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Preface

This book is about the Markovian modeling and analysis of systems with a
discrete multidimensional state space in which various transitions take place.
The models of interest are composed of submodels, each dimension corre-
sponds to a submodel that represents a different subsystem, and submodels
interact through possible transitions. Particular emphasis is on multidimen-
sional models having unreachable states that appear in the product state
space of submodels but can never be occupied in practice. The book shows
step-by-step how the transition matrix of the model associated with the reach-
able state space can be represented compactly and exactly on computer using
sums of Kronecker products of matrices associated with submodels. Then the
analysis amounts to the numerical computation of steady-state or transient
solutions of very large such models as fast, as accurate, and in as little of
memory as possible.

Numerical analysis suggests a group of algorithmic methods that are to
be implemented on computer and yield solutions to mathematical problems
with errors that can be assessed and controlled so that the solutions have
accuracies relatively close to the available finite computer precision. Since
trying to compute a solution more accurate than computer precision is futile
in practice, the concept of a solution being exact to computer precision is
used. This is about 16 decimal digits in double precision IEEE 754 standard.
In other words, every solution that is obtained on computer can be qualified as
being approximative unless the first 16 decimal digits of the solution obtained
on computer is equal to the first 16 decimal digits of the solution obtained
with paper and pencil. Nevertheless, the term approximative is generally not
used when referring to a numerical method. The accuracy of the computed
solution, which is a probability vector, is rather quantified by indicating its
residual or error norm.

The material in this book has grown out of work spanning the last 20
years of our research after receiving the PhD degree and is based on our ear-
lier Briefs book from 2012 [101], which is of 86 pages excluding its preamble.
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viii Preface

The Briefs book is primarily about analysis as can be inferred from its title
and does not discuss unreachable states except for a few pages in its Sec-
tion 4.2. To make the exposition more accessible, the Briefs book motivates
the discussion with a model having no unreachable states. The particular
model which is first introduced in (1.1) on page 3 through its p12ˆ 12q tran-
sition matrix corresponds to a model with 3 submodels, respectively, having
2, 3, and 2 states, hence the 2.3.2 “ 12 states in the state space. This is a rel-
atively small model that still has meaningful semantics as described on page
4. The reason behind choosing 3 rather than 2 submodels is simply that in
mathematics many times one does not need to go beyond 3 to see a common
pattern and start making generalizations, but results obtained with 2 may be
misleading. Furthermore, we could only fit the p16ˆ16q transition matrix of a
model with 4 submodels to a page only if all submodels had 2 states, and that
would imply too much symmetry in the semantics of the submodels. Hence,
we chose 3 submodels and made one of them have 3 states and the other two
2 states. The Kronecker representation in Chapter 2 is discussed in terms of
this model. All iterative methods in Chapter 3 and the decompositional iter-
ative method on pages 39–41 in Section 4.1 are based on this model as well.
The only exception is the case study in Section 4.3 related to closed queueing
networks that have unreachable states. For this closed queueing network, the
considered solution method is termed approximative since the decomposition
of the closed queueing network into subnetworks is accomplished through
first-order measures and the results it provides are rather crude, being accu-
rate only to a few decimal digits. Hence, a lot of thought has gone into the
selection of the running example which does not have unreachable states and
the organization of the Briefs book around that example.

The organization of the current book and its contents including the exam-
ples are significantly different from those of the Briefs book. The current book
is of 269 pages excluding its preamble. Its first part in Chapter 2 through
Chapter 4 discusses multidimensional Markovian modeling with unreachable
states using Kronecker products, and its second part in Chapter 5 through
Chapter 7 discusses analysis. Its study requires one to understand how un-
reachable states are avoided through a Cartesian product partitioning of the
reachable state space. Noticing that we are able to fit an p18ˆ 18q transition
matrix to a page, the running example in the Briefs book has been changed
in this book to correspond to a model with 3 submodels, respectively, having
3, 2, and 3 states, hence the 3.2.3 = 18 states in the state space. This example
is introduced in (1.1) on page 4 with the corresponding figure on page 6. The
transition matrix of this example seems to be the largest we can fit legibly to
a page. This example, which does not have any unreachable states, is later
used on pages 17–19 in Chapter 2 to motivate stochastic automata networks
(SANs) and on pages 20–21 to illustrate the nested block partitionings associ-
ated with the transition matrix. On pages 21–24 in Chapter 2, a second small
running example which also has 18 states is given with its figure to explain
the concepts of unreachable states and functional transitions in SANs. This
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second running example is used on pages 26–29 to define the reachable state
space consisting of 12 states as a union of Cartesian products and develop the
block representation of its p12ˆ12q transition matrix in which each block is a
sum of Kronecker products. Unfortunately, this cannot be done with the SAN
approach. We believe these two examples to be small enough, yet meaningful,
with transition matrices that fit legibly to a single page and can be followed
by the reader. Chapter 2 continues with two other multidimensional exam-
ples coming from the areas of systems availability and queueing networks.
These are followed by two other examples from the areas of production lines
and communication protocols in Chapter 3 and three other examples from
the areas of systems of stochastic chemical kinetics and queueing networks
in Chapter 4. There is an eighth multidimensional example model from sys-
tems of stochastic chemical kinetics that appears in Chapter 7. In particular,
the four example models in Chapter 4 and Chapter 7 have countably infinite
state spaces. Some readers may find some of these multidimensional examples
very detailed and repetitive. However, each example demonstrates a different
aspect of the modeling process, and for instructional purposes we prefer to
be precise and complete rather than to gloss over the details. In the second
part of the book, a more efficient vector-Kronecker product multiplication
algorithm is given and recent results regarding the compact representation
of solution vectors with some controllable approximation error are discussed
in Chapter 5. All iterative numerical methods in Chapter 6 are presented
for models that may have unreachable states. Furthermore, now there is a
separate chapter (i.e., Chapter 7) on transient analysis. As such, this book
contains substantial new material and can be considered to be at a higher
level than the Briefs book.

The style and language of each book reflects the experience, view, and
taste of its author(s). So does this one. The subject matter in its broadest
setting can be considered to be in the area of performance modeling and anal-
ysis. This is an area which is generally not taught in undergraduate computer
science and engineering programs. If there is a related undergraduate course
available in a university program, it is almost always elective. Some of the
modeling formalisms used in this area, such as queueing networks, are also
part of another area called operations research. However, operations research
is also an area that mostly exists at the graduate level. Hence, our inten-
tion was not to write an undergraduate textbook on the Kronecker modeling
and analysis of multidimensional Markovian systems. The book is clearly
for graduate students and researchers. Furthermore, the analysis methods it
advocates are all numerical.

We are fortunate to have taken two required courses on numerical analy-
sis during our junior year in computer engineering at Middle East Technical
University. Nowadays, most undergraduate programs in computer science and
engineering do not have even a single required course on numerical analysis in
their curriculum. This is a pity since, in our view, numerical computation can
only be studied if one has taken at least one course in that direction after two
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courses on calculus, a course on linear algebra, and a course on differential
equations, all of which we are happy to have taken during our undergraduate
studies. In addition to other required mathematics-related courses during our
computer engineering studies such as mathematical logic, discrete mathemat-
ics, and probability and statistics, and other pertinent required courses such
as data structures, programming languages, file organization and process-
ing, digital computer fundamentals, computer organization, microprocessors,
data management, database management systems, operating systems, sys-
tems programming, language processors, software engineering, systems con-
cepts and modeling, formal languages and abstract machines, operations re-
search techniques, data communications, and system simulation, we are also
happy to have taken during our MS and PhD studies in computer science
at North Carolina State University the courses of algorithms and automata
theory with Matt Stallmann, operating systems with Bob Fornaro, paral-
lel computer architecture with Ed Davis, numerical analysis (which we first
audited with Bob White) with the late Bob Funderlic, matrix theory and
applications with the late Gil Koh, stochastic processes with the late Os-
car Wesler, queueing stochastic service systems with Russell King, computer
communications with Wushow Chou, digital communications with Alexandra
Duel–Hallen, performance evaluation with Arne Nilsson, data networks and
computer network performance evaluation with Yannis Viniotis (our MS the-
sis advisor), and advanced performance evaluation with Billy Stewart (our
PhD thesis advisor).

We must thank Yannis Viniotis and Harry Perros, our MS and PhD advi-
sory committee members, for the queueing systems seminars they held and
their very quantitative approaches to problem solving that have helped to ad-
vance our research. It was through our PhD thesis advisor Billy Stewart, our
PhD thesis advisory committee member Carl Meyer, and Bob Funderlic that
we came to appreciate the importance of floating-point representation and
arithmetic. In our opinion, one of the best treatments of this subject matter
appears in the first two chapters of [185] by Nick Higham. We have been using
these chapters from its first edition in our undergraduate numerical analysis
course since the second half of 1990s together with the matrix–vector ap-
proach to scientific computing discussed by Charles Van Loan in [319], and
recommend them as a starting point to all who work in numerical comput-
ing. We are also fortunate to have met Pete Stewart at the Cornelius Lanczos
Centenary Conference in Raleigh at the end of 1993 and have learned from
his work that sometimes a p2 ˆ 2q matrix is not large enough to illustrate
a concept or notice a pattern associated with matrices, one needs a p3 ˆ 3q

matrix, and almost always this slightly larger matrix is sufficient and does
the job. Another important figure has been Yousef Saad, whom we met for
the first time at the 1994 Copper Mountain Conference on Iterative Methods.
We followed the first edition of his book [280] in our introductory graduate
level course “Iterative Methods for Sparse Linear Systems,” and his work has
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been influential in putting our view of iterative methods and preconditioners
into perspective over the years.

Billy Stewart and Brigitte Plateau introduced us to SANs during our visit
to Grenoble in June 1996. A study on robotic tape libraries using SANs
was carried out in August that year with Odysseas Pentakalos and Brooke
Stephens in Greenbelt, Maryland. The help received during this process from
Paulo Fernandes regarding the software was instrumental. Later we had many
interesting talks with Jean-Michel Fourneau and Franck Quessette over SANs
in Versailles and Ankara from 1998 to 2000. Nihal Pekergin was also present
during these visits and brought her expertise on stochastic comparison into
the picture. In June 2000, we had enjoyable discussions with the late Ivo
Marek and Petr Mayer in Prague on the convergence properties of iterative
aggregation–disaggregation.

In the 2002–2003 academic year, we got a chance to learn about hier-
archical Markovian models (HMMs) from Peter Buchholz in Dresden. Our
discussions on HMMs continued in Dortmund in June 2005 and at Dagstuhl
in February 2007. His habilitation thesis [46] includes work along the line of
research discussed in this book. It was in Dortmund and then Ankara where
we investigated compositional Markovian models for symmetries with Peter
Kemper in 2005. Kishor Trivedi visited Ankara in 1997; he was always avail-
able by e-mail in 2008 while we were writing a joint paper and was ready for
further discussions later that year in Seattle.

In early 2010 in Saarbrücken, we were convinced by Verena Wolf of the
difficulties associated with analyzing systems of stochastic chemical kinetics
using SANs and HMMs. This also led to stimulating exchanges during the
same year with Holger Hermanns, Werner Sandmann, David Spieler, and later
in March 2012 in Kaiserslautern and Saarbrücken with Hendrik Baumann.
Udo Krieger, whom we met for the first time in 1999 in Zaragoza and saw
on a number of different occasions later, has always been illuminating with
his broad knowledge. It was also through him that we became aware of the
meeting in June 2012 in Varese where we had insightful discussions with Dario
Bini, Guy Latouche, Beatrice Meini, and Peter Taylor on matrix analytic
methods. It was through Jeffrey Hunter that we were introduced to a part of
the statistics community. We continued learning from one or more of these
colleagues on different occasions in Atlanta in October 2015, Madeira and
Budapest in June 2016, and Pisa in February 2017. It was due to Miklós
Telek and András Horváth that we visited Budapest for the first time in
September 2009 before our first visit to Pisa in October 2009. It was also our
revisit to Prague in June 2013 through Ivana Pultarová’s work that enabled
us to catch up with the recent advances in multilevel iterative methods.

After Peter Buchholz’s visit to Bilkent in August 2014, we visited his
group at the Technical University of Dortmund in January 2016 to initiate
a collaboration on compact solution vectors using the hierarchical Tucker
decomposition for the solution of Markov chains based on Kronecker prod-
ucts. This book has been finalized thereat during our stay in 2017 with the
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Modeling and Simulation group to which we owe special words of gratitude,
especially to Falko Bause for his to-the-point technical expertise, and to Iryna
Dohndorf and Jan Kriege for the collegial environment they have provided
and their discussions.

We thank all the people above and those whose names we have not been
able to list for providing a scholarly atmosphere in which to carry out research
and for their time over the years. We met Erol Gelenbe in Raleigh while
studying for the PhD degree, organized two international conferences with
him and our colleagues at Bilkent in October 1998 and 2004 in Antalya, and
visited him in London in September 2015, with other encounters in between.
Our interaction with him has helped us to better organize and develop a more
holistic view toward research. He will always be remembered. It was through
Michele Benzi and Daniel Szyld in the 1990s that we started to learn many
different aspects of numerical linear algebra. We have been able to keep in
touch over the years, and along Billy Stewart, Peter Buchholz, Jean-Michel
Fourneau, and Brigitte Plateau, they are probably the two most influential
people on our research, deserving a special thank you.

We are grateful to Bilkent for being very understanding and generous in
granting us research leaves, without which it would not have been possible to
complete this book. We are also fortunate to have worked with a number of
students at Bilkent who found Kronecker structured compositional Marko-
vian models such as SANs and HMMs interesting and exciting: Ertuǧrul
Uysal, Oleg Gusak, Akın Meriç, İlker Nadi Bozkurt, and M. Can Orhan.

Grants available in one form or another over the years allowed us to con-
tinue working on the subject from the Turkish Scientific and Technological
Research Council, the French National Scientific Research Center, the Center
of Excellence in Space Data and Information Systems, the Czech Technical
University, the Alexander von Humboldt Foundation, the Turkish Academy
of Sciences, the Cluster of Excellence in Multimodal Computing and Inter-
action, and the Technical University of Dortmund.

Finally, we thank Donna Chernyk and her team at Springer for initiating
the project following our earlier book [101] with them, steering us through the
process, and making it happen. Special thanks are due to Agnes Felema. A
from SPI Global for her effort during the production of the book. We also
thank the anonymous reviewers who have enabled us to improve the presen-
tation. We hope you enjoy the outcome.

Bilkent, Ankara, Turkey Tuǧrul Dayar
June 2018
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Chapter 1

Introduction

This book is about the numerical modeling and analysis of systems that have
very large discrete state spaces, including those with countably infinite ones,
satisfying Markovian assumptions. Such systems are often composed of mul-
tiple subsystems that interact through various transitions in a well-defined
manner. In this setting, the modeling of the system at hand is typically based
on representing the state of each subsystem with what is called a state variable
and collecting the state variables in a state vector. Thereafter, to each sub-
system corresponds a submodel that is associated with a particular dimension
of the state vector. Since there are as many dimensions of the state vector as
there are submodels, such models are referred to as being multidimensional.
The state space of the multidimensional model is then given by some varia-
tion of the Cartesian product of the state variables. Note that state variables,
that is, submodels, themselves may also exhibit complicated behavior neces-
sitating their modeling using multiple smaller submodels, which implies even
a larger number of submodels, hence, dimensions in the model. We assume
that one has a model of a system with submodels identified at a sufficient level
of detail as such to facilitate numerical analysis as efficiently and accurately
as possible.

We expand on [101] by reviewing the progress made regarding the nu-
merical modeling and analysis of multidimensional Markovian systems rep-
resented compactly using Kronecker products of the smaller submodel tran-
sition matrices. Here, the particular emphasis is on multidimensional models
having unreachable states that appear in the product state space of sub-
models but can never be occupied in practice. Today, the Kronecker-based
approach not only enables the compact storage of the underlying state tran-
sition matrix exactly, but as recently shown it can also be used to reduce
the memory allocated to solution vectors associated with the model during
analysis. In this way, it becomes possible to numerically model and analyze
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2 1 Introduction

multidimensional systems that are much larger than those that can be han-
dled with conventional sparse matrix techniques on the same platform due
to memory limitations.

One particular area in which Kronecker products are being extensively
used today is machine learning. As pointed out in [216], Kronecker products
are very useful, for instance, in modeling networks. We should emphasize that
the problem therein, and the machine learning area in general, is of an inverse
nature, trying to fit a mathematical model involving Kronecker products to
collected data associated with networks as accurately and as compactly as
possible. On the other hand, the problem we are interested in is to model
discrete state systems composed of interacting subsystems in a well-defined
manner through various transitions exactly using Kronecker products. This
modeling problem is of a forward nature and does not involve the kind of
approximation that arises in the inverse problem tackled in machine learning.
In our case, the only approximation in the modeling stage on computer takes
place when we truncate a countably infinite state space to obtain a finite one.

The subject matter is interdisciplinary and at the intersection of applied
mathematics, specifically numerical linear algebra and computational proba-
bility and computer science. Its understanding requires basic linear algebra,
probability, and discrete mathematics, plus high-level programming knowl-
edge in order to be able to follow the software implementation of methods
discussed in the book. The exposition is relatively concise and rigorous, yet it
tries to be complete and touches many aspects without being too technical.
Since Kronecker notation necessitates the introduction of many indices on
variables and is not easy to follow, the reader is walked through various ex-
amples in the text to make the discussion more accessible and concrete. The
examples come from areas as diverse as systems availability, queueing net-
works, production lines, communication protocols, and systems of stochastic
chemical kinetics. Some examples also require the employment of concepts
from stability theory to aid in truncating the respective countably infinite
state spaces for steady-state analysis purposes. Markov population models
fall under the last class of examples and can be analyzed similarly. Up until
recently, stochastic simulation seemed to be the only viable approach that
would yield relatively accurate results for this class of problems. With the
existing continuous improvement in computer technology, it only makes sense
to invest in state-based modeling and numerical analysis approaches for very
large Markovian models as those discussed here to obtain more accurate re-
sults at a finer level of detail.

The book mentions a sufficient number of modeling formalisms using Kro-
necker products, comparing and contrasting them along the way, so that the
reader should have an idea as to how to proceed after having finished read-
ing it. The code used in modeling and analyzing problems with Kronecker
products is made publicly available. When space is not sufficient to discuss a
particular issue in detail, references to the literature are provided for further
reading. Open research areas are also indicated throughout the text as they
become pertinent. Having set the stage with our motivation to gather all this
information in one place and write the book, now we can start our discussion.
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We consider discrete state space Markovian processes calledMarkov chains
(MCs). These are stochastic processes which start in a particular state, evolve
by visiting states in their state spaces using the available transitions, and
exhibit the memoryless property. This property dictates that the probability
distribution of the next state of the process conditioned on the current state
and the previous states the process has visited depend only on the current
state. In discrete-time, this requires that the time spent in a state during
a visit be geometrically distributed, whereas in continuous-time, it requires
that the time spent in a state during a visit be exponentially distributed.

Throughout this book, we mainly consider continuous-time MCs (CTMCs)
and briefly touch discrete-time MCs (DTMCs) wherever appropriate. The list
of symbols used in the book is given at the beginning. We use calligraphic
letters for sets, capital letters for matrices, and boldface lowercase letters for
vectors. We adhere to the convention that probability vectors are row vectors;
otherwise, all vectors are column vectors as in linear algebra. The lengths of
the vectors are determined by the context in which they are used. e repre-
sents a column vector of 1s, and ei represents the ith column of the identity
matrix, I. The Greek letter π is used to denote a particular vector. 1 denotes
the indicator function which evaluates to 1 if its argument is true, else it
evaluates to 0. Op¨q stands for the big O notation. Otherwise, we use Greek
letters to denote problem-specific real-valued parameters. We indicate entries
of matrices using lowercase letters and the row/column indices in parentheses.
Similarly, an entry of a vector is shown by writing the corresponding index
in parentheses. We start indices from 0, by which it is possible to represent
an empty (sub)model. An exception is state vectors, whose entries are state
variables indicated by subscripts starting from 1. diagpaq, subdiagpaq, and
supdiagpaq denote matrices with the entries of vector a along their diagonal,
subdiagonal, and superdiagonal, respectively; all other entries of these matri-
ces are zero. We use a subscript under I to indicate its order. Similarly, the
subscript m ˆ n under a matrix indicates that the matrix is pm ˆ nq. apiq is
the value of vector a at state i, and apIq is the subvector of a associated with
the states in I. ApI,J q is the submatrix of A associated with row states in
I and column states in J ; nzA denotes the number of nonzeros in A. The
sets of reals, nonnegative reals, integers, nonnegative integers, and positive
integers are denoted by R, Rě0, Z, Zě0, and Zą0, respectively.

For the time being, we assume that the state space of the CTMC is finite
but later relax this assumption. So, now let the cardinality of the state space
be n. A CTMC with n states may be represented by an pn ˆ nq matrix
Q P R

nˆn. This matrix is known as the infinitesimal generator (or transition
rate) matrix of the associated Markovian process [165, 305]. The off-diagonal
entries of this matrix are nonnegative and indicate the rates of exponentially
distributed transition times between pairs of states. In other words, qpi, jq for
i ‰ j denotes the rate of exponentially distributed time by which the process
makes a transition from state i to state j. The diagonal of Q is formed by the
negated row sums of its off-diagonal entries (i.e., qpi, iq “ ´

ř

j‰i qpi, jq) and,
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hence, is nonpositive. Throughout our discussion, we assume that entries of
Q are independent of time; that is, Q is time-homogeneous. Treatment of
time-inhomogeneous CTMCs is beyond the scope of this book.

Example 1. Here is a generator matrix associated with a CTMC of 18 states

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Q “

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ λ3 λ2 λ1

μ3 ˚ λ3 λ2 λ1

μ3 ˚ λ2 λ1

μ2 ˚ λ3 λ1

μ2 μ3 ˚ λ3 λ1

μ2 μ3 ˚ λ1

μ1 ˚ λ3 λ2 λ1

μ1 μ3 ˚ λ3 λ2 λ1

μ1 μ3 ˚ λ2 λ1

μ1 μ2 ˚ λ3 λ1

μ1 μ2 μ3 ˚ λ3 λ1

μ1 μ2 μ3 ˚ λ1

μ1 ˚ λ3 λ2

μ1 μ3 ˚ λ3 λ2

μ1 μ3 ˚ λ2

μ1 μ2 ˚ λ3

μ1 μ2 μ3 ˚ λ3

μ μ1 μ2 μ3 ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (1.1)

where ˚ denotes the negated off-diagonal row sums. Note that Q has 67
nonzero off-diagonal entries among 306 possible ones; hence, it would nor-
mally be classified as a sparse matrix [93, 130, 277, 280, 305, 310].

Sparse matrices can be stored in many different formats, but the two most
commonly used ones for our purposes are the coefficient sparse format and the
row sparse format. In the coefficient sparse format, nonzeros of the matrix,
their row indices, and their column indices are stored in the same order in a
floating-point array a, an integer array ia, and an integer array ja, each of
length equal to the number of nonzeros in Q. In the row sparse format, the a
and ja arrays are as in the coefficient sparse format with the constraint that
nonzeros must have been stored row by row starting from the lowest indexed
row up to the highest indexed row. The array ia is of length n ` 1 and
stores the starting indices of rows in a and ja. For instance, ia(i) gives the
starting index of row i in a and ja so that ia(i+1) - ia(i) is the number
of nonzeros in row i.

It is well known that the minimum of exponentially distributed random
variables is exponentially distributed with rate parameter equal to the sum of
the rate parameters of the random variables. Therefore, the absolute value of a
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diagonal entry may be perceived as the rate of the exponentially distributed
exit time from that particular state. This implies that row sums of Q are
necessarily 0.

Let the initial probability distribution vector of Q be denoted by π0.
Clearly, π0 P R

1ˆn
ě0 and π0e “ 1. The ith entry of π0, written π0piq, de-

notes the probability of the process being in state i at time 0. Then the
transient probability distribution vector πt P R

1ˆn
ě0 at time t P Rě0 satisfies

dπt

dt
“ πtQ, πte “ 1 (1.2)

and is given by
πt :“ π0e

Qt.

Transient solution methods are based on computing the matrix exponential
eQt explicitly or implicitly [305]. Since computing eQt explicitly is not feasible
when Q is large and sparse, we will concentrate on methods that are able to
follow the latter approach. In passing to steady-state analysis, we remark
that almost all methods for transient analysis of large and sparse MCs are
based on vector–matrix multiplications.

There are processes for which limtÑ8 πt exists. Such processes are said to
be ergodic. Whenever this limit exists and therefore the process is ergodic, we
define π :“ limtÑ8 πt and refer to π P R

1ˆn
ě0 as the steady-state (or limiting,

long-run) probability distribution vector. The steady-state vector satisfies

πQ “ 0 , πe “ 1 , (1.3)

and, hence, is also a stationary distribution [165, 305]. For finite CTMCs,
the necessary and sufficient condition for ergodicity is irreducibility, that is,
each state must be reachable from every other state by following the nonzero
transitions in Q. Many properties of transition matrices underlying finite
MCs can be found in [30, 194, 290]. Conditions for ergodicity in irreducible
CTMCs with countably infinite state spaces are given later in the book.

In the Kronecker-based approach,Q is represented exactly using Kronecker
products [92, 260, 320] of smaller matrices and is never explicitly generated.
This is motivated by the fact that models of systems are usually comprised of
interacting submodels and, hence, have multidimensional state spaces. Each
submodel can be considered as representing a separate dimension in this
multidimensional state space. The state of a submodel may either evolve
independently, that is, in isolation from other submodels, or it may evolve
in synchronization with other submodels. To the former case, there corre-
sponds a Kronecker product with all factors except the one associated with
the particular submodel being identity matrices. To the latter case, there
corresponds a Kronecker product with all factors, except the ones associated
with the submodels that need to be synchronized, being identity matrices.
Hence, Q can be represented using sums of such Kronecker products. The im-
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plementation of transient solvers for (1.2) and steady-state solvers for (1.3)
can rest on this compact Kronecker representation, thanks to the existence
of an efficient vector–Kronecker product multiplication algorithm known as
the shuffle algorithm [263].

Example 1. (ctnd.) The CTMC corresponding to (1.1) is the model of a sys-
tem [15] with three submodels as in Figure 1.1 having, respectively, two, one,
and two components, where only one of which is working in each submodel.

Fig. 1.1 Simple availability model with three submodels.

The non-working component(s) in each submodel act as cold spare(s). The
working component in each submodel fails independently of other submodels
with rates of λ1, λ2, and λ3, respectively. When a working component fails,
it is replaced in no time with a cold spare (if there is any left) in the same
submodel. Furthermore, there is one repairman in each submodel who can
repair a failed component independently of other submodels with rates of μ1,
μ2, and μ3, respectively. When all components fail, the model is brought up
by a global repair with rate μ.

To give some examples, in (1.1) state 0 corresponds to all submodels being
intact, state 17 corresponds to all submodels having failed, and state 14
corresponds to failed first and third submodels, while the second submodel is
intact. Overall, this is a model which tries to improve steady-state availability
by using a larger number of redundant components, which themselves do not
need to be highly reliable.

In practice, the representation of Q based on Kronecker products is
obtained using various modeling formalisms. These include compositional
Markovian models such as stochastic automata networks (SANs) [263, 264,
265, 305] and different classes of superposed stochastic Petri nets [129, 195],
hierarchical Markovian models (HMMs) of queueing networks [43], general-
ized stochastic Petri nets (GSPNs) [68], or systems of asynchronously com-
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municating stochastic modules [73], and stochastic process algebras such as
the performance evaluation process algebra (PEPA) [186]. These modeling
formalisms are integrated to various software packages such as the Abstract
Petri Net Notation (APNN) toolbox [7, 22], the Performance Evaluation of
Parallel Systems (PEPS) software tool [25, 38, 138, 259] (see also GTAexpress
[89]), the PEPA Workbench [83, 258], and the Stochastic Model checking An-
alyzer for Reliability and Timing (SMART) [81].

An advantage of HMMs is their ability to represent Q using Kronecker
products without introducing unreachable states. Matrix diagrams [82] and
representations for specific models as in [179] can also be used to achieve the
same effect when state spaces are expressed compositionally. There are other
approaches that can be used to deal with unreachable states as discussed
in [26, 49, 57]. At the beginning of our discussion, we make the assump-
tion that the product state space of the model composed of submodels does
not have unreachable states and is irreducible. Later we relax this assump-
tion and show how this problem can be tackled using the HMM approach.
Yet, in many practical applications, Q is very large and has many nonze-
ros necessitating its storage in memory using Kronecker products. In order
to analyze Markovian models based on Kronecker products efficiently, var-
ious algorithms for vector–Kronecker product multiplication based on the
shuffle algorithm are devised [26, 27, 57, 88, 110, 136, 137, 265, 266] and
used as kernels in iterative solution techniques proposed for different mod-
eling formalisms. The transient distribution in (1.2) can be computed using
vector–Kronecker product multiplications as in [43]. The steady-state distri-
bution in (1.3) also needs to be computed using vector–Kronecker product
multiplications, since direct methods based on complete factorizations, such
as LU factorization through Gaussian elimination (GE) [125, 158, 302, 305],
normally introduce new nonzeros which cannot be accommodated [100].

The two papers [50, 307] provide good overviews of iterative solution tech-
niques for the analysis of MCs based on Kronecker products. Solution of
lower- and upper-triangular systems of linear equations arising from a com-
plete factorization of a Kronecker product is the subject of [135]. The ap-
proach relies on factorizing the smaller factors making up the Kronecker
product. The problem with this approach is that even if the factoriza-
tion existed, it is not clear why the resulting smaller lower- and upper-
triangular factors should also be sparse. Issues related to reachability analysis,
vector–Kronecker product multiplication, hierarchical state space generation
in Kronecker-based matrix representations for large Markovian models are
surveyed in [70]. A comparison of the merits of the SAN and GSPN model-
ing formalisms using the PEPS and SMART software packages can be found
in [80]. Along a different line, [91, 142, 146] give conditions for SANs to have
product–form steady-state distributions, whereas transient availability of a
grid of 5,000 CPUs is investigated in [37] using SANs. Finally, graph-theoretic
arguments are used in [147] to aid the steady-state analysis of SANs.
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Although Kronecker representations for CTMCs underlying many mod-
els of practical applications have been considered, so far only a handful of
DTMCs based on Kronecker products appeared in the literature. For in-
stance, the one in [267] is a model of synchronization via message passing
in a distributed system, the one in [264] is a model of the mutual exclusion
algorithm of Lamport, those in [144, 145] are models of buffer admission
mechanisms for asynchronous transfer mode (ATM) networks from telecom-
munications, the one in [323] is a multiservices resource allocation policy for
wireless ATM networks, and the one in [141] is a model to compute the loss
rate in a multistage ATM switch. The model in [175] is a larger, scalable, and
extended version of that in [323]. It serves as a good example showing that the
underlying MC of a discrete-time model based on Kronecker products can be
relatively dense and numerically difficult to analyze. These case studies are
based on the SAN modeling formalism, whereas [286] extends the Kronecker
representation to stochastic Petri nets with discrete phase-type distributions.
Sufficient conditions for DTMCs with transition probability matrices in the
form of generalized Kronecker products to have product–form solutions are
investigated in [143]. Clearly, the area of DTMCs based on Kronecker prod-
ucts can use other case studies and formalisms.

Having been able to represent the generator matrix compactly using Kro-
necker products for many years, the challenge in Kronecker-based Markovian
analysis was to perform vector–Kronecker product multiplication in as fast
and as little of memory possible. This operation is known to be executed
efficiently by the shuffle algorithm [136] when the factors in the Kronecker
product terms are relatively dense. On the other hand, it may be more ef-
ficient to obtain nonzeros of the generator matrix in Kronecker form on the
fly and multiply them with corresponding elements of the vector [57] when
the factors are relatively sparse. Inspired by these observations, recently the
shuffle algorithm has been improved to avoid unnecessary floating-point op-
erations (flops) that evaluate to zero during the course of the multiplication
and possibly reduce the amount of memory used [110]. This is done by ex-
ploiting zero rows and columns in the smaller submodel transition matrices.
It has been shown that in many cases the modified shuffle algorithm performs
a smaller number of flops than the shuffle algorithm and the algorithm that
generates nonzeros on the fly, sometimes with a minimum number of flops
and as little of memory possible. Nevertheless, all of these vector–Kronecker
product multiplication algorithms still require the allocation of full vectors of
length equal to the reachable state space size, which becomes the bottleneck
in analysis due to the exponential increase in the sizes of the vectors with the
increasing number of dimensions.

With the recent advances in storing and analyzing dense multidimensional
data numerically [177], a different approach for reducing memory allocated
to vectors in Kronecker-based Markovian analysis has been proposed [64].
As opposed to the full-vector approach described above, we refer to this
as the compact vector approach since Kronecker products of shorter vectors
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are used to represent data with a user controllable accuracy [163, 178, 202,
203, 256]. In other words, essential information that exists in the data of
a full vector is extracted and stored using a number of shorter vectors by
the help of a particular Kronecker decomposition at the expense of some
approximation error that can be bounded. This approach has paved the way
for an altogether different line of research [63, 64, 66, 117, 118] that enables us
to investigate the compactness of the proposed Kronecker representation for
vectors in comparison to the quality of the solution obtained during analysis.

Here we take a vector–matrix approach in discussing recent results related
to the modeling and analysis of multidimensional MCs based on Kronecker
products. The book may be viewed as consisting of two parts. The first part
is formed of Chapter 2 through Chapter 4 which provide the necessary back-
ground to follow the developments in the field regarding the Kronecker-based
modeling of multidimensional MCs. The second part concentrates on numer-
ical analysis methods for such representations and is formed of Chapter 5
through Chapter 7. The analysis part is based on concepts introduced in the
modeling part but can still be mostly read by itself. In fact, this was also the
premise of [101] which is primarily on analysis.

The first part of the book starts with Chapter 2, which provides back-
ground information on Kronecker operations and explains in detail the
Kronecker-based SAN and HMM modeling formalisms used in representing
the generator matrix compactly on the small CTMC in Chapter 1, another
small example but having unreachable states, and two larger example mod-
els from the areas of systems availability and queueing networks. We adopt a
Kronecker-based representation similar to that of HMMs which concentrates
on the reachable state space and uses sums of Kronecker products but intend
to keep the discussion independent from modeling formalisms so that it is
easier to follow and tailor. In the same chapter, we show that the genera-
tor matrix underlying a multidimensional CTMC has a rich structure which
is nested and recursive. Having covered SANs and HMMs and argued why
representing the reachable state space as in HMMs is important, Chapter 3
looks into the problem of representing the reachable state space of a multidi-
mensional MC as a union of Cartesian products of subsets of submodel state
spaces. In doing this, it considers a merge-based approach and a refinement-
based approach. In this chapter, two other example models from the areas
of production lines and communications protocols are introduced. The sec-
ond example which is modeled using a GSPN is investigated in detail from a
Kronecker-based perspective. Again results of experiments on problems that
compare and contrast these approaches are reported. Chapter 4 considers
preprocessing of the Kronecker representation so as to expedite numerical
analysis. We discuss permuting the nonzero structure of the generator ma-
trix underlying the CTMC symmetrically by reordering, changing the orders
of the nested blocks by grouping, and reducing the size of the state space by
lumping. The effects of reordering [100] are demonstrated through the LU
factorization [158, 302, 305] of diagonal blocks in the nested partitioning as-
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sociated with the Kronecker structure on the communications protocol model
introduced earlier. This approach is related to taking advantage of common
Schur factors in diagonal blocks. It is in this chapter that we also discuss how
the countably infinite state space of a multidimensional CTMC can be trun-
cated judiciously using Lyapunov functions for steady-state analysis. Three
example models from the areas of systems of stochastic chemical kinetics and
queueing networks are used to show how this procedure can be performed in
practice. The third example in Chapter 4 serves as a relatively complicated
case study.

In the second part of the book, Chapter 5 is about the shuffle and modi-
fied shuffle algorithms used in the full-vector approach for vector–Kronecker
product multiplication. The two algorithms are compared on the small ex-
ample, and results of numerical experiments on larger problems are reported
from the literature. This chapter also discusses the recent developments in
representing solution vectors compactly and how vector–Kronecker product
multiplication can be performed in that context. Chapter 6 is about the
steady-state analysis of multidimensional CTMCs based on Kronecker prod-
ucts with block iterative, preconditioned projection, multilevel, decomposi-
tional, and matrix analytic methods. For all the iterative methods discussed,
it is essential to consider splitting the smaller matrices corresponding to sub-
models. The examples introduced in Chapters 2, 3, and 4 are again used to
illustrate various concepts throughout the discussion on iterative methods.
Chapter 6 closes by touching issues that need to be addressed when compact
solution vectors are used in the implementation of iterative methods. Chap-
ter 7 is devoted to the transient analysis of multidimensional CTMCs based
on Kronecker products using uniformization, explicit and implicit ordinary
differential equation (ODE) solvers. When the model has a countably infinite
state space, it must be truncated at each time step until the horizon is reached
by dynamically expanding the set of important states using reachability in-
formation and probabilistic arguments, solving for the transient distribution
of the particular set of states at that time step and then shrinking the set
so that it once again has only important states to be considered at the next
time step. We should remark that although explicit transient solvers can be
implemented using vector–Kronecker product multiplication alone, implicit
transient solvers need to use iterative linear system solvers similar to those in
Chapter 6. A discussion on how the chemical master equation can be tackled
using an implicit ODE solver with compact solution vectors appears at the
end of Chapter 7. Chapter 8 provides the conclusion.

Our intention is for the book to be read sequentially. The reachable state
space representation in Chapter 3 happens to be at the heart of the discus-
sion. All techniques that follow in Chapter 4 through Chapter 7 are based
on understanding how the reachable state space is represented on computer.
Knowing the SAN formalism in Chapter 2 alone will not help to understand
this essential part of the book, because SANs do not differentiate between
reachable and unreachable states and end up representing both. In this sense,
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one cannot just skip some of the material, such as the section on HMMs in
Chapter 2, and delve into a particular chapter randomly. In order to benefit
from the discussion, one should definitely read and understand Chapter 3
after Chapter 2. Furthermore, one who does not follow Chapter 3 closely will
have difficulty implementing any of the methods discussed after Chapter 3.
Similarly, understanding the analysis methods in Chapter 6 and Chapter 7
requires one to understand Chapter 5 and the Kronecker product operation
introduced at the beginning of Chapter 2 thoroughly. Along this line, we
should add that the discussion in this book is also more advanced compared
to that in [101] since the techniques in this book are presented for models
whose reachable state spaces need not be equal to their product state spaces.
Although [101] could be understood by knowing SANs alone, this book can-
not be.

All numerical experiments in the book are performed on an Intel Core i7
2.6 GHz processor with 16 GB main memory under Linux. The results can be
extended to DTMCs based on Kronecker products with some modifications.
Areas that need further research are mentioned within the sections as they
are discussed. Finally, we remark that the subject of parallel implementations
exploiting the Kronecker representation of MCs is briefly touched in Chap-
ters 6 and 7, but it is still an open area for research deserving specialized
treatment.



Chapter 2

Modeling with Kronecker Products

The Kronecker (or tensor) product of two (rectangular) matrices A and B
with A “ rapiA, jAqs is

A b B “ rapiA, jAqBs .

Or more formally, given A P R
nAˆmA and B P R

nBˆmB , A b B yields the
(rectangular) matrix C P R

nAnBˆmAmB whose entries satisfy

cpiC , jCq “ apiA, jAqbpiB , jBq

with iC “ iAnB ` iB and jC “ jAmB ` jB

for

piA, jAq P t0, . . . , nA ´ 1u ˆ t0, . . . ,mA ´ 1u ,

piB , jBq P t0, . . . , nB ´ 1u ˆ t0, . . . ,mB ´ 1u .

Here, b is the Kronecker product [92, 320] operator and ˆ is the Cartesian
product [162] operator. Note that in a two-dimensional representation, the
row indices of C are in t0, . . . , nA ´ 1u ˆ t0, . . . , nB ´ 1u, whereas its col-
umn indices are in t0, . . . ,mA ´ 1u ˆ t0, . . . ,mB ´ 1u. Hence, the ordering of
rows and columns of C with respect to this two-dimensional representation
is lexicographical, since

cpiC , jCq “ cppiA, iBq, pjA, jBqq “ cpiAnB ` iB , jAmB ` jBq .

Kronecker product is associative and defined for more than two matrices.
To explain this further for a MC setting, let us consider the Kronecker product
of H square matrices as in
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X “ Xp1q
b ¨ ¨ ¨ b XpHq

“

H
â

h“1

Xphq ,

where Xphq P R
nhˆnh and row/column indices of Xphq are in Sphq “

t0, . . . , nh ´ 1u for h “ 1, . . . , H. Therefore, X P R
nˆn with n “

śH
h“1 nh,

and the ordered H-dimensional tuples

i “ pi1, . . . , iHq P

H
ą

h“1

Sphq and j “ pj1, . . . , jHq P

H
ą

h“1

Sphq

may be used to represent the row and column indices of X, respectively.
Hence, Kronecker product of H square matrices implies a one-to-one onto
mapping between an H-dimensional state space and a one-dimensional (or
flat) state space that are lexicographically ordered, and naturally, Kronecker
products have been used to define the transition matrices of MCs with mul-
tidimensional state spaces.

Having defined the Kronecker product, we are in a position to introduce
the Kronecker (or tensor) sum of two square matrices. Given A P R

nAˆnA

and B P R
nBˆnB , their Kronecker sum A ‘ B yields the square matrix C P

R
nAnBˆnAnB which satisfies

C “ A ‘ B “ A b InB
` InA

b B .

Here, ‘ is the Kronecker sum operator. More generally, Kronecker sum of H
square matrices Xphq P R

nhˆnh as in

Xp1q
‘ ¨ ¨ ¨ ‘ XpHq

“

H
à

h“1

Xphq

satisfies
H

à

h“1

Xphq
“

H
ÿ

h“1

Iśh´1
l“1 nl

b Xphq
b IśH

l“h`1 nl
.

As it can be seen from the last identity, in fact Kronecker sum is a summation
whose H terms are formed for h “ 1, . . . , H using two Kronecker product
operators separating the identity matrix of order

śh´1
l“1 nl, the square matrix

Xphq, and the identity matrix of order
śH

l“h`1 nl, respectively. As such, the

first term lacks the identity matrix to the left of Xp1q, and the last term lacks
the identity matrix to the right of XpHq. This can be easily validated from
the identity used in the definition of the Kronecker sum of two matrices A
and B. Although it is not needed as a computational tool in our analyses,
Kronecker sum enables the composition of local transitions of submodels in
our modeling framework as we will see in the next section.
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In passing to our discussion on modeling with Kronecker products, we
remark that an important property of a Kronecker product is its compatibility
with matrix multiplication under certain conditions. That is, if A, B, C, and
D are matrices of suitable sizes so that AC and BD exist, then

pA b BqpC b Dq “ pACq b pBDq .

We will see the usefulness of this property in the design of the shuffle algo-
rithm in Chapter 5.

2.1 Stochastic Automata Networks

We consider a model of a system with submodels identified at a sufficient level
of detail to facilitate analysis as discussed at the beginning of Chapter 1. In a
stochastic automata network (SAN) [263, 264, 265, 305], each submodel of the
Markovian model at hand is represented by a stochastic automaton. Before
we introduce the definition of the generator matrix of a SAN using Kronecker
sums and Kronecker products, let us explain the two kinds of transitions that
affect the automata to motivate these operations.

When automata associated with submodels are non-interacting, descrip-
tion of each automaton consists of local transitions only. Each local transition
changes the state of the particular automaton with which it is associated and
has no influence on the state of other automata. Interactions among sub-
models are captured by synchronizing transitions. Synchronization among
automata happens when a state change in one automaton causes a simul-
taneous state change in other automata. As we will see, local transitions
and synchronizing transitions in SANs yield Kronecker sums and Kronecker
products, respectively.

A continuous-time Markovian model of H submodels can be represented
by associating stochastic automaton Aphq defined on the state space Sphq “

t0, . . . , nh ´ 1u with submodel h for h “ 1, . . . , H. Local transitions of Aphq

are represented by local transition rate matrix Q
phq

l P R
nhˆnh with row sums

of 0 for h “ 1, . . . , H. The diagonal entries of Q
phq

l are equal to their negated
off-diagonal row sums. When there are K synchronizing transitions in the

model, Aphq has the synchronizing transition matrix Q
phq
ek P R

nhˆnh
ě0 , which

represents the contribution of Aphq to synchronizing transition ek and the

corresponding diagonal corrector matrix Q̄
phq
ek P R

nhˆnh for k “ 1, . . . ,K.
The automaton that triggers a synchronizing transition is called the mas-

ter, and the others that get affected by the synchronizing transition are called
the slaves [136]. Nevertheless, many times automata are not in a master–slave
relationship from the point of view of the synchronizing transition but act
together in the manner of a rendezvous to realize the transition. Yet, in the
SAN modeling formalism, one of the automata that participates in a syn-
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chronizing transition is identified as the master and the other(s) that are
affected as the slave(s) in order to specify the matrices associated with the
transition. With this understanding, synchronizing transition matrices are ei-
ther transition rate matrices corresponding to master automata or transition
probability matrices corresponding to slave automata. If Aphq for some h is

not involved in synchronizing transition ek, then Q
phq
ek “ Q̄

phq
ek “ Inh

, where
nh “ |Sphq| and Inh

is the identity matrix of order nh.
The generator matrix corresponding to the SAN model is then given by

Q “ Ql ` Qe ` Q̄e, (2.1)

where

Ql “

H
à

h“1

Q
phq

l , Qe “

K
ÿ

k“1

H
â

h“1

Qphq
ek

, Q̄e “

K
ÿ

k“1

H
â

H“1

Q̄phq
ek

.

The Kronecker representation in (2.1) associated with the generator matrix is
referred to as the descriptor of the SAN. Here, the third term of the descriptor,
Q̄e, ensures that the row sums of Q are zero.

The H-dimensional state space of the CTMC underlying Q is given by

S “

H
ą

h“1

Sphq ,

the product state space. Observe that |S| “
śH

h“1 |Sphq| “
śH

h“1 nh “ n.
Furthermore, the one-dimensional value of state i “ pi1, . . . , iHq P S, where
ih P Sphq for h “ 1, . . . , H, may be obtained from

i “

H
ÿ

h“1

ih

H
ź

l“h`1

nl .

When implementing an algorithm, many times one needs to have a mapping
from the one-dimensional state space to the multidimensional state space,
and vice versa, since solution vectors are one-dimensional and appropriate
entries of them need to be accessed. Therefore, we will be using the one-
dimensional and multidimensional representations of states interchangeably
throughout the book.

In general, there is no canonical form for SANs, and one has flexibility
in designating the master and the slave(s) of a synchronizing transition and
assigning real numbers to the respective entries of their transition matrices
so that when the real numbers are multiplied their product gives the rate
corresponding to the particular transition. Without loss of generality, we
assume that synchronizing transition probability matrices of a SAN have
row sums of 1 or 0. In fact, each SAN can be transformed to this form which
we call proper [173]. Observe that in this form, a row sum of 0 (that is, a zero

row) in row ih of synchronizing transition probability matrix Q
phq
ek models the

inhibition of synchronizing transition ek when Aphq is in state ih.
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Local transitions can be constant, meaning their rates do not depend on
the state of other automata, or they can be functional. When a local tran-
sition is functional, its transition rate is a nonnegative real-valued function
that depends on the state of other automata [136]. We remark that automata
having local transitions that are functional cease to be non-interacting. Sim-
ilar to local transitions, synchronizing transitions can be constant or func-
tional. Note that if a SAN consists of only nonfunctional local transitions
and does not have any synchronizing transitions, then its automata are non-
interacting, and therefore, each automaton can be analyzed separately, imply-
ing a product–form probability distribution. Such models are not interesting
and therefore will not be considered. On the other hand, to the contrary of
what one may think, it is possible to have a SAN with no local transitions.
In that case, there must be at least one synchronizing transition so that
there is interaction among automata and the model is meaningful. When
there are functional entries in the submodel transition matrices, Kronecker
products/sums become generalized Kronecker products/sums [265]. We will
return to functional transitions in SANs in our second example.

Example 1. (ctnd.) Let us revisit the simple availability model in Figure 1.1.
This model can be specified as a SAN having three automata and one syn-
chronizing transition (i.e., H “ 3,K “ 1) with Aphq representing submodel
h for h “ 1, 2, 3 and state space sizes of n1 “ 3, n2 “ 2, and n3 “ 3.

A possible state representation for Aphq is one in which 0 represents the
state with no failed components, while nh ´ 1 represents the state with all
failed components in submodel h. Local transitions represent local component
failures and repairs in each submodel, whereas the synchronizing transition
represents the global repair which takes place when all submodels have failed.
In this model, all transitions have constant rates associated with them as in
Figure 2.1.

With this understanding, assumingAp1q is the master for the synchronizing
transition, and again letting ˚ denote the negated off-diagonal row sums, the
local transition rate matrices are given by

0 1 2
0 1

0 1 2

Q
p1q

l “

0
1
2

¨

˝

˚ λ1

μ1 ˚ λ1

μ1 ˚

˛

‚ , Q
p2q

l “
0
1

ˆ

˚ λ2

μ2 ˚

˙

, Q
p3q

l “

0
1
2

¨

˝

˚ λ3

μ3 ˚ λ3

μ3 ˚

˛

‚ .

The synchronizing transition matrices are

0 1 2
0 1

0 1 2

Qp1q
e1 “

0
1
2

¨

˝

μ

˛

‚ , Qp2q
e1 “

0
1

ˆ

1

˙

, Qp3q
e1 “

0
1
2

¨

˝

1

˛

‚ ,
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Fig. 2.1 SAN for simple availability model with three submodels

and the diagonal corrector matrices become

0 1 2
0 1

0 1 2

Q̄p1q
e1 “

0
1
2

¨

˝

´μ

˛

‚ , Q̄p2q
e1 “

0
1

ˆ

1

˙

, Q̄p3q
e1 “

0
1
2

¨

˝

1

˛

‚ .

Several comments are due. First, note that Ql in (2.1) can be expressed as

Ql “

3
à

h“1

Q
phq

l “ Q
p1q

l b I6 ` I3 b Q
p2q

l b I3 ` I6 b Q
p3q

l .

Hence, Ql is a sum of Kronecker products in which each term has a single
factor that is not identity. On the other hand,

Qe “ Qp1q
e1 b Qp2q

e1 b Qp3q
e1 and Q̄e “ Q̄p1q

e1 b Q̄p2q
e1 b Q̄p3q

e1 .

Then from (2.1), we have Q “ Ql`Qe`Q̄e , a sum of five Kronecker product
terms yielding (1.1).

Observe that we could have chosen a different ordering for the automata
(i.e., numbered automata differently), a different state representation, (i.e.,
numbered states differently) in each automaton, or even the master of syn-
chronizing transition e1 differently. Yet, these would all lead to different sym-
metric permutations of the underlying generator matrix Q. This is something
to which we return in Chapter 4.
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Now, if we assume the absence of a matrix in a Kronecker product in-
dicates that it is identity, then it is possible to do without storing identity
matrices. Therefore, the number of floating-point values stored in the SAN
representation of Q is 24, whereas it is 85 for the flat representation in (1.1).

The storage discrepancy between Kronecker and flat representations be-
comes substantial for larger values of the state space size, n, and for denser
submodel transition matrices. We remark that it is also possible to take ad-
vantage of identity matrices in the vector–Kronecker product multiplication
algorithms discussed in Chapter 5.

Now, let us assume that the SAN descriptor in (2.1) is written simply as

Q “

H`2K
ÿ

k“1

H
â

h“1

Q
phq

k . (2.2)

Without losing generality, we assume that the first H of the H ` 2K Kro-
necker product terms represents local transitions, the kth one being that of
submodel k, whereas the remaining 2K Kronecker product terms represents
synchronizing transitions and their diagonal correctors. In each of the first H
terms, there is only one matrix different than identity; for the kth term, it
is the kth matrix. In each of the remaining 2K terms, there are at least two
matrices different than the identity matrix, and those correspond to submod-
els that get synchronized by that particular transition. The existence of an
identity matrix in a term implies that the corresponding submodel does not
change its state during that particular transition. Hence, only one submodel
may change its state during a local transition, and at least two submodels
may change their states during a synchronizing transition. If a particular
automaton does not have local transitions, then its corresponding local tran-
sition rate matrix may be set to the zero matrix, which also need not be
stored.

There is a rich structure associated with the Kronecker representation
in (2.2). This structure is nested and recursive [58, 59, 60, 98, 172, 174, 175,
315]. Let level 0 denote the highest level at which Q is perceived as a single

block of order n “
śH

h“1 nh.

Example 1. (ctnd.) Since n “ 18 due to n1 “ n3 “ 3, and n2 “ 2, at level 0
we have the order 18 matrix (cf. (1.1))
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0
0
0

0
0
1

0
0
2

0
1
0

0
1
1

0
1
2

1
0
0

1
0
1

1
0
2

1
1
0

1
1
1

1
1
2

2
0
0

2
0
1

2
0
2

2
1
0

2
1
1

2
1
2

Q “

0 0 0
0 0 1
0 0 2
0 1 0
0 1 1
0 1 2
1 0 0
1 0 1
1 0 2
1 1 0
1 1 1
1 1 2
2 0 0
2 0 1
2 0 2
2 1 0
2 1 1
2 1 2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ λ3 λ2 λ1

μ3 ˚ λ3 λ2 λ1

μ3 ˚ λ2 λ1

μ2 ˚ λ3 λ1

μ2 μ3 ˚ λ3 λ1

μ2 μ3 ˚ λ1

μ1 ˚ λ3 λ2 λ1

μ1 μ3 ˚ λ3 λ2 λ1

μ1 μ3 ˚ λ2 λ1

μ1 μ2 ˚ λ3 λ1

μ1 μ2 μ3 ˚ λ3 λ1

μ1 μ2 μ3 ˚ λ1

μ1 ˚ λ3 λ2

μ1 μ3 ˚ λ3 λ2

μ1 μ3 ˚ λ2

μ1 μ2 ˚ λ3

μ1 μ2 μ3 ˚ λ3

μ μ1 μ2 μ3 ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

At the next level, which we call level 1, Q is an pn1 ˆ n1q block matrix

with blocks of order
śH

h“2 nh.

Example 1. (ctnd.) At level 1, we have the p3 ˆ 3q block matrix

Q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ λ3 λ2 λ1

μ3 ˚ λ3 λ2 λ1

μ3 ˚ λ2 λ1

μ2 ˚ λ3 λ1

μ2 μ3 ˚ λ3 λ1

μ2 μ3 ˚ λ1

μ1 ˚ λ3 λ2 λ1

μ1 μ3 ˚ λ3 λ2 λ1

μ1 μ3 ˚ λ2 λ1

μ1 μ2 ˚ λ3 λ1

μ1 μ2 μ3 ˚ λ3 λ1

μ1 μ2 μ3 ˚ λ1

μ1 ˚ λ3 λ2

μ1 μ3 ˚ λ3 λ2

μ1 μ3 ˚ λ2

μ1 μ2 ˚ λ3

μ1 μ2 μ3 ˚ λ3

μ μ1 μ2 μ3 ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

with blocks of order 6.

At level 2,Q is an pn1n2ˆn1n2q block matrix with blocks of order
śH

h“3 nh.
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Example 1. (ctnd.) At level 2, we have the p6 ˆ 6q block matrix

Q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ λ3 λ2 λ1

μ3 ˚ λ3 λ2 λ1

μ3 ˚ λ2 λ1

μ2 ˚ λ3 λ1

μ2 μ3 ˚ λ3 λ1

μ2 μ3 ˚ λ1

μ1 ˚ λ3 λ2 λ1

μ1 μ3 ˚ λ3 λ2 λ1

μ1 μ3 ˚ λ2 λ1

μ1 μ2 ˚ λ3 λ1

μ1 μ2 μ3 ˚ λ3 λ1

μ1 μ2 μ3 ˚ λ1

μ1 ˚ λ3 λ2

μ1 μ3 ˚ λ3 λ2

μ1 μ3 ˚ λ2

μ1 μ2 ˚ λ3

μ1 μ2 μ3 ˚ λ3

μ μ1 μ2 μ3 ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

with blocks of order 3.

Continuing in this manner, at level H, Q is a p
śH

h“1 nh ˆ
śH

h“1 nhq, in
other words, pn ˆ nq, block matrix with blocks of order 1.

Example 1. (ctnd.) Finally, at level 3, we have the p18 ˆ 18q block matrix
with blocks of order 1 as in (1.1).

More formally, for l “ 0, . . . , H we have

bl “

"

1 if l “ 0
n2
l bl´1 otherwise

and ol “

"

n if l “ 0
ol´1{nl, otherwise

, (2.3)

where bl and ol denote number and order of blocks at level l “ 0, 1, . . . , H,
respectively. Unrolling the recurrences, we obtain

bl “

l
ź

h“1

n2
h and ol “

H
ź

h“l`1

nh .

Note that at level l there are
?
bl blocks each of order ol along the diagonal

of Q. Block ppi1, . . . , ilq, pj1, . . . , jlqq of Q at level l is given by

Qppi1, . . . , ilq, pj1, . . . , jlqq

“

H`2K
ÿ

k“1

˜

l
ź

h“1

q
phq

k pih, jhq

¸ ˜

H
â

h“l`1

Q
phq

k

¸

for l “ 0, . . . , H , (2.4)
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with the understanding that l “ 0 yields Q and l “ H yields the scalar

qppi1, . . . , iHq, pj1, . . . , jHqq “

H`2K
ÿ

k“1

H
ź

h“1

q
phq

k pih, jhq

The nested structure associated with (2.2) is also valid in the presence of
functional transitions. Now, let us consider a slightly different example.

Example 2. The model of a processing node with three submodels is depicted
in Figure 2.2. The first submodel corresponds to the two processing elements
(PEs), one acting as a cold spare, the second submodel corresponds to the
bus, and the third submodel corresponds to the two memory elements (MEs).
A processing node is up and running as long as one PE can access one ME
through the bus, implying the PE, the bus, and at least one ME must be
working for the model to be available. If the model is unavailable, no other
components from that model can fail. Furthermore, there is one repairman
in each submodel who can repair a failed component independently of other
submodels. Time to failure is exponentially distributed with rate λ1 for PEs,
λ2 for buses, and λ3 for MEs. Repair times of components are also exponen-
tially distributed. Repair rates of PEs, bus, and MEs are given, respectively,
as μ1, μ2, and μ3.

Letting i “ pi1, i2, i3q be the state representation of the model with i1,
i2, and i3, respectively, denoting the number of failed PEs, bus, and MEs,
we have the 12 reachable states p0, 0, 0q, p0, 0, 1q, p0, 0, 2q, p0, 1, 0q, p0, 1, 1q,
p1, 0, 0q, p1, 0, 1q, p1, 0, 2q, p1, 1, 0q, p1, 1, 1q, p2, 0, 0q, and p2, 0, 1q out of the
3 ˆ 2 ˆ 3 “ 18 states in the product state space of the model. Note that

Fig. 2.2 Another availability model with three submodels
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among the 12 reachable states, the model is available in only 4 of them,
namely, p0, 0, 0q, p0, 0, 1q, p1, 0, 0q, and p1, 0, 1q.

By employing an automaton for each type of component, we can have
a SAN model with three automata and no synchronizing transitions (i.e.,
H “ 3,K “ 0) yet with some local transitions that are functional. Ap1q,
Ap2q, and Ap3q model, respectively, PEs, bus, and MEs with state space sizes
of n1 “ 3, n2 “ 2, and n3 “ 3 as in Figure 2.3.

Fig/Ch2/AutomataAvail

Fig. 2.3 SAN for availability model with three submodels

Note that the 2 in the rate of the transition from state 0 to state 1 in Ap3q

is there because of the existence of two intact MEs that are competing with
each other for failure. This is different than the rate of the transition from
state 0 to state 1 in Ap1q where there is only PE that is working; the other
PE is a cold spare and, therefore, not working and cannot fail.

The local transition rate matrices are given by

0 1 2
0 1

Q
p1q

l “

0
1
2

¨

˝

˚ f1λ1

f1μ1 ˚ f1λ1

f1μ1 ˚

˛

‚ , Q
p2q

l “
0
1

ˆ

˚ f2λ2

f2μ2 ˚

˙

,

0 1 2

Q
p3q

l “

0
1
2

¨

˝

˚ f32λ3

f3μ3 ˚ f3λ3

f3μ3 ˚

˛

‚ ,
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where

f1 “

"

1 if i2 “ 0 and i3 ă 2
0 otherwise

, f2 “

"

1 if i1 ă 2 and i3 ă 2
0 otherwise

,

and f3 “

"

1 if i1 ă 2 and i2 “ 0
0 otherwise

.

Although there are no explicit synchronizing transitions in this SAN, in fact
each local transition in an automaton depends on the state of the other two
automata through the values of the functions f1, f2, and f3. Hence, we have
generalized Kronecker products/sums. It is possible to express this explicitly,
for instance, by placing a lowercase g (for generalized) as a subscript of the
respective operator [136, 137].

The descriptor in (2.1) can be written as

Q “

3
à

h“1

Q
phq

l “ Q
p1q

l b I6 ` I3 b Q
p2q

l b I3 ` I6 b Q
p3q

l .

The sum of the three Kronecker product terms above yields the flat generator
matrix

0
0
0

0
0
1

0
0
2

0
1
0

0
1
1

0
1
2

1
0
0

1
0
1

1
0
2

1
1
0

1
1
1

1
1
2

2
0
0

2
0
1

2
0
2

2
1
0

2
1
1

2
1
2

Q “

0 0 0
0 0 1
0 0 2
0 1 0
0 1 1
0 1 2
1 0 0
1 0 1
1 0 2
1 1 0
1 1 1
1 1 2
2 0 0
2 0 1
2 0 2
2 1 0
2 1 1
2 1 2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ 2λ3 λ2 λ1

μ3 ˚ λ3 λ2 λ1

μ3 ˚

μ2 ˚

μ2 μ3 ˚

μ1 ˚ 2λ3 λ2 λ1

μ1 μ3 ˚ λ3 λ2 λ1

μ1 μ3 ˚

μ1 μ2 ˚

μ1 μ2 μ3 ˚

μ1 ˚

μ1 μ3 ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The number of floating-point values stored in the SAN representation of
Q is 18, whereas it is 42 for its flat representation. Furthermore, the SAN
specification has to somehow code the functions f1, f2, and f3 and provide a
mechanism to evaluate them.
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Observe that the rows and columns corresponding to the unreachable
states (0,1,2), (1,1,2), (2,0,2), (2,1,0), (2,1,1), and (2,1,2) are zero. The un-
reachable states are those for which there are at least two failed submodels,
whereas the operational semantics dictated there be at most one failed sub-
model and there could be no further failures once there is a failed submodel.
Similarly, there cannot be repairs in states that are unreachable.

See [134] for a recent application of the SAN modeling approach in the
presence of unreachable states to the analysis of a production line with mul-
tiple stations in tandem. The second modeling approach we discuss next does
not represent unreachable states.

2.2 Hierarchical Markovian Models

Hierarchical Markovian models (HMMs) are composed of multiple low-level
models (LLMs) and a high-level model (HLM) that defines how LLMs in-
teract. States of the HLM are called macrostates, whereas states defined by
LLMs are called microstates. When there is only one macrostate, the HMM
representation is equivalent to a SAN representation that does not have any
unreachable states. In this representation, each LLM may be viewed as an
automaton. HMMs with multiple macrostates are used to specify models
that have unreachable states in their product state spaces. Formal treatment
of HMMs can be found, for instance, in [45]. Even though the definition of
HMMs can be generalized to more than two model levels, we will be using the
hierarchical structuring suggested in [49] which has one HLM and multiple
LLMs.

In a given HMM with N macrostates numbered 0 through N ´ 1, let H

be the number of LLMs, let Rphq
p be the subset of LLM h’s state space Sphq

mapped to macrostate p (i.e., Rphq
p Ď Sphq), let Tp,w be the set of LLM (when

p “ w, nonlocal) transitions in the pp, wqth entry of the HLM matrix, let αte

be the rate associated with transition te P Tp,w, and let Dppq be the diagonal
(correction) matrix that sums the rows of Q corresponding to macrostate p
to zero for p “ 0, . . . , N ´ 1.

The meaning of these definitions will become clear as we progress into
this section. In particular, we will see that an HMM provides a Kronecker
representation for a model in which unreachable states that exist in its prod-
uct state space are omitted, N is equal to the number of partitions of the
resulting reachable state space, and each macrostate corresponds to a differ-
ent reachable state space partition. Hence, the HLM in an HMM represents
transitions among macrostates, in other words, reachable state space parti-

tions of the model. Note that when N “ 1, p becomes 0 and Rphq
p “ Sphq for

h “ 1, . . . , H as in SANs.
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The HMM therefore defines an pN ˆ Nq block matrix

Q “

¨

˚

˝

Qp0, 0q . . . Qp0, N ´ 1q

...
. . .

...
QpN ´ 1, 0q . . . QpN ´ 1, N ´ 1q

˛

‹

‚

associated with the HLM matrix
¨

˚

˝

T0,0 . . . T0,N´1

...
. . .

...
TN´1,0 . . . TN´1,N´1

˛

‹

‚

and H LLMs. Diagonal block pp, pq of Q corresponding to the pp, pqth entry
of the HLM matrix is given by

Qpp, pq “

H
à

h“1

Q
phq

t0 pRphq
p ,Rphq

p q`
ÿ

tePTp,p

αte

H
â

h“1

Q
phq

te pRphq
p ,Rphq

p q`Dppq, (2.5)

where t0 is used to denote local transitions. When N “ 1, this representation
is identical to that of the SAN descriptor in (2.1). The exception is that
the transition rate αte in the second term appears in front of the Kronecker
product rather than being multiplied with the transition matrix of the master
automaton in SANs and therefore hidden.

When there are multiple macrostates (i.e., N ą 1), the off-diagonal block
pp, wq of Q corresponding to the pp, wqth entry of the HLM matrix for p, w “

0, . . . , N ´ 1 and p ‰ w is given by

Qpp, wq “
ÿ

tePTp,w

αte

H
â

h“1

Q
phq

te pRphq
p ,Rphq

w q . (2.6)

By moving the rates αte outside the transition matrices, the HMM repre-
sentation circumvents having to identify one LLM as master and the other
LLMs as slaves of transition te. The transition rates are scalars that multiply
the corresponding Kronecker products.

When there are multiple macrostates, Q is a block matrix having as many
blocks in each dimension as the number of macrostates (i.e., order of the
HLM matrix). The diagonal and off-diagonal blocks of this partitioning are,
respectively, the Qpp, pq and Qpp, wq matrices defined by (2.5) and (2.6). The
diagonal of Q is formed of its negated off-diagonal row sums and may be
stored explicitly as a vector or can be generated from sums of Kronecker
products using the identity [61]



2.2 Hierarchical Markovian Models 27

Dppq “ ´

H
à

h“1

diagpQ
phq

t0 pRphq
p ,Rphq

p qeq

´

N´1
ÿ

w“1

ÿ

tePTp,w

αte

H
â

h“1

diagpQ
phq

te pRphq
p ,Rphq

w qeq (2.7)

for p “ 0, . . . , N ´ 1 when needed.
Macrostates in an HLM may have different numbers of microstates when

LLMs have partitioned state spaces. The microstates corresponding to each
macrostate result from the Cartesian product of the state space partitions of
LLMs that are mapped to that particular macrostate without unreachable
states. This is something we will explain in detail through the examples in
this chapter but also investigate further in Chapter 3.

