are nested and recursive due to the lex-
icographical ordering of states. Therefore, there tends to be more common
structure among the diagonal blocks of the transition matrix of a MC ex-
pressed using sums of Kronecker products. Diagonal blocks having identical
off-diagonal parts and diagonals which differ by a multiple of the identity
[58] are exploited as discussed in Section 4.3. Such diagonal blocks can share
and work with the real Schur factorization of only one diagonal block. This
approach saves not only from time spent for factorization of diagonal blocks
at the outset but also from space. The work in [58] also considers a three-level
version of BSOR for MCs based on Kronecker products in which the diago-
nal blocks that are too large to be factorized are solved using BSOR. Similar
results also appear in [172] for BGS. Finally, we remark that it is possible to
alter the nonzero structure of the transition matrix underlying the Kronecker
representation of a MC by reordering factors and states of factors so as to
make it more suitable for block iterative methods. Power and JOR methods
do not benefit from such reordering since the subdominant eigenvalues of
their iteration matrices remain the same.

There are also Schwarz methods, which can be considered as a general-
ization of block iterative methods based on splittings in which the parti-
tioning of the reachable state space R into N 1 subsets has overlaps (i.e.,ŤN 1´1

p“0 Gp “ R and Gp X Gw ‰ H for p ‰ w). Their additive versions [42]
become BJOR, and their multiplicative versions become BSOR when the
overlaps are removed. Schwarz methods tend to accelerate the convergence
of the corresponding block iterative methods, the amount of acceleration de-
pending on the amount of overlap [234]. These methods are yet to be used
with Kronecker-based Markovian representations.

The next section discusses various preconditioners to be used with projec-
tion methods for MCs based on Kronecker products.

6.2 Preconditioned Projection Methods 191

6.2 Preconditioned Projection Methods

Projection methods for MCs [17, 123, 278, 305] are non-stationary iterative
methods [168, 280] using a larger number of supplementary vectors than
block iterative methods to expedite the solution process. The most commonly
used projection methods for the solution of nonsymmetric linear systems are
bi-conjugate gradient (BCG) [140], generalized minimal residual (GMRES)
[281], conjugate gradient squared (CGS) [299], quasi-minimal residual (QMR)
[149], and bi-conjugate gradient stabilized (BICGSTAB) [317]. Among these,
GMRES uses as many supplementary vectors as the Krylov subspace [168,
280] size and therefore has the highest memory requirements.

Projection methods need to be used with preconditioners [28] to result in
effective solvers. At each iteration of a preconditioned projection method, the
row residual vector, r, is used as the right-hand side of the linear system

zM “ r (6.14)

to compute the preconditioned row residual vector, z. The objective of this
preconditioning step is to improve the error in the approximate solution vec-
tor at that iteration. Note that if M were a multiple of I (as in (6.10)),
the preconditioned residual would be a multiple of the residual computed at
that iteration, implying no improvement. Hence, the preconditioner should
approximate the coefficient matrix of the original system in a better way, yet
the solution of linear systems as in (6.14) involving the preconditioner matrix,
M , should be cheap. It is shown in [123] through a large number of numerical
experiments on benchmark problems that, to result as effective solvers, pro-
jection methods for sparse MCs should be used with preconditioners, such
as those based on incomplete LU (ILU) factorizations [123, 279] or explicit
approximate inverses (AINV) [29]. However, it is still not clear how one can
devise ILU- or AINV-type preconditioners for infinitesimal generators that
are in the form of (2.10).

So far, various preconditioners are proposed for Kronecker structured rep-
resentations such as those based on truncated Neumann series [305, 307], the
cheap and separable preconditioner [50], circulant preconditioners for a spe-
cific class of problems [76], and the Kronecker sum preconditioner [312] which
has been shown to work effectively on some small problems. The Kronecker
product approximate preconditioner for MCs based on Kronecker products
developed in a sequence of papers [210, 211, 212], although encouraging,
is in the form of a prototype implementation. Numerical experiments in
[50, 52, 211, 212, 307] indicate that there is still room for research regard-
ing the development of effective preconditioners for MCs based on Kronecker
products.

In introducing another class of preconditioners, we remark that each of the
block iterative methods introduced in this work is actually a preconditioned
power method for which the preconditioning matrix is M in (6.8). Since

192 6 Steady-State Analysis

M is based on Kronecker products, a BSOR preconditioner exploiting this
property is proposed in [60]. To the contrary of the BSOR preconditioner
entertained for sparse MCs in [123], the BSOR preconditioner for MCs based
on Kronecker products has a rich structure induced by the lexicographical
ordering of states. We provide the BSOR preconditioning step (6.14) using
MBSOR at level l for MCs based on Kronecker products in Algorithm 7. You
will notice its resemblance to the BSOR iteration it at level l for MCs based
on Kronecker products in Algorithm 6.

Projection methods and their preconditioned versions discussed in this
section are coded within the NSolve package of the APNN toolbox [7, 22].
Through numerical experiments, it is shown in [60] that two-level BSOR
preconditioned projection methods in which the diagonal blocks are solved
exactly emerge as effective solvers that are competitive with block iterative
methods and ML methods.

Algorithm 7. BSOR preconditioning step at level l for MCs based on Kro-
necker products.

For reachable state space partition p :“ 0, . . . , N ´ 1,

bpRpq :“ rpRpq ´ řp´1
w“0 zpRwqQpw, pq;

For row of blocks pi1, . . . , ilq P Śl
h“1 Rphq

p lexicographically,
Solve zppi1, . . . , ilqqQppi1, . . . , ilq, pi1, . . . , ilqq “ bppi1, . . . , ilqq;
If ω ‰ 1,

zppi1, . . . , ilqq :“ ωzppi1, . . . , ilqq;
For column of blocks pj1, . . . , jlq P Śl

h“1 Rphq
p

such that pj1, . . . , jlq ą pi1, . . . , ilq,
bppj1, . . . , jlqq :“ bppj1, . . . , jlqq

´zppi1, . . . , ilqqQppi1, . . . , ilq, pj1, . . . , jlqq.

It will be interesting to compare JOR, BJOR, and SOR preconditioners
as defined in (6.11) and (6.13) with existing preconditoners for MCs based
on Kronecker products. Clearly, the class of ML methods proposed in [59] is
another candidate for preconditioning projection methods.

In the next section, we introduce a simple version of the ML method
[53, 59] for irreducible MCs based on Kronecker products which is intimately
related to the well-known IAD method [74, 200, 305], but is not restricted to
having two levels. A class of ML methods are then discussed in terms of the
simple ML method.

6.3 Multilevel Methods

One of the most effective methods for computing the steady-state vector when
the transition matrix of the MC is large and sparse is iterative aggregation–

6.3 Multilevel Methods 193

disaggregation (IAD). To be able to use IAD, a partitioning of the reachable
state space as in

R “
N 1´1ď

p“0

Gp, Gp X Gw “ H for p ‰ w, (6.15)

and a function f : R ÞÑ N 1 with N 1 “ t0, . . . , N 1 ´ 1u that maps the detailed
subset of states Gp to the coarser state tpu for p “ 0, . . . , N 1 ´ 1 needs to be
identified up to a reordering and renumbering of the states.

Originally the IAD method [289] is devised for DTMCs. For a CTMC, the
uniformized generator matrix P in (5.3) (cf. (1.2)) for steady-state analysis

may be considered. Given πp0q P R
1ˆ|R|
ą0 such that πp0qe “ 1, IAD proceeds

by performing computations at two different levels during iteration it. At
the coarse level, aggregation is performed by mapping Gp to tpu for p “
0, . . . , N 1 ´ 1, using πpitq to define the aggregated system of linear equations

zpitq Cπpitq “ zpitq, zpitqe “ 1,

where

Cπpitq “
¨

˚̋
cπpitqp0, 0q ¨ ¨ ¨ cπpitqp0, N 1 ´ 1q

...
. . .

...
cπpitqpN 1 ´ 1, 0q ¨ ¨ ¨ cπpitqpN 1 ´ 1, N 1 ´ 1q

˛

‹‚,

and then the aggregated linear system is solved for zpitq P R
1ˆN 1
ą0 . To this end,

the aggregated (or coupling [241]) matrix Cπpitq needs to be an irreducible

and aperiodic transition probability matrix satisfying Cπpitq P R
N 1ˆN 1
ě0 and

Cπpitqe “ e. At the fine level, through disaggregation and a splitting-based
iterative method, zpitq is used to compute a hopefully better solution πpit`1q.
The objective of IAD is to converge relatively fast to π with a reasonable
accuracy.

Now, let us recall a result mentioned in Section 6.1. When none of the
diagonal blocks in Q (for that matter, P) can be symmetrically permuted to
block diagonal form, TBJacobi and TBGS will have states of each partition
in the same periodic class. A consequence of this often overlooked result is
that regardless of the periodicity of the iteration matrix T , if such a block
iteration is coupled with an aggregation step, global convergence of IAD is
guaranteed [87].

Here, global convergence refers to the fact that

lim
itÑ8 }πpitq ´ π} “ 0 for arbitrary πp0q P R

1ˆ|R|
ą0 .

This is a stronger result than local convergence which requires that

lim
itÑ8 }πpitq ´ π} “ 0 if πp0q P Ωpπq,

where Ωpπq is some neighborhood of π.

194 6 Steady-State Analysis

For fast convergence, nearly completely decomposable (NCD) partitionings
are considered for DTMCs in [200, 309, 321], which are inspired by earlier
work [85, 295] related to NCDness. A block partitioning

P “ E ` diagpP p0, 0q, . . . , P pN 1 ´ 1, N 1 ´ 1qq
is said to be NCD if }E}1, that is, the degree of coupling, is relatively small
with respect to 1. NCD partitionings are frequently met in practice due to the
existence of different time scales in system models [308]. An NCD partitioning
for a user-specified decomposability parameter γ P p0, 1q can be obtained as
discussed in [97]. When the block partitioning is NCD, zpitq may need to
be computed with the help of the Grassmann–Taksar–Heyman (GTH) idea
[167, 293] which uses only positive floating-point arithmetic to achieve high
accuracy as shown in [121]. That NCD partitioning-based IAD with BGS as
the block iteration converges globally with convergence factor }E}1 (where
rate of convergence is the negated logarithm of convergence factor) [74, 237,
304] provides a very strong result for DTMCs. However, the block partitioning
suggested by the Kronecker form may not be NCD. Therefore, IAD methods
using non-NCD partitionings possibly with point iterative methods based on
splittings need to be considered [77, 176, 182, 204, 244, 246, 316, 325]. This
is something we investigate next so that it guides us in developing the ML
method for Kronecker-based Markovian representations.

The local convergence proof of an IAD method for nonnegative matrices
that uses the power method after disaggregation is provided in [221]. The par-
ticular IAD method computes the nonnegative solution vector of a problem
that is intimately related to (6.9), but has a nonnegative consistent right-

hand side vector, and for a given weight vector w P R
|R|ˆ1
ą0 , the weighted ith

row sum of the matrix at hand is less than wpiq for i “ 0, . . . , |R| ´ 1. The
local convergence result of the IAD method in [221] is extended to DTMCs
in [222] and to inexact solution of the aggregated system in [231].

The aggregation (or restriction) operator R P R
|R|ˆN 1
ě0 and the disaggrega-

tion (or prolongation) operator Sπpitq P R
N 1ˆ|R|
ě0 used in the IAD method for

DTMCs are given entrywise in [224] as

rpi, pq “
"
wpiq if fpiq “ p
0 otherwise

,

sπpitqpp, iq “
#

πpitqpiqř
jPR, fpjq“p wpjqπpitqpjq if fpiq “ p

0 otherwise

with a weight vector w P R
|R|ˆ1
ą0 as in [221] normally set to e.

The disaggregation operator Sπpitq depends on the current solution vector

πpitq P R
1ˆ|R|
ą0 and has the same nonzero structure as RT , implying

SπpitqR “ I.

6.3 Multilevel Methods 195

When πpitq P R
1ˆ|R|
ą0 , it is also possible to define the nonnegative projector

Bπpitq “ RSπpitq

which satisfies

B2
πpitq “ Bπpitq , πpitqBπpitq “ πpitq, and Bπpitqw “ w.

In terms of the aggregation and disaggregation operators, the aggregation
step of IAD for DTMCs computes

Cπpitq :“ SπpitqPR

and solves for zpitq P R
1ˆN 1
ą0 in

zpitqCπpitq “ zpitq, zpitqe “ 1,

whereas the disaggregation step followed by one power iteration is given as

πpit`1q :“ zpitqSπpitqT with T “ P.

Amore general IAD method to compute the steady-state vector of DTMCs
is provided in [225]. The method therein is shown to be globally convergent if
a sufficiently high power of P is used in the aggregation step or a sufficiently
large number of power iterations are performed on P̂ “ 0.5pI ` P q after the
disaggregation step. This IAD method is investigated further in a sequence
of papers [223, 226] together with another intimately related IAD method
devised for the singular version of the problem with the right-hand side in
[221]. Letting

Π “ eπ

denote the square matrix with the steady-state vector π in its rows, that is,
the part of P that corresponds to the eigenvalue 1, and using the spectral
decomposition of P as in

P “ Π ` Z,

so that

Π2 “ Π, ΠZ “ ZΠ “ 0, ρpZq ă 1, and ΠpP ´ Iq “ 0,

it is shown that both IAD methods are locally convergent if a particular con-
vergent matrix (dependent on the nonnegative projector Bπpitq , the iteration
matrix T of the method used after disaggregation, and Z) exists. Further-
more, fast convergence of these IAD methods in one iteration is guaranteed
when off-diagonal blocks in the strictly block lower-triangular part of T are
outer products and therefore rank–1 [223].

The version of the IAD method with one power iteration taking place after
disaggregation is shown in [228] to be locally convergent for δ P p0, 1q with

196 6 Steady-State Analysis

convergence factor p1 ´ δq when P ě δΠ, or with convergence factor
?
1 ´ δ

when P has at least one positive column with 1-norm δ. Note that the former
condition requires P ą 0; therefore, both conditions are difficult to meet in
practice. The same IAD method with P η2 used in the aggregation step, η1
power iterations (i.e., T “ P η1) after the disaggregation step, and η1 ě η2 is
globally convergent for δ P p0, 1q when

P η2 ě δΠ and η1 ě η2
lnδ ´ ln2

lnp1 ´ δq .

We remark that since the power method is globally convergent for δ P p0, 1q
with convergence factor p1 ´ δq when P ě δΠ, the IAD method with one
power iteration taking place after disaggregation is not better than the power
method and, therefore, cannot be recommended. Furthermore, IAD methods
that are based on using powers of P during the aggregation step do not
seem to be feasible in a sparse setting due to new nonzeros that would be
introduced by this operation.

A class of IAD methods which use P in the aggregation step and a poly-
nomial of P as the iteration matrix T of the method after disaggregation is
considered in [269]. Therein, it is shown that IAD is locally convergent when
T “ P and ppi, iq ą 0 for i “ 0, . . . , |R| ´ 1, or when T “ αP ` p1 ´ αqI
for α P p0, 1q, implying T pi, iq ą 0 for i “ 0, . . . , |R| ´ 1. In the latter case,
the convergence factor is minimal for α P p0.5, 1q. In [270], the aperiodicity
of an irreducible transition probability matrix associated with the stochastic
complement [241] of Bπpitqpp, pqP pp, pq for p “ 0, . . . , N 1 ´ 1 is provided as
a necessary and sufficient condition for local convergence of IAD with one
power iteration after disaggregation. The convergence factor of IAD for sub-
vector p of π turns out to be the magnitude of the subdominant eigenvalue
of this matrix. Many other interesting results are derived from experiments
in [227, 271].

In the Kronecker-based representation of MCs, the partitioning (6.15) to
be used by the IAD method can very well correspond to the block partition-
ing (2.10) at level 0 for which N 1 “ N and Gp “ Rp for p “ 0, . . . , N ´ 1
when there are multiple reachable state space partitions (i.e., N ą 1), or to
another block partitioning at a higher level number (see, for instance, those in
Table 4.1). It is even possible to use different level numbers at each reachable
state space partition Rp to control the sizes of the diagonal blocks underlying
the partitioning.

The challenge is to provide a scalable implementation of IAD. The first
results along this direction for Kronecker-based representations of MCs cou-
ple aggregation–disaggregation steps with various iterative methods to ac-
celerate convergence [43, 49, 50, 52]. An IAD method for MCs based on
Kronecker products and its adaptive version, which analyzes aggregated sys-
tems for those parts where the error is estimated to be high, are proposed in
[47] and [48], respectively. The adaptive IAD method in [48] is improved in
[53] through a recursive definition and called ML. Here, we first present this
method for generator matrices in the Kronecker form of (2.10).

6.3 Multilevel Methods 197

The ML method is conceived so that aggregation of states takes place
in a systematic manner, within each reachable state space partition inde-
pendently of other reachable state space partitions. To keep the discussion
simple, we assume that aggregation is performed in the order of submodel
indices from 1 to H and disaggregation in the reverse order. At level 0, we
have the unaggregated generator matrix Q. Therefore, at level 0 we aggre-
gate submodel 1 and then move to level 1. At level l, we aggregate submodel
l ` 1 since submodels 1 through l will have been aggregated previously. If we
forget about the diagonal correction that sums the rows of the generator ma-
trix to 0, term k P Kp,w in aggregated block pp, wq at level l will correspond
to the aggregation of the first l ` 1 submodels. In this way, it is possible to
define an aggregated matrix at each partitioning level l for l “ 1, . . . , H that
is an pN ˆ Nq block matrix. Block pp, wq of this aggregated matrix can be
expressed as a sum of Kronecker products with |Kp,w| terms as in (2.10) for
p, w “ 0, . . . , N ´1. Thus, it will be represented compactly by the multiplica-

tion of αk with a diagonal pśH
h“l`2 |Rphq

p |ˆśH
h“l`2 |Rphq

p |q matrix describing
the effect of aggregating the first l ` 1 submodels on the remaining H ´ l ´ 1
unaggregated submodels, which in turn is multiplied by the Kronecker prod-

uct
ÂH

h“l`2 Q
phq
k pRphq

p ,Rphq
w q corresponding to the unaggregated H ´ l ´ 1

submodels.
This approach requires us to first associate with the H-tuple state i P Rp

the partition number p to which it belongs. We need this simply because, af-
ter aggregation of a particular submodel, it is possible for states in different
reachable state space partitions to map to the same aggregated state; but, as
motivated in the previous paragraph, each aggregated state must remain in
its original partition. This can be done as in [61] by inserting the partition
number p as the pH ` 1qst entry at the end of the H-tuple representing state
i P Rp so that states are represented by pH ` 1q-tuples or, for instance, by
using a subscript p with i P Rp as we will do here. Second, a level number
needs to be associated with reachable state space partition Rp and the ag-
gregated states i P Rp for p “ 0, . . . , N ´1 to specify the aggregated operator
using sums of Kronecker products at each level.

So, let ipp,lq P Rp,l, where

Rp,l “
Hą

h“l`1

Rphq
p for p “ 0, . . . , N ´ 1 and l “ 0, . . . , H ´ 1

denotes the aggregated reachable state space partition p at level l in which
submodels 1 through l are aggregated, with

Rp,0 “ Rp and Rp,H “ tpu,
and the mapping

fpp,lq : Rp,l ÞÑ Rp,l`1

198 6 Steady-State Analysis

represents the aggregation of submodel l ` 1 with state space Rpl`1q
p for

p “ 0, . . . , N ´1 so that state ipp,lq P Rp,l is mapped to state ipp,l`1q P Rp,l`1.

Furthermore, let the aggregated generator matrices Q̃pit,lq with aggregated
reachable state space partitions Rp,l, p “ 0, . . . , N ´ 1, be defined at levels

l “ 1, . . . , H with Q̃pit,0q “ Q for iteration it. Observe that Q̃pit,lq is an

přN´1
p“0 |Rp,l| ˆ řN´1

p“0 |Rp,l|q matrix. Finally, let the power method be used
as smoother (or accelerator) before aggregation ηpit,lq times and after disag-
gregation νpit,lq times with the uniformization parameter

Γpit,lq P r max
ipp,lqPRp,l, p“0,...,N´1

|q̃pit,lqpipp,lq, ipp,lqq|,8q

at level l for iteration it.
Then the ML iteration matrix that facilitates the ML iteration

πpit`1,lq :“ πpit,lqTML
pit,lq for it “ 0, . . . , maxit ´ 1

at level l for iteration it is given by

TML
pit,lq“

ˆ
I ` 1

Γpit,lq
Q̃pit,lq

˙ηpit,lq
RplqTML

pit,l`1qSxpit,lq

ˆ
I ` 1

Γpit,lq
Q̃pit,lq

˙νpit,lq
.

(6.16)
Note that the definition of TML

pit,lq is recursive, and to the contrary of block

iterative methods, the ML iteration matrix in (6.16) changes from iteration
to iteration, and hence, the method is non-stationary.

At iteration it, the recursion ends and backtracking starts when Q̃pit,l`1q
is the last aggregated generator matrix and solved to give

TML
pit,l`1q “ eπpit`1,l`1q, where πpit`1,l`1qQ̃pit,l`1q “ 0 and πpit`1,l`1qe “ 1.

The level to end recursion depends on available memory since there must be
space to store and factorize the aggregated generator matrix at that level if a
direct method is employed for an accurate solution. WhenQ is irreducible and

πp0,0q P R
1ˆ|R|
ą0 , the aggregated generator matrices Q̃pit,l`1q are irreducible

[53, 61], and the ML method has been observed to converge if a sufficient
number of smoothings are performed to improve the approximate solution
vector πpit,lq at each level.

Clearly, the implementation of the ML method with the iteration matrix
in (6.16) should not require the explicit generation and storage of the ag-
gregated generator matrices Q̃pit,lq for MCs based on Kronecker products.
To the contrary, as other iterative methods before, it should rely on vector–
Kronecker product multiplications with smaller matrices and some vector
operations.

The pre-smoothed vector in (6.16) is obtained from

xpit,lq :“ πpit,lq
ˆ
I ` 1

Γpit,lq
Q̃pit,lq

˙ηpit,lq
. (6.17)

6.3 Multilevel Methods 199

The aggregation operator Rplq P R

řN´1
p“0 |Rp,l|ˆřN´1

p“0 |Rp,l`1|
ě0 and the disag-

gregation operator Sxpm,lq P R

řN´1
p“0 |Rp,l`1|ˆřN´1

p“0 |Rp,l| are given entrywise in
[61] as

rplqpipp,lq, ipp,l`1qq “
"
1 if fpp,lqpipp,lqq “ ipp,l`1q
0 otherwise

(6.18)

and

sxpit,lqpipp,l`1q, ipp,lqq “ xpit,lqpipp,lqqÿ

jpp,lqPRp,l, fpp,lqpjpp,lqq“ipp,l`1q

xpit,lqpjpp,lqq

if fpp,lqpipp,lqq “ ipp,l`1q, (6.19)

sxpit,lqpipp,l`1q, ipp,lqq “ 0 otherwise

for ipp,lq P Rp,l, ipp,l`1q P Rp,l`1, and p “ 0, . . . , N ´ 1 .

Observe that both operators at level l are pN ˆNq block diagonal due to our
choice to aggregate states only within each partition Rp,l for p “ 0, . . . , N´1.

The aggregation operator Rplq in (6.18) is defined by fpp,lq : Rp,l ÞÑ Rp,l`1

for p “ 0, . . . , N ´ 1, and therefore is constant and need not be stored. At

level l, the |Rp,l| “ śH
h“l`1 |Rphq

p | states represented by pH ´ lq-tuples are

mapped to the |Rp,l`1| “ śH
h“l`2 |Rphq

p | states represented by pH ´ l ´ 1q-
tuples by fpp,lq through aggregation of the leading dimension Rpl`1q

p in Rp,l

for p “ 0, . . . , N´1. We remark that this corresponds to an aggregation based
on a contiguous and non-interleaved block partitioning if the states in Rp,l

were ordered anti-lexicographically. On the other hand, the disaggregation
operator Sxpit,lq in (6.19) depends on the smoothed vector xpit,lq in (6.17)

and has the nonzero structure of RT
plq. Therefore, Sxpit,lq can be stored in a

vector of length
řN´1

p“0 |Rp,l| since it has one nonzero per column by definition.