Now, let us show how we can represent the availability model with three
submodels and 12 reachable states in Example 2 as an HMM.

Example 2. (ctnd.) First we need to specify a partitioning for the reachable
state space, R, of the model. Given Sp1q “ Sp3q “ t0, 1, 2u and Sp2q “ t0, 1u

as the state spaces of the LLMs, and

R “ tp0, 0, 0q, p0, 0, 1q, p0, 0, 2q, p0, 1, 0q, p0, 1, 1q, p1, 0, 0q,

p1, 0, 1q, p1, 0, 2q, p1, 1, 0q, p1, 1, 1q, p2, 0, 0q, p2, 0, 1qu ,

we remark that |R| “ 12, whereas |S| “ 18, hence, R Ă S, where S “
Ś3

h“1 Sphq is the product state space.
As it will soon become clear, a suitable partitioning seems to be

R “ R0 Y R1 Y R2 Y R3 ,

where

R0 “ tp0, 0, 0q, p0, 0, 1q, p1, 0, 0q, p1, 0, 1qu , R1 “ tp2, 0, 0q, p2, 0, 1qu ,

R2 “ tp0, 1, 0q, p0, 1, 1q, p1, 1, 0q, p1, 1, 1qu , R3 “ tp0, 0, 2q, p1, 0, 2qu .

Note that R0 corresponds to those states in which the model is available,
whereas Rp corresponds to those states in which the model is unavailable
and this unavailability is due a failed submodel p “ 1, 2, 3.

We can express the reachable state space partitions above as

R0 “

3
ą

h“1

Rphq

0 , R1 “

3
ą

h“1

Rphq

1 , R2 “

3
ą

h“1

Rphq

2 , R3 “

3
ą

h“1

Rphq

3 ,

where

Rp1q

0 “ Rp1q

2 “ Rp1q

3 “ Rp3q

0 “ Rp3q

1 “ Rp3q

2 “ t0, 1u , Rp1q

1 “ Rp3q

3 “ t2u ,
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Rp2q

0 “ Rp2q

1 “ Rp2q

3 “ t0u , and Rp2q

2 “ t1u

Hence, we contemplate N “ 4 macrostates.
The mapping between HLM states and LLM states dictated by the parti-

tioning of LLM state spaces is shown in Table 2.1.

Table 2.1 Mapping between HLM and LLM states in availability model with three sub-
models

HLM LLM 1 LLM 2 LLM 3 # of microstates

0 0:1 0:0 0:1 2 . 1 . 2 “ 4
1 2:2 0:0 0:1 1 . 1 . 2 “ 2
2 0:1 1:1 0:1 2 . 1 . 2 “ 4
3 0:1 0:0 2:2 2 . 1 . 1 “ 2

In the particular model under consideration, six transitions denoted by t1
through t6 take place in the HLM and affect the LLMs. These transitions are
captured by the p4 ˆ 4q HLM matrix

0 1 2 3
0
1
2
3

¨

˚

˚

˝

tt1, t3, t4, t6u tt1u tt2u tt3u

tt4u tt6u

tt5u tt4, t6u

tt6u tt4u

˛

‹

‹

‚

. (2.8)

Transitions t1 through t3 represent the failure of a working component, while
t4 through t6 represent the repair of a failed component in LLMs 1 through
3, respectively.

Other than Kronecker products due to the depicted transitions in (2.8),
there is a Kronecker sum implicitly associated with each diagonal entry of
the HLM matrix. Each Kronecker sum is formed of three LLM matrices
corresponding to local transition t0. The matrices Q

p1q

t0 , Q
p2q

t0 , Q
p3q

t0 associated
with local transitions are all 0 in this HMM.

To each transition t1 through t6 corresponds a Kronecker product of three
LLM matrices. The matrices associated with those LLMs that do not partic-
ipate in a transition are all identity. LLM 1 participates in t1 and t4 with the

matrices Q
p1q

t1 and Q
p1q

t4 ; LLM 2 participates in t2 and t5 with the matrices

Q
p2q

t2 and Q
p2q

t5 ; and LLM 3 participates in t3 and t6 with the matrices Q
p3q

t3

and Q
p3q

t6 .
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The LLM matrices associated with transitions t1 through t6 are

0 1 2
0 1

0 1 2

Q
p1q

t1 “

0
1
2

¨

˝

1
1

˛

‚ , Q
p2q

t2 “
0
1

ˆ

1
˙

, Q
p3q

t3 “

0
1
2

¨

˝

2
1

˛

‚ ,

0 1 2
0 1

0 1 2

Q
p1q

t4 “

0
1
2

¨

˝ 1
1

˛

‚ , Q
p2q

t5 “
0
1

ˆ

1

˙

, Q
p3q

t6 “

0
1
2

¨

˝ 1
1

˛

‚ ,

Q
p1q

t2 “ Q
p1q

t3 “ Q
p1q

t5 “ Q
p1q

t6 “ Q
p3q

t1 “ Q
p3q

t2 “ Q
p3q

t4 “ Q
p3q

t5 “ I3 ,

Q
p2q

t1 “ Q
p2q

t3 “ Q
p2q

t4 “ Q
p2q

t6 “ I2 .

The rates of the transitions are given by

pαt1 , αt2 , αt3 , αt4 , αt5 , αt6q “ pλ1, λ2, λ3, μ1, μ2, μ3q .

In this model, each of the transitions t1 through t6 affects only one LLM.
For instance, the Kronecker product associated with t3 in entry (0,0) of the
HLM matrix in (2.8) is

0
0
0

0
0
1

1
0
0

1
0
1

I2 b I1 b Q
p3q

t3 p0 : 1, 0 : 1q “

0 0 0
0 0 1
1 0 0
1 0 1

¨

˚

˚

˝

2

2

˛

‹

‹

‚

,

where Q
p3q

t3 p0 : 1, 0 : 1q denotes the submatrix of Q
p3q

t2 that lies between states
0 through 1 rowwise and states 0 through 1 columnwise. Obviously, this
Kronecker product gets multiplied with the rate of transition t3, that is, λ3.
On the other hand, the Kronecker product associated with t4 in entry (1,0)
of the HLM matrix in (2.8) is

0
0
0

0
0
1

1
0
0

1
0
1

Q
p1q

t4 p2 : 2, 0 : 1q b I1 b I2 “
2 0 0
2 0 1

ˆ

1
1

˙

.

This Kronecker product gets multiplied with the rate of transition t4, that
is, μ1.

The Kronecker representation associated with the HMM needs to store
1 HLM matrix having 6 floating-point values for the rates of transitions t1
through t6 and 6 LLMmatrices (since identity matrices are not stored) having
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a total of 10 floating-point values, thus altogether 16 floating-point values. If
the diagonal entries in Dppq for p “ 0, . . . , 3 in (2.5) are stored explicitly, an
additional 12 floating-point values will be required. The underlying generator
matrix is given by

0
0
0

0
0
1

1
0
0

1
0
1

2
0
0

2
0
1

0
1
0

0
1
1

1
1
0

1
1
1

0
0
2

1
0
2

Q “

0 0 0
0 0 1
1 0 0
1 0 1
2 0 0
2 0 1
0 1 0
0 1 1
1 1 0
1 1 1
0 0 2
1 0 2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ 2λ3 λ1 λ2

μ3 ˚ λ1 λ2 λ3

μ1 ˚ 2λ3 λ1 λ2

μ1 μ3 ˚ λ1 λ2 λ3

μ1 ˚

μ1 μ3 ˚

μ2 ˚

μ2 μ3 ˚

μ2 μ1 ˚

μ2 μ1 μ3 ˚

μ3 ˚

μ3 μ1 ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (2.9)

As in SANs, the Kronecker structure of an HMM induces nested block
partitionings in the generator matrix underlying the CTMC. Assuming that
the HLM has multiple states, it suggests the block partitioning at level 0. The
LLMs define the nested block partitionings at higher level numbers. LLM 1
defines the block partitioning at level 1. LLMs 1 and 2 define the block parti-
tioning at level 2, and so on. In HMMs, diagonal blocks at a particular level
of the nested block partitioning are all square but can have different orders
in different HLM states. Consequently, blocks in the off-diagonal part of the
HLM matrix need not be square. This is different than SANs in which all (di-
agonal and off-diagonal) blocks at each level of the nested block partitioning
associated with the Kronecker structure are square and have the same order.

Example 2. (ctnd.) In our HMM, the HLM matrix which has 4 macrostates
defines the block partitioning of Q in (2.9) at level 0. Along the diagonal of
Q, there are 4 blocks which are, respectively, p4 ˆ 4q, p2 ˆ 2q, p4 ˆ 4q, and
p2 ˆ 2q. LLM 1 defines the block partitioning at level 1 as in
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Q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ 2λ3 λ1 λ2

μ3 ˚ λ1 λ2 λ3

μ1 ˚ 2λ3 λ1 λ2

μ1 μ3 ˚ λ1 λ2 λ3

μ1 ˚

μ1 μ3 ˚

μ2 ˚

μ2 μ3 ˚

μ2 μ1 ˚

μ2 μ1 μ3 ˚

μ3 ˚

μ3 μ1 ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Since LLM 2 contributes only a single state to each macrostate, the block
partitioning of Q at level 2 for our HMM is the same as its block partitioning
at level 1. Finally, the block partitioning of Q at level 3 due to LLMs 1
through 3 for our HMM is given by

Q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

˚ 2λ3 λ1 λ2

μ3 ˚ λ1 λ2 λ3

μ1 ˚ 2λ3 λ1 λ2

μ1 μ3 ˚ λ1 λ2 λ3

μ1 ˚

μ1 μ3 ˚

μ2 ˚

μ2 μ3 ˚

μ2 μ1 ˚

μ2 μ1 μ3 ˚

μ3 ˚

μ3 μ1 ˚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Now, let us replace the Kronecker sum with a sum of Konecker products
as we have done for SANs, include the local transitions along the diagonal
of the HLM matrix, number local transitions from 1 through H, number
synchronizing transitions starting from H ` 1, and make the subscripts in
the transitions the transition numbers themselves to simplify the notation.
Then the model defines an pN ˆ Nq block matrix

Q “

¨

˚

˝

Qp0, 0q . . . Qp0, N ´ 1q

...
. . .

...
QpN ´ 1, 0q . . . QpN ´ 1, N ´ 1q

˛

‹

‚
(2.10)

associated with the interaction matrix
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¨

˚

˝

K0,0 . . . K0,N´1

...
. . .

...
KN´1,0 . . . KN´1,N´1

˛

‹

‚

(2.11)

and H submodels with state spaces Sphq for h “ 1, . . . , H. Block pp, wq of Q
for p, w “ 0, . . . , N ´ 1 is expressed as

Qpp, wq “

#

ř

kPKp,w
Qkpp, wq ` QDpp, pq if p “ w

ř

kPKp,w
Qkpp, wq otherwise

,

where

Qkpp, wq “ αk

H
â

h“1

Q
phq

k pRphq
p ,Rphq

w q,

QDpp, pq “ ´

N´1
ÿ

w“0

ÿ

kPKp,w

αk

H
â

h“1

diagpQ
phq

k pRphq
p ,Rphq

w qeq,

αk is the rate associated with transition k in block pp, wq, Kp,w is the set

of transitions in block pp, wq, and Q
phq

k pRphq
p ,Rphq

w q is the submatrix of the

transition matrix Q
phq

k whose row and column state spaces are Rphq
p Ď Sphq

and Rphq
w Ď Sphq, respectively. Hence,

Rp “

H
ą

h“1

Rphq
p and Rw “

H
ą

h“1

Rphq
w

are the reachable state space partitions corresponding to p and w, respec-
tively. Note that the rate αk of the Kronecker product term Qkpp, wq can be

eliminated by scaling one of the Q
phq

k pRphq
p ,Rphq

w q matrices in the term with
that rate as is done for the master automaton in SANs. The case of N “ 1
implies R “ S, meaning no unreachable states. We let

K “

N´1
ď

p,w“0

Kp,w

denote the set of transitions and K “ |K| denote the number of transitions
in the model.

2.3 Two Kronecker-Structured Models

In this section, we consider a relatively complicated availability model and a
relatively complicated polling model each having H submodels. In coming up
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with suitable specifications for these two models, we develop the Kronecker-
based representation to be used throughout this book. Furthermore, these
models later serve as benchmarks for analysis.

2.3.1 An Availability Model

We motivate the discussion with the availability model of H submodels in
Figure 2.4 (see also [61, 64]). This is a model in which each submodel repre-
sents a processing node with two PEs, one acting as a cold spare, a bus, and
two MEs as in Figure 2.2. Here, we choose to represent the processing node as

Fig. 2.4 Availability model with H submodels

a single submodel with the 12 reachable states described in Example 2. This
is called grouping (since we have grouped the three submodels forming the
processing node into a single submodel) and will be discussed in more detail
in Chapter 4. Hence, we have a reachable state space equal to the product
state space containing 12H states for this H-dimensional availability model.

Recall that a processing node is up and running as long as one PE can
access one ME through the bus, implying the PE, the bus, and at least one
ME must be working for the submodel to be available. If the submodel is
unavailable, no other components from that submodel can fail. Submodels
are repaired by a global repair facility with preemptive priority such that
submodel 1 has the highest priority and submodel H has the least priority.
In each submodel, the repair of a failed component takes place independently
of other components in the same submodel.
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Time to failure is exponentially distributed with rate λ
phq

1 for PEs, λ
phq

2

for the bus, and λ
phq

3 for MEs in submodel h. Repair times of components
are also exponentially distributed. Repair rates of PEs, the bus, and MEs

in submodel h are given, respectively, as μ
phq

1 , μ
phq

2 , and μ
phq

3 . Note that the
availability model cannot be considered as being symmetric due to the ex-
istence of the priority repair strategy among submodels. Furthermore, as it
is common in availability models, it incorporates different time scales, and
hence, the steady-state probability distribution becomes unbalanced due to
the repair rates being much larger than failure rates.

We will be considering models with H “ 3, 4, 5, 6, 7, 8. Here, we provide
a Kronecker representation of this model for H “ 3. The states of each
submodel are numbered 0 through 11, and the submodel state spaces are
given by Sphq “ t0, . . . , 11u for h “ 1, 2, 3. There are altogether K “ 9
transitions numbered 1 through 9 in the model, the first three of which may
be perceived as being local.

Transition 1 models the self evolution of submodel 1, which has the highest
priority among the three submodels, with the matrices

0 1 2 3 4 5 6 7 8 9 10 11

Q
p1q

1 “

0

1

2

3

4

5

6

7

8

9

10

11

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

2λ
p1q

3 λ
p1q

1 λ
p1q

2

μ
p1q

3 λ
p1q

1 λ
p1q

2 λ
p1q

3

μ
p1q

1 2λ
p1q

3 λ
p1q

1 λ
p1q

2

μ
p1q

1 μ
p1q

3 λ
p1q

1 λ
p1q

2 λ
p1q

3

μ
p1q

1

μ
p1q

1 μ
p1q

3

μ
p1q

2

μ
p1q

2 μ
p1q

3

μ
p1q

2 μ
p1q

1

μ
p1q

2 μ
p1q

1 μ
p1q

3

μ
p1q

3

μ
p1q

3 μ
p1q

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

Q
p2q

1 “ Q
p3q

1 “ I12.

Note that transitions due to failures appear in the upper-triangular part,

whereas transitions due to repairs appear in the lower-triangular part of Q
p1q

1

for which nz
Q

p1q
1

“ 30. Because of their priority, repairs in submodel 1 do not

depend on the states of submodels 2 and 3. This is not the case for submodels
2 and 3. Hence, we need to represent the repairs within submodels 2 and 3
separately from failures.

Transitions 2 and 3 represent the failure behavior of submodels 2 and 3,
respectively, and therefore, the corresponding matrices have their nonzeros
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in exactly the same entries as in the upper-triangular part of Q
p1q

1 . That is,
for h “ 2, 3 we have

0 1 2 3 4 5 6 7 8 9 10 11

Q
phq

h “

0

1

2

3

4
5
6
7
8
9
10
11

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

2λ
phq

3 λ
phq

1 λ
phq

2

λ
phq

1 λ
phq

2 λ
phq

3

2λ
phq

3 λ
phq

1 λ
phq

2

λ
phq

1 λ
phq

2 λ
phq

3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

Q
p1q

2 “ Q
p3q

2 “ Q
p1q

3 “ Q
p2q

3 “ I12 .

Note that we have nz
Q

p2q
2

“ nz
Q

p3q
3

“ 12, and the 12 nonzeros are located in

the first four rows of each matrix.
Let us for a moment assume that the repair of the bus had priority over

the repair of the PE which had priority over the repair of the ME. Then the
seven transitions in entries p3, 2q, p5, 4q, p7, 6q, p8, 6q, p9, 7q, p9, 8q, and p11, 3q

due to repairs in each submodel would need to be inhibited.
We use transitions 4 through 9, altogether 6 transitions, to represent re-

pairs in submodels 2 and 3. Transitions 4 through 6 are associated with
repairs in submodel 2 and transitions 7 through 9 are associated with repairs
in submodel 3. Observe that repairs in submodels 2 and 3 are only possible
when submodel 1 is in state 0, that is, when all its components are intact.
Therefore, submodel 1 has the p12 ˆ 12q rank–1 inhibition matrices

Q
p1q

4 “ Q
p1q

5 “ Q
p1q

6 “ Q
p1q

7 “ Q
p1q

8 “ Q
p1q

9 “ e0e
T
0

associated with transitions 4 through 9. Recall that e0 represents a column
vector with a 1 in its 0th entry and all its remaining entries being 0. Hence,
e0e

T
0 is the matrix having a 1 in its (0,0)th entry and 0s elsewhere, implying

that these 6 transitions can only take place when submodel 1 is in state 0, and
once these transitions are executed submodel 1 remains in state 0. Similarly,
since submodel 2 has priority over submodel 3 in repairs, submodel 2 has the
p12 ˆ 12q rank–1 inhibition matrices

Q
p2q

7 “ Q
p2q

8 “ Q
p2q

9 “ e0e
T
0
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associated with transitions 7 through 9. These matrices imply that transitions
7, 8, and 9 can only take place when submodel 2 is in state 0, and once they
take place submodel 2 remains in state 0.

Transitions 4 through 6 represent repairs in submodel 2 when submodel 1
is in state 0. We let transition 4 represent the repair of PEs in submodel 2.
Hence, we have

Q
p2q

4 “ e2e
T
0 ` e3e

T
1 ` e4e

T
2 ` e5e

T
3 ` e8e

T
6 ` e9e

T
7 ` e11e

T
10 .

as a sum of 7 rank–1 matrices whose nonzero values appear in the same entries

where we have μ
p1q

1 in Q
p1q

1 . Similarly, we let transitions 5 and 6 represent the
repairs of bus and MEs, respectively, and obtain

Q
p2q

5 “ e6e
T
0 ` e7e

T
1 ` e8e

T
2 ` e9e

T
3

as a sum of 4 rank–1 matrices, and

Q
p2q

6 “ e1e
T
0 ` e3e

T
2 ` e5e

T
4 ` e7e

T
6 ` e9e

T
8 ` e10e

T
1 ` e11e

T
3

as a sum of 7 rank–1 matrices.
Transitions 7 through 9 represent repairs in submodel 3 when submodels

1 and 2 are in state 0. We let transitions 7, 8, and 9 represent the repairs of
PEs, bus, and MEs in submodel 3, respectively. Hence, we have

Q
p3q

7 “ Q
p2q

4 , Q
p3q

8 “ Q
p2q

5 , and Q
p3q

9 “ Q
p2q

6 .

Furthermore, we have

Q
p3q

4 “ Q
p3q

5 “ Q
p3q

6 “ I12

since submodel 3 does not influence in any way the repair of components in

submodel 2. We remark that the triple matrices Q
p2q

4 , Q
p2q

5 , Q
p2q

6 have a total

of 18 nonzeros. This is also the case for Q
p3q

7 , Q
p3q

8 , Q
p3q

9 .
Finally, rates of transitions 1 through 9 are given by

pα1, α2, α3, α4, α5, α6, α7, α8, α9q “ p1, 1, 1, μ
p2q

1 , μ
p2q

2 , μ
p2q

3 , μ
p3q

1 , μ
p3q

2 , μ
p3q

3 q .

In general, there are a total of H ` 3pH ´ 1q transitions. Assuming that
the transitions are numbered as in H “ 3, the first H transitions are local

with rates of 1. The matrix Q
p1q

1 is the same as in H “ 3. The Q
pkq

k matrices
corresponding to transitions k “ 2, . . . , H all have the nonzero structure

of Q
p2q

2 as in H “ 3; all other matrices corresponding to transitions k “

1, . . . , H satisfyQ
phq

k “ I12 for h ‰ k, h “ 1, . . . , H. The remaining transitions
numbered H`3pk´1q`1, H`3pk´1q`2, H`3k, respectively, have rates of

μ
pk`1q

1 , μ
pk`1q

2 , μ
pk`1q

3 for k “ 1, . . . , H ´1. The p12ˆ12q matrices associated
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with these transitions for submodel h other than 1 satisfy Q
phq

k “ I12 for

k “ H ` 1, . . . , 3h ´ 3, the triple matrices Q
phq

3h´2, Q
phq

3h´1, Q
phq

3h , respectively,

are equal to Q
p2q

4 , Q
p2q

5 , Q
p2q

6 as in H “ 3, and the remaining matrices satisfy

Q
phq

k “ e0e
T
0 for k “ 3h ` 1, . . . , 4H ´ 3.

Kronecker representation of the underlying generator matrix for the avail-
ability model may then be written as

Q “

4H´3
ÿ

k“1

αk

H
â

h“1

Q
phq

k ` QD, QD “ ´

4H´3
ÿ

k“1

αk

H
â

h“1

diagpQ
phq

k eq .

The number of floating-point values to be stored in this representation is
4H ´ 3 for the rates, 30H for the values in the matrices representing the
failures and repairs, and 3

řH´1
h“1 pH ´ hq “ 3pH ´ 1qH{2 for the rank-1

inhibition matrices, thus altogether 1.5H2 ` 28.5H. For H “ 8, this number
becomes 324. On the other hand, the number of nonzeros in the off-diagonal
part of Q is 30¨12H´1 due to transition 1, 12pH´1q12H´1 due to transitions 2

through H, and 18
řH

h“2 12
H´h due to the remaining transitions. For H “ 8,

Q is of order 429,981,696 and has a total of 4,143,459,978 nonzero off-diagonal
entries.

2.3.2 A Polling Model

We consider a model of the multiserver multiqueue discussed in [3]. The
model consists of H submodels each having a finite capacity queue at which
customers arrive according to a Poisson process as in Figure 2.5 (see also
[50, 58, 59, 60, 61, 64, 110]). Interarrival times of customers at the queue
in submodel h are exponentially distributed with rate λh for h “ 1, . . . , H.
Hence, probability of customer arrival at queue h from the aggregate Poisson
arrival process with rate

řH
h“1 λh is obtained as λh{

řH
h“1 λh. The capacity

of queue h is equal to Ch. Arrivals at a full queue are assumed to get lost,
and served customers are assumed to leave their submodels.

In this H-dimensional model, there are S servers serving (in other words,
polling) the H queues in a round-robin manner. When a server arrives at a
queue with customers, it serves the customer at the head of the queue and
then travels to the next queue in line. On the other hand, a server that arrives
at an empty queue skips the service phase and travels to the next queue in
line. Service times at queue h and travel times from submodel h to submodel
1 ` ph mod Hq are exponentially distributed, respectively, with rates μh and
γh. The modulus operator is used to take care of the wrap-around effect when
in submodel H. Normally, we would have S ě 1 and Ch ě S for h “ 1, . . . , H.
Figure 2.5 depicts one server in submodel 1 serving the customer at the head
of the queue with two customers and one server traveling from submodel H
in which the queue is empty to submodel 1.
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Fig. 2.5 Polling model with H submodels

Observe that S servers can be distributed among H queues in

N “

ˆ

S ` H ´ 1
S

˙

different ways; there can be S servers simultaneously serving S different cus-
tomers at queue h when Ch ě S or S servers simultaneously traveling from
one submodel to the next. The constraint regarding the distribution of servers
among submodels hints at a reachable state space, R, that is a subset of the
product state space, S. This in turn implies a partitioning of the submodel
state spaces Sphq for h “ 1, . . . , H similar to that in Example 2.

When S “ 2, queue h with capacity Ch can be represented as part of
submodel h with state space

Sphq
“ Sphq

0 Y Sphq

1 Y Sphq

2 ,

where

Sphq

0 “ t0, . . . , Chu,

Sphq

1 “ tCh ` 1, . . . , 2Ch ` 1u Y t2Ch ` 2, . . . , 3Ch ` 1u,

Sphq

2 “ t3Ch ` 2, . . . , 4Ch ` 2u Y t4Ch ` 3, . . . , 5Ch ` 2u

Yt5Ch ` 3, . . . , 6Ch ` 1u ponly if Ch ě 2q .

Partition Sphq

0 represents those states with no servers in submodel h and 0

through Ch customers in the waiting space of queue h. Partition Sphq

1 repre-
sents those states with one server in submodel h. Note that this server can be
traveling from queue h to the next queue in line or serving customers in queue
h. We let states in tCh ` 1, . . . , 2Ch ` 1u represent a traveling server with 0
through Ch customers in the waiting space and states in t2Ch`2, . . . , 3Ch`1u
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represent a serving server with 1 through Ch customers in the waiting space.

Finally, partition Sphq

2 represents those states with two servers in submodel
h. Of these two servers, both can be traveling, one can be traveling and
the other serving, or both can be serving. Hence, we have the subpartitions
t3Ch ` 2, . . . , 4Ch ` 2u, t4Ch ` 3, . . . , 5Ch ` 2u, and t5Ch ` 3, . . . , 6Ch ` 1u,
respectively. We remark that the last subpartition, t5Ch ` 3, . . . , 6Ch ` 1u,
exists only if Ch ě 2. According to this understanding with S “ 2 and let-
ting C1 “ CH “ 2, in Figure 2.5 state of submodel 1 would be 7 and state of
submodel H would be 3.

In general, there will be S ` 1 partitions of Sphq numbered 0 through S,

where partition Sphq
s represents those states in submodel h with s servers

for s “ 0, . . . , S. Assuming that Ch ě S, these s servers yield ps ` 1q sub-
partitions (from s traveling and 0 serving to 0 traveling and s serving) in

Sphq
s , respectively, with sizes Ch ` 1, Ch, . . . , Ch ´ s ` 1, hence altogether

|Sphq
s | “ 1 ` ps ` 1qCh ´ ps ´ 1qs{2 states. This implies

|Sphq
| “

S
ÿ

s“0

|Sphq
s | “

pS2 ` 3S ` 2qCh

2
´

pS3 ´ 7S ´ 6q

6
.

When S “ 2 and Ch ě S for h “ 1, . . . , H, we have |Sphq| “ 6Ch ` 2.
Here, we provide a Kronecker representation of this model for two servers

and three queues (i.e., S “ 2, H “ 3) with a capacity of two in each queue
(i.e., C1 “ C2 “ C3 “ 2). Hence, for h “ 1, 2, 3 we have

Sphq
“ t0, . . . , 13u , thus, |Sphq

| “ 14 ,

where

Sphq

0 “ t0, 1, 2u, Sphq

1 “ t3, 4, 5, 6, 7u, and Sphq

2 “ t8, 9, 10, 11, 12, 13u .

We remark that N “ 6 conveniently provides the number of partitions of
the reachable state space, R, to be used in this model. Partitions R0, R1,
and R2 can be used for those states in which both servers are, respectively,
at submodels 1, 2, and 3. Then partition R3 can represent one server at
submodel 1, the other server at submodel 2. Partition R4 can represent one
server at submodel 2, the other server at submodel 3, and partition R5 can
represent one server at submodel 3, the other server at submodel 1.

With this understanding, the reachable state space can be expressed as

R “

5
ď

p“0

Rp with Rp “

3
ą

h“1

Rphq
p for p “ 0, . . . , 5 ,

where

R0 “ Sp1q

2 ˆSp2q

0 ˆSp3q

0 , R1 “ Sp1q

0 ˆSp2q

2 ˆSp3q

0 , R2 “ Sp1q

0 ˆSp2q

0 ˆSp3q

2 ,

R3 “ Sp1q

1 ˆSp2q

1 ˆSp3q

0 , R4 “ Sp1q

0 ˆSp2q

1 ˆSp3q

1 , R5 “ Sp1q

1 ˆSp2q

0 ˆSp3q

1 .
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The mapping between reachable state space partitions and submodel states
is given in Table 2.2. Note that the size of the reachable state space is |R| “

387, whereas that of the product state space is |S| “
ś3

h“1 |Sphq| “ 143 “

2,744.

Table 2.2 Mapping between reachable state space partitions and submodel states in
polling model with three submodels

Partition Submodel 1 Submodel 2 Submodel 3 # of states

R0 8:13 0:2 0:2 6 . 3 . 3 “ 54
R1 0:2 8:13 0:2 3 . 6 . 3 “ 54
R2 0:2 0:2 8:13 3 . 3 . 6 “ 54
R3 3:7 3:7 0:2 5 . 5 . 3 “ 75
R4 0:2 3:7 3:7 3 . 5 . 5 “ 75
R5 3:7 0:2 3:7 5 . 3 . 5 “ 75

In the particular model under consideration, K “ 6 transitions numbered
1 through 6 take place among the states in the reachable state space parti-
tions and affect the submodels. These transitions are captured by the p6ˆ 6q

interaction matrix in (2.11) as

R0 R1 R2 R3 R4 R5
R0

R1

R2

R3

R4

R5

¨

˚

˚

˚

˚

˚

˚

˝

t1, 2, 3u t4u

t1, 2, 3u t5u

t1, 2, 3u t6u

t4u t1, 2, 3u t5u

t5u t6u t1, 2, 3u

t6u t4u t1, 2, 3u

˛

‹

‹

‹

‹

‹

‹

‚

. (2.12)

Transitions 1 through 3 represent the self evolution of submodels 1 through
3, respectively, upon customer arrivals and services. Given that there is space
to accommodate a customer arrival in a submodel, the arrival causes the
number of customers in the waiting space of its queue to increase by one,
whereas a customer service completion causes the number of customers in
the waiting space of its queue to decrease by one and the server to move
to the traveling phase. As such, both of these events cause a state change
only in the submodel they take place, and hence, they may be viewed as
being local. On the other hand, transitions 4 through 6 model the travel of
a server from submodel 1 to 2, from submodel 2 to 3, and from submodel 3
to 1, respectively. Therefore, each of the transitions 4 through 6 cause state
changes in exactly two submodels, the submodel from which the server is
departing and the submodel at which the server is arriving. In general, there
are K “ 2H transitions in this model.

To each of the transitions 1 through 6 corresponds a Kronecker product
of three submodel submatrices. The submatrices associated with those sub-
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models that do not participate in a transition are all identity. Each submodel
participates in three transitions. One of these transitions is local and repre-
sents customer arrivals and departures, the other two represent departures
and arrivals of servers. Submodel 1 participates in transitions 1, 4, 6, sub-
model 2 participates in transitions 2, 4, 5, and submodel 3 participates in
transitions 3, 5, 6. For instance, submodel 1 participates in transition 1 with

submatrix Q
p1q

1 p8 : 13, 8 : 13q when in R0, with submatrix Q
p1q

1 p0 : 2, 0 : 2q

when in R1, R2, or R4, and with submatrix Q
p1q

1 p3 : 7, 3 : 7q when in R3 or

R5. Submodel 1 participates in transition 4 with submatrix Q
p1q

4 p8 : 13, 3 : 7q

when in R0 and with submatrix Q
p1q

4 p3 : 7, 0 : 2q when in R3 or R5. Finally,

submodel 1 participates in transition 6 with submatrix Q
p1q

6 p0 : 2, 3 : 7q when

in R2 or R4 and with submatrix Q
p1q

6 p3 : 7, 8 : 13q when in R5.
Transition h for h “ 1, 2, 3 represents customer arrivals and services in

submodel h with the matrices

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Q
phq

h “

0
1
2
3
4
5
6
7
8
9
10
11
12
13

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

λh

λh

λh

λh

μh λh

μh

λh

λh

μh λh

μh

2μh

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Q
p2q

1 “ Q
p3q

1 “ Q
p1q

2 “ Q
p3q

2 “ Q
p1q

3 “ Q
p2q

3 “ I14 .

Note that transitions due to arrivals appear in the upper-triangular part,
whereas transitions due to services appear in the lower-triangular part of

Q
phq

h . The number of nonzeros in Q
phq

h due to arrivals is pS2 ` 3S ` 2qCh{2´

pS3 ` 3S2 ` 2Sq{6 and due to services is pS2 ` SqCh{2 ´ pS3 ´ Sq{6. Thus,

Q
phq

h has a total of pS2`2S`1qCh´p2S3`3S2`Sq{6 nonzeros when Ch ě S
for h “ 1, . . . , H. When H “ 3, S “ 2, and C1 “ C2 “ C3 “ 2, this number
is 13 in each of the H matrices corresponding to transitions 1 through H.

Transitions 4, 5, and 6 represent the travel of a server in the form of a
departure from one submodel and an arrival to the next submodel in line
with the matrices
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0 1 2 3 4 5 6 7 8 9 10 11 12 13

Q
p1q

4 “ Q
p2q

5 “ Q
p3q

6 “

0
1
2
3
4
5
6
7
8
9
10
11
12
13

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
1

1

2
2

2
1

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

The number of nonzeros in the H submodel transition matrices due to server
departures is ChpS2 ` Sq{2 ´ pS3 ´ 3S2 ´ 4Sq{6. When H “ 3, S “ 2, and
C1 “ C2 “ C3 “ 2, this number is 8 in each of the H matrices corresponding
to transitions H ` 1 through 2H.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Q
p2q

4 “ Q
p3q

5 “ Q
p1q

6 “

0
1
2
3
4
5
6
7
8
9
10
11
12
13

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
1

1

1
1

1
1

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

Q
p3q

4 “ Q
p1q

5 “ Q
p2q

6 “ I14 .

The number of nonzeros in the H submodel transition matrices due to server
arrivals is ChpS2 `Sq{2´ pS3 ´ 3S2 ´ 4Sq{6. When H “ 3, S “ 2, and C1 “

C2 “ C3 “ 2, this number is 8 in each matrix corresponding to transitions
H ` 1 through 2H.
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The rates of transitions 1 through 6 are given by

pα1, α2, α3, α4, α5, α6q “ p1, 1, 1, γ1, γ2, γ3q .

As in (2.10), the polling model defines the p6 ˆ 6q block generator matrix

Q “

¨

˚

˚

˚

˚

˚

˚

˝

Qp0, 0q Qp0, 3q

Qp1, 1q Qp1, 4q

Qp2, 2q Qp2, 5q

Qp3, 1q Qp3, 3q Qp3, 5q

Qp4, 2q Qp4, 3q Qp4, 4q

Qp5, 0q Qp5, 4q Qp5, 5q

˛

‹

‹

‹

‹

‹

‹

‚

,

where the nonzero blocks are given from Table 2.2 and the interaction matrix
in (2.12) by

Qp0, 0q “ α1Q
p1q

1 p8 : 13, 8 : 13q b I3 b I3 ` α2I6 b Q
p2q

2 p0 : 2, 0 : 2q b I3

`α3I6 b I3 b Q
p3q

3 p0 : 2, 0 : 2q ` QDp0, 0q,

Qp0, 3q “ α4Q
p1q

4 p8 : 13, 3 : 7q b Q
p2q

4 p0 : 2, 3 : 7q b I3,

Qp1, 1q “ α1Q
p1q

1 p0 : 2, 0 : 2q b I6 b I3 ` α2I3 b Q
p2q

2 p8 : 13, 8 : 13q b I3

`α3I3 b I6 b Q
p3q

3 p0 : 2, 0 : 2q ` QDp1, 1q,

Qp1, 4q “ α5I3 b Q
p2q

5 p8 : 13, 3 : 7q b Q
p3q

5 p0 : 2, 3 : 7q,

Qp2, 2q “ α1Q
p1q

1 p0 : 2, 0 : 2q b I3 b I6 ` α2I3 b Q
p2q

2 p0 : 2, 0 : 2q b I6

`α3I3 b I3 b Q
p3q

3 p8 : 13, 8 : 13q ` QDp2, 2q,

Qp2, 5q “ α6Q
p1q

6 p0 : 2, 3 : 7q b I3 b Q
p3q

6 p8 : 13, 3 : 7q,

Qp3, 1q “ α4Q
p1q

4 p3 : 7, 0 : 2q b Q
p2q

4 p3 : 7, 8 : 13q b I3,

Qp3, 3q “ α1Q
p1q

1 p3 : 7, 3 : 7q b I5 b I3 ` α2I5 b Q
p2q

2 p3 : 7, 3 : 7q b I3

`α3I5 b I5 b Q
p3q

3 p0 : 2, 0 : 2q ` QDp3, 3q,

Qp3, 5q “ α5I5 b Q
p2q

5 p3 : 7, 0 : 2q b Q
p3q

5 p0 : 2, 3 : 7q,

Qp4, 2q “ α5I3 b Q
p2q

5 p3 : 7, 0 : 2q b Q
p3q

5 p3 : 7, 8 : 13q,

Qp4, 3q “ α6Q
p1q

6 p0 : 2, 3 : 7q b I5 b Q
p3q

6 p3 : 7, 0 : 2q,

Qp4, 4q “ α1Q
p1q

1 p0 : 2, 0 : 2q b I5 b I5 ` α2I3 b Q
p2q

2 p3 : 7, 3 : 7q b I5

`α3I3 b I5 b Q
p3q

3 p3 : 7, 3 : 7q ` QDp4, 4q,
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Qp5, 0q “ α6Q
p1q

6 p3 : 7, 8 : 13q b I3 b Q
p3q

6 p3 : 7, 0 : 2q,

Qp5, 4q “ α4Q
p1q

4 p3 : 7, 0 : 2q b Q
p2q

4 p0 : 2, 3 : 7q b I5,

Qp5, 5q “ α1Q
p1q

1 p3 : 7, 3 : 7q b I3 b I5 ` α2I5 b Q
p2q

2 p0 : 2, 0 : 2q b I5

`α3I5 b I3 b Q
p3q

3 p3 : 7, 3 : 7q ` QDp5, 5q.

Each diagonal block QDpp, pq for p “ 0, . . . , 5 is defined as before and will
not be given explicitly.

The number of floating-point values to be stored in this representation is
2H for the rates, pS2`2S`1q

řH
h“1 Ch´Hp2S3`3S2`Sq{6 for the values in

the matrices representing the arrivals and services, and pS2 ` Sq
řH

h“1 Ch ´

HpS3 ´ 3S2 ´ 4Sq{3 for the server travel matrices, thus altogether,

p2S2
` 3S ` 1q

H
ÿ

h“1

Ch ´ Hp4S3
´ 3S2

´ 7S ´ 12q{6.

For H “ 3, S “ 2, and C1 “ C2 “ C3 “ 2, this number becomes 93, whereas
the same number is 1,057 for H “ 7, S “ 2, and Ch “ 10 for h “ 1, . . . , H.

On the other hand, the calculation of the number of nonzeros in the off-
diagonal part of Q in this case is more complicated than that of the availabil-
ity model. Therefore, let us assume that S “ 2 in the following derivation.
Regarding transition h for h “ 1, . . . , H there is one reachable state space

partition in which submodel h has two servers. The submatrix of Q
phq

h asso-
ciated with this partition has 5Ch ´ 4 nonzeros. The submatrices associated
with all the other submodels which have zero servers are of order Cl `1 iden-
tity matrices for l ‰ h. Hence, the number of nonzeros due to this partition
is given by

p5Ch ´ 4q

H
ź

l‰h

l“1

pCl ` 1q.

Transition h appears in H ´ 1 partitions in which submodel h has one server

and one other submodel also has one server. The submatrix of Q
phq

h corre-
sponding to these partitions has 3Ch ´ 1 nonzeros, whereas one other sub-
model, say l1, l1 ‰ h, has a submatrix that is of order 2Cl1 `1 identity matrix
and the remaining submodels all have submatrices that are of order Cl ` 1
identity matrices for l “ 1, . . . , H with l ‰ h, l ‰ l1. Hence, the total number
of nonzeros due to these H ´ 1 partitions is given by

p3Ch ´ 1q

H
ÿ

l1‰h

l1“1

p2Cl1 ` 1q

H
ź

l‰h,l‰l1
l“1

pCl ` 1q.

Finally, transition h appears in HpH ´ 1q{2 other reachable state partitions
in which submodel h has zero servers and Ch nonzeros in its corresponding
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submatrix of Q
phq

h . In H ´ 1 of these partitions, one other submodel has
two servers, while the remaining submodels have zero servers. This other
submodel, say l1, l1 ‰ h, has a submatrix that is of order 3Cl1 identity
matrix and the remaining submodels all have submatrices that are of order
Cl `1 identity matrices for l “ 1, . . . , H with l ‰ h, l ‰ l1. Hence, these H´1
partitions contribute a total of

Ch

H
ÿ

l1‰h

l1“1

3Cl1

H
ź

l‰h,l‰l1
l“1

pCl ` 1q

nonzeros. In pH ´ 2qpH ´ 1q{2 of these partitions, two other submodels each
have one server, while the remaining submodels have zero servers. Hence,
these pH ´ 2qpH ´ 1q{2 partitions contribute a total of

Ch

H
ÿ

l1“1

H
ÿ

l2“1

p2Cl1 ` 1qp2Cl2 ` 1q

H
ź

l‰h,l‰l1,l‰l2
l“1

pCl ` 1q

nonzeros. Therefore, transitions 1 through H altogether contribute

H
ÿ

h“1

˜

p5Ch ´ 4q

H
ź

l‰h

l“1

pCl ` 1q

` p3Ch ´ 1q

H
ÿ

l1‰h

l1“1

p2Cl1 ` 1q

H
ź

l‰h,l‰l1
l“1

pCl ` 1q

` Ch

H
ÿ

l1‰h

l1“1

3Cl1

H
ź

l‰h,l‰l1
l“1

pCl ` 1q

` Ch

H
ÿ

l1“1

H
ÿ

l2“1

p2Cl1 ` 1qp2Cl2 ` 1q

H
ź

l‰h,l‰l1,l‰l2
l“1

pCl ` 1q

¸

nonzeros to the off-diagonal part of Q.
Each of the transitions H ` 1 through 2H contribute to two reachable

state space partitions in which a server can depart from a submodel, one
corresponding to two servers and the other corresponding to one server in
that submodel. In transition H ` h, the departing server from submodel h
will be entering submodel 1 ` h mod H. For each of the partitions corre-
sponding to two servers and one server in submodel h, in addition to the
identity matrices of order Cl ` 1 that contribute to the Kronecker product,

we have two rectangular submatrices from Q
phq

H`h and Q
p1`h mod Hq

H`h that also
contribute to the Kronecker product. When submodel h has two servers,
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the corresponding submatrices of Q
phq

H`h and Q
p1`h mod Hq

H`h have, respectively,
2Ch ` 1 and C1`h mod H ` 1 nonzeros. When submodel h has one server,
submodel 1 ` h mod H has either one server or zero servers. In the former
case, the corresponding submatrices of Q

phq

H`h and Q
p1`h mod Hq

H`h , respectively,
have Ch `1 and 2C1`h mod H `1 nonzeros. In the latter case, the correspond-

ing submatrix of Q
phq

H`h has Ch ` 1 nonzeros, the submatrix associated with

Q
p1`h mod Hq

H`h is an order C1`h mod H `1 identity matrix, and one of the other
H ´ 2 submodels, say l1, has 1 server, implying a corresponding submatrix
of 2Cl1 ` 1 nonzeros. Therefore, transitions H ` 1 through 2H altogether
contribute

H
ÿ

h“1

˜

p2Ch ` 1qpC1`h mod H ` 1q

H
ź

l‰h,l‰1`h mod H

l“1

pCl ` 1q

` pCh ` 1qp2C1`h mod H ` 1q

H
ź

l‰h,l‰1`h mod H

l“1

pCl ` 1q

` pCh ` 1qpC1`h mod H ` 1q

H
ÿ

l1‰h,l1‰1`h mod H

l1“1

p2Cl1 ` 1q

H
ź

l‰h,l‰1`h mod H,l‰l1
l“1

pCl ` 1q

¸

nonzeros to the off-diagonal part of Q.
When Ch “ C for h “ 1, . . . , H with H ě 3, the contribution from

transitions 1 through H becomes

HpC ` 1q
H´3

´

p5C ´ 4qpC ` 1q
2

` pH ´ 1qp3C ´ 1qp2C ` 1qpC ` 1q

` 3pH ´ 1qC2
pC ` 1q ` pH ´ 2qpH ´ 1qCp2C ` 1q

2
{2

¯

,

and the contribution from transitions H ` 1 through 2H becomes

H2
pC ` 1q

H´1
p2C ` 1q.

After summing up these, we obtain

HpC ` 1q
H´3

´

pC ` 1qp11HC2
` 4HC ´ 4C2

´ 3q

` pH ´ 2qpH ´ 1qCp2C ` 1q
2
{2

¯

as the number of nonzeros in the off-diagonal part of Q when S “ 2 and
Ch “ C for h “ 1, . . . , H with H ě 3.

When H “ 3, S “ 2, and C1 “ C2 “ C3 “ 2, Q is of order 387 and the
number of nonzeros in its off-diagonal part is obtained as 1,383, whereas when
H “ 7, S “ 2, and Ch “ 10 for h “ 1, . . . , H, Q is of order 1,863,521,121 and
has a total of 15,321,499,039 nonzero off-diagonal entries.



Chapter 3

Avoiding Unreachable States

The previous chapter has provided various examples of multidimensional MCs
that are used to model systems composed of a finite number of interacting
submodels. Assuming that there are H such interacting submodels, the state
space of submodel h was denoted by Sphq with Sphq Ď Zě0 for h “ 1, . . . , H,

and S “
ŚH

h“1 Sphq represented the Cartesian product of the submodel state
spaces. Because the Cartesian product of multiple submodel state spaces is
used in its definition without any restriction on the state spaces themselves,
S is called the H-dimensional product state space of the model.

In some models, each of the states in S can be occupied at a particu-
lar instant in time. However, in many models, this is not the case due to
semantic constraints. For instance, consider a buffer of finite capacity B in
a communications network which receives two types of packets. Although
there can be a maximum of B packets of either type in the buffer at dif-
ferent times, their sum at a particular instant can never be exceeding B.
Hence, if the tuple pi1, i2q is used to indicate buffer occupancy by the two
types of packets, then in addition to 0 ď ih ď B for h “ 1, 2 the con-
straint i1 ` i2 ď B must be true at all times. A consequence of this observa-
tion is that not all |S| “ pB ` 1q2 states in S “ t0, . . . , Bu ˆ t0, . . . , Bu

are possible. In fact, only the |R| “ pB ` 1qpB ` 2q{2 states in R “

tp0, 0q, . . . , p0, Bq, p1, 0q, . . . , p1, B ´ 1q, . . . , pB ´ 1, 0q, pB ´ 1, 1q, pB, 0qu can
be occupied by the model. Set R is called the multidimensional reachable
state space of the model since it differs from S by those unreachable states
which the model can never occupy. Example 2 in Section 2.2 and the polling
model in Section 2.3 are other examples in which this phenomenon (that is,
R being a proper subset of S) takes place.

Compact storage of the generator matrix underlying the multidimensional
MC incident on R and efficient implementation of relevant analysis methods
using Kronecker operations require R to be represented as a union of Carte-
sian products of subsets of submodel state spaces as discussed in Section 2.2.
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In this chapter, two different solution approaches are reviewed for this prob-
lem which is identified as Cartesian product partitioning of multidimensional
reachable state spaces [108, 111].

Let us start with a formal definition. Given R Ď S, set tR0, . . . ,RN´1u is
a Cartesian product partitioning of the H-dimensional reachable state space
R with N partitions if

Rp “

H
ą

h“1

Rphq
p ,

Rphq
p Ď Sphq, Rphq

p is a set of consecutive integers for h “ 1, . . . , H,

N´1
ď

p“0

Rp “ R and Rp X Rw “ H for p ‰ w,

p, w “ 0, . . . , N ´ 1, and N P Zą0.
The aim of partitioning R as such is to eliminate unreachable states from

the sets of rows and columns of the generator matrix so that unnecessary flops
due to unreachable states can be avoided during analysis. Consequently, the
generator matrix underlying the MC incident on R can be viewed as an
pN ˆ Nq block matrix as in (2.10). The case N “ 1 implies R “ S, hence,
no unreachable states. Now, let us recall some preliminary definitions from
discrete computational geometry and graph theory so that we can comment
on the state of the art regarding Cartesian product partitioning of reachable
state spaces [108, 111].

An H-dimensional hyper-rectangle is defined to be a Cartesian product of
H intervals as in

ŚH
h“1rah, bhs, where rah, bhs Ď R is an interval for ah ă bh,

ah, bh P R, and h “ 1, . . . , H. A point set X Ď R
H is convex if the line

segment between x and y is in X for x,y P X . The convex hull of X is the
smallest set containing X . An H-dimensional convex polytope is the convex
hull of a finite set X Ď R

H [330]. An H-dimensional polytope is the union
of a finite number of H-dimensional convex polytopes. An H-dimensional
polytope is orthogonal if it is a union of H-dimensional hyper-rectangles [36].

Let G “ pV, Eq be an undirected graph with vertex (or node) set V and edge
(or arc) set E . A graph G1 “ pV 1, E 1q is a subgraph of G “ pV, Eq if V 1 Ď V and
E 1 Ď tpi, jq P E | i, j P V 1u. A subgraph of G “ pV, Eq induced by V 1 Ď V is a
graph whose vertex set is V 1 and edge set is tpi, jq P E | i, j P V 1u. Two vertices
of a graph are said to be connected if there exists a sequence of edges that
lead from one of the vertices to the other. A subgraph of G “ pV, Eq forms
a connected component if each pair of vertices in the subgraph is connected.
A unit distance graph is a graph having a drawing in which all edges are of
unit length [220].

It is known that an H-dimensional orthogonal polytope can be represented
by a set of H-dimensional vectors [36]. In this representation, the Carte-
sian product of sets of consecutive integers corresponds to a hyper-rectangle.
Hence, it can be concluded that Cartesian product partitioning of an H-
dimensional reachable state space R is equivalent to the hyper-rectangular
partitioning of the H-dimensional polytope that is represented by R.
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To aid the efficient use of Kronecker operations during analysis, the num-
ber of partitions, N , in the Cartesian product partitioning of R should be as
small as possible. Interestingly, the partitioning of a two-dimensional orthog-
onal polytope into a minimum number of hyper-rectangles is a well-studied
problem for which there are polynomial time algorithms [139, 193, 298]. Nev-
ertheless, its three-dimensional version has been shown to be NP-complete
[127], where NP stands for nondeterministic polynomial time. An algorithm
to partition three-dimensional orthogonal polytopes into hyper-rectangles is
proposed in [190]. To the best of our knowledge, [108, 111] provide the first
algorithms to partition an H-dimensional orthogonal polytope into hyper-
rectangles for H ą 3.

In our context, the motivation is to automate the partitioning of a given
multidimensional reachable state space R into Cartesian products of subsets
of submodel state spaces. For practical purposes, the number of partitions,
N , in the partitioning should be kept to a minimum. With this objective in
mind, it is shown in [108] that the decision problem derived from the problem
of partitioning R that corresponds to a three- or higher-dimensional model
with a minimum number of partitions into Cartesian products of subsets of
submodel state spaces is NP-complete [151].

(a) P (b) O

Fig. 3.1 Three-dimensional orthogonal polytope P and its transformation O

The proof is lengthy and starts with anH-dimensional orthogonal polytope
P, with H ě 3, for which the problem is NP-complete. Then it introduces the
transformation in Figure 3.1 to obtain another orthogonal polytope O which
is a union of the same minimum number of hyper-rectangles as the original
orthogonal polytope. Fortunately, this second orthogonal polytope O can
be transformed to R which can be partitioned into a number of Cartesian
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products of consecutive integers equal to the number of hyper-rectangles
into which the polytope O can be partitioned. In doing this, points that
are multiples of units along each dimension within polytope O are used. And
this ends the proof whose details can be found in [108].

Being armed with an understanding of what is possible, in the next two sec-
tions, we will be presenting the two algorithms in [108, 111] that can be used
to compute possibly non-optimal partitionings of R into Cartesian products
of subsets of submodel state spaces. We assume without loss of generality that
the submodel state spaces Sphq are defined as before on consecutive nonnega-
tive integers starting from 0 for h “ 1, . . . , H. Otherwise, it is always possible
to enumerate Sphq so that they satisfy this assumption. The first algorithm
starts with partitions as singletons, each representing a reachable state. Two
partitions are merged if their union is also a Cartesian product of sets of con-
secutive integers. The partitions are kept on being merged until there are no
partitions that can be merged with each other. We call this the merge-based
algorithm. The second algorithm takes a different approach. First, the unit
distance graph of R is constructed. The vertex set of this graph is R, and
there is an edge between two vertices if the distance between them is one.
Then this graph is refined [257] by removing edges until no further refinement
is necessary. We call this the refinement-based algorithm. Through a set of
problems from the literature including the availability and polling models in
Section 2.3 and those that are randomly generated, the performance of the
two algorithms will be investigated in this chapter. But, let us first introduce
these algorithms in more detail.

3.1 Merge-Based Algorithm

The merge-based algorithm rests on the concept of mergeability of two parti-
tions I “

ŚH
h“1 Iphq and J “

ŚH
h“1 J phq in a Cartesian product partitioning

of the H-dimensional reachable state space R. Partitions I and J are said to
be mergeable if I YJ “

ŚH
h“1pIphq YJ phqq holds and Iphq YJ phq consists of

consecutive integers for h “ 1, . . . , H. Therefore, the mergeability condition
can be stated formally as I and J are mergeable (along dimension l) if and
only if there exists some l P t1, . . . , Hu such that

maxpIplq
q ` 1 “ minpJ plq

q or maxpJ plq
q ` 1 “ minpIplq

q,

and Iphq
“ J phq for h “ 1, . . . , l ´ 1, l ` 1, . . . , H.

The proof of this result is straightforward and can be found in [108]. Note
that partitions I and J in their simplest forms can be singletons, and this
is going to be the starting point for each state in R within the algorithm.
The next example illustrates the concept of mergeability of partitions on a
three-dimensional problem.
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Example 3. Let Sphq “ t0, 1, 2u for h “ 1, 2, 3 and I “ t2u ˆ t0, 1u ˆ t1u be a
partition in a Cartesian product partitioning of some R which satisfies R Ď
Ś3

h“1 Sphq. Note that I “ tp2, 0, 1q, p2, 1, 1qu consists of two states, and due to
the mergeability condition, it can only be merged with the Cartesian products
t0, 1u ˆ t0, 1u ˆ t1u, t1u ˆ t0, 1u ˆ t1u, t2u ˆ t2u ˆ t1u, t2u ˆ t0, 1u ˆ t0u, and
t2uˆt0, 1uˆt2u. For instance, merging I with t0, 1uˆt0, 1uˆt1u results in the
merged partition t0, 1, 2u ˆ t0, 1u ˆ t1u “ tp0, 0, 1q, p0, 1, 1q, p1, 0, 1q, p1, 1, 1q,
p2, 0, 1q, p2, 1, 1qu, whereas merging I with t2u ˆ t2u ˆ t1u yields the merged
partition t2u ˆ t0, 1, 2u ˆ t1u “ tp2, 0, 1q, p2, 1, 1q, p2, 2, 2qu.

Now, for partition I “
ŚH

h“1 Iphq, the pair

pminpIp1q
q, . . . ,minpIpHq

qq P I and pmaxpIp1q
q, . . . ,maxpIpHq

qq P I

defines its end states. Since partitions are mutually disjoint, so must be their
end states. Hence, each partition can be specified by its two end states, and
the states in a partition can be obtained from its end states. Consequently, the
mergeability of two partitions can be determined by checking their pairs of
end states only. Therefore, it is sufficient to specify partitions by storing only
their end states instead of maintaining the partitions by using a disjoint-set
data structure and a union-find algorithm [84] to merge two partitions.

In Algorithm 1, we provide the merge-based Cartesian product partitioning
of R. Note that this is a direct algorithm in which the body of the for-loop
gets executed |R| times and its efficiency depends on the data structure used
to keep the end states of partitions. When a balanced binary search tree
such as an AVL tree [1] is used to keep the end states (hence, two AVL
trees, one for the low ends and one for the high ends in which each low end
state points to its corresponding high end state in the other tree and vice
versa are to be employed), the cost of searching for a mergeable partition
becomes OpH lgpLqq time. Here, L is the maximum number of partitions
that exist during the execution of the algorithm, and OpHq is the number of
comparisons to be executed per compared partition since the end states in
each dimension need to be checked for mergeability. Note that 1 ď L ď |R|,
where L “ 1 and L “ |R| correspond to all states and no states merged cases
in Algorithm 1, respectively.

At the outset, the Cartesian product partitioning of R denoted by Q is
initialized to be the empty set. The algorithm constructs a singleton I for
each state in R and seeks its mergeability with the already existing partitions
in Q. This requires comparing I, the partition at hand, with each partition
in Q to find a mergeable partition. If a mergeable partition J is located in
Q, I is merged with J , J is deleted from Q, and the algorithm continues
as before, seeking a mergeable partition in Q with the larger partition I at
hand until no mergeable partition is located. When the search ends for I, it
is inserted to Q, and the algorithm continues with the next singleton coming
from R as I.
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Algorithm 1. Merge-based algorithm to compute a Cartesian product par-
titioning Q of given H-dimensional reachable state space R.

Q :“ H;
For i P R,

I :“ tiu;
While there exists some J P Q mergeable with I,

I :“ I Y J ; Q :“ QztJ u;
Q :“ Q Y tIu.

Deletion and insertion operations each take OpH lgpLqq time. Since the
partitions in Q never get split, there can be at most |R| ´1 merge operations
in which each merge operation requires one deletion. Hence, the total num-
ber of deletions cannot be more than |R| ´ 1. On the other hand, there is
one insertion for each element in R, implying |R| insertions altogether. Since
the algorithm is executed for each state in R, its time complexity becomes
OpH|R| lgpLqq, which is equal to OpH|R| lgp|R|qq when no merge takes place.
The space requirement for each partition is OpHq; hence, the space require-
ment of Algorithm 1 is OpHLq. When no partitions are merged, it becomes
OpH|R|q. If L is constant, the number of partitions is bounded by a con-
stant during the execution of the algorithm. In that case, the time and space
complexities of the algorithm become OpH|R|q and OpHq, respectively.

Observe that the partitioning Q computed by Algorithm 1 depends on
the order in which the states of R are processed. Now, let us consider the
following three-dimensional example.

Example 4. Let Sphq “ t0, 1, 2, 3u for h “ 1, 2, 3,

R “ tp0, 0, 1q, p0, 1, 1q, p0, 2, 0q, p0, 2, 1q, p0, 3, 1q, p1, 0, 0q, p1, 0, 1q, p1, 1, 0q,

p1, 1, 1q, p1, 2, 0q, p1, 2, 1qu ,

and assume that the 11 states in R (see Figure 3.2(a)) are processed in
lexicographical order.

Processing the first two states in R yields the partition tp0, 0, 1q, p0, 1, 1qu.
The partitions inQ become tp0, 0, 1q, p0, 1, 1q, p0, 2, 1qu and tp0, 2, 0qu after the
next two states are processed. Then the singleton tp0, 3, 1qu is merged with
tp0, 0, 1q, p0, 1, 1q, p0, 2, 1qu to give tp0, 0, 1q, p0, 1, 1q, p0, 2, 1q, p0, 3, 1qu and
tp0, 2, 0qu (see Figure 3.2(b)). The sixth and seventh states end up being
merged together to yield the partitions tp0, 0, 1q, p0, 1, 1q, p0, 2, 1q, p0, 3, 1qu,
tp0, 2, 0qu, and tp1, 0, 0q, p1, 0, 1qu. The eighth and ninth states are merged
together to give tp1, 1, 0q, p1, 1, 1qu, which in turn gets merged with tp1, 0, 0q,
p1, 0, 1qu (see Figure 3.2(c)). Hence, before the last two states in R are pro-
cessed, the partitions in Q have become
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(a) R (b) After steps 1 through 5

(c) After steps 6 through 9 (d) After steps 10 and 11

Fig. 3.2 Steps of merge-based Cartesian product partitioning algorithm on R in Exam-
ple 4

tp0, 0, 1q, p0, 1, 1q, p0, 2, 1q, p0, 3, 1qu ,

tp0, 2, 0qu and tp1, 0, 0q, p1, 0, 1q, p1, 1, 0q, p1, 1, 1qu .

The 10th state p1, 2, 0q gets merged with the singleton p0, 2, 0q to give
tp0, 2, 0q, p1, 2, 0qu, and the 11th state p1, 2, 1q remains as a singleton (see
Figure 3.2(d)).

The number of partitions in the Cartesian product partitioning of R pro-
cessed in lexicographical order turns out to be four with Algorithm 1 as in

Q “ ttp0, 0, 1q, p0, 1, 1q, p0, 2, 1q, p0, 3, 1qu, tp0, 2, 0q, p1, 2, 0qu,

tp1, 0, 0q, p1, 0, 1q, p1, 1, 0q, p1, 1, 1qu, tp1, 2, 1quu.

3.2 Refinement-Based Algorithm

The refinement-based partitioning algorithm starts by constructing the unit
distance graph Gp0q “ pR, Ep0qq of the H-dimensional reachable state space
R. The vertex set of the unit distance graph is R, and its edge set is

Ep0q
“ tpi, jq | i ´ j P

H
ď

h“1

t´eh, ehu for i, j P Ru .
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In other words, two vertices in Gp0q “ pR, Ep0qq are adjacent if there is con-
secutiveness of their state variables along a particular dimension while val-
ues of their state variables in other dimensions are the same. To construct
Gp0q “ pR, Ep0qq, the refinement-based algorithm requires processing all states
in R before any refinement takes place, which implies a space requirement
proportional to |R| at the very beginning. Note that this is not the case with
the merge-based algorithm, which processes states one at a time. Let us now
take a look at the unit distance graph of R in Example 4.

Example 4. (ctnd.) The unit distance graph of

R “ tp0, 0, 1q, p0, 1, 1q, p0, 2, 0q, p0, 2, 1q, p0, 3, 1q, p1, 0, 0q, p1, 0, 1q, p1, 1, 0q,

p1, 1, 1q, p1, 2, 0q, p1, 2, 1qu

with 11 vertices and 15 edges is depicted in Figure 3.3.

Fig. 3.3 Unit distance graph Gp0q “ pR, Ep0qq of R in Example 4

Now, we define conflicting edges in a subgraph G “ pR, Eq of Gp0q “

pR, Ep0qq as in [108, 111]. Let i, i ` δl, i ` δh P R for some l, h P t1, . . . , Hu,
l ‰ h, δl P t´el, elu, and δh P t´eh, ehu. Two edges pi, i`δlq and pi, i`δhq P

E are said to be conflicting if

i ` δl ` δh R R or tpi ` δl, i ` δl ` δhq, pi ` δh, i ` δl ` δhqu Ę E .

We remark that the latter condition enables us to argue in terms of an arbi-
trary subgraph G “ pR, Eq of Gp0q “ pR, Ep0qq in the next results; otherwise,
it will not be encountered in the devised algorithm. Let us now show the
conflicting edges in the unit distance graph of R in Example 4.

Example 4. (ctnd.) The unit distance graph of R has the six pairs of conflict-
ing edges that are indicated by dashed line segments in Figure 3.4.

The next result and its corollary [108, 111] show that in a subgraph of
Gp0q “ pR, Ep0qq without any conflicting edges, the vertices in each connected
component can be written as a Cartesian product of sets of consecutive in-
tegers. Therefore, another way of obtaining a Cartesian product partitioning
of R is to eliminate conflicting edges from Gp0q “ pR, Ep0qq.
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Consider a subgraph G “ pR, Eq of Gp0q “ pR, Ep0qq without any conflict-
ing edges, M P Zą0, i

pmq P R for m “ 0, . . . ,M , and

(a) ((0,0,1),(1,0,1)) and ((1,0,0),(1,0,1)) (b) ((0,1,1),(1,1,1)) and ((1,1,0),(1,1,1))

(c) ((0,2,0),(0,2,1)) and ((0,2,1),(0,3,1)) (d) ((0,2,1),(0,3,1)) and ((0,2,1),(1,2,1))

(e) ((0,2,0),(1,2,0)) and ((1,1,0),(1,2,0)) (f) ((0,1,1),(0,2,1)) and ((0,2,0),(0,2,1))

Fig. 3.4 Conflicting edges in the unit distance graph Gp0q “ pR, Ep0qq of R in Example 4

IpMq “

H
ą

h“1

t
M
min
m“0

pi
pmq

h q, . . . ,
M

max
m“0

pi
pmq

h qu.

If pipm´1q, ipmqq P E for m “ 1, . . . ,M , then IpMq Ď R and pi, jq P E for

i´ j P
ŤH

h“1t´eh, ehu and i, j P IpMq. The proof of this result which appears
in [108] is by mathematical induction on m. Now, letting G1 “ pR1, E 1q be a
connected component in G “ pR, Eq, this result implies R1 can be written as

a Cartesian product of consecutive integers, that is, R1 “
ŚH

h“1tih, . . . , jhu,
where i, j P R and ih ď jh for h “ 1, . . . , H.

The algorithm refines Gp0q “ pR, Ep0qq and its subgraphs by using sepa-
rators that are defined next [108, 111]. Let I,J Ď R and G “ pR, Eq be a
subgraph of Gp0q “ pR, Ep0qq. The edge set Z with Z Ď E is said to be a
separator if it satisfies the four conditions:
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i. each edge in Z is incident to a vertex in I and a vertex in J ,
ii. subgraphs of G induced by the sets I and J are each connected,
iii. there does not exist two vertices i, j P R such that

pi, i` dehq P Z, pj, j` dehq P EzZ, tpi, jq, pi` deh, j` dehqu Ď E , and

iv. there exists at least one edge in Z that conflicts with some edge in E ,
where I Ď ti P R | ih “ ku and J Ď ti P R | ih “ k ` du for some k P Sphq,
d P t´1, 1u, and h P t1, . . . , Hu. Let us now illustrate the separators in the
unit distance graph of R in Example 4.

Example 4. (ctnd.) The unit distance graph of R has the four separators

Zp0,1q
“ tpp0, 0, 1q, p1, 0, 1qq, pp0, 1, 1q, p1, 1, 1qq, pp0, 2, 0q, p1, 2, 0qq,

pp0, 2, 1q, p1, 2, 1qqu ,

Zp0,2q
“ tpp0, 2, 0q, p0, 2, 1qq, pp1, 0, 0q, p1, 0, 1qq, pp1, 1, 0q, p1, 1, 1qq,

pp1, 2, 0q, p1, 2, 1qqu ,

Zp0,3q
“ tpp0, 1, 1q, p0, 2, 1qq, pp1, 1, 0q, p1, 2, 0qq, pp1, 1, 1q, p1, 2, 1qqu ,

Zp0,4q
“ tpp0, 2, 1q, p0, 3, 1qqu

that are indicated by dotted line segments in Figure 3.5.