These vectors amount to a total storage of
řH´1

l“0

řN´1
p“0 |Rp,l| floating-point

values if the recursion terminates at level H.
The aggregation operator Rplq and the disaggregation operator Sxpit,lq have

the same properties of the two operators used in the IAD method for DTMCs
in this section. Similarly, it is also possible to define the nonnegative projector

Bxpit,lq P R

řN´1
p“0 |Rp,l|ˆřN´1

p“0 |Rp,l|
ě0 at level l as

Bxpit,lq “ RplqSxpit,lq for l “ 0, . . . , H ´ 1.

In the ML method, the pre-smoothed vector is aggregated using

πpit,l`1q :“ xpit,lqRplq (6.20)

and passed to level l ` 1, which has the aggregated generator matrix

Q̃pit,l`1q “ Sxpit,lqQ̃pit,lqRplq . (6.21)

200 6 Steady-State Analysis

In [61], it is shown that Q̃pit,l`1q is a block matrix that can be expressed

using sums of Kronecker products as in (2.10) with
řN´1

p“0

řN´1
w“0 |Kp,w| aggre-

gation vectors named a each of length at most maxpPt0,...,N´1upśH
h“l`2 |Rphq

p |q
and the submatrices corresponding to the factors pl ` 2q through H.

More specifically, the ipp,l`1qst entry of the aggregation vector correspond-
ing to the kth term in the Kronecker representation at level pl ` 1q for block
pp, wq at iteration it with ipp,l`1q P Rp,l`1 and k P Kp,w is computed as

apit,l`1,p,w,kqpipp,l`1qq (6.22)

:“

ÿ

jpp,lqPRp,l, fpp,lqpjpp,lqq“ipp,l`1q

xpit,lqpjpp,lqq apit,l,p,w,kqpjpp,lqq row sum

πpit,l`1qpipp,l`1qq ,

where
row sum :“ eTjpp,lqpl`1qQ

pl`1q
k pRpl`1q

p ,Rpl`1q
w qe

yields the sum of entries in row jpp,lqpl` 1q P Rpl`1q
p of Q

pl`1q
k pRpl`1q

p ,Rpl`1q
w q

with ejpp,lqpl`1q being the jpp,lqpl ` 1qst column of I of order |Rpl`1q
p |. At level

0, we set
apit,0,p,w,kq :“ e.

Then block pp, wq of Q̃pit,l`1q for p, w “ 0, . . . , N ´ 1 can be expressed as

Q̃pit,l`1qpp, wq “
ř

kPKp,w
Q̃pit,l`1,kqpp, wq ` Q̃pit,l`1,Dqpp, pq if p “ wř

kPKp,w
Q̃pit,l`1,kqpp, wq otherwise

,

where

Q̃pit,l`1,kqpp, wq “ αk diagpapit,l`1,p,w,kqq
Hâ

h“l`2

Q
phq
k pRphq

p ,Rphq
w q,

Q̃pit,l`1,Dqpp, pq “ ´
N´1ÿ

w“0

ÿ

kPKp,w

αk diagpapit,l`1,p,w,kqq

Hâ

h“l`2

diagpQphq
k pRphq

p ,Rphq
w qeq. (6.23)

Observe that Q̃pit,l`1,Dqpp, pq returns a diagonal matrix with negative di-
agonal entries so that

N´1ÿ

w“0

Q̃pit,l`1qpp, wqe “ 0 for p “ 0, . . . , N ´ 1.

6.3 Multilevel Methods 201

In other words, row sums of the row of blocks corresponding to aggregated
reachable state space partition p at level l ` 1, Rp,l`1, of Q̃pit,l`1q must be

equal to the 0 vector. If the recursion ends at level H, then Q̃pit,Hq is an
pN ˆNq generator matrix and therefore is generated and stored explicitly in
row sparse format when there are multiple reachable state space partitions
(i.e., N ą 1) so that it can be solved either directly (e.g., by Gaussian elim-
ination) if N is small, else iteratively using the smoother and the current
approximation πpit,Hq as the starting vector. When N “ 1, Q̃pit,Hq “ 0, and
hence, πpit`1,Hq can be set to 1 to start backtracking from the recursion.

The aggregation vectors apit,l,p,w,kq for k P Kp,w at l “ 0 by definition
consist of all 1’s, and therefore need not be stored. Furthermore, the compu-
tation of apit,l`1,p,w,kq in (6.22) suggests that if apit,l,p,w,kq “ e and row sum
evaluates to 1 for all ipp,l`1q P Rp,l`1, then apit,l`1,p,w,kq “ e, since in this
case the summation in the numerator will evaluate to the value in the de-
nominator by the definition of the aggregation operator Rplq. This is possible,
for instance, when Q

phq
k pRphq

p ,Rphq
w q for h “ 1, . . . , l ` 1 are all diagonal ma-

trices of size p|Rphq
p | ˆ |Rphq

w |q with 1’s along their diagonal. Since submodel
matrices forming Q̃pit,l`1qpp, wq for p ‰ w can very well be rectangular, we
refrain from using I and remark that such aggregation vectors need not be
stored either. Savings are also possible for those k P Kp,p that have a sin-

gle Q
phq
k pRphq

p ,Rphq
p q ‰ I for h “ 1, . . . , H. In this case, the contribution of

apit,l`1,p,p,kq can only be to the diagonal of Q̃pit,l`1qpp, pq and its effect will be

canceled with the corresponding diagonal correction due to Q̃pit,l`1,Dqpp, pq.
This implies that setting apit,l`1,p,p,kq “ e and not storing it will not change
the result in this case as well.

The aggregation vectors for block pp, wq at a particular level have the

same length but vary in length from
śH

h“2 |Rphq
p | at level 1 to |RpHq

p | at level
pH ´ 1q, implying a storage requirement of at most

N´1ÿ

p“0

N´1ÿ

w“0

|Kp,w|
H´1ÿ

l“1

Hź

h“l`1

|Rphq
p |

floating-point values to facilitate the Kronecker representation of aggregated
generator matrices. We remark that grouping of factors will further reduce
the storage requirement for aggregation vectors.

Example 2. (ctnd.) Consider our three-dimensional problem with the param-
eter set

pα1, α2, α3, α4, α5, α6q “ pλ1, λ2, λ3, μ1, μ2, μ3q “ p1, 2, 3, 2, 4, 6q,
the initial distribution πp0,0q “ e{12, Γp0,0q “ 14, and ηp0,0q “ νp0,0q “ 1.
Since

202 6 Steady-State Analysis

0
0
0

0
0
1

1
0
0

1
0
1

2
0
0

2
0
1

0
1
0

0
1
1

1
1
0

1
1
1

0
0
2

1
0
2

Q̃p0,0q “

0 0 0
0 0 1
1 0 0
1 0 1
2 0 0
2 0 1
0 1 0
0 1 1
1 1 0
1 1 1
0 0 2
1 0 2

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

´9 6 1 2
6 ´12 1 2 3
2 ´11 6 1 2

2 6 ´14 1 2 3

2 ´2
2 6 ´8

4 ´4
4 6 ´10

4 2 ´6
4 2 6 ´12

6 ´6
6 2 ´8

˛

‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

,

xp0,0q “ πp0,0qpI ` Q̃p0,0q{14q from (6.17) yields

xp0,0q “
ˆ

17

168
,
20

168
,
16

168
,
19

168
,
19

168
,

7

168
,
20

168
,

8

168
,
16

168
,

4

168
,
13

168
,

9

168

˙
.

In this example, there are N “ 4 reachable state space partitions, and
hence, the aggregation operator in (6.18) and the disaggregation operator
in (6.19) are block diagonal matrices. At level 0, they are, respectively,
given by

0
0
0
1
0
0
0
1
1
0
1
1
0
2

Rp0q “

0 0 0
0 0 1
1 0 0
1 0 1
2 0 0
2 0 1
0 1 0
0 1 1
1 1 0
1 1 1
0 0 2
1 0 2

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˚̊
˝

1
1

1
1

1
1

1
1

1
1

1
1

˛

‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‚

6.3 Multilevel Methods 203

and

0
0
0

0
0
1

1
0
0

1
0
1

2
0
0

2
0
1

0
1
0

0
1
1

1
1
0

1
1
1

0
0
2

1
0
2

Sxp0,0q “

0 0
0 1
0 0
0 1
1 0
1 1
0 2

¨

˚̊
˚̊
˚̊
˚̊
˝

17
33

16
33

20
39

19
39

1
1

20
36

16
36

8
12

4
12

13
22

9
22

˛

‹‹‹‹‹‹‹‹‚

.

The 12 states represented by 3-tuples in R are mapped to the 7 states repre-
sented by 2-tuples in R0,1, R1,1, R2,1, and R3,1. For instance, states p0, 0, 0q
and p1, 0, 0q in R0,0 are mapped to p0, 0q in R0,1, whereas states p0, 0, 2q and
p1, 0, 2q in R3,0 are mapped to p0, 2q in R3,1. Note that in this example, ag-
gregation of submodel 1 at level 0 does not yield a reduction in the number

of states in reachable state space partition R1,1 because |Rp1q
1 | “ 1.

Using Rp0q in (6.20), we obtain the starting approximation at level 1 as

πp0,1q “
ˆ

33

168
,
39

168
,
19

168
,

7

168
,
36

168
,
12

168
,
22

168

˙
.

Through the interaction matrix

0 1 2 3

0
1
2
3

¨

˚̊
˝

t1, 3, 4, 6u t1u t2u t3u
t4u t6u
t5u t4, 6u
t6u t4u

˛

‹‹‚ .

(cf. (2.8)), mapping of submodel states to reachable state space partitions
given in Table 2.1, submodel 1’s transition submatrices

Q
p1q
1 pR0,R0q “

ˆ
1

˙
, Q

p1q
3 pR0,R0q “ I2, Q

p1q
4 pR0,R0q “

ˆ

1

˙
,

Q
p1q
6 pR0,R0q “ I2, Q

p1q
1 pR0,R1q “

ˆ

1

˙
, Q

p1q
2 pR0,R2q “ I2,

Q
p1q
3 pR0,R3q “ I2, Q

p1q
4 pR1,R0q “ `

1
˘
, Q

p1q
6 pR1,R1q “ I1,

Q
p1q
5 pR2,R0q “ I2, Q

p1q
4 pR2,R2q “

ˆ

1

˙
, Q

p1q
6 pR2,R2q “ I2,

Q
p1q
6 pR3,R0q “ I2, Q

p1q
4 pR3,R3q “

ˆ

1

˙
,

204 6 Steady-State Analysis

and the definition of aggregation vectors in (6.22), the 14 vectors used to
represent the aggregated generator matrix Q̃p0,1q at level 1 are computed as

ap0,1,0,0,1q “
ˆ
17

33
,
20

39

˙T

, ap0,1,0,0,4q “ ap0,1,0,1,1q “
ˆ
16

33
,
19

39

˙T

,

ap0,1,2,2,4q “
ˆ
16

36
,
4

12

˙T

, ap0,1,3,3,4q “
ˆ

9

22

˙
,

ap0,1,0,0,3q “ ap0,1,0,0,6q “ ap0,1,0,2,2q “ ap0,1,0,3,3q “ ap0,1,1,0,4q
“ ap0,1,1,1,6q “ ap0,1,2,0,5q “ ap0,1,2,2,6q “ p1, 1qT ,

ap0,1,3,0,6q “ p1q .

Note that nine of the aggregation vectors are equal to e and need not
be stored. All of these nine vectors except ap0,1,1,0,4q are equal to e since

ap0,0,p,w,kq “ e and submodel 1’s transition submatrices Q
p1q
k pRp1q

p ,Rp1q
w q for

the respective transitions k are all diagonal matrices with 1’s along their di-
agonal. For ap0,1,1,0,4q, the situation is slightly different. The submatrix used

in the computation of ap0,1,1,0,4q is given by Q
p1q
4 pRp1q

1 ,Rp1q
0 q “ p0, 1q. Because

ap0,0,1,0,4q “ e and submatrix Q
p1q
4 pRp1q

1 ,Rp1q
0 q is a row vector having a single

nonzero with value 1, ap0,1,1,0,4q also turns out to be equal to e.
Using the aggregation vectors, the ten nonzero blocks of the aggregated

generator matrix Q̃p0,1q are expressed as

Q̃p0,1qp0, 0q “
ÿ

kPt1,3,4,6u
αk diagpap0,1,0,0,kqq

3â

h“2

Q
phq
k pRphq

0 ,Rphq
0 q

´
3ÿ

w“0

ÿ

kPK0,w

αk diagpap0,1,0,w,kqq
3â

h“2

diagpQphq
k pRphq

0 ,Rphq
w qeq ,

Q̃p0,1qp0, 1q “ α1 diagpap0,1,0,1,1qq
3â

h“2

Q
phq
1 pRphq

0 ,Rphq
1 q ,

Q̃p0,1qp0, 2q “ α2 diagpap0,1,0,2,2qq
3â

h“2

Q
phq
2 pRphq

0 ,Rphq
2 q ,

Q̃p0,1qp0, 3q “ α3 diagpap0,1,0,3,3qq
3â

h“2

Q
phq
3 pRphq

0 ,Rphq
3 q ,

Q̃p0,1qp1, 0q “ α4 diagpap0,1,1,0,4qq
3â

h“2

Q
phq
4 pRphq

1 ,Rphq
0 q ,

Q̃p0,1qp1, 1q “ α6 diagpap0,1,1,1,6qq
3â

h“2

Q
phq
6 pRphq

1 ,Rphq
1 q ,

´
1ÿ

w“0

ÿ

kPK1,w

αk diagpap0,1,1,w,kqq
3â

h“2

diagpQphq
k pRphq

1 ,Rphq
w qeq ,

6.3 Multilevel Methods 205

Q̃p0,1qp2, 0q “ α5 diagpap0,1,2,0,5qq
3â

h“2

Q
phq
5 pRphq

2 ,Rphq
0 q ,

Q̃p0,1qp2, 2q “
ÿ

kPt4,6u
αk diagpap0,1,2,2,kqq

3â

h“2

Q
phq
k pRphq

2 ,Rphq
2 q

´
ÿ

wPt0,2u

ÿ

kPK2,w

αk diagpap0,1,2,w,kqq
3â

h“2

diagpQphq
k pRphq

2 ,Rphq
w qeq ,

Q̃p0,1qp3, 0q “ α6 diagpap0,1,3,0,6qq
3â

h“2

Q
phq
6 pRphq

3 ,Rphq
0 q ,

Q̃p0,1qp3, 3q “ α4 diagpap0,1,3,3,4qq
3â

h“2

Q
phq
4 pRphq

3 ,Rphq
3 q

´
ÿ

wPt0,3u

ÿ

kPK3,w

αk diagpap0,1,3,w,kqq
3â

h“2

diagpQphq
k pRphq

3 ,Rphq
w qeq .

Regarding the five aggregation vectors that are computed to be different
than e, ap0,1,0,0,1q, ap0,1,0,0,4q, ap0,1,2,2,4q, and ap0,1,3,3,4q are used in aggre-

gating diagonal blocks of Q̃p0,0q, and their contributions are to the diago-
nals of diagonal blocks. The contributions of ap0,1,0,0,1q and ap0,1,0,0,4q in the

first summation of Q̃0,1p0, 0q are to the diagonal since Q
p2q
1 pRp2q

0 ,Rp2q
0 q “

Q
p2q
4 pRp2q

0 ,Rp2q
0 q “ I1 and Q

p3q
1 pRp3q

0 ,Rp3q
0 q “ Q

p3q
4 pRp3q

0 ,Rp3q
0 q “ I2. But

their effects are canceled by the second negated summation of Q̃0,1p0, 0q
simply because diagpQp2q

1 pRp2q
0 ,Rp2q

0 qeq “ diagpQp2q
4 pRp2q

0 ,Rp2q
0 qeq “ I1 and

diagpQp3q
1 pRp3q

0 ,Rp3q
0 qeq “ diagpQp3q

4 pRp3q
0 ,Rp3q

0 qeq “ I2. This is also the
case for ap0,1,2,2,4q and ap0,1,3,3,4q. Hence, we may very well set these four

aggregation vectors to e as suggested before. Therefore, from Q̃p0,1q “
Pxp0,0qQ̃p0,0qRp0q, we implicitly have

0
0

0
1

0
0

0
1

1
0

1
1

0
2

Q̃p0,1q “

0 0
0 1
0 0
0 1
1 0
1 1
0 2

¨

˚̊
˚̊
˚̊
˚̊
˝

´ 280
33 6 16

33 2
6 ´ 448

39
19
39 2 3

2 ´2
2 6 ´8

4 ´4
4 6 ´10

6 ´6

˛

‹‹‹‹‹‹‹‹‚

.

In the next step, similar operations will be carried out at level 1 unless the
aggregated generator matrix is solved exactly, upon which backtracking from
recursion starts for iteration it.

206 6 Steady-State Analysis

The ML method we discussed follows a V–cycle [205, 206] at each iteration.
That is, starting from the finest level, at each step, it smooths the current
approximation and moves to a coarser level by aggregation until it reaches a
level at which the aggregated generator matrix can be solved exactly. Once
the exact solution is obtained at the coarsest level, the method starts moving
in the opposite direction. At each step on the way to the finest level, the
method disaggregates the current approximation passed by the coarser level
and smooths it. Furthermore, the submodel state spaces, Sphq, are aggregated
according to the fixed order h “ 1, . . . , H. However, to the contrary of the
ML method for sparse MCs in [187], the definition of the aggregated state
spaces follows naturally from the Kronecker representation in (2.10), and
the aggregated generator matrices can also be represented using Kronecker
products as shown in (6.23).

In [59], a sophisticated class of ML methods are given. The methods therein
are capable of using JOR and SOR as smoothers, performing the W– and
F–cycles inspired by multigrid [39, 276, 324] and aggregating submodel state
spaces according to circular and adaptive orders. Here, a cycle may be viewed
as the operations corresponding to an outer ML iteration denoted by it
in (6.16), and W–cycle refers to invoking at each level two recursive calls
to the next coarser level, whereas an F–cycle at a level can be viewed as a re-
cursive call to a W–cycle followed by a recursive call to a V–cycle at the next
coarser level. In the circular order of aggregation, at the beginning of each
ML cycle at the finest level, a circular shift of submodel indices is performed
to achieve fairness in aggregating submodel state spaces. Hence, every H cy-
cles each submodel will have received the opportunity to get aggregated first.
On the other hand, in the adaptive order of aggregation, submodel indices
are sorted according to the residual norms restricted to the corresponding
submodel state space at the end of the ML cycle, and aggregation of sub-
models in this sorted order in the next cycle is performed. This ensures that
submodels which have smaller residual norms are aggregated earlier at finer
levels, since small residual norms are expected to be indicative of good nu-
merical results in those submodels. ML methods discussed in this section are
coded within the NSolve package of the APNN toolbox [7, 22]. Numerical
experiments in [59, 61] prove these methods to be very strong, robust, and
scalable solvers for MCs based on Kronecker products.

The convergence properties of the class of ML methods in [59] are discussed
in [61]. An almost positive row or column in the iteration matrices of the
smoother with ηpit,lq pre- and νpit,lq post-smoothings at each level l across
iterations it is shown to facilitate convergence locally, and SOR is to be
recommended among the three smoothers considered. An error propagation
formula for ML methods in which the number of pre-smoothings is set to
zero is introduced in [272]. Therein are examples indicating that a two-level
method may be converging while the corresponding three-level method is
not and vice versa. One important question to be answered is whether local
convergence implies global convergence (even at two levels). Furthermore, it

6.4 Decompositional Methods 207

is not clear how the behavior of the ML method would be affected if block
iterative methods, such as BJOR and BSOR, are used as smoothers rather
than power, JOR, and SOR. Note that BJOR and BSOR should normally not
use a direct method for the solution of the diagonal blocks when employed
as smoothers within the ML method, since the aggregated generator matrix
at each level changes from iteration to iteration and the LU factorization of
the diagonal blocks may be too time consuming to offset.

In [173] an efficient algorithm that finds an NCD [97, 123, 241, 305] par-
titioning of S in the presence of functional transitions for a user-specified
decomposability parameter is given. Since IAD using NCD partitionings has
certain rate of convergence guarantees [304] (cf. [225, 228, 271]), the algo-
rithm may be useful in the context of ML methods to determine the loosely
coupled dimensions to be aggregated first in a given iteration.

Distributed implementation of block iterative methods coupled with some
number of aggregation–disaggregation steps for HMMs is investigated on a
cluster of workstations in [67]. Therein, especially asynchronous computa-
tion models that observe coarse-grained parallelism (meaning large chunks
of computations interleaved with small amount of communications) based
on the nested block partitioning of Q are recommended at lower level num-
bers. Along a different line, the performance of a prototype parallel version of
PEPS on a cluster architecture is modeled using SANs and analyzed theoret-
ically with a sequential version of PEPS [14]. The study in [288] concentrates
on the parallelization of the vector operations of initialization, reciprocation,
aggregation, disaggregation, scaling, addition, multiplication and the matrix
operations of vector–matrix multiplication and aggregation in symbolic ML
[287] with V–cycle, fixed order of submodel aggregation, and JOR smoother
under the multiterminal binary decision diagram (MTBDD) data structure
using multiple threads. Clearly, there are issues that need to be addressed fur-
ther such as the level at which parallelism is employed, resolving data collision
due to multiple threads accessing data that contributes to the same interme-
diate result and load balancing across threads. The results however are quite
encouraging and indicate that there is ample opportunity for parallelism in
the implementation of iterative methods based on the block partitioning of
Q and the sum of Kronecker products forming each nonzero block.

6.4 Decompositional Methods

Among the iterative methods discussed in the previous sections, ML methods
perform better on a larger number of problems in the literature [59, 61].
However, there are certain classes of problems for which other methods could
be preferred. One such method we present in this section is iterative and
based on decomposing a model into its submodels, analyzing the submodels
individually for their steady-state, and putting back the individual solutions

208 6 Steady-State Analysis

together using disaggregation in a correction step [15]. This method is able
to compute the steady-state solution exactly up to computer precision to a
model having weakly interacting submodels in a relatively small number of
iterations and with modest memory requirements.

Consider the separation of QO in (6.2) into two terms as in

QO “ Qlocal ` Qsynch ,

where Qlocal and Qsynch correspond to those parts of QO associated with
local and synchronizing transitions, respectively. Without loss of generality,
we adopt the enumeration of the K terms as in Example 1 and let the first
H represent local transitions, the hth being associated with submodel h for
h “ 1, . . . , H. The remaining pK ´ Hq terms correspond to synchronizing
transitions. Hence,

Qlocal “
Hÿ

k“1

Hâ

h“1

Q
phq
k and Qsynch “

Kÿ

k“H`1

Hâ

h“1

Q
phq
k .

Recall that this enumeration necessarily implies Q
phq
k “ Inh

for k ‰ h and
h “ 1, . . . , H due to the definition of local transitions. In Example 1, we
have S “ R; hence, there is a single reachable state space partition for which
|R| “ śH

h“1 |Sphq| “ śH
h“1 |Rphq| “ śH

h“1 nh “ n. Furthermore, we observe
that the irreducibility of Q does not imply the irreducibility of the local

transition rate matrices Q
phq
h P R

nhˆnhě0 for h “ 1, . . . , H.
Now, let Q “ U ´L be the forward GS splitting of the generator matrix in

Kronecker form, where U “ QD `QUpHq corresponds to its upper-triangular
part and L “ QLpHq contains its negated strictly lower-triangular part as

in (6.8). Furthermore, let the aggregation operator Rphq P R
nˆnhě0 (cf. (6.18))

for h “ 1, . . . , H be associated with the mapping fphq : R ÞÑ Rphq and have
its pi, ihqth entry be given by

rphqpi, ihq “
#
1 if fphqpiq “ ih

0 otherwise
for i P R and ih P Rphq .