(a) Z 0,1 (b) Z 0,2

(c) Z 0,3 (d) Z 0,4

))

))))

))

Fig. 3.5 Separators in the unit distance graph Gp0q “ pR, Ep0qq of R in Example 4
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To further explain how separators are formed, note that the two disjoint
sets of Zp0,1q are given by

Ip0,1q
“ tp0, 0, 1q, p0, 1, 1q, p0, 2, 0q, p0, 2, 1qu

J p0,1q
“ tp1, 0, 1q, p1, 1, 1q, p1, 2, 0q, p1, 2, 1qu ;

the subgraphs of Gp0q “ pR, Ep0qq induced by Ip0,1q and J p0,1q are each
connected as in Figure 3.6; and the separator consists of edges each of which
has constant values in its incident multidimensional vertices except dimension
1. A similar line of reasoning applies to each of the other three separators.

Fig. 3.6 Subgraphs induced by Ip0,1q and J p0,1q corresponding to separator Zp0,1q in
unit distance graph Gp0q “ pR, Ep0qq of R for Example 4

Now, let Z be a separator in G “ pR, Eq, a subgraph of Gp0q “ pR, Ep0qq.
Two edges in G1 “ pR, EzZq conflict only if they also conflict in G “ pR, Eq

[108, 111]. The proof of this result in [108] follows from the definitions of
conflicting edge and separator. Hence, removing the edges in a separator de-
creases the number of conflicting edges in a subgraph of Gp0q “ pR, Ep0qq.
Having provided all the ingredients, we are in a position to formally present
the refinement-based Cartesian product partitioning of R in Algorithm 2.

First, the unit distance graph Gp0q “ pR, Ep0qq of R is constructed. This
requires identifying all adjacent vertices in R, which can be done by letting
each vertex in R keep an adjacency list of length 2H since there are H
dimensions and adjacent vertices in each dimension can be in the plus or
minus directions. To facilitate this, vertices in R are first inserted to an AVL
tree [1], and then for each vertex, vertices that might be adjacent to it in
the product state space S are sought in the tree. Since there are 2H such
possibilities for each vertex, 2H vertices end up being sought for each vertex.
Therefore, maintaining the graph requires a space complexity of OpH|R|q,
and constructing Gp0q “ pR, Ep0qq in this way suggests a time complexity of
OpH|R| lgp|R|qq. The AVL tree is destroyed after the graph is constructed.
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Algorithm 2. Refinement-based algorithm to compute a Cartesian product
partitioning Q of given H-dimensional reachable state space R.

Construct unit distance graph Gp0q “ pR, Ep0qq of R;
Construct an empty priority queue PQ;
For i P R,

For h :“ 1, . . . , H,
If i ` eh P R,

If pi, i ` ehq conflicts with some edge in Ep0q

and pi, i ` ehq is not in a separator,
Construct separator Z including pi, i ` ehq;
Insert Z to PQ;

E :“ Ep0q;
While PQ is not empty,

Zmax :“ separator Z in PQ whose priority is maximum;
Remove Zmax from PQ;
For pi, jq P Zmax,

L :“ H;
For separators Z in PQ including an edge incident to i or j,

L :“ L Y tZu; Remove Z from PQ;
E :“ EzZmax;
For Z P L,

While Z ‰ H,
Construct the separator Z 1 including some edge pi, jq P Z;
Z :“ ZzZ 1;
If priority of Z 1 is positive,

Insert Z 1 to PQ;
Q :“ H;
For connected components G1 “ pR1, E 1q of G “ pR, Eq,

Q :“ Q Y tR1u.

Once Gp0q “ pR, Ep0qq is constructed, its separators are formed and in-
serted to a priority queue [84] as in the for-loop on i in Algorithm 2, where
the priority of a separator is defined as the total number of edges that con-
flict with the edges in the separator. Since each separator includes at least
one conflicting edge due to the fourth item in the definition of a separator,
priorities of separators are necessarily positive. Now, let us again turn to
Example 4 and determine the priorities of the separators in Gp0q “ pR, Ep0qq.

Example 4. (ctnd.) Recall that there are four separators in the unit distance
graph of R as depicted in Figure 3.5. Of these separators, the edges in
Zp0,1q of Figure 3.5(a), respectively, conflict with the edges pp1, 0, 0q, p1, 0, 1qq

in Figure 3.4(a), pp1, 1, 0q, p1, 1, 1qq in Figure 3.4(b), pp1, 1, 0q, p1, 2, 0qq in
Figure 3.4(e), and pp0, 2, 1q, p0, 3, 1qq in Figure 3.4(d). Therefore, the pri-
ority of Zp0,1q is 4. On the other hand, the first edge in Zp0,2q of Fig-
ure 3.5(b) conflicts with the edges pp0, 1, 1q, p0, 2, 1qq in Figure 3.4(f) and
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pp0, 2, 1q, p0, 3, 1qq in Figure 3.4(c); the second and third edges in Zp0,2q,
respectively, conflict with the edges pp0, 0, 1q, p1, 0, 1qq in Figure 3.4(a) and
pp0, 1, 1q, p1, 1, 1qq in Figure 3.4(b). Hence, the priority of Zp0,2q is also 4. The
first and second edges in Zp0,3q of Figure 3.5(c), respectively, conflict with
the edges pp0, 2, 0q, p0, 2, 1qq in Figure 3.4(f) and pp0, 2, 0q, p1, 2, 0qq in Fig-
ure 3.4(e), implying a priority of 2 for Zp0,3q. Finally, the only edge in Zp0,4q

of Figure 3.5(d) conflicts with the edges pp0, 2, 0q, p0, 2, 1qq in Figure 3.4(c)
and pp0, 2, 1q, p1, 2, 1qq in Figure 3.4(d), implying also a priority of 2 for Zp0,4q.

Algorithm 2 constructs separators of Gp0q “ pR, Ep0qq by visiting each edge
in Ep0q and checking whether it conflicts with some other edge. Recall that
a separator is formed by two vertex sets I and J as in the first item in the
definition of a separator with connected subgraphs induced by each of them
as in the second item in the definition of a separator. Besides, the separator
including a particular edge is unique due to the third item in the definition
of a separator. Therefore, the separator including an edge is constructed only
once for Gp0q “ pR, Ep0qq. While constructing separator Z including the edge
pi, jq, a breadth-first search starting at i is used to visit the vertices connected
to i [84]. Hence, the time complexity of constructing separator Z is OpH|Z|q.
Since each edge is added to at most one separator, the number of edges in the
union of separators needs to be Op|Ep0q|q. Therefore, the total time complexity
of constructing all separators in Gp0q “ pR, Ep0qq becomes OpH|Ep0q|q. At each
vertex, an array of size 2H is used to keep the separators including the edge
incident to that vertex. The space complexity of the algorithm remains at
OpH|R|q, yet it takes constant time to retrieve the separator including a
given edge.

When a separator is constructed, it is added to a priority queue that is im-
plemented as a binary heap since later when refining the unit distance graph
we need to access the separator with maximum priority rapidly at each refine-
ment step. We remark that the number of separators cannot exceed |Ep0q| be-
cause each separator includes at least one edge. Therefore, the cost of insert-
ing separators of Gp0q “ pR, Ep0qq to the priority queue is Op|Ep0q| lgp|Ep0q|qq.
An array implementation of the priority queue is used. Since the maximum
number of separators is not known in advance, Op|Ep0q|q “ OpH|R|q space is
allocated for the priority queue.

The graph is refined by removing the separator with maximum priority at
each refinement step until no conflicting edges remain as in the while-loop
terminating on an empty priority queue in Algorithm 2. Obviously, the edge
set of the graph changes when a separator is removed during a refinement
step; hence, the separators need to be reconstructed after a separator re-
moval. We have already argued that an edge will be conflicting in the refined
graph only if it is also conflicting before the refinement step. Therefore, each
separator of the refined graph turns out to be a subset of a separator in the
graph before refinement. This implies that in order to reconstruct separators,
it is necessary and sufficient to visit vertices incident to edges in the separa-
tors intersecting the removed separator, where two separators are said to be
intersecting if they include edges along different dimensions that are incident
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to the same vertex. When all conflicting edges are eliminated, vertices in
each connected component can be written as a union of Cartesian products
of sets of consecutive integers in the last statement of Algorithm 2 using a
for-loop as discussed before. Now, let us determine the number of intersecting
separators in Gp0q “ pR, Ep0qq.

Example 4. (ctnd.) The number of intersecting separators in the unit distance
graph of R is five. Each pair of the four separators Zp0,1q, Zp0,2q, Zp0,3q, and
Zp0,4q is intersecting except the pair Zp0,3q and Zp0,4q. Although these two
pairs, respectively, have the edges pp0, 1, 1q, p0, 2, 1qq and pp0, 2, 1q, p0, 3, 1qq

incident to the same vertex p0, 2, 1q, the two edges are along the same dimen-
sion, that is, dimension 2, and therefore not intersecting.

Now, let us explain the refinement process in some more detail. After in-
serting the separators in Gp0q “ pR, Ep0qq to the priority queue and setting
E :“ Ep0q, at each refinement step, G “ pR, Eq is refined by removing the
edges in its separator with maximum priority, Zmax. Note that the unit dis-
tance graph can be refined at most |E | times, because at each refinement
step at least one of its edges is to be removed. Upon removing Zmax, its
intersecting separators need to be reconstructed, meaning all edges of Zmax

are visited to obtain the intersecting separators so that they can be inserted
to a list L and removed from the priority queue. Then these separators are
reconstructed for the edge set EzZmax and reinserted to the priority queue.
Reconstruction of a separator Z requires visiting all vertices incident to its
edges. The number of edges in the union of separators intersecting with Zmax

is OpH|E |q, which implies a time complexity of OpH|E |q at each refinement
step for the reconstruction of separators. This yields a total time complex-
ity of OpH|E |2q for reconstructing separators since reconstruction is required
in each refinement step. Now, let us turn to costs associated with priority
queue operations. At each refinement step, separators intersecting with Zmax

need to be removed from the priority queue. Separator Zmax intersects with
OpH|Zmax|q separators. Therefore, during execution of the algorithm, the to-
tal number of removals from the priority queue is OpH|E |q since the total size
of separators removed from the graph G “ pR, Eq is Op|E |q. The algorithm
starts and ends with an empty priority queue, suggesting also OpH|E |q as the
number of insertions to the priority queue. Hence, the total time complexity of
priority queue operations is OpH|E | lgpH|E |qq. When all costs are considered,
time and space complexities of Algorithm 2 are OpH|Ep0q|2q “ OpH3|R|2q

and OpH|R|q, respectively.

Example 4. (cntd.) Let Gpkq “ pR, Epkqq denote the subgraph of the unit dis-
tance graph of R with edge set Epkq after k separators are removed. There
are two separators with maximum priority in Gp0q “ pR, Ep0qq, and one of
them needs to be chosen. Let the edges in Zp0,1q be chosen for removal. Then
all other separators are reconstructed since the number of intersecting sepa-
rators with Zp0,1q is three and two pairs of conflicting edges in Figure 3.4(c)
and Figure 3.4(f) remain in Gp1q “ pR, Ep1qq as shown in Figure 3.7.
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Fig. 3.7 Subgraph Gp1q “ pR, Ep1qq in Example 4

Subgraph Gp1q “ pR, Ep1qq has the three separators

Zp1,1q
“ tpp0, 2, 0q, p0, 2, 1qqu , Zp1,2q

“ tpp0, 1, 1q, p0, 2, 1qqu , Zp1,3q
“ Zp0,4q

that are indicated by dotted line segments in Figure 3.8. The priority of sepa-
rator Zp1,1q is 2 since its only edge conflicts with the edges pp0, 2, 1q, p0, 3, 1qq

in Figure 3.4(c) and pp0, 1, 1q, p0, 2, 1qq in Figure 3.4(f). The priorities of the
other two separators are 1 since the only edge in Zp1,2q conflicts with the

(a) Z 1,1 (b) Z 1,2

(c) Z 1,3

) )

) )

Fig. 3.8 Separators in subgraph Gp1q “ pR, Ep1qq in Example 4

edge pp0, 2, 0q, p0, 2, 1qq in Figure 3.4(f) and the only edge in Zp1,3q conflicts
with the edge pp0, 2, 0q, p0, 2, 1qq in Figure 3.4(c). Hence, separator Zp1,1q is
chosen for removal from the edge set Ep1q. After the edges in the separator
are removed, Zp1,2q and Zp1,3q are reconstructed since both separators are
intersecting with Zp1,1q and no conflicting edges remain in Gp2q “ pR, Ep2qq

as in Figure 3.9.
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Fig. 3.9 Subgraph Gp2q “ pR, Ep2qq in Example 4

Since subgraph Gp2q “ pR, Ep2qq does not possess any conflicting edges,
the vertices in each of its connected components are members of the same
partition of the Cartesian product partitioning. Therefore, the number of
partitions in the Cartesian product partitioning of R with Algorithm 2 is
three and given by

Q “ ttp0, 0, 1q, p0, 1, 1q, p0, 2, 1q, p0, 3, 1qu, tp0, 2, 0qu ,

tp1, 0, 0q, p1, 0, 1q, p1, 1, 0q, p1, 1, 1q, p1, 2, 0q, p1, 2, 1quu .

Note that the number of partitions obtained with the refinement-based algo-
rithm is smaller than that obtained with the merge-based algorithm.

3.3 Two Other Kronecker-Structured Models

In this section, we introduce two other Kronecker-structured models from
the literature that will also serve as benchmarks. The production line model
with Kanban control [245] we discuss next has a reachable state space that is
equal to its product state space. The communications model using a Courier
protocol between adjacent network layers [328] we investigate in the following
subsection has unreachable states in its product state space. We think it is
crucial to see how the developed algorithms perform on these examples as
well.

3.3.1 A Production Line Model

We consider a large-scale production line in the form of a tandem of H sub-
models as in Figure 3.10, where each submodel represents a production unit.
Each submodel (except the first and last in the tandem) consists of a machine
that processes parts and its buffer, an output hopper where processed parts
wait to be admitted to the next submodel in line, and a fixed number of cards
allocated to the submodel. The control and coordination of parts that flow
through each submodel to a finished product at the end of the line is handled
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by the fixed number of cards, Ch, allocated to submodel h for h “ 1, . . . , H.
Such a scheduling discipline is named Kanban due to the Japanese term used
for the card and has been employed originally in the automotive industry to
increase efficiency and productivity.

Fig. 3.10 Production line model with H submodels

Admission of parts to submodels is controlled strictly by the cards. If there
are any unused cards in submodel h and a processed part in submodel h ´ 1
is waiting to be admitted to submodel h, one of the unused cards in sub-
model h is marked as being used, and the part is admitted to the submodel.
An arriving part at submodel h joins the buffer of the machine which pro-
cesses incoming parts on a first-come first-served basis in an exponentially
distributed amount of time with rate μh. Once processing of a part by the
machine in submodel h finishes, the part joins the output hopper in which it
starts waiting to be moved to submodel h` 1. Moving of a processed part in
submodel h to the next submodel in line takes an exponentially distributed
amount of time with rate γh and is only possible if there is at least one unused
card in submodel h`1. Otherwise, the processed part keeps on waiting in the
output hopper until a card becomes available in submodel h` 1. Upon mov-
ing to the next submodel, the card used by the processed part in submodel
h is unmarked and becomes available for reuse. Submodels 1 and H operate
slightly different than intermediate submodels; submodel 1 is assumed to al-
ways start processing a new part when a processed part moves from submodel
1 to submodel 2 implying there is no need for a machine buffer in submodel 1,
and a processed part in submodel H immediately leaves the model implying
there is no need for an output hopper in submodel H.

Assuming that ih denotes the number of used cards in submodel h, Kanban
control dictates that submodel h must have exactly ih parts either associated
with the machine or the hopper, where 0 ď ih ď Ch. In other words, the
number of parts associated with the machine and the number of processed
parts associated with the hopper in submodel h must sum up to ih. With
this understanding, submodels 1 and H can be represented using C1 ` 1 and
CH `1 states, respectively, whereas submodel h needs to be represented with
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pCh ` 1qpCh ` 2q{2 states for h “ 2, . . . , H ´ 1 due to the number of different
ways in which the ih parts can be distributed between the machine buffer and
the output hopper for ih “ 0, . . . , Ch (see also [50]). Note that had we not
chosen to model the intermediate production unit h as a single submodel and
therefore avoided grouping the machine and the hopper together, we would
have unreachable states in its product state space of size pCh `1q2. Neverthe-
less, it is still necessary to allocate machine buffer and output hopper spaces
each of size Ch in submodel h. The concept of grouping will be discussed in
more detail in Chapter 4.

Without loss of generality, we assume that the pCh `1qpCh `2q{2 states of
submodel h are ordered according to an increasing number of parts associated
with the machine and according to an increasing number of processed parts
associated with the hopper within each subset of states for a particular value
of the number of parts associated with the machine. In other words, the first
Ch ` 1 states numbered 0 through Ch correspond to those in which there
are no parts associated with the machine and 0 through Ch processed parts
associated with the hopper. The next Ch states numbered Ch ` 1 through
2Ch correspond to those states in which there is one part associated with the
machine and 0 through Ch ´ 1 processed parts associated with the hopper,
and so on. The last state numbered pCh ` 1qpCh ` 2q{2 ´ 1 corresponds to
Ch processed parts associated with the hopper.

The submodel state spaces are given by

Sp1q
“ t0, . . . , C1u , SpHq

“ t0, . . . , CHu , and

Sphq
“ t0, . . . , pCh ` 1qpCh ` 2q{2 ´ 1u for h “ 2, . . . , H ´ 1.

Hence, for this H-dimensional production line model, we have a reachable
state space equal to its product state space containing

|S| “ pC1 ` 1qpCH ` 1q

H´1
ź

h“2

pCh ` 1qpCh ` 2q{2

states. We will be considering models with H “ 4, 5, 6, 7, 8.
There are altogether K “ 2H ´ 1 transitions numbered 1 through 2H ´ 1

in the model, the first H of which may be perceived as being local. On the
other hand, transitions H ` 1 to 2H ´ 1 represent synchronizations between
adjacent submodels in such a way that transition H`h models the departure
of a processed part from submodel h and its arrival to submodel h`1 thereby
involving two adjacent submodels for h “ 1, . . . , H ´ 1. Here, we provide a
Kronecker representation of this model for Ch “ 4 and h “ 1, . . . , H.

Transition 1 represents the self-evolution of submodel 1 through which
parts enter the model, with the matrices
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0 1 2 3 4

Q
p1q

1 “

0
1
2
3
4

¨

˚

˚

˚

˚

˝

μ1

μ1

μ1

μ1

˛

‹

‹

‹

‹

‚

,

Q
pHq

1 “ ICH`1, and Q
phq

1 “ IpCh`1qpCh`1q{2 for h “ 2, . . . , H ´ 1.

Note that C1 transitions due to processing completions appear in the super-

diagonal part of Q
p1q

1 , implying nz
Q

p1q
1

“ C1.

Transition H represents the self-evolution of submodel H through which
parts leave the model in a way opposite to that of transition 1 so that the
number of parts in the submodel decreases by 1 upon each transition. Tran-
sition H has the matrices

0 1 2 3 4

Q
pHq

H “

0
1
2
3
4

¨

˚

˚

˚

˚

˝

μH

μH

μH

μH

˛

‹

‹

‹

‹

‚

,

Q
p1q

H “ IC1`1, and Q
phq

H “ IpCh`1qpCh`1q{2 for h “ 2, . . . , H ´ 1.

Note that CH transitions due to processing completions appear in the sub-

diagonal part of Q
pHq

H , implying nz
Q

pHq
H

“ CH .

Transitions 2 throughH´1 represent the processing behavior of submodels

2 through H ´ 1, respectively, and therefore, Q
phq

h has its nonzeros in the
upper-triangular part. That is, for h “ 2, . . . , H ´ 1, we have

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Q
phq

h “

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

μh

μh

μh

μh

μh

μh

μh

μh

μh

μh

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,
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Q
p1q

h “ IC1`1, Q
pHq

h “ ICH`1 , and

Q
plq
h “ IpCl`1qpCl`2q{2 for l ‰ h, l ‰ 1, and l ‰ H.

Note that nz
Q

phq
h

“ ChpCh ` 1q{2.

We use transitions H ` 1 through 2H ´ 1, altogether H ´ 1 transitions,
to represent departure of processed parts from the hopper in each submodel
and their arrival to the buffer of the machine in the next submodel in line.
Since departures and arrivals in adjacent submodels need to be synchronized
due to the Kanban control mechanism, each intermediate submodel h has

two non-identity matrices other than Q
phq

h , one corresponding to departures
the other to arrivals. Now, we give these matrices.

Transitions H ` 1 and 2H ´ 1 have the matrices

0 1 2 3 4 0 1 2 3 4

Q
p1q

H`1 “

0
1
2
3
4

¨

˚

˚

˚

˚

˝

1
1

1
1

˛

‹

‹

‹

‹

‚

, Q
pHq

2H´1 “

0
1
2
3
4

¨

˚

˚

˚

˚

˝

1
1

1
1

˛

‹

‹

‹

‹

‚

,

Q
pHq

H`1 “ ICH`1, Q
phq

H`1 “ IpCh`1qpCh`1q{2 for h “ 3, . . . , H ´ 1,

Q
p1q

2H´1 “ IC1`1, and Q
phq

2H´1 “ IpCh`1qpCh`1q{2 for h “ 2, . . . , H ´ 2.

For matrices Q
p1q

H`1 and Q
pHq

2H´1, we have nz
Q

p1q
H`1

“ C1 and nz
Q

pHq
2H´1

“ CH .

Submodel 1 has a non-identity matrix representing departures from its output
hopper, whereas submodel H has a non-identity matrix representing arrivals
to the buffer of its machine. Note that arrivals are possible only when the
next submodel in line has at least one unused card, whereas departures are
possible only when the hopper is nonempty.

Furthermore, for each intermediate submodel h with h “ 2, . . . , H ´ 1, we
have the transition matrices
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Q
phq

H`h´1 “

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
1

1
1

1
1

1

1
1

1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Q
phq

H`h “

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
1

1
1

1
1

1
1

1
1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

Q
phq

H`l “ IpCh`1qpCh`2q{2 for l ‰ h ´ 1, l ‰ h, and 2 ď l ď H ´ 1.

Note that nz
Q

phq
H`h´1

“ nz
Q

phq
H`h

“ ChpCh ` 1q{2.

Finally, rates of transitions 1 through 2H ´ 1 are given by

pα1, . . . , αH , αH`1, . . . , α2H´1q “ p1, . . . , 1, γ1, . . . , γH´1q .

Kronecker representation of the underlying generator matrix for the pro-
duction line model may then be written as

Q “

2H´1
ÿ

k“1

αk

H
â

h“1

Q
phq

k ` QD, QD “ ´

2H´1
ÿ

k“1

αk

H
â

h“1

diagpQ
phq

k eq .
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The number of floating-point values to be stored in this representation is
2H ´ 1 for the rates, C1 ` CH `

řH´1
h“2 ChpCh ` 1q{2 for the local transition

matrices, and C1`CH `2
řH´1

h“2 ChpCh`1q{2 for the synchronizing transition
matrices, thus altogether,

2H ´ 1 ` 2pC1 ` CHq ` 1.5
H´1
ÿ

h“2

ChpCh ` 1q.

For H “ 4 and C1 “ C2 “ C3 “ C4 “ 4, this evaluates to 83, whereas the
same number is 211 for H “ 8 and Ch “ 4 for h “ 1, . . . , H.

For the calculation of the number of nonzeros in the off-diagonal part of Q,
let us consider the following derivation. Transitions 1 through H altogether
contribute

p2C1CH ` C1 ` CHq

H´1
ź

h“2

pCh ` 1qpCh ` 2q

2

` pC1 ` 1qpCH ` 1q

H´1
ÿ

l“2

ClpCl ` 1q

2

H´1
ź

h‰l

h“2

pCh ` 1qpCh ` 2q

2

nonzeros to the off-diagonal part of Q. On the other hand, transitions H ` 1
through 2H ´ 1 altogether contribute

C1pCH ` 1q
C2pC2 ` 1q

2

H´1
ź

h“3

pCh ` 1qpCh ` 2q

2

` pC1 ` 1qpCH ` 1q

H´1
ÿ

l“2

ClpCl ` 1q

2

Cl`1pCl`1 ` 1q

2

H´1
ź

h‰l,h‰l`1

h“2

pCh ` 1qpCh ` 2q

2

` pC1 ` 1qCH
CH´1pCH´1 ` 1q

2

H´2
ź

h“2

pCh ` 1qpCh ` 2q

2

nonzeros to the off-diagonal part of Q.
When Ch “ C for h “ 1, . . . , H with H ě 4, the contribution from

transitions 1 through H becomes

C2pC ` 1qH´1pC ` 2qH´3

2H´3
,

and the contribution from transitions H ` 1 through 2H ´ 1 becomes

pH ´ 3qC2pC ` 1qHpC ` 2qH´4

2H´2
.
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After summing these up, we obtain

C2pC ` 1qH´1pC ` 2qH´4pHC ´ C ` H ` 1q

2H´2

as the number of nonzeros in the off-diagonal part of Q when Ch “ C for
h “ 1, . . . , H with H ě 4.

When H “ 4 and C1 “ C2 “ C3 “ C4 “ 4, Q is of order 5,625, and there
are 8,500 nonzeros in its off-diagonal part, whereas when H “ 8 and Ch “ 4
for h “ 1, . . . , H, Q is of order 284,765,625 and has a total of 936,562,500
nonzero off-diagonal entries.

3.3.2 A Communications Protocol Model

In this subsection, we look into a communications protocol model imple-
mented in software [328]. The relatively complex model of four submodels
represents the flow of messages from a sender (or source) to a receiver (or
sink) over a communications network. In this protocol, which has also been
used in [49, 195] as a test case, the sender side is represented using submodels
1 and 2, whereas the receiver side is represented using submodels 3 and 4 as
in Figure 3.11.

A user message that emerges in submodel 1 at the sender through t1 is
passed to the session layer through t3 which in turn passes the message to the
transport layer through t6. The transfer of messages between adjacent layers
is handled by Courier tasks courier1 and courier2, where each Courier task
is an active buffer taking care of the give and take of a single message. Once a
message arrives in submodel 2 at the transport layer of the sender in the form
of a transport service data unit (TSDU) (i.e., transp exec TSDU), it is broken
down through t7 into 1 ` ω8{ω9 transport protocol data units (TPDUs) or
packets. All packets except the last one move through t8, whereas the last
packet takes the path through t9. For each packet that is transmitted from
the sender to the receiver over the communications network through t18 or
t19, an acknowledgment is generated in submodel 3 at the transport layer of
the receiver through t21 and returned to the sender over the network through
t20. However, reassembly of the TSDU and its delivery to the session layer
of the receiver in submodel 4 can only be performed when the last packet
belonging to the TSDU arrives at the receiver through t18 and is processed
through t25. Similar operations, though in reverse order of those in submodel
1, are executed once the reassembled TSDU is passed from the transport
layer through t28 to the session layer at the receiver in submodel 4.

The window size associated with packets at the sender in this model, in
other words, the maximum number of unacknowledged packets sent over the
network to the receiver at any given time, is C. The transport buffer space
at the sender (i.e., transp space) is set to 1, meaning a new message can
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Fig. 3.11 Communications protocol model with four submodels

only be admitted to the transport layer in submodel 2 from the session layer
in submodel 1 through t6 if the last packet belonging to the TSDU at hand
is ready to be transmitted to the receiver.

The generalized stochastic Petri net (GSPN) model of the communications
protocol depicted in Figure 3.11 is a fusion of the GSPN models in Figure 3.2
of [328] and Figure 2 of [195]. The figure may seem dauntingly complex at
first even though it only corresponds to a model with H “ 4 submodels. Let
us briefly recall GSPNs so that we can follow the operation of the protocol
in more detail.
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Formally, a GSPN [2] is an eight-tuple

GSPN “ pP, T ,pr, I,O,H,m0,ωq,

where P is the set of places, T is the set of transitions, pr is the vector of
priorities assigned to transitions in T , I is the set of input arcs such that
I Ă P ˆ T , O is the set of output arcs such that O Ă T ˆ P, H is the set
of inhibitor arcs such that H Ă P ˆ T , m0 is the initial marking associated
with the places in P, and ω is a vector comprised of firing rates for timed
transitions and weights used in the computation of firing probabilities for
immediate transitions in T .

In the graphical representation of the GSPN in Figure 3.11, places are in-
dicated using circles, timed transitions are indicated using white rectangular
boxes, and immediate transitions are indicated using black segments. Tokens
inside places are indicated using black dots except p14 which initially has C
tokens. Note that all arcs are directed, the directions being shown by arrow-
heads. For the particular model, |P| “ 45 with, respectively, 9, 15, 10, and
11 places in submodels 1, 2, 3, and 4, and |T | “ 34 with 21 timed and 13
immediate transitions. The initial markings (or states) associated with the
submodels are given by

m
p1q

0 “ p1, 0, 1, 0, 0, 1, 0, 1, 0q ,

m
p2q

0 “ p0, 1, 0, 1, C, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0q ,

m
p3q

0 “ p0, 0, 0, 0, 0, 0, 0, 0, 1, 0q ,

m
p4q

0 “ p0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1q .

We have numbered the transition rates as in [328] but have adopted the
numbering of places and transitions in [195]. As in [195], we have drawn each
of the places p11 and p33 in Figure 3.11 twice so as to have an uncluttered
graph without intersecting arcs.

In order for a transition to be enabled and thus fire in a particular marking,
each of its input places must have at least as many tokens as indicated by
the multiplicity of its corresponding input arc. By default, a multiplicity of
1 is assumed for each arc. For instance, transition t3 fires when p4 and p6
are both nonzero in a marking. On the other hand, p11, p12, and p14 all need
to be nonzero for t8 or t9 to fire. This brings us to the concept of inhibitor
arcs which are indicated by small circles instead of arrowheads on the arcs.
An inhibitor arc disables the transition in any marking where the number of
tokens in its input place is greater than or equal to the multiplicity of the
inhibitor arc. Observe that there are no inhibitor arcs in Figure 3.11; hence,
H “ H.

Starting from an initial marking m0, the model moves into a new marking
by following one of its enabled, that is, uninhibited transitions. It is assumed
that transitions can have delays that are exponentially distributed with a
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given firing rate or they can be immediate, meaning they take place in zero
time once they are enabled. The former kind of transitions are referred to as
being timed and are assigned the lowest priority of 0, while immediate transi-
tions are assigned higher priorities starting from 1. Priorities are assumed to
be the same among immediate transitions in Figure 3.11 where, for instance,
t1 is a timed transition and t2 is an immediate transition.

When an enabled transition fires in a marking m, tokens are removed
from its input places and put in its output places. The number of tokens
transferred as such from input places to output places of a transition depends
on the multiplicities associated with the input arcs and output arcs of the
transition. In the case of immediate transitions, the selection of which enabled
transition to fire in marking m is based on the values of priorities in pr and
weights in ω. If there is a tie among priorities, the selection is probabilistic
and governed by

Probptkq “
ωk

ř

@l such that tlPEpmq
ωl

for enabled immediate transition tk with the highest priority, where Epmq is
the set of enabled immediate transitions with highest priority in marking m.

Markings that enable timed transitions only are named tangible and com-
prise the reachable state spaceR of the underlying CTMC. On the other hand,
markings that enable at least one immediate transition are named vanishing
(or intangible) since they are occupied for zero time due to the priority of
immediate transitions over timed transitions. For instance, in Figure 3.11

the initial marking m
p1q

0 “ p1, 0, 1, 0, 0, 1, 0, 1, 0q in submodel 1 is tangible
since timed transition t1 is the only enabled transition that can fire when

in m
p1q

0 , whereas the marking mp1q “ p0, 1, 1, 0, 0, 1, 0, 1, 0q which is obtained

from m
p1q

0 when t1 fires is vanishing, since mp1q has p2 “ p3 “ 1 that will
cause immediate transition t2 to fire in zero time taking mp1q to the tangible

marking m
p1q

1 “ p1, 0, 0, 1, 0, 1, 0, 1, 0q. As we will see, the CTMC underlying
the GSPN becomes considerably large, and the enumeration of its reach-
able states (i.e., tangible markings) is manually intractable as the value of C
increases.

Before moving to the state space descriptions of submodels, we recall the
values of the reciprocals of the transition rates that are reported in [328] as

pμ´1
1 , μ´1

2 , μ´1
3 , μ´1

4 , μ´1
5 , μ´1

6 , μ´1
7 , μ´1

8 , μ´1
9 , μ´1

10 q “

p0.57, 4.97, 1.09, 10.37, 4.29, 0.39, 0.68, 2.88, 3.45, 1.25q{5,000 .

The weights in Figure 3.11 for all immediate transitions can be considered
to be 1 except t8 and t9 which are competing with each other in submodel 2
when they are both enabled. For t8 and t9 to be both enabled in a marking,
p11, p12, and p14 must all be nonzero as mentioned before. We remark that
t8 is at the start of the path that takes all packets belonging to a TSDU
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except the last one over the network to transition t26 in submodel 3. On
the other hand, t9 is at the start of the path that takes the last packet of a
TSDU over the network to transition t25 in submodel 3. Since transitions t8
and t9 have weights of ω8 and ω9, they fire, respectively, with probabilities of
ω8{pω8 `ω9q and ω9{pω8 `ω9q when they are both enabled. Observe that the
arc between t8 and p12 is bidirectional meaning this arc is both an input arc
and an output arc for t8. However, this is not the case for the arc between
p12 and t9. This suggests a nonsymmetric firing relationship between t8 and
t9 once t9 is fired.

Submodel 1 has 15 states (i.e., |Sp1q| “ 15) one of which is m
p1q

0 . The initial

marking m
p1q

0 corresponds to an empty submodel with no messages and is
assigned state number 0. There are three states in submodel 1 that have a
single message. These three states differ from each other in the location of
the message among the places p4, p5, and p9, which are all followed by timed
transitions and are, respectively, numbered 1, 2, and 3 with the corresponding
markings

m
p1q

1 “ p1, 0, 0, 1, 0, 1, 0, 1, 0q , m
p1q

2 “ p1, 0, 1, 0, 1, 0, 0, 1, 0q ,

m
p1q

3 “ p1, 0, 1, 0, 0, 1, 0, 0, 1q .

Submodel 1 has five states in which there are two messages. In these states
which are numbered 4 through 8, the two messages are in the pairs of places
pp2, p4q, pp4, p5q, pp4, p9q, pp5, p9q, and pp7, p9q. Note that in each pair the
second place is followed by a timed transition and the first place is followed
by either a timed transition or an immediate transition with an empty input
place that inhibits firing of the timed transition with p3 “ 0 as in the pair
pp2, p4q or with p8 “ 0 as in the pair pp7, p9q. The associated markings are

m
p1q

4 “ p0, 1, 0, 1, 0, 1, 0, 1, 0q , m
p1q

5 “ p1, 0, 0, 1, 1, 0, 0, 1, 0q ,

m
p1q

6 “ p1, 0, 0, 1, 0, 1, 0, 0, 1q , m
p1q

7 “ p1, 0, 1, 0, 1, 0, 0, 0, 1q ,

m
p1q

8 “ p1, 0, 1, 0, 0, 0, 1, 0, 1q .

Submodel 1 has four states in which there are three messages in the triples
of places pp2, p4, p5q, pp2, p4, p9q, pp4, p5, p9q, and pp4, p7, p9q. These states are
numbered 9 through 12 and have the corresponding markings

m
p1q

9 “ p0, 1, 0, 1, 1, 0, 0, 1, 0q , m
p1q

10 “ p0, 1, 0, 1, 0, 1, 0, 0, 1q ,

m
p1q

11 “ p1, 0, 0, 1, 1, 0, 0, 0, 1q , m
p1q

12 “ p1, 0, 0, 1, 0, 0, 1, 0, 1q .

Finally, there are two states in which submodel 1 has four messages. These
states are numbered 13 and 14 and are given by the markings

m
p1q

13 “ p0, 1, 0, 1, 1, 0, 0, 0, 1q , m
p1q

14 “ p0, 1, 0, 1, 0, 0, 1, 0, 1q .
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Note that it is not possible to have five or more messages in submodel 1 since
the total number of tokens in its initial marking is four and this number is
preserved in all markings due to the structure of the GSPN. The number of
states in submodel 1 is independent of C and so is the one in submodel 4.
That is why we choose to discuss submodel 4 next.

Submodel 4 has 30 states (i.e., |Sp4q| “ 30), twice that of submodel 1

and one of which is m
p4q

0 . As in submodel 1, the initial marking m
p4q

0 also
represents an empty submodel with no messages and is assigned state number
0. There are four states in submodel 4 that have a single message. These four
states differ from each other in the location of the message among the places
p37, p39, p42, and p44 and are, respectively, numbered 1 through 4 with the
markings

m
p4q

1 “ p0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1q , m
p4q

2 “ p0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1q ,

m
p4q

3 “ p0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1q , m
p4q

4 “ p0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0q .

Submodel 4 has eight states in which there are two messages. In these states
which are numbered 5 through 12, the two messages are in the pairs of places
pp35, p37q, pp37, p39q, pp37, p42q, pp37, p44q, pp39, p42q, pp39, p44q, pp41, p42q, and
pp42, p44q. The corresponding markings are

m
p4q

5 “ p1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1q , m
p4q

6 “ p0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1q ,

m
p4q

7 “ p0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1q , m
p4q

8 “ p0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0q ,

m
p4q

9 “ p0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1q , m
p4q

10 “ p0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0q ,

m
p4q

11 “ p0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1q , m
p4q

12 “ p0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0q .

Submodel 4 has nine states in which there are three messages in the
triples of places pp35, p37, p39q, pp35, p37, p42q, pp35, p37, p44q, pp37, p39, p42q,
pp37, p39, p44q, pp37, p41, p42q, pp37, p42, p44q, pp39, p42, p44q, and pp41, p42, p44q.
These states numbered 13 through 21 have the corresponding markings

m
p4q

13 “ p1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1q , m
p4q

14 “ p1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1q ,

m
p4q

15 “ p1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0q , m
p4q

16 “ p0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1q ,

m
p4q

17 “ p0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0q , m
p4q

18 “ p0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1q ,

m
p4q

19 “ p0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0q , m
p4q

20 “ p0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0q ,

m
p4q

21 “ p0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0q .

Submodel 4 has six states in which there are four messages in the quadruples
of places pp35, p37, p39, p42q, pp35, p37, p39, p44q, pp35, p37, p41, p42q,
pp35, p37, p42, p44q, pp37, p39, p42, p44q, and pp37, p41, p42, p44q. These states are
numbered 22 through 27 with the corresponding markings
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m
p4q

22 “ p1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1q , m
p4q

23 “ p1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0q ,

m
p4q

24 “ p1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1q , m
p4q

25 “ p1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0q ,

m
p4q

26 “ p0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0q , m
p4q

27 “ p0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0q .

Finally, there are two states in which submodel 4 has five messages. These
states are numbered 28 and 29 and are given by the markings

m
p4q

28 “ p1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0q, m
p4q

29 “ p1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0q .

Note that it is not possible to have six or more messages in submodel 4 since
the total number of tokens in its initial marking is five and this number is
preserved in all markings due to the structure of the GSPN.

Now, we turn to submodels 2 and 3, which have state space sizes that
depend on the value of C. For C “ 1, submodel 2 has 16 states (i.e., |Sp2q| “

16), and submodel 3 has 6 states (i.e., |Sp3q| “ 6). In the following, we let
C “ 1 and ω8 “ ω9 “ 1, meaning the window size is set to 1 and each
TSDU is broken down into 2 packets at the transport layer. The particular
values of ω8 and ω9 suggest that immediate transitions t8 and t9 each fire
with a probability of 1{2 when they are both enabled. In fact, p11 is at the
source of input arcs of the five immediate transitions t8, t9, t13, t14, and t15 in
submodel 2. Similarly, p33 is at the source of input arcs of the four immediate
transitions t22, t23, t24, and t27 in submodel 3. For instance, when C “ 2,
there will be firing probabilities of 1{3 in submodel 2 and 1{2 in submodel
3, which do not exist for C “ 1, even though all immediate transitions in
the GSPN still have weights of 1. The reason behind this is the existence of
vanishing markings in these two submodels which, respectively, have three
and two immediate transitions that are enabled in this case. This is something
to reckon with for larger values of C.

We first consider the simpler submodel 3. The initial marking m
p3q

0 corre-
sponds to an empty submodel with no TSDU’s and is assigned state number
0. The markings associated with states numbered 1 through 5 are

m
p3q

1 “ p0, 0, 0, 0, 0, 1, 0, 0, 0, 0q , m
p3q

2 “ p0, 0, 0, 1, 0, 0, 0, 0, 0, 0q ,

m
p3q

3 “ p1, 0, 0, 0, 0, 0, 0, 0, 1, 0q , m
p3q

4 “ p0, 0, 0, 0, 1, 0, 0, 0, 0, 0q ,

m
p3q

5 “ p0, 0, 0, 0, 0, 0, 0, 1, 0, 1q .

State 1 corresponds to having the first packet of a TSDU in submodel 3
since p30 “ 1. State 2 corresponds to getting an acknowledgment packet
prepared since p28 “ 1. Note that this acknowledgment could be for the
first, or the second (hence last) packet of a TSDU. State 3 corresponds to
having an acknowledgment ready to leave submodel 3 since p25 “ 1. State 4
corresponds to having the second packet in submodel 3 since p29 “ 1. Finally,
state 5 corresponds to having a reassembled TSDU ready to be passed to the
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session layer in submodel 4 since p34 “ 1 and an acknowledgment packet on
its way to being prepared since p32 “ 1.

Submodel 2 is more complicated than submodel 3 in its operation. As

in submodel 3, the initial marking m
p2q

0 corresponds to an empty submodel
with no TSDU’s and is assigned state number 0. The markings associated
with states numbered 1 through 15 are

m
p2q

1 “ p1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0q ,

m
p2q

2 “ p0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0q ,

m
p2q

3 “ p0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0q ,

m
p2q

4 “ p0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0q ,

m
p2q

5 “ p0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0q ,

m
p2q

6 “ p0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0q ,

m
p2q

7 “ p0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0q ,

m
p2q

8 “ p0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1q ,

m
p2q

9 “ p0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0q ,

m
p2q

10 “ p1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1q ,

m
p2q

11 “ p1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0q ,

m
p2q

12 “ p0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1q ,

m
p2q

13 “ p0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0q ,

m
p2q

14 “ p0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0q ,

m
p2q

15 “ p1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0q .

State 1 corresponds to having a TSDU in submodel 2 since p10 “ 1. States 2,
3, 4, and 5 with p12 “ 1 correspond to having a first packet, preparing a first
packet, having a ready to leave first packet, and having its acknowledgment
arrival in submodel 2 since p15 “ 1, p20 “ 1, p11 “ p23 “ 1, and p19 “ 1,
respectively. States 6, 7, 8, and 9 with p12 “ 0 correspond to having a last
packet, preparing a last packet, having a ready to leave last packet, and
having its acknowledgment arrival in submodel 2 since p16 “ 1, p21 “ 1,
p11 “ p13 “ p24 “ 1, and p13 “ p19 “ 1, respectively. State 10 corresponds
to having a new TSDU and a ready to leave last packet since p10 “ p24 “ 1,
and state 11 corresponds to having a new TSDU and an acknowledgment
arrival since p10 “ p22 “ 1. State 12 is a state similar to state 10, but one
in which the TSDU has moved to p12 from p10. Note that the TSDU cannot
move further to p15 or p16 and generate a packet because p14 “ 0. State
13 with p11 “ p12 “ 1 and state 14 with p11 “ p13 “ 1 correspond to
having a departed first packet and a departed last packet, respectively. State
15 corresponds to having a new TSDU and a departed last packet since all
places are 0 except p10.
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Reachable state space generation in the context of GSPNs is performed
by starting from a state corresponding to a tangible initial marking and gen-
erating with breadth-first search [84] all successor states that correspond to
tangible markings for each unprocessed state until no more states can be
generated. Now, recall that submodels 1 through 4, respectively, have 9, 15,
10, and 11 places each of which can hold at most one token for C “ 1, im-
plying product state spaces of 29, 215, 210, and 211. However, we have shown
that sizes of these submodel reachable state spaces are given by |Sp1q| “ 15,
|Sp2q| “ 16, |Sp3q| “ 6, and |Sp4q| “ 30. Clearly, each submodel’s reachable
state space size is much smaller than its product state space size, which sug-
gests that grouping of places and elimination of a large number of unreachable
states from each product state space must have been performed. Observe that
some of the states in the difference between the product state space and the
reachable state space of each submodel are vanishing due to immediate tran-
sitions and therefore eliminated, while others are eliminated simply because
they are not possible due to semantic constraints. With this note and that
the concept of grouping will be discussed further in Chapter 4, we now turn
to reachable state space R of the communications protocol model composed
of four submodels.

In [49], an algorithm is devised to compute partitionings of submodel state
spaces Sphq for h “ 1, . . . , H through which an HMM representation of an
H-dimensional Markovian model expressed as a GSPN can be obtained. The
input supplied to this algorithm is the GSPN model partitioned into a num-
ber of subnets, which must interact through timed transitions only. Subnets
defined as such correspond to submodels in our setting. Observe that tran-
sitions t6 between submodels 1 and 2; t18, t19, and t20 between submodels
2 and 3; and t28 between submodels 3 and 4 in Figure 3.11 are all timed.
The automated approach for generating an HMM representation for a given
GSPN model in [49] can then be viewed as consisting of the three phases
described below.

In the first phase of the approach, the reachable state space of each sub-
model is generated by eliminating vanishing markings. This can be done lo-
cally within each submodel since by definition all immediate transitions are
constrained to be inside submodels and cannot be at synchronization points
between submodels. All submodel state spaces obtained as such are assumed
to be finite and denoted by Sphq for h “ 1, . . . , H. We have been performing
the equivalent task relatively easily by manual enumeration in all the exam-
ple models considered up to this point. However, in submodels 2 and 3 of
the communications protocol model, it does not seem to be possible to follow
the same approach for C ą 1 due to the large number of markings involved,
hence, the need for automation.

In the second phase, reachable state space R of the GSPN model corre-
sponding to its tangible markings is generated and stored in a Boolean vector
s of length |S| “

ŚH
h“1 |Sphq| by marking reachable states with 1 and leaving

unreachable states as 0. In other words, vector s is of length n “
śH

h“1 nh,
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where nh “ |Sphq|, and has |R| entries that are 1 and n´ |R| entries that are
0. For dimension h of the H-dimensional model, Boolean vector s is treated
as a matrix which has the states in Sphq as row indices and states of the other
H ´ 1 dimensions in

ŚH
l“1,l‰h Splq as column indices. Then states in Sphq are

partitioned according to identical rows of this pnh ˆ n{nhq Boolean matrix
by placing indices of identical rows into the same partition of Sphq under
the rationale that they are reachable with the same environment states in
ŚH

l“1,l‰h Splq. Now, let us assume that the second phase yields Nh partitions

for Sphq; that is, for h “ 1, . . . , H, let us have

Sphq
“

Nh´1
ď

p“0

Sphq
p , Sphq

p XSphq
w “ H, p ‰ w for p, w “ 0, . . . , Nh ´1. (3.1)

The partitioning of Sphq in this way takes Opnq time and is carried out for
h “ 1, . . . , H, thus altogether amounting to OpHnq time [49].

In our model for C “ 1, n “ 43,200 and |R| “ 11,700. When s of length n
is organized into a Boolean matrix having the states in dimension h as row
indices and the states in the product state space of the remaining dimensions
as column indices, and after the partitioning of row indices is performed for
h “ 1, . . . , H, we obtain N1 “ 1, N2 “ 3, N3 “ 3, and N4 “ 1. Hence,
submodels 1 and 4 are comprised of single partitions of states as in

Sp1q

0 “ t0, . . . , 14u and Sp4q

0 “ t0, . . . , 29u ,

whereas submodels 2 and 3 each have three partitions of states given by

Sp2q

0 “ t0, . . . , 12u, Sp2q

1 “ t13u, Sp2q

2 “ t14, 15u and

Sp3q

0 “ t0u, Sp3q

1 “ t1u, Sp3q

2 “ t2, . . . , 5u.

Observe that partition 1 of submodel 2 corresponds to the state in which the
first packet of a TSDU has departed but its acknowledgment has not arrived,
whereas its partition 2 corresponds to the two states in which the last packet
of a TSDU has departed but its acknowledgment has not arrived. Partition
0 of submodel 2 has the remaining 13 states. When we look at the partitions
of submodel 3, we note that partition 0 corresponds to the state in which the
submodel is empty and partition 1 corresponds to the state in which the first
packet of a TSDU from submodel 2 has arrived. Partition 2 of submodel 3
has the remaining four states.

The number of partitions, Nh, of submodel state spaces, Sphq, obtained in
this way implies a total of

śH
h“1 Nh potential reachable state space partitions.

When there are no unreachable states in S, meaning S “ R, we have Nh “ 1
for h “ 1, . . . , H. On the other hand, when there are unreachable states in S,
meaning

śH
h“1 Nh ą 1, there must be some potential reachable state space

partitions among the
śH

h“1 Nh that are unreachable. In fact, the minimum
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number of unreachable potential reachable state space partitions must be
maxhpNh ´ 1q [49]. To see this, let the

śH
h“1 Nh potential reachable state

space partitions be organized into an pNh ˆ
śH

l“1,l‰h Nlq Boolean matrix.
All rows of this matrix need to be different from each other; otherwise the
indices of identical rows among them would have been placed into the same
partition. One of the Nh rows can be all 1s, while each of the other Nh ´ 1
rows must have at least one 0 in a different position for its index to remain as
it is without being placed with another row’s index into the same partition.
Hence, Nh ´ 1 is the minimum number of 0s in the pNh ˆ

śH
f“1,f‰h Nf q

Boolean matrix corresponding to potential reachable state space partitions
for dimension h. But, this needs to be true for all H dimensions, implying
we need to take the maximum of Nh ´ 1 for h “ 1, . . . , H.

In our model for C “ 1, we have p1 ˆ 9q and p3 ˆ 3q Boolean matrices
associated with potential reachable state space partitions along dimensions
1, 4 and 2, 3, respectively. For instance, the p3ˆ3q Boolean matrix associated
with dimension 2 is given by

Sp1q ˆ Sp3q

0 ˆ Sp4q Sp1q ˆ Sp3q

1 ˆ Sp4q Sp1q ˆ Sp3q

2 ˆ Sp4q

Sp2q

0

Sp2q

1

Sp2q

2

¨

˝

1
1 1

1

˛

‚ .

The four 1s out of the nine possible 1s in this Boolean matrix yield the
N “ 4 reachable state space partitions (i.e., macrostates) in Table 3.1. This
is understandably so, because among the 96 states in Sp2q ˆ Sp3q, only the
26 in

Sp2q

0 ˆ Sp3q

0 Y Sp2q

1 ˆ Sp3q

1 Y Sp2q

1 ˆ Sp3q

2 Y Sp2q

2 ˆ Sp3q

2

are reachable. Therefore, we have

R “

3
ď

p“0

Rp with Rp “

4
ą

h“1

Rphq
p for p “ 0, . . . , 3,

where

R0 “ Sp1q

0 ˆ Sp2q

0 ˆ Sp3q

0 ˆ Sp4q

0 , R1 “ Sp1q

0 ˆ Sp2q

1 ˆ Sp3q

1 ˆ Sp4q

0 ,

R2 “ Sp1q

0 ˆ Sp2q

1 ˆ Sp3q

2 ˆ Sp4q

0 , R3 “ Sp1q

0 ˆ Sp2q

2 ˆ Sp3q

2 ˆ Sp4q

0 .

Table 3.1 Mapping between reachable state space partitions and submodel states in com-
munications protocol model

Partition Submodel 1 Submodel 2 Submodel 3 Submodel 4 # of states

R0 0:14 0:12 0:0 0:29 15 . 13 . 1 . 30 “ 5,850
R1 0:14 13:13 1:1 0:29 15 . 1 . 1 . 30 “ 450
R2 0:14 13:13 2:5 0:29 15 . 1 . 4 . 30 “ 1,800

R3 0:14 14:15 2:5 0:29 15 . 2 . 4 . 30 “ 3,600



80 3 Avoiding Unreachable States

The third phase of the approach associates timed transitions in the model
between reachable state space partitions other than local transitions starting
and ending in the same reachable state space partition with the entries of
the pN ˆNq HLM matrix as in Section 2.2. Finally, the HMM representation
consisting of the HLM matrix, transitions, their rates, state space partitions
of submodels, and non-identity transition matrices are written to files in
sparse format suitable for the NSolve package of the APNN toolbox [7, 22].

In our particular model, there are a total of K “ 9 transitions. For consis-
tency, local transition of submodel h is numbered h for h “ 1, . . . , 4. Transi-
tion 5 (t6 in Figure 3.11) with rate μ1 synchronizes submodels 1 and 2. Tran-
sitions 6, 7, and 8 (respectively, t18, t19, and t20 in Figure 3.11) with rates
μ4 synchronize submodels 2 and 3. Finally, transition 9 (t28 in Figure 3.11)
with rate μ9 synchronizes submodels 3 and 4.

We prefer to express the p4 ˆ 4q HLM matrix using transitions numbered
1 through 9 and explicitly writing local transitions similar to what we have
done with the polling model in Section 2.3 to yield the interaction matrix

R0 R1 R2 R3

R0

R1

R2

R3

¨

˚

˚

˝

t1, 2, 3, 4, 5u t7u t6u t6u

t1, 2, 3, 4u t3u

t8u t1, 2, 3, 4, 9u

t8u t2u t1, 2, 3, 4, 5, 9u

˛

‹

‹

‚

. (3.2)

Observe that when a local transition appears in the off-diagonal part of the
interaction matrix describing the transitions among reachable state space
partitions, it is associated with the submodel that changes state. We have
two such examples in this model. One of them appears in entry pR1,R2q

where submodel 3 changes its state from 1 to another state in t2, . . . , 5u. The
other appears in entry pR3,R2q where submodel 2 changes from a state in
t14, 15u to state 13. The other submodels in both cases remain in their states.

Each of the transitions 1 through 4 in (3.2) has a corresponding Kronecker
product of four submodel submatrices. The submatrices associated with those
submodels that do not participate in a transition are all identity. Submodels
1 and 4 each participate in two transitions, whereas submodels 2 and 3 each
participate in five transitions. Submodel 1 participates in transitions 1, 5,
submodel 2 participates in transitions 2, 5, 6, 7, 8, submodel 3 participates in
transitions 3, 6, 7, 8, 9, and submodel 4 participates in transitions 4, 9. For

instance, submodel 2 participates in transition 2 with submatrix Q
p2q

2 p0 :

12, 0 : 12q when in R0, with submatrix Q
p2q

2 p13 : 13, 13 : 13q when in R1

or R2, and with submatrix Q
p2q

2 p14 : 15, 14 : 15q when in R3. Submodel

2 participates in transition 5 with submatrix Q
p2q

5 p0 : 12, 0 : 12q when in

R0 and with submatrix Q
p2q

5 p14 : 15, 14 : 15q when in R3. When in R0,

submodel 2 participates in transition 6 with submatrix Q
p2q

6 p0 : 12, 13 : 13q

if the transition is to R2 and with submatrix Q
p2q

6 p0 : 12, 14 : 15q if the
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transition is to R3. Submodel 2 also participates in transition 7 when in

R0 with submatrix Q
p2q

7 p0 : 12, 13 : 13q. Finally, submodel 2 participates

in transition 8 with submatrix Q
p2q

8 p13 : 13, 0 : 12q when in R2 and with

submatrix Q
p2q

8 p14 : 15, 0 : 12q when in R3.
The local transition matrix of submodel 1 is given by

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Q
p1q

1 “

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

μ7

μ1 μ7

μ2 μ7

μ7

μ1

μ2 μ7

μ1 μ7

μ2 μ7

μ7

μ2

μ1

μ2 μ7

μ7

μ2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Furthermore, we have Q
phq

1 “ I|Sphq| for h “ 2, 3, 4.
Note that nz

Q
p1q
1

“ 20. Of the 20 nonzeros, 4 have the value μ1, 6 have the

value μ2, and 10 have the value μ7. In particular, the ten nonzeros with value
μ7 are in rows corresponding to states that have p1 “ 1 for which transition
t1 in Figure 3.11 is enabled. These nonzeros represent message arrivals to
submodel 1 and therefore increase the number of messages in it by one. The
four nonzeros with value μ1 are in rows corresponding to states that have
p4 “ p6 “ 1 for which transition t3 in Figure 3.11 is enabled. These nonzeros
represent the passing of a message to the session layer. On the other hand,
the six nonzeros with value μ2 are in rows corresponding to states that have
p5 “ 1 for which transition t4 in Figure 3.11 is enabled. These nonzeros
represent the processing of the message at the session layer.
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The local transition matrix of submodel 2 is given by

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q
p2q

2 “

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0.5μ8 0.5μ8

μ5

μ6

0.5μ3 0.5μ3

μ5

μ6

μ3

μ8

μ8

μ8

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Furthermore, we have Q
phq

2 “ I|Sphq| for h “ 1, 3, 4.
Note that nz

Q
p2q
2

“ 12. Of the 12 nonzeros, 3, 2, 2, and 5 assume values

that, respectively, depend on μ3, μ5, μ6, and μ8. In particular, the three
nonzeros with values depending on μ3 are in rows corresponding to states
that have p19 “ 1 for which transition t10 in Figure 3.11 is enabled. These
nonzeros represent acknowledgment packet processing at the transport layer
in submodel 2 and therefore increase the window size in p14 by one and set
p11 “ 1. When in state 5, which has p12 “ 1, this implies that immediate
transitions t8 and t9 in Figure 3.11 both become enabled. Each of these
two transitions fire with a probability of 0.5 as mentioned before; hence, the
submodel immediately moves to either state 2 in which the first packet or
state 6 in which the second packet of a TSDU is to be formed. That is why
there are two entries in row 5 with values 0.5μ3. The two nonzeros with values
μ5 are in rows corresponding to states that have p15 “ 1 for which transition
t11 and p16 “ 1 for which transition t12 in Figure 3.11 are enabled. These
nonzeros represent first and second packet preparation at the transport layer
in submodel 2 and set p17 “ 1 and p18 “ 1, respectively. The two nonzeros
with values μ6 are in rows corresponding to states that have p20 “ 1 for which
transition t16 and p21 “ 1 for which transition t17 in Figure 3.11 are enabled.
These nonzeros, respectively, represent a first or a second packet becoming
ready to leave the transport layer in submodel 2 and move over the network
to the transport layer of submodel 3. They, respectively, set p23 “ 1 and
p13 “ p24 “ 1. On the other hand, the five nonzeros with values depending on
μ8 are in rows corresponding to states that have p10 “ 1 for which transition
t7 in Figure 3.11 is enabled. These nonzeros correspond to the processing
of a TSDU at the transport layer in submodel 2 and set p12 “ 1. When in
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state 1, which has p10 “ p14 “ 1, this implies that transitions t8 and t9 in
Figure 3.11 both become enabled. But, we have already discussed this for
row 5 and explained the existence of two entries. The same applies here, yet
with values of 0.5μ8. Finally, we remark that the nonzero with value μ8 in
entry (15,13) is in an off-diagonal block and corresponds to transition 2 in
entry pR3,R2q of (3.2).

The local transition matrix of submodel 3 is given by

0 1 2 3 4 5

Q
p3q

3 “

0
1
2
3
4
5

¨

˚

˚

˚

˚

˚

˚

˝

μ5

μ3

μ5

˛

‹

‹

‹

‹

‹

‹

‚

with nz
Q

p3q
3

“ 3. The two nonzeros with value μ5 in Q
p3q

3 correspond to the

processing of first and second packets of a TSDU at the transport layer in
submodel 3, respectively, through transitions t26 and t25 in Figure 3.11. We
remark that the nonzero with value μ5 in entry (1,2) is in an off-diagonal
block and corresponds to transition 3 in entry pR1,R2q of (3.2). The nonzero
with value μ3 corresponds to the preparation of an acknowledgment packet
through transition t21 in Figure 3.11 and becoming ready to leave submodel

3. Furthermore, we have Q
phq

3 “ I|Sphq| for h “ 1, 2, 4.
Since submodel 4 has 30 states and nz

Q
p4q
4

“ 44, rather than providing

Q
p4q

4 in matrix form, we list its 44 nonzero entries in three groups. Note that

Q
phq

4 “ I|Sphq| for h “ 1, 2, 3. The first group has the 15 nonzeros

q
p4q

4 p4, 0q “ q
p4q

4 p8, 1q “ q
p4q

4 p10, 2q “ q
p4q

4 p12, 3q

“ q
p4q

4 p15, 5q “ q
p4q

4 p17, 6q “ q
p4q

4 p19, 7q “ q
p4q

4 p20, 9q

“ q
p4q

4 p21, 11q “ q
p4q

4 p23, 13q “ q
p4q

4 p25, 14q “ q
p4q

4 p26, 16q

“ q
p4q

4 p27, 18q “ q
p4q

4 p28, 22q “ q
p4q

4 p29, 24q “ μ10

in rows corresponding to states that have p44 “ 1 for which transition t34
in Figure 3.11 is enabled. These nonzeros represent message departures from
submodel 4 and therefore decrease the number of messages in it by 1.

The next group has the 17 nonzeros

q
p4q

4 p1, 2q “ q
p4q

4 p3, 4q “ q
p4q

4 p5, 6q “ q
p4q

4 p7, 8q

“ q
p4q

4 p7, 9q “ q
p4q

4 p8, 10q “ q
p4q

4 p9, 10q “ q
p4q

4 p11, 12q

“ q
p4q

4 p14, 15q “ q
p4q

4 p14, 16q “ q
p4q

4 p15, 17q “ q
p4q

4 p16, 17q

“ q
p4q

4 p18, 19q “ q
p4q

4 p19, 20q “ q
p4q

4 p22, 23q “ q
p4q

4 p24, 25q

“ q
p4q

4 p25, 26q “ μ1
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corresponding to transitions t30 and t33 in Figure 3.11 that have the same
rate. The former of these transitions take place when p37 “ p40 “ 1, whereas
the latter takes place when p42 “ p45 “ 1. The nonzeros corresponding to
transitions t30 and t33 represent the passing of a message to the session layer
and the user, respectively.

The last group has the 12 nonzeros

q
p4q

4 p2, 3q “ q
p4q

4 p6, 7q “ q
p4q

4 p9, 11q “ q
p4q

4 p10, 12q

“ q
p4q

4 p13, 14q “ q
p4q

4 p16, 18q “ q
p4q

4 p17, 19q “ q
p4q

4 p20, 21q

“ q
p4q

4 p22, 24q “ q
p4q

4 p23, 25q “ q
p4q

4 p26, 27q “ q
p4q

4 p28, 29q “ μ2

in rows corresponding to states that have p39 “ 1 for which transition t31 in
Figure 3.11 is enabled. These nonzeros represent the processing of a message
at the session layer.

Regarding transition 5, we have the matrices

Q
p1q

5 “ e3e
T
0 `e6e

T
1 `e7e

T
2 `e8e

T
3 `e10e

T
4 `e11e

T
5 `e12e

T
6 `e13e

T
9 `e14e

T
10,

Q
p2q

5 “ e0e
T
1 ` e8e

T
10 ` e14e

T
15.

Since submodels 3 and 4 do not contribute to transition 2, we have Q
phq

5 “

I|Sphq| for h “ 3, 4.
As for transitions 6, 7, and 8, we have the matrices

Q
p2q

6 “ e8e
T
14 ` e10e

T
15 ` e12e

T
13, Q

p3q

6 “ e0e
T
4

since a last packet can depart from submodel 2 in states 8, 10, and 12, respec-
tively, taking it into states 14, 15, and 13 and causing an empty submodel 3
to move to state 4,

Q
p2q

7 “ e4e
T
13, Q

p3q

7 “ e0e
T
1

since a first packet can depart from submodel 2 in state 4 taking it into state
13 and causing an empty submodel 3 to move to state 1, and

Q
p2q

8 “ e13e
T
5 ` e14e

T
9 ` e15e

T
11, Q

p3q

8 “ e3e
T
0

since an acknowledgment packet can depart from submodel 3 in state 3 tak-
ing it into state 0 and causing submodel 2 to move to states 5, 9, and 11,
respectively, from states 13, 14, and 15. Submodels 1 and 4 do not contribute

to transitions 6, 7, and 8. Therefore, we have Q
phq

k “ I|Sphq| for h “ 1, 4 and
k “ 6, 7, 8.

Regarding transition 9, we have the matrices

Q
p3q

9 “ e5e
T
2 ,
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Q
p4q

9 “ e0e
T
1 ` e1e

T
5 ` e2e

T
6 ` e3e

T
7 ` e4e

T
8 ` e6e

T
13 ` e7e

T
14 ` e8e

T
15 ` e9e

T
16

`e10e
T
17 ` e11e

T
18 ` e12e

T
19 ` e16e

T
22 ` e17e

T
23 ` e18e

T
24 ` e19e

T
25

`e20e
T
26 ` e21e

T
27 ` e26e

T
28 ` e27e

T
29,

and Q
phq

9 “ I|Sphq| for h “ 1, 2.
Finally, rates of transitions 1 through 9 are given by

pα1, . . . , α4, α5, α6, α7, α8, α9q “ p1, . . . , 1, μ1, μ4, μ4, μ4, μ9q .