Observe that the mapping fphq represents the aggregation of all dimensions
except the hth. In Kronecker form,

Rphq “
˜

h´1â

l“1

Inl
e

¸
â

Inh

â
˜

Hâ

l“h`1

Inl
e

¸
for h “ 1, . . . , H . (6.24)

On the other hand, let the disaggregation operator S
phq
πpitq P R

nhˆn
ě0 (cf. (6.19))

for h “ 1, . . . , H be associated with the mapping fphq and have its pih, iqth
entry be given by

6.4 Decompositional Methods 209

sphq
πpitqpih, iq “

$
&

%

πpitqpiq
π

phq
pitqpihq if fphqpiq “ ih

0 otherwise
for i P R and ih P Rphq ,

where
π

phq
pitq :“ πpitqRphq.

Then the decompositional iterative method can be stated [15] for a user-
specified stop tol as in Algorithm 8.

Algorithm 8. Decompositonal iterative method with GS correction step.

it :“ 0; ypitq :“ 0; πpitq :“ eT {n;
Repeat

For h :“ 1 to H,

If Q
phq
h is irreducible, solve π

phq
pit`1qQ

phq
h “ vpkqpπpitqq,

where vpkqpπpitqq :“ ´πpitqQsynchR
phq,

Else solve π
phq
pit`1qQ

phqpπpitqq “ 0,

where Qphqpπpitqq :“ Q
phq
h ` S

phq
πpitqQsynchR

phq,
subject to π

phq
pit`1qe “ 1;

Solve ypit`1qU “ ypitqL `
´ÂH

h“1 π
phq
pit`1q

¯
Q;

πpit`1q :“
´ÂH

h“1 π
phq
pit`1q

¯
´ ypit`1q subject to πpit`1qe “ 1;

it :“ it ` 1;
Until }πpitqQ}8 ă stop tol.

The algorithm starts by initializing the correction vector, ypitq, to zero and
the solution vector, πpitq, to the uniform distribution, respectively. Then each
system of local equations is solved subject to a normalization condition. If

Q
phq
h is irreducible, then a unique new local solution vector π

phq
pit`1q P R

1ˆnhą0

can be computed. This is so, because each system to be solved has a zero
sum right-hand side vector, vphqpπpitqq, (i.e., vphqpπpitqqe “ 0) due to the par-

ticular way in which synchronizing transition rate matrices, Q
phq
k P R

nhˆnhě0

for k “ H ` 1, . . . ,K, are specified. On the other hand, when Q
phq
h is re-

ducible, we consider a homogeneous system in which the aggregated matrix
Qphqpπpitqq is used. The aggregated matrix is irreducible if Q is irreducible

and πpitq P R
1ˆn
ą0 . Hence, the existence of a unique π

phq
pit`1q P R

1ˆnhą0 is also

guaranteed in this case. Since Q
phq
k for k “ H ` 1, . . . ,K are in general very

sparse, the enumeration process associated with the nonzeros in Qsynch to
form vpkqpπpitqq, or Qphqpπpitqq, can be handled systematically. Note that
there are differences from a computational point of view between the two

alternative solution steps. In the former case, Q
phq
h is constant and already

available in row sparse format; the right-hand side vector is dependent on

210 6 Steady-State Analysis

πpitq. In the latter case, Qphqpπpitqq needs to be reconstructed at each itera-
tion, and it is the coefficient matrix that is dependent on πpitq. Hence, the
two approaches for obtaining π

phq
pit`1q are not equivalent except at steady-state

(i.e., πpitq “ πpit`1q “ π).
In the next step, the new correction vector, ypit`1q, is obtained by solving

an upper-triangular system in Kronecker form. Since Q is assumed to be
irreducible, ypit`1q is computed through a GS relaxation on Q with a zero
sum but nonzero right-hand side.

The last step subtracts ypit`1q from the Kronecker product of π
phq
pit`1q for

h “ 1, . . . , H to form the new solution vector, πpit`1q, and then the iteration
number is incremented. These steps are repeated until the residual infinity
norm becomes smaller than stop tol.

Algorithm 8 is coded within the NSolve package of the APNN toolbox
[7, 22] and numerical experiments are carried out [15] on larger and slightly
different versions of Example 1. The decompositional method is compared
with point iterative methods based on splittings, BGS, projection methods,
BGS preconditioned projection methods, and ML with one pre- and one post-
smoothing using GS, W–cycle, and circular order of aggregating submodels in
each cycle. The solvers are compared in terms of number of iterations to con-
verge to stop tol :“ 10´8 on the infinity norm of the residual, elapsed CPU
time, and amount of allocated main memory. The diagonal blocks associated
with the BGS solver and the BGS preconditioner for projection methods at
a suitable level number are LU factorized [58] using colamd ordering [94, 95].
The number of nonzeros generated during the LU factorization of the diag-
onal blocks is accounted for in the memory consumed by solvers utilizing
BGS.

It is observed that convergence becomes very fast for the decompositional
solver when the synchronizing transition rates are small since the submodels
in that case are nearly independent and the Kronecker product of the local
solutions yields a very good approximation to the solution early in the it-
eration. The solver corresponding to Algorithm 8 requires modest memory
and a small number of iterations for relatively fast convergence to the solu-
tion. The second best solver is ML, which trails in all three areas. It improves
only slightly as the synchronizing transition rates become smaller. Projection
methods do not benefit from BGS preconditioning. The performances of the
point iterative methods based on splittings and BGS are not affected by a
change in the rates of synchronizing transitions. BGS performs very poorly
due to the large time per iteration. BGS and BGS preconditioned projection
methods require considerably more memory than the other methods, because
of the need to store factors of diagonal blocks and, in the latter case, also a
larger number of vectors. Memorywise, the decompositional solver requires
about 1.5 times that of point iterative methods based on splittings, but less
than ML, and therefore can be considered to be memory efficient.

6.4 Decompositional Methods 211

The scalability of the decompositional solver is investigated for increasing
number of submodels when the synchronizing transition rates are relatively
small compared to those in local transition rate matrices. It is observed that
the number of iterations to converge decreases as the number of submodels
increases. This is due to the decrease in the throughputs of synchronizing
transitions for a larger number of submodels (because the steady-state prob-
abilities of states in which synchronizing transitions can take place become
smaller), leading to more independent submodels. This is different from the
behavior of the ML method, which takes more or less the same number of
iterations to converge as the number of submodels increases. The scalabil-
ity of the decompositional solver is also investigated for increasing number
of synchronizing transitions when the number of submodels is kept constant
and the rates of synchronizing transitions are relatively small compared to
those in the local transition rate matrices. As expected, the results indicate
that the time the decompositional solver takes to converge is affected linearly
by an increase in the number of synchronizing transitions.

There are also iterative methods based on polyhedra theory [86] and disag-
gregation, such as the one in [55] for SANs which provides satisfactory lower
and upper bounds on the solution only if the interactions among submodels
are weak or the rates of synchronizing transitions are more or less independent
of the states of submodels. Another class of iterative methods are those that
are approximative. For instance, the method in [56] for superposed GSPNs
operates at a fine level only on states having higher steady-state probabili-
ties; the remaining states are aggregated and treated at a coarse level. The
steady-state vector can be stored with significant savings due to its compact
representation as a Kronecker product of the aggregated submodel steady-
state vectors. An approximative class of iterative methods are also presented
in [101]. The approximative methods therein are geared toward closed net-
works of first-come first-served (FCFS) queues with PH service distributions
and arbitrary buffer sizes when a few digits of accuracy in the computed solu-
tion are sufficient for analysis purposes [104]. The analysis of closed queueing
networks with PH service distributions and arbitrary buffer sizes is challeng-
ing due to the fact that the corresponding state spaces grow exponentially
with numbers of customers, queues, and phases in the service distribution of
each queue. Now, we discuss these approximative iterative methods for closed
queueing networks, which are also based on decomposition. More information
regarding this work is available in [104, 239].

Queueing networks have been used in the literature to model and analyze a
variety of systems involving customers, packets, or jobs waiting to get service
[180, 181, 306]. The work in [104] concentrates on a relatively large class of
problems which do not possess analytical solutions [153]. Closedness implies
that the number of customers circulating in the queueing network remains
constant; there are no arrivals to the network from the outside, there are no
departures to the outside, and the number of customers inside the network
neither increases nor decreases as a result of the queueing discipline and the

212 6 Steady-State Analysis

service process. A customer departs from a queue after getting service and
joins a(nother) queue, possibly the same one it departed from. If a queueing
network is not closed, it is said to be open. Regarding service distributions,
hypoexponential, hyperexponential, Coxian, and Erlang are all phase-type and
have rational Laplace transforms. Furthermore, the exponential distribution
is a special case of the Erlang distribution, which is yet a special case of
the hypoexponential distribution. Interestingly, it is proved that Erlang is
the most suitable phase approximation for the deterministic distribution [6].
This is taken advantage of when modeling a robotic tape library [119] and
a multiprocessor system [285] using SANs. For practical purposes, a five- to
ten-phase Erlang is considered sufficient for approximating a deterministic
distribution. The use of PH distributions in SANs is further investigated in
[284].

In [104], two approximative decompositional iterative methods are ad-
dressed, the first of which appears in [235] and the second one in [329]. Each
decomposes the network into subnetworks. They differ in the way the decom-
positions are obtained, and the solutions to subnetworks are put together.
These approximative methods require the modeling of subnetworks whose
product state space sizes are larger than their reachable state space sizes and
are shown that they can be implemented using Kronecker products.

In its setup phase, the first method in [235] partitions the closed queue-
ing network into subnetworks. In doing this, it classifies each queue as finite
or infinite buffer. Finite buffer queues are those that have positive blocking
probabilities for a given total number of customers circulating in the closed
queueing network. The method places queues feeding a finite buffer queue in
the same subnetwork with the finite buffer queue. In this way, the method
aims at achieving a decomposition in which transition probabilities between
subnetworks are independent of the states of the subnetworks. Thus, each
subnetwork can be considered as a service station with state-dependent ex-
ponential service rate for which the parameters of the equivalent server are
obtained by analyzing the subnetwork in isolation as an open queueing net-
work assuming it has state-dependent arrivals with exponentially distributed
interarrival times. This is done by modeling the open queueing network as
a closed queueing network, which consists of the subnetwork’s queues and a
slack queue as in Figure 6.1. The slack queue is assumed to have a finite buffer
of size equal to the total number of customers circulating in the closed queue-
ing network formed of multiple subnetworks. The state-dependent through-
puts are the state-dependent service rates since the slack queue is practically
infinite. Each closed queueing network obtained as such can be modeled by
defining the queues in the subnetwork and the slack queue, and then con-
structing a block matrix which represents the interactions among the queues
in the closed queueing network using Kronecker products as in [43]. The
approximate results are obtained via fixed-point iteration, which requires
throughputs of subnetworks to be computed. For this purpose, an analyt-
ical method, the convolution algorithm (CA) [160] is used. We remark that

6.4 Decompositional Methods 213

Slack queue

Subnetwork

Open queueing network

Fig. 6.1 Open queueing network corresponding to subnetwork modeled as closed queueing
network with slack queue having finite buffer.

a fixed-point iteration can be perceived, for instance, as an iteration of the
form in block iterative methods, for which the solution, π, that is sought is
the fixed-point of the system of equations, π “ πT , to be solved [305].

On the other hand, the second decompositional method in [329] partitions
the closed queueing network into individual queues and approximates the
service distribution of each queue by a state-dependent exponential service
distribution. Thus, the method transforms the closed queueing network into
another closed queueing network with state-dependent exponential service
distributions. The decomposition in this approach is maximal, meaning each
queue is placed in a separate subnetwork. Again a slack queue with an infinite
buffer and a state-dependent exponential service distribution is used to model
state-dependent arrivals with exponentially distributed interarrival times to
each queue having a PH service distribution. After this approximation, the
method sets the state-dependent service rate of the slack queue to some
initial value and then employs a fixed-point iteration on the decomposed
network to compute the throughputs of all queues. Again, initialization of the
state-dependent service rates of slack queues, which are their state-dependent
throughputs, can be done using CA.

Implementations of the two approximative decompositional methods (re-
spectively, named M and YB hereafter) are available in Matlab [240] together
with implementations of CA, a mean value analysis algorithm for blocking
closed queueing networks (MVABLO) [5], point iterative methods based on
splittings, and ML with fixed and circular orders of aggregation in V–, F–,
and W–cycles. Experiments are performed to compare the methods for their
accuracy and efficiency on various models for analyzing utilizations and mean
lengths of queues. ML and GS methods assume stop tol :“ 10´15 on the
residual 1-norm. ML uses GS as the smoother and performs one pre- and
one post-smoothing at each level. A stop tol :“ 10´4 is used on the ap-
proximate error of utilizations and mean lengths of queues for M and YB.
The subnetworks resulting from decomposition in these methods are solved
with ML. When computing the steady-state vector of the coarsest genera-
tor matrix in M and the steady-state vector of the state-dependent closed

214 6 Steady-State Analysis

queueing network with exponential service distributions in YB, if the order
of the matrix is less than 500, GE, otherwise BICGSTAB with ILU precon-
ditioning and a drop tolerance of 10´5 [123] is employed. Results obtained
by approximative methods are compared with results of ML and , relative
errors are provided using the 1-norm. Note that relative errors are indicative
of numbers of correct decimal digits in the results. That is, an approximate
result with a relative error in the order of 10´z implies z correct decimal
digits.

CA and MVABLO produce acceptable results for problems with balanced
service requirements and relatively small number of blocking queues. On the
other hand, M and YB provide relatively more accurate results for all prob-
lems and yield results with at least 2 digits of accuracy for unbalanced service
requirements. Also, unlike the results obtained with CA and MVABLO, an
increase in the number of blocking queues has almost no effect in the results
obtained with M and YB. Therefore, M and YB emerge as more accurate
methods than CA and MVABLO for problems with unbalanced service re-
quirements and relatively large number of blocking queues. When accuracies
of M and YB are compared, especially in problems with unbalanced service
requirements and relatively large number of blocking queues, M can produce
at least half a digit more accurate results for utilizations than YB.

When efficiencies of M and YB are compared, it can be seen that the
number of flops performed by YB to compute arrival rates of queues mostly
depends on the number of flops performed for obtaining the solution of the
state-dependent closed queueing network with exponential service distribu-
tions generated at each fixed-point iteration. Therefore, for problems which
require a relatively small number of flops for the solution of this queueing
network, YB executes less flops than M. Also, for problems which result in
subnetworks with a relatively large number of queues for M, YB may end up
performing less flops than M through its fixed-point approximation process.
Consequently, efficiencies of M and YB depend heavily on the particular prob-
lem. Nevertheless, the average number of fixed-point iterations performed by
M and YB over all problems considered are 4 and 5, respectively. When ML
and GS are compared, we see that ML achieves convergence within 100 it-
erations in all problems. On the other hand, GS does not converge within
a reasonable number of iterations or time in some of the problems. Clearly,
the number of iterations determines the number of flops executed by the
methods, and ML performs less flops than GS in almost all problems. Even
though GS takes less space in memory than ML, in most of the problems, ML
requires less memory than the sparse representation of the generator matrix
underlying the closed queueing network with PH service distributions and ar-
bitrary buffer sizes, thereby being capable of solving variants of the problems
with relatively large numbers of customers. Since M and YB are based on
decomposition, the space requirements of M and YB are smaller than those
of ML and GS for relatively large problems. Indeed, it is verified that the
usage of ML in M and YB introduces another dimension of scalability to the
space requirements of the two methods.

6.5 Matrix Analytic Methods 215

6.5 Matrix Analytic Methods

Continuous-time LDQBDs are CTMCs having generator matrices that can
be symmetrically permuted to the block tridiagonal form

Q “

¨

˚̊
˚̊
˚̊
˝

Qp0, 0q Qp0, 1q
Qp1, 0q Qp1, 1q Qp1, 2q

. . .
. . .

. . .

Qpl, l ´ 1q Qpl, lq Qpl, l ` 1q
. . .

. . .
. . .

˛

‹‹‹‹‹‹‚
. (6.25)

As opposed to QBDs [4, 33, 213], the dependency on level number, l, in (6.25)
manifests itself with two indices rather than one in each nonzero block for
l P Zě0. It is the first index which corresponds to level number. Nevertheless,
nonzero blocks can be dependent on level number in two different ways. It
is either the nonzero values or the dimensions of a nonzero block (or both)
that depend on level number. In this respect, LDQBDs generalize QBDs with
nonhomogeneous transition rates and rectangular subdiagonal/superdiagonal
nonzero blocks.

Assuming that the subset of states corresponding to level l is denoted by
Rl, the nonzero blocks at level l are given by

Qpl, l ´ 1q P R
|Rl|ˆ|Rl´1|
ě0 , Qpl, lq P R

|Rl|ˆ|Rl|, Qpl, l ` 1q P R
|Rl|ˆ|Rl`1|
ě0 .

Negative entries appear only along the diagonal of Qpl, lq. There are a count-
ably infinite number of levels, and transitions from level l are either to states
within itself or to states in the adjacent levels pl´1q and pl`1q. Level 0 is an
exception since it constitutes the boundary level and has two nonzero blocks.
Clearly, the ordering of states within a level is fixed only up to a permutation.

Assuming that steady-state exists, thereof the probability distribution vec-
tor may be written in a piecemeal manner as

π “ pπpR0q,πpR1q, . . .q,
and its subvector at level pl ` 1q can be obtained from

πpRl`1q “ πpRlqRl (6.26)

once the matrix of conditional expected sojourn times at level l

Rl “ Qpl, l ` 1qp´Qpl ` 1, l ` 1q ´ Rl`1Qpl ` 2, l ` 1qq´1 (6.27)

is available for l P Zě0 [40]. In (6.27), Rlpi, jq records the expected sojourn
time in state j P Rl`1 per unit sojourn in state i P Rl before returning to
level l, given that the process started in state i [274]. We remark that

Rl P R
|Rl|ˆ|Rl`1|
ě0 for l P Zě0

216 6 Steady-State Analysis

is nonnegative and rectangular. The recurrence in (6.26) requires πpR0q to
be determined first. This can be done from the set of boundary equations

πpR0qQp0, 0q ` πpR1qQp1, 0q “ 0

corresponding to the first column of blocks using πpR1q “ πpR0qR0 from
s(6.27). Hence, we conclude that πpR0q should be the positive left eigenvector
of Qp0, 0q ` R0Qp1, 0q corresponding to the eigenvalue 0 [242]. Eventually, π
should be normalized so that πe “ 1.

In Section 4.4, we have discussed how the countable infiniteness of the
reachable state space

R “
8ď

p“0

Rp

in (4.5) can be handled during steady-state analysis when Q is ergodic using a
suitable Lyapunov function [157, 314]. We have also discussed how states are
assigned to reachable state space partitions, Rp, and had given a Kronecker
representation for each nonzero block. In fact, reachable state space partitions
as defined in the metabolite synthesis and call center models correspond to
levels in LDQBDs, that is, Rp “ Rl for p “ l and p, l P Zě0, since Q in each
of these models for the given partitioning of the reachable state space R is
block tridiagonal. It should be apparent from the values i P R can take that
the state space R is countably infinite and an LDQBD model requires us to
truncate it judiciously for analysis purposes.

In many cases, an LDQBD can be shown to be ergodic by checking easy
to verify conditions on the birth-and-death process (i.e., a one-dimensional
CTMC in which transitions from state i to states i ´ 1, a death, and i ` 1,
a birth, is possible) defined over its levels [268]. However, for computational
purposes, we prefer to consider Lyapunov functions, since it is through this
approach that lower and higher level numbers (called Low and High, respec-
tively) can be computed [103, 107, 120] between which a specified percentage
of the steady-state probability mass lies when the LDQBD is ergodic. Once
we have proved the finiteness of C and determined χ (or equivalently, γ for
chosen ε) with the help of a suitable Lyapunov function using (4.3), we can
compute the pair of level numbers, pLow,Highq, of the LDQBD such that
the states within levels Low to High include all the states in C. In other
words, we set

Low “ mintl P Zě0 | RlXC ‰ Hu and High “ maxtl P Zě0 | RlXC ‰ Hu ,

and the finite set

R̃ :“
Highď

l“Low

Rl

6.5 Matrix Analytic Methods 217

contains at least 1´ ε of the steady-state probability. We remark that C Ď R̃
due to the way in which Low and High are defined, but using a truncated set
of states which is a superset of C can only improve the quality of the bound.

Given the pair of level numbers, pLow,Highq, the next step is to com-
pute the Rl matrices of conditional expected sojourn times for levels between
Low and High using (6.27). This requires us to determine a starting value
for RHigh. Since RHigh can only be approximated when the state space is
truncated, all computed Rl matrices of conditional expected sojourn times
between levels Low and High will also be approximate. Clearly, the quality
of the approximations improves as the steady-state probability mass concen-
trated on states within levels Low and High approaches 1 (i.e., as ε ap-
proaches 0) [120]. Through a set of experiments in [120], it is shown that
setting RHigh to 0 as suggested in [20] results in almost no loss of accuracy
when ε is close to 0 and is the best overall choice.

The matrix analytic computation of the steady-state vector of an LDQBD
is given in Algorithm 9 [19]. Its implementation within the NSolve package
of the APNN toolbox [7, 22] is available at [109]. At step l, the linear system
of equations

R̃lAl “ Bl for l “ High ´ 1 down to Low

is solved for the rectangular matrix R̃l P R
|Rl|ˆ|Rl`1|
ě0 of unknowns, where

Al :“ Qpl ` 1, l ` 1q ` R̃l`1Qpl ` 2, l ` 1q
is the square coefficient matrix such that Al P R

|Rl`1|ˆ|Rl`1| and

Bl :“ ´Qpl, l ` 1q

is the rectangular matrix of multiple right-hand sides with Bl P R
|Rl|ˆ|Rl`1|.

Clearly, R̃l`1 must be available at step l for the computation to proceed. That
Rl and πpRlq become approximations once RHigh is set to 0 is indicated by
using them with tilde.

The computation of R̃l requires the nonzero blocks Qpl ` 1, l ` 1q and
Qpl ` 2, l ` 1q to be obtained, Al to be formed by multiplying R̃l`1 with
Qpl ` 2, l ` 1q, and then Qpl ` 1, l ` 1q to be added to the product. At the
end, Al should be LU factorized and the linear system solved for each right-
hand side vector in Bl. The matrix–matrix multiplication R̃l`1Qpl ` 2, l ` 1q
can be handled in two different ways [18, 19]. First, Qpl ` 2, l ` 1q may be
generated from the Kronecker representation as a sparse matrix and the pre-
multiplication with R̃l`1 performed. Second, the efficient vector–Kronecker
product algorithm [101, 136] can be used to multiply rows of R̃l`1 with the

218 6 Steady-State Analysis

Algorithm 9. Matrix analytic computation of steady-state vector of an
LDQBD.