As in (2.10), the communications protocol model defines the p4ˆ 4q block
generator matrix

Q “

¨

˚

˚

˝

Qp0, 0q Qp0, 1q Qp0, 2q Qp0, 3q

Qp1, 1q Qp1, 2q

Qp2, 0q Qp2, 2q

Qp3, 0q Qp3, 2q Qp3, 3q

˛

‹

‹

‚

,

where the nonzero blocks are given from Table 3.1 and the matrix in (3.2) by

Qp0, 0q “ α1Q
p1q

1 b I13 b I1 b I30 ` α2I15 b Q
p2q

2 p0 : 12, 0 : 12q b I1 b I30

`α3I15 b I13 b Q
p3q

3 p0 : 0, 0 : 0q b I30 ` α4I15 b I13 b I1 b Q
p4q

4

`α5Q
p1q

5 b Q
p2q

5 p0 : 12, 0 : 12q b I1 b I30 ` QDp0, 0q,

Qp0, 1q “ α7I15 b Q
p2q

7 p0 : 12, 13 : 13q b Q
p3q

7 p0 : 0, 1 : 1q b I30,

Qp0, 2q “ α6I15 b Q
p2q

6 p0 : 12, 13 : 13q b Q
p3q

6 p0 : 0, 2 : 5q b I30,

Qp0, 3q “ α6I15 b Q
p2q

6 p0 : 12, 14 : 15q b Q
p3q

6 p0 : 0, 2 : 5q b I30,

Qp1, 1q “ α1Q
p1q

1 b I1 b I1 b I30 ` α2I15 b Q
p2q

2 p13 : 13, 13 : 13q b I1 b I30

`α3I15 b I1 b Q
p3q

3 p1 : 1, 1 : 1q b I30 ` α4I15 b I1 b I1 b Q
p4q

4

`QDp1, 1q,

Qp1, 2q “ α3I15 b I1 b Q
p3q

3 p1 : 1, 2 : 5q b I30,

Qp2, 0q “ α8I15 b Q
p2q

8 p13 : 13, 0 : 12q b Q
p3q

8 p2 : 5, 0 : 0q b I30,



86 3 Avoiding Unreachable States

Qp2, 2q “ α1Q
p1q

1 b I1 b I4 b I30 ` α2I15 b Q
p2q

2 p13 : 13, 13 : 13q b I4 b I30

`α3I15 b I1 b Q
p3q

3 p2 : 5, 2 : 5q b I30 ` α4I15 b I1 b I4 b Q
p4q

4

`α9I15 b I1 b Q
p3q

9 p2 : 5, 2 : 5q b Q
p4q

9 ` QDp2, 2q,

Qp3, 0q “ α8I15 b Q
p2q

8 p14 : 15, 0 : 12q b Q
p3q

8 p2 : 5, 0 : 0q b I30,

Qp3, 2q “ α2I15 b Q
p2q

2 p14 : 15, 13 : 13q b I4 b I30,

Qp3, 3q “ α1Q
p1q

1 b I2 b I4 b I30 ` α2I15 b Q
p2q

2 p14 : 15, 14 : 15q b I4 b I30

`α3I15 b I2 b Q
p3q

3 p2 : 5, 2 : 5q b I30 ` α4I15 b I2 b I4 b Q
p4q

4

`α5Q
p1q

5 b Q
p2q

5 p14 : 15, 14 : 15q b I4 b I30

`α9I15 b I2 b Q
p3q

9 p2 : 5, 2 : 5q b Q
p4q

9 ` QDp3, 3q.

Each diagonal block QDpp, pq for p “ 0, . . . , 3 is defined as before and will
not be given explicitly.

The number of floating-point values to be stored in this representation is
9 for the rates, 20 ` 12 ` 3 ` 44 “ 79 for the local transition matrices, and
p9 ` 3q ` p3 ` 1q ` p1 ` 1q ` p3 ` 1q ` p1 ` 20q “ 43 for the synchronizing
transition matrices, thus altogether, 131. When C “ 4, we have N “ 13, and
this number becomes 2,342 [49]. On the other hand, Q is of order 11,700, and
the number of nonzeros in its off-diagonal part is 48,330 for C “ 1, whereas Q
is of order 1,632,600 and has a total of 9,732,330 nonzero off-diagonal entries
[49] when C “ 4 for which |Sp2q| “ 546 and |Sp3q| “ 229.

Whether a minimum number of reachable state space partitions, Nmin, is
computed through the approach devised in [49] is what we investigate now.
A quick look into the four reachable state space partitions of the commu-
nications protocol model in Table 3.1 reveals that it is possible to merge
R1 and R2 or R2 and R3 to obtain Nmin “ 3 as the minimum number of
reachable state space partitions. In fact, the merge-based and the refinement-
based algorithms introduced at the beginning of this chapter both yield three
partitions given reachable state space R. A similar observation is made for
the reachable state space partitions of the availability model in Table 2.1.
Therein, it is possible to merge R0 with one of the three reachable state
space partitions R1, R2, or R3 and again obtain Nmin “ 3 as the minimum.
However, this is not the case for the reachable state space partitions of the
polling model in Table 2.2 where we already have Nmin “ 6 as the minimum.

When reachable state space partitions can be merged as in the availability
and communications protocol models, it is done at the expense of relaxing the
constraint in (3.1) regarding nonintersecting subsets of submodel state spaces.

That is, the constraint Sphq
p X Sphq

w “ H, p ‰ w for p, w “ 0, . . . , Nh ´ 1 is

relaxed so that we only have Sphq
p Ď Sphq for dimension h, where h “ 1, . . . , H.

Let us walk through the first alternative in the communications protocol
model which expresses R using Nmin “ 3 partitions as in Table 3.2. We
have renumbered the reachable state space partitions of R so that R0 is R0̃,
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R1 Y R2 is R1̃, and R3 is R2̃. Hence,

R “

2̃
ď

p“0̃

Rp with Rp “

4
ą

h“1

Rphq
p for p “ 0̃, 1̃, 2̃,

where

R0̃ “ Sp1q

0 ˆ Sp2q

0 ˆ Sp3q

0 ˆ Sp4q

0 , R1̃ “ Sp1q

0 ˆ Sp2q

1 ˆ pSp3q

1 Y Sp3q

2 q ˆ Sp4q

0 ,

R2̃ “ Sp1q

0 ˆ Sp2q

2 ˆ Sp3q

2 ˆ Sp4q

0 .

Note the union of Sp3q

1 and Sp3q

2 in the expression for R1̃. Since Sp3q

2 also ap-
pears in R2̃, clearly the constraint in (3.1) regarding nonintersecting subsets
of submodel state spaces no longer holds for submodel 3.

Table 3.2 Alternative mapping between reachable state space partitions and submodel
states in communications protocol model

Partition Submodel 1 Submodel 2 Submodel 3 Submodel 4 # of states

R0̃ 0:14 0:12 0:0 0:29 15 . 13 . 1 . 30 “ 5,850
R1̃ 0:14 13:13 1:5 0:29 15 . 1 . 5 . 30 “ 2,250
R2̃ 0:14 14:15 2:5 0:29 15 . 2 . 4 . 30 “ 3,600

The p3 ˆ 3q interaction matrix which captures the transitions is then

R0̃ R1̃ R2̃

R0̃

R1̃

R2̃

¨

˝

t1, 2, 3, 4, 5u t6, 7u t6u

t8u t1, 2, 3, 4, 9u

t8u t2u t1, 2, 3, 4, 5, 9u

˛

‚ . (3.3)

As in (2.10), the communications protocol model alternatively defines the
p3 ˆ 3q block generator matrix

Q “

¨

˝

Qp0̃, 0̃q Qp0̃, 1̃q Qp0̃, 2̃q

Qp1̃, 0̃q Qp1̃, 1̃q

Qp2̃, 0̃q Qp2̃, 1̃q Qp2̃, 2̃q

˛

‚ ,

where the nonzero blocks are given from Table 3.2 and the matrix in (3.3) by

Qp0̃, 0̃q “ Qp0, 0q,

Qp0̃, 1̃q “ α6I15 b Q
p2q

6 p0 : 12, 13 : 13q b Q
p3q

6 p0 : 0, 1 : 5q b I30

`α7I15 b Q
p2q

7 p0 : 12, 13 : 13q b Q
p3q

7 p0 : 0, 1 : 5q b I30,

Qp0̃, 2̃q “ Qp0, 3q,

Qp1̃, 0̃q “ α8I15 b Q
p2q

8 p13 : 13, 0 : 12q b Q
p3q

8 p1 : 5, 0 : 0q b I30,
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Qp1̃, 1̃q “ α1Q
p1q

1 b I1 b I5 b I30 ` α2I15 b Q
p2q

2 p13 : 13, 13 : 13q b I5 b I30

`α3I15 b I1 b Q
p3q

3 p1 : 5, 1 : 5q b I30 ` α4I15 b I1 b I5 b Q
p4q

4

`α9I15 b I1 b Q
p3q

9 p1 : 5, 1 : 5q b Q
p4q

9 ` QDp1̃, 1̃q,

Qp2̃, 0̃q “ Qp3, 0q,

Qp2̃, 1̃q “ α2I15 b Q
p2q

2 p14 : 15, 13 : 13q b p04ˆ1 I4q b I30,

Qp2̃, 2̃q “ Qp3, 3q,

where 04ˆ1 is a p4 ˆ 1q zero matrix (i.e., a 4-vector of 0s) that pads the
identity matrix of order 4 to the left with an empty column so that we have
a p4 ˆ 5q matrix as the third Kronecker product factor in Qp2̃, 1̃q. Diagonal
block QDp1̃, 1̃q is defined as before and will not be given explicitly. Note that
with this alternative reachable state space partitioning, neither the number
of nonzero entries to be stored with the Kronecker representation nor the
structure of its underlying generator matrix, Q, changes.

A smaller number of reachable state space partitions, N , implies larger
block sizes in the nested partitioning of Q. For a particular level in the nested
partitioning, this translates to less index manipulations, access to a larger
number of consecutive memory locations, and larger blocks along the diagonal
that can be used in preconditioned iterative methods with the Kronecker
representation. Future work may consider investigating the merits of using
a smaller value of N as discussed here to find out whether it brings any
improvement in analyses.

3.4 Specification of Kronecker-Structured CTMCs

There are different ways in which information required to process the Kro-
necker representation of a CTMC during analysis can be specified on a com-
puter. In this section, we describe one such specification that is based on the
file format in the NSolve package of the APNN toolbox [7, 22] and can be
used with the representation in (2.10).

For a Kronecker-structured multidimensional model with H submodels,
H ` 2 files are used. Files belonging to a particular model specification are
given a common name and are distinguished by appending indices followed
by a dot and a three letter suffix. The file with suffix .spa describes the
mapping between reachable state space partitions and submodel state space
partitions. The other files follow the model name with the indices 0 through
H and are given the suffix .mat. The file with index 0 specifies the transitions
among reachable state space partitions and their rates. The file with index
h specifies the state space partitions and transition matrices associated with
submodel h for h “ 1, . . . , H.
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We demonstrate the file format on the communications protocol model
that has multiple reachable state space partitions and give courier as the
common name to files associated with its specification. In the communica-
tions protocol model, the specification files are therefore named courier.spa,
courier0.mat, courier1.mat, . . . , courierH.mat.

File courier.spa corresponding to Table 3.1 is given by

0 0 0 0

0 1 1 0

0 1 2 0

0 2 2 0

This file has as many rows as there are reachable state space partitions, N .
On each row, there are H integer entries separated by white space characters.
Entry h of row p`1 corresponds to the index of the partition of submodel state
space Sphq mapped to reachable state space partition Rp for p “ 0, . . . , N ´1
and h “ 1, . . . , H.

File courier0.mat corresponding to the pN ˆ Nq interaction matrix
in (3.2) is given by

1

0

4

8

0 1 1.000000000000000e+00

0 2 1.000000000000000e+00

0 3 1.000000000000000e+00

0 4 1.000000000000000e+00

0 5 8.771929824561405e+03

1 7 4.821600771456124e+02

2 6 4.821600771456124e+02

3 6 4.821600771456124e+02

5

1 1 1.000000000000000e+00

1 2 1.000000000000000e+00

1 3 1.000000000000000e+00

1 4 1.000000000000000e+00

2 3 1.000000000000000e+00

6

0 8 4.821600771456124e+02

2 1 1.000000000000000+e00

2 2 1.000000000000000+e00

2 3 1.000000000000000+e00

2 4 1.000000000000000+e00

2 9 1.449275362318841e+03

8

0 8 4.821600771456124e+02
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2 2 1.000000000000000e+00

3 1 1.000000000000000e+00

3 2 1.000000000000000e+00

3 3 1.000000000000000e+00

3 4 1.000000000000000e+00

3 5 8.771929824561405e+03

3 9 1.449275362318841e+03

The integer in the first line of this file stands for the number of matrices
defined in the file. The integers in the second and third lines of the file stand,
respectively, for the starting index of reachable state space partitions and
number of reachable state space partitions, N . It is the understanding that
block rows and block columns of Q are numbered consecutively starting from
0 up to N ´1. Then starting with row index 0, the file provides consecutively
each row of the interaction matrix in what is called the coefficient sparse
format for matrices. The first integer corresponding to each row tells how
many nonzeros exist in that row. This integer is followed by that many rows
each of which has three entries separated by white space characters. The first
entry is an integer indicating the column index associated with the transition,
the second entry which is also an integer indicates the transition number, and
the third entry which is a real number in scientific notation with 16 decimal
digits for the mantissa and 2 decimal digits for the exponent indicates the rate
of the transition. Since rows appear in increasing index, there is no need to
specify the row index as long as one knows the starting index of rows and how
many rows there are. Note that if the interaction matrix has nzim nonzeros,
the file will have 3 ` N ` nzim lines, which is 34 for the communications
protocol model since N “ 4 and nzim “ 27.

Each of the remaining H files is associated with a different submodel and
specifies its state space partitions and transition matrices. File courier1.mat
corresponding to submodel 1 of the communications protocol model is
given by

2

1

0

15

1

1

1 7.352941176470588e+03

2

2 8.771929824561405e+03

4 7.352941176470588e+03

2

3 1.006036217303823e+03

5 7.352941176470588e+03



3.4 Specification of Kronecker-Structured CTMCs 91

1

6 7.352941176470588e+03

1

5 8.771929824561405e+03

2

6 1.006036217303823e+03

9 7.352941176470588e+03

2

7 8.771929824561405e+03

10 7.352941176470588e+03

2

8 1.006036217303823e+03

11 7.352941176470588e+03

1

12 7.352941176470588e+03

1

10 1.006036217303823e+03

1

11 8.771929824561405e+03

2

12 1.006036217303823e+03

13 7.352941176470588e+03

1

14 7.352941176470588e+03

1

14 1.006036217303823e+03

0

5

0

0

0

1

0 1.000000000000000e+00

0

0

1

1 1.000000000000000e+00

1

2 1.000000000000000e+00

1

3 1.000000000000000e+00

0

1

4 1.000000000000000e+00
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1

5 1.000000000000000e+00

1

6 1.000000000000000e+00

1

9 1.000000000000000e+00

1

10 1.000000000000000e+00

The integer in the first line of the file for submodel h gives its number of
transition matrices that are different than identity. The integer in the second
line gives the number of partitions, Nh, of its state space Sphq. Then starting
from partition 0, the integers on lines 3 through 2 ` Nh, one on each line,

provide the starting index of partition p of submodel h, that is, Sphq
p , for

p “ 0, . . . , Nh ´ 1. The integer on line 3`Nh gives the submodel state space
size |Sphq|. The first Nh ` 3 lines are followed after a blank line by transition
matrices of submodel h. Each transition matrix is separated from the next
by an empty line for readability. The description of each transition matrix
starts with an integer providing the index of the transition on a separate line.
Then the particular transition matrix is given row by row starting with index
0 up to |Sphq| ´ 1 consecutively. Each row specification starts by the number
of nonzeros in that row in a separate line which is followed by that many
lines, each line providing the integer column index and its corresponding real
nonzero value again in scientific notation. It is important to have a 0 for each
row that does not have any nonzeros in the file since row indices are not

stored. Note that if non-identity transition matrix Q
phq

k has nz
Q

phq
k

nonzeros,

the corresponding file will have 1`|Sphq|`nz
Q

phq
k

lines for that matrix. Thus,

the file for submodel h will have altogether

3 ` Nh `
ÿ

kPKphq

p2 ` |Sphq
| ` nz

Q
phq
k

q

lines, where

Kphq
“ tk | k P t1, . . . ,Ku and Q

phq

k ‰ Iu,

that is, the set of transitions in which submodel h participates. Now, recall
that Sp1q “ 15, N1 “ 1, Kp1q “ t1, 5u, nz

Q
p1q
1

“ 20, and nz
Q

p1q
5

“ 9, implying

courier1.mat must be 67 lines.
Submodel 2 of the communications protocol model participates in five

transitions with Kp2q “ t2, 5, 6, 7, 8u, and its state space Sp2q of |Sp2q| “ 16
states is partitioned into N2 “ 3 subsets. Since nz

Q
p2q
2

“ 12, nz
Q

p2q
5

“ 3,

nz
Q

p2q
6

“ 3, nz
Q

p2q
7

“ 1, and nz
Q

p2q
8

“ 3, file courier2.mat corresponding to

submodel 2 is given by the 118 lines:

5

3
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0

13

14

16

2

0

2

2 8.680555555555555e+02

6 8.680555555555555e+02

1

3 1.165501165501165e+03

1

4 1.282051282051282e+04

0

2

2 2.293577981651376e+03

6 2.293577981651376e+03

1

7 1.165501165501165e+03

1

8 1.282051282051282e+04

0

1

0 4.587155963302752e+03

1

12 1.736111111111111e+03

1

5 1.736111111111111e+03

0

0

0

1

13 1.736111111111111e+03

5

1

1 1.000000000000000e+00

0

0

0

0

0

0

0
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1

10 1.000000000000000e+00

0

0

0

0

0

1

15 1.000000000000000e+00

0

6

0

0

0

0

0

0

0

0

1

14 1.000000000000000e+00

0

1

15 1.000000000000000e+00

0

1

13 1.000000000000000e+00

0

0

0

7

0

0

0

0

1

13 1.000000000000000e+00

0

0

0

0

0

0
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0

0

0

0

0

8

0

0

0

0

0

0

0

0

0

0

0

0

0

1

5 1.000000000000000e+00

1

9 1.000000000000000e+00

1

11 1.000000000000000e+00

Submodel 3 of the communications protocol model participates in five
transitions with Kp3q “ t3, 6, 7, 8, 9u, and its state space Sp3q of |Sp3q| “ 6
states is partitioned into N3 “ 3 subsets. Since nz

Q
p3q
3

“ 3 and nz
Q

p3q
6

“

nz
Q

p3q
7

“ nz
Q

p1q
8

“ nz
Q

p3q
9

“ 1, file courier3.mat corresponding to submodel

3 is given by the 53 lines:

5

3

0

1

2

6

3

0

1

2 1.165501165501165e+03

1

3 4.587155963302752e+03
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0

1

5 1.165501165501165e+03

0

6

1

4 1.000000000000000e+00

0

0

0

0

0

7

1

1 1.000000000000000e+00

0

0

0

0

0

8

0

0

0

1

0 1.000000000000000e+00

0

0

9

0

0

0

0

0

1

2 1.000000000000000e+00

Submodel 4 of the communications protocol model participates in two
transitions with Kp4q “ t4, 9u, and its state space Sp4q of |Sp4q| “ 30 states is
partitioned into N4 “ 1 subset. Since nz

Q
p4q
4

“ 44 and nz
Q

p4q
9

“ 20, implying

file courier4.mat corresponding to submodel 4 is given by the 132 lines:
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2

1

0

30

4

0

1

2 8.771929824561405e+03

1

3 1.006036217303823e+03

1

4 8.771929824561405e+03

1

0 4.000000000000000e+03

1

6 8.771929824561405e+03

1

7 1.006036217303823e+03

2

8 8.771929824561405e+03

9 8.771929824561405e+03

2

1 4.000000000000000e+03

10 8.771929824561405e+03

2

10 8.771929824561405e+03

11 1.006036217303823e+03

2

2 4.000000000000000e+03

12 1.006036217303823e+03

1

12 8.771929824561405e+03

1

3 4.000000000000000e+03

1

14 1.006036217303823e+03

2

15 8.771929824561405e+03

16 8.771929824561405e+03

2

5 4.000000000000000e+03

17 8.771929824561405e+03

2

17 8.771929824561405e+03
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18 1.006036217303823e+03

2

6 4.000000000000000e+03

19 1.006036217303823e+03

1

19 8.771929824561405e+03

2

7 4.000000000000000e+03

20 8.771929824561405e+03

2

9 4.000000000000000e+03

21 1.006036217303823e+03

1

11 4.000000000000000e+03

2

23 8.771929824561405e+03

24 1.006036217303823e+03

2

13 4.000000000000000e+03

25 1.006036217303823e+03

1

25 8.771929824561405e+03

2

14 4.000000000000000e+03

26 8.771929824561405e+03

2

16 4.000000000000000e+03

27 1.006036217303823e+03

1

18 4.000000000000000e+03

2

22 4.000000000000000e+03

29 1.006036217303823e+03

1

24 4.000000000000000e+03

9

1

1 1.000000000000000e+00

1

5 1.000000000000000e+00

1

6 1.000000000000000e+00

1

7 1.000000000000000e+00
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1

8 1.000000000000000e+00

0

1

13 1.000000000000000e+00

1

14 1.000000000000000e+00

1

15 1.000000000000000e+00

1

16 1.000000000000000e+00

1

17 1.000000000000000e+00

1

18 1.000000000000000e+00

1

19 1.000000000000000e+00

0

0

0

1

22 1.000000000000000e+00

1

23 1.000000000000000e+00

1

24 1.000000000000000e+00

1

25 1.000000000000000e+00

1

26 1.000000000000000e+00

1

27 1.000000000000000e+00

0

0

0

0

1

28 1.000000000000000e+00

1

29 1.000000000000000e+00

0

0



100 3 Avoiding Unreachable States

3.5 Comparison of Cartesian Product Partitioning
Algorithms

The proposed merge- and refinement-based Cartesian product partitioning
algorithms are coded in [113] and tested for the quality of their computed
solutions and their scalability on multidimensional reachable state spaces. We
are interested in seeing how the computed value of the number of reachable
state space partitions, N , compares to the minimum, Nmin, possible and how
time and space requirements of the algorithms change as the reachable state
space, R, becomes larger among different models.

In order to determine Nmin, we follow the approach discussed below. The
states of each connected component in the graph that is obtained by remov-
ing the separators from the unit distance graph of R are in the same parti-
tion in the minimum Cartesian product partitioning of R from Lemma 4.1
in [111]. The proof of this result is lengthy and employs a number of con-
tradictions [108]. Using this result, we conclude that each partition in the
minimum Cartesian product partitioning of R is a union of partitions ob-
tained by removing the separators from the unit distance graph of R. In
order to determine the number of partitions in the minimum Cartesian prod-
uct partitioning of a model, Nmin, all possible Cartesian product partition-
ings satisfying this condition are computed and the minimum chosen. When
there are a small number of separators and intersecting separator pairs, this
is straightforward. However, the number of Cartesian product partitionings
to compute increases exponentially with the number of separators and in-
tersecting separator pairs. This hints at the difficulty inherent in computing
the minimum Cartesian product partitioning of a multidimensional reachable
state space.

Table 3.3 summarizes the properties of the models employed in the exper-
iments. The integer parameters of these models are S “ 2 and Ch “ 10 with
h “ 1, . . . , H for polling, Ch “ 4 with h “ 1, . . . , H for production line, and
C P t1, 2, 3, 4u for communications protocol. Results with some other models
can be found in [108, 111]. Column nz reports the number of nonzeros in the
off-diagonal part of Q, and column nzb reports the number of floating-point
values stored in its Kronecker-structured specification. The seventh column
of the table titled Nmin reports the number of partitions in the minimum
Cartesian product partitioning of R. The eighth column titled Sep and the
ninth column titled Sep

Ş

report the number of separators and the number
of intersecting separator pairs (i.e., separator pairs including edges along dif-
ferent dimensions that are incident to the same vertex) in the unit distance
graph of R, respectively.

The reachable state space of a multidimensional model depends on the
interaction of its submodels. Among the four different models considered
in Table 3.3, the communications protocol model appears to be the more
complicated one since its unit distance graph has separators and intersect-
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Table 3.3 Properties of models

Model H |S| |R| nz nzb Nmin Sep Sep
Ş

Availability 3 1,728 1,728 8,010 99 1 0 0
4 20,736 20,736 116,874 138 1 0 0
5 248,832 248,832 1,651,338 180 1 0 0
6 2,985,984 2,985,984 22,802,058 225 1 0 0
7 35,831,808 35,831,808 309,456,522 273 1 0 0
8 429,981,696 429,981,696 4,088,083,549 324 1 0 0

Polling 3 238,328 25,443 112,791 453 6 0 0
4 14,776,336 479,886 2,594,108 604 10 0 0
5 916,132,832 8,065,860 51,259,835 755 15 0 0
6 56,800,235,584 125,839,395 917,647,302 906 21 0 0
7 3,521,614,606,208 1,863,521,121 15,321,499,039 1,057 28 0 0

Production 4 5,625 5,625 8,500 83 1 0 0
5 84,375 84,375 165,000 115 1 0 0
6 1,265,625 1,265,625 3,037,500 147 1 0 0
7 18,984,375 18,984,375 54,000,000 179 1 0 0
8 284,765,625 284,765,625 936,562,500 211 1 0 0

Protocol C “ 1 4 43,200 11,700 48,330 131 3 2 1
C “ 2 4 838,350 84,600 410,160 290 5 4 2
C “ 3 4 8,593,200 419,400 2,281,620 854 7 6 3
C “ 4 4 56,265,300 1,632,600 9,732,330 2,342 9 8 4

ing separators. There are no separators in the other models since their unit
distance graphs do not include any conflicting edges.

Table 3.4 Results of Cartesian product partitioning of reachable state space for models
with lexicographical ordering of states

Merge Refinement
Model H N Time Memory N Time Memory

Availability 3 1 0 0 1 0 8
4 1 0 8 1 0 16
5 1 0 8 1 1 109
6 1 6 8 1 16 1,512
7 1 89 8 - - -
8 1 1,308 8 - - -

Polling 3 6 0 8 6 0 15
4 10 1 8 10 1 188
5 15 16 8 15 34 3,395
6 21 320 8 - - -
7 28 5,791 8 - - -

Production 4 1 0 8 1 0 0
5 1 0 8 1 0 42
6 1 3 8 1 6 646
7 1 48 8 1 156 10,259
8 1 916 8 - - -

Protocol C “ 1 4 3 0 8 3 0 12
C “ 2 4 5 0 8 5 0 40
C “ 3 4 7 1 8 7 1 165
C “ 4 4 9 2 8 9 6 634
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In Table 3.4, we present the results of experiments with the models in
Table 3.3 when the states in R are processed in lexicographical order. If the
states do not appear in this order, then they may be easily sorted into this
order. We report the computation time rounded to the nearest second under
column Time and the allocated space to carry out the computation in MB
under column Memory. The refinement-based algorithm is not able to yield a
solution in seven- and eight-dimensional availability models, six- and seven-
dimensional polling models, and eight-dimensional production line model due
to memory limitations. When states are processed in lexicographical order,
merge-based and refinement-based algorithms both compute the optimal so-
lution Nmin for all models considered. We remark that this is not the case
for some of the models in [108, 111] where the refinement-based algorithm
almost always provides a winner in terms of quality of the solution. However,
the merge-based algorithm requires less time and space than the refinement-
based algorithm in all models as |R| becomes larger, suggesting its use in
larger problems.

It is also possible to investigate the effects of processing the states in
R in different orders by using the code in [113]. When the refinement-based
algorithm processes the states in random order, the number of reachable state
space partitions, N , it computes and its space requirement do not change,
but its time requirement increases. The increase in time cannot be due to
refinement of the graph and updating of the separators since Sep is either
zero or small in the models considered, but it must be due to construction of
the graph, suggesting more efficient utilization of the cache while processing
states in lexicographical order. This must be because each state becomes
a child of the last accessed state in the AVL tree, implying more efficient
insertion to the tree when states are processed in lexicographical order.

The order of processing states in R turns out to be very influential on the
performance of the merge-based algorithm. For instance, in the smallest com-
munications protocol model of Table 3.3 which has 11,700 reachable states
and Nmin “ 3, the merge-based algorithm computes N values ranging from
2,925 to 3,127 when the states are processed in 51 different random orderings.
These values of N are almost 1,000 times that of Nmin in Table 3.4 computed
by the same algorithm when the states are processed in lexicographical order.
To understand this phenomenon, first recall that two partitions are merged
along dimension h if their subsets of states are identical in all dimensions
except h. Second, when the states are processed in lexicographical order, a
partition ends up being merged with all possible partitions along a dimen-
sion before it is merged with a partition in a different dimension. Third, when
the states are processed in random order, partitions are merged along ran-
dom dimensions depending on the processing order of states, implying that
all possible partitions along a particular dimension are not considered be-
fore switching to a different dimension. As a result of these, when states are
processed in random order, N increases substantially for the merged-based
algorithm. Since time and space requirements of the merge-based algorithm
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depend on N , they also increase substantially which agrees with our earlier
analysis. The time taken by the merge-based algorithm becomes comparable
to the time taken by the refinement-based algorithm. However, its space re-
quirement is still better than the space requirement of the refinement-based
algorithm. See [108, 111] for a detailed study.

In conclusion, although it may be more time- and space-consuming, the
refinement-based algorithm almost always computes partitionings with a
smaller value of N than the merge-based algorithm. In many cases, the par-
titionings computed by the refinement-based algorithm yield Nmin. Further-
more, the refinement-based algorithm is insensitive to the processing order of
states in R. However, time and space requirements of the refinement-based
algorithm do not scale very well with |R|. For large models, we therefore
recommend the merge-based algorithm and processing the states in lexico-
graphical order.



Chapter 4

Preprocessing

In this chapter, we discuss preprocessing techniques to aid the analysis of MCs
based on Kronecker products and improve time and memory requirements.
There are a number of techniques that can be used to put the Kronecker
representation into a more favorable form before solvers take over. These are
reordering, grouping, lumping, and analyzing diagonal blocks for common
Schur factors. Furthermore, when the reachable state space of the underly-
ing MC is countably infinite, it needs to be truncated judiciously to enable
analysis. We discuss them in order.

4.1 Reordering and Grouping

We assume that Q represents the generator matrix of a CTMC in block Kro-
necker form with multiple reachable state space partitions as in (2.10). The
block form of Q in (2.10) is preserved up to a symmetric permutation, that
is, up to a reordering of the reachable state space, R, in which the reach-
able state space partitions Rp for p “ 0, . . . , N ´ 1, the states in submodel
state spaces Sphq for h “ 1, . . . , H, or the submodels themselves are renum-
bered. Yet, there may be multiple ways in which the number of Kronecker
product terms |Kp,w| in block pp, wq for p, w “ 0, . . . , N ´ 1 and the number
of factors in each Kronecker product, H, are chosen. Obviously, the choice
p|K|, Hq “ p1, 1q suggests a flat representation and is assumed to be impos-
sible due to memory limitations. As H decreases toward 1, the Kronecker
representation becomes flatter, implying increased storage requirements. On
the other hand, if |K| were 1, then Q could be analyzed along each dimension
independently. Hence, |K| is normally assumed to be larger than 1. Observe

© Springer Nature Switzerland AG 2018

T. Dayar, Kronecker Modeling and Analysis of Multidimensional
Markovian Systems, Springer Series in Operations Research and Financial
Engineering, https://doi.org/10.1007/978-3-319-97129-2 4

105

https://doi.org/10.1007/978-3-319-97129-2_4


106 4 Preprocessing

that it would be advantageous to be able to make |K| as small as possible
without changing H, since then we would be decreasing the number of terms

in the Kronecker representation of Q and making the matrices Q
phq

k denser.
Reordering in MCs based on Kronecker products refers to renumber-

ing reachable state space partitions, states in submodel state spaces, or
submodels. We remark that the first kind of reordering corresponds to a
symmetric permutation of the interaction matrix in (2.11), and the second
kind of reordering corresponds to a symmetric permutation of the transi-

tion matrices Q
phq

k associated with the renumbered state space Sphq. As in-
dicated in [26, 137], reordering of the third kind may be used to reduce
the overhead associated with vector–Kronecker product multiplication in the
presence of functional transitions. Furthermore, reordering of all kinds can
change the nonzero structure of Q and thereby have an effect on the con-
vergence of iterative methods sensitive to its nonzero structure [96]. Hence,
by the help of reordering, it may be possible to symmetrically permute the
nonzero structure of Q to a more favorable form for the iterative method
of choice. In doing this, the nonzero structure of the interaction matrix can
be used to arrange the block nonzero structure of Q and the nonzero struc-

ture of
ř

kPKp,w
Q

phq

k pRphq
p ,Rphq

w q to arrange the contribution of factor h for

h “ 1, . . . , H to the nonzero structure of block Qpp, wq for p, w “ 0, . . . , N´1.
In the following, we show how one can take advantage of reordering of the

second and third kinds so as to reduce the number of nonzeros in the LU
factors of diagonal blocks while controlling the order of diagonal blocks in
the nested block partitioning of Q.

Example 5. Table 4.1 provides the four nested block partitionings along the
diagonal of Q induced by the Kronecker structure of the communications
protocol model with C “ 1 in Chapter 3. Columns bl and ol, respectively,

Table 4.1 Four nested block partitionings along the diagonal of Q in communications
protocol model with C “ 1

Level 0 Level 1 Level 2 Level 3
Partition b0 o0 b1 c1 o1 b2 c2 o2 b3 c3 o3

0 1 5,850 15 6 390 195 195 30 195 195 30
1 1 450 15 15 30 15 15 30 15 15 30
2 1 1,800 15 15 120 15 15 120 60 45 30
3 1 3,600 15 6 240 30 30 120 120 90 30

Σ “ 4 60 42 255 255 390 345

list the number and the order of diagonal blocks in each reachable state
space partition for l “ 0, 1, 2, 3 as in Chapter 2. We provide some more
information under columns cl (which denotes the number of candidate blocks)
for l “ 1, 2, 3 which is to be discussed in Section 4.3. Since N ą 1, there
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exists a partitioning at level 0 with diagonal blocks Qp0, 0q, Qp1, 1q, Qp2, 2q,
and Qp3, 3q. These diagonal blocks can be partitioned further as defined by
submodel 1 at level 1, by submodels 1 and 2 at level 2, and by submodels 1
through 3 at level 3. At level 4, each diagonal block is a scalar and therefore of
no interest. We provide the same information in Tables 4.2, 4.3, and 4.4 for the

Table 4.2 Four nested block partitionings along the diagonal of Q in communications
protocol model with C “ 2

Level 0 Level 1 Level 2 Level 3
Partition b0 o0 b1 c1 o1 b2 c2 o2 b3 c3 o3

0 1 22,500 15 6 1,500 750 750 30 750 750 30
1 1 18,000 15 6 1,200 30 30 600 600 450 30
2 1 450 15 15 30 15 15 30 15 15 30
3 1 9,000 15 15 600 15 15 600 300 225 30
4 1 5,400 15 6 360 45 45 120 180 135 30
5 1 5,850 15 6 390 195 195 30 195 195 30
6 1 23,400 15 6 1,560 195 195 120 780 585 30

Σ “ 7 105 70 1,245 1,245 2,820 2,355

Table 4.3 Four nested block partitionings along the diagonal of Q in communications
protocol model with C “ 3

Level 0 Level 1 Level 2 Level 3
Partition b0 o0 b1 c1 o1 b2 c2 o2 b3 c3 o3

0 1 63,900 15 6 4,260 2,130 2,130 30 2,130 2,130 30
1 1 54,000 15 6 3,600 30 30 1,800 1,800 1,350 30
2 1 450 15 15 30 15 15 30 15 15 30
3 1 27,000 15 15 1,800 15 15 1,800 900 675 30
4 1 27,000 15 6 1,800 45 45 600 900 675 30
5 1 5,850 15 6 390 195 195 30 195 195 30
6 1 117,000 15 6 7,800 195 195 600 3,900 2,925 30
7 1 7,200 15 6 480 60 60 120 240 180 30
8 1 23,400 15 6 1,560 780 780 30 780 780 30
9 1 93,600 15 6 6,240 780 780 120 3,120 2,340 30

Σ “ 10 150 78 4,245 4,245 13,980 11,265

Kronecker structure of the communications protocol model with C “ 2, 3, 4.
Since diagonal blocks at each level become larger as C increases, we consider
an alternative ordering of submodels for C “ 4 in which submodels are
ordered as 4,3,1,2. In this way, the block partitioning at level 1 yields 30
rather than 15 diagonal blocks in each reachable state space partition. As a
result of this, the block partitioning at level 2 has diagonal blocks with orders
not exceeding 10,000.
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WhenQ defined over the reachable state spaceR is irreducible, its diagonal
blocks all have negative diagonal entries and nonnegative off-diagonal entries.
Such diagonal blocks are known to be nonsingular [30], and therefore their
inverses exist. One approach that is used in block iterative methods and
preconditioned projection methods [123, 243, 305] depends on factorizing
diagonal blocks. In order to follow this approach, the diagonal blocks should
be generated and stored as sparse matrices. The most common factorization
employed in this context is LU factorization [100, 158, 302, 305] in which a
given diagonal block is expressed as a product of lower-triangular and upper-

Table 4.4 Four nested block partitionings along the diagonal of Q in communications
protocol model with C “ 4 and submodels reordered as 4,3,1,2

Level 0 Level 1 Level 2 Level 3
Partition b0 o0 b1 c1 o1 b2 c2 o2 b3 c3 o3

0 1 144,900 30 30 4,830 30 30 4,830 450 180 322
1 1 450 30 30 15 30 30 15 450 450 1
2 1 126,000 30 10 4,200 4,200 4,200 30 63,000 25,200 2
3 1 63,000 30 10 2,100 4,200 4,200 15 63,000 63,000 1
4 1 5,850 30 30 195 30 30 195 450 180 13
5 1 81,000 30 10 2,700 1,800 1,800 45 27,000 10,800 3
6 1 351,000 30 10 11,700 1,800 1,800 195 27,000 10,800 13
7 1 23,400 30 30 780 30 30 780 450 180 52
8 1 36,000 30 10 1,200 600 600 60 9,000 3,600 4
9 1 468,000 30 10 15,600 600 600 780 9,000 3,600 52
10 1 64,800 30 30 2,160 30 30 2,160 450 180 144
11 1 9,000 30 10 300 120 120 75 1,800 720 5
12 1 259,200 30 10 8,640 120 120 2,160 1,800 720 144

Σ “ 13 390 230 13,590 13,590 203,850 119,610

triangular factors. Once the LU factors are computed, solution of the linear
system involving the diagonal block boils down to forward and backward
substitutions.

During LU factorization of a sparse matrix, entries that are previously
zero may become nonzero. This concept is known as fill-in [305]. Ordering
the rows and/or columns of a sparse matrix can result in different fill-ins in
the computed [100, 158, 302, 305] LU factors [93, 130]. In order to improve the
fill-in generated by LU factorization of a sparse matrix, various orderings are
considered. One such effective fill-reducing ordering is column approximate
minimum degree (colamd) [94, 95]. This ordering yields a permutation vector
such that the LU factorization of the column permuted matrix tends to be
sparser than that of the unpermuted matrix. Once column permutation of
the matrix is performed according to this vector, during LU factorization
row permutation may take place due to partial pivoting to ensure stability.
However, the row permutation used in partial pivoting is likely to be different
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than the column permutation computed by colamd, implying a nonsymmetric
permutation.

In block partitionings of irreducible Q, the transpose of each diagonal
block is column diagonally dominant. This suggests transposing each diagonal
block to be LU factorized, column permuting the transposed block accord-
ing to colamd, and using the column permutation computed by colamd as
the row permutation in partial pivoting during its LU factorization. This has
the additional advantage that all multipliers are bounded by one during LU
factorization. Hence, the transposed diagonal blocks can be symmetrically
permuted according to colamd and then LU factorized. This requires that
the right-hand side is permuted before carrying out forward-backward sub-
stitutions and the resulting solution vector is inverse permuted. The colamd
routine is available at [248].

Example 5. (cntd.) In Table 4.5, we report the number of nonzeros in LU
factors of diagonal blocks of Q in the communications protocol model when
original (or natural) and colamd orderings are used. The numbers in the
table exclude nonzeros along the diagonals in all factors. The values in rows
colamd compared to those in rows Original are quite promising.

Table 4.5 Nonzeros in LU factors of diagonal blocks of Q in communications protocol
model

C Ordering Level 1 Level 2 Level 3

1 Original 155,070 92,370 51,870
colamd 53,790 36,420 28,860

2 Original 2,201,430 785,370 397,620
colamd 649,320 365,640 208,680

3 Original 25,405,245 4,763,820 1,971,180
colamd 5,684,865 2,544,225 1,034,520

4 Original 85,151,670 30,769,260 3,365,100
colamd 24,198,900 11,090,220 3,109,500

Grouping in MCs based on Kronecker product terms refers to collapsing
the same adjacent factors in each Kronecker product. Consequently, the fac-
tors in each Kronecker product term are reduced by the same number and
the state space sizes of the factors are increased. The effect of grouping fac-
tors in Kronecker product terms forming Q is investigated in a sequence of
papers [26, 136, 137] under functional transitions. The objective is to reduce
the number of factors and thereby the overhead associated with evaluating
functional transitions. Results show that in some cases grouping may help
to reduce the state space size if it had unreachable states as in each sub-
model of the availability model in Section 2.3, the intermediate submodels
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in the production line model or each submodel in the communications pro-
tocol model of Section 3.3. Grouping may decrease the overhead associated
with functional transitions and may even decrease the number of terms in
the Kronecker representation. When there are functional transitions, the best
approach seems to group those factors which have functional dependencies
among each other. In the absence of functional transitions, it is recommended
to group as many factors as possible given available memory starting from
the highest indexed factor. This ensures a flatter representation for diago-
nal blocks at a particular level, which is a useful feature in certain iterative
methods.

The effects of reordering and grouping of factors of Kronecker products on
the convergence and space requirements of iterative methods have been inves-
tigated in a number of papers [58, 60, 98, 172, 315], but a broad, systematic
study seems to be lacking.

4.2 Lumping

Lumpability [194] is a property possessed by some MCs which, if conditions
are met, may be used to reduce a large state space to a smaller one. The
idea is to find a partitioning of the original state space such that, when the
states in each partition are lumped (or aggregated) to form a single state, the
resulting MC described by the lumped states has equivalent behavior to the
original chain. It is therefore important to consider lumping to reduce the
size of the reachable state space, R, before moving to the solution phase.

In this work we refer to two kinds of lumpability: ordinary lumpability and
exact lumpability. Here we give definitions for CTMCs. Equivalent definitions
can be stated for DTMCs. A CTMC represented by Q is said to be ordinarily
lumpable with respect to a partitioning of its reachable state space R “

Ť

l Rl

and Rl

Ş

Ru “ H for all l ‰ u if for all Rl Ă R and all i, i1 P Rl

ÿ

jPRu

qpi, jq “
ÿ

jPRu

qpi1, jq for all Ru Ă R . (4.1)

A CTMC represented by Q is said to be exactly lumpable with respect to a
partitioning of its reachable state space R “

Ť

l Rl and Rl

Ş

Ru “ H for all
l ‰ u if for all Rl Ă R and all i, i1 P Rl

ÿ

jPRu

qpj, iq “
ÿ

jPRu

qpj, i1q for all Ru Ă R . (4.2)

Ordinary lumpability refers to a partitioning of the reachable state space in
which the sums of transition rates from each state in a partition to a(nother)
partition are the same. On the other hand, exact lumpability refers to a
partitioning of the reachable state space in which the sums of transition
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rates from all states in a partition into each state of a(nother) partition are
the same.

Let Rlumped denote the lumped reachable state space. On the ordinarily
lumped MC, one can only compute measures defined over Rlumped. On the
exactly lumped MC, one can compute steady-state measures defined over
R, transient measures defined over Rlumped, and transient measures defined
over R if the states in the exactly lumpable partitions have the same initial
probabilities. Since MCs satisfy a row sum property rather than a column
sum property, the exact lumpability condition in (4.2) is more difficult to be
satisfied than the ordinary lumpability condition in (4.1). See [44] and the
references therein for more information regarding the concept of lumpability
and its implications.

Lumpability can be investigated on the flat representation of the MC. De-
tection of ordinary and exact lumpability on Q through partition refinement
would imply a time complexity of Opnz lg |R|q and a space complexity of
Opnzq [257]. Since this is expensive in terms of time and storage, techniques
that investigate lumpability on the Kronecker representation have been con-
sidered.

Lumpability can be investigated within each of the state spaces Sphq that
define the Kronecker representation of Q in (2.10) for h “ 1, . . . , H inde-
pendently. For the state space Sphq, detection of ordinary and exact lumpa-
bility through partition refinement as in [54] requires a time complexity of
OpnzQphq lg nhq and a space complexity of OpnzQphq q, where

nzQphq “
ÿ

kPKphq

nz
Q

phq
k

.

Then the lumped Kronecker representation may be obtained by replacing

each of the state spaces Sphq and its corresponding transition matrices Q
phq

k

for k “ 1, . . . ,K with equivalent lumped ones. Lumpability can also be in-
vestigated among the state spaces Sphq that are replicated (or identical) with
respect to the Kronecker representation of Q as in [24]. Therein ordinary
lumpability of replicated state spaces is shown in the presence of functional
transitions over the product state space S in SANs. Note that replication
refers to a very specific kind of symmetry in the Kronecker representation,
and with ordinary lumpability, only measures of interest over Slumped can be
computed. Lumpability can also be investigated among the state spaces Sphq

by considering dependencies and matrix properties in the Kronecker repre-
sentation as in [174, 175]. Therein sufficient conditions that satisfy ordinary
lumpability over S in SANs are specified and an iterative steady-state solu-
tion method which is able to compute measures over S is given for CTMCs
and DTMCs in the presence of functional transitions. The work identifies
lumpable partitionings on the underlying MC induced by the nested block
structure of the Kronecker representation in (2.3). Although the particular
approach of lumping one or more state spaces Sphq totally as in [174, 175]
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is a very specific kind of performance equivalence and lumping considered in
[45, 51], due to its accommodation of functional transitions, it also enables
the detection of certain ordinarily lumpable partitionings in which blocks are
composed of multiple (nonidentical) state spaces, but the individual state
spaces cannot be lumped by themselves. This is not possible with the ap-
proaches in [24, 45, 51].

We remark that neither of the two approaches in [24] and [174, 175] that
investigate lumpability among the state spaces Sphq for h “ 1, . . . , H is com-
pletely automated, uses a Kronecker representation for the lumped MC, and
possesses a proper complexity analysis. Furthermore, since the Kronecker
representation is rich in structure and the three approaches presented in this
chapter do not work on the flat representation, there can very well be other
symmetries in the Kronecker representation which also lead to lumpability.
Along a slightly different line, the concept of quasi-lumpability [122] can be
investigated.

4.3 Analyzing Diagonal Blocks for Common Schur
Factors

One of the things Chapter 2 has shown is that the Kronecker structure of
Q in (2.10) underlying an H-dimensional CTMC induces nested block parti-
tionings. In each diagonal block Qpp, pq for p “ 0, . . . , N ´ 1, there may be
diagonal blocks at levels 1 through H ´ 1 with identical off-diagonal parts
and diagonals differing from each other by a multiple of the identity matrix.
Such diagonal blocks are named candidate blocks [58] in the following, which
explains how they can be detected and mutually benefit from a single real
Schur factorization [125, 303]. The objective is to reduce the storage required
by the factors of the diagonal blocks and the solution time in iterative solvers.
We specify sufficient conditions for the existence of diagonal blocks with real
eigenvalues that can be checked using the interaction matrix and submodel

transition matrices Q
phq

k . This is a significant result, because in practice the
real Schur factors of diagonal blocks satisfying these conditions are sparse.

Furthermore, as we will describe, these factors can be constructed from Q
phq

k

and their real Schur factors.
When Q is in Kronecker form, its diagonal blocks possess various proper-

ties due to the nested block partitioning. Let us first look at the difference
between diagonal blocks of Kronecker product terms due to local transitions
and synchronizing transitions. Diagonal blocks at each level of Kronecker
products with all factors except one being I are all identical up to their
diagonals, and the diagonals differ by a multiple of I. In other words, diago-
nal blocks of Kronecker products associated with local transitions automat-
ically satisfy the sought property. Therefore, in each diagonal block Qpp, pq

for p “ 0, . . . , N ´ 1, in order to detect diagonal blocks with identical off-
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diagonal parts and diagonals differing from each other by a multiple of I, it
suffices to check conditions related to Kronecker products with at least two
nonidentity factors (i.e., Kronecker products corresponding to synchronizing
transitions). Hereafter, diagonal blocks satisfying the described property are
named candidate blocks.

The set of diagonal blocks in Qpp, pq may form multiple partitions of can-
didate blocks, where blocks in each partition test positively for candidacy,
but two blocks in different partitions fail the test either due to having differ-
ent off-diagonal parts or their diagonals not differing from each other by a
multiple of I. Since Kronecker products contribute to diagonal blocks in vari-
ous ways, detecting all such partitions is a difficult task. The next algorithm,
Algorithm 3, presented in [58] may not detect all candidate blocks, but we
will be content with those that get detected since it executes rapidly and
we do not want to compute multiple real Schur factorizations within Qpp, pq.
The algorithm can be used to check candidacy among all diagonal blocks in
Qpp, pq for p “ 0, . . . , N ´ 1 at block partitioning level l “ 1, . . . , H ´ 1. The
two conditions C1 and C2 together are sufficient to detect candidate blocks,

and they can be checked using the interaction matrix and Q
phq

k which are
held in row sparse format.

Algorithm 3. Detecting candidate blocks in Qpp, pq at level l.

For each Kronecker product that contributes to Qpp, wq for w :“ 0, . . . , N´1:

C1. In Qpp, pq at level l, make sure there is:
(a) either no contribution from the Kronecker product to the candidate

block, or
(b) the same contribution from the Kronecker product to all diagonal

blocks (including the candidate block), or
(c) a contribution from the Kronecker product that is a multiple of I to

some diagonal blocks (including the candidate block);

C2. In Qpp, wq for p ‰ w at level l, make sure there is:
(a) either no contribution from the Kronecker product to the off-diagonal

blocks in the same row as the candidate block, or
(b) the same contribution from the Kronecker product to the diagonals

of all diagonal blocks (including the candidate block), or
(c) a contribution from the Kronecker product that is a multiple of I to

the diagonals of some diagonal blocks (including the candidate block).

Example 5. (ctnd.) For instance, in reachable state space partition R0 of the
communications protocol model with C “ 1, Kronecker products due to
transitions 5 in Q0,0, 7 in Q0,1, 6 in Q0,2, and 6 in Q0,3 must be checked (see
the interaction matrix in (3.2)).

C1 in Algorithm 3 ensures that off-diagonal parts of all candidate blocks
are identical and their diagonals differ from each other by a multiple of I.
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Specifically, C1(b) and C1(c) are checked by inspecting Q
phq

k pRphq
p ,Rphq

p q, re-
spectively, up to and after block partitioning level l in the Kronecker product
and making sure they are all equal to I. C2 ensures after C1 is satisfied that
the contribution from off-diagonal blocks to diagonals of candidate blocks do
not change the fact that diagonals of candidate blocks differ from each other
by a multiple of I. Specifically, C2(b) and C2(c) are checked by inspecting

Q
phq

k pRphq
p ,Rphq

w q, respectively, up to and after block partitioning level l and
making sure they have equal row sums.

Example 5. (cntd.) Tables 4.1 through 4.4 list the number of candidate blocks
under column cl for l “ 1, 2, 3 in the communications protocol model for
different block partitioning levels obtained by executing Algorithm 3. Note
that the block partitioning at level 0 is omitted since it yields one diagonal
block in each reachable state space partition. At the other block partitioning
levels, there is a relatively large number of candidate blocks; the partitioning
at level 2 even yields all diagonal blocks as candidates.

Now, we explain how candidate blocks in Qpp, pq can all take advantage
of the real Schur factorization of one of the candidate blocks. The real Schur
factorization is an eigenvalue revealing factorization and exists for real non-
symmetric square matrices [158, 303]. If A P R

olˆol , then it can be written as
A “ V TV T , where V is orthogonal (i.e., V TV “ I) and T is quasi-triangular,
meaning it is block triangular with blocks of order 1 or 2 along its diagonal.
The columns of V contain the real Schur vectors. The blocks of order 1 along
the diagonal of T contain the real eigenvalues of A, and the blocks of order
2 along the diagonal of T contain the pairs of complex conjugate eigenvalues
of A. When both T and V are to be obtained, the cost of factorizing A of
order ol into real Schur form, assuming it is full, is 25o3l [125]. Note that A
can also be in the form A “ pV EqpETTEqpV EqT for a permutation matrix
E in which ETTE is quasi-triangular. Without loss of generality, we assume
that T is in quasi-upper-triangular form.

Real Schur factorization of a matrix can be obtained using the LAPACK
routine dgees [125] available at [248]. This routine uses two two-dimensional
floating-point arrays the first of which has matrix A to be real Schur factorized
on input and (quasi-)upper-triangular factor T on output, whereas the second
has orthogonal factor V on output. The returned real Schur factors T and
V can be compacted and stored as sparse matrices to be used in iterative
solvers. The storage that is set aside for the two two-dimensional floating-
point arrays in the preprocessing phase is temporary and not used in iterative
solvers.

Now, let A1 be the first candidate block in Qpp, pq, and Ai, i ą 1, denote
the ith candidate block in Qpp, pq. Let Ai ´A1 “ λiI and the real Schur form
of A1 be given by A1 “ V TV T . Then Ai “ V pT ` λiIqV T . Hence, if we are
to solve piAi “ bi, where pi and bi are row subvectors of appropriate length,
then we can do so by solving the equivalent system piV pT ` λiIqV T “ bi in
three steps: 1) compute ci :“ biV ; 2) let yi “ piV ; solve yipT ` λiIq “ ci
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for yi; 3) compute pi :“ yiV
T . These three steps require two vector–matrix

multiplications and one quasi-triangular solve. All that needs to be done is to
store λi for each candidate block and the real Schur factors T and V so that
they are accessible from Qpp, pq later in the solution process. To expedite this
process, we choose to store the reciprocals of the diagonals of the matrices
pT ` λiIq. This exchanges the addition and division per diagonal entry at
each real Schur solve with a one time division and a per solve multiplication
per diagonal entry.

Example 5. (cntd.) Table 4.6 reports the total number of nonzeros in diagonal
blocks when all candidate blocks in Qpp, pq at the designated level for p “

0, . . . , N ´ 1 use common real Schur factors, and the remaining diagonal
blocks use LU factors. The numbers in the table exclude the λi’s and the
nonzeros along the diagonals in all factors. For diagonal blocks that use LU
factors, two orderings, Original and colamd, are considered as in Table 4.5.
The results indicate substantial savings over those in Table 4.5 since the real

Table 4.6 Nonzeros in factors of candidates and remaining diagonal blocks of Q in com-
munications protocol model

C Ordering Level 1 Level 2 Level 3
LU Schur LU Schur LU Schur

1 Original 78,957 4,052 0 1,498 5,985 532
colamd 27,432 4,052 0 1,498 3,330 532

2 Original 1,245,411 32,154 0 8,403 65,565 931
colamd 352,278 32,154 0 8,403 34,410 931

3 Original 14,968,098 173,005 0 30,436 382,815 1,330
colamd 3,220,922 173,005 0 30,436 200,910 1,330

4 Original 50,312,460 344,569 0 66,178 2,243,430 3,366
colamd 14,297,760 344,569 0 66,178 2,077,110 3,366

Schur factors turn out to be quite sparse compared to the LU factors. We
noticed that this is a property of candidate blocks having real eigenvalues
(i.e., triangular T factor). This hints at a reduction in storage and possibly
in solution time. On the other hand, we noticed that when the candidate
block has complex eigenvalues, the real Schur factors are either nearly or
completely full. For the real Schur factorization to be worthwhile the effort,
it should not yield excessive number of nonzeros in the factors.

Let us now state sufficient conditions for the existence of diagonal blocks
with real eigenvalues in Qpp, pq. The results are based on the fact that the
Kronecker product and the Kronecker sum of two nonsymmetric square ma-
trices with real eigenvalues have real eigenvalues and therefore are triangu-
larizable using orthogonal matrices. See [58] for a proof of this result.

First, we let the real Schur factorization of local transition submatrix of
submodel h associated with Kp,p be given by
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Q
phq

h pRphq
p ,Rphq

p q “ VhThVh
T ,

where Th is (quasi-)upper-triangular and Vh is orthogonal. Observe that
Qpp, pq is a sum of three terms: the first due to the Kronecker sum of submodel
local transition submatrices associated with Kp,p, the second due to the sum
of Kronecker products of submodel synchronizing transition submatrices as-
sociated with Kp,p, and the third due to the diagonal correction necessary to

have Qpp, pqe “ ´
řp´1

w“0 Qpp, wqe ´
řN´1

w“p`1 Qpp, wqe. Let Q̃Dpp, pq denote
the diagonal block of QDpp, pq associated with the particular diagonal block
under consideration for real Schur factorization.

Let us state sufficient condition 1 (SC1) for the existence of real eigenvalues
in diagonal blocks of Qpp, pq from [58]. If

(a) Kp,p does not possess synchronizing transitions, and

(b) each Th in Q
phq

h pRphq
p ,Rphq

p q “ VhThVh
T for h ą l is upper-triangular,

and
(c) p

Â

hąl Vh
T

qQ̃Dpp, pqp
Â

hąl Vhq is diagonal,

then the diagonal block under consideration at level l in Qpp, pq has real
eigenvalues.

We remark that SC1(a) is satisfied by all Qpp, pq for p “ 0, . . . , N ´ 1 in
many models arising from closed queueing networks. SC1(b) is satisfied, for

instance, when Q
phq

h pRphq
p ,Rphq

p q for submodels h ą l are triangular. SC1 also
describes an approach to construct the factors of the diagonal block that is
to be real Schur factorized at level l in Qpp, pq from the real Schur factors of

Q
phq

h pRphq
p ,Rphq

p q and Q̃Dpp, pq. Indeed,

V “
â

hąl

Vh and T “
à

hąl

Th ` p
â

hąl

Vh
T

qQ̃Dpp, pqp
â

hąl

Vhq.

It is also possible to check SC1(c) and build the product therein using the

orthogonal real Schur factors of Q
phq

h pRphq
p ,Rphq

p q as explained in [58]. Here,
we provide the result.

If SC1 holds at level l in Qpp, pq and all Vh for h ą l are permutation
matrices, then the orthogonal real Schur factor of the diagonal block under
consideration for real Schur factorization at that level is a permutation ma-
trix, and its upper-triangular factor has the same number of nonzeros as the
diagonal block. In other words, real Schur factorization will amount to com-
puting a permutation matrix that upper-triangularizes the particular diago-
nal block. A similar result holds for the next condition SC2, which subsumes
SC1 but is given separately, because, as we will see in the communications
protocol model, there may be reachable state space partitions satisfying SC1
and others satisfying SC2.

Let us state sufficient condition 2 (SC2) for the existence of real eigenvalues
in diagonal blocks in Qpp, pq from [58]. If

(a) SC1(b), and
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(b) each
Â

hąlpVh
TQ

phq

k pRphq
p ,Rphq

p qVhq that contributes to the diagonal
block under consideration at level l for all synchronizing transitions
k P Kp,p is upper-triangular, and,

(c) SC1(c),

then the diagonal block under consideration at level l in Qpp, pq has real
eigenvalues.

The proof of SC2 is similar to that of SC1, and it is possible to con-
struct the real Schur factors of the particular diagonal block at level l in

Qpp, pq from the real Schur factors of Q
phq

h pRphq
p ,Rphq

p q for local transitions

h ą l, Q
phq

k pSphq
p ,Sphq

p q for all synchronizing transitions k P Kp,p and submod-

els h ą l, and Q̃Dpp, pq. Checking SC2(b) requires one to have previously
computed the multipliers that multiply each Kronecker product in forming
the candidate block when l ą 0. However, this is something we do in detect-
ing candidate blocks and use in step C1(a) of Algorithm 3. In other words,
those Kronecker products that will eventually get multiplied with a zero and
therefore do not contribute to the diagonal block under consideration should
not change our decision regarding the satisfiability of SC2. Note also that it
suffices for the first nondiagonal factor in the Kronecker product of SC2(b)
to be an upper-triangular matrix to satisfy the condition for the particular
synchronizing transition k P Kp,p (see Appendix A in [315]).

When Qpp, pq satisfies SC1 or SC2, real Schur factors of the first candidate
block are constructed as described from specific submodel submatrices. This
is the Kronecker-based sparse approach. When SC1 and SC2 are not satisfied,
it is still possible to compute real Schur factors of the particular candidate
block using dgees. This is the flat approach. We remark that the real Schur
factors computed using the Kronecker-based sparse approach and the flat
approach can be different but will be related to each other by a permutation
matrix, E, as mentioned before. Nevertheless, their products always give the
same diagonal block. The Kronecker-based sparse approach is expected to
require less temporary storage and be faster than the flat approach as the
order of the candidate block to be real Schur factorized increases.

Example 5. (cntd.) In the communications protocol model with C “ 1, all
Qpp, pq for p “ 0, . . . , 3 except Qp1, 1q satisfy SC2 and Qp1, 1q satisfies SC1
(see the interaction matrix in (3.2) and consider the submodel submatrices
that contribute to Qpp, pq) for nested block partitioning levels l “ 1, 2, 3. In
each Qpp, pq for p “ 0, . . . , 3, the V factor is a permutation matrix, and the
T factor has as many nonzeros as in the candidate blocks.

We emphasize that even though l may be small and diagonal blocks at that
level large, both SC1 and SC2 require the real Schur factorization of submodel
local transition submatrices only. Even then, real Schur factorization needs to
be employed only when the input matrix is not triangular. And when either
SC1 or SC2 is satisfied, we have a very efficient way of constructing the real
Schur factors of candidate blocks.
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4.4 Handling Countable Infiniteness for Steady-State

In this section, we discuss how the countably infinite reachable state space of
a MC can be truncated for steady-state analysis [157, 314]. Truncation ap-
proaches for transient analysis are considered in Chapter 7. We motivate the
discussion with another specification technique for multidimensional Marko-
vian models, which represents classes of transitions among states by using
state change vectors. While we give a formal definition of transition classes
[184] that can be used in Kronecker-based modeling of systems of stochas-
tic chemical kinetics in the next subsection, for the time being, we will be
content with the informal definition provided next.

Given a state vector i P Z
1ˆH
ě0 representing the current state of an H-

dimensional Markovian model, a state change vector vpkq P Z
1ˆH and a

transition rate αk : R ÞÑ Rě0, the model makes a transition of class k to
state pi ` vpkqq with rate αkpiq when i P R, αkpiq ą 0, and i ` vpkq ě 0 for
k “ 1, . . . ,K. Here, R is the reachable state space of the model, vpkq ‰ 0,
and αkpiq is a multivariate function in the state variables ih for h “ 1, . . . , H
and k “ 1, . . . ,K. It should be apparent from the values i P R can take that
reachable state space R is countably infinite and needs to be truncated judi-
ciously for analysis purposes. The following approach enables us to identify
those states on which a certain amount of the steady-state probability mass
is concentrated when R is irreducible.

An irreducible CTMC with countably infinite reachable state space R
is ergodic and has a steady-state distribution if and only if there exists a
Lyapunov function g : R Ñ Rě0 and a finite set C Ă R simultaneously
satisfying the three conditions: [314]

(i) dpiq ď ´γ for all i P RzC and some γ ą 0 ,

(ii) dpiq ă 8 for all i P C ,

(iii) ti P R | gpiq ď ru is finite for all r ă 8 ,

where

dpiq “

K
ÿ

k“1

αkpiqpgpi ` vpkq
q ´ gpiqq P R (4.3)

is the drift in state i P R. In other words, the drift must be negative for
the countably infinite number of states in reachable state space R excluding
those in C, the drift must be finite for the states in C, and the set of states
for which the Lyapunov function attains a finite value must always be finite.
Note that the Lyapunov function is assumed to be nonnegative in [314], but
the above result is also valid if the Lyapunov function is bounded from below
as indicated in [131].

When there is a candidate Lyapunov function gpiq satisfying condition (iii)
at hand and

χ “ sup
iPR

dpiq ă 8
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(note that the latter condition is equivalent to satisfying conditions (i) and
(ii) simultaneously), it is possible to specify

ε “ χ{pχ ` γq P p0, 1q

as an upper bound on
ř

iPRzC πpiq. Equivalently, it is possible to use

γ “ χ{ε ´ χ

in constructively defining

C “ ti P R | ´γ ă dpiq ă 8u. .

Now, if it is further shown that C is finite, then the three conditions above
hold and

ÿ

iPC
πpiq ě 1 ´ ε.

However, in many cases it is not a trivial task to show the finiteness of C
for a chosen Lyapunov function gpiq. This seems to be an open problem and
worth exploring.

Clearly, determining χ is also a problem in itself. To that end, the do-
main of the search for extrema should be restricted to R

1ˆH
ě0 . All extrema

can then be computed by equating the gradient of dpiq to zero. In order to
determine all local extrema including those located on the boundaries of the
domain, the same system must be solved for every projection of dpiq onto
each subspace of R1ˆH by setting all combinations of state variables ih for
h “ 1, . . . , H to 0. In the end, all extrema outside R1ˆH

ě0 should be discarded.
Throughout this process, the resulting systems of nonlinear equations can be
solved, for instance, using the HOM4PS-2.0 package [215], which implements
the polyhedral homotopy continuation method.

Once the finiteness of C is proved and χ (or equivalently, γ for chosen ε)
is determined, it is possible to form the set C. Clearly, the quality of the
approximations increases as the steady-state probability mass concentrated
on states in C approaches 1 (i.e., as ε approaches 0) [120].

4.4.1 A Metabolite Synthesis Model

A system of stochastic chemical kinetics [31, 208, 238, 254, 296, 300, 318]
describes the dynamics of a number of molecules that interact through chem-
ical reactions. The state space of the corresponding Markovian model consid-
ered here is discrete, countably infinite, and H-dimensional [120]. Among the
H state variables, HI are countably infinite and represent molecule num-
bers, while HF are finite and represent the finite control mechanism by
which molecules interact. Since the finite control mechanism may or may
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not exist, it follows that HI ě 2, HF ě 0, and H “ HI ` HF . With-
out loss of generality, we assume that the first HI state variable indices are
assigned to the molecules. Hence, the state spaces of the variables satisfy
|Sphq| Ñ 8 for h “ 1, . . . , HI and |Sphq| ă 8 for h “ HI ` 1, . . . , H. Now, let

R̄ Ď
ŚH

h“HI`1 Sphq denote the set of states the finite variables can take.
Where it is the number of molecules that is relevant in chemical kinet-

ics, in other domains it may be the number of species, genes, proteins, etc.
Therefore, we will be using these terms interchangeably. The discrete Marko-
vian model considered here is more realistic and shown to behave differ-
ently than the respective deterministic model, which is continuous and in
the form of a system of ordinary differential equations [156, 208]. This is
especially true when the numbers of different types of molecules are rela-
tively small. We recall that in many cases not all states in the product state
space S “

ŚH
h“1 Sphq are necessarily reachable. However, each state in the

reachable state space R that satisfies R Ď S is reachable from every other
state since the associated CTMC is assumed to be irreducible for steady-state
analysis.

Transition class k is a pair

pαkpiq,vpkq
q ,

where αkpiq P Rě0 is the transition rate function and vpkq P Z
1ˆH is the

state change vector for k “ 1 . . . ,K [103, 120]. The first element of the pair
specifies the transition rate from state i P R to state pi`vpkqq P R. The second

element of the pair specifies the successor state of the transition, where v
pkq

h

denotes the change in state variable ih due to a class k transition.
When the transition rate function αkpiq for transition class k is separable,

it may be written as

αkpiq :“ φk

H
ź

h“1

α
phq

k pihq , (4.4)

where φpkq P Rą0 is its state independent transition rate and α
phq

k pihq : Sphq ÞÑ

Rě0 is its state dependent transition rate for variable ih with h “ 1, . . . , H
[107]. The separability of the transition rate function αkpiq into the scalar

φk times H factors α
phq

k pihq for h “ 1, . . . , H holds in elementary reactions
which are building blocks for more complicated reaction kinetics [126, 156,
188, 236, 283]. Typically the number of reactions in a system of stochastic
chemical kinetics is finite, and each reaction corresponds to one transition
class.