Choose a suitable Lyapunov function gpiq proving ergodicity:
Choose gpiq such that the set of states for which gpiq ă 8 is finite;
Obtain the drift dpiq and show that it is bounded;
χ :“ supiPR dpiq (using HOM4PS2-2.0 if necessary);
γ :“ χp1{ε ´ 1q for given ε;
Show that C “ ti P R | dpiq ą ´γu is finite;

Compute pLow,Highq;
R̃High :“ 0;
For l :“ High ´ 1, . . . , Low,

Al :“ Qpl ` 1, l ` 1q ` R̃l`1Qpl ` 2, l ` 1q;
Bl :“ ´Qpl, l ` 1q;
Solve R̃lAl “ Bl for R̃l;

ALow´1 :“ QpLow,Lowq ` R̃LowQpLow ` 1, Lowq;
Solve π̃pRLowqALow´1 “ 0 for π̃pRLowq subject to }π̃pRLowq}1 “ 1;
For l :“ Low, . . . ,High ´ 1,

π̃pRl`1q :“ π̃pRlqR̃l;
Normalize π̃ subject to }pπ̃pRLowq, . . . , π̃pRl`1q}1 “ 1;

Compute }πQ}1 by letting

π :“ p0pR0qT , . . . ,0pRLow´1qT , π̃pR̃q,0pRHigh`1qT , . . .q.

block Qpl ` 2, l ` 1q, while the latter operand is being held in Kronecker
form. 1-norm of the residual vector of the countably infinite model [112] is
computed from

}πQ}1 :“
ÿ

iPR̃

ˇ̌
ˇr̃piq ´

ÿ

jRR̃
π̃piqQpi, jq

ˇ̌
ˇ `

ÿ

iPR̃

ÿ

jRR̃
π̃piqQpi, jq with r̃ :“ π̃Q̃,

where Q̃ is the truncated generator matrix. Once pLow,Highq is determined,
computation of the steady-state vector of the LDQBD can also be performed
using (block) GE [125, 158, 302, 305]. This approach can be equally efficient
[166], but unfortunately does not provide the R̃l matrices.

Having observed in [107, 120] that the R̃l matrices are not necessarily
sparse, their full and sparse storages are considered. When the R̃l matrices are
stored as full matrices, a temporary matrix in full storage needs to be set aside
to form Al and then compute its LU factorization in place. Since R̃High :“ 0,
the sparsity pattern of AHigh´1 is equal to that of QpHigh,Highq. Therefore,
R̃High´1 should be obtained using sparse LU factorization even though it is

later stored as a full matrix. Now, although all R̃l matrices are to be kept until
the computation ends to obtain the steady-state solution and the sizes of Al

and R̃l matrices are known a priori at each level, it is still possible to consider
two different memory allocation–deallocation schemes for these two matrices
[18, 19]. First, memory to store R̃l matrices from l “ High´ 1 down to Low

6.5 Matrix Analytic Methods 219

and the largest temporary matrix, AHigh´1, can be allocated at the outset
and deallocated at the end of the computation. In this scheme, successive
Al matrices overwrite the same temporary matrix. Second, the memory of
Al can be deallocated at the end of step l, and the memory for R̃l´1 and
Al´1 can be allocated at the beginning of step pl ´ 1q. When the temporary
matrix is allocated once at the outset, peak total memory usage turns out
to be higher especially when HI , number of countably infinite dimensions,
is larger. On the other hand, when R̃l matrices are chosen to be stored as
sparse matrices, the temporary matrix to form Al is also stored as a sparse
matrix, and memory is allocated at each level. This requires the allocation of
extra memory for the sparse LU factorization of Al due to expected fill-in.

In the proposed Kronecker representations in Chapter 4 for countably
infinite block tridiagonal generator matrices, values of nonzero entries of sub-
model transition matrices should be available during computation. In many
cases, submodel transition matrices have subdiagonal, diagonal, or superdiag-
onal nonzero structures. If two submodel transition matrices associated with
the same transition class have the same nonzero structure, then it is possible
for the two matrices to share the storage space of one vector. In this case,
a vector of size equal to the larger state space size of the two submodels is

to be allocated. Besides, when X
phq
0,1 “ 1 and X

phq
p,l “ 1 for h “ 1, . . . , H,

l “ 1, . . . , HI , and p ą Low as in some models, memory required to store
nonzero entries of submodel transition submatrices at a given level is smaller
than that of a higher level. In this case, it is feasible to allocate memory to
store submatrices once at the highest level and keep reusing it when mov-
ing from level High down to Low. Otherwise, memory necessary to store
nonzero entries may be allocated and deallocated on the fly. Furthermore,
vector–Kronecker product multiplication requires an additional vector over
vector–matrix multiplication. When R̃l and Al are stored as sparse matri-
ces, an additional temporary vector is used to compute, compact, and store
the rows of Al. Besides, adding a row of a matrix in Kronecker form to a
vector requires two additional vectors. We also choose to store the values of
transition rate functions for states in levels l´ 1,l,l` 1 when processing level
l in order not to evaluate the functions multiple times. We allocate all the
additional vectors at the outset and deallocate them at the end. Amount of
memory allocated for all these vectors is negligible compared to the total
amount of memory allocated for R̃l matrices.

If memory is at a premium, one can also consider the more recent approach
in [21] that reduces memory requirements further by enabling the computa-
tion of steady-state expectations without having to obtain the steady-state
distribution. The approach is inspired by a Horner-like computational scheme
in which only the conditional expected sojourn time matrix R̃l at level l needs
to be allocated in step l; otherwise, there are no time savings obtained. In
other words, not all R̃l matrices for l “ High ´ 1 down to Low need to
be stored simultaneously. In order to evaluate M different functions of the
steady-state distribution, pM`1q temporary vectors of size equal to the num-

220 6 Steady-State Analysis

ber of states within levels Low through High must be used. For instance, if
the first moment (i.e., mean) is to be computed for M “ HI countably infi-
nite variables, pHI ` 1q temporary vectors of length |R̃| must be allocated.
The additional vector is used for normalization purposes. At step l, R̃l is
computed as usual and stored. This implies that R̃l`1 from the previous step
need not be in memory any longer, and hence, R̃l is the only conditional
expected sojourn time matrix in memory at step l in this approach. Then R̃l

is multiplied with the subvectors corresponding to level pl`1q of the pM `1q
temporary vectors. The product is added to the running sum of subvectors
corresponding to level l of the pM ` 1q temporary vectors in order to keep
on accumulating steady-state expectations. With this memory efficient ap-
proach, steady-state measures based on average costs or rewards, moments,
and cumulants can be computed. As shown in [18, 19], memory savings can
be substantial with the approach in [21] in some models. This alternative
solver is able to compute mean values of variables stably as the solver in Al-
gorithm 9. The reported relative errors of the mean values obtained with the
memory efficient solver with respect to those obtained with the original solver
are close to machine precision in all cases. However, there is one drawback;
it is the absence of the accuracy measure, }πQ}1, because the steady-state
distribution, π, is no longer available.

In between full and sparse storages of R̃l matrices, full storage is better
in models having very high nonzero densities in the R̃l matrices. When there
are memory savings with sparse storage of R̃l matrices [18, 19], the respective
time savings are even more substantial. The temporary matrix Al seems to
be benefiting considerably from sparse LU factorization. On the other hand,
there is observable difference between using sparse versus Kronecker represen-
tations of the Qpl ` 1, lq matrices. This is the case because each subdiagonal
nonzero block is used once, and the sparse generation procedure associated
with it and the pre-multiplication with R̃l`1 amount to performing the same
number of flops as would be done by the vector–Kronecker product multi-
plication algorithm between the rows of R̃l`1 and the subdiagonal nonzero
block when the latter is kept in Kronecker form.

The scalability of different LDQBD solver implementations for increasing
values of ε has been investigated in [18]. Since time complexity of Al’s LU
factorization at level l is cubic in the order of |Rl| for dense R̃l matrices and
|Rl| is a polynomial with degree pl´1q, time requirements become more pro-
nounced for models with higher HI values. The situation regarding memory
is better since the requirements at level l are quadratic in |Rl| for dense R̃l

matrices. Clearly, time and memory requirements are much better when the
R̃l matrices are sparser. Given more memory and time, it is always possible
to obtain more accurate results with the matrix analytic approach. Dropping
nonzeros less than 10´16 from matrices is observed not to have an adverse
effect on accuracy but likely to help with memory requirements [120].

In [103], an alternative technique for systems of stochastic chemical ki-
netics which is also based on using Lyapunov functions is investigated. The

6.6 Working with Compact Solution Vectors 221

technique explores states that are only in the set concentrating the steady-
state probability mass and then resorts to polyhedra theory [86] to bound
steady-state probabilities. Although the technique can potentially work on
states arbitrarily far away from the origin, it yields results that are much less
accurate compared to those provided by the technique discussed here.

In closing this section, we remark that the MAP/PH/S queueing system
with acyclic PH retrials [112] considered in Chapter 4 could also be mod-
eled as an LDQBD by choosing an appropriate level definition. However, the
truncated model is represented as a block matrix with blocks of equal size
using sums of Kronecker products, and its steady-state solution is computed
iteratively with SOR. The reason for this choice is that the matrix analytic
method requires the computation of the matrices of conditional expected
sojourn times, and this computation does not scale well as the number of
dimensions in the multidimensional MC increases. This is due to the increase
in the order of the diagonal blocks as the LDQBD level number increases in
multidimensional MCs. An implementation within the NSolve package of the
APNN Toolbox [7, 22] is available at [114].

6.6 Working with Compact Solution Vectors

The HTD format for compact vectors discussed in the previous chapter is
recently employed in power, JOR, and GMRES iterative methods using two
adaptive truncation strategies for the solution vectors of MCs [66]. The per-
formance of the resulting iterative solvers are compared on a large number
of multidimensional problems, two of which are the availability and polling
models in Chapter 2, with their Kronecker structured counterparts that em-
ploy full solution vectors of length |R|, the size of the reachable state space.
In this section, we briefly review the outcome of the study in [66].

Let us recall that the power method is successfully employed in the
PageRank algorithm [41] for Google matrices [106], and JOR is essentially
a preconditioned power method in which the preconditioner is M :“ QD{ω
and, hence, diagonal. The convergence rate of these methods is known to de-
pend on the magnitude of the subdominant eigenvalue of the corresponding
iteration matrix. In the original PageRank algorithm, this value is set to 0.85
by construction to guarantee a certain convergence rate. Furthermore, JOR
is known to converge for ω P p0, 1q, that is, under-relaxation, as discussed
in Section 6.1. On the other hand, GMRES is a projection method which
extracts solutions from an increasingly higher-dimensional Krylov subspace
by enforcing a minimality condition on the residual 2-norm at the expense of
having to compute and store a new orthogonal basis vector for the subspace at
each iteration. This orthogonalization is accomplished through what is called
an Arnoldi process. In theory, GMRES converges to the solution in at most
|R| iterations. However, this may become prohibitively expensive at least in

222 6 Steady-State Analysis

terms of space, so in practice, a restarted version with a finite subspace size
of m is to be used. Hence, the number of vectors allocated for the represen-
tation of the Krylov subspace in the restarted GMRES solver will be limited
by m. If the vectors are stored in compact format, m can be set to a larger
value without exceeding the available memory which is expected to improve
the convergence of GMRES.

Unlike the power and GMRES methods, the iteration vector also needs to
be multiplied by the reciprocated diagonal elements of the coefficient matrix
in the JOR method. Since it is costly to generate each element of a vector in
HTD format, an iterative method such as Newton–Schulz [202] can be used to
perform the elementwise reciprocation of the diagonal vector in HTD format
at the outset using Algorithm 10.

Algorithm 10. Elementwise reciprocation of vector d as dinv.

dinv :“ eT {}d}2; it :“ 0; nrm :“ 0; nrm chg :“ 0; rcp stop :“ FALSE;
While nrm ě rcp tol and rcp stop “ FALSE,

it :“ it ` 1;
dinv1 :“ dinv;
Δd :“ eT ´ d ‹ dinv1;
nrm1 :“ }Δd}2{}e}2;
dinv :“ dinv1 ` dinv1 ‹ Δd;
If it ą 1,

nrm chg :“ nrm1{nrm;
If nrm chg ą rcp chg tol and it ě rcp maxit,

rcp stop :“ TRUE;
Else

nrm :“ nrm1.