Consider the model of a biological process of metabolite synthesis [218]
with repressilator in Figure 4.1 having the transition classes in Table 4.7.
Here, H “ 6, HI “ 3, HF “ 3, i “ pi1, i2, i3, i4, i5, i6q, K “ 12, and λ1, λ2,
λ3, μ1, μ2, μ3, β0, β1 P Rą0. The model has three types of genes G1, G2,
G3 and three different control variables r1, r2, r3. The genes regulate each
other’s synthesis in a cyclic manner, G1 regulating G2, G2 regulating G3, and
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Fig. 4.1 Metabolite synthesis model with six submodels

G3 regulating G1. Each type of gene has a single binding site to which only
one repressor at a time can bind. A gene regulates another type of gene by
producing its own type of repressor, the repressor binding to the binding site
of the gene to be regulated, and thereby repressing (or blocking) the other

Table 4.7 Transition classes of the metabolite synthesis model with repressilator

k φk α
p1q

k pi1q α
p2q

k pi2q α
p3q

k pi3q α
p4q

k pi4q α
p5q

k pi5q α
p6q

k pi6q vpkq

1 λ1 1 1 1 1 1 p1 ´ i6q eT
1

2 μ1 i1 1 1 1 1 1 ´eT
1

3 β0 i1 1 1 p1 ´ i4q 1 1 p´e1 ` e4qT

4 β1 1 1 1 i4 1 1 pe1 ´ e4qT

5 λ2 1 1 1 p1 ´ i4q 1 1 eT
2

6 μ2 1 i2 1 1 1 1 ´eT
2

7 β0 1 i2 1 1 p1 ´ i5q 1 p´e2 ` e5qT

8 β1 1 1 1 1 i5 1 pe2 ´ e5qT

9 λ3 1 1 1 1 p1 ´ i5q 1 eT
3

10 μ3 1 1 i3 1 1 1 ´eT
3

11 β0 1 1 i3 1 1 p1 ´ i6q p´e3 ` e6qT

12 β1 1 1 1 1 1 i6 pe3 ´ e6qT

type of gene. This kind of binding in which only one repressor can bind to a
binding site and repress a type of gene is said to be noncooperative. When
the first control variable is set to 1 (i.e., i4 “ 1), a type 1 repressor r1 is
bound to the binding site of G2. Similarly, when i5 “ 1, a type 2 repressor
r2 is bound to the binding site of G3, and when i6 “ 1, a type 3 repressor r3
is bound to the binding site of G1. When a control variable is set to 0 rather
than 1, the corresponding binding site is unbound. Hence, we have

Sp1q
“ Sp2q

“ Sp3q
“ Zě0, Sp4q

“ Sp5q
“ Sp6q

“ t0, 1u,

R̄ “ Sp4q
ˆ Sp5q

ˆ Sp6q,
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|R̄| “ 8, and R “ Sp1q ˆSp2q ˆSp3q ˆR̄. Parameters λh and μh for h “ 1, 2, 3,
respectively, denote state-independent production and degradation rates of
type h genes, whereas parameters β0 and β1, respectively, denote state-
independent binding and unbinding rates. However, degradation and binding
rates are in fact state dependent. In this model, reachable state space R is
equal to the product state space.

Having specified the parameters of the model when the separability con-
dition in (4.4) holds, two more things need to be done to formulate its Kro-
necker representation. First, for each transition class, the transition matri-
ces associated with state variables must be specified, one matrix per state
variable. Second, these transition matrices must be composed using the Kro-
necker product operator and the state-independent transition rates to form
the blocks. It is these problems that we now consider.

We first associate transition matrices with countably infinite state vari-
ables. Observe that there are HI such transition matrices to be associated
with each transition class. The transition matrix of state variable ih for h “

1, . . . , HI and transition class k “ 1, . . . ,K is denoted by Q
phq

k P R
|Sphq

|ˆ|Sphq
|

ě0

and given entrywise as

Q
phq

k pih, jhq “

"

α
phq

k pihq if jh “ ih ` v
pkq

h

0 otherwise
for ih, jh P Sphq .

Regarding finite state variables when H ą HI , we prefer to define a
grouped transition matrix since we have observed in practice that |Sphq|

for h “ HI ` 1, . . . , H is very small. Recalling that R̄ denotes the set of
states finite variables can take and therefore R̄ Ď

ŚH
h“HI`1 Sphq, the grouped

transition matrix of finite state variables for transition class k “ 1, . . . ,K is

denoted by Q̄k P R
|R̄|ˆ|R̄|

ě0 and is given entrywise as

Q̄kppiHI`1, . . . , iHq, pjHI`1, . . . , jHqq

“

$

’

&

’

%

śH
h“HI`1 α

phq

k pihq if pjHI`1, . . . , jHq “ piHI`1, . . . , iHq

` pv
pkq

HI`1, . . . , v
pkq

H q

0 otherwise

for piHI`1, . . . , iHq, pjHI`1, . . . , jHq P R̄.

When H “ HI , it is assumed that |R̄| “ 1 and Q̄k “ p1q.
The transition matrices corresponding to the countably infinite state vari-

ables of the model in Table 4.7 are obtained as
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Q
p2q

1 “ Q
p3q

1 “ Q
p2q

2 “ Q
p3q

2 “ Q
p2q

3 “ Q
p3q

3 “ Q
p2q

4 “ Q
p3q

4 “ Q
p1q

5 “ Q
p3q

5

“ Q
p1q

6 “ Q
p3q

6 “ Q
p1q

7 “ Q
p3q

7 “ Q
p1q

8 “ Q
p3q

8 “ Q
p1q

9 “ Q
p2q

9

“ Q
p1q

10 “ Q
p2q

10 “ Q
p1q

11 “ Q
p2q

11 “ Q
p1q

12 “ Q
p2q

12 “ I8 ,

Q
p1q

1 “ Q
p1q

4 “ Q
p2q

5 “ Q
p2q

8 “ Q
p3q

9 “ Q
p3q

12 “ supdiagpp1, 1, . . .qT q ,

Q
p1q

2 “ Q
p1q

3 “ Q
p2q

6 “ Q
p2q

7 “ Q
p3q

10 “ Q
p3q

11 “ subdiagpp1, 2, . . .qT q ,

The grouped transition matrices corresponding to finite state variables of the
same model are obtained as

Q̄1 “ I2 b I2 b diagpp1, 0q
T

q , Q̄2 “ Q̄6 “ Q̄10 “ I2 b I2 b I2 ,

Q̄3 “ supdiagpp1q
T

q b I2 b I2 , Q̄4 “ subdiagpp1q
T

q b I2 b I2 ,

Q̄5 “ diagpp1, 0q
T

q b I2 b I2 , Q̄7 “ I2 b supdiagpp1q
T

q b I2 ,

Q̄8 “ I2 b subdiagpp1q
T

q b I2 , Q̄9 “ I2 b diagpp1, 0q
T

q b I2 ,

Q̄11 “ I2 b I2 b supdiagpp1q
T

q , Q̄12 “ I2 b I2 b subdiagpp1q
T

q .

Our objective is to formulate a Kronecker representation for the nonzero
blocks of Q from the transition matrices and the state-independent transition
rates. To this end, let us start by formally defining Rp to be the subset of
states corresponding to partition p P Zě0 given by

Rp “ ti P R | maxh“1,...,HI
pihq “ pu , (4.5)

R “

8
ď

p“0

Rp, Rp X Rw “ H for p ‰ w .

The maximum function is justified by observing that the maximum valued
variable among i1, . . . , iHI

in any state i P R changes by at most one through
any transition due to the particular form of the state change vectors vpkq

in the transition classes for systems of stochastic chemical kinetics. As a
by-product of this, Q turns out to be block tridiagonal.

Recall that the set operation associated with Kronecker product is Carte-
sian product. As we will see, each reachable state space partition needs to
be expressed as a union of Cartesian products of state space partitions of
the countably infinite variables for the class of models considered. Therefore,
reachable state space partition index definitions, such as p “

řHI

h“1 ih, that
have arithmetic dependencies among countably infinite variables seem to be
less suitable in trying to come up with a Kronecker representation.

For each reachable state space partition Rp, the values a variable can
take depend on the values of other variables. Therefore, first we define a
partition of the values a countably infinite variable can take where there
is no such dependency in a way similar to HMMs [43]. Then we introduce
subpartitions of Rp based on the partitions of countably infinite variables
defined before. Let
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Sphq

p,l “

$

&

%

tih | 0 ď ih ď pu if l ă h
tpu if l “ h
tih | 0 ď ih ď p ´ 1u if l ą h

for l, h “ 1, . . . , HI . (4.6)

Then subpartition l “ 1, . . . , HI of Rp, denoted by Rp,l, is given by

Rp,l “

#

i P Rp | pi1, . . . , iHI
q P

HI
ą

h“1

Sphq

p,l and piHI`1, . . . , iHq P R̄
+

.

Finally,

Rp “

HI
ď

l“1

Rp,l , Rp,l X Rp,m “ H for l ‰ m .

Without loss of generality, the subpartitions Rp,l are assumed to be ordered
within Rp according to increasing subpartition index, l.

The number of states within reachable state partitions RLow through
RHigh is given by

npLow,Highq “

High
ÿ

p“Low

ˇ

ˇR̄
ˇ

ˇ ppp`1q
HI ´ppq

HI q “
ˇ

ˇR̄
ˇ

ˇ ppHigh`1q
HI ´LowHI q .

Observe that the number of states in reachable state space partition Rp for
p P Zě0 is OppHI´1q.

In the metabolite synthesis model, we have

Sp1q

p,1 “ tpu , Sp2q

p,1 “ Sp3q

p,1 “ t0, . . . , pu ,

Sp1q

p,2 “ t0, . . . , p ´ 1u , Sp2q

p,2 “ tpu , Sp3q

p,2 “ t0, . . . , pu ,

Sp1q

p,3 “ Sp2q

p,3 “ t0, . . . , p ´ 1u , Sp3q

p,3 “ tpu ,

implying

3
ą

h“1

Sphq

0,1 “ tp0, 0, 0qu ,
3

ą

h“1

Sphq

0,2 “

3
ą

h“1

Sphq

0,3 “ H ,

3
ą

h“1

Sphq

1,1 “ tp1, 0, 0q, p1, 0, 1q, p1, 1, 0q, p1, 1, 1qu ,

3
ą

h“1

Sphq

1,2 “ tp0, 1, 0q, p0, 1, 1qu ,
3

ą

h“1

Sphq

1,3 “ tp0, 0, 1qu ,

3
ą

h“1

Sphq

2,1 “ tp2, 0, 0q, p2, 0, 1q, p2, 0, 2q, p2, 1, 0q, p2, 1, 1q, p2, 1, 2q,

p2, 2, 0q, p2, 2, 1q, p2, 2, 2qu ,
3

ą

h“1

Sphq

2,2 “ tp0, 2, 0q, p0, 2, 1q, p0, 2, 2q, p1, 2, 0q, p1, 2, 1q, p1, 2, 2qu ,

3
ą

h“1

Sphq

2,3 “ tp0, 0, 2q, p0, 1, 2q, p1, 0, 2q, p1, 1, 2qu ,
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and so on. Since
R̄ “ tp0, 0, 0q, . . . , p1, 1, 1qu ,

we obtain

Rp,1 “

˜

3
ą

h“1

Sphq

p,1

¸

ˆ R̄ “ tpp, 0, 0, 0, 0, 0q, . . . , pp, p, p, 1, 1, 1qu ,

Rp,2 “

˜

3
ą

h“1

Sphq

p,2

¸

ˆ R̄ “ tp0, p, 0, 0, 0, 0q, . . . , pp ´ 1, p, p, 1, 1, 1qu ,

Rp,3 “

˜

3
ą

h“1

Sphq

p,3

¸

ˆ R̄ “ tp0, 0, p, 0, 0, 0q, . . . , pp ´ 1, p ´ 1, p, 1, 1, 1qu .

Now, we are in a position to introduce the Kronecker representation of
nonzero blocks in Q following the partitions of subset of states at each
reachable state space partition. Nonzero blocks Qp0, 0q, Qp0, 1q, Qp1, 0q, and
Qpp, wq for p P Zě0, w “ p ´ 1, p, p ` 1 are, respectively, p1 ˆ 1q, p1 ˆ HIq,
pHI ˆ 1), and pHI ˆ HIq block matrices as in

Qp0, 0q “
`

Qp0, 0q1,1

˘

, Qp0, 1q “
`

Qp0, 1q1,1 . . . Qp0, 1q1,HI

˘

,

Qp1, 0q “

¨

˚

˝

Qp1, 0q1,1
...

Qp1, 0qHI ,1

˛

‹

‚

, Qpp, wq “

¨

˚

˝

Qpp, wq1,1 . . . Qpp, wq1,HI

...
. . .

...
Qpp, wqHI ,1 . . . Qpp, wqHI ,HI

˛

‹

‚

.

Furthermore, blocks of Qpp, wq can be written in terms of transition matrices
and state-independent transition rates as in

Qpp, wql,m “

$

’

&

’

%

Q̃pp, wql,m ´ diag
´

řp`1
w1“p´1

řHI

l1“1 Q̃pp, w1ql,l1e
¯

if l “ m, p “ w

Q̃pp, wql,m otherwise

for p P Zě0, w “ p ´ 1, p, p ` 1, l,m “ 1, . . . , HI , where

Q̃pp, wql,m “
řK

k“1 φk

´

ÂHI

h“1 Q
phq

k pSphq

p,l ,S
phq
w,mq

¯

b Q̄k

and Q
phq

k pSphq

p,l ,S
phq
w,mq denotes the submatrix of Q

phq

k incident on row indices in

Sphq

p,l and column indices in Sphq
w,m. The first summation in diag for Qpp, wql,m

should have a starting index of 0 rather than ´1 for the equation of block
Qp0, 0q1,1. Observe that beyond reachable state space partition R0, we have
nonzero pHI ˆHIq block (sub)matrices along the subdiagonal, diagonal, and
superdiagonal of Q.

In the metabolite synthesis model, HI “ 3; therefore, the nonzero blocks
Qp0, 0q, Qp0, 1q, Qp1, 0q, and Qpp, wq for p P Zě0, w “ p ´ 1, p, p ` 1 (except
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Qp1, 0q) are, respectively, p1ˆ 1q, p1ˆ 3), p3ˆ 1q, and p3ˆ 3q block matrices.
In particular, the seven blocks associated with Qp0, 0q, Qp0, 1q, Qp1, 0q are
given by

Q̃p0, 0q1,1 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

0,1 ,S
phq

0,1 q

¸

b Q̄k “ p0q8ˆ8 ,

Q̃p0, 1q1,1 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

0,1 ,S
phq

1,1 q

¸

b Q̄k

“ λ1p1q b p1, 0q b p1, 0q b Q̄1 ` β1p1q b p1, 0q b p1, 0q b Q̄4 ,

Q̃p0, 1q1,2 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

0,1 ,S
phq

1,2 q

¸

b Q̄k

“ λ2p1q b p1q b p1, 0q b Q̄5 ` β1p1q b p1q b p1, 0q b Q̄8 ,

Q̃p0, 1q1,3 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

0,1 ,S
phq

1,3 q

¸

b Q̄k

“ λ3p1q b p1q b p1q b Q̄9 ` β1p1q b p1q b p1q b Q̄12 ,

Q̃p1, 0q1,1 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

1,1 ,S
phq

0,1 q

¸

b Q̄k

“ μ1p1q b p1, 0q
T

b p1, 0q
T

b Q̄2 ` β0p1q b p1, 0q
T

b p1, 0q
T

b Q̄3 ,

Q̃p1, 0q2,1 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

1,2 ,S
phq

0,1 q

¸

b Q̄k

“ μ2p1q b p1q b p1, 0q
T

b Q̄6 ` β0p1q b p1q b p1, 0q
T

b Q̄7 ,

Q̃p1, 0q3,1 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

1,3 ,S
phq

0,1 q

¸

b Q̄k

“ μ3p1q b p1q b p1q b Q̄10 ` β0p1q b p1q b p1q b Q̄11 ,

the nine blocks associated with Qpp, p ´ 1q are given by

Q̃pp, p ´ 1q1,1 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,1 ,S
phq

p´1,1q

¸

b Q̄k

“ μ1ppq b diagpeqpp`1qˆp b diagpeqpp`1qˆp b Q̄2

`β0ppq b diagpeqpp`1qˆp b diagpeqpp`1qˆp b Q̄3 ,

Q̃pp, p ´ 1q1,2 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,1 ,S
phq

p´1,2q

¸

b Q̄k “ 08pp`1q2ˆ8pp´1qp ,
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Q̃pp, p ´ 1q1,3 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,1 ,S
phq

p´1,3q

¸

b Q̄k “ 08pp`1q2ˆ8pp´1q2 ,

Q̃pp, p ´ 1q2,1 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,2 ,S
phq

p´1,1q

¸

b Q̄k

“ μ2pepqpˆ1 b ppeTp q1ˆp b diagpeqpp`1qˆp b Q̄6

`β0pepqpˆ1 b ppeTp q1ˆp b diagpeqpp`1qˆp b Q̄7 ,

Q̃pp, p ´ 1q2,2 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,2 ,S
phq

p´1,2q

¸

b Q̄k

“ μ2diagpeqpˆpp´1q b ppq b diagpeqpp`1qˆp b Q̄6

`β0diagpeqpˆpp´1q b ppq b diagpeqpp`1qˆp b Q̄7 ,

Q̃pp, p ´ 1q2,3 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,2 ,S
phq

p´1,3q

¸

b Q̄k “ 08ppp`1qˆ8pp´1q2 ,

Q̃pp, p ´ 1q3,1 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,3 ,S
phq

p´1,1q

¸

b Q̄k

“ μ3pepqpˆ1 b diagpeqpˆp b ppeTp q1ˆp b Q̄10

`β0pepqpˆ1 b diagpeqpˆp b ppeTp q1ˆp b Q̄11 ,

Q̃pp, p ´ 1q3,2 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,3 ,S
phq

p´1,2q

¸

b Q̄k

“ μ3diagpeqpˆpp´1q b pepqpˆ1 b ppeTp q1ˆp b Q̄10

`β0diagpeqpˆpp´1q b pepqpˆ1 b ppeTp q1ˆp b Q̄11 ,

Q̃pp, p ´ 1q3,3 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,3 ,S
phq

p´1,3q

¸

b Q̄k

“ μ3diagpeqpˆpp´1q b diagpeqpˆpp´1q b ppq b Q̄10

`β0diagpeqpˆpp´1q b diagpeqpˆpp´1q b ppq b Q̄11 ,

the nine blocks associated with Qpp, pq are given by

Q̃pp, pq1,1 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,1 ,S
phq

p,1 q

¸

b Q̄k

“ λ2p1q b supdiagpeqpp`1qˆpp`1q b diagpeqpp`1qˆpp`1q b Q̄5

`μ2p1q b subdiagpp1, . . . , pq
T

qpp`1qˆpp`1q b diagpeqpp`1qˆpp`1q b Q̄6

`β0p1q b subdiagpp1, . . . , pq
T

qpp`1qˆpp`1q b diagpeqpp`1qˆpp`1q b Q̄7
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`β1p1q b supdiagpeqpp`1qˆpp`1q b diagpeqpp`1qˆpp`1q b Q̄8

`λ3p1q b diagpeqpp`1qˆpp`1q b supdiagpeqpp`1qˆpp`1q b Q̄9

`μ3p1q b diagpeqpp`1qˆpp`1q b subdiagpp1, . . . , pq
T

qpp`1qˆpp`1q b Q̄10

`β0p1q b diagpeqpp`1qˆpp`1q b subdiagpp1, . . . , pq
T

qpp`1qˆpp`1q b Q̄11

`β1p1q b diagpeqpp`1qˆpp`1q b supdiagpeqpp`1qˆpp`1q b Q̄12 ,

Q̃pp, pq1,2 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,1 ,S
phq

p,2 q

¸

b Q̄k

“ μ1ppeT
p q1ˆp b pep`1qpp`1qˆ1 b diagpeqpp`1qˆpp`1q b Q̄2

`β0ppeT
p q1ˆp b pep`1qpp`1qˆ1 b diagpeqpp`1qˆpp`1q b Q̄3 ,

Q̃pp, pq1,3 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,1 ,S
phq

p,3 q

¸

b Q̄k

“ μ1ppeT
p q1ˆp b diagpeqpp`1qˆp b pep`1qpp`1qˆ1 b Q̄2

`β0ppeT
p q1ˆp b diagpeqpp`1qˆp b pep`1qpp`1qˆ1 b Q̄3 ,

Q̃pp, pq2,1 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,2 ,S
phq

p,1 q

¸

b Q̄k

“ λ1pepqpˆ1 b peTp`1q1ˆpp`1q b diagpeqpp`1qˆpp`1q b Q̄1

`β1pepqpˆ1 b peTp`1q1ˆpp`1q b diagpeqpp`1qˆpp`1q b Q̄4 ,

Q̃pp, pq2,2 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,2 ,S
phq

p,2 q

¸

b Q̄k

“ λ1supdiagpeqpˆp b p1q b diagpeqpp`1qˆpp`1q b Q̄1

`μ1subdiagpp1, . . . , p ´ 1q
T

qpˆp b p1q b diagpeqpp`1qˆpp`1q b Q̄2

`β0subdiagpp1, . . . , p ´ 1q
T

qpˆp b p1q b diagpeqpp`1qˆpp`1q b Q̄3

`β1supdiagpeqpˆp b p1q b diagpeqpp`1qˆpp`1q b Q̄4

`λ3diagpeqpˆp b p1q b supdiagpeqpp`1qˆpp`1q b Q̄9

`μ3diagpeqpˆp b p1q b subdiagpp1, . . . , pq
T

qpp`1qˆpp`1q b Q̄10

`β0diagpeqpˆp b p1q b subdiagpp1, . . . , pq
T

qpp`1qˆpp`1q b Q̄11

`β1diagpeqpˆp b p1q b supdiagpeqpp`1qˆpp`1q b Q̄12 ,

Q̃pp, pq2,3 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,2 ,S
phq

p,3 q

¸

b Q̄k

“ μ2diagpeqpˆp b ppeTp q1ˆp b pep`1qpp`1qˆ1 b Q̄6

`β0diagpeqpˆp b ppeTp q1ˆp b pep`1qpp`1qˆ1 b Q̄7 ,
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Q̃pp, pq3,1 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,3 ,S
phq

p,1 q

¸

b Q̄k

“ λ1pepqpˆ1 b diagpeqpˆpp`1q b peTp`1q1ˆpp`1q b Q̄1

`β1pepqpˆ1 b diagpeqpˆpp`1q b peTp`1q1ˆpp`1q b Q̄4 ,

Q̃pp, pq3,2 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,3 ,S
phq

p,2 q

¸

b Q̄k

“ λ2diagpeqpˆp b pepqpˆ1 b peTp`1q1ˆpp`1q b Q̄5

`β1diagpeqpˆp b pepqpˆ1 b peTp`1q1ˆpp`1q b Q̄8 ,

Q̃pp, pq3,3 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,3 ,S
phq

p,3 q

¸

b Q̄k

“ λ1supdiagpeqpˆp b diagpeqpˆp b p1q b Q̄1

`μ1subdiagpp1, . . . , p ´ 1q
T

qpˆp b diagpeqpˆp b p1q b Q̄2

`β0subdiagpp1, . . . , p ´ 1q
T

qpˆp b diagpeqpˆp b p1q b Q̄3

`β1supdiagpeqpˆp b diagpeqpˆp b p1q b Q̄4

`λ2diagpeqpˆp b supdiagpeqpˆp b p1q b Q̄5

`μ2diagpeqpˆp b subdiagpp1, . . . , p ´ 1q
T

qpˆp b p1q b Q̄6

`β0diagpeqpˆp b subdiagpp1, . . . , p ´ 1q
T

qpˆp b p1q b Q̄7

`β1diagpeqpˆp b supdiagpeqpˆp b p1q b Q̄8 ,

and the nine blocks associated with Qpp, p ` 1q are given by

Q̃pp, p ` 1q1,1 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,1 ,S
phq

p`1,1q

¸

b Q̄k

“ λ1p1q b diagpeqpp`1qˆpp`2q b diagpeqpp`1qˆpp`2q b Q̄1

`β1p1q b diagpeqpp`1qˆpp`2q b diagpeqpp`1qˆpp`2q b Q̄4 ,

Q̃pp, p ` 1q1,2 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,1 ,S
phq

p`1,2q

¸

b Q̄k

“ λ2peTp`1q1ˆpp`1q b pep`1qpp`1qˆ1 b diagpeqpp`1qˆpp`2q b Q̄5

`β1peTp`1q1ˆpp`1q b pep`1qpp`1qˆ1 b diagpeqpp`1qˆpp`2q b Q̄8 ,

Q̃pp, p ` 1q1,3 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,1 ,S
phq

p`1,3q

¸

b Q̄k

“ λ3peTp`1q1ˆpp`1q b diagpeqpp`1qˆpp`1q b pep`1qpp`1qˆ1 b Q̄9

`β1peTp`1q1ˆpp`1q b diagpeqpp`1qˆpp`1q b pep`1qpp`1qˆ1 b Q̄12 ,
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Q̃pp, p ` 1q2,1 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,2 ,S
phq

p`1,1q

¸

b Q̄k “ 08ppp`1qˆ8pp`2q2 ,

Q̃pp, p ` 1q2,2 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,2 ,S
phq

p`1,2q

¸

b Q̄k

“ λ2diagpeqpˆpp`1q b p1q b diagpeqpp`1qˆpp`2q b Q̄5

`β1diagpeqpˆpp`1q b p1q b diagpeqpp`1qˆpp`2q b Q̄8 ,

Q̃pp, p ` 1q2,3 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,2 ,S
phq

p`1,3q

¸

b Q̄k

“ λ3diagpeqpˆpp`1q b peTp`1q1ˆpp`1q b pep`1qpp`1qˆ1 b Q̄9

`β1diagpeqpˆpp`1q b peTp`1q1ˆpp`1q b pep`1qpp`1qˆ1 b Q̄12 ,

Q̃pp, p ` 1q3,1 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,3 ,S
phq

p`1,1q

¸

b Q̄k “ 08p2ˆ8pp`2q2 ,

Q̃pp, p ` 1q3,2 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,3 ,S
phq

p`1,2q

¸

b Q̄k “ 08p2ˆ8pp`1qpp`2q ,

Q̃pp, p ` 1q3,3 “

12
ÿ

k“1

φk

˜

3
â

h“1

Q
phq

k pSphq

p,3 ,S
phq

p`1,3q

¸

b Q̄k

“ λ3diagpeqpˆpp`1q b diagpeqpˆpp`1q b p1q b Q̄9

`β1diagpeqpˆpp`1q b diagpeqpˆpp`1q b p1q b Q̄12 .

Now, let us investigate the suitability of the squared Euclidean norm, that
is, gpi1, i2, i3, i4, i5, i6q “

ř6
h“1 i

2
h, as the Lyapunov function for the set of

parameters λ1 “ λ2 “ λ3 “ 1.3, μ1 “ μ2 “ μ3 “ 0.8, β0 “ 1, and β1 “ 0.5.
The corresponding drift from (4.3) is given by

dpiq “ ´3.6i21 ` 2i21i4 ´ i1i4 ´ 2.6i1i6 ` 5.4i1 ´ 1.3i6 ` 1.3

´3.6i22 ` 2i22i5 ´ i2i5 ´ 2.6i2i4 ` 5.4i2 ´ 1.3i4 ` 1.3

´3.6i23 ` 2i23i6 ´ i3i6 ´ 2.6i3i5 ` 5.4i3 ´ 1.3i5 ` 1.3 .

Observe that dpi1, i2, i3, i4, i5, i6q is a nonlinear function of six variables. The
proof that C is finite follows from showing that there exists a finite superset
of C [255]. The global maximum drift is computed as χ “ 9.3 using the
HOM4PS2-2.0 package [215]. It is attained at state p1, 1, 1, 0, 0, 0q. With a
lower bound of 95% on the steady-state probability mass (i.e., ε “ 0.05), we
obtain γ “ 176.7. This yields pLow,Highq “ p0, 12q with np0, 12q “ 17,576
states.

In closing, we point out that various systems of stochastic chemical kinet-
ics other than the metabolite synthesis model with repressilator have been
modeled using Kronecker products. Gene expression [311], exclusive switch
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[219], toggle switch [150, 217], metabolite synthesis with two metabolites,
and one or two enzymes [297] are used as test cases in [18, 19, 107, 110].
Note that there are difficulties associated with analyzing systems of stochas-
tic chemical kinetics that would be modeled as HMMs and SANs. Normally
each countably infinite variable would be represented as a separate submodel
with truncated state space. The control unit could still be represented as
a grouped single submodel with finite state space. Hence, it is possible to
consider a model with pHI ` 1q submodels when HF ą 0 or HI submodels
when HF “ 0. With SANs [326], there would be K Kronecker product terms

of which those that have state dependent α
phq

k pihq values for h “ 1, . . . , H
would be represented with functional transitions in the corresponding fac-
tors. For instance, this implies all transition classes in Table 4.7. Among
these transition classes, the most difficult ones to work with would be those
that have dependencies on submodels associated with countably infinite vari-
ables (such as transition classes 2, 3, 6, 7, 10, 11 in Table 4.7). When executing
the vector–Kronecker product multiplication algorithm discussed in the next
chapter, such transition classes would require a different evaluation for each
value of the corresponding countably infinite variable, thereby complicat-
ing and slowing down the analysis process when the algorithm is employed.
As for HMMs, transition classes that have dependencies on submodels as-
sociated with countably infinite variables would require a separate term for
each state dependent value of the variable (and as many terms as there are
state dependent values for the finite variable). Hence, each functional tran-
sition would need to be transformed to multiple Kronecker product terms.
This not only would increase the number of Kronecker product terms by a
number proportional to the sum of the truncated state space sizes of the
countably infinite variables but would also make the corresponding factors
in the Kronecker product terms extremely sparse, having a single nonzero
entry. Therefore, any gain that would accrue from using a Kronecker-based
representation would start to diminish.

In the next subsection, we discuss a call center model from [18] in which
the interplay between finite variables and countably infinite variables is more
intricate than that of the class of models considered in this subsection. This
requires us to extend the form of the rates of transition classes in (4.4) so
that the dependency on the values of variables is more general. In order to
obtain a Kronecker representation for the nonzero blocks of Q, this extension
necessitates the computation of partitions of state spaces of finite variables
and subpartitions of state space partitions of countably infinite variables
in (4.6).
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4.4.2 A Call Center Model

Consider the parallel service system in Figure 4.2 known as the W-model
for call centers under the fixed queue ratio routing control policy proposed in
[171]. In this model, there are three types of customers, three types of infinite
queues, and two types of server pools. Customers of type 1 can be in queue 1
or server pool 1, customers of type 3 can be in queue 3 or server pool 2, and
customers of type 2 can be in queue 2 or either server pool. Since the server
pools do not differentiate between the two types of customers they serve,
i “ pi1, i2, i3, i4, i5q is a possible state representation, where i1, i2, and i3
denote the number of customers in queues 1, 2, and 3, respectively, whereas
i4 and i5 denote the number of busy servers in pools 1 and 2, respectively.
Then H “ 5, HI “ 3, and HF “ 2. Type h customers arrive to the model
according to a Poisson process with rate λh for h “ 1, 2, 3 and server pool h
has Sh servers with exponentially distributed service times each working at
a rate of μh for h “ 1, 2. Hence, the submodel state spaces are given by

S1 “ S2 “ S3 “ Zě0, S4 “ t0, . . . , S1u, and S5 “ t0, . . . , S2u.

Upon arrival, a type 1 customer joins pool 1 if it has idle servers (i.e.,
i4 ă S1); otherwise (i.e., i4 “ S1) it enters queue 1. Similarly, an arriving
type 3 customer joins pool 2 if it has idle servers (i.e., i5 ă S2); otherwise
(i.e., i5 “ S2) it enters queue 2. As for type 2 customers, upon arrival the
customer joins the server pool with largest idleness imbalance if both pools
have idle servers (i.e., i4 ă S1, i5 ă S2q; otherwise (i.e., i4 ă S1, i5 “ S2 or
i4 “ S1, i5 ă S2) it joins the pool which has an idle server. Idleness imbalance
of a server pool is a function of the number of idle servers in that pool, the
total number of idle servers, and the idleness imbalance ratio corresponding
to the server pool. Letting the idleness imbalance ratios of server pools 1
and 2 be denoted by ω4 and ω5, their idleness imbalances are obtained as
pS1 ´ i4q{pS1 ` S2 ´ i4 ´ i5q ´ ω4 and pS2 ´ i5q{pS1 ` S2 ´ i4 ´ i5q ´ ω5,
respectively. If both pools of servers are busy (i.e., i4 “ S1, i5 “ S2), an
arriving type 2 customer enters queue 2. Upon departure of a customer from
a server pool, head of the queue with largest queueing imbalance among
the queues feeding the pool joins it. The queueing imbalance of a queue is a
function of the number of customers in that queue, total number of customers
in all queues, and the queueing imbalance ratio corresponding to the queue.
Letting the queueing imbalance ratios of queues 1, 2, and 3 be denoted by ω1,
ω2, and ω3, their queueing imbalances are obtained as i1{pi1 ` i2 ` i3q ´ ω1,
i2{pi1`i2`i3q´ω2, and i3{pi1`i2`i3q´ω3, respectively. The transition classes
of this model are given in Table 4.8 [18]. Note that K “ 19, S1, S2 P Zą0,
λ1, λ2, λ3, μ1, μ2 P Rą0, and ω “ pω1, ω2, ω3, ω4, ω5q P R

1ˆ5
ą0 .

Observe that the transition classes of the call center model do not satisfy
the separability condition of transition rates in (4.4). In fact, they are similar
in form to functional transitions of SANs. Such transition rate functions can
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Fig. 4.2 Call center W–model with three types of customers and five submodels

pose a computational efficiency problem as mentioned before. However, due
to the block tridiagonal nonzero structure of Q, it is possible to employ a
matrix analytic solution method in which each nonzero block is processed
once and thereby circumvent this problem [18, 19]. We return to this subject
in Chapter 7.

When the separability condition in (4.4) is relaxed, transition matrices

Q
phq

k P R
|Sphq

|ˆ|Sphq
|

ě0 for h “ 1, . . . , H and k “ 1, . . . ,K are given entrywise as

Q
phq

k pih, jhq “

"

1 if jh “ ih ` v
pkq

h

0 otherwise
for ih, jh P Sphq .

Partitions Rp of reachable state space R and partitions Sphq

p,l of submodel

state spaces Sphq for l, h “ 1, . . . , HI and p P Zě0 are still defined as in (4.5)
and (4.6) with

Sphq

p,l “ Sphq for h “ HI ` 1, . . . , H, l “ 1, . . . , HI
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Table 4.8 Transition classes of W–model for call centers

k αkpiq vpkq

1 λ1 1i4“S1
eT
1

2 λ1 1i4ăS1
eT
4

3 λ2 1i4“S1
1i5“S2

eT
2

4 λ2 1i4ăS1
1i5“S2

eT
4

5 λ2 1i4“S1
1i5ăS2

eT
5

6 λ2 1i4ăS1
1i5ăS2

1pS1´i4q´pS2´i5qěpω4´ω5qpS1`S2´i4´i5q eT
4

7 λ2 1i4ăS1
1i5ăS2

1pS1´i4q´pS2´i5qăpω4´ω5qpS1`S2´i4´i5q eT
5

8 λ3 1i5“S2
eT
3

9 λ3 1i5ăS2
eT
5

10 μ1 i4 1i1“0 1i2“0 ´eT
4

11 μ1 i4 1i1ą0 1i2“0 ´eT
1

12 μ1 i4 1i1“0 1i2ą0 ´eT
2

13 μ1 i4 1i1ą0 1i2ą0 1pi1´i2qěpω1´ω2qpi1`i2`i3q ´eT
1

14 μ1 i4 1i1ą0 1i2ą0 1pi1´i2qăpω1´ω2qpi1`i2`i3q ´eT
2

15 μ2 i5 1i2“0 1i3“0 ´eT
5

16 μ2 i5 1i2ą0 1i3“0 ´eT
2

17 μ2 i5 1i2“0 1i3ą0 ´eT
3

18 μ2 i5 1i2ą0 1i3ą0 1pi2´i3qěpω2´ω3qpω1`ω2`ω3q ´eT
2

19 μ2 i5 1i2ą0 1i3ą0 1pi2´i3qăpω2´ω3qpω1`ω2`ω3q ´eT
3

for submodel state spaces corresponding to finite variables. Then Rp,l for
l “ 1, . . . , HI satisfies

Rp,l “

#

i P Rp | pi1, . . . , iHq P

H
ą

h“1

Sphq

p,l

+

,

so that Rp “
ŤHI

p“1 Rp,l and Rp,l X Rp,m “ H for l ‰ m.
For the call center W-model, state space partitions are obtained from (4.6)

and the above additional definition for finite state variables as

Sp1q

0,1 “ Sp2q

0,1 “ Sp3q

0,1 “ t0u, Sp4q

0,1 “ t0, . . . , S1u, Sp5q

0,1 “ t0, . . . , S2u,

Sp1q

p,1 “ tpu, Sp2q

p,1 “ Sp3q

p,1 “ t0, . . . , pu, Sp4q

p,1 “ t0, . . . , S1u,

Sp5q

p,1 “ t0, . . . , S2u,

Sp1q

p,2 “ t0, . . . , p ´ 1u, Sp2q

p,2 “ tpu, Sp3q

p,2 “ t0, . . . , pu, Sp4q

p,2 “ t0, . . . , S1u,

Sp5q

p,2 “ t0, . . . , S2u,

Sp1q

p,3 “ Sp2q

p,3 “ t0, . . . , p ´ 1u, Sp3q

p,3 “ tpu, Sp4q

p,3 “ t0, . . . , S1u,

Sp5q

p,3 “ t0, . . . , S2u for p ą 0.

Note that partition Rp,l consists only of reachable states and is a subset of
the Cartesian product of state space partitions of all variables since certain
values of finite variables may yield unreachable states. Therefore, we next

define subpartitions of Rp,l and Sphq

p,l to eliminate any unreachable states due
to finite variables.
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Subpartition x of Rp,l denoted by Rp,l,x for x “ 1, . . . , Xp,l is given by

Rp,l,x “

#

i P Rp,l | pi1, . . . , iHq P

H
ą

h“1

Sphq

p,l,xh

+

,

so that Rp,l “
ŤXp,l

x“1 Rp,l,x, Rp,l,x X Rp,l,y “ H for x ‰ y, where Sphq

p,l,xh
is

subpartition xh of Sphq

p,l for h “ 1, . . . , H, l “ 1, . . . , HI , and xh “ 1, . . . , X
phq

p,l .
Without loss of generality, reachable state space subpartitions Rp,l,x are as-
sumed to be ordered within Rp,l lexicographically according to the corre-
sponding subpartition indices, px1, . . . , xHq.

Note that subpartition Rp,l,x consists only of reachable states and is a
subset of the Cartesian product of state space subpartitions of all variables
since certain values of finite variables may yield unreachable states. We re-

mark that the values of Xp,l and X
phq

p,l for h “ 1, . . . , H depend on the model.

Although Xp,l “
śH

h“1 X
phq

p,l is true for the metabolite synthesis model and
other models of systems of stochastic chemical kinetics considered in [107]

due to the fact that Xp,l “ 1 and X
phq

p,l “ 1 for h “ 1, . . . , H, it need not be
true in general.

In the W-model of call centers, a queue can be nonempty only if all servers
capable of serving that queue are busy. Thus, i4 “ S1 if i1 ą 0 or i2 ą 0, and

i5 “ S2 if i2 ą 0 or i3 ą 0. Due to these dependencies, subpartitions of Sphq

0,1

for h “ 1, . . . , H and R0,1 can be written as

X
p1q

0,1 “ X
p2q

0,1 “ X
p3q

0,1 “ X
p4q

0,1 “ X
p5q

0,1 “ 1,

Sp1q

0,1,1 “ Sp2q

0,1,1 “ Sp3q

0,1,1 “ t0u,

Sp4q

0,1,1 “ t0, . . . , S1u, Sp5q

0,1,1 “ t0, . . . , S2u,

so that X0,1 “ 1 and

R0,1,1 “ t0u ˆ t0u ˆ t0u ˆ t0, . . . , S1u ˆ t0, . . . , S2u.

Subpartitions of Sphq

p,1 for h “ 1, . . . , H and Rp,1 for p ą 0 can be written as

X
p1q

p,1 “ 1, X
p2q

p,1 “ X
p3q

p,1 “ X
p4q

p,1 “ X
p5q

p,1 “ 2,

Sp1q

p,1,1 “ tpu, Sp2q

p,1,1 “ t0u, Sp2q

p,1,2 “ t1, . . . , pu,

Sp3q

p,1,1 “ t0u, Sp3q

p,1,2 “ t1, . . . , pu, Sp4q

p,1,1 “ t0, . . . , S1 ´ 1u, Sp4q

p,1,2 “ tS1u,

Sp5q

p,1,1 “ t0, . . . , S2 ´ 1u, Sp5q

p,1,2 “ tS2u,
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so that Xp,1 “ 5 and

Rp,1,1 “ tpu ˆ t0u ˆ t0u ˆ tS1u ˆ t0, . . . , S2 ´ 1u,

Rp,1,2 “ tpu ˆ t0u ˆ t0u ˆ tS1u ˆ tS2u,

Rp,1,3 “ tpu ˆ t0u ˆ t1, . . . , pu ˆ tS1u ˆ tS2u,

Rp,1,4 “ tpu ˆ t1, . . . , pu ˆ t0u ˆ tS1u ˆ tS2u,

Rp,1,5 “ tpu ˆ t1, . . . , pu ˆ t1, . . . , pu ˆ tS1u ˆ tS2u.

Subpartitions of Sphq

p,2 for h “ 1, . . . , H and Rp,2 for p ą 0 can be written as

X
p1q

p,2 “ X
p2q

p,2 “ X
p3q

p,2 “ 1, X
p4q

p,2 “ X
p5q

p,2 “ 2,

Sp1q

p,2,1 “ t0, . . . , p ´ 1u, Sp2q

p,2,1 “ tpu, Sp3q

p,2,1 “ t0, . . . , pu,

Sp4q

p,2,1 “ t0, . . . , S1 ´ 1u, Sp4q

p,2,2 “ tS1u,

Sp5q

p,2,1 “ t0, . . . , S2 ´ 1u, Sp5q

p,2,2 “ tS2u,

so that Xp,2 “ 1 and

Rp,2,1 “ t0, . . . , p ´ 1u ˆ tpu ˆ t0, . . . , pu ˆ tS1u ˆ tS2u.

Subpartitions of Sphq

1,3 for h “ 1, . . . , H and R1,3 can be written as

X
p1q

1,3 “ X
p2q

1,3 “ X
p3q

1,3 “ X
p4q

1,3 “ 1, X
p5q

1,3 “ 2,

Sp1q

1,3,1 “ t0u, Sp2q

1,3,1 “ t0u, Sp3q

1,3,1 “ t1u,

Sp4q

1,3,1 “ t0, . . . , S1u, Sp5q

1,3,1 “ t0, . . . , S2 ´ 1u, Sp5q

1,3,2 “ tS2u,

so that X1,3 “ 1 and

R1,3,1 “ t0u ˆ t0u ˆ t1u ˆ t0, . . . , S1u ˆ tS2u.

Furthermore, subpartitions of Sphq

p,3 for h “ 1, . . . , H and Rp,3 for p ą 1 can
be written as

X
p1q

p,3 “ X
p2q

p,3 “ 2, X
p3q

p,3 “ 1, X
p4q

p,3 “ 2, X
p5q

p,3 “ 2,

Sp1q

p,3,1 “ t0u, Sp1q

p,3,2 “ t1, . . . , p ´ 1u, Sp2q

p,3,1 “ t0u, Sp2q

p,3,2 “ t1, . . . , p ´ 1u,

Sp3q

p,3,1 “ tpu, Sp4q

p,3,1 “ t0, . . . , S1 ´ 1u, Sp4q

p,3,2 “ tS1u,

Sp5q

p,3,1 “ t0, . . . , S2 ´ 1u, Sp5q

p,3,2 “ tS2u,
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so that Xp,3 “ 5 and

Rp,3,1 “ t0u ˆ t0u ˆ tpu ˆ t0, . . . , S1 ´ 1u ˆ tS2u,

Rp,3,2 “ t0u ˆ t0u ˆ tpu ˆ tS1u ˆ tS2u,

Rp,3,3 “ t0u ˆ t1, . . . , p ´ 1u ˆ tpu ˆ tS1u ˆ tS2u,

Rp,3,4 “ t1, . . . , p ´ 1u ˆ t0u ˆ tpu ˆ tS1u ˆ tS2u,

Rp,3,5 “ t1, . . . , p ´ 1u ˆ t1, . . . , p ´ 1u ˆ tpu ˆ tS1u ˆ tS2u.

Now, we generalize the Kronecker representation of nonzero blocks in Q
given in the previous subsection following the subpartitions of reachable state
space partitions Rp. The nonzero blocks Qp0, 0q, Qp0, 1q, Qp1, 0q, and Qpp, wq

for p ą 0, w “ p ´ 1, p, p ` 1 are, respectively, p1 ˆ 1q, p1 ˆ HIq, pHI ˆ 1),
and pHI ˆ HIq block matrices as in

Qp0, 0q “
`

Qp0, 0q1,1

˘

, Qp0, 1q “
`

Qp0, 1q1,1 . . . Qp0, 1q1,HI

˘

,

Qp1, 0q “

¨

˚

˝

Qp1, 0q1,1
...

Qp1, 0qHI ,1

˛

‹

‚
, Qpp, wq “

¨

˚

˝

Qpp, wq1,1 . . . Qpp, wq1,HI

...
. . .

...
Qpp, wqHI ,1 . . . Qpp, wqHI ,HI

˛

‹

‚
,

where Qpp, wql,m is an pXp,l ˆ Xw,mq block matrix given by

Qpp, wql,m “

¨

˚

˝

Qpp, wqpl,1q,pm,1q . . . Qpp, wqpl,1q,pm,Xw,mq

...
. . .

...
Qpp, wqpl,Xp,lq,pm,1q . . . Qpp, wqpl,Xp,lq,pm,Xw,mqq

˛

‹

‚
.

Furthermore, blocks of Qpp, wql,m can be written in terms of transition rates
and transition matrices as in

Qpp, wqpl,xq,pm,yq “

"

Q̃pp, wqpl,xq,pm,yq ´ Q̃Dpp, wqpl,xq,pm,yq if l “ m, p “ w

Q̃pp, wqpl,xq,pm,yq otherwise

for p P Zě0, w “ p ´ 1, p, p ` 1, l,m “ 1, . . . , HI , and x “ 1, . . . , Xp,l,
y “ 1, . . . , Xw,m, where

Q̃Dpp, wqpl,xq,pm,yq “ diag

˜

p`1
ÿ

w1“p´1

HI
ÿ

l1“1

Xw,m
ÿ

y1“1

Q̃pp, w1
qpl,xq,pl1,y1qe

¸

,

Q̃pp, wqpl,xq,pm,yq “
řK

k“1 αkpiq
´

ÂH
h“1 Q

phq

k pSphq

p,l,xh
,Sphq

w,m,yhq

¯

,

αkpiq is the transition rate computed at state i P
ŚH

h“1 S
phq

p,l,xh
and

Q
phq

k pSphq

p,l,xh
,Sphq

w,m,yhq denotes the submatrix of Q
phq

k incident on row indices

in Sphq

p,l,xh
and column indices in Sphq

w,m,yh . The first summation in diag should
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have a starting index of 0 rather than ´1 for the equation of the blocks
Qp0, 0qp1,1q,p1,1q, . . . , Qp0, 0qp1,X0,1q,p1,X0,1q, and the second summation in diag
should have an ending index of 1 rather than HI for the equation of the
blocks Qp1, 1qp1,1q,p1,1q, . . . , Qp1, 1qpHI ,X1,HI

q,pHI ,X1,HI
q when w1 “ p ´ 1.

The nonzero blocks are generally very sparse and have nonzero entries
that may depend on the reachable state space partition index. Clearly, the
ordering of states within a reachable state space partition is only fixed up to
a permutation. Observe that transitions are possible only between adjacent
reachable state space partitions and the number of states within each parti-
tion increases with increasing index number. The latter is due to the increase
in the number of different possibilities for the HI countably infinite variables
according to the reachable state space partition index definition in (4.5).

For call center models, Lyapunov functions should be carefully chosen by
considering the transitions of the models since dependencies among their
variables are more intricate. We let λ1 “ 15, λ2 “ 16, λ3 “ 13, μ1 “ 5,
μ2 “ 7, S1 “ 9, S2 “ 6, and ω “ p0.3, 0.8, 0.4, 0.7, 0.5q be the parameters.
Then the drift from (4.3) is given by

dpiq “ p2pi1 ` i2 ` i4 ´ 4.6q ` 1q p15 ` 16 1i5“6 ` 16 1i4ă9 1i5ă6 13i5ě2i4q

` p2pi2 ` i3 ` i5 ´ 3q ` 1q p13 ` 16 1i4“9 ` 16 1i4ă9 1i5ă6 13i5ă2i4q

` p´2pi1 ` i2 ` i4 ´ 4.6q ` 1q

p5i4 ` 7i5 1i2ą0p1i3“0 ` 1i3ą0 1´2i1`3i2´7i3ě0qq

` p´2pi2 ` i3 ` i5 ´ 3q ` 1q

p7i5 ` 5i4 1i2ą0p1i1“0 ` 1i1ą0 13i1´i2`i3ă0qq

for the Lyapunov function

gpiq “ pi1 ` i2 ` i4 ´ r1q
2

` pi2 ` i3 ` i5 ´ r2q
2,

where r1 “ p2λ1 ` λ2q{p2μ1q and r2 “ p2λ3 ` λ2q{p2μ2q are used to obtain a
tighter upper bound. Note that r1 is an approximation to the average number
of busy servers in pool 1. Hence, pi1 ` i2 ` i4 ´ r1q is an approximation to
the total number of customers in queues 1 and 2 plus the average number
of idle servers in pool 1 if i4 “ S1. It is an approximation to the number of
customers in queue 2 plus the difference between the number of busy servers
and the average number of busy servers in pool 1 if i4 ă S1 (i.e., i1 “ 0). The
explanation for r2 is similar. In this way, we have a Lyapunov function that
depends on the real parameters of the model. Since the drift for this model is
not a nonlinear function of the countably infinite variables, there is no need to
resort to the HOM4PS2-2.0 package. The global maximum drift is computed
as χ “ 82. For ε “ 0.1, we obtain γ “ 738 which yields pLow,Highq “ p0, 26q

with np0, 26q “ 20,142 states.
We remark that various parallel service models other than the W-model for

call centers have been represented using Kronecker products. The N-model
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with two types of customers under the threshold routing policy proposed in
[23] and the V-model with 2, 3, and 4 types of customers under the static
priority control policy proposed in [170] are used as test cases in [18, 19, 110,
111]. In the next subsection, we consider another problem from queueing
systems which also has countably infinite state variables. However, it will be
represented using Kronecker products differently compared to the models in
this and the previous subsections.

4.4.3 A Retrial Queueing Model

Retrial queues arise in various application areas such as call centers [262, 282],
computer networks, and telecommunication systems [10, 79, 207]. They are
models of systems in which a customer upon arrival finding all servers busy
joins an infinite retrial queue (or orbit) and retries to receive service later
[8, 9, 11, 131, 159, 198]. In Kendall notation [196], we consider the multiclass
MAP/PH/S queueing model in Figure 4.3 with acyclic PH [34] retrials that is
the subject of [112]. This is an S-server retrial queueing model which admits
C classes of customers following Markovian arrival processes (MAPs) [250],
phase–type (PH) [251] distributed service times, and acyclic PH distributed
retrial times. In this model, when an arriving customer of class c finds all
servers busy, it joins orbit c and retries to capture a server after a random
amount of time for c “ 1, . . . , C. If a retrial customer in orbit c attempts to
receive service when there are no idle servers, it is blocked and retries later.

The retrial queueing model in [112] has S ě 1 homogeneous servers and
C ě 1 customer classes. Since the retrial queue represented by the orbits is
infinite, we associate the first HI submodels with the C orbits. Submodels
HI`1 throughHI`C are associated with MAPs of customers, and submodels
HI ` C ` 1 through HI ` HF are associated with PH service distributions
of customers (see Figure 4.3). The HF submodels associated with MAPs and
PH services have finite state spaces. Hence, we again have H “ HI ` HF .
Now, we explain the distributions associated with interarrival times, service
times, and retrial times in more detail.

A MAP may be viewed as an irreducible CTMC with some marked transi-
tions characterizing arrivals as in [71]. In this interpretation, a MAP with
representation (B0,B1) of order m P Zą0 is an irreducible CTMC with
state space t0, . . . ,m ´ 1u and irreducible generator matrix B0 ` B1, where
B0 P R

mˆm is a nonsingular matrix with negative diagonal and nonnegative
off-diagonal entries and B1 P R

mˆm
ě0 . The MAP representation describes a

stochastic process in which B0 represents transitions among states without
an arrival, whereas B1 represents transitions among states upon one customer
arrival. States of the MAP are named phases.

A PH distribution with representation (β,T ) of order m P Zą0 is the
distribution of time until absorption in state m of a CTMC with state space
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Fig. 4.3 Multiclass MAP/PH/S queueing model with acyclic PH retrials

t0, . . . ,mu, generator matrix

T̂ “

ˆ

T T0

0 0

˙

P R
pm`1qˆpm`1q,

and initial probability vector pβ, 1 ´ βeq P R
1ˆpm`1q

ě0 , where β P R
1ˆm
ě0 and

T P R
mˆm is a nonsingular matrix with negative diagonal and nonnegative

off-diagonal entries. States t0, . . . ,m ´ 1u in T̂ are transient and said to be
phases of the PH distribution. We assume that the process starts in one
of the transient states after each absorption, that is, βe “ 1. Since T̂ is
the generator matrix of a CTMC, we have T0 “ ´Te P R

mˆ1
ě0 . Accurate

computation of moments of time until absorption for the PH distribution is
addressed in [99, 102].

A PH distribution with representation (ξ,U) is called acyclic if its states
can be ordered in such a way that U is an upper-triangular matrix. Acyclicity
of the PH distribution for retrials is needed in the sufficiency proof for the
existence of steady-state with the particular Lyapunov function chosen [112].
Acyclic PH distributions are a subclass of PH distributions but are considered
to be as powerful as them since both classes are dense in the set of nonnegative
distributions (see, for instance, [71]). Therefore the model we consider is quite
general.

Customers of class c arrive according to a MAP with representation

pB
pcq

0 , B
pcq

1 q of order m
pcq
arv. Since B

pcq

0 ` B
pcq

1 is by definition irreducible, its

steady-state vector denoted by θpcq P R
1ˆmpcq

arv
ě0 exists and satisfies

θpcq
pB

pcq

0 ` B
pcq

1 q “ 0, θpcqe “ 1.
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Steady-state vector θpcq of the MAP is used in defining the average arrival
rate of class c customers as

λpcq
“ θpcqB

pcq

1 e.

The service time of class c customers follows a PH distribution with repre-

sentation pβpcq, T pcqq of order m
pcq
srv and T

pcq

0 “ ´T pcqe. The average service
rate of class c customers is given by

μpcq
“

1

βpcqp´T pcqq´1e
.

The retrial time of class c customers follows an acyclic PH distribution

with representation pξpcq, U pcqq of order m
pcq

rtl and U
pcq

0 “ ´U pcqe. Without
loss of generality, we assume that U pcq is upper-triangular. The average retrial
rate of class c customers is given by

δpcq
“

1

ξpcqp´U pcqq´1e
.

We remark that ´T pcq and ´U pcq are nonsingular M-matrices [242] by
their definitions. Therefore, in the denominators of the expressions for aver-
age service rate and average retrial rate of class c customers, we have that
p´T pcqq´1 ě 0 and p´U pcqq´1 ě 0. Each of these nonnegative matrices gets
pre-multiplied with a probability vector and post-multiplied with a vector of
1’s. By using arguments based on the nonzero structure of the inverse of a
nonsymmetric matrix in [155], it is possible to show that the denominators
in both expressions are positive, and so are the rates.

Example 6. Now let us consider a C-class MAP/PH/S queueing model with
acyclic PH retrials that has the parameters

C “ S “ 2, mp1q
arv “ mp1q

srv “ m
p1q

rtl “ 2, and mp2q
arv “ mp2q

srv “ m
p2q

rtl “ 1

in which the vectors and matrices describing the arrivals, services, and retrials
are given by

B
p1q

0 “

ˆ

´1 1
0 ´1

˙

, B
p1q

1 “

ˆ

0 0
1 0

˙

, B
p2q

0 “ p´0.4q , B
p2q

1 “ p0.4q ,

βp1q
“ p0.5, 0.5q , T p1q

“

ˆ

´1.25 0.25
0.25 ´3.25

˙

, βp2q
“ p1q , T p2q

“ p´0.5q ,

ξp1q
“ p1, 0q, U p1q

“

ˆ

´1 1
0 ´1

˙

, ξp2q
“ p1q, U p2q

“ p´0.5q .

Observe that class 1 customers arrive with a rate of 1 only if their MAP is
in phase 1, and when the arrival takes place, the MAP makes a transition to
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phase 0 as indicated by entry B
p1q

1 p1, 0q. On the other hand, the inter-arrival
times of class 2 customers are exponentially distributed with rate 0.4 since

their MAP has a single phase for which B
p2q

1 p0, 0q “ 0.4. We remark that
U p1q and U p2q are both upper-triangular, thereby corresponding to transition
matrices associated with acyclic PH distributions.

The vectors T
pcq

0 and U
pcq

0 of PH services and acyclic PH retrials are ob-
tained for c “ 1, 2 as

T
p1q

0 “

ˆ

1
3

˙

, T
p2q

0 “ p0.5q , U
p1q

0 “

ˆ

0
1

˙

, U
p2q

0 “ p0.5q .

Since, θp1q “ p0.5, 0.5q and θp2q “ p1q, we have λp1q “ λp2q “ 0.5 for the
average arrival rates of class 1 and class 2 customers. Regarding the average
service and average retrial rates, we obtain μp1q “ 1.6, μp2q “ 0.5, and δp1q “

δp2q “ 0.5.

Modeling and analysis of a system with arrival and service processes hav-
ing more than one exponentially distributed phase is relatively complicated
due to having to represent phases of arrival and service processes. Therefore,
a single-class MAP/PH/S queue with PH retrials is studied in [75] using
simulation. Modeling and analysis of a multiclass retrial queue in which all
customers can join an orbit is even more difficult since its joint queue length
process is a random walk on the multidimensional integer lattice [11]. In our
model, arrival and service processes are multidimensional due to multiple
classes of customers, but finite along the corresponding dimensions since the
number of arrival phases, number of servers and service phases are finite.
Hence, they can be handled systematically within the Kronecker setting as
before. However, when the queueing system has PH retrials with a finite num-
ber of phases for each class of customers but a potentially infinite capacity in
each orbit, the state vector which needs to represent the number of customers
in all retrial phases becomes countably infinite along the dimensions associ-
ated with retrials. This results in a random walk on the multidimensional
integer lattice with one or more countably infinite dimensions, and therefore,
necessitates truncation of the countably infinite state space for analysis pur-
poses. We remark that this was also the case for the metabolite synthesis and
call center models considered in the previous two subsections.

A single-class MAP/PH/S queue with PH retrials is modeled in [75] using
a multidimensional CTMC. We model its C-class counterpart similarly and
represent the states of the CTMC with the multidimensional vector

i “ pi1, . . . , iHI`HF
q P R with HI “ mrtl and HF “ marv ` msrv,

where HI is the number of dimensions with countably infinite state spaces,
HF is the number of dimensions with finite state spaces, R is the reachable
state space, mrtl, marv, msrv are, respectively, the number of dimensions
allocated to retrials, arrivals, and services. Here,
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mrtl “

C
ÿ

c“1

m
pcq

rtl , marv “ C, msrv “

C
ÿ

c“1

mpcq
srv.

That is, we represent the number of customers of a particular class at a given
phase in retrial or service as a separate dimension, whereas each class of
customers is assigned a separate dimension for arrivals. Note that another
representation could be to keep the phase of each server in a single but
different dimension of the state. However, as discussed in [197, 273], this
alternative approach results in a larger reachable state spaceR, and therefore,
is not preferred.

For the particular ordering of submodels considered, the multidimensional
CTMC has the reachable state space

R “ Srtl ˆ Sarv ˆ Rsrv,

where

Srtl “ Z
mrtl
ě0 , Sarv “

C
ą

c“1

!

0, . . . ,mpcq
arv ´ 1

)

, Ssrv “

msrv
ą

o“1

t0, . . . , Su ,

and Rsrv “ tpimrtl`marv`1, . . . , iHq P Ssrv | pimrtl`marv`1, . . . , iHqe ď Su .

The upper bound, S, on the sum of the values of state variables associated
with services, that is, the total number of busy servers, ensures that Ssrv and
Rsrv are finite. In fact,

|Rsrv| “

S
ÿ

s“0

ps ` msrv ´ 1q!

s! pmsrv ´ 1q!

since |Rsrv| is the total number of ways in which s busy servers can be
distributed among msrv different phases for s “ 0, . . . , S.

Now, let us introduce the base indices of state variables associated with
retrial, arrival, and service dimensions as

b
pcq

rtl “ 1 `

c´1
ÿ

c1“1

m
pc1

q

rtl , barv “ 1 ` mrtl, bpcq
srv “ 1 ` mrtl ` marv `

c´1
ÿ

c1“1

mpc1
q

srv

for customers of class c. We also let spiq denote the number of busy servers
in state i, so that

spiq “

C
ÿ

c“1

mpcq
srv´1
ÿ

o“0

i
b

pcq
srv`o

.

We will be using base indices and number of busy servers in specifying tran-
sitions and providing suitable Lyapunov functions for the model.
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Example 6. (cntd.) The chosen parameters yield

mrtl “ 3, marv “ 2, and msrv “ 3,

which suggest HI “ 3, HF “ 5, H “ 8, that is, an 8-dimensional model with
reachable state space R “ Srtl ˆ Sarv ˆ Rsrv with

Srtl “ Z
3
ě0, Sarv “ t0, 1u ˆ t0u , and

Rsrv “ tp0, 0, 0q, p0, 0, 1q, p0, 0, 2q, p0, 1, 0q, p0, 1, 1q, p0, 2, 0q,

p1, 0, 0q, p1, 0, 1q, p1, 1, 0q, p2, 0, 0qu .

For instance, state p0, 0, 1q in Rsrv corresponds to one busy server in phase
0 serving one class 2 customer, while state p0, 2, 0q corresponds to two busy
servers both in phase 1 serving a total of two class 1 customers. Furthermore,

b
p1q

rtl “ 1, b
p2q

rtl “ 3, barv “ 4, bp1q
srv “ 6, bp2q

srv “ 8,

and we have
spiq “ i6 ` i7 ` i8.

In Table 4.9, we provide the seven transition classes of the multiclass
MAP/PH/S queueing model with acyclic PH retrials for class c customers,
c “ 1, . . . , C. For C classes, there are altogether K “ 7C transition classes.
For each class of customers, the first three transitions are due to MAP ar-
rivals. The first one corresponds to a local transition in submodel barv ` c´1

with a phase change from ibarv`c´1 to o at rate B
pcq

0 pibarv`c´1, oq. The second
one corresponds to a synchronizing transition involving submodels barv`c´1

and b
pcq

rtl ` o1 with an arrival in phase ibarv`c´1 and making a transition to

phase o at rate B
pcq

1 pibarv`c´1, oq, joining orbit c and starting the acyclic PH

Table 4.9 Transition classes of the multiclass MAP/PH/S queueing model with acyclic
PH retrials for class c customers, c “ 1, . . . , C

k αkpiq vpkq

7pc ´ 1q ` 1 B
pcq

0 pibarv`c´1, oq 1o‰ibarv`c´1
ppo ´ ibarv`c´1qebarv`c´1qT

7pc ´ 1q ` 2 B
pcq

1 pibarv`c´1, oq ξpcqpo1q 1spiq“S ppo ´ ibarv`c´1qebarv`c´1 ` e
b

pcq
rtl

`o1 qT

7pc ´ 1q ` 3 B
pcq

1 pibarv`c´1, oq βpcqpo1q 1spiqăS ppo ´ ibarv`c´1qebarv`c´1 ` e
b

pcq
srv`o1 qT

7pc ´ 1q ` 4 i
b

pcq
rtl

`o
Upcqpo, o1q 1o‰o1 pe

b
pcq
rtl

`o1 ´ e
b

pcq
rtl

`o
qT

7pc ´ 1q ` 5 i
b

pcq
rtl

`o
U

pcq

0 poq βpcqpo1q 1spiqăS pe
b

pcq
srv`o1 ´ e

b
pcq
rtl

`o
qT

7pc ´ 1q ` 6 i
b

pcq
srv`o

T pcqpo, o1q 1o‰o1 pe
b

pcq
srv`o1 ´ e

b
pcq
srv`o

qT

7pc ´ 1q ` 7 i
b

pcq
srv`o

T
pcq

0 poq ´eT

b
pcq
srv`o
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retrial with probability ξpcqpo1q in phase o1 since all servers are busy. The third
one corresponds to a synchronizing transition involving submodels barv`c´1

and b
pcq
srv ` o1 with an arrival in phase ibarv`c´1 and making a transition to

phase o at rate B
pcq

1 pibarv`c´1, oq, joining the pool of servers and starting the
PH service with probability βpcqpo1q in phase o1 since there is an idle server.
Note that the particular dimension associated with MAP arrivals experiences
a phase displacement of o ´ ibarv`c´1 in the first three transitions, and this
manifests itself in state change vector vpkq.

The fourth and fifth transitions in Table 4.9 are due to acyclic PH retrials.

The fourth one represents a local transition in submodel b
pcq

rtl ` o with a
phase change from o to o1 at rate U pcqpo, o1q and the fifth one represents a

synchronizing transition involving submodels b
pcq

rtl ` o and b
pcq
srv ` o1 with a

successful retrial in phase o at rate U
pcq

0 poq, joining the pool of servers and
starting the PH service with probability βpcqpo1q in phase o1 since there is
an idle server. The last two transitions are due to PH services. The sixth
transition class corresponds to a local transition in submodel b

pcq
srv ` o with a

phase change from o to o1 at rate T pcqpo, o1q and the seventh one corresponds

to a local transition in submodel b
pcq
srv ` o with a service completion in phase

o at rate T
pcq

0 poq. Note that in the fourth through seventh transitions, each
transition rate αkpiq incorporates the number of customers present along the
particular dimension as a multiplier, which is i

b
pcq
rtl`o

in acyclic PH retrials

and i
b

pcq
srv`o

in PH services.