The algorithm starts by initializing dinv (which becomes dinv1 in the
current iteration) with a vector whose entries are equal to each other in the
same vein as the initialization of the starting vector in iterative methods
with the uniform distribution. This step requires the computation of the 2-
norm of d. The other operations that the algorithm executes are elementwise
multiplication of two vectors which is denoted by the operator ‹, addition of
two vectors, and computation of the 2-norm of vectors. The algorithm stops
if the 2-norm of peT ´ d ‹ dinv1q relative to the 2-norm of e is smaller than
rcp tol [202] or if this relative norm divided by the relative norm in the
previous iteration is greater than or equal to rcp chg tol when rcp maxit

iterations have already been performed. We remark that the Newton–Schulz
method is a nonlinear iteration with quadratic convergence rate [185].

Among the operations needed to implement Algorithm 10, elementwise
multiplication of two compact vectors in HTD format has not been discussed
in Section 5.3. Note that this operation is required not only in the Newton–
Schulz iteration for computing the reciprocated diagonal elements in dinv at

6.6 Working with Compact Solution Vectors 223

the outset but also in multiplying dinv with the updated solution vector at
each JOR iteration. Let us now explain how this operation can be performed.

Elementwise multiplication of two matrices Y and X with SVDs Y “
UY ΣY V

T
Y and X “ UXΣXV T

X yields

Y ‹ X :“ pUY dT UXqpΣY b ΣXqpVY dT VXqT ,
where dT denotes a transposed variant of the Khatri–Rao product [199]. More
specifically, the ith row of the pnAB ˆ rArBq matrix AdT B is the Kronecker
product of the ith rows of the pnABˆrAq matrix A and the pnABˆrBq matrix
B. This implies that elementwise multiplication Y ‹ X has rank equal to the
product of the ranks of Y and X. Elementwise multiplication of two vectors
y and x in HTD format is no different if SVD is replaced with HOSVD. The
operation can be carried out in four steps [202], which are orthogonalization
of the vectors in HTD format, computation of their Gramians, computation
of SVDs of Gramians, and update of basis and transfer matrices. There is
also a truncation step that needs to be performed when the elementwise
multiplication is extracted from the implicitly formed Kronecker product by
again imposing an accuracy of trunc tol on the truncated HOSVD.

The elementwise reciprocation of d using Newton–Schulz introduces two
different truncations [202], first, before Newton–Schulz, when the HTD of the
diagonal elements in d is computed, and, second, during the iterative compu-
tation of the reciprocated diagonal elements in dinv within Newton–Schulz.
Since a numerical iterative method is employed to compute the reciprocal
values, it is not clear how fast convergence takes place in practice since the
initial transient period that is needed for the asymptotic quadratic conver-
gence behavior to manifest itself can be time consuming [185]. Therefore, an
alternative approach is also considered in [66].

The alternative approach is to take advantage of identical entries in dpRpq
for p “ 0, . . . , N ´ 1. In many multidimensional Markovian models, there are
entries with the same value in dpRpq because the CTMC results from some
compact model specification which contains only a few parameters compared
to the size of the reachable state space, R. This may be exploited by defining

an equivalence relation among the states inRphq
p for h “ 1, . . . , H by using row

sums of the submatrices Q
phq
k pRp,Rwq that contribute to sums of Kronecker

products for k P Kp,w and w “ 0, . . . , N ´ 1. Then the states in Rp that
are in the same equivalence class in all dimensions have identical diagonal
entries in dpRpq [66]. This approach can be very effective in representing
dpRpq compactly when the number of equivalence classes in each dimension
is small. All that needs to be done is to represent the reciprocated diagonal
entries in each equivalence class using a Kronecker product, which in turn
can be represented in HTD format. Thus, for each combination of equivalence
classes across all dimensions, an HTD formatted vector must be constructed.
Then all such vectors need to be added and truncated so that the reciprocated
diagonal elements in dinvpRpq are represented by a single HTD formatted

224 6 Steady-State Analysis

vector. In the worst case, one vector in HTD format needs to be constructed
for each state meaning all entries in dpRpq are different from each other.
However, for many models, the number of HTD formatted vectors to be
added and truncated is much smaller.

In htucker, memory requirements of the HTD format are limited by a fixed
truncation error tolerance, trunc tol, and a fixed rank bound, max rank,
for the truncated HOSVD. In many cases, this approach results in ranks
becoming large during the first few iterations when the iteration vector is not
close to the solution. Furthermore, imposing a fixed rank bound may also limit
the accuracy of the final solution that can be obtained. Therefore, it is more
efficient to use a larger trunc tol when the 2-norm of the residual vector,
}rpitq}2, is large and to decrease trunc tol when }rpitq}2 is becoming small.
Thus, an adaptive strategy for adjusting the truncation error is required, and
two such strategies are considered in [66].

In the first adaptive strategy named AS1, trunc tol, is initially set to
trunc tol :“ stop tol{?

2H ´ 3 and then updated when }rpitq}2 is com-
puted at iteration it as

prev trunc tol :“ trunc tol,

trunc tol :“ maxpminpprev trunc tol,
b

}rpitq}2 stop tol{?
2H ´ 3q,

10´16q.
Initially, prev trunc tol :“ 0. In this way, trunc tol is made to remain
within p10´16, prev trunc tolq while being forced to decrease conservatively
with a decrease in }rpitq}2.

In the second adaptive truncation strategy named AS2, we start with the
initialization prev trunc tol :“ 0 and trunc tol :“ 100 stop tol{?

2H ´ 3.
Then we update the two variables as

prev trunc tol :“ trunc tol,

trunc tol :“ maxpminpprev trunc tol,
b

}rpitq}2 10´4{?
2H ´ 3q,

10´16q.
when }rpitq}2 is computed at iteration it. AS2 starts at a larger trunc tol

and is expected to increase trunc tol more conservatively compared to AS1
and independently of the value of stop tol.

The scalability of the HTD format in the compact vector iterative solvers
of power, JOR, and GMRES using the above adaptive truncation strategies is
investigated on three models for increasing sizes of the reachable state space.
Two of the models are the availability and polling models in Chapter 2, and
the third one is a cloud computing model from [154]. First, we summarize
the effect of using the Newton–Schulz iteration and the equivalence class
approach to compute dinv at the outset for JOR.

6.6 Working with Compact Solution Vectors 225

Each of the availability and cloud computing models has a single reach-
able state space partition and ends up enumerating a large percentage of
the entries in d to construct dinv, since the number of equivalence classes
in dimension h of both models is relatively large with respect to the state
space size |Sphq| for h “ 1, . . . , H. It is observed that the time to compute d
and therefore dinv in HTD format grows quickly for larger values of H in
these two models using both approaches. However, the Newton–Schulz ap-
proach can be made faster by limiting rcp maxit in Algorithm 10. At the
moment, it starts with truncated HOSVD ranks of 1 and increases the ranks
when needed as the iterations progress. For these two models, the equivalence
class approach for computing dinv in HTD format yields a more compact
representation than the Newton–Schulz approach. As for the polling model
which has multiple reachable state space partitions, the number of equiva-
lence classes used to represent d is small. Hence, this approach yields not
only the more compact representation but also the faster one. In this case,
the HTD representation of dinv remains compact even for larger values of
H, with its memory requirements growing more or less linearly in H.

Solution vectors of the Kronecker-based solvers power and JOR using the
HTD format cease to be unit 1-norm due to truncation with trunc tol and
are normalized at each iteration. The check on stop tol is also performed
at each iteration in this case. For Kronecker-based power and JOR solvers
with full vectors, normalization and the stopping test can take place every
some number of (e.g., 10) iterations. The parameters of solvers used in the
experiments are Δ :“ 0.999{maxiPR |qi,i| for power, ω :“ 0.75 for JOR,
m :“ 30 for the Krylov subspace size of GMRES, stop tol :“ 10´8, and
max time :“ 1,000 seconds. Detailed results can be found in [66].

Memory requirements of Kronecker-based full-vector solvers can be calcu-
lated at the outset. Power and JOR each require three vectors of length |R|
(for QD, πpitq, and πpit`1q) and two vectors of length maxp |Rp| (for the shuf-
fle algorithm to carry out the full vector–Kronecker product multiplication),
whereas restarted GMRES(m) requires pm ` 3q vectors of length |R| and
two vectors of length maxp |Rp|. Clearly, largest versions of the three mod-
els cannot be handled with full-vector solvers on a platform having 16 GB
of main memory. Similarly, the Kronecker-based full-vector GMRES solver
cannot be utilized in the six-dimensional polling model. For Kronecker-based
compact vector solvers, it is not possible to forecast memory requirements at
the outset when adaptive truncation strategies are used. This is because the
maximum number of floating-point array elements allocated to matrices in
the HTD format representing vectors and the workspace used in the solution
process depends on the values in the vectors that are represented compactly
at each iteration, and, hence, the character of the particular model and the
behavior of the solver, and also on the value of trunc tol.

There are cases where we have not been able to obtain dinv in HTD format
for JOR(0.75) within max time or due to memory limitations sometimes with
both computational approaches and sometimes with Newton–Schulz alone.

226 6 Steady-State Analysis

On the other hand, there is a case where the Kronecker-based compact vector
power method with AS2 exits due to a non-converging LAPACK method that is
used to compute SVD. Similarly, there are a few cases where we have not been
able to obtain results with the Kronecker-based compact vector GMRES(30)
solver using AS1. The solver performs a number of Arnoldi process steps
and then takes an exceedingly large amount of time without producing a
result and therefore is aborted. Finally, there is a case where the Kronecker-
based compact vector JOR(0.75) solver with AS1 using the equivalence class
approach for reciprocation fails due to memory limitations.

Among the Kronecker-based full-vector solvers for all three models, JOR
is almost always the fastest solver yielding the smallest }rpitq}2 with the
smallest memory, which is about one order of magnitude smaller than what
is required by GMRES. Among the compact vector solvers, those that use
AS1 never require a larger number of iterations than their counterparts with
AS2 for the same }rpitq}2. The average time per iteration of compact vector
solvers with AS2 is lower than that with AS1. However, power method with
AS2 stagnates and is not able to meet stop tol in any of the problems.
The convergence behavior of compact vector solvers employing AS2 tend to
be more unpredictable and less satisfactory than that with AS1. Whenever
a compact vector solver using AS1 stops, }rpitq}2 ă stop tol, whereas this
inequality in general does not hold for AS2. Regarding memory requirements
however, AS2 is better, sometimes by several orders of magnitude, than the
respective solver that uses AS1. One would expect this to imply that as
the number of dimensions increases, a larger number of iterations can be
performed by AS2 in the same duration, thereby bringing the solver closer, if
not, to convergence. This seems to be the case especially when the decrease
in memory consumption is substantial. The full-vector approach is faster for
smaller models, but it is outperformed by the compact vector approach for
larger models especially when it is used with the power method and AS2.

The availability model has highly unbalanced transition rates due to in-
frequent failures. Failures correspond to local transitions, and since they are
infrequent, the system is available most of the time, and the steady-state
distribution is skewed. Effects of varying the original transition rates given
in Section 5.3 for H “ 6 are investigated on two variants. The first variant
has one tenth, and the second variant has ten times the failure rates of the
original model. The steady-state distribution becomes more skewed in the
first variant since the system is even more available in the long run. This
translates into a less difficult problem to solve, meaning it takes a smaller
number of iterations for the same accuracy of the solution. The results show
that indeed all solvers are sensitive to the transition rates in the model. Mem-
ory requirements and computation time of dinv increase in the more difficult
variant. Memory requirements of power and JOR(0.75) compact solvers in-
crease when the problem becomes more difficult, resulting in longer time per
iteration and a smaller number of iterations in the same time duration.

6.6 Working with Compact Solution Vectors 227

In summary, the compact vector approach when coupled with an adaptive
truncation strategy is memory and relatively time efficient, having the poten-
tial to increase the size of solvable models on a given platform significantly,
and therefore deserves further investigation.

	6 Steady-State Analysis
	6.1 Block Iterative Methods
	6.2 Preconditioned Projection Methods
	6.3 Multilevel Methods
	6.4 Decompositional Methods
	6.5 Matrix Analytic Methods
	6.6 Working with Compact Solution Vectors