In the following, we show that the condition

C
ÿ

c“1

λpcq

μpcq
ă S (4.7)

is necessary and sufficient for the existence of steady-state in the C-class
MAP/PH/S queueing model with acyclic PH retrials [112]. The result is ob-
tained from criteria based on drifts by choosing suitable Lyapunov functions.
The inequality in (4.7) is intuitive since it implies that the sum of the traffic
loads λpcq{μpcq of customers across C classes should be less than the number
of servers, S, for the system to be ergodic and behave stably. Observe that
this is equivalent to requiring the traffic intensity

ρ “
1

S

C
ÿ

c“1

λpcq

μpcq

to be less than 1. The Lyapunov function used in the sufficiency proof will
again enable us to truncate the countably infinite reachable state space R
so that it includes a given steady-state probability mass. But, different than
the models considered in the previous two subsections, this time we will also
have a necessity proof.
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When arrival, service, or retrial processes have phases, Lyapunov functions
need to be chosen with care so that phase information is accounted for. Other-
wise, a necessary and sufficient stability condition may not be found. In order
to arrive at condition (4.7), Lyapunov functions that work for simple models
will be extended with additional terms to cope with the complexities of the

particular model. To that end, we first introduce two vectors, upcq P R
mpcq

arvˆ1

and wpcq P R
mpcq

srvˆ1
ě0 , whose entries will be used in the additional terms (see

Lemmas 1 and 2 in [112]) of the Lyapunov functions.

There exists a unique vector upcq P R
mpcq

arvˆ1 for MAP with representation

pB
pcq

0 , B
pcq

1 q and λpcq “ θpcqB
pcq

1 e such that

pB
pcq

0 ` B
pcq

1 qupcq
“ λpcqe ´ B

pcq

1 e and upcqe “ 1.

The proof follows by showing that a reduced linear system of equations whose

coefficient matrix is obtained from the irreducible generator matrix B
pcq

0 `B
pcq

1

is consistent [112]. Entries of upcq will be used in additional terms to obtain
the stability condition based on average arrival rate λpcq instead of phase-

dependent arrival rates in B
pcq

1 .

There exists a unique vector wpcq P R
mpcq

srvˆ1
ě0 for PH service distribution

with representation pβpcq, T pcqq and μpcq “ pβpcqp´T pcqq´1eq´1 such that

wpcq
“ μpcq

p´T pcq
q

´1e and βpcqwpcq
“ 1.

The existence and nonnegativity of wpcq follow from the fact that ´T pcq is
a nonsingular M-matrix [242]. The normalization condition is a result of the
definition of μpcq [112]. Entries of wpcq will be used in additional terms to
obtain the stability condition based on average service rate μpcq instead of

phase-dependent service rates in T
pcq

0 “ ´T pcqe.

Example 6. (cntd.) In our model, traffic intensity ρ “ 0.65625 and vectors
upcq and wpcq for c “ 1, 2 are computed as

up1q
“

ˆ

0.25
0.75

˙

, up2q
“ p1q , wp1q

“

ˆ

1.4
0.6

˙

, wp2q
“ p1q .

Now, we are in a position to state the proof of necessity for condition (4.7)
which is based on showing that the model is non-ergodic when the condition
does not hold [112]. To that end, we employ the next result which appears
in [13, 132] for DTMCs. This result is used before to prove a non-ergodicity
condition for an S-server retrial queue with exponentially distributed interar-
rival, service, and retrial times in [131] where a Lyapunov function gpiq linear
in the countably infinite variables is utilized.

A CTMC with generator matrix Q is non-ergodic if there exists two con-
stants τ, σ P R and a Lyapunov function g : R Ñ R such that
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(i)
ř

jPR P pi, jq|gpjq ´ gpiq| ď τ for i P R and

(ii)
ř

jPR P pi, jq pgpjq ´ gpiqq ě 0 for i P D,

where the sets D “ ti P R | gpiq ą σu and RzD are nonempty, and the tran-

sition probability matrix P P R
|R|ˆ|R|

ě0 associated with the embedded DTMC
corresponding to the CTMC is given entrywise as

P pi, jq “

"

Qpi, jq{|Qpi, iq| if j ‰ i
0 otherwise

for i, j P R.

We also consider a linear Lyapunov function in the countably infinite vari-
ables as our starting point, but add constant terms including entries of vectors
upcq and wpcq as in

gncspiq “

C
ÿ

c“1

1

μpcq

¨

˝

m
pcq
rtl´1
ÿ

o“0

i
b

pcq
rtl`o

˛

‚

`

C
ÿ

c“1

upcqpibarv`c´1q

μpcq
`

C
ÿ

c“1

1

μpcq

¨

˝

mpcq
srv´1
ÿ

o“0

wpcq
poq i

b
pcq
srv`o

˛

‚.

The first term of gncspiq is linear, and its second and third terms are added
to obtain a phase-independent condition. Note that each of the three terms is
a summation in the form of C other terms, each corresponding to a different
customer class.

That gncspiq satisfies condition (i) above follows from the fact that P
has a finite number of nonzero values in row i, each nonzero P pi, jq is up-
per bounded by 1, and |gncspjq ´ gncspiq| is finite, thereby ensuring that
ř

jPR P pi, jq|gncspjq ´ gncspiq| is finite for i P R. The proof that condi-

tion (ii) above is satisfied by
řC

c“1 λ
pcq{μpcq ě S, implying non-ergodicity,

in other words, necessity of (4.7) for ergodicity, follows from substituting
Qpi, jq{|Qpi, iq| in place of P pi, jq in the left-hand side of the inequality in
condition (ii) and obtaining

1

|Qpi, iq|

ÿ

jPR
Qpi, jqpgncspjq ´ gncspiqq “

1

|Qpi, iq|

˜

C
ÿ

c“1

λpcq

μpcq
´ spiq

¸

after a lengthy sequence of algebraic operations. The particular value

σ “ max
iPR

˜

C
ÿ

c“1

upcqpibarv`c´1q

μpcq

¸

ensures the nonemptiness of D and RzD.
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Having discussed the necessity of (4.7) for ergodicity through Lyapunov
function gncspiq, we can move to the construction of Lyapunov function gsfcpiq
for sufficiency of the same condition using the result in [314] introduced at
the beginning of this section.

For the sufficiency proof of condition (4.7) for ergodicity, we choose a
quadratic Lyapunov function gpiq similar to those in [19] to obtain a drift
function dpiq with infinite variables having negative coefficients for i P R. If
customers in the orbits attempt to receive service in all PH retrial phases,
adding terms with variables each corresponding to the number of customers in
a service phase yields the condition in (4.7). However, if the PH retrial process
of a class c customer includes a phase, say o, in which no attempt is made to

receive service, that is, U
pcq

0 poq “ 0, then the coefficient of the corresponding
variable, i

b
pcq
rtl`o

, is positive in dpiq at states with no busy servers. Therefore,

the value of gpiq should also depend on the number of customers in retrial
phases. This can be realized by adding terms chosen with care so that dpiq at
states with no busy servers become negative for a sufficiently large number of
customers in the orbits. With this understanding, we introduce vector wpcq

whose entries will be used in the additional term of the Lyapunov function
due to PH retrials of class c customers (see Lemma 3 in [112]).

For acyclic PH retrial distribution with representation pξpcq, U pcqq, let

Û pcq
“ U pcq

` diagpU
pcq

0 q

and ηpcq P R
m

pcq
rtlˆ1 be given entrywise as

ηpcq
poq “

"

´S{μpcq if o P Ipcq

0 otherwise
for o “ 0, . . . ,m

pcq

rtl ´ 1,

where
Ipcq

“ to P t0, . . . ,m
pcq

rtl ´ 1u | U
pcq

0 poq “ 0u.

Then there exists ypcq P R
m

pcq
rtlˆ1 such that

Û pcqypcq
“ ηpcq.

Note that all entries in row o of Û pcq are zero if and only if Û pcqpo, oq “ 0.
The proof of this result appears in [112] and follows from the row echelon

form of upper-triangular Û pcq obtained by interchanging all zero rows with
nonzero rows below them [242], its rank, and that Û pcqypcq “ ηpcq is consistent
with infinitely many solutions [242]. Note that negative entries of ηpcq could
take a smaller value than ´S{μpcq that may lead to a smaller truncated
state space, but this value is chosen in order to bound coefficients of infinite
variables from above by

řC
c“1 λ

pcq{μpcq´S in dpiq for all states. Since there are

infinitely many solutions to Û pcqypcq “ ηpcq, we choose to set ypcqpoq to 1 if row
o of Û pcq is zero. The entries of vector ηpcq contribute to coefficients of infinite
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variables associated with retrials of class c customers in dpiq. Therefore, its
entries need to be nonpositive with at least one negative entry when Ipcq ‰ H.
We remark that the existence of at least one negative entry in ηpcq requires

U
pcq

0 to have at least one zero entry.

Example 6. (cont’d) In our model,

Ip1q
“ t0u, ηp1q

“

ˆ

´1.25
0

˙

and Ip2q
“ H, ηp2q

“ p0q .

Hence,

yp1q
“

ˆ

2.25
1

˙

and yp2q
“ p1q .

If PH retrials are allowed to be non-acyclic, Û pcqypcq “ ηpcq may very well
be inconsistent since Û pcq is a singular M-matrix [30]. For instance, consider

U pcq
“

ˆ

´2 1
2 ´2

˙

for which Û pcq
“

ˆ

´1 1
2 ´2

˙

and ηpcq
“

ˆ

0

´S{μpcq

˙

.

In this case, vector ypcq does not exist since the linear system is inconsistent.
The particular Lyapunov function used [112] is given by

gsfcpiq “

C
ÿ

c“1

C
ÿ

c1“1

1

2μpcqμpc1q

¨

˝

m
pcq
rtl´1
ÿ

o“0

i
b

pcq
rtl`o

˛

‚

¨

˚

˝

m
pc1q
rtl ´1
ÿ

o1“0

i
b

pc1q
rtl `o1

˛

‹

‚

`

C
ÿ

c“1

˜

C
ÿ

c1“1

upc1
qpibarv`c1´1q

μpcqμpc1q

¸

¨

˝

m
pcq
rtl´1
ÿ

o“0

i
b

pcq
rtl`o

˛

‚

`

C
ÿ

c“1

¨

˝

C
ÿ

c1“1

1

μpcqμpc1q

¨

˝

mpc1q
srv ´1
ÿ

o“0

wpc1
q
poq i

b
pc1q
srv `o

˛

‚

˛

‚

¨

˝

m
pcq
rtl´1
ÿ

o1“0

i
b

pcq
rtl`o1

˛

‚

`

C
ÿ

c“1

m
pcq
rtl´1
ÿ

o“0

ypcq
poq i

b
pcq
rtl`o

`

C
ÿ

c“1

ζpcq
piq

¨

˝

mpcq
srv´1
ÿ

o“0

i
b

pcq
srv`o

˛

‚,

where for c “ 1, . . . , C

ζpcq
piq “ min

oRIpcq

´

zpcq
po, iq ´ S{pU

pcq

0 poqμpcq
q

¯

and

zpcq
po, iq “ ypcq

poq `
1

2μpcqμpcq
`

C
ÿ

c1“1

upc1
qpibarv`c1´1q

μpcqμpc1q

`

C
ÿ

c1“1

1

μpcqμpc1q

¨

˝

mpc1q
srv ´1
ÿ

o1“0

wpc1
q
po1

q i
b

pc1q
srv `o1

˛

‚ for o R Ipcq.
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The first term of gsfcpiq is quadratic, and its second and third terms are
added to obtain a phase-independent condition. The last two terms of gsfcpiq
are added due to PH retrials. Note that, ζpcqpiq is well defined since Ipcq ‰

t0, . . . ,m
pcq

rtl ´ 1u for c “ 1, . . . , C. Then gsfcpiq is a quadratic polynomial in
which the coefficients of all infinite variables are finite and the coefficient of
each quadratic term i

b
pcq
rtl`o

i
b

pc1q
rtl `o1 is positive for o “ 0, . . . ,m

pcq

rtl ´ 1, o1 “

0, . . . ,m
pc1

q

rtl ´1, and c, c1 “ 1, . . . , C. Hence, gsfcpiq is lower bounded, implying
a finite set ti P R | gsfcpiq ď ru for all r ă 8 in condition (iii) at the beginning
of this section. Now, we are in a position to provide the drift from (4.3).

For spiq “ S, the drift is [112]

dpiq “

C
ÿ

c“1

1

μpcq

˜

C
ÿ

c1“1

λpc1
q

μpc1q
´ S

¸

¨

˝

m
pcq
rtl´1
ÿ

o“0

i
b

pcq
rtl`o

˛

‚´

C
ÿ

c“1

S

μpcq

˜

ÿ

oPIpcq

i
b

pcq
rtl`o

¸

`

C
ÿ

c“1

mpcq
arv´1
ÿ

o“0

B
pcq

1 pibarv`c´1, oq

»

—

—

–

upcqpoq

μpcqμpcq
`

C
ÿ

c1
“1

c1
‰c

upc1
qpibarv`c1´1q

μpcqμpc1q

fi

ffi

ffi

fl

`

C
ÿ

c“1

mpcq
arv´1
ÿ

o“0

B
pcq

1 pibarv`c´1, oq

»

–

C
ÿ

c1“1

1

μpcqμpc1q

¨

˝

mpc1q
srv ´1
ÿ

o1“0

wpc1
q
po1

q i
b

pc1q
srv `o1

˛

‚

fi

fl

`

C
ÿ

c“1

mpcq
arv´1
ÿ

o“0

B
pcq

1 pibarv`c´1, oq

»

–

¨

˝

m
pcq
rtl´1
ÿ

o1“0

ξpcq
po1

qypcq
po1

q

˛

‚`
1

2μpcqμpcq

fi

fl

´

C
ÿ

c“1

ζpcq
piq

¨

˝

mpcq
srv´1
ÿ

o“0

i
b

pcq
srv`o

T
pcq

0 poq

˛

‚;

and for spiq ă S, the drift is [112]

dpiq “

C
ÿ

c“1

1

μpcq

¨

˝

C
ÿ

c1“1

λpc1
q

μpc1q
´

C
ÿ

c1“1

mpc1q
srv ´1
ÿ

o“0

i
b

pc1q
srv `o

˛

‚

¨

˝

m
pcq
rtl´1
ÿ

o1“0

i
b

pcq
rtl`o1

˛

‚

´

C
ÿ

c“1

S

μpcq

˜

ÿ

oPIpcq

i
b

pcq
rtl`o

¸

`

C
ÿ

c“1

ÿ

oRIpcq

i
b

pcq
rtl`o

U
pcq

0 poq

´

´zpcq
po, iq ` ζpcq

piq
¯

`

C
ÿ

c“1

ζpcq
piq

¨

˝

mpcq
arv´1
ÿ

o“0

B
pcq

1 pibarv`c´1, oq ´

mpcq
srv´1
ÿ

o1“0

i
b

pcq
srv`o1 T

pcq

0 po1
q

˛

‚.
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When
řC

c“1pλpcq{μpcqq ă S, coefficients of all infinite variables are negative;
hence, dpiq ă 8 for all i P C Ă R and condition (ii) at the beginning of this
section holds. Besides, C “ ti P R | dpiq ą ´γu is finite for any arbitrarily
chosen γ ą 0. Therefore, condition (i) at the beginning of this section also
holds.

Example 6. (cont’d) In our model,

ζp1q
piq “ zp1q

p1, iq ´ 1.25,

zp1q
p1, iq “ 2.4453125 ` 0.390625up1q

pi4q

` 0.546875i6 ` 0.234375i7 ` 1.25i8,

ζp2q
piq “ zp2q

p0, iq ´ 8,

zp2q
p0, iq “ 7 ` 1.25up1q

pi4q ` 1.75i6 ` 0.75i7 ` 4i8.

The Lyapunov function is given by

gpiq “ 0.1953125pi1 ` i2q
2

` 1.25pi1 ` i2qi3 ` 2i23 ` 2.25i1 ` i2 ` i3

`

´

0.390625up1q
pi4q ` 1.25up2q

pi5q

¯

pi1 ` i2q

` p0.546875i6 ` 0.234375i7 ` 1.25i8q pi1 ` i2q

`

´

1.25up1q
pi4q ` 4up2q

pi5q ` 1.75i6 ` 0.75i7 ` 4i8

¯

i3

` ζp1q
piqpi6 ` i7q ` ζp2q

piqi8.

The drift for spiq “ 2 is

dpiq “ ´ 1.6796875i1 ´ 0.4296875i2 ´ 1.375i3

` 1i4“1 p0.546875i6 ` 0.234375i7 ` 1.25i8 ` 3.79296875q

` 0.5up1q
pi4q ` 0.7i6 ` 0.3i7 ` 1.6i8 ` 2.8

` ζp1q
piq p´i6 ´ 3i7q ` ζp2q

piq p´0.5i8q ,

and the drift for spiq ă 2 is

dpxq “ p´0.6875 ´ i6 ´ i7 ´ i8q p0.625i1 ` 0.625i2 ` 2i3q

` ζp1q
piq p1i4“1 ´ i6 ´ 3i7q ` ζp2q

piq p0.4 ´ 0.5i8q .

The global maximum drift is χ “ 4.9359375 and attained when i6 ` i8 “ 2
at state p0, 0, 0, 1, 0, 1, 0, 1q. With a lower bound of 90% on the steady-state
probability mass (i.e., ε “ 0.1), we compute γ “ 44.4234 and |C| “ 189,558.

Now, we provide the truncated multidimensional CTMC and a Kronecker
representation of its generator matrix. A block tridiagonal generator matrix
as in the previous two models of this section will not be used since the order
of diagonal blocks increases considerably with a large number of dimensions
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as the partition index increases, and such a block partitioning does not yield
itself to a scalable steady-state solver.

Traditionally, truncation of a countably infinite reachable state space for
exponentially distributed retrial times is achieved by imposing an upper
bound, say M , on the total number of customers in the orbit [131, 301].
This implies blocking of an arriving customer if the total number of retrial
customers is already M . We consider a similar truncated model in which the
size of retrial phase o of orbit c is limited by

N pcq
o “ maxti

b
pcq
rtl`o

| i P Cu ` 1 for o “ 0, . . . ,m
pcq

rtl ´ 1 and c “ 1, . . . , C,

and the truncated reachable state space is given by

R̄ “ S̄rtl ˆ Sarv ˆ Rsrv with S̄rtl “

C
ą

c“1

¨

˝

m
pcq
rtl´1
ą

o“0

t0, . . . , N pcq
o ´ 1u

˛

‚.

We consider the multidimensional CTMC with finite state space R̄ and
truncated generator matrix Q̄ given entrywise as

Q̄pi, jq “

"

Qpi, jq if i ‰ j
´

ř

j1‰i Q̄pi, j1q otherwise
for i, j P R̄.

The truncated generator matrix Q̄ cannot be represented as sums of Kro-
necker products since R̄ is not a Cartesian product of subsets of submodel
state spaces [43]. Therefore, we first let N “ |Rsrv| and define the function
ϕ : Rsrv Ñ t0, . . . , N ´1u that determines the lexicographical order of states
in Rsrv as

ϕpi
b

p1q
srv

, . . . , iHq “ iH `

msrv´1
ÿ

c“1

iHI`marv`c´1
ÿ

o“0

S´rpcq
´o

ÿ

s“0

ps ` msrv ´ 1 ´ cq!

s! pmsrv ´ 1 ´ cq!
,

where rpcq “
řc´1

c1“1 ibp1q
srv`c1´1

for pi
b

p1q
srv

, . . . , iHq P Rsrv. This function is one-

to-one and onto. Hence, its inverse ϕ´1 : t0, . . . , N ´ 1u Ñ Rsrv is well
defined. Second, we let

R̄p “ S̄rtl ˆ Sarv ˆ tϕ´1
ppqu for p “ 0, . . . , N ´ 1.

Then R̄0, . . . , R̄N´1 is a partitioning of R̄ such that

N´1
ď

p“0

R̄p “ R̄ and R̄p X R̄w “ H for p ‰ w and p, w “ 0, . . . , N ´ 1.

Finally, we have the block partitioning of the truncated generator matrix in
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Q̄ “

¨

˚

˝

Q̄p0, 0q . . . Q̄p0, N ´ 1q

...
. . .

...
Q̄pN ´ 1, 0q . . . Q̄pN ´ 1, N ´ 1q

˛

‹

‚

where block Q̄pp, wq includes transition rates from states in R̄p to states in
R̄w.

Example 6. (cont’d) In our model, the particular set C yields

N
p1q

0 “ 83, N
p1q

1 “ 89, and N
p2q

0 “ 28.

Since we already have |Sarv| “ 2 and |Rsrv| “ 10, the size of the truncated
reachable state space becomes

|R̄| “ N
p1q

0 ˆ N
p1q

1 ˆ N
p2q

0 ˆ |Sarv| ˆ |Rsrv| “ 4,136,720.

Furthermore, N “ 10 and ϕp0, 0, 0q “ 0, ϕp0, 0, 1q “ 1, ϕp0, 0, 2q “ 2,
ϕp0, 1, 0q “ 3, ϕp0, 1, 1q “ 4, ϕp0, 2, 0q “ 5, ϕp1, 0, 0q “ 6, ϕp1, 0, 1q “ 7,
ϕp1, 1, 0q “ 8, and ϕp2, 0, 0q “ 9. Hence, Q̄ is a p10 ˆ 10q block matrix con-
sisting of N2 “ 100 blocks. Note that many states which do not appear in C
are included in R̄ with this truncation approach at the expense of blocks of
the same order.

Now, we are in a position to represent blocks Q̄pp, wq of truncated gen-
erator matrix Q̄ as sums of Kronecker products of smaller matrices. Since
retrial phases are distributed to different dimensions and there are multiple
customer classes in this model, it is more convenient to represent the blocks
as sums of Kronecker products of auxiliary matrices which will also be given
as Kronecker products of the smaller transition matrices.

To that end, we first define auxiliary matrices W
B̃

pcq
0

,W
B

pcq
1

P R
|Sarv |ˆ|Sarv|

ě0

with transition rates among submodels corresponding to phases of MAPs for
c “ 1, . . . , C as

W
B̃

pcq
0

“

˜

c´1
â

c1“1

I
m

pc1q
arv

¸

b B̃
pcq

0 b

˜

C
â

c1“c`1

I
m

pc1q
arv

¸

,

W
B

pcq
1

“

˜

c´1
â

c1“1

I
m

pc1q
arv

¸

b B
pcq

1 b

˜

C
â

c1“c`1

I
m

pc1q
arv

¸

,

where matrix B̃
pcq

0 P R
mpcq

arvˆmpcq
arv

ě0 consists of the off-diagonal entries of B
pcq

0 .
Note that W

B̃
pcq
0

and W
B

pcq
1

are formed of marv “ C Kronecker products and

are associated with submodels HI `1 through HI `marv. In particular, W
B̃

pcq
0

represents phase changes without arrival in MAP of class c customers and is
related to transition 7pc´1q`1 in Table 4.9, whereas W

B
pcq
1

represents phase

changes with arrival in MAP of class c customers and is part of transitions
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7pc ´ 1q ` 2 and 7pc ´ 1q ` 3 depending on whether all servers are busy or
not. The function 1o‰ibarv`c´1

in transition 7pc ´ 1q ` 1 is handled by using

B̃
pcq

0 instead of B
pcq

0 in the definition of W
B̃

pcq
0

.

Second, we introduce

E´
l “ subdiagpp1, . . . , l ´ 1q

T
qlˆl and E`

l “ supdiagpeqlˆl for l P Zą0.

associated with acyclic PH retrial processes so that E´
l P R

lˆl
ě0 stores the

multipliers of phase changes and successful completions, while E`
l P R

lˆl
ě0

stores the multipliers of starts. These two matrices represent, respectively, a
decrease and an increase by one in the number of customers of the particular
retrial phase, with the rate of decrease being multiplied by the number of
customers in that phase.

We define auxiliary matrices A
pcq
o , R

pcq

o,o1 , Z
pcq
o P R

|S̄rtl|ˆ|S̄rtl|

ě0 with transi-
tion rates among submodels corresponding to phases of acyclic PH retrial
processes using E´

l and E`
l as

Apcq
o “

C
â

c1“1

m
pc1q
rtl ´1
â

o1“0

A
pc,c1

q

o,o1 , R
pcq

o,o1 “

C
â

c1“1

m
pc1q
rtl ´1
â

o2“0

R
pc,c1

q

o,o1,o2 , and

Zpcq
o “

C
â

c1“1

m
pc1q
rtl ´1
â

o1“0

Z
pc,c1

q

o,o1 ,

where

A
pc,c1

q

o,o1 “

$

&

%

E`

N
pc1q
o1

if c1 “ c and o1 “ o

I
N

pc1q
o1

otherwise

R
pc,c1

q

o,o1,o2 “

$

’

’

&

’

’

%

E´

N
pc1q
o2

if c1 “ c and o2 “ o

E`

N
pc1q
o2

if c1 “ c and o2 “ o1

I
N

pc1q
o2

otherwise

,

Z
pc,c1

q

o,o1 “

$

&

%

E´

N
pc1q
o1

if c1 “ c and o1 “ o

I
N

pc1q
o1

otherwise

for o, o1, o2 “ 0, . . . ,m
pc1

q

rtl ´ 1, o ‰ o1, and c, c1 “ 1, . . . , C. Note that A
pcq
o ,

R
pcq

o,o1 , and Z
pcq
o consist of mrtl Kronecker products and are associated with

submodels 1 through HI . In particular, A
pcq
o represents MAP arrivals that

join orbit c to start the acyclic PH retrial process in phase o due to having
all servers busy and is related to transition 7pc ´ 1q ` 2 in Table 4.9. Matrix
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R
pcq

o,o1 represents the acyclic PH retrial phase change of a class c customer

from o to o1 and is related to transition 7pc ´ 1q ` 4, and Z
pcq
o represents the

successful retrial process completion of a class c customer in phase o and is
related to transition 7pc ´ 1q ` 5.

Now, we are ready to provide a Kronecker representation for the nonzero
blocks of Q̄. For p, w “ 0, . . . , N ´ 1, block pp, wq of Q̄ can be expressed as

Q̄pp, wq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

řC
c“1pI|S̄rtl| b W

B̃
pcq
0

q

`1s̄ppq“S

řC
c“1

řm
pcq
rtl´1

o1“0 ξpcqpo1qpA
pcq

o1 b W
B

pcq
1

q

`
řC

c“1

řm
pcq
rtl´1

o“0

řm
pcq
rtl´1

o1
“0

o1
‰o

U pcqpo, o1qpR
pcq

o,o1 b I|Sarv|q

`Q̄Dpp, pq

if vsrvpp, wq “ 0

1s̄ppqăS βpcqpo1qpI|S̄rtl| b W
B

pcq
1

q

`1s̄ppqăS

řm
pcq
rtl´1

o“0 U
pcq

0 poqβpcqpo1qpZ
pcq
o b I|Sarv|q

if vsrvpp, wq “ eT
b̄

pcq
srv`o1

i
psrvq

b̄
pcq
srv`o

ppq T pcqpo, o1qpI|S̄rtl| b I|Sarv|q

if pvsrvpp, wq “ pe
b̄

pcq
srv`o1 ´ e

b̄
pcq
srv`o

qT

and o ‰ o1q

i
psrvq

b̄
pcq
srv`o

ppq T
pcq

0 poqpI|S̄rtl| b I|Sarv|q

if vsrvpp, wq “ ´eT
b̄

pcq
srv`o

0
otherwise

,

where

vsrvpp, wq “ ϕ´1
pwq ´ ϕ´1

ppq, ipsrvq
ppq “ ϕ´1

ppq, s̄ppq “ ipsrvq
ppqe,

b̄pcq
srv “ 1 `

c´1
ÿ

c1“1

mpc1
q

srv , |S̄rtl| “

C
ź

c“1

m
pcq
rtl´1
ź

o“0

N pcq
o , and |Sarv| “

C
ź

c“1

mpcq
arv.

Here, vsrvpp, wq P Z
1ˆmsrv is the state change vector restricted to the dif-

ference between states ϕ´1pwq P Rsrv and ϕ´1ppq P Rsrv. Vector i
psrvqppq P

Z
1ˆmsrv is that part of i P Z

1ˆH corresponding to the submodels associated
with the PH service process in truncated reachable state space partition R̄p.

The integers s̄ppq and b̄
pcq
srv are, respectively, the number of busy servers and

the index in ipsrvqppq assigned to phase 0 of the PH service process of class c
customers.
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When vsrvpp, wq “ 0, it must be that p “ w; hence, transitions 7pc´1q`1,
7pc ´ 1q ` 2, and 7pc ´ 1q ` 4 with c “ 1, . . . , C in Table 4.9 contribute to
the diagonal blocks Q̄pp, pq for p “ 0, . . . , N ´ 1. There is no change in the
allocation of servers to customers in this case. As before, we leave out the def-
inition of Q̄Dpp, pq. On the other hand, when vsrvpp, wq “ eT

b̄
pcq
srv`o1 , number

of servers associated with phase o1 of the PH service process of class c cus-
tomers increases by one. This can only happen in an off-diagonal block and
transitions 7pc´1q`3 and 7pc´1q`5 contribute to those off-diagonal blocks.
When vsrvpp, wq “ pe

b̄
pcq
srv`o1 ´e

b̄
pcq
srv`o

qT and o ‰ o1, number of servers associ-

ated with phase o1 of the PH service process of class c customers increases by
one and number of servers associated with phase o of the PH service process
of class c customers decreases by one. Although the total number of servers
allocated to class c customers do not change, this can only take place in an
off-diagonal block. Transition 7pc ´ 1q ` 6 contributes to those off-diagonal
blocks. Finally, when vsrvpp, wq “ ´eT

b̄
pcq
srv`o

, number of servers associated

with phase o of the PH service process of class c customers decreases by one.
This can only happen in an off-diagonal block and transition 7pc ´ 1q ` 7
contributes to those off-diagonal blocks.

We remark that all possible transitions in Table 4.9 are covered with the
given Kronecker representation. For the last two transitions, the number of

class c customers in the particular phase of the PH service process, i
psrvq

b̄
pcq
srv`o

ppq,

appears explicitly as a multiplier in the expressions for Q̄pp, wq. Observe that
the number of class c customers in the particular phase of the acyclic PH

retrial process appears implicitly in the expressions involving R
pcq

o,o1 and Z
pcq
o

through E´
l .

Example 6. (cont’d) In our model, the auxiliary matrices are given by

B̃
p1q

0 “

ˆ

0 1
0 0

˙

, B̃
p2q

0 “ p0q, W
B̃

p1q
0

“ B̃
p1q

0 b I1, W
B̃

p2q
0

“ I2 b B̃
p2q

0 ,

W
B

p1q
1

“ B
p1q

1 b I1, W
B

p2q
1

“ I2 b B
p2q

1 , A
p1q

0 “ E`

N
p1q
0

b I
N

p1q
1

b I
N

p2q
0

,

A
p1q

1 “ I
N

p1q
0

b E`

N
p1q
1

b I
N

p2q
0

, A
p2q

0 “ I
N

p1q
0

b I
N

p1q
1

b E`

N
p2q
0

,

R
p1q

0,1 “ E´

N
p1q
0

b E`

N
p1q
1

b I
N

p2q
0

, R
p1q

1,0 “ E`

N
p1q
0

b E´

N
p1q
1

b I
N

p2q
0

,

Z
p1q

0 “ E´

N
p1q
0

b I
N

p1q
1

b I
N

p2q
0

, Z
p1q

1 “ I
N

p1q
0

b E´

N
p1q
1

b I
N

p2q
0

,

Z
p2q

0 “ I
N

p1q
0

b I
N

p1q
1

b E´

N
p2q
0

.
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In our model, |S̄rtl| “ 206,836 and |Sarv| “ 2, and the 62 nonzero blocks
of Q̄ are given by

Q̄p0, 0q ´ Q̄Dp0, 0q “ Q̄p1, 1q ´ Q̄Dp1, 1q “ Q̄p3, 3q ´ Q̄Dp3, 3q

“ Q̄p6, 6q ´ Q̄Dp6, 6q

“ I|S̄rtl| b W
B̃

p1q
0

` R
p1q

0,1 b I|Sarv|,

Q̄p2, 2q ´ Q̄Dp2, 2q “ Q̄p4, 4q ´ Q̄Dp4, 4q “ Q̄p5, 5q ´ Q̄Dp5, 5q

“ Q̄p7, 7q ´ Q̄Dp7, 7q “ Q̄p8, 8q ´ Q̄Dp8, 8q

“ Q̄p9, 9q ´ Q̄Dp9, 9q

“ I|S̄rtl| b W
B̃

p1q
0

` A
p1q

0 b W
p1q

B1
` A

p2q

0 b W
p2q

B1

`R
p1q

0,1 b I|Sarv|,

Q̄p0, 1q “ Q̄p1, 2q “ Q̄p3, 4q “ Q̄p6, 7q

“ I|S̄rtl| b W
B

p2q
1

` 0.5Z
p2q

0 b I|Sarv|,

Q̄p0, 3q “ Q̄p1, 4q “ Q̄p3, 5q “ Q̄p6, 8q “ Q̄p0, 6q “ Q̄p1, 7q

“ Q̄p3, 8q “ Q̄p6, 9q

“ 0.5I|S̄rtl| b W
B

p1q
1

` 0.5Z
p1q

1 b I|Sarv|,

Q̄p3, 0q “ Q̄p4, 1q “ Q̄p8, 6q “ 3I|S̄rtl|¨|Sarv|,

Q̄p6, 3q “ Q̄p7, 4q “ Q̄p8, 5q “ 0.25I|S̄rtl|¨|Sarv|,

Q̄p6, 0q “ Q̄p7, 1q “ Q̄p8, 3q “ Q̄p2, 1q “ I|S̄rtl|¨|Sarv|,

Q̄p1, 0q “ Q̄p4, 3q “ Q̄p7, 6q “ Q̄p9, 8q “ 0.5I|S̄rtl|¨|Sarv|,

Q̄p5, 3q “ 6I|S̄rtl|¨|Sarv|,

Q̄p9, 6q “ 2I|S̄rtl|¨|Sarv|.



Chapter 5

Vector–Kronecker Product
Multiplication

The basic operation underlying iterative analysis of multidimensional CTMCs
with generator matrices represented using sums of Kronecker products is
vector–Kronecker product multiplication. Therein, the challenge is to perform
this operation in as little of memory and as fast as possible.

When the matrices in the Kronecker product terms of (2.10) are relatively
dense, vector–Kronecker product multiplication can be performed efficiently
by the shuffle algorithm [136, 137, 263, 265, 266] discussed in the next sec-
tion. When the matrices are relatively sparse, it may be more efficient to
obtain nonzero entries of the generator matrix in Kronecker form on the fly
and multiply them with corresponding entries of the vector [57]. Recently,
[110] has suggested a modification to the shuffle algorithm that multiplies
relevant entries of the vector with submatrices of matrices in which zero rows
and columns are omitted. This approach, which is discussed after the shuffle
algorithm, avoids unnecessary flops that evaluate to zero during the course
of the multiplication and has the possibility to reduce the amount of memory
used. In many cases, the modified shuffle algorithm yields a smaller number
of flops than the shuffle algorithm and the algorithm that generates nonzeros
on the fly, sometimes with a minimum number of flops and as little of memory
possible. Unfortunately, the memory allocated for vectors in all mentioned
algorithms is still proportional to the size of the reachable state space, and
this size increases rapidly with the number of dimensions.

Recent advances in storing and analyzing dense multidimensional data
numerically [177] have hinted at an approach to cope with the problem per-
taining to the size of vectors used in vector–Kronecker product multiplication.
In this approach, essential information in the data of a full vector with size
equal to that of the reachable state space is represented compactly using a
special kind of Kronecker decomposition, so that, rather than the full vector,
a number of shorter vectors are employed with a user controllable accuracy

© Springer Nature Switzerland AG 2018
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on the decomposition [163, 178, 202, 203, 256]. Preliminary results regarding
the merits of this approach for representing vectors compactly will also be
discussed in this chapter following [64].

5.1 Shuffle Algorithm

The shuffle algorithm is at the heart of all iterative solvers for sums of Kro-
necker products. It shows how one can multiply a vector with a Kronecker
product of H matrices. Here we present its left-oriented version suitable for
systems of equations arising from MCs, where the matrices are rectangular
matrices Xphq P R

nhˆmh for h “ 1, . . . , H.
The algorithm is based on the identity

H
â

h“1

Xphq
“

H
ź

h“1

pIm1
b ¨ ¨ ¨ b Imh´1

b Xphq
b Inh`1

b ¨ ¨ ¨ b InH
q ,

or more simply [136]

H
â

h“1

Xphq
“

H
ź

h“1

pIśh´1
l“1 ml

b Xphq
b IśH

l“h`1 nl
q. (5.1)

In order to see this, let us first write for the Kronecker product of two
factors as in

Xp1q
b Xp2q

“ pXp1qIm1
q b pIn2

Xp2q
q “ pXp1q

b In2
qpIm1

b Xp2q
q ,

where the first equality follows from Xp1q “ Xp1qIm1
since Xp1q P R

n1ˆm1

and Xp2q “ In2
Xp2q since Xp2q P R

n2ˆm2 and the second equality follows
from the compatibility of Kronecker product with matrix multiplication.

Let us now introduce a third factor to the Kronecker product as in

Xp1q
b Xp2q

b Xp3q
“ pXp1q

b In2
qpIm1

b Xp2q
q b pIn3

Xp3q
q

“ pXp1q
b In2

b In3
qpIm1

b Xp2q
b Xp3q

q ,

where the first equality follows from the result for the Kronecker product of
two factors and Xp3q “ In3

Xp3q since Xp3q P R
n3ˆm3 and the second equality

follows from the compatibility of Kronecker product with matrix multiplica-
tion. Observe that this last equality can be rewritten as

Xp1q b Xp2q b Xp3q “

pXp1q b In2
b In3

q
`

pIm1
Im1

q b ppXp2q b In3
qpIm2

b Xp3qqq
˘

.

using the fact that Im1
“ Im1

Im1
and the above result for the Kronecker

product of two factors with Xp2q and Xp3q. Then, again using the compati-
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bility of Kronecker product with matrix multiplication, we obtain

Xp1q
bXp2q

bXp3q
“ pXp1q

b In2
b In3

qpIm1
bXp2q

b In3
qpIm1

b Im2
bXp3q

q.

Clearly, this approach can be generalized to more than three factors.
Now, note that Iśh´1

l“1 ml
b Xphq b IśH

l“h`1 nl
is an identity matrix when

Xphq “ Inh
. Hence, the left multiplication of x P R

1ˆ
śH

h“1 nh with
ÂH

h“1 X
phq

can be accomplished as in Algorithm 4 yielding a product vector whose length
ranges from m1

śH
h“2 nh to

śH
h“1 mh during the course of the multiplication.

Algorithm 4. Shuffle algorithm for x1 :“ x
ÂH

h“1 X
phq.

Copy x to x1; ileft :“ 1; iright :“
śH

h“2 nh; nH`1 :“ 1;
For h :“ 1 to H,

If Xphq ‰ Inh
,

basei :“ 0; basej :“ 0;
For il :“ 0, . . . , ileft ´ 1,

For ir :“ 0, . . . , iright ´ 1,
indexi :“ basei ` ir;
For row :“ 0, . . . , nh ´ 1,

zprowq :“ x1pindexiq; indexi :“ indexi ` iright;

z1 :“ zXphq;
indexj :“ basej ` ir;
For col :“ 0, . . . ,mh ´ 1,

x2pindexjq :“ z1pcolq; indexj :“ indexj ` iright;
basei :“ basei ` nhiright; basej :“ basej ` mhiright;

Copy x2 to x1;
ileft :“ ileftmh; iright :“ iright{nh`1.

In (5.1), the hth matrix of the form Iśh´1
l“1 ml

bXphq bIśH
l“h`1 nl

is a rectan-

gular p
śh´1

l“1 ml

śH
l“h nl ˆ

śh
l“1 ml

śH
l“h`1 nlq block diagonal matrix having

śh´1
l“1 ml diagonal blocks each of size pnh

śH
l“h`1 nl ˆ mh

śH
l“h`1 nlq. Fur-

thermore, each of the blocks along the diagonal is an pnh ˆmhq block matrix,

where each subblock is a diagonal matrix of order
śH

l“h`1 nl with a particular

entry of Xphq appearing along its diagonal
śH

l“h`1 nl many times. It is this
feature that is used in devising the vector–Kronecker product multiplication
algorithm (cf. [136]).

Observe that the only flops in Algorithm 4 take place in the vector–matrix
multiplication z1 “ zXphq when Xphq ‰ Inh

, which can be simplified further
if Xphq “ Inhˆmh

. The rest of the operations are index manipulation and
copying of vector entries. For a fixed value of h, the multiplication is exe-
cuted

śh´1
l“1 ml

śH
l“h`1 nl times and the cost of a vector multiplication with

ÂH
h“1 X

phq amounts to

2
ÿ

hPH
nzXphq

h´1
ź

l“1

ml

H
ź

l“h`1

nl flops,
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where
H “ th P t1, . . . , Hu | Xphq

‰ Inh
u

and nzXphq is the number of nonzeros in Xphq for h P H. When H is a
singleton, we have nh “ mh “ nzXphq for h R H and h “ 1, . . . , H, and
therefore, the number of flops executed by Algorithm 4 becomes 2nzX , where
nzX is the number of nonzeros in X “

ÂH
h“1 X

phq.
Regarding space requirements, in addition to the input vector x, the algo-

rithm requires two temporary floating-point vectors, z and z1, which need to
be of length maxhpnhq and maxhpmhq, respectively, and two floating-point

vectors, x1 and x2, of length maxhPt0uYHp
śh

l“1 ml

śH
l“h`1 nlq to compute

and return the result. When Xphq “ Inhˆmh
, entries of x1 can be directly

copied to x2 using appropriate index manipulations. Furthermore, in pro-
gramming languages which provide handles to memory addresses in the form
of pointers, it is possible to copy x2 to x1 by swapping the two pointers to
the arrays x1 and x2, since x2 is to be rewritten in the next turn of the outer
loop anyway. However, when the input vector needs to be multiplied with
sums of Kronecker product terms as in (2.10), the output vector x1 cannot
be used to store intermediate results.

The cost of a vector multiplication with
řK

k“1

ÂH
h“1 X

phq

k , where X
phq

k P

R
nhˆmh for h “ 1, . . . , H and

Hk “ th P t1, . . . , Hu | X
phq

k ‰ Inh
u for k “ 1, . . . ,K,

is therefore

K
H

ź

h“1

mh ` 2
K
ÿ

k“1

ÿ

hPHk

nz
X

phq
k

h´1
ź

l“1

ml

H
ź

l“h`1

nl .

Here, the first term is due to the summation of the K product vectors
obtained through Algorithm 4. Note that this expression can be simpli-

fied further when the factors X
phq

k are square matrices by substituting

nh for mh and using n “
śH

h“1 nh. In that case, one obtains npK `

2
řK

k“1

ř

hPH1
k
nz

X
phq
k

{nhq, where

H1
k “ th P t1, . . . , Hu | X

phq

k ‰ Inh
u

and nz
X

phq
k

is the number of nonzeros in X
phq

k for k “ 1, . . . ,K and h P H1
k.

The next example is given to show how vector–Kronecker product mul-
tiplication works when Algorithm 4 is used. An example with rectangular
matrices can be found in [110].

Example 1. (ctnd.) Consider the multiplication of the vector

x “ px0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17q
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with the fourth Kronecker product term in our small example. That is, let
X “ Xp1q b Xp2q b Xp3q, where

Xp1q
“

¨

˝

μ

˛

‚

3ˆ3

, Xp2q
“

ˆ

1

˙

2ˆ2

, Xp3q
“

¨

˝

1

˛

‚

3ˆ3

,

and consider x1 “ x
Â3

h“1 X
phq. In Algorithm 4, the outer loop is executed

three times for h “ 1, 2, 3. At the beginning, x is copied to x1, and x2 “

x1pXp1q b I6q is computed for h “ 1. In this turn, nzXp1q “ 1, ileft “ 1, and
iright “ 6. Therefore, the second loop and the third loop are executed once
and six times, respectively. Then x1pXp1q b I6q is computed as

x2
“ pμx12, μx13, μx14, μx15, μx16, μx17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0q

in 12 flops, and x2 is copied to x1 at the end of the first turn. In the second
turn, x2 “ x1pI3 bXp2q b I3q is computed for h “ 2. In this turn, nzXp2q “ 1,
ileft “ 3, and iright “ 3. Therefore, the second loop and the third loop are
each executed thrice. Then x1pI3 b Xp2q b I3q is computed as

x2
“ pμx15, μx16, μx17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0q

in 18 flops, and x2 is copied to x1 at the end of the second turn. In the last
turn, x2 “ x1pI6 b Xp3qq is computed for h “ 3. In this turn, nzXp3q “ 1,
ileft “ 6, and iright “ 1. Therefore, the second loop and the third loop are
executed six times and once, respectively. Then x1pI6 bXp3qq is computed as

x2
“ pμx17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0q

in 12 flops, and x2 is copied back to x1 at the end of the last turn. Hence,
Algorithm 4’s computation of x1 “ xX takes altogether 42 flops.

As mentioned before, functional transitions are a feature of SANs and
are said to generalize the Kronecker product. Functional transitions enable
the modeling of dependencies among subsystems elegantly. Yet, they are not
easy to implement efficiently. There is a vector-generalized Kronecker product
multiplication algorithm [136] which may be used in the presence of functional
transitions. For instance, in the PEPS tool where it is implemented, the
different values the functions can take are hard coded into the package. And
this is done for each problem under consideration. Whenever a function needs
to be evaluated in a particular state during the vector-generalized Kronecker
product multiplication, the code jumps to a specific location dictated by the
problem and carries out a sequence of if statements, trying to find out what
the function evaluates to for that state. Although certain improvements have
been introduced regarding this aspect in the last version of the PEPS tool
[138], in practice this feature slows down the code since computation-intensive
operations are interleaved with other operations, but does not come across
when one looks at the time complexity result of vector-generalized Kronecker
product multiplication.
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The pseudocode of the implementation of the first loop of Algorithm 4 in
the Nsolve package of the APNN toolbox [7, 22] is given in [43]. Identity
matrices are not stored in this implementation as discussed in [43], and the
vector–matrix multiplication is not performed for identity matrices. Note
that the shuffle algorithm cannot utilize the cache efficiently when the value
of index h in the outer loop of Algorithm 4 becomes large.

In order to facilitate a fair comparison among different vector–Kronecker
product multiplication algorithms, we provide an implementation in [115].
Through this implementation, we observe that in addition to identity matri-
ces, it is useful not to store matrices that are multiples of identity matrices.
We also find it to be more efficient to multiply each nonzero of Xphq with
the entries of the input vector and add the result to appropriate entries of
the output vector so that z and z1 are not used and stored in vector–matrix
multiplication. Naturally, the models with which we experiment have more
than one Kronecker product term, and therefore, intermediate results can-
not be stored in the output vector. However, the number of auxiliary vectors
needed to store intermediate results is two only if the maximum number of
nonidentity matrices across all Kronecker product terms is more than two.
Otherwise, one auxiliary vector is sufficient if the maximum number of non-
identity matrices across all terms is two, and no auxiliary vector is needed if
this number is one since there is no intermediate result in that case. However,
it should be remarked that at least two auxiliary vectors of length maxp |Rp|

are required in iterative solvers.
If the Q matrix corresponding to a model was generated and it had nz

nonzeros in its off-diagonal part, then 2nz flops would be performed when a
vector of length |R| is multiplied with the off-diagonal part of Q. Therefore,
2nz flops is a lower bound for the case of relatively sparse Kronecker product
matrices, and one should be happy to see flop counts that are close to 2nz
with vector–Kronecker product multiplication algorithms.

5.2 Modified Shuffle Algorithm

In the shuffle algorithm, the number of flops executed due to a particular
matrix does not depend on the nonzero structure of the other matrices in
the Kronecker product. However, when other matrices include zero rows or
columns, some vector entries end up being computed even though they would
evaluate to zero at the end. Recently in [110], the shuffle algorithm is improved
by omitting zero rows and columns in matrices of Kronecker product terms
during multiplication. In this way, flops evaluating to zero during the course
of the multiplication are avoided, and possibly the memory requirements are
reduced. Although the idea may seem simple, it is not intuitive since zero
rows and columns are not stored in sparse matrices anyway. But, as we shall
see, it turns out to be quite effective in many cases.
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Now, let N phq Ď t0, . . . , nh ´ 1u and Mphq Ď t0, . . . ,mh ´ 1u denote the
sets of rows and columns of Xphq P R

nhˆmh that include at least one nonzero
for h “ 1, . . . , H. Furthermore, let Ppu,Uq P t0, 1uuˆ|U | be the matrix given
entrywise as

Ppu,Uqpi, jq

"

1 if j “ f pUqpiq and i P U
0 otherwise

,

where u is a finite positive integer, U Ď t0, . . . , u´ 1u is a nonempty set, and

f pUq
piq “ |tj P U | j ă iu| for i P U .

Then

H
â

h“1

Xphq
“

˜

H
â

h“1

Ppnh,N phqq

¸

H
â

h“1

X̂phq

˜

H
â

h“1

PT
pmh,Mphqq

¸

, (5.2)

where
X̂phq

“ PT
pnh,N phqq

Xphq Ppmh,Mphqq for h “ 1, . . . , H.

The proof in [110] rests on forming the pu ˆ uq diagonal matrix P̄pu,Uq “

Ppu,UqP
T
pu,Uq

, showing that Xphq is invariant under pre-multiplication by

P̄pnh,N phqq and post-multiplication by P̄pmh,Mphqq and using the compatibility
of Kronecker product with matrix multiplication.

As a corollary of this result, we obtain the identity [110]

x1
p

H
ą

h“1

Mphq
q “ xp

H
ą

h“1

N phq
q

H
â

h“1

X̂phq,

which follows from x1 “ x
ÂH

h“1 X
phq,

xp

H
ą

h“1

N phq
q “ x

H
â

h“1

Ppnh,N phqq, x1
p

H
ą

h“1

Mphq
q “ x1

H
â

h“1

Ppmh,Mphqq,

and
PT

pmh,Mphqq
Ppmh,Mphqq “ I|Mphq| for h “ 1, . . . , H.

It is this identity on which the modified shuffle algorithm is based.
The modified shuffle algorithm given in Algorithm 5 executes flops only

while multiplying vector x̂ with bH
h“1X̂

phq. Hence, the cost of vector–
Kronecker product multiplication using the modified version amounts to

2
ÿ

hPH
nzXphq

h´1
ź

l“1

|Mplq
|

H
ź

l“h`1

|N plq
|

flops since nzX̂phq “ nzXphq for h “ 1, . . . , H. Note that this never exceeds
the cost of Algorithm 4 and is bounded above by 2 |H| nzX flops since
|N phq| ď nzXphq and |Mphq| ď nzXphq for h “ 1, . . . , H.
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Algorithm 5. Modified shuffle algorithm for x1 :“ x
ÂH

h“1 X
phq.

For h :“ 1 to H,

N phq :“ H; Mphq :“ H;

For pih, jhq such that Xphqpih, jhq ą 0,

N phq :“ N phq Y tihu; Mphq :“ Mphq Y tjhu;

Copy XphqpN phq,Mphqq to X̂phq;

Copy xp
ŚH

h“1 Rphqq to x̂;

Execute shuffle algorithm for x̂1 :“ x̂
ÂH

h“1 X̂
phq;

Copy x̂1 to x1p
ŚH

h“1 Mphqq.

Regarding memory requirements, each of the vectors x1 and x2 in Al-
gorithm 5 needs to be of length maxhPt0uYHp

śh
l“1 |Mplq|

śH
l“h`1 |N plq|q,

whereas the floating-point vectors z and z1 need to be at least of length
maxhp|N phq|q and maxhp|Mphq|q, respectively.

We use our running example to show how the modified shuffle algorithm
works.

Example 1. (cntd.) The sets of rows and columns of the matrices Xp1q, Xp2q,
and Xp3q including at least one nonzero value are given by Algorithm 5 as

N p1q
“ t2u, Mp1q

“ t0u, N p2q
“ t1u, Mp2q

“ t0u, N p3q
“ t2u, Mp3q

“ t0u.

Then
3

ą

h“1

N phq
“ tp2, 1, 2qu,

3
ą

h“1

Mphq
“ tp0, 0, 0qu,

Ppn1,N p1qq “

¨

˝

1

˛

‚

3ˆ1

, Ppm1,Mp1qq “

¨

˝

1
˛

‚

3ˆ1

, Ppn2,N p2qq “

ˆ

1

˙

2ˆ1

,

Ppm2,Mp2qq “

ˆ

1
˙

2ˆ1

, Ppn3,N p3qq “

¨

˝

1

˛

‚

3ˆ1

, Ppm3,Mp3qq “

¨

˝

1
˛

‚

3ˆ1

,

3
â

h“1

Ppnh,N phqq “ pe17q18ˆ1 , and
3

â

h“1

Ppmh,Mphqq “ pe0q18ˆ1 .

Hence,

x̂ “ x
3

â

h“1

Ppnh,N phqq “ xp

3
ą

h“1

N phq
q “ px17q.

Then x̂1
“ x̂ bH

h“1 X̂
phq is computed using the shuffle algorithm, where

X̂p1q
“

`

μ
˘

1ˆ1
, X̂p2q

“
`

1
˘

1ˆ1
, and X̂p3q

“
`

1
˘

1ˆ1
.
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In Algorithm 4, the outer loop is executed three times for h “ 1, 2, 3. At the
beginning, x̂ is copied to x1 and x2 “ x1 pX̂p1q b I1q is computed for h “ 1.
In this turn, nzX̂p1q “ 1, ileft “ 1, and iright “ 1. Therefore, the second loop

and the third loop are each executed once. Then x1 pX̂p1q bI1q is computed as

x2
“ pμx17q

in 2 flops, and x2 is copied to x1 at the end of the first turn. In the second
turn, x2 “ x1 pI1 b X̂p2q bI1q is computed for h “ 2. In this turn, nzX̂p2q “ 1,
ileft “ 1, and iright “ 1. Therefore, the second loop and the third loop are

each executed once. Then x1 pI1 b X̂p2q b I1q is computed as

x2
“ pμx17q

in 2 flops, and x2 is copied to x1 at the end of the second turn. In the last
turn, x2 “ x1 pI1 b X̂p3qq is computed for h “ 3. In this turn, nzX̂p3q “ 1,
ileft “ 1, and iright “ 1. Therefore, the second loop and the third loop are

each executed once. Then x1 pI1 b X̂p3qq is computed as

x2
“ pμx17q

in 2 flops, and x2 is copied to x̂1 at the end of the last turn. Then the entries
of x̂1 are copied back to x1p

Ś3
h“1 Mphqq, that is,

x1
“ pμx17, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0q

by the equation

x̂1
“ x1

3
â

h“1

Ppmh,Mphqq “ x1
p

3
ą

h“1

Mphq
q.

Hence, Algorithm 5’s computation of x̂1
“ x̂

Â3
h“1 X̂

phq takes altogether six
flops. This number is smaller than the 42 flops which the shuffle algorithm
performs.

The nice thing about the modified shuffle algorithm is that any improve-
ment it brings in the number of flops can be predetermined before it is run.
This is also true for any improvement in memory. This algorithm is also likely
to be useful when the matrices that form Kronecker products are relatively
dense as long as some of them include zero rows or columns.

The improvement in time obtained with a vector–Kronecker product mul-
tiplication algorithm depends on the particular matrices in the Kronecker
product terms. Besides the number of flops, the time that the algorithm
takes also depends on the overhead of indexing and addressing as well as the
access pattern to the input and output vectors. In this respect, time per flop
seems to be a good measure to understand the overhead and cache usage of
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different algorithms. The cost due to indexing, addressing, and access pattern
needs to be smaller than the gain obtained from the decrease in the number
of flops to observe speed up.

In the particular implementation provided in [115], zero rows and columns
of nonidentity matrices are removed, and two integer vectors are allocated
to store the mapping between row and column indices of the matrix and the
modified matrix. This modification may avoid unnecessary flops only if the
Kronecker product term includes more than one nonidentity matrix. Since
choosing entries of input and output vectors yields indexing and addressing
overhead in many cases, we remove zero rows and columns of nonidentity
matrices in a Kronecker product term only if their counts are more than one.
Furthermore, rather than copying appropriate entries of the input vector to
a temporary vector, multiplying the temporary vector with the Kronecker
product of the submatrices, and adding the resulting vector to the output
vector, we modify the implementation of the shuffle algorithm so that ap-
propriate entries of the input vector are chosen in the first turn of the outer
loop of Algorithm 4 and the entries of the resulting vector are added to the
appropriate entries of the output vector in the last turn of the outer loop of
Algorithm 4.

Detailed results of numerical experiments with the models introduced ear-
lier are provided in [110]. The average number of nonzeros per row in the
nonidentity matrices of Kronecker product terms of the models is close to
1. This implies that the Kronecker product matrices of models are relatively
sparse for the shuffle algorithm to be efficient. For each model, a smaller num-
ber of flops are observed with the modified shuffle algorithm. There are two
reasons for this decrease. First, unnecessary flops in the outer loop, for some
fixed h, in Algorithm 4 are avoided. Second, some matrices become multiples
of identity matrices once zero rows and columns are removed, and the outer
loop of Algorithm 4 is avoided for such matrices. The improvement in the
number of flops is about 30% over all models considered. In more than half
of the models, the modified shuffle algorithm performs 2nz flops, which is the
lower bound. We remark that in each of these models, there is no term with
more than one explicitly stored matrix. In the models where modified shuf-
fle performs 2nz flops, it also does not require additional memory. Besides,
the modification also decreases the memory allocated for auxiliary vectors
over that of the shuffle algorithm in some other models. When the expected
number of explicitly stored matrices becomes relatively larger than 1, the
performance of modified shuffle deteriorates.

5.3 Working with Compact Solution Vectors

In this section, we discuss a recently proposed approach that may be used
to reduce the amount of memory allocated to solution vectors in Kronecker-
based Markovian analysis so that larger problems can be analyzed on the



5.3 Working with Compact Solution Vectors 169

same platform. The approach is based on using the hierarchical Tucker decom-
position (HTD) [163, 178, 202, 203] to represent each solution vector at hand
compactly by a number of shorter vectors, which happen to be the columns of
particular matrices obtained through the decomposition, and Kronecker op-
erations as discussed in [64]. Similar to the tensor-train decomposition [256],
HTD is originally conceived in the context of providing a compact approxi-
mate representation for dense multidimensional data [177]. Although HTD is
more suitable for our purposes since the decomposition is available through
a binary tree data structure with logarithmic depth in the number of dimen-
sions, both HTD and tensor-train decompositions have the desirable feature
of a user controllable approximation error. This implies that potentially ap-
proximations accurate to machine precision can be computed through both
decompositions, though this may not necessarily yield a reduction in mem-
ory requirements. Since compactness of the representation can be traded for
quality of approximation when using such decompositions, how compact a
solution vector in HTD format remains throughout the analysis process by
controlling its accuracy is worthwhile exploring.

Compact representations for solution vectors in Markovian analysis are
considered earlier from the perspective of binary decision diagrams in [69,
209]. However, the proposed compact structures therein are not time-wise
competitive, and they do not allow the computation of approximation error
bounds. On the other hand, the tensor-train decomposition is recently used in
[201] to approximate the solution vector of communicating Markovian models
in which the product state space is reachable through alternating least squares
and power methods. The approach discussed in this section is geared toward
generator matrices in Kronecker form with reachable state spaces possibly
smaller than their product state spaces and seems to be a step forward [64].

As we will see, the initialization of a compact vector in HTD format at the
outset with a rank-1 vector and the computation of the 2-norm of a compact
vector in HTD format so that it may be used in the test for convergence
in iterative analysis turn out to be straightforward operations. However, the
multiplication of a compact vector in HTD format with a sum of Kronecker
products that is used at each iteration poses a problem. It is not the multi-
plication of a compact vector in HTD format with a Kronecker product but
the addition operation between two compact vectors in HTD format that
increases the memory requirements of the sum. Unfortunately, this necessi-
tates some kind of truncation, hence, approximation, to be introduced to the
addition operation. So, let us first introduce the HTD format and discuss
these issues in order. As before, we will be using row solution vectors x that
multiply Q or any part of it in Kronecker form on the left.

The original Tucker decomposition [313] represents 3-dimensional data as
the multiplication of 3-dimensional core (or compressed) data that is all-
orthogonal (a concept corresponding to orthogonality across all dimensions)
and an orthogonal basis matrix along each dimension. Higher-order singular
value decomposition (HOSVD) [124] provides a simple and nearly optimal
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solution to approximating multidimensional data in Tucker decomposition
format with a user controllable accuracy. Since the memory requirement of
multidimensional core data scales exponentially with the number of dimen-
sions, a low-rank approximation of HOSVD is to be used in practice.

Assuming without loss of generality that H is a power of 2, the pn ˆ 1q

vector xT in (orthogonalized) HTD format is expressed as

xT
“ pU p1q

b ¨ ¨ ¨ b U pHq
qc,

where U phq P R
nhˆrh is the orthogonal basis matrix associated with dimension

h in the model for h “ 1, . . . , H and

c “ pBp1,2q
b ¨ ¨ ¨ b BpH´1,Hq

q ¨ ¨ ¨ pBp1,...,H{2q
b BpH{2`1,...,Hq

qBp1,...,Hq

is a p
śH

h“1 rh ˆ 1q vector in the form of a product of exactly lgH matrices
each of which except the last is a Kronecker product of a number of transfer
matrices Bpt̄q related to each other as in the full binary tree of Figure 5.1.

Fig. 5.1 Matrices forming xT in HTD format for H “ 4.

The transfer matrix Bpt̄q is of size prt̄lrt̄r ˆ rt̄q with the node index t̄ defined
as t̄ :“ t̄l, t̄r, and r1,...,H “ 1 since Bp1,...,Hq is at the root of the tree. The
pH ´1q intermediate nodes of the binary tree including the root in Figure 5.1
store the transfer matrices Bpt̄q, and its leaves store the basis matrices U phq

so that each intermediate node has two children.
In orthogonalized HTD format of xT , one can also conceive of orthogonal

basis matrices
U pt̄q

“ pU pt̄lq
b U pt̄rq

qBpt̄q,

at intermediate nodes with rt̄ columns that relate the orthogonal basis matri-
ces U pt̄lq and U pt̄rq for the two children of transfer matrix Bt̄ with the transfer
matrix itself. Now, recall that the singular values [125, 158, 303] of a real rect-
angular matrix X are the square roots of the eigenvalues of XTX, which by
construction is symmetric positive definite and therefore has positive real
eigenvalues. The orthogonal matrix U pt̄q has in its columns the singular vec-
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tors associated with the largest rt̄ singular values of the matrix obtained by
taking index t̄ as row index, the remaining indices in order as column index
of the H-dimensional data at hand, that is, xptt̄u, t1, . . . , Huztt̄uq). Hence,
we have a hierarchy of matricizations and HOSVD, where rt̄ is the rank of
the truncated HOSVD. The hope is to be able to obtain a relatively accurate
decomposition in which rt̄’s are small. More information regarding this can
be found in [163, 177, 178, 202].

We remark that Bpt̄q may also be perceived as a 3-dimensional array of size
prt̄l ˆ rt̄r ˆ rt̄q having as many indices in each of its three dimensions as the
number of columns in the matrices of its two children and itself, respectively.
The number of transfer matrices in the lth factor forming c is the Kronecker
product of 2lgH´l transfer matrices for l “ 1, . . . , lgH ´ 1. In fact, c is a
product of Kronecker products, and so is xT , but neither is formed explicitly.

When H is not a power of 2, it is still important to keep the tree in a
balanced form, for instance, as in Figure 5.2 for which

xT
“ pU p1q

b U p2q
b U p3q

b U p4q
b U p5q

b U p6q
b U p7q

qc

and

c “ pBp1,2q
b Bp3,4q

b Bp5,6q
b Ir7qpBp1,2,3,4q

b Bp5,6,7q
qBp1,2,3,4,5,6,7q

so that the height of the tree does not exceed rlgHs.

Fig. 5.2 Matrices forming xT in HTD format for H “ 7.

Assuming that rmax “ maxt̄prt̄q and nmax “ maxpn1, . . . , nHq, memory
requirement for matrices in the binary tree associated with HTD format is
bounded by Hnmaxrmax at the leaves, r2max at the root, and pH ´ 2qr3max at
other intermediate nodes, thus totally Hnmaxrmax ` pH ´ 2qr3max ` r2max.
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Unless something else is known about the solution itself, the initial solution
vector used with iterative methods in Markovian analysis is almost always
the uniform probability distribution. Next we show how this particular rank-1
vector can be represented in HTD format.

Example 6. Let xT “ e{n P R
nˆ1
ą0 be the uniform distribution vector, where

n “
śH

h“1 nh. Then xT may be represented in HTD format with all matrices
having rank-1 for which the basis matrices given by U phq “ e{

?
nh are of size

pnh ˆ 1q for h “ 1, . . . , H and the transfer matrices given by

Bpt̄q
“

"

p
śH

h“1

?
nhq{n if t̄ corresponds to root

1 otherwise

are p1 ˆ 1q. Note that memory taken up by the full-vector representation of

x is n nonzeros whereas that with HTD format is H ´ 1`
řH

h“1 nh nonzeros
since the pH ´ 1q transfer matrices are all scalars equal to 1 except the one
corresponding to the root. We remark that each basis matrix U phq for the
uniform distribution has only a single column and that column is unit 2–
norm, implying all U phq are orthogonal.

Now, let us move to the multiplication of a compact vector in HTD format
with a sum of Kronecker products. We consider the multiplication of block
Qpp, wq in (2.10) from the left with a compact (sub)vector. Hence, we are
interested in the operation

y :“ x
K
ÿ

k“1

H
â

h“1

Q
phq

k pRphq
p ,Rphq

w q,

where K is equal to the number of terms in the sum, that is, |Kp,w|, for
Qpp, wq and x is in HTD format. Observe that this operation executes when
each block of Q in (2.10) is pre-multiplied by an iteration subvector. In fact,
the same subvector x pre-multiplies all blocks in block row p of the matrix
in Kronecker form.

To simplify the notation, we rewrite the pre-multiplication with a sum of
Kronecker products as

y :“ x
K
ÿ

k“1

H
â

h“1

X
phq

k ,

where X
phq

k P R
nhˆmh , implying

ÂH
h“1 X

phq

k P R
nˆm and x P R

1ˆn. To be
consistent with the form of HTD in the literature, we consider the following

post-multiplications of Kronecker products bH
h“1A

phq

k with column vector xT

and their summation in the usual matrix–vector form

yT :“
K
ÿ

k“1

˜

H
â

h“1

A
phq

k

¸

xT ,
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where A
phq

k P R
mhˆnh is the transpose ofX

phq

k . In particular, we are interested
in its implementation as

yT
p1q :“ p0q

T ,

xT
pkq :“

˜

H
â

h“1

A
phq

k

¸

xT , yT
pk`1q :“ yT

pkq ` xT
pkq for k :“ 1, . . . ,K,

and yT :“ yT
pK`1q.

Assuming that xT is in HTD format with orthogonal basis matrices U phq

and transfer matrices Bpt̄q forming vector c, the operation

xT
pkq :“

˜

H
â

h“1

A
phq

k

¸

xT amounts to computing

xT
pkq :“

˜

H
â

h“1

A
phq

k U phq

¸

c since xT
“ p

H
â

h“1

U phq
qc.

Hence, the only thing that needs to be done to carry out the computation of

xT
pkq

in HTD format is to multiply the pmh ˆnhq Kronecker factor A
phq

k with

the corresponding pnh ˆ rhq orthogonal basis matrix U phq for h “ 1, . . . , H.

Clearly, the pmh ˆ rhq product matrix A
phq

k U phq need not be orthogonal.
But this does not pose much of a problem, since xT

pkq
can be transformed

into orthogonalized HTD format if the need arises by computing the QR
decomposition [125, 158, 302] of

A
phq

k U phq
“ Ũ phqRphq for h “ 1, . . . , H,

propagating the triangular factors Rphq into the transfer matrices and orthog-
onalizing the updated transfer matrices at intermediate nodes in a similar
manner up to the root [202]. However, the situation is not as good for the
addition of two compact vectors.

Addition of two matrices Y and X with singular value decompositions
(SVDs) [125, 158, 302]

Y “ UY ΣY V
T
Y and X “ UXΣXV T

X

results in

Y ` X :“ pUY UXq

ˆ

ΣY

ΣX

˙

pVY VXq
T
.

Here, ΣY , ΣX are diagonal matrices of singular values, whereas UY , UX

and VY , VX are orthogonal matrices of left and right singular (row) vectors
associated with matrices Y and X, respectively. SVD is a rank revealing
factorization in that the number of nonzero singular values of a matrix cor-
responds to its column rank. This implies that the sum Y ` X has a rank
equal to the sum of the ranks of the two matrices that are added.
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The situation for the sum yT
pk`1q

of the two vectors yT
pkq

and xT
pkq

in HTD
format is no different if one replaces the SVD with HOSVD, which is illus-
trated for H “ 4 in [202]. For the following steps performing the addition and
representing the resulting vector in HTD format, we exploit the algorithms
presented as part of the htucker toolbox [202]. Among three alternative ap-
proaches that have been investigated therein for computing yT , the best is
to multiply, add, and then truncate K times without initial orthogonaliza-
tion as argued asymptotically and demonstrated experimentally for larger
K [202]. This approach works by performing the reduced Gramian compu-
tations of a compact vector in non-orthogonalized HTD format. Recall that
the compact vector xT

pkq
obtained after multiplication does not need to be

in orthogonal HTD format even though xT might have been. Once the re-
duced Gramian computations of xT

pkq
are carried out, the truncated HOSVD

for the sum of two vectors yT
pkq

and xT
pkq

in HTD format without initial or-

thogonalization can be computed. The output vector yT
pk`1q

is a truncated
compact vector in orthogonalized HTD format, and this operation is repeated
K times until yT is obtained. The number of flops executed in this approach is
OpHK2r2maxpmmax ` r2max `Krmaxqq, where mmax “ maxpm1, . . . ,mHq. The
significance of this result is that one can impose an accuracy of trunc tol

on the truncated HOSVD by choosing rank rt̄ in node t̄ based on drop-
ping the smallest singular values whose squared sum is less than or equal to
trunc tol2{p2H´3q [202]. This is a profound result but also implies that the
truncation leads to an approximate solution vector. By setting trunc tol to a
small value, one is able to compute accurate solutions, which may sometimes
imply increased memory requirements. On the other hand, it is possible to
upper bound the memory requirements by prescribing a maximum value for
the rt̄’s as in the htucker toolbox [202, 203]; but, this results in an a priori
unknown approximation error.

In Markovian analysis, it is more relevant to compute the maximum (i.e.,
infinity) norm of a solution vector even though all norms are known to be
equivalent [158, 302]. However, the computation of the maximum value in
magnitude of the entries of a compact vector requires being able to locate
the value and its index, which seems to be costly for a compact vector in HTD
format. Therefore, we consider the computation of the 2–norm of vector yT

given by ||yT ||2 “
a

yyT . Fortunately, ||yT ||2 can be obtained by computing
inner products of two compact vectors in HTD format. Here, the only differ-
ence is that the two vectors are the same vector yT . The computation starts
from the leaves of the binary tree and moves toward the root, requiring the
same sequence of operations in the first part of the computation of reduced
Gramians. But, this has already been discussed above.

Now, we can move to implementation issues regarding compact solution
vectors in HTD format for Kronecker-based Markovian representations. The
implementation [62] is within the NSolve package of the APNN toolbox [7,
22], relies on the basic functions of the htucker toolbox, and is available at
[65]. The binary tree data structure accompanying the HTD format [62] is
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allocated at the outset based on the value of H. It is stored in the form of
an array of tree nodes from root to leaves level by level so that accessing
the children of a parent node and vice versa becomes straightforward. In
a tree node t̄, there are pointers to matrices U pt̄q for leaves and Bpt̄q for
intermediate nodes which we have seen and accounted for before but also
pointers to matrices Rpt̄q and, as we explain shortly, p2 ˆ 2q block matrices
M pt̄q and Gpt̄q for each node. Since we expect solution vectors to be dense, the
matrices in the compact representation are stored as full matrices including
those corresponding to the blocks of M pt̄q and Gpt̄q. The nonzero entries of
the full matrices are kept in a one-dimensional floating-point array so that
relevant LAPACK methods available at [248] can be called without having to
copy vectors. We choose to store the transposes of matrices representing the
compact solution vector in row sparse format (meaning they are stored by
columns) so that relevant LAPACK methods can be called without having to
transpose the input matrices.

The multiplication of the sparse Kronecker factors A
phq

k with the orthogo-

nal basis matrices U phq in xT
pkq

:“
´

ÂH
h“1 A

phq

k U phq

¯

c is implemented using

straightforward sparse matrix–vector multiplication. After the compact vec-
tor xT

pkq
is computed, the tree nodes of yT

pkq
are visited, and its respective

fields are updated so that we have yT
pk`1q

at hand. Efficient computation of

the reduced Gramian matrices Gpt̄q for yT
pk`1q

as in [202] requires exploiting

the block structure of the new transfer matrices Bpt̄q whose blocks are already
available in the corresponding tree nodes of yT

pk`1q
after the addition oper-

ation. Clearly, there is no need to generate block matrices (or cubic blocks
as in [202]) with these blocks explicitly. We prefer to store M pt̄q and Gpt̄q as
p2ˆ2q block matrices because of the add a term and then truncate approach
followed. Let us next elaborate on this.

Assuming that rt̄py
T
pkq

q and rt̄px
T
pkq

q denote the ranks of matrices in com-

pact representations of the two vectors that are summed up in node t̄, M pt̄q

and Gpt̄q become prt̄py
T
pkq

qrt̄px
T
pkq

q ˆ rt̄py
T
pkq

qrt̄px
T
pkq

qq matrices, where the

first diagonal block is prt̄py
T
pkq

q ˆ rt̄py
T
pkq

qq and the second diagonal block

is prt̄px
T
pkq

q ˆ rt̄px
T
pkq

qq. Then the computation M pt̄q :“ pU pt̄qqTU pt̄q for leaf

nodes can be formulated in p2 ˆ 2q block manner as

M pt̄q
ps, s1

q :“ pU pt̄q
s q

T
pU

pt̄q
s1 q for s, s1

“ 0, 1,

where U
pt̄q
0 and U

pt̄q
1 denote basis matrices of ypkq and xpkq at leaf node t̄, re-

spectively. This computation requires multiplying two full matrices for which
the dgemm routine of LAPACK may be used. On the other hand, the com-
putation M pt̄q :“ pBpt̄qqT pM pt̄lq b M pt̄rqqBpt̄q for intermediate nodes can be
formulated starting from the bottom of the tree to the root in p2 ˆ 2q block
manner as

M pt̄q
ps, s1

q :“ pBpt̄q
s q

T
pM pt̄lq

ps, s1
q b M pt̄rq

ps, s1
qqB

pt̄q
s1 for s, s1

“ 0, 1,
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where B
pt̄q
0 and B

pt̄q
1 denote transfer matrices of yT

pkq
and xT

pkq
at node t̄,

respectively.
Similarly, we have reduced Gramian computations, but in opposite direc-

tion from root to leaves, that can be formulated in p2 ˆ 2q block manner for
s, s1 “ 0, 1 as Gpt̄qps, s1q :“ 1 when t̄ corresponds to root; otherwise,

Gpt̄lq
ps, s1

q :“ pBpt̄:2,3q
s q

T
pM pt̄rq

ps, s1
q b Gpt̄q

ps, s1
qqB

pt̄:2,3q

s1

and
Gpt̄rq

ps, s1
q :“ pBpt̄:1,3q

s q
T

pM pt̄lq
ps, s1

q b Gpt̄q
ps, s1

qqB
pt̄:1,3q

s1 ,

where B
pt̄:2,3q

0 , B
pt̄:1,3q

0 are transfer matrices B
pt̄q
0 of yT

pkq
organized, respec-

tively, as prt̄r pyT
pkq

qrt̄py
T
pkq

q ˆ rt̄lpy
T
pkq

qq, prt̄lpy
T
pkq

qrt̄py
T
pkq

q ˆ rt̄r pyT
pkq

q matri-

ces, and B
pt̄:2,3q

1 , B
pt̄:1,3q

1 are transfer matrices B
pt̄q
1 of xT

pkq
organized, re-

spectively, as prt̄r pxT
pkq

qrt̄px
T
pkq

q ˆrt̄lpx
T
pkq

qq, prt̄lpx
T
pkq

qrt̄px
T
pkq

q ˆrt̄r pxT
pkq

qq ma-

trices. Such matrices are called matricizations of the given matrix (in this

case, the transfer matrix B
pt̄q
0 or B

pt̄q
1 along specific dimensions) and, there-

fore, represent different organizations of the same data. We remark that the
off-diagonal blocks of M pt̄q and Gpt̄q, respectively, satisfy the relationships
M pt̄qps, s1q “ pM pt̄qps1, sqqT and Gpt̄qps, s1q “ pGpt̄qps1, sqqT . Therefore, only
one off-diagonal block for these two matrices in each node needs to be com-
puted. The computation of the three blocks ofM pt̄q andGpt̄q requires multipli-
cations using dgemm with matricizations and contraction of multidimensional

data involving B
pt̄q
s matrices for s “ 0, 1 as discussed in [202]. We use two

auxiliary vectors of length maxt̄l,t̄r,t̄prt̄lrt̄rrt̄q to implement these operations.

The disadvantage of not storing M pt̄q and Gpt̄q as p2 ˆ 2q block matrices is
that longer auxiliary vectors would need to be allocated.

Truncation of a compact vector requires QR and singular value decom-
positions [158, 302, 303] to be performed [202]. In order to compute these
decompositions, dgeqrf and dgesdd routines of LAPACK are used. Since we
expect input matrices to be dense, we do not call routines expecting sparse
matrices. For a leaf node t̄, the pnt̄ ˆ prt̄py

T
pkq

q ` rt̄px
T
pkq

qqq input matrix U pt̄q

may be obtained by concatenating the matrices U
pt̄q
0 and U

pt̄q
1 corresponding

to yT
pkq

and xT
pkq

, respectively. Since the input matrix is also an output matrix,

the upper-triangular factor Rpt̄q of the QR decomposition is returned from
dgeqrf in the upper-triangular part of the input matrix in which the lower-
triangular part has the Householder reflections amounting to the orthogonal
factor Qpt̄q (not to be confused with the generator matrix and any related
matrix thereof). After Rpt̄q is obtained, Rpt̄qGpt̄qpRpt̄qqT needs to be formed.
To this end, we first transform the block matrix Gpt̄q to a dense matrix (with
a single block) and multiply this new matrix held as a one-dimensional array
from left and right using the dtrmm routine of LAPACK. Note that dtrmm does
not accept a trapezoid Rpt̄q; however, this case can be handled by multiplying
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triangular and rectangular parts of Rpt̄q separately using dtrmm and dgemm.
Hence, there is no need to copy the output of dgeqrf to another matrix in-
cluding Rpt̄q. Once Rpt̄qGpt̄qpRpt̄qqT is formed, it needs to be decomposed for
its singular values and vectors. To do this, we prefer to use the dgesdd routine
over the dgesvd routine since it is said to be faster [248]. We remark that this
routine computes singular values through the symmetric eigenvalue decom-
position [125, 158, 303] and the singular vectors are truncated at a certain
number or possibly by omitting some corresponding to the smaller singular
values based on an error tolerance. Spt̄q ends up being the matrix holding
the rt̄ singular vectors. Then the orthogonal basis matrix U pt̄q “ Qpt̄qSpt̄q is
computed using the dormqr routine. In order to avoid storing Spt̄q, we prefer
to update Rpt̄q with pSpt̄qqT as in the htucker toolbox [203].

The same sequence of operations are carried out level by level from the
parents of the leaves to the top of the tree excluding the root. The prod-
uct pSpt̄qqTRpt̄q is computed using dtrmm, possibly with an additional call to
dgemm when Rpt̄q is trapezoid, and stored in the matrix that was allocated

for Rpt̄q. Note that pSpt̄qqTRpt̄q “ pF
pt̄q
0 F

pt̄q
1 q is an prt̄ ˆ prt̄py

T
pkq

q ` rt̄px
T
pkq

qqq

matrix with the two blocks F
pt̄q
s for s “ 0, 1, where rt̄ is the rank of node

t̄ after truncation. Then for a non-leaf node t̄, the QR factorization of
ř1

s“0pF
pt̄lq
s b F

pt̄rq
s qB

pt̄q
s needs to be computed. This computation requires

multiplications using dgemm with matricizations of multidimensional data in-

volving B
pt̄q
s matrices for s “ 0, 1 as discussed in [202]. Finally, the transfer

matrix Bpt̄q “ Qpt̄qSpt̄q is computed using dormqr.
In [64], numerical experiments are performed on the availability and polling

models in Chapter 2 to observe how the memory requirements of the com-
pact solution vector in HTD format change over the course of iterations due
to the sequence of multiply, add, and truncate operations in each iteration,
together with the average time it takes to perform the iteration and the influ-
ence of the truncation error on the quality of the solution. To facilitate this,
the compact solution vector in HTD format is iteratively multiplied with the
uniformized generator matrix of the respective CTMC in Kronecker form un-
til a predetermined stopping criterion is met starting from an initial solution.
The same numerical experiment is performed with a full solution vector of
length equal to the reachable state space size, |R|, using the modified shuffle
algorithm. The two approaches are compared for their memory and timing
requirements, leading us to the conclusion that compact vectors in HTD for-
mat become relatively more memory efficient as the number of dimensions
increases.

In particular, we consider the following iteration steps of the power method
[17, 192, 305]

πpit`1q :“ πpitqP for it “ 0, . . . , maxit ´ 1

starting with the uniform distribution in πp0q, where

P :“ I ` ΔQ, Δ :“ 0.999{max
iPR

|qi,i|, (5.3)
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and maxit is the maximum number of iterations to be performed. The scalar
0.999 ensures a positive diagonal in P . The convergence rate of this method
is known to depend on the magnitude of the subdominant eigenvalue of P
[305]. Therefore, it is not the most efficient solution method for steady-state
analysis, a subject to which we return in Chapter 6 in the context of point
iterative methods. But, similar iteration steps can be applied in more ad-
vanced iterative methods, and they can be directly used in uniformization
[164, 169, 275], which is practically the simplest method to implement for
transient analysis [305]. We discuss this method and others in Chapter 7.

At iteration it where we compute the solution vector πpit`1q, the residual
vector and the error vector, respectively, satisfy

rpit`1q “ ´πpit`1qQ and epit`1q “ πpit`1q ´ πpitq. (5.4)

Note that it is possible to rewrite the error vector as epit`1q “ ´Δrpitq, the
negated scaled residual vector corresponding to the previous solution vector.
Hence, the 2–norm of the error at iteration it can be obtained after computing
the negated scaled residual at the previous iteration.

The parameters of the availability and polling models considered in the
experiments are given as follows. In the availability model in Figure 2.2 con-
sidered here, components are repaired by a global repair facility with preemp-
tive priority such that components from submodel 1 have the highest priority
and components from submodel H have the least priority, but there is no pri-
ority for repair among different components in the same submodel. The rates

are λ
phq

1 :“ 5 ˆ 10´4, λ
phq

2 :“ 4 ˆ 10´4, and λ
phq

3 :“ 10´4 for h “ 1, . . . , H,

μ
p1q

1 :“ 1, μ
p1q

2 :“ 2, μ
p1q

3 :“ 4, μ
phq

1 :“ 0.1, μ
phq

2 :“ 0.2, and μ
phq

3 :“ 0.4
for h “ 2, . . . , H. The polling model in Figure 2.5 considered here has state-
independent transition rates; there can be at most one customer being served
at a time in each queue and at most one server traveling at a time from each
queue to the next queue. The parameters are S :“ 2, Ch :“ 10, μh :“ 1,
γh :“ 10 for h “ 1, . . . , H, and

řH
h“1 λh :“ 1.5.

The 2–norm of the final error vector turns out to be the same for the full
and HTD representations. Due to the reduced memory requirements of the
HTD solution vector for larger values ofH, the compact representation results
in smaller iteration times when H increases. Ranks of the different matrices
forming the HTD of the solution vector in the availability model with different
values of H are inspected for trunc tol :“ 10´8 and maxit :“ 1,000. It is
seen that the ranks of the matrices in HTD format remain moderate across
iterations. The memory allocated to the matrices and the workspace to carry
out the HTD computation is fairly small. The matrices stored in the HTD
format are quite dense such that their sparse storage is not required.



Chapter 6

Steady-State Analysis

Classical iterative methods for the solution of a linear system of equations as
in (1.3) start with an initial approximation. At each iteration, they modify
the entries of the current approximation in a particular way to obtain a new
approximation with the objective that the approximations eventually con-
verge to the true solution [168, 280]. These methods are the building blocks
of all advanced iterative methods and can be expressed through the multi-
plication of the current solution vector at a given iteration with a particular
matrix that can be obtained at the outset by splitting the coefficient matrix
of the linear system [305, 322], which is Q in our setting. Therefore, we be-
gin by splitting the smaller matrices that form the Kronecker products as in
[315] and show how classical iterative methods can be formulated in terms of
these smaller matrices. We present block versions of the methods since point
versions follow from the block versions by considering blocks of order one.

We continue the discussion with projection (or Krylov subspace) methods
for MCs based on Kronecker products in which approximate solutions sat-
isfying various constraints are extracted from small dimensional subspaces
[17, 278, 305]. Being iterative, their basic operation is also vector–Kronecker
product multiplication. However, compared to block iterative methods, they
require a larger number of supplementary vectors of length equal to the reach-
able state space size. But, more importantly they need to be used with pre-
conditioners to result in effective solvers. Fortunately, the first term of the
splitting associated with block iterative methods can be used as precondi-
tioner [60].

In [43, 49, 50, 52], aggregation–disaggregation steps are coupled with var-
ious iterative methods for MCs based on Kronecker products to accelerate
convergence. An iterative aggregation–disaggregation (IAD) method for MCs
based on Kronecker products and its adaptive version, which analyzes aggre-
gated systems for those parts where the error is estimated to be high, are
proposed in [47] and [48], respectively. The adaptive IAD method in [48] is
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improved in [53] through a recursive definition and called multilevel (ML).
Here, we present this simple ML method and then discuss a class of ML
methods based on it which are shown to be quite effective [59, 61] in solving
a large number of problems in the literature. ML methods can easily use iter-
ative methods based on splittings at each level before aggregation and after
disaggregation.

Matrix analytic methods are geared toward MCs having state spaces that
can be partitioned into subsets called levels. For such MCs, the transition
matrix when symmetrically permuted according to increasing level number
should also have a particular nonzero structure, such as block tridiagonal
or block Hessenberg. For instance, the well-known quasi-birth-and-death pro-
cesses (QBDs) fall under the class of processes which lend themselves to
steady-state analysis with matrix analytic methods. In this context, matrix
analytic methods are those for which equations involving matrices are set up
and solutions are expressed in terms of matrices [166]. These methods were
originally proposed [251, 252] for processes with PH distributions and then
improved over the years [32, 166, 214]. They characterize the solution by ma-
trices having stochastic interpretations and sizes determined by the number
of states within levels. Here, we consider CTMCs and concentrate on the class
of level-dependent QBDs (LDQBDs). We show how the systems of stochastic
chemical kinetics modeled using Kronecker products can be expressed as infi-
nite LDQBDs, and analyzed for their steady-state with the help of Lyapunov
functions. In passing, we remark that the concept of level introduced here
has nothing to do with the level concept introduced during the discussion of
iterative solution methods.

Decompositonal iterative methods compute steady-state solutions by de-
composing a model into its submodels, analyzing the submodels individually
for their steady-state, and putting back the individual solutions together in
an iterative computational framework. As such, they may aim at obtaining
the steady-state solution exactly up to computer precision, approximatively
when a few digits of accuracy is sufficient, or within upper and lower bounds.
Methods of the first two kinds are discussed on the simple availability model
in Example 1 [15] and a class of closed queueing networks [104].

Finally, we describe how compact solution vectors in HTD format can
be used in the analysis of point iterative methods and projection methods
following the recent results in [64, 66].

6.1 Block Iterative Methods

We begin by splitting submodel transition matrices into three terms as in

Q
phq

k “ D
phq

k ` U
phq

k ` L
phq

k for k P K and h “ 1, . . . , H , (6.1)
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where D
phq

k , U
phq

k , and L
phq

k are respectively the diagonal, strictly upper-

triangular, and strictly lower-triangular parts of Q
phq

k . Observe that D
phq

k ě 0,

U
phq

k ě 0, and L
phq

k ě 0 since Q
phq

k ě 0.
Now, let us denote the off-diagonal part of Q in (2.10) as

QO “ Q ´ QD so that QOpp, wq “
ÿ

kPKp,w

Qkpp, wq, (6.2)

where

Qkpp, wq “ αk

H
â

h“1

Q
phq

k pRphq
p ,Rphq

p q for p, w “ 0, . . . , N ´ 1 .

Observe that QOpp, wq for p ą w is in the strictly block lower-triangular part
of QO, while QOpp, wq for p ă w is in the strictly block upper-triangular
part of QO. Hence, all that needs to be done is to provide block splittings of
QOpp, pq for p “ 0, . . . , N ´ 1.

Using Lemma A.8 in [315], which rests on the associativity of Kronecker
product and the distributivity of Kronecker product over matrix addition, it
is possible to express diagonal block QOpp, pq in QO at level l “ 0, . . . , H
using (6.1) as

QOpp, pq “ Qpp, pqUplq ` Qpp, pqLplq ` Qpp, pqDUplq ` Qpp, pqDLplq , (6.3)

where

Qpp, pqUplq “
ÿ

kPKp,p

l
ÿ

h“1

αk

˜

h´1
â

h1“1

D
ph1

q

k pRph1
q

p ,Rph1
q

p q

¸

b U
phq

k pRphq
p ,Rphq

p q

b

˜

H
â

h1“h`1

Q
ph1

q

k pRph1
q

p ,Rph1
q

p q

¸

, (6.4)

Qpp, pqLplq “
ÿ

kPKp,p

l
ÿ

h“1

αk

˜

h´1
â

h1“1

D
ph1

q

k pRph1
q

p ,Rph1
q

p q

¸

b L
phq

k pRphq
p ,Rphq

p q

b

˜

H
â

h1“h`1

Q
ph1

q

k pRph1
q

p ,Rph1
q

p q

¸

(6.5)

correspond, respectively, to the strictly block upper- and block lower-triangular
parts of QOpp, pq at level l, and

Qpp, pqDUplq “
ÿ

kPKp,p

H
ÿ

h“l`1

αk

˜

h´1
â

h1“1

D
ph1

q

k pRph1
q

p ,Rph1
q

p q

¸

b U
phq

k pRphq
p ,Rphq

p q

b

˜

H
â

h1“h`1

Q
ph1

q

k pRph1
q

p ,Rph1
q

p q

¸

, (6.6)
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Qpp, pqDLplq “
ÿ

kPKp,p

H
ÿ

h“l`1

αk

˜

h´1
â

h1“1

D
ph1

q

k pRph1
q

p ,Rph1
q

p q

¸

b L
phq

k pRphq
p ,Rphq

p q

b

˜

H
â

h1“h`1

Q
ph1

q

k pRph1
q

p ,Rph1
q

p q

¸

. (6.7)

correspond, respectively, to the strictly upper- and strictly lower-triangular
parts of the block diagonal of QOpp, pq at level l. Observe that Qpp, pqUplq ě 0,
Qpp, pqLplq ě 0, Qpp, pqDUplq ě 0, and Qpp, pqDLplq ě 0. Furthermore, we
remark that l “ 0 implies QOpp, pq is a single block for which Qpp, pqUp0q “

Qpp, pqLp0q “ 0, whereas l “ H corresponds to a point-wise partitioning of
QOpp, pq for which Qpp, pqDUpHq “ Qpp, pqDLpHq “ 0. Hence, for iterative
methods based on block partitionings l “ 1, . . . , H ´ 1 should be used. In
passing to an example, we remark that in a non-Kronecker setting, one could
obtain block partitionings of Q as discussed in [78, 123, 253]. Here, it is the
Kronecker structure of Q that suggests suitable block partitionings.

Example 2. (ctnd.) Consider the block partitioning of our problem at level 0
for which l “ 0 and QO is viewed as a p4 ˆ 4q block matrix with four blocks,
respectively, of order 4, 2, 4, and 2 along the diagonal. Then for p “ 0, 1, 2, 3
from (6.4) and (6.5), we have

Qpp, pqUp0q “ 0 , Qpp, pqLp0q “ 0 , Qpp, pqUp0q ` Qpp, pqLp0q “ 0 ,

whereas from (6.6) and (6.7), we have

Qpp, pqDUp0q“
ÿ

kPKp,p

αk

´

U
p1q

k pRp1q
p ,Rp1q

p q b Q
p2q

k pRp2q
p ,Rp2q

p q b Q
p3q

k pRp3q
p ,Rp3q

p q

`D
p1q

k pRp1q
p ,Rp1q

p q b U
p2q

k pRp2q
p ,Rp2q

p q b Q
p3q

k pRp3q
p ,Rp3q

p q

`D
p1q

k pRp1q
p ,Rp1q

p q b D
p2q

k pRp2q
p ,Rp2q

p q b U
p3q

k pRp3q
p ,Rp3q

p q

¯

,

Qpp, pqDLp0q“
ÿ

kPKp,p

αk

´

L
p1q

k pRp1q
p ,Rp1q

p q b Q
p2q

k pRp2q
p ,Rp2q

p q b Q
p3q

k pRp3q
p ,Rp3q

p q

`D
p1q

k pRp1q
p ,Rp1q

p q b L
p2q

k pRp2q
p ,Rp2q

p q b Q
p3q

k pRp3q
p ,Rp3q

p q

`D
p1q

k pRp1q
p ,Rp1q

p q b D
p2q

k pRp2q
p ,Rp2q

p q b L
p3q

k pRp3q
p ,Rp3q

p q

¯

,

Qpp, pqDUp0q ` Qpp, pqDLp0q “ QOpp, pq .

Now consider the block partitioning of the problem at level 1 for which
l “ 1 and QOp0, 0q is viewed as a p2ˆ 2q block matrix with blocks of order 2,
QOp1, 1q is viewed as a p1ˆ 1q block matrix with a block of order 2, QOp2, 2q

is viewed as a p2 ˆ 2q block matrix with blocks of order 2, and QOp3, 3q is
viewed as a p2ˆ 2q block matrix with blocks of order 1 (see Table 2.1). Then
from (6.4) and (6.5), we have
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Qpp, pqUp1q “
ÿ

kPKp,p

αkU
p1q

k pRp1q
p ,Rp1q

p q b Q
p2q

k pRp2q
p ,Rp2q

p q b Q
p3q

k pRp3q
p ,Rp3q

p q ,

Qpp, pqLp1q “
ÿ

kPKp,p

αkL
p1q

k pRp1q
p ,Rp1q

p q b Q
p2q

k pRp2q
p ,Rp2q

p q b Q
p3q

k pRp3q
p ,Rp3q

p q .

Consequently,

Qp0, 0qUp1q ` Qp0, 0qLp1q “

¨

˚

˚

˝

λ1

λ1

μ1

μ1

˛

‹

‹

‚

, Qp1, 1qUp1q ` Qp1, 1qLp1q “ 0,

Qp2, 2qUp1q ` Qp2, 2qLp1q “

¨

˚

˚

˝μ1

μ1

˛

‹

‹

‚

, and

Qp3, 3qUp1q ` Qp3, 3qLp1q “

ˆ

μ1

˙

,

whereas from (6.6) and (6.7), we have

Qpp, pqDUp1q“
ÿ

kPKp,p

αk

´

D
p1q

k pRp1q
p ,Rp1q

p q b U
p2q

k pRp2q
p ,Rp2q

p q b Q
p3q

k pRp3q
p ,Rp3q

p q

` D
p1q

k pRp1q
p ,Rp1q

p q b D
p2q

k pRp2q
p ,Rp2q

p q b U
p3q

k pRp3q
p ,Rp3q

p q

¯

,

Qpp, pqDLp1q“
ÿ

kPKp,p

αk

´

D
p1q

k pRp1q
p ,Rp1q

p q b L
p2q

k pRp2q
p ,Rp2q

p q b Q
p3q

k pRp3q
p ,Rp3q

p q

` D
p1q

k pRp1q
p ,Rp1q

p q b D
p2q

k pRp2q
p ,Rp2q

p q b L
p3q

k pRp3q
p ,Rp3q

p q

¯

.

Consequently,

Qp0, 0qDUp1q ` Qp0, 0qDLp1q “

¨

˚

˚

˝

2λ3

μ3

2λ3

μ3

˛

‹

‹

‚

,

Qp1, 1qDUp1q ` Qp1, 1qDLp1q “

ˆ

μ3

˙

,

Qp2, 2qDUp1q ` Qp2, 2qDLp1q “

¨

˚

˚

˝

μ3

μ3

˛

‹

‹

‚

, and

Qp3, 3qDUp1q ` Qp3, 3qDLp1q “ 0 .
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Finally, consider the block partitioning of the same example at level 2 for
which l “ 2. Then from (6.4) and (6.5), we have

Qpp, pqUp2q“
ÿ

kPKp,p

αk

´

U
p1q

k pRp1q
p ,Rp1q

p q b Q
p2q

k pRp2q
p ,Rp2q

p q b Q
p3q

k pRp3q
p ,Rp3q

p q

`D
p1q

k pRp1q
p ,Rp1q

p q b U
p2q

k pRp2q
p ,Rp2q

p q b Q
p3q

k pRp3q
p ,Rp3q

p q

¯

,

Qpp, pqLp2q“
ÿ

kPKp,p

αk

´

L
p1q

k pRp1q
p ,Rp1q

p q b Q
p2q

k pRp2q
p ,Rp2q

p q b Q
p3q

k pRp3q
p ,Rp3q

p q

`D
p1q

k pRp1q
p ,Rp1q

p q b L
p2q

k pRp2q
p ,Rp2q

p q b Q
p3q

k pRp3q
p ,Rp3q

p q

¯

,

whereas from (6.6) and (6.7), we have

Qpp, pqDUp2q“
ÿ

kPKp,p

αkD
p1q

k pRp1q
p ,Rp1q

p q b D
p2q

k pRp2q
p ,Rp2q

p q b U
p3q

k pRp3q
p ,Rp3q

p q,

Qpp, pqDLp2q“
ÿ

kPKp,p

αkD
p1q

k pRp1q
p ,Rp1q

p q b D
p2q

k pRp2q
p ,Rp2q

p q b L
p3q

k pRp3q
p ,Rp3q

p q.

Note that at this level, as in l “ 1, for this particular example QOp0, 0q is
viewed as a p2ˆ2q block matrix with blocks of order 2, QOp1, 1q is viewed as
a p1ˆ 1q block matrix with a block of order 2, QOp2, 2q is viewed as a p2ˆ 2q

block matrix with blocks of order 2, and QOp3, 3q is viewed as a p2ˆ2q block
matrix with blocks of order 1 (see Table 2.1). Hence,

Qp0, 0qUp2q ` Qp0, 0qLp2q “ Qp0, 0qUp1q ` Qp0, 0qLp1q ,

Qp1, 1qUp2q ` Qp1, 1qLp2q “ Qp1, 1qUp1q ` Qp1, 1qLp1q “ 0,

Qp2, 2qUp2q ` Qp2, 2qLp2q “ Qp2, 2qUp1q ` Qp2, 2qLp1q ,

Qp3, 3qUp2q ` Qp3, 3qLp2q “ Qp3, 3qUp1q ` Qp3, 3qLp1q ,

Qp0, 0qDUp2q ` Qp0, 0qDLp2q “ Qp0, 0qDUp1q ` Qp0, 0qDLp1q ,

Qp1, 1qDUp2q ` Qp1, 1qDLp2q “ Qp1, 1qDUp1q ` Qp1, 1qDLp1q ,

Qp2, 2qDUp2q ` Qp2, 2qDLp2q “ Qp2, 2qDUp1q ` Qp2, 2qDLp1q ,

Qp3, 3qDUp2q ` Qp3, 3qDLp2q “ Qp3, 3qDUp1q ` Qp3, 3qDLp1q “ 0.

At l “ 3, diagonal blocks QOp0, 0q, QOp1, 1q, QOp2, 2q, and QOp3, 3q of
QO are, respectively, p4ˆ 4q, p2ˆ 2q, p4ˆ 4q, and p2ˆ 2q block matrices with
blocks of order 1.

Now, let Q in (2.10) be irreducible and split at level l using (6.3) as

Q “ QO ` QD “ QUplq ` QLplq ` QDUplq ` QDLplq ` QD “ M ´ W , (6.8)

where
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QUplq “

¨

˚

˚

˚

˝

Qp0, 0qUplq Qp0, 1q ¨ ¨ ¨ Qp0, N ´ 1q

Qp1, 1qUplq ¨ ¨ ¨ Qp1, N ´ 1q

. . .
...

QpN ´ 1, N ´ 1qUplq

˛

‹

‹

‹

‚

is the strictly block upper-triangular part of QO at level l,

QLplq “

¨

˚

˚

˚

˝

Qp0, 0qLplq

...
. . .

QpN ´ 2, 0q ¨ ¨ ¨ QpN ´ 2, N ´ 2qLplq

QpN ´ 1, 0q ¨ ¨ ¨ QpN ´ 1, N ´ 2q QpN ´ 1, N ´ 1qLplq

˛

‹

‹

‹

‚

is the strictly block lower-triangular part of QO at level l,

QDUplq “

¨

˚

˝

Qp0, 0qDUplq

. . .

QpN ´ 1, N ´ 1qDUplq

˛

‹

‚

is the strictly upper-triangular part of the block diagonal of QO at level l,

QDLplq “

¨

˚

˝

Qp0, 0qDLplq

. . .

QpN ´ 1, N ´ 1qDLplq

˛

‹

‚

is the strictly lower-triangular part of the block diagonal of QO at level l, and
M is nonsingular (i.e., M´1 exists).

Then power, block Jacobi over-relaxation (BJOR), and block successive
over-relaxation (BSOR) methods are based on different splittings of Q [322],
and each method is in the form

πpit`1q :“ πpitqT for it “ 0, . . . , maxit ´ 1

with the sequence of approximations πpit`1q to the steady-state vector π

in (1.3), where πp0q P R
1ˆ|R|

ą0 is the initial approximation such that πp0qe “ 1
and

T “ WM´1

is the iteration matrix.
Note that T does not change from iteration to iteration, and only the cur-

rent approximation πpitq is used to compute the new approximation πpit`1q.
Hence, these methods based on splittings of the coefficient matrix are also
known as stationary iterative methods. Since Q is a singular matrix and as-
sumed to be irreducible, the largest eigenvalue [158, 242] of T in magnitude
is 1, that is, the spectral radius of T , ρpT q, is equal to 1. In order to ensure
convergence, T should not have other eigenvalues with magnitude 1, that is,
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T should be aperiodic. For a converging iteration, the magnitude of the eigen-
value of T closest to 1, that is, its subdominant eigenvalue, determines the
rate of convergence [17, 30, 229, 305, 322]. When the subdominant eigenvalue
of T is close to 1 in magnitude, slow convergence is witnessed.

Given a DTMC with one-step transition probability matrix P such that

P P R
|R|ˆ|R|

ě0 and Pe “ e [194, 305], one can conceive of block iterative
methods for Q “ P ´ I as those defined by (6.8) to compute the steady-state
vector π which satisfies

πP “ π, πe “ 1. (6.9)

In practice, an explicit inversion of M does not take place. Instead, at
iteration it, one solves the consistent linear system

πpit`1qM “ πpitqW

with coefficient matrix M for the unknown vector πpit`1q using the right-
hand side vector πpitqW . The iteration stops if the norm of the error vector
(or alternatively, the norm of the residual vector) (see (5.4)) is less than a
prespecified tolerance, stop tol, a run time limit, time limit, is reached,
or a maximum number of iterations, maxit, is performed. Otherwise, the
iteration number it is incremented and the iteration continues.

The particular splittings corresponding to power, BJOR, and (forward)
BSOR methods are

MPower
“ ´ΓI ,

WPower
“ ´Γ

ˆ

I `
1

Γ
Q

˙

,

MBJOR
“

1

ω
pQD ` QDUplq ` QDLplqq ,

WBJOR
“

1 ´ ω

ω
pQD ` QDUplq ` QDLplqq ´ QUplq ´ QLplq ,

MBSOR
“

1

ω
pQD ` QDUplq ` QDLplqq ` QUplq ,

WBSOR
“

1 ´ ω

ω
pQD ` QDUplq ` QDLplqq ´ QLplq ,

where Γ P rmaxiPR |qDpi, iq|,8q is the uniformization parameter of power
method and ω P p0, 2q is the relaxation parameter of BJOR and BSOR meth-
ods. Here, forward iteration refers to computing unknowns ordered toward
the beginning of the reachable state space earlier than unknowns ordered
later in the reachable state space. Power method works at level l “ H since
it is a point method. Furthermore, BJOR and BSOR reduce to block Jacobi
(BJacobi) and block Gauss–Seidel (BGS) methods for ω “ 1, and they be-
come point JOR and point SOR methods for l “ H. We remark that [173]
shows how one can find maxiPR |qDpi, iq| in the presence of functional tran-
sitions when QD is given as a sum of Kronecker products. It is possible to
use the same approach in each QDpp, pq for p “ 0, . . . , N ´ 1 when there are
multiple reachable state space partitions.
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When Q is irreducible and ω P p0, 1q, for JOR and SOR we have M´1,W P

R
|R|ˆ|R|

ě0 , ρpT q “ 1, T is irreducible and aperiodic. Hence, JOR and SOR
can be made to converge by choosing ω P p0, 1q. To avoid periodicity of
TGS for the point GS method, one can symmetrically permute Q such that
it is in block lower-Hessenberg form (i.e., Qpp, wq “ 0 if p ` 1 ă w) and
all subdiagonal blocks have at least one nonzero in each row with the last
diagonal block being p1ˆ 1q [96]. When Q is irreducible, TBJacobi and TBGS

satisfy M´1,W P R
|R|ˆ|R|

ě0 and ρpT q “ 1 is a simple eigenvalue [16, 230, 232,
233, 249].

Now, let us assume that T P R
|R|ˆ|R|

ě0 is irreducible, but periodic having
N 1 P Zą0 periodic classes, without loss of generality, as in

T “

¨

˚

˚

˚

˝

T p0, 1q

. . .

T pN 1 ´ 2, N 1 ´ 1q

T pN 1 ´ 1, 0q

˛

‹

‹

‹

‚

.

Note that N 1 “ 1 is the aperiodic case. BJacobi and BGS may yield a periodic
T with N 1 ą 1 when

Q “

¨

˚

˚

˚

˝

Qp0, 0q Qp0, 1q

. . .
. . .

QpN 1 ´ 2, N 1 ´ 2q QpN 1 ´ 2, N 1 ´ 1q

QpN 1 ´ 1, 0q QpN 1 ´ 1, N 1 ´ 1q

˛

‹

‹

‹

‚

.

An often overlooked result in this context is that when none of the diagonal
blocks of Q can be symmetrically permuted to block diagonal form, TBJacobi

and TBGS will have states of each partition in the same periodic class [87].
Researchers have looked into ways of avoiding periodicity of T and accelerat-
ing convergence. This is something to which we return in the next sections.

Since Q “ QO ` QD, power method at iteration it can be expressed as

πpit`1q :“ πpitq `
1

Γ

`

πpitqQD ` πpitqQO

˘

. (6.10)

Observe that the second term in (6.10) poses no problem from a computa-
tional point of view since QD is diagonal, and the third term can be efficiently
implemented using the vector–Kronecker product multiplication algorithm
since QO is expressed using sums of Kronecker products (see (6.2)).

The BJOR method with a level l block partitioning at iteration it satisfies

πpit`1qpQD ` QDUplq ` QDLplqq

“ p1 ´ ωq
`

πpitqQD ` πpitqQDUplq ` πpitqQDLplq

˘

(6.11)

´ω
`

πpitqQUplq ` πpitqQLplq

˘

.
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This is a block diagonal linear system with nonsingular coefficient matrix
pQD ` QDUplq ` QDLplqq and a nonzero right-hand side which can be ef-
ficiently computed using the vector–Kronecker product multiplication al-
gorithm, since QUplq, QLplq, QDUplq, and QDLplq are expressed using sums
of Kronecker products (see (6.4), (6.5), (6.6), and (6.7)). In particular,

there are
śl

h“1 |Rphq
p | blocks of order

śH
h“l`1 |Rphq

p | along the diagonal of
QDpp, pq ` Qpp, pqDUplq ` Qpp, pqDLplq for p “ 0, . . . , N ´ 1. Hence, (6.11)

is equivalent to
řN´1

p“0

śl
h“1 |Rphq

p | independent, nonsingular linear systems
with nonzero right-hand sides where the linear systems with coefficient matri-

ces in QDpp, pq `Qpp, pqDUplq `Qpp, pqDLplq are each of order
śH

h“l`1 |Rphq
p |.

If there is space, one can generate and factorize in sparse storage the nonsin-
gular blocks of the form

Qppi1, . . . , ilq, pi1, . . . , ilqq“
ÿ

kPKp,p

αk

˜

l
ź

h“1

q
phq

k pih, ihq

¸ ˜

H
â

h“l`1

Q
phq

k pRphq
p ,Rphq

p q

¸

` QDppi1, . . . , ilq, pi1, . . . , ilqq for pi1, . . . , ilq P

l
ą

h“1

Rphq
p and p “ 0, . . . , N´1

(6.12)
along the diagonal (see (2.4)) of pQD ` QDUplq ` QDLplqq at the outset and

solve the
řN´1

p“0 |
Śl

h“1 R
phq
p | systems directly at each iteration. Otherwise,

one can use an iterative method, even a block iterative method, such as
BJOR, since the off-diagonal parts of diagonal blocks given by

ÿ

kPKp,p

αk

˜

l
ź

h“1

q
phq

k pih, ihq

¸ ˜

H
â

h“l`1

Q
phq

k pRphq
p ,Rphq

p q

¸

are sums of Kronecker products.
The situation with the BSOR method is not very different from that of

BJOR. For BSOR with a level l block partitioning, at iteration it, we have

πpit`1qpQD ` QDUplq ` QDLplq ` ωQUplqq (6.13)

“ p1 ´ ωq
`

πpitqQD ` πpitqQDUplq ` πpitqQDLplq

˘

´ ωπpitqQLplq .

This is a block upper-triangular linear system with the nonsingular coeffi-
cient matrix pQD `QDUplq `QDLplq `ωQUplqq and a nonzero right-hand side
which can be efficiently computed using the vector–Kronecker product multi-
plication algorithm, since QLplq, QDUplq, and QDLplq are expressed using sums

of Kronecker products. In particular, there are
śl

h“1 |Rphq
p | blocks of order

śH
h“l`1 |Rphq

p | along the diagonal of QDpp, pq `Qpp, pqDUplq `Qpp, pqDLplq `

ωQpp, pqUplq for p “ 0, . . . , N ´ 1. In [315], a recursive algorithm is given for
a nonsingular linear system with a lower-triangular coefficient matrix in the
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form of a sum of Kronecker products and a nonzero right-hand side. Such a
system arises in backward SOR. Therein, a version of the same algorithm for
backward BSOR is also discussed. Here we remark that a non-recursive block
upper-triangular solution algorithm for (6.13) is also possible [58] and a block
row-oriented version is preferable in the presence of functional transitions as
in Algorithm 6.

Observe in Algorithm 6 that initially the nonzero right-hand side subvector
bpRpq can be efficiently computed using the vector–Kronecker product mul-
tiplication algorithm, since QLplq, QUplq, QDLplq, and QDUplq are expressed
using sums of Kronecker products. Furthermore, Qppi1, . . . , ilq, pi1, . . . , ilqq

for pi1, . . . , ilq P
Śl

h“1 R
phq
p and p “ 0, . . . , N ´ 1 is given in (6.12) in

terms of a sum of Kronecker products, and Qppi1, . . . , ilq, pj1, . . . , jlqq for

pj1, . . . , jlq P
Śl

h“1 R
phq
p and pj1, . . . , jlq ą pi1, . . . , ilq can be expressed in

terms of a sum of Kronecker products using (6.4) as

Qppi1, . . . , ilq, pj1, . . . , jlqq

“
ÿ

kPKp,p

αk

l
ÿ

h“1

˜

h´1
ź

h1“1

d
ph1

q

k pih1 , ih1 q

¸

u
phq

k pih, jhq

˜

l
ź

h1“h`1

q
ph1

q

k pih1 , jh1 q

¸

˜

H
â

h1“l`1

Q
ph1

q

k pRphq
p ,Rphq

p q

¸

.

Algorithm 6. Non-recursive block upper-triangular solution at level l in
iteration it of BSOR for MCs based on Kronecker products.

For reachable state space partition p :“ 0, . . . , N ´ 1,
bpRpq :“ p1 ´ ωq

`

πpitqpRpqQDpp, pq ` πpitqpRpqQpp, pqDUplq

`πpitqpRpqQpp, pqDLplq

˘

´ω
´

πpitqpRpqQpp, pqLplq `
řN´1

w“p`1 πpitqpRwqQpw, pq

`
řp´1

w“0 πpit`1qpRwqQpw, pq

¯

;

For row of blocks pi1, . . . , ilq P
Śl

h“1 R
phq
p lexicographically,

Solve πpit`1qppi1, . . . , ilqqQppi1, . . . , ilq, pi1, . . . , ilqq “ bppi1, . . . , ilqq;

For column of blocks pj1, . . . , jlq P
Śl

h“1 R
phq
p

such that pj1, . . . , jlq ą pi1, . . . , ilq,
bppj1, . . . , jlqq :“ bppj1, . . . , jlqq

´ωπpit`1qppi1, . . . , ilqqQppi1, . . . , ilq, pj1, . . . , jlqq.

To the contrary of BJOR, the nonsingular diagonal blocks Qppi1, . . . , ilq,
pi1, . . . , ilqq in BSOR must be solved in lexicographical order. If there is space,
one can generate and factorize in sparse storage these blocks as in BJOR at

the outset and solve the
řN´1

p“0

śl
h“1 |Rphq

p | systems directly at each iteration.
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Otherwise, one can use an iterative method such as BSOR, since the off-
diagonal parts of diagonal blocks are also sums of Kronecker products. After
each block is solved for the unknown subvector πpit`1qppi1, . . . , ilqq, bpRpq is
updated by multiplying the computed subvector with the corresponding row
of blocks above the diagonal.

Note that when N “ 1, hence, p “ 0, the two summations on the right-
hand side of bpRpq in Algorithm 6 disappear, and since there is a single
reachable state space partition in this case, R0 can be dropped from the ar-
gument lists of πpitq and b; furthermore, Qp0, 0qLplq becomes QLplq, implying
the fourth term on the right-hand side of b reduces to ´ωπpitqQLplq as in
Algorithm 2 of [101]. Finally, we emphasize that BSOR at level l reduces to
SOR if QDLplq “ 0 (see Remark 4.1 in [315]).

The block iterative solvers, which are sometimes called two-level (or two-
stage) iterative solvers [243], discussed in this section are coded within the
NSolve package of the APNN toolbox [7, 22]. These solvers are shown to be
more effective than point solvers on many test cases [58, 315]. Furthermore, to
the contrary of block partitionings considered in [123] for sparse MCs, block
partitionings of Kronecker products are nested and recursive due to the lex-
icographical ordering of states. Therefore, there tends to be more common
structure among the diagonal blocks of the transition matrix of a MC ex-
pressed using sums of Kronecker products. Diagonal blocks having identical
off-diagonal parts and diagonals which differ by a multiple of the identity
[58] are exploited as discussed in Section 4.3. Such diagonal blocks can share
and work with the real Schur factorization of only one diagonal block. This
approach saves not only from time spent for factorization of diagonal blocks
at the outset but also from space. The work in [58] also considers a three-level
version of BSOR for MCs based on Kronecker products in which the diago-
nal blocks that are too large to be factorized are solved using BSOR. Similar
results also appear in [172] for BGS. Finally, we remark that it is possible to
alter the nonzero structure of the transition matrix underlying the Kronecker
representation of a MC by reordering factors and states of factors so as to
make it more suitable for block iterative methods. Power and JOR methods
do not benefit from such reordering since the subdominant eigenvalues of
their iteration matrices remain the same.

There are also Schwarz methods, which can be considered as a general-
ization of block iterative methods based on splittings in which the parti-
tioning of the reachable state space R into N 1 subsets has overlaps (i.e.,
ŤN 1

´1
p“0 Gp “ R and Gp X Gw ‰ H for p ‰ w). Their additive versions [42]

become BJOR, and their multiplicative versions become BSOR when the
overlaps are removed. Schwarz methods tend to accelerate the convergence
of the corresponding block iterative methods, the amount of acceleration de-
pending on the amount of overlap [234]. These methods are yet to be used
with Kronecker-based Markovian representations.

The next section discusses various preconditioners to be used with projec-
tion methods for MCs based on Kronecker products.
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6.2 Preconditioned Projection Methods

Projection methods for MCs [17, 123, 278, 305] are non-stationary iterative
methods [168, 280] using a larger number of supplementary vectors than
block iterative methods to expedite the solution process. The most commonly
used projection methods for the solution of nonsymmetric linear systems are
bi-conjugate gradient (BCG) [140], generalized minimal residual (GMRES)
[281], conjugate gradient squared (CGS) [299], quasi-minimal residual (QMR)
[149], and bi-conjugate gradient stabilized (BICGSTAB) [317]. Among these,
GMRES uses as many supplementary vectors as the Krylov subspace [168,
280] size and therefore has the highest memory requirements.

Projection methods need to be used with preconditioners [28] to result in
effective solvers. At each iteration of a preconditioned projection method, the
row residual vector, r, is used as the right-hand side of the linear system

zM “ r (6.14)

to compute the preconditioned row residual vector, z. The objective of this
preconditioning step is to improve the error in the approximate solution vec-
tor at that iteration. Note that if M were a multiple of I (as in (6.10)),
the preconditioned residual would be a multiple of the residual computed at
that iteration, implying no improvement. Hence, the preconditioner should
approximate the coefficient matrix of the original system in a better way, yet
the solution of linear systems as in (6.14) involving the preconditioner matrix,
M , should be cheap. It is shown in [123] through a large number of numerical
experiments on benchmark problems that, to result as effective solvers, pro-
jection methods for sparse MCs should be used with preconditioners, such
as those based on incomplete LU (ILU) factorizations [123, 279] or explicit
approximate inverses (AINV) [29]. However, it is still not clear how one can
devise ILU- or AINV-type preconditioners for infinitesimal generators that
are in the form of (2.10).

So far, various preconditioners are proposed for Kronecker structured rep-
resentations such as those based on truncated Neumann series [305, 307], the
cheap and separable preconditioner [50], circulant preconditioners for a spe-
cific class of problems [76], and the Kronecker sum preconditioner [312] which
has been shown to work effectively on some small problems. The Kronecker
product approximate preconditioner for MCs based on Kronecker products
developed in a sequence of papers [210, 211, 212], although encouraging,
is in the form of a prototype implementation. Numerical experiments in
[50, 52, 211, 212, 307] indicate that there is still room for research regard-
ing the development of effective preconditioners for MCs based on Kronecker
products.

In introducing another class of preconditioners, we remark that each of the
block iterative methods introduced in this work is actually a preconditioned
power method for which the preconditioning matrix is M in (6.8). Since
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M is based on Kronecker products, a BSOR preconditioner exploiting this
property is proposed in [60]. To the contrary of the BSOR preconditioner
entertained for sparse MCs in [123], the BSOR preconditioner for MCs based
on Kronecker products has a rich structure induced by the lexicographical
ordering of states. We provide the BSOR preconditioning step (6.14) using
MBSOR at level l for MCs based on Kronecker products in Algorithm 7. You
will notice its resemblance to the BSOR iteration it at level l for MCs based
on Kronecker products in Algorithm 6.

Projection methods and their preconditioned versions discussed in this
section are coded within the NSolve package of the APNN toolbox [7, 22].
Through numerical experiments, it is shown in [60] that two-level BSOR
preconditioned projection methods in which the diagonal blocks are solved
exactly emerge as effective solvers that are competitive with block iterative
methods and ML methods.

Algorithm 7. BSOR preconditioning step at level l for MCs based on Kro-
necker products.

For reachable state space partition p :“ 0, . . . , N ´ 1,

bpRpq :“ rpRpq ´
řp´1

w“0 zpRwqQpw, pq;

For row of blocks pi1, . . . , ilq P
Śl

h“1 R
phq
p lexicographically,

Solve zppi1, . . . , ilqqQppi1, . . . , ilq, pi1, . . . , ilqq “ bppi1, . . . , ilqq;
If ω ‰ 1,

zppi1, . . . , ilqq :“ ωzppi1, . . . , ilqq;

For column of blocks pj1, . . . , jlq P
Śl

h“1 R
phq
p

such that pj1, . . . , jlq ą pi1, . . . , ilq,
bppj1, . . . , jlqq :“ bppj1, . . . , jlqq

´zppi1, . . . , ilqqQppi1, . . . , ilq, pj1, . . . , jlqq.

It will be interesting to compare JOR, BJOR, and SOR preconditioners
as defined in (6.11) and (6.13) with existing preconditoners for MCs based
on Kronecker products. Clearly, the class of ML methods proposed in [59] is
another candidate for preconditioning projection methods.

In the next section, we introduce a simple version of the ML method
[53, 59] for irreducible MCs based on Kronecker products which is intimately
related to the well-known IAD method [74, 200, 305], but is not restricted to
having two levels. A class of ML methods are then discussed in terms of the
simple ML method.

6.3 Multilevel Methods

One of the most effective methods for computing the steady-state vector when
the transition matrix of the MC is large and sparse is iterative aggregation–
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disaggregation (IAD). To be able to use IAD, a partitioning of the reachable
state space as in

R “

N 1
´1

ď

p“0

Gp, Gp X Gw “ H for p ‰ w, (6.15)

and a function f : R ÞÑ N 1 with N 1 “ t0, . . . , N 1 ´ 1u that maps the detailed
subset of states Gp to the coarser state tpu for p “ 0, . . . , N 1 ´ 1 needs to be
identified up to a reordering and renumbering of the states.

Originally the IAD method [289] is devised for DTMCs. For a CTMC, the
uniformized generator matrix P in (5.3) (cf. (1.2)) for steady-state analysis

may be considered. Given πp0q P R
1ˆ|R|

ą0 such that πp0qe “ 1, IAD proceeds
by performing computations at two different levels during iteration it. At
the coarse level, aggregation is performed by mapping Gp to tpu for p “

0, . . . , N 1 ´ 1, using πpitq to define the aggregated system of linear equations

zpitq Cπpitq “ zpitq, zpitqe “ 1,

where

Cπpitq “

¨

˚

˝

cπpitq p0, 0q ¨ ¨ ¨ cπpitq p0, N 1 ´ 1q

...
. . .

...
cπpitq pN 1 ´ 1, 0q ¨ ¨ ¨ cπpitq pN 1 ´ 1, N 1 ´ 1q

˛

‹

‚
,

and then the aggregated linear system is solved for zpitq P R
1ˆN 1

ą0 . To this end,
the aggregated (or coupling [241]) matrix Cπpitq needs to be an irreducible

and aperiodic transition probability matrix satisfying Cπpitq P R
N 1

ˆN 1

ě0 and
Cπpitqe “ e. At the fine level, through disaggregation and a splitting-based
iterative method, zpitq is used to compute a hopefully better solution πpit`1q.
The objective of IAD is to converge relatively fast to π with a reasonable
accuracy.

Now, let us recall a result mentioned in Section 6.1. When none of the
diagonal blocks in Q (for that matter, P ) can be symmetrically permuted to
block diagonal form, TBJacobi and TBGS will have states of each partition
in the same periodic class. A consequence of this often overlooked result is
that regardless of the periodicity of the iteration matrix T , if such a block
iteration is coupled with an aggregation step, global convergence of IAD is
guaranteed [87].

Here, global convergence refers to the fact that

lim
itÑ8

}πpitq ´ π} “ 0 for arbitrary πp0q P R
1ˆ|R|

ą0 .

This is a stronger result than local convergence which requires that

lim
itÑ8

}πpitq ´ π} “ 0 if πp0q P Ωpπq,

where Ωpπq is some neighborhood of π.
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For fast convergence, nearly completely decomposable (NCD) partitionings
are considered for DTMCs in [200, 309, 321], which are inspired by earlier
work [85, 295] related to NCDness. A block partitioning

P “ E ` diagpP p0, 0q, . . . , P pN 1
´ 1, N 1

´ 1qq

is said to be NCD if }E}1, that is, the degree of coupling, is relatively small
with respect to 1. NCD partitionings are frequently met in practice due to the
existence of different time scales in system models [308]. An NCD partitioning
for a user-specified decomposability parameter γ P p0, 1q can be obtained as
discussed in [97]. When the block partitioning is NCD, zpitq may need to
be computed with the help of the Grassmann–Taksar–Heyman (GTH) idea
[167, 293] which uses only positive floating-point arithmetic to achieve high
accuracy as shown in [121]. That NCD partitioning-based IAD with BGS as
the block iteration converges globally with convergence factor }E}1 (where
rate of convergence is the negated logarithm of convergence factor) [74, 237,
304] provides a very strong result for DTMCs. However, the block partitioning
suggested by the Kronecker form may not be NCD. Therefore, IAD methods
using non-NCD partitionings possibly with point iterative methods based on
splittings need to be considered [77, 176, 182, 204, 244, 246, 316, 325]. This
is something we investigate next so that it guides us in developing the ML
method for Kronecker-based Markovian representations.

The local convergence proof of an IAD method for nonnegative matrices
that uses the power method after disaggregation is provided in [221]. The par-
ticular IAD method computes the nonnegative solution vector of a problem
that is intimately related to (6.9), but has a nonnegative consistent right-

hand side vector, and for a given weight vector w P R
|R|ˆ1
ą0 , the weighted ith

row sum of the matrix at hand is less than wpiq for i “ 0, . . . , |R| ´ 1. The
local convergence result of the IAD method in [221] is extended to DTMCs
in [222] and to inexact solution of the aggregated system in [231].

The aggregation (or restriction) operator R P R
|R|ˆN 1

ě0 and the disaggrega-

tion (or prolongation) operator Sπpitq P R
N 1

ˆ|R|

ě0 used in the IAD method for
DTMCs are given entrywise in [224] as

rpi, pq “

"

wpiq if fpiq “ p
0 otherwise

,

sπpitq pp, iq “

#

πpitqpiq
ř

jPR, fpjq“p wpjqπpitqpjq
if fpiq “ p

0 otherwise

with a weight vector w P R
|R|ˆ1
ą0 as in [221] normally set to e.

The disaggregation operator Sπpitq depends on the current solution vector

πpitq P R
1ˆ|R|

ą0 and has the same nonzero structure as RT , implying

SπpitqR “ I.
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When πpitq P R
1ˆ|R|

ą0 , it is also possible to define the nonnegative projector

Bπpitq “ RSπpitq

which satisfies

B2
πpitq

“ Bπpitq , πpitqBπpitq “ πpitq, and Bπpitqw “ w.

In terms of the aggregation and disaggregation operators, the aggregation
step of IAD for DTMCs computes

Cπpitq :“ SπpitqPR

and solves for zpitq P R
1ˆN 1

ą0 in

zpitqCπpitq “ zpitq, zpitqe “ 1,

whereas the disaggregation step followed by one power iteration is given as

πpit`1q :“ zpitqSπpitqT with T “ P.

Amore general IAD method to compute the steady-state vector of DTMCs
is provided in [225]. The method therein is shown to be globally convergent if
a sufficiently high power of P is used in the aggregation step or a sufficiently
large number of power iterations are performed on P̂ “ 0.5pI ` P q after the
disaggregation step. This IAD method is investigated further in a sequence
of papers [223, 226] together with another intimately related IAD method
devised for the singular version of the problem with the right-hand side in
[221]. Letting

Π “ eπ

denote the square matrix with the steady-state vector π in its rows, that is,
the part of P that corresponds to the eigenvalue 1, and using the spectral
decomposition of P as in

P “ Π ` Z,

so that

Π2
“ Π, ΠZ “ ZΠ “ 0, ρpZq ă 1, and ΠpP ´ Iq “ 0,

it is shown that both IAD methods are locally convergent if a particular con-
vergent matrix (dependent on the nonnegative projector Bπpitq , the iteration
matrix T of the method used after disaggregation, and Z) exists. Further-
more, fast convergence of these IAD methods in one iteration is guaranteed
when off-diagonal blocks in the strictly block lower-triangular part of T are
outer products and therefore rank–1 [223].

The version of the IAD method with one power iteration taking place after
disaggregation is shown in [228] to be locally convergent for δ P p0, 1q with
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convergence factor p1 ´ δq when P ě δΠ, or with convergence factor
?
1 ´ δ

when P has at least one positive column with 1-norm δ. Note that the former
condition requires P ą 0; therefore, both conditions are difficult to meet in
practice. The same IAD method with P η2 used in the aggregation step, η1
power iterations (i.e., T “ P η1) after the disaggregation step, and η1 ě η2 is
globally convergent for δ P p0, 1q when

P η2 ě δΠ and η1 ě η2
lnδ ´ ln2

lnp1 ´ δq
.

We remark that since the power method is globally convergent for δ P p0, 1q

with convergence factor p1 ´ δq when P ě δΠ, the IAD method with one
power iteration taking place after disaggregation is not better than the power
method and, therefore, cannot be recommended. Furthermore, IAD methods
that are based on using powers of P during the aggregation step do not
seem to be feasible in a sparse setting due to new nonzeros that would be
introduced by this operation.

A class of IAD methods which use P in the aggregation step and a poly-
nomial of P as the iteration matrix T of the method after disaggregation is
considered in [269]. Therein, it is shown that IAD is locally convergent when
T “ P and ppi, iq ą 0 for i “ 0, . . . , |R| ´ 1, or when T “ αP ` p1 ´ αqI
for α P p0, 1q, implying T pi, iq ą 0 for i “ 0, . . . , |R| ´ 1. In the latter case,
the convergence factor is minimal for α P p0.5, 1q. In [270], the aperiodicity
of an irreducible transition probability matrix associated with the stochastic
complement [241] of Bπpitq pp, pqP pp, pq for p “ 0, . . . , N 1 ´ 1 is provided as
a necessary and sufficient condition for local convergence of IAD with one
power iteration after disaggregation. The convergence factor of IAD for sub-
vector p of π turns out to be the magnitude of the subdominant eigenvalue
of this matrix. Many other interesting results are derived from experiments
in [227, 271].

In the Kronecker-based representation of MCs, the partitioning (6.15) to
be used by the IAD method can very well correspond to the block partition-
ing (2.10) at level 0 for which N 1 “ N and Gp “ Rp for p “ 0, . . . , N ´ 1
when there are multiple reachable state space partitions (i.e., N ą 1), or to
another block partitioning at a higher level number (see, for instance, those in
Table 4.1). It is even possible to use different level numbers at each reachable
state space partition Rp to control the sizes of the diagonal blocks underlying
the partitioning.

The challenge is to provide a scalable implementation of IAD. The first
results along this direction for Kronecker-based representations of MCs cou-
ple aggregation–disaggregation steps with various iterative methods to ac-
celerate convergence [43, 49, 50, 52]. An IAD method for MCs based on
Kronecker products and its adaptive version, which analyzes aggregated sys-
tems for those parts where the error is estimated to be high, are proposed in
[47] and [48], respectively. The adaptive IAD method in [48] is improved in
[53] through a recursive definition and called ML. Here, we first present this
method for generator matrices in the Kronecker form of (2.10).
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The ML method is conceived so that aggregation of states takes place
in a systematic manner, within each reachable state space partition inde-
pendently of other reachable state space partitions. To keep the discussion
simple, we assume that aggregation is performed in the order of submodel
indices from 1 to H and disaggregation in the reverse order. At level 0, we
have the unaggregated generator matrix Q. Therefore, at level 0 we aggre-
gate submodel 1 and then move to level 1. At level l, we aggregate submodel
l ` 1 since submodels 1 through l will have been aggregated previously. If we
forget about the diagonal correction that sums the rows of the generator ma-
trix to 0, term k P Kp,w in aggregated block pp, wq at level l will correspond
to the aggregation of the first l ` 1 submodels. In this way, it is possible to
define an aggregated matrix at each partitioning level l for l “ 1, . . . , H that
is an pN ˆ Nq block matrix. Block pp, wq of this aggregated matrix can be
expressed as a sum of Kronecker products with |Kp,w| terms as in (2.10) for
p, w “ 0, . . . , N ´1. Thus, it will be represented compactly by the multiplica-

tion of αk with a diagonal p
śH

h“l`2 |Rphq
p |ˆ

śH
h“l`2 |Rphq

p |q matrix describing
the effect of aggregating the first l ` 1 submodels on the remaining H ´ l ´ 1
unaggregated submodels, which in turn is multiplied by the Kronecker prod-

uct
ÂH

h“l`2 Q
phq

k pRphq
p ,Rphq

w q corresponding to the unaggregated H ´ l ´ 1
submodels.

This approach requires us to first associate with the H-tuple state i P Rp

the partition number p to which it belongs. We need this simply because, af-
ter aggregation of a particular submodel, it is possible for states in different
reachable state space partitions to map to the same aggregated state; but, as
motivated in the previous paragraph, each aggregated state must remain in
its original partition. This can be done as in [61] by inserting the partition
number p as the pH ` 1qst entry at the end of the H-tuple representing state
i P Rp so that states are represented by pH ` 1q-tuples or, for instance, by
using a subscript p with i P Rp as we will do here. Second, a level number
needs to be associated with reachable state space partition Rp and the ag-
gregated states i P Rp for p “ 0, . . . , N ´1 to specify the aggregated operator
using sums of Kronecker products at each level.

So, let ipp,lq P Rp,l, where

Rp,l “

H
ą

h“l`1

Rphq
p for p “ 0, . . . , N ´ 1 and l “ 0, . . . , H ´ 1

denotes the aggregated reachable state space partition p at level l in which
submodels 1 through l are aggregated, with

Rp,0 “ Rp and Rp,H “ tpu,

and the mapping
fpp,lq : Rp,l ÞÑ Rp,l`1
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represents the aggregation of submodel l ` 1 with state space Rpl`1q
p for

p “ 0, . . . , N ´1 so that state ipp,lq P Rp,l is mapped to state ipp,l`1q P Rp,l`1.

Furthermore, let the aggregated generator matrices Q̃pit,lq with aggregated
reachable state space partitions Rp,l, p “ 0, . . . , N ´ 1, be defined at levels

l “ 1, . . . , H with Q̃pit,0q “ Q for iteration it. Observe that Q̃pit,lq is an

p
řN´1

p“0 |Rp,l| ˆ
řN´1

p“0 |Rp,l|q matrix. Finally, let the power method be used
as smoother (or accelerator) before aggregation ηpit,lq times and after disag-
gregation νpit,lq times with the uniformization parameter

Γpit,lq P r max
ipp,lqPRp,l, p“0,...,N´1

|q̃pit,lqpipp,lq, ipp,lqq|,8q

at level l for iteration it.
Then the ML iteration matrix that facilitates the ML iteration

πpit`1,lq :“ πpit,lqT
ML
pit,lq for it “ 0, . . . , maxit ´ 1

at level l for iteration it is given by

TML
pit,lq“

ˆ

I `
1

Γpit,lq
Q̃pit,lq

˙ηpit,lq

RplqT
ML
pit,l`1qSxpit,lq

ˆ

I `
1

Γpit,lq
Q̃pit,lq

˙νpit,lq

.

(6.16)
Note that the definition of TML

pit,lq is recursive, and to the contrary of block

iterative methods, the ML iteration matrix in (6.16) changes from iteration
to iteration, and hence, the method is non-stationary.

At iteration it, the recursion ends and backtracking starts when Q̃pit,l`1q

is the last aggregated generator matrix and solved to give

TML
pit,l`1q “ eπpit`1,l`1q, where πpit`1,l`1qQ̃pit,l`1q “ 0 and πpit`1,l`1qe “ 1.

The level to end recursion depends on available memory since there must be
space to store and factorize the aggregated generator matrix at that level if a
direct method is employed for an accurate solution. WhenQ is irreducible and

πp0,0q P R
1ˆ|R|

ą0 , the aggregated generator matrices Q̃pit,l`1q are irreducible
[53, 61], and the ML method has been observed to converge if a sufficient
number of smoothings are performed to improve the approximate solution
vector πpit,lq at each level.

Clearly, the implementation of the ML method with the iteration matrix
in (6.16) should not require the explicit generation and storage of the ag-
gregated generator matrices Q̃pit,lq for MCs based on Kronecker products.
To the contrary, as other iterative methods before, it should rely on vector–
Kronecker product multiplications with smaller matrices and some vector
operations.

The pre-smoothed vector in (6.16) is obtained from

xpit,lq :“ πpit,lq

ˆ

I `
1

Γpit,lq
Q̃pit,lq

˙ηpit,lq

. (6.17)
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The aggregation operator Rplq P R

řN´1
p“0 |Rp,l|ˆ

řN´1
p“0 |Rp,l`1|

ě0 and the disag-

gregation operator Sxpm,lq P R

řN´1
p“0 |Rp,l`1|ˆ

řN´1
p“0 |Rp,l| are given entrywise in

[61] as

rplqpipp,lq, ipp,l`1qq “

"

1 if fpp,lqpipp,lqq “ ipp,l`1q

0 otherwise
(6.18)

and

sxpit,lq pipp,l`1q, ipp,lqq “
xpit,lqpipp,lqq

ÿ

jpp,lqPRp,l, fpp,lqpjpp,lqq“ipp,l`1q

xpit,lqpjpp,lqq

if fpp,lqpipp,lqq “ ipp,l`1q, (6.19)

sxpit,lq pipp,l`1q, ipp,lqq “ 0 otherwise

for ipp,lq P Rp,l, ipp,l`1q P Rp,l`1, and p “ 0, . . . , N ´ 1 .

Observe that both operators at level l are pN ˆNq block diagonal due to our
choice to aggregate states only within each partition Rp,l for p “ 0, . . . , N´1.

The aggregation operator Rplq in (6.18) is defined by fpp,lq : Rp,l ÞÑ Rp,l`1

for p “ 0, . . . , N ´ 1, and therefore is constant and need not be stored. At

level l, the |Rp,l| “
śH

h“l`1 |Rphq
p | states represented by pH ´ lq-tuples are

mapped to the |Rp,l`1| “
śH

h“l`2 |Rphq
p | states represented by pH ´ l ´ 1q-

tuples by fpp,lq through aggregation of the leading dimension Rpl`1q
p in Rp,l

for p “ 0, . . . , N´1. We remark that this corresponds to an aggregation based
on a contiguous and non-interleaved block partitioning if the states in Rp,l

were ordered anti-lexicographically. On the other hand, the disaggregation
operator Sxpit,lq in (6.19) depends on the smoothed vector xpit,lq in (6.17)

and has the nonzero structure of RT
plq. Therefore, Sxpit,lq can be stored in a

vector of length
řN´1

p“0 |Rp,l| since it has one nonzero per column by definition.

These vectors amount to a total storage of
řH´1

l“0

řN´1
p“0 |Rp,l| floating-point

values if the recursion terminates at level H.
The aggregation operator Rplq and the disaggregation operator Sxpit,lq have

the same properties of the two operators used in the IAD method for DTMCs
in this section. Similarly, it is also possible to define the nonnegative projector

Bxpit,lq P R

řN´1
p“0 |Rp,l|ˆ

řN´1
p“0 |Rp,l|

ě0 at level l as

Bxpit,lq “ RplqSxpit,lq for l “ 0, . . . , H ´ 1.

In the ML method, the pre-smoothed vector is aggregated using

πpit,l`1q :“ xpit,lqRplq (6.20)

and passed to level l ` 1, which has the aggregated generator matrix

Q̃pit,l`1q “ Sxpit,lqQ̃pit,lqRplq . (6.21)
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In [61], it is shown that Q̃pit,l`1q is a block matrix that can be expressed

using sums of Kronecker products as in (2.10) with
řN´1

p“0

řN´1
w“0 |Kp,w| aggre-

gation vectors named a each of length at most maxpPt0,...,N´1up
śH

h“l`2 |Rphq
p |q

and the submatrices corresponding to the factors pl ` 2q through H.
More specifically, the ipp,l`1qst entry of the aggregation vector correspond-

ing to the kth term in the Kronecker representation at level pl ` 1q for block
pp, wq at iteration it with ipp,l`1q P Rp,l`1 and k P Kp,w is computed as

apit,l`1,p,w,kqpipp,l`1qq (6.22)

:“

ÿ

jpp,lqPRp,l, fpp,lqpjpp,lqq“ipp,l`1q

xpit,lqpjpp,lqq apit,l,p,w,kqpjpp,lqq row sum

πpit,l`1qpipp,l`1qq
,

where
row sum :“ eTjpp,lqpl`1qQ

pl`1q

k pRpl`1q
p ,Rpl`1q

w qe

yields the sum of entries in row jpp,lqpl` 1q P Rpl`1q
p of Q

pl`1q

k pRpl`1q
p ,Rpl`1q

w q

with ejpp,lqpl`1q being the jpp,lqpl ` 1qst column of I of order |Rpl`1q
p |. At level

0, we set
apit,0,p,w,kq :“ e.

Then block pp, wq of Q̃pit,l`1q for p, w “ 0, . . . , N ´ 1 can be expressed as

Q̃pit,l`1qpp, wq “

#

ř

kPKp,w
Q̃pit,l`1,kqpp, wq ` Q̃pit,l`1,Dqpp, pq if p “ w

ř

kPKp,w
Q̃pit,l`1,kqpp, wq otherwise

,

where

Q̃pit,l`1,kqpp, wq “ αk diagpapit,l`1,p,w,kqq

H
â

h“l`2

Q
phq

k pRphq
p ,Rphq

w q,

Q̃pit,l`1,Dqpp, pq “ ´

N´1
ÿ

w“0

ÿ

kPKp,w

αk diagpapit,l`1,p,w,kqq

H
â

h“l`2

diagpQ
phq

k pRphq
p ,Rphq

w qeq. (6.23)

Observe that Q̃pit,l`1,Dqpp, pq returns a diagonal matrix with negative di-
agonal entries so that

N´1
ÿ

w“0

Q̃pit,l`1qpp, wqe “ 0 for p “ 0, . . . , N ´ 1.
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In other words, row sums of the row of blocks corresponding to aggregated
reachable state space partition p at level l ` 1, Rp,l`1, of Q̃pit,l`1q must be

equal to the 0 vector. If the recursion ends at level H, then Q̃pit,Hq is an
pN ˆNq generator matrix and therefore is generated and stored explicitly in
row sparse format when there are multiple reachable state space partitions
(i.e., N ą 1) so that it can be solved either directly (e.g., by Gaussian elim-
ination) if N is small, else iteratively using the smoother and the current
approximation πpit,Hq as the starting vector. When N “ 1, Q̃pit,Hq “ 0, and
hence, πpit`1,Hq can be set to 1 to start backtracking from the recursion.

The aggregation vectors apit,l,p,w,kq for k P Kp,w at l “ 0 by definition
consist of all 1’s, and therefore need not be stored. Furthermore, the compu-
tation of apit,l`1,p,w,kq in (6.22) suggests that if apit,l,p,w,kq “ e and row sum
evaluates to 1 for all ipp,l`1q P Rp,l`1, then apit,l`1,p,w,kq “ e, since in this
case the summation in the numerator will evaluate to the value in the de-
nominator by the definition of the aggregation operator Rplq. This is possible,

for instance, when Q
phq

k pRphq
p ,Rphq

w q for h “ 1, . . . , l ` 1 are all diagonal ma-

trices of size p|Rphq
p | ˆ |Rphq

w |q with 1’s along their diagonal. Since submodel
matrices forming Q̃pit,l`1qpp, wq for p ‰ w can very well be rectangular, we
refrain from using I and remark that such aggregation vectors need not be
stored either. Savings are also possible for those k P Kp,p that have a sin-

gle Q
phq

k pRphq
p ,Rphq

p q ‰ I for h “ 1, . . . , H. In this case, the contribution of

apit,l`1,p,p,kq can only be to the diagonal of Q̃pit,l`1qpp, pq and its effect will be

canceled with the corresponding diagonal correction due to Q̃pit,l`1,Dqpp, pq.
This implies that setting apit,l`1,p,p,kq “ e and not storing it will not change
the result in this case as well.

The aggregation vectors for block pp, wq at a particular level have the

same length but vary in length from
śH

h“2 |Rphq
p | at level 1 to |RpHq

p | at level
pH ´ 1q, implying a storage requirement of at most

N´1
ÿ

p“0

N´1
ÿ

w“0

|Kp,w|

H´1
ÿ

l“1

H
ź

h“l`1

|Rphq
p |

floating-point values to facilitate the Kronecker representation of aggregated
generator matrices. We remark that grouping of factors will further reduce
the storage requirement for aggregation vectors.

Example 2. (ctnd.) Consider our three-dimensional problem with the param-
eter set

pα1, α2, α3, α4, α5, α6q “ pλ1, λ2, λ3, μ1, μ2, μ3q “ p1, 2, 3, 2, 4, 6q,

the initial distribution πp0,0q “ e{12, Γp0,0q “ 14, and ηp0,0q “ νp0,0q “ 1.
Since
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0
0
0

0
0
1

1
0
0

1
0
1

2
0
0

2
0
1

0
1
0

0
1
1

1
1
0

1
1
1

0
0
2

1
0
2

Q̃p0,0q “

0 0 0
0 0 1
1 0 0
1 0 1
2 0 0
2 0 1
0 1 0
0 1 1
1 1 0
1 1 1
0 0 2
1 0 2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´9 6 1 2
6 ´12 1 2 3
2 ´11 6 1 2

2 6 ´14 1 2 3

2 ´2
2 6 ´8

4 ´4
4 6 ´10

4 2 ´6
4 2 6 ´12

6 ´6
6 2 ´8

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

xp0,0q “ πp0,0qpI ` Q̃p0,0q{14q from (6.17) yields

xp0,0q “

ˆ

17

168
,
20

168
,
16

168
,
19

168
,
19

168
,

7

168
,
20

168
,

8

168
,
16

168
,

4

168
,
13

168
,

9

168

˙

.

In this example, there are N “ 4 reachable state space partitions, and
hence, the aggregation operator in (6.18) and the disaggregation operator
in (6.19) are block diagonal matrices. At level 0, they are, respectively,
given by

0
0
0
1
0
0
0
1
1
0
1
1
0
2

Rp0q “

0 0 0
0 0 1
1 0 0
1 0 1
2 0 0
2 0 1
0 1 0
0 1 1
1 1 0
1 1 1
0 0 2
1 0 2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
1

1
1

1
1

1
1

1
1

1
1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚
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and

0
0
0

0
0
1

1
0
0

1
0
1

2
0
0

2
0
1

0
1
0

0
1
1

1
1
0

1
1
1

0
0
2

1
0
2

Sxp0,0q “

0 0
0 1
0 0
0 1
1 0
1 1
0 2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

17
33

16
33

20
39

19
39

1
1

20
36

16
36

8
12

4
12

13
22

9
22

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The 12 states represented by 3-tuples in R are mapped to the 7 states repre-
sented by 2-tuples in R0,1, R1,1, R2,1, and R3,1. For instance, states p0, 0, 0q

and p1, 0, 0q in R0,0 are mapped to p0, 0q in R0,1, whereas states p0, 0, 2q and
p1, 0, 2q in R3,0 are mapped to p0, 2q in R3,1. Note that in this example, ag-
gregation of submodel 1 at level 0 does not yield a reduction in the number

of states in reachable state space partition R1,1 because |Rp1q

1 | “ 1.
Using Rp0q in (6.20), we obtain the starting approximation at level 1 as

πp0,1q “

ˆ

33

168
,
39

168
,
19

168
,

7

168
,
36

168
,
12

168
,
22

168

˙

.

Through the interaction matrix

0 1 2 3

0
1
2
3

¨

˚

˚

˝

t1, 3, 4, 6u t1u t2u t3u

t4u t6u

t5u t4, 6u

t6u t4u

˛

‹

‹

‚

.

(cf. (2.8)), mapping of submodel states to reachable state space partitions
given in Table 2.1, submodel 1’s transition submatrices

Q
p1q

1 pR0,R0q “

ˆ

1
˙

, Q
p1q

3 pR0,R0q “ I2, Q
p1q

4 pR0,R0q “

ˆ

1

˙

,

Q
p1q

6 pR0,R0q “ I2, Q
p1q

1 pR0,R1q “

ˆ

1

˙

, Q
p1q

2 pR0,R2q “ I2,

Q
p1q

3 pR0,R3q “ I2, Q
p1q

4 pR1,R0q “
`

1
˘

, Q
p1q

6 pR1,R1q “ I1,

Q
p1q

5 pR2,R0q “ I2, Q
p1q

4 pR2,R2q “

ˆ

1

˙

, Q
p1q

6 pR2,R2q “ I2,

Q
p1q

6 pR3,R0q “ I2, Q
p1q

4 pR3,R3q “

ˆ

1

˙

,
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and the definition of aggregation vectors in (6.22), the 14 vectors used to
represent the aggregated generator matrix Q̃p0,1q at level 1 are computed as

ap0,1,0,0,1q “

ˆ

17

33
,
20

39

˙T

, ap0,1,0,0,4q “ ap0,1,0,1,1q “

ˆ

16

33
,
19

39

˙T

,

ap0,1,2,2,4q “

ˆ

16

36
,
4

12

˙T

, ap0,1,3,3,4q “

ˆ

9

22

˙

,

ap0,1,0,0,3q “ ap0,1,0,0,6q “ ap0,1,0,2,2q “ ap0,1,0,3,3q “ ap0,1,1,0,4q

“ ap0,1,1,1,6q “ ap0,1,2,0,5q “ ap0,1,2,2,6q “ p1, 1q
T

,

ap0,1,3,0,6q “ p1q .

Note that nine of the aggregation vectors are equal to e and need not
be stored. All of these nine vectors except ap0,1,1,0,4q are equal to e since

ap0,0,p,w,kq “ e and submodel 1’s transition submatrices Q
p1q

k pRp1q
p ,Rp1q

w q for
the respective transitions k are all diagonal matrices with 1’s along their di-
agonal. For ap0,1,1,0,4q, the situation is slightly different. The submatrix used

in the computation of ap0,1,1,0,4q is given by Q
p1q

4 pRp1q

1 ,Rp1q

0 q “ p0, 1q. Because

ap0,0,1,0,4q “ e and submatrix Q
p1q

4 pRp1q

1 ,Rp1q

0 q is a row vector having a single
nonzero with value 1, ap0,1,1,0,4q also turns out to be equal to e.

Using the aggregation vectors, the ten nonzero blocks of the aggregated
generator matrix Q̃p0,1q are expressed as

Q̃p0,1qp0, 0q “
ÿ

kPt1,3,4,6u

αk diagpap0,1,0,0,kqq

3
â

h“2

Q
phq

k pRphq

0 ,Rphq

0 q

´

3
ÿ

w“0

ÿ

kPK0,w

αk diagpap0,1,0,w,kqq

3
â

h“2

diagpQ
phq

k pRphq

0 ,Rphq
w qeq ,

Q̃p0,1qp0, 1q “ α1 diagpap0,1,0,1,1qq

3
â

h“2

Q
phq

1 pRphq

0 ,Rphq

1 q ,

Q̃p0,1qp0, 2q “ α2 diagpap0,1,0,2,2qq

3
â

h“2

Q
phq

2 pRphq

0 ,Rphq

2 q ,

Q̃p0,1qp0, 3q “ α3 diagpap0,1,0,3,3qq

3
â

h“2

Q
phq

3 pRphq

0 ,Rphq

3 q ,

Q̃p0,1qp1, 0q “ α4 diagpap0,1,1,0,4qq

3
â

h“2

Q
phq

4 pRphq

1 ,Rphq

0 q ,

Q̃p0,1qp1, 1q “ α6 diagpap0,1,1,1,6qq

3
â

h“2

Q
phq

6 pRphq

1 ,Rphq

1 q ,

´

1
ÿ

w“0

ÿ

kPK1,w

αk diagpap0,1,1,w,kqq

3
â

h“2

diagpQ
phq

k pRphq

1 ,Rphq
w qeq ,
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Q̃p0,1qp2, 0q “ α5 diagpap0,1,2,0,5qq

3
â

h“2

Q
phq

5 pRphq

2 ,Rphq

0 q ,

Q̃p0,1qp2, 2q “
ÿ

kPt4,6u

αk diagpap0,1,2,2,kqq

3
â

h“2

Q
phq

k pRphq

2 ,Rphq

2 q

´
ÿ

wPt0,2u

ÿ

kPK2,w

αk diagpap0,1,2,w,kqq

3
â

h“2

diagpQ
phq

k pRphq

2 ,Rphq
w qeq ,

Q̃p0,1qp3, 0q “ α6 diagpap0,1,3,0,6qq

3
â

h“2

Q
phq

6 pRphq

3 ,Rphq

0 q ,

Q̃p0,1qp3, 3q “ α4 diagpap0,1,3,3,4qq

3
â

h“2

Q
phq

4 pRphq

3 ,Rphq

3 q

´
ÿ

wPt0,3u

ÿ

kPK3,w

αk diagpap0,1,3,w,kqq

3
â

h“2

diagpQ
phq

k pRphq

3 ,Rphq
w qeq .

Regarding the five aggregation vectors that are computed to be different
than e, ap0,1,0,0,1q, ap0,1,0,0,4q, ap0,1,2,2,4q, and ap0,1,3,3,4q are used in aggre-

gating diagonal blocks of Q̃p0,0q, and their contributions are to the diago-
nals of diagonal blocks. The contributions of ap0,1,0,0,1q and ap0,1,0,0,4q in the

first summation of Q̃0,1p0, 0q are to the diagonal since Q
p2q

1 pRp2q

0 ,Rp2q

0 q “

Q
p2q

4 pRp2q

0 ,Rp2q

0 q “ I1 and Q
p3q

1 pRp3q

0 ,Rp3q

0 q “ Q
p3q

4 pRp3q

0 ,Rp3q

0 q “ I2. But
their effects are canceled by the second negated summation of Q̃0,1p0, 0q

simply because diagpQ
p2q

1 pRp2q

0 ,Rp2q

0 qeq “ diagpQ
p2q

4 pRp2q

0 ,Rp2q

0 qeq “ I1 and

diagpQ
p3q

1 pRp3q

0 ,Rp3q

0 qeq “ diagpQ
p3q

4 pRp3q

0 ,Rp3q

0 qeq “ I2. This is also the
case for ap0,1,2,2,4q and ap0,1,3,3,4q. Hence, we may very well set these four

aggregation vectors to e as suggested before. Therefore, from Q̃p0,1q “

Pxp0,0qQ̃p0,0qRp0q, we implicitly have

0
0

0
1

0
0

0
1

1
0

1
1

0
2

Q̃p0,1q “

0 0
0 1
0 0
0 1
1 0
1 1
0 2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

´
280
33 6 16

33 2
6 ´

448
39

19
39 2 3

2 ´2
2 6 ´8

4 ´4
4 6 ´10

6 ´6

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

In the next step, similar operations will be carried out at level 1 unless the
aggregated generator matrix is solved exactly, upon which backtracking from
recursion starts for iteration it.
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The ML method we discussed follows a V–cycle [205, 206] at each iteration.
That is, starting from the finest level, at each step, it smooths the current
approximation and moves to a coarser level by aggregation until it reaches a
level at which the aggregated generator matrix can be solved exactly. Once
the exact solution is obtained at the coarsest level, the method starts moving
in the opposite direction. At each step on the way to the finest level, the
method disaggregates the current approximation passed by the coarser level
and smooths it. Furthermore, the submodel state spaces, Sphq, are aggregated
according to the fixed order h “ 1, . . . , H. However, to the contrary of the
ML method for sparse MCs in [187], the definition of the aggregated state
spaces follows naturally from the Kronecker representation in (2.10), and
the aggregated generator matrices can also be represented using Kronecker
products as shown in (6.23).

In [59], a sophisticated class of ML methods are given. The methods therein
are capable of using JOR and SOR as smoothers, performing the W– and
F–cycles inspired by multigrid [39, 276, 324] and aggregating submodel state
spaces according to circular and adaptive orders. Here, a cycle may be viewed
as the operations corresponding to an outer ML iteration denoted by it
in (6.16), and W–cycle refers to invoking at each level two recursive calls
to the next coarser level, whereas an F–cycle at a level can be viewed as a re-
cursive call to a W–cycle followed by a recursive call to a V–cycle at the next
coarser level. In the circular order of aggregation, at the beginning of each
ML cycle at the finest level, a circular shift of submodel indices is performed
to achieve fairness in aggregating submodel state spaces. Hence, every H cy-
cles each submodel will have received the opportunity to get aggregated first.
On the other hand, in the adaptive order of aggregation, submodel indices
are sorted according to the residual norms restricted to the corresponding
submodel state space at the end of the ML cycle, and aggregation of sub-
models in this sorted order in the next cycle is performed. This ensures that
submodels which have smaller residual norms are aggregated earlier at finer
levels, since small residual norms are expected to be indicative of good nu-
merical results in those submodels. ML methods discussed in this section are
coded within the NSolve package of the APNN toolbox [7, 22]. Numerical
experiments in [59, 61] prove these methods to be very strong, robust, and
scalable solvers for MCs based on Kronecker products.

The convergence properties of the class of ML methods in [59] are discussed
in [61]. An almost positive row or column in the iteration matrices of the
smoother with ηpit,lq pre- and νpit,lq post-smoothings at each level l across
iterations it is shown to facilitate convergence locally, and SOR is to be
recommended among the three smoothers considered. An error propagation
formula for ML methods in which the number of pre-smoothings is set to
zero is introduced in [272]. Therein are examples indicating that a two-level
method may be converging while the corresponding three-level method is
not and vice versa. One important question to be answered is whether local
convergence implies global convergence (even at two levels). Furthermore, it
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is not clear how the behavior of the ML method would be affected if block
iterative methods, such as BJOR and BSOR, are used as smoothers rather
than power, JOR, and SOR. Note that BJOR and BSOR should normally not
use a direct method for the solution of the diagonal blocks when employed
as smoothers within the ML method, since the aggregated generator matrix
at each level changes from iteration to iteration and the LU factorization of
the diagonal blocks may be too time consuming to offset.

In [173] an efficient algorithm that finds an NCD [97, 123, 241, 305] par-
titioning of S in the presence of functional transitions for a user-specified
decomposability parameter is given. Since IAD using NCD partitionings has
certain rate of convergence guarantees [304] (cf. [225, 228, 271]), the algo-
rithm may be useful in the context of ML methods to determine the loosely
coupled dimensions to be aggregated first in a given iteration.

Distributed implementation of block iterative methods coupled with some
number of aggregation–disaggregation steps for HMMs is investigated on a
cluster of workstations in [67]. Therein, especially asynchronous computa-
tion models that observe coarse-grained parallelism (meaning large chunks
of computations interleaved with small amount of communications) based
on the nested block partitioning of Q are recommended at lower level num-
bers. Along a different line, the performance of a prototype parallel version of
PEPS on a cluster architecture is modeled using SANs and analyzed theoret-
ically with a sequential version of PEPS [14]. The study in [288] concentrates
on the parallelization of the vector operations of initialization, reciprocation,
aggregation, disaggregation, scaling, addition, multiplication and the matrix
operations of vector–matrix multiplication and aggregation in symbolic ML
[287] with V–cycle, fixed order of submodel aggregation, and JOR smoother
under the multiterminal binary decision diagram (MTBDD) data structure
using multiple threads. Clearly, there are issues that need to be addressed fur-
ther such as the level at which parallelism is employed, resolving data collision
due to multiple threads accessing data that contributes to the same interme-
diate result and load balancing across threads. The results however are quite
encouraging and indicate that there is ample opportunity for parallelism in
the implementation of iterative methods based on the block partitioning of
Q and the sum of Kronecker products forming each nonzero block.

6.4 Decompositional Methods

Among the iterative methods discussed in the previous sections, ML methods
perform better on a larger number of problems in the literature [59, 61].
However, there are certain classes of problems for which other methods could
be preferred. One such method we present in this section is iterative and
based on decomposing a model into its submodels, analyzing the submodels
individually for their steady-state, and putting back the individual solutions
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together using disaggregation in a correction step [15]. This method is able
to compute the steady-state solution exactly up to computer precision to a
model having weakly interacting submodels in a relatively small number of
iterations and with modest memory requirements.

Consider the separation of QO in (6.2) into two terms as in

QO “ Qlocal ` Qsynch ,

where Qlocal and Qsynch correspond to those parts of QO associated with
local and synchronizing transitions, respectively. Without loss of generality,
we adopt the enumeration of the K terms as in Example 1 and let the first
H represent local transitions, the hth being associated with submodel h for
h “ 1, . . . , H. The remaining pK ´ Hq terms correspond to synchronizing
transitions. Hence,

Qlocal “

H
ÿ

k“1

H
â

h“1

Q
phq

k and Qsynch “

K
ÿ

k“H`1

H
â

h“1

Q
phq

k .

Recall that this enumeration necessarily implies Q
phq

k “ Inh
for k ‰ h and

h “ 1, . . . , H due to the definition of local transitions. In Example 1, we
have S “ R; hence, there is a single reachable state space partition for which
|R| “

śH
h“1 |Sphq| “

śH
h“1 |Rphq| “

śH
h“1 nh “ n. Furthermore, we observe

that the irreducibility of Q does not imply the irreducibility of the local

transition rate matrices Q
phq

h P R
nhˆnh
ě0 for h “ 1, . . . , H.

Now, let Q “ U ´L be the forward GS splitting of the generator matrix in
Kronecker form, where U “ QD `QUpHq corresponds to its upper-triangular
part and L “ QLpHq contains its negated strictly lower-triangular part as

in (6.8). Furthermore, let the aggregation operator Rphq P R
nˆnh
ě0 (cf. (6.18))

for h “ 1, . . . , H be associated with the mapping fphq : R ÞÑ Rphq and have
its pi, ihqth entry be given by

rphq
pi, ihq “

#

1 if fphqpiq “ ih

0 otherwise
for i P R and ih P Rphq .

Observe that the mapping fphq represents the aggregation of all dimensions
except the hth. In Kronecker form,

Rphq
“

˜

h´1
â

l“1

Inl
e

¸

â

Inh

â

˜

H
â

l“h`1

Inl
e

¸

for h “ 1, . . . , H . (6.24)

On the other hand, let the disaggregation operator S
phq
πpitq P R

nhˆn
ě0 (cf. (6.19))

for h “ 1, . . . , H be associated with the mapping fphq and have its pih, iqth
entry be given by
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sphq
πpitq

pih, iq “

$

&

%

πpitqpiq

π
phq
pitqpihq

if fphqpiq “ ih

0 otherwise
for i P R and ih P Rphq ,

where
π

phq

pitq :“ πpitqR
phq.

Then the decompositional iterative method can be stated [15] for a user-
specified stop tol as in Algorithm 8.

Algorithm 8. Decompositonal iterative method with GS correction step.

it :“ 0; ypitq :“ 0; πpitq :“ eT {n;
Repeat

For h :“ 1 to H,

If Q
phq

h is irreducible, solve π
phq

pit`1q
Q

phq

h “ vpkqpπpitqq,

where vpkqpπpitqq :“ ´πpitqQsynchR
phq,

Else solve π
phq

pit`1q
Qphqpπpitqq “ 0,

where Qphqpπpitqq :“ Q
phq

h ` S
phq
πpitqQsynchR

phq,

subject to π
phq

pit`1q
e “ 1;

Solve ypit`1qU “ ypitqL `

´

ÂH
h“1 π

phq

pit`1q

¯

Q;

πpit`1q :“
´

ÂH
h“1 π

phq

pit`1q

¯

´ ypit`1q subject to πpit`1qe “ 1;

it :“ it ` 1;
Until }πpitqQ}8 ă stop tol.

The algorithm starts by initializing the correction vector, ypitq, to zero and
the solution vector, πpitq, to the uniform distribution, respectively. Then each
system of local equations is solved subject to a normalization condition. If

Q
phq

h is irreducible, then a unique new local solution vector π
phq

pit`1q
P R

1ˆnh
ą0

can be computed. This is so, because each system to be solved has a zero
sum right-hand side vector, vphqpπpitqq, (i.e., vphqpπpitqqe “ 0) due to the par-

ticular way in which synchronizing transition rate matrices, Q
phq

k P R
nhˆnh
ě0

for k “ H ` 1, . . . ,K, are specified. On the other hand, when Q
phq

h is re-
ducible, we consider a homogeneous system in which the aggregated matrix
Qphqpπpitqq is used. The aggregated matrix is irreducible if Q is irreducible

and πpitq P R
1ˆn
ą0 . Hence, the existence of a unique π

phq

pit`1q
P R

1ˆnh
ą0 is also

guaranteed in this case. Since Q
phq

k for k “ H ` 1, . . . ,K are in general very
sparse, the enumeration process associated with the nonzeros in Qsynch to
form vpkqpπpitqq, or Qphqpπpitqq, can be handled systematically. Note that
there are differences from a computational point of view between the two

alternative solution steps. In the former case, Q
phq

h is constant and already
available in row sparse format; the right-hand side vector is dependent on
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πpitq. In the latter case, Qphqpπpitqq needs to be reconstructed at each itera-
tion, and it is the coefficient matrix that is dependent on πpitq. Hence, the

two approaches for obtaining π
phq

pit`1q
are not equivalent except at steady-state

(i.e., πpitq “ πpit`1q “ π).
In the next step, the new correction vector, ypit`1q, is obtained by solving

an upper-triangular system in Kronecker form. Since Q is assumed to be
irreducible, ypit`1q is computed through a GS relaxation on Q with a zero
sum but nonzero right-hand side.

The last step subtracts ypit`1q from the Kronecker product of π
phq

pit`1q
for

h “ 1, . . . , H to form the new solution vector, πpit`1q, and then the iteration
number is incremented. These steps are repeated until the residual infinity
norm becomes smaller than stop tol.

Algorithm 8 is coded within the NSolve package of the APNN toolbox
[7, 22] and numerical experiments are carried out [15] on larger and slightly
different versions of Example 1. The decompositional method is compared
with point iterative methods based on splittings, BGS, projection methods,
BGS preconditioned projection methods, and ML with one pre- and one post-
smoothing using GS, W–cycle, and circular order of aggregating submodels in
each cycle. The solvers are compared in terms of number of iterations to con-
verge to stop tol :“ 10´8 on the infinity norm of the residual, elapsed CPU
time, and amount of allocated main memory. The diagonal blocks associated
with the BGS solver and the BGS preconditioner for projection methods at
a suitable level number are LU factorized [58] using colamd ordering [94, 95].
The number of nonzeros generated during the LU factorization of the diag-
onal blocks is accounted for in the memory consumed by solvers utilizing
BGS.

It is observed that convergence becomes very fast for the decompositional
solver when the synchronizing transition rates are small since the submodels
in that case are nearly independent and the Kronecker product of the local
solutions yields a very good approximation to the solution early in the it-
eration. The solver corresponding to Algorithm 8 requires modest memory
and a small number of iterations for relatively fast convergence to the solu-
tion. The second best solver is ML, which trails in all three areas. It improves
only slightly as the synchronizing transition rates become smaller. Projection
methods do not benefit from BGS preconditioning. The performances of the
point iterative methods based on splittings and BGS are not affected by a
change in the rates of synchronizing transitions. BGS performs very poorly
due to the large time per iteration. BGS and BGS preconditioned projection
methods require considerably more memory than the other methods, because
of the need to store factors of diagonal blocks and, in the latter case, also a
larger number of vectors. Memorywise, the decompositional solver requires
about 1.5 times that of point iterative methods based on splittings, but less
than ML, and therefore can be considered to be memory efficient.
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The scalability of the decompositional solver is investigated for increasing
number of submodels when the synchronizing transition rates are relatively
small compared to those in local transition rate matrices. It is observed that
the number of iterations to converge decreases as the number of submodels
increases. This is due to the decrease in the throughputs of synchronizing
transitions for a larger number of submodels (because the steady-state prob-
abilities of states in which synchronizing transitions can take place become
smaller), leading to more independent submodels. This is different from the
behavior of the ML method, which takes more or less the same number of
iterations to converge as the number of submodels increases. The scalabil-
ity of the decompositional solver is also investigated for increasing number
of synchronizing transitions when the number of submodels is kept constant
and the rates of synchronizing transitions are relatively small compared to
those in the local transition rate matrices. As expected, the results indicate
that the time the decompositional solver takes to converge is affected linearly
by an increase in the number of synchronizing transitions.

There are also iterative methods based on polyhedra theory [86] and disag-
gregation, such as the one in [55] for SANs which provides satisfactory lower
and upper bounds on the solution only if the interactions among submodels
are weak or the rates of synchronizing transitions are more or less independent
of the states of submodels. Another class of iterative methods are those that
are approximative. For instance, the method in [56] for superposed GSPNs
operates at a fine level only on states having higher steady-state probabili-
ties; the remaining states are aggregated and treated at a coarse level. The
steady-state vector can be stored with significant savings due to its compact
representation as a Kronecker product of the aggregated submodel steady-
state vectors. An approximative class of iterative methods are also presented
in [101]. The approximative methods therein are geared toward closed net-
works of first-come first-served (FCFS) queues with PH service distributions
and arbitrary buffer sizes when a few digits of accuracy in the computed solu-
tion are sufficient for analysis purposes [104]. The analysis of closed queueing
networks with PH service distributions and arbitrary buffer sizes is challeng-
ing due to the fact that the corresponding state spaces grow exponentially
with numbers of customers, queues, and phases in the service distribution of
each queue. Now, we discuss these approximative iterative methods for closed
queueing networks, which are also based on decomposition. More information
regarding this work is available in [104, 239].

Queueing networks have been used in the literature to model and analyze a
variety of systems involving customers, packets, or jobs waiting to get service
[180, 181, 306]. The work in [104] concentrates on a relatively large class of
problems which do not possess analytical solutions [153]. Closedness implies
that the number of customers circulating in the queueing network remains
constant; there are no arrivals to the network from the outside, there are no
departures to the outside, and the number of customers inside the network
neither increases nor decreases as a result of the queueing discipline and the
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service process. A customer departs from a queue after getting service and
joins a(nother) queue, possibly the same one it departed from. If a queueing
network is not closed, it is said to be open. Regarding service distributions,
hypoexponential, hyperexponential, Coxian, and Erlang are all phase-type and
have rational Laplace transforms. Furthermore, the exponential distribution
is a special case of the Erlang distribution, which is yet a special case of
the hypoexponential distribution. Interestingly, it is proved that Erlang is
the most suitable phase approximation for the deterministic distribution [6].
This is taken advantage of when modeling a robotic tape library [119] and
a multiprocessor system [285] using SANs. For practical purposes, a five- to
ten-phase Erlang is considered sufficient for approximating a deterministic
distribution. The use of PH distributions in SANs is further investigated in
[284].

In [104], two approximative decompositional iterative methods are ad-
dressed, the first of which appears in [235] and the second one in [329]. Each
decomposes the network into subnetworks. They differ in the way the decom-
positions are obtained, and the solutions to subnetworks are put together.
These approximative methods require the modeling of subnetworks whose
product state space sizes are larger than their reachable state space sizes and
are shown that they can be implemented using Kronecker products.

In its setup phase, the first method in [235] partitions the closed queue-
ing network into subnetworks. In doing this, it classifies each queue as finite
or infinite buffer. Finite buffer queues are those that have positive blocking
probabilities for a given total number of customers circulating in the closed
queueing network. The method places queues feeding a finite buffer queue in
the same subnetwork with the finite buffer queue. In this way, the method
aims at achieving a decomposition in which transition probabilities between
subnetworks are independent of the states of the subnetworks. Thus, each
subnetwork can be considered as a service station with state-dependent ex-
ponential service rate for which the parameters of the equivalent server are
obtained by analyzing the subnetwork in isolation as an open queueing net-
work assuming it has state-dependent arrivals with exponentially distributed
interarrival times. This is done by modeling the open queueing network as
a closed queueing network, which consists of the subnetwork’s queues and a
slack queue as in Figure 6.1. The slack queue is assumed to have a finite buffer
of size equal to the total number of customers circulating in the closed queue-
ing network formed of multiple subnetworks. The state-dependent through-
puts are the state-dependent service rates since the slack queue is practically
infinite. Each closed queueing network obtained as such can be modeled by
defining the queues in the subnetwork and the slack queue, and then con-
structing a block matrix which represents the interactions among the queues
in the closed queueing network using Kronecker products as in [43]. The
approximate results are obtained via fixed-point iteration, which requires
throughputs of subnetworks to be computed. For this purpose, an analyt-
ical method, the convolution algorithm (CA) [160] is used. We remark that



6.4 Decompositional Methods 213

Slack queue

Subnetwork

Open queueing network

Fig. 6.1 Open queueing network corresponding to subnetwork modeled as closed queueing
network with slack queue having finite buffer.

a fixed-point iteration can be perceived, for instance, as an iteration of the
form in block iterative methods, for which the solution, π, that is sought is
the fixed-point of the system of equations, π “ πT , to be solved [305].

On the other hand, the second decompositional method in [329] partitions
the closed queueing network into individual queues and approximates the
service distribution of each queue by a state-dependent exponential service
distribution. Thus, the method transforms the closed queueing network into
another closed queueing network with state-dependent exponential service
distributions. The decomposition in this approach is maximal, meaning each
queue is placed in a separate subnetwork. Again a slack queue with an infinite
buffer and a state-dependent exponential service distribution is used to model
state-dependent arrivals with exponentially distributed interarrival times to
each queue having a PH service distribution. After this approximation, the
method sets the state-dependent service rate of the slack queue to some
initial value and then employs a fixed-point iteration on the decomposed
network to compute the throughputs of all queues. Again, initialization of the
state-dependent service rates of slack queues, which are their state-dependent
throughputs, can be done using CA.

Implementations of the two approximative decompositional methods (re-
spectively, named M and YB hereafter) are available in Matlab [240] together
with implementations of CA, a mean value analysis algorithm for blocking
closed queueing networks (MVABLO) [5], point iterative methods based on
splittings, and ML with fixed and circular orders of aggregation in V–, F–,
and W–cycles. Experiments are performed to compare the methods for their
accuracy and efficiency on various models for analyzing utilizations and mean
lengths of queues. ML and GS methods assume stop tol :“ 10´15 on the
residual 1-norm. ML uses GS as the smoother and performs one pre- and
one post-smoothing at each level. A stop tol :“ 10´4 is used on the ap-
proximate error of utilizations and mean lengths of queues for M and YB.
The subnetworks resulting from decomposition in these methods are solved
with ML. When computing the steady-state vector of the coarsest genera-
tor matrix in M and the steady-state vector of the state-dependent closed
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queueing network with exponential service distributions in YB, if the order
of the matrix is less than 500, GE, otherwise BICGSTAB with ILU precon-
ditioning and a drop tolerance of 10´5 [123] is employed. Results obtained
by approximative methods are compared with results of ML and , relative
errors are provided using the 1-norm. Note that relative errors are indicative
of numbers of correct decimal digits in the results. That is, an approximate
result with a relative error in the order of 10´z implies z correct decimal
digits.

CA and MVABLO produce acceptable results for problems with balanced
service requirements and relatively small number of blocking queues. On the
other hand, M and YB provide relatively more accurate results for all prob-
lems and yield results with at least 2 digits of accuracy for unbalanced service
requirements. Also, unlike the results obtained with CA and MVABLO, an
increase in the number of blocking queues has almost no effect in the results
obtained with M and YB. Therefore, M and YB emerge as more accurate
methods than CA and MVABLO for problems with unbalanced service re-
quirements and relatively large number of blocking queues. When accuracies
of M and YB are compared, especially in problems with unbalanced service
requirements and relatively large number of blocking queues, M can produce
at least half a digit more accurate results for utilizations than YB.

When efficiencies of M and YB are compared, it can be seen that the
number of flops performed by YB to compute arrival rates of queues mostly
depends on the number of flops performed for obtaining the solution of the
state-dependent closed queueing network with exponential service distribu-
tions generated at each fixed-point iteration. Therefore, for problems which
require a relatively small number of flops for the solution of this queueing
network, YB executes less flops than M. Also, for problems which result in
subnetworks with a relatively large number of queues for M, YB may end up
performing less flops than M through its fixed-point approximation process.
Consequently, efficiencies of M and YB depend heavily on the particular prob-
lem. Nevertheless, the average number of fixed-point iterations performed by
M and YB over all problems considered are 4 and 5, respectively. When ML
and GS are compared, we see that ML achieves convergence within 100 it-
erations in all problems. On the other hand, GS does not converge within
a reasonable number of iterations or time in some of the problems. Clearly,
the number of iterations determines the number of flops executed by the
methods, and ML performs less flops than GS in almost all problems. Even
though GS takes less space in memory than ML, in most of the problems, ML
requires less memory than the sparse representation of the generator matrix
underlying the closed queueing network with PH service distributions and ar-
bitrary buffer sizes, thereby being capable of solving variants of the problems
with relatively large numbers of customers. Since M and YB are based on
decomposition, the space requirements of M and YB are smaller than those
of ML and GS for relatively large problems. Indeed, it is verified that the
usage of ML in M and YB introduces another dimension of scalability to the
space requirements of the two methods.
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6.5 Matrix Analytic Methods

Continuous-time LDQBDs are CTMCs having generator matrices that can
be symmetrically permuted to the block tridiagonal form

Q “

¨

˚

˚

˚

˚

˚

˚

˝

Qp0, 0q Qp0, 1q

Qp1, 0q Qp1, 1q Qp1, 2q

. . .
. . .

. . .

Qpl, l ´ 1q Qpl, lq Qpl, l ` 1q

. . .
. . .

. . .

˛

‹

‹

‹

‹

‹

‹

‚

. (6.25)

As opposed to QBDs [4, 33, 213], the dependency on level number, l, in (6.25)
manifests itself with two indices rather than one in each nonzero block for
l P Zě0. It is the first index which corresponds to level number. Nevertheless,
nonzero blocks can be dependent on level number in two different ways. It
is either the nonzero values or the dimensions of a nonzero block (or both)
that depend on level number. In this respect, LDQBDs generalize QBDs with
nonhomogeneous transition rates and rectangular subdiagonal/superdiagonal
nonzero blocks.

Assuming that the subset of states corresponding to level l is denoted by
Rl, the nonzero blocks at level l are given by

Qpl, l ´ 1q P R
|Rl|ˆ|Rl´1|

ě0 , Qpl, lq P R
|Rl|ˆ|Rl|, Qpl, l ` 1q P R

|Rl|ˆ|Rl`1|

ě0 .

Negative entries appear only along the diagonal of Qpl, lq. There are a count-
ably infinite number of levels, and transitions from level l are either to states
within itself or to states in the adjacent levels pl´1q and pl`1q. Level 0 is an
exception since it constitutes the boundary level and has two nonzero blocks.
Clearly, the ordering of states within a level is fixed only up to a permutation.

Assuming that steady-state exists, thereof the probability distribution vec-
tor may be written in a piecemeal manner as

π “ pπpR0q,πpR1q, . . .q,

and its subvector at level pl ` 1q can be obtained from

πpRl`1q “ πpRlqRl (6.26)

once the matrix of conditional expected sojourn times at level l

Rl “ Qpl, l ` 1qp´Qpl ` 1, l ` 1q ´ Rl`1Qpl ` 2, l ` 1qq
´1 (6.27)

is available for l P Zě0 [40]. In (6.27), Rlpi, jq records the expected sojourn
time in state j P Rl`1 per unit sojourn in state i P Rl before returning to
level l, given that the process started in state i [274]. We remark that

Rl P R
|Rl|ˆ|Rl`1|

ě0 for l P Zě0
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is nonnegative and rectangular. The recurrence in (6.26) requires πpR0q to
be determined first. This can be done from the set of boundary equations

πpR0qQp0, 0q ` πpR1qQp1, 0q “ 0

corresponding to the first column of blocks using πpR1q “ πpR0qR0 from
s(6.27). Hence, we conclude that πpR0q should be the positive left eigenvector
of Qp0, 0q ` R0Qp1, 0q corresponding to the eigenvalue 0 [242]. Eventually, π
should be normalized so that πe “ 1.

In Section 4.4, we have discussed how the countable infiniteness of the
reachable state space

R “

8
ď

p“0

Rp

in (4.5) can be handled during steady-state analysis when Q is ergodic using a
suitable Lyapunov function [157, 314]. We have also discussed how states are
assigned to reachable state space partitions, Rp, and had given a Kronecker
representation for each nonzero block. In fact, reachable state space partitions
as defined in the metabolite synthesis and call center models correspond to
levels in LDQBDs, that is, Rp “ Rl for p “ l and p, l P Zě0, since Q in each
of these models for the given partitioning of the reachable state space R is
block tridiagonal. It should be apparent from the values i P R can take that
the state space R is countably infinite and an LDQBD model requires us to
truncate it judiciously for analysis purposes.

In many cases, an LDQBD can be shown to be ergodic by checking easy
to verify conditions on the birth-and-death process (i.e., a one-dimensional
CTMC in which transitions from state i to states i ´ 1, a death, and i ` 1,
a birth, is possible) defined over its levels [268]. However, for computational
purposes, we prefer to consider Lyapunov functions, since it is through this
approach that lower and higher level numbers (called Low and High, respec-
tively) can be computed [103, 107, 120] between which a specified percentage
of the steady-state probability mass lies when the LDQBD is ergodic. Once
we have proved the finiteness of C and determined χ (or equivalently, γ for
chosen ε) with the help of a suitable Lyapunov function using (4.3), we can
compute the pair of level numbers, pLow,Highq, of the LDQBD such that
the states within levels Low to High include all the states in C. In other
words, we set

Low “ mintl P Zě0 | RlXC ‰ Hu and High “ maxtl P Zě0 | RlXC ‰ Hu ,

and the finite set

R̃ :“
High
ď

l“Low

Rl
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contains at least 1´ ε of the steady-state probability. We remark that C Ď R̃
due to the way in which Low and High are defined, but using a truncated set
of states which is a superset of C can only improve the quality of the bound.

Given the pair of level numbers, pLow,Highq, the next step is to com-
pute the Rl matrices of conditional expected sojourn times for levels between
Low and High using (6.27). This requires us to determine a starting value
for RHigh. Since RHigh can only be approximated when the state space is
truncated, all computed Rl matrices of conditional expected sojourn times
between levels Low and High will also be approximate. Clearly, the quality
of the approximations improves as the steady-state probability mass concen-
trated on states within levels Low and High approaches 1 (i.e., as ε ap-
proaches 0) [120]. Through a set of experiments in [120], it is shown that
setting RHigh to 0 as suggested in [20] results in almost no loss of accuracy
when ε is close to 0 and is the best overall choice.

The matrix analytic computation of the steady-state vector of an LDQBD
is given in Algorithm 9 [19]. Its implementation within the NSolve package
of the APNN toolbox [7, 22] is available at [109]. At step l, the linear system
of equations

R̃lAl “ Bl for l “ High ´ 1 down to Low

is solved for the rectangular matrix R̃l P R
|Rl|ˆ|Rl`1|

ě0 of unknowns, where

Al :“ Qpl ` 1, l ` 1q ` R̃l`1Qpl ` 2, l ` 1q

is the square coefficient matrix such that Al P R
|Rl`1|ˆ|Rl`1| and

Bl :“ ´Qpl, l ` 1q

is the rectangular matrix of multiple right-hand sides with Bl P R
|Rl|ˆ|Rl`1

|.
Clearly, R̃l`1 must be available at step l for the computation to proceed. That
Rl and πpRlq become approximations once RHigh is set to 0 is indicated by
using them with tilde.

The computation of R̃l requires the nonzero blocks Qpl ` 1, l ` 1q and
Qpl ` 2, l ` 1q to be obtained, Al to be formed by multiplying R̃l`1 with
Qpl ` 2, l ` 1q, and then Qpl ` 1, l ` 1q to be added to the product. At the
end, Al should be LU factorized and the linear system solved for each right-
hand side vector in Bl. The matrix–matrix multiplication R̃l`1Qpl ` 2, l ` 1q

can be handled in two different ways [18, 19]. First, Qpl ` 2, l ` 1q may be
generated from the Kronecker representation as a sparse matrix and the pre-
multiplication with R̃l`1 performed. Second, the efficient vector–Kronecker
product algorithm [101, 136] can be used to multiply rows of R̃l`1 with the
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Algorithm 9. Matrix analytic computation of steady-state vector of an
LDQBD.

Choose a suitable Lyapunov function gpiq proving ergodicity:
Choose gpiq such that the set of states for which gpiq ă 8 is finite;
Obtain the drift dpiq and show that it is bounded;
χ :“ supiPR dpiq (using HOM4PS2-2.0 if necessary);
γ :“ χp1{ε ´ 1q for given ε;
Show that C “ ti P R | dpiq ą ´γu is finite;

Compute pLow,Highq;

R̃High :“ 0;
For l :“ High ´ 1, . . . , Low,

Al :“ Qpl ` 1, l ` 1q ` R̃l`1Qpl ` 2, l ` 1q;
Bl :“ ´Qpl, l ` 1q;

Solve R̃lAl “ Bl for R̃l;

ALow´1 :“ QpLow,Lowq ` R̃LowQpLow ` 1, Lowq;
Solve π̃pRLowqALow´1 “ 0 for π̃pRLowq subject to }π̃pRLowq}1 “ 1;
For l :“ Low, . . . ,High ´ 1,

π̃pRl`1q :“ π̃pRlqR̃l;
Normalize π̃ subject to }pπ̃pRLowq, . . . , π̃pRl`1q}1 “ 1;

Compute }πQ}1 by letting

π :“ p0pR0qT , . . . ,0pRLow´1qT , π̃pR̃q,0pRHigh`1qT , . . .q.

block Qpl ` 2, l ` 1q, while the latter operand is being held in Kronecker
form. 1-norm of the residual vector of the countably infinite model [112] is
computed from

}πQ}1 :“
ÿ

iPR̃

ˇ

ˇ

ˇ
r̃piq ´

ÿ

jRR̃

π̃piqQpi, jq
ˇ

ˇ

ˇ
`

ÿ

iPR̃

ÿ

jRR̃

π̃piqQpi, jq with r̃ :“ π̃Q̃,

where Q̃ is the truncated generator matrix. Once pLow,Highq is determined,
computation of the steady-state vector of the LDQBD can also be performed
using (block) GE [125, 158, 302, 305]. This approach can be equally efficient
[166], but unfortunately does not provide the R̃l matrices.

Having observed in [107, 120] that the R̃l matrices are not necessarily
sparse, their full and sparse storages are considered. When the R̃l matrices are
stored as full matrices, a temporary matrix in full storage needs to be set aside
to form Al and then compute its LU factorization in place. Since R̃High :“ 0,
the sparsity pattern of AHigh´1 is equal to that of QpHigh,Highq. Therefore,

R̃High´1 should be obtained using sparse LU factorization even though it is

later stored as a full matrix. Now, although all R̃l matrices are to be kept until
the computation ends to obtain the steady-state solution and the sizes of Al

and R̃l matrices are known a priori at each level, it is still possible to consider
two different memory allocation–deallocation schemes for these two matrices
[18, 19]. First, memory to store R̃l matrices from l “ High´ 1 down to Low
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and the largest temporary matrix, AHigh´1, can be allocated at the outset
and deallocated at the end of the computation. In this scheme, successive
Al matrices overwrite the same temporary matrix. Second, the memory of
Al can be deallocated at the end of step l, and the memory for R̃l´1 and
Al´1 can be allocated at the beginning of step pl ´ 1q. When the temporary
matrix is allocated once at the outset, peak total memory usage turns out
to be higher especially when HI , number of countably infinite dimensions,
is larger. On the other hand, when R̃l matrices are chosen to be stored as
sparse matrices, the temporary matrix to form Al is also stored as a sparse
matrix, and memory is allocated at each level. This requires the allocation of
extra memory for the sparse LU factorization of Al due to expected fill-in.

In the proposed Kronecker representations in Chapter 4 for countably
infinite block tridiagonal generator matrices, values of nonzero entries of sub-
model transition matrices should be available during computation. In many
cases, submodel transition matrices have subdiagonal, diagonal, or superdiag-
onal nonzero structures. If two submodel transition matrices associated with
the same transition class have the same nonzero structure, then it is possible
for the two matrices to share the storage space of one vector. In this case,
a vector of size equal to the larger state space size of the two submodels is

to be allocated. Besides, when X
phq

0,1 “ 1 and X
phq

p,l “ 1 for h “ 1, . . . , H,
l “ 1, . . . , HI , and p ą Low as in some models, memory required to store
nonzero entries of submodel transition submatrices at a given level is smaller
than that of a higher level. In this case, it is feasible to allocate memory to
store submatrices once at the highest level and keep reusing it when mov-
ing from level High down to Low. Otherwise, memory necessary to store
nonzero entries may be allocated and deallocated on the fly. Furthermore,
vector–Kronecker product multiplication requires an additional vector over
vector–matrix multiplication. When R̃l and Al are stored as sparse matri-
ces, an additional temporary vector is used to compute, compact, and store
the rows of Al. Besides, adding a row of a matrix in Kronecker form to a
vector requires two additional vectors. We also choose to store the values of
transition rate functions for states in levels l´ 1,l,l` 1 when processing level
l in order not to evaluate the functions multiple times. We allocate all the
additional vectors at the outset and deallocate them at the end. Amount of
memory allocated for all these vectors is negligible compared to the total
amount of memory allocated for R̃l matrices.

If memory is at a premium, one can also consider the more recent approach
in [21] that reduces memory requirements further by enabling the computa-
tion of steady-state expectations without having to obtain the steady-state
distribution. The approach is inspired by a Horner-like computational scheme
in which only the conditional expected sojourn time matrix R̃l at level l needs
to be allocated in step l; otherwise, there are no time savings obtained. In
other words, not all R̃l matrices for l “ High ´ 1 down to Low need to
be stored simultaneously. In order to evaluate M different functions of the
steady-state distribution, pM`1q temporary vectors of size equal to the num-
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ber of states within levels Low through High must be used. For instance, if
the first moment (i.e., mean) is to be computed for M “ HI countably infi-
nite variables, pHI ` 1q temporary vectors of length |R̃| must be allocated.
The additional vector is used for normalization purposes. At step l, R̃l is
computed as usual and stored. This implies that R̃l`1 from the previous step
need not be in memory any longer, and hence, R̃l is the only conditional
expected sojourn time matrix in memory at step l in this approach. Then R̃l

is multiplied with the subvectors corresponding to level pl`1q of the pM `1q

temporary vectors. The product is added to the running sum of subvectors
corresponding to level l of the pM ` 1q temporary vectors in order to keep
on accumulating steady-state expectations. With this memory efficient ap-
proach, steady-state measures based on average costs or rewards, moments,
and cumulants can be computed. As shown in [18, 19], memory savings can
be substantial with the approach in [21] in some models. This alternative
solver is able to compute mean values of variables stably as the solver in Al-
gorithm 9. The reported relative errors of the mean values obtained with the
memory efficient solver with respect to those obtained with the original solver
are close to machine precision in all cases. However, there is one drawback;
it is the absence of the accuracy measure, }πQ}1, because the steady-state
distribution, π, is no longer available.

In between full and sparse storages of R̃l matrices, full storage is better
in models having very high nonzero densities in the R̃l matrices. When there
are memory savings with sparse storage of R̃l matrices [18, 19], the respective
time savings are even more substantial. The temporary matrix Al seems to
be benefiting considerably from sparse LU factorization. On the other hand,
there is observable difference between using sparse versus Kronecker represen-
tations of the Qpl ` 1, lq matrices. This is the case because each subdiagonal
nonzero block is used once, and the sparse generation procedure associated
with it and the pre-multiplication with R̃l`1 amount to performing the same
number of flops as would be done by the vector–Kronecker product multi-
plication algorithm between the rows of R̃l`1 and the subdiagonal nonzero
block when the latter is kept in Kronecker form.

The scalability of different LDQBD solver implementations for increasing
values of ε has been investigated in [18]. Since time complexity of Al’s LU
factorization at level l is cubic in the order of |Rl| for dense R̃l matrices and
|Rl| is a polynomial with degree pl´1q, time requirements become more pro-
nounced for models with higher HI values. The situation regarding memory
is better since the requirements at level l are quadratic in |Rl| for dense R̃l

matrices. Clearly, time and memory requirements are much better when the
R̃l matrices are sparser. Given more memory and time, it is always possible
to obtain more accurate results with the matrix analytic approach. Dropping
nonzeros less than 10´16 from matrices is observed not to have an adverse
effect on accuracy but likely to help with memory requirements [120].

In [103], an alternative technique for systems of stochastic chemical ki-
netics which is also based on using Lyapunov functions is investigated. The
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technique explores states that are only in the set concentrating the steady-
state probability mass and then resorts to polyhedra theory [86] to bound
steady-state probabilities. Although the technique can potentially work on
states arbitrarily far away from the origin, it yields results that are much less
accurate compared to those provided by the technique discussed here.

In closing this section, we remark that the MAP/PH/S queueing system
with acyclic PH retrials [112] considered in Chapter 4 could also be mod-
eled as an LDQBD by choosing an appropriate level definition. However, the
truncated model is represented as a block matrix with blocks of equal size
using sums of Kronecker products, and its steady-state solution is computed
iteratively with SOR. The reason for this choice is that the matrix analytic
method requires the computation of the matrices of conditional expected
sojourn times, and this computation does not scale well as the number of
dimensions in the multidimensional MC increases. This is due to the increase
in the order of the diagonal blocks as the LDQBD level number increases in
multidimensional MCs. An implementation within the NSolve package of the
APNN Toolbox [7, 22] is available at [114].

6.6 Working with Compact Solution Vectors

The HTD format for compact vectors discussed in the previous chapter is
recently employed in power, JOR, and GMRES iterative methods using two
adaptive truncation strategies for the solution vectors of MCs [66]. The per-
formance of the resulting iterative solvers are compared on a large number
of multidimensional problems, two of which are the availability and polling
models in Chapter 2, with their Kronecker structured counterparts that em-
ploy full solution vectors of length |R|, the size of the reachable state space.
In this section, we briefly review the outcome of the study in [66].

Let us recall that the power method is successfully employed in the
PageRank algorithm [41] for Google matrices [106], and JOR is essentially
a preconditioned power method in which the preconditioner is M :“ QD{ω
and, hence, diagonal. The convergence rate of these methods is known to de-
pend on the magnitude of the subdominant eigenvalue of the corresponding
iteration matrix. In the original PageRank algorithm, this value is set to 0.85
by construction to guarantee a certain convergence rate. Furthermore, JOR
is known to converge for ω P p0, 1q, that is, under-relaxation, as discussed
in Section 6.1. On the other hand, GMRES is a projection method which
extracts solutions from an increasingly higher-dimensional Krylov subspace
by enforcing a minimality condition on the residual 2-norm at the expense of
having to compute and store a new orthogonal basis vector for the subspace at
each iteration. This orthogonalization is accomplished through what is called
an Arnoldi process. In theory, GMRES converges to the solution in at most
|R| iterations. However, this may become prohibitively expensive at least in
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terms of space, so in practice, a restarted version with a finite subspace size
of m is to be used. Hence, the number of vectors allocated for the represen-
tation of the Krylov subspace in the restarted GMRES solver will be limited
by m. If the vectors are stored in compact format, m can be set to a larger
value without exceeding the available memory which is expected to improve
the convergence of GMRES.

Unlike the power and GMRES methods, the iteration vector also needs to
be multiplied by the reciprocated diagonal elements of the coefficient matrix
in the JOR method. Since it is costly to generate each element of a vector in
HTD format, an iterative method such as Newton–Schulz [202] can be used to
perform the elementwise reciprocation of the diagonal vector in HTD format
at the outset using Algorithm 10.

Algorithm 10. Elementwise reciprocation of vector d as dinv.

dinv :“ eT {}d}2; it :“ 0; nrm :“ 0; nrm chg :“ 0; rcp stop :“ FALSE;
While nrm ě rcp tol and rcp stop “ FALSE,

it :“ it ` 1;
dinv1 :“ dinv;
Δd :“ eT ´ d ‹ dinv1;
nrm1 :“ }Δd}2{}e}2;
dinv :“ dinv1 ` dinv1 ‹ Δd;
If it ą 1,

nrm chg :“ nrm1{nrm;
If nrm chg ą rcp chg tol and it ě rcp maxit,

rcp stop :“ TRUE;
Else

nrm :“ nrm1.

The algorithm starts by initializing dinv (which becomes dinv1 in the
current iteration) with a vector whose entries are equal to each other in the
same vein as the initialization of the starting vector in iterative methods
with the uniform distribution. This step requires the computation of the 2-
norm of d. The other operations that the algorithm executes are elementwise
multiplication of two vectors which is denoted by the operator ‹, addition of
two vectors, and computation of the 2-norm of vectors. The algorithm stops
if the 2-norm of peT ´ d ‹ dinv1q relative to the 2-norm of e is smaller than
rcp tol [202] or if this relative norm divided by the relative norm in the
previous iteration is greater than or equal to rcp chg tol when rcp maxit

iterations have already been performed. We remark that the Newton–Schulz
method is a nonlinear iteration with quadratic convergence rate [185].

Among the operations needed to implement Algorithm 10, elementwise
multiplication of two compact vectors in HTD format has not been discussed
in Section 5.3. Note that this operation is required not only in the Newton–
Schulz iteration for computing the reciprocated diagonal elements in dinv at
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the outset but also in multiplying dinv with the updated solution vector at
each JOR iteration. Let us now explain how this operation can be performed.

Elementwise multiplication of two matrices Y and X with SVDs Y “

UY ΣY V
T
Y and X “ UXΣXV T

X yields

Y ‹ X :“ pUY d
T UXqpΣY b ΣXqpVY d

T VXq
T ,

where dT denotes a transposed variant of the Khatri–Rao product [199]. More
specifically, the ith row of the pnAB ˆ rArBq matrix AdT B is the Kronecker
product of the ith rows of the pnABˆrAq matrix A and the pnABˆrBq matrix
B. This implies that elementwise multiplication Y ‹ X has rank equal to the
product of the ranks of Y and X. Elementwise multiplication of two vectors
y and x in HTD format is no different if SVD is replaced with HOSVD. The
operation can be carried out in four steps [202], which are orthogonalization
of the vectors in HTD format, computation of their Gramians, computation
of SVDs of Gramians, and update of basis and transfer matrices. There is
also a truncation step that needs to be performed when the elementwise
multiplication is extracted from the implicitly formed Kronecker product by
again imposing an accuracy of trunc tol on the truncated HOSVD.

The elementwise reciprocation of d using Newton–Schulz introduces two
different truncations [202], first, before Newton–Schulz, when the HTD of the
diagonal elements in d is computed, and, second, during the iterative compu-
tation of the reciprocated diagonal elements in dinv within Newton–Schulz.
Since a numerical iterative method is employed to compute the reciprocal
values, it is not clear how fast convergence takes place in practice since the
initial transient period that is needed for the asymptotic quadratic conver-
gence behavior to manifest itself can be time consuming [185]. Therefore, an
alternative approach is also considered in [66].

The alternative approach is to take advantage of identical entries in dpRpq

for p “ 0, . . . , N ´ 1. In many multidimensional Markovian models, there are
entries with the same value in dpRpq because the CTMC results from some
compact model specification which contains only a few parameters compared
to the size of the reachable state space, R. This may be exploited by defining

an equivalence relation among the states inRphq
p for h “ 1, . . . , H by using row

sums of the submatrices Q
phq

k pRp,Rwq that contribute to sums of Kronecker
products for k P Kp,w and w “ 0, . . . , N ´ 1. Then the states in Rp that
are in the same equivalence class in all dimensions have identical diagonal
entries in dpRpq [66]. This approach can be very effective in representing
dpRpq compactly when the number of equivalence classes in each dimension
is small. All that needs to be done is to represent the reciprocated diagonal
entries in each equivalence class using a Kronecker product, which in turn
can be represented in HTD format. Thus, for each combination of equivalence
classes across all dimensions, an HTD formatted vector must be constructed.
Then all such vectors need to be added and truncated so that the reciprocated
diagonal elements in dinvpRpq are represented by a single HTD formatted
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vector. In the worst case, one vector in HTD format needs to be constructed
for each state meaning all entries in dpRpq are different from each other.
However, for many models, the number of HTD formatted vectors to be
added and truncated is much smaller.

In htucker, memory requirements of the HTD format are limited by a fixed
truncation error tolerance, trunc tol, and a fixed rank bound, max rank,
for the truncated HOSVD. In many cases, this approach results in ranks
becoming large during the first few iterations when the iteration vector is not
close to the solution. Furthermore, imposing a fixed rank bound may also limit
the accuracy of the final solution that can be obtained. Therefore, it is more
efficient to use a larger trunc tol when the 2-norm of the residual vector,
}rpitq}2, is large and to decrease trunc tol when }rpitq}2 is becoming small.
Thus, an adaptive strategy for adjusting the truncation error is required, and
two such strategies are considered in [66].

In the first adaptive strategy named AS1, trunc tol, is initially set to
trunc tol :“ stop tol{

?
2H ´ 3 and then updated when }rpitq}2 is com-

puted at iteration it as

prev trunc tol :“ trunc tol,

trunc tol :“ maxpminpprev trunc tol,
b

}rpitq}2 stop tol{
?
2H ´ 3q,

10´16
q.

Initially, prev trunc tol :“ 0. In this way, trunc tol is made to remain
within p10´16, prev trunc tolq while being forced to decrease conservatively
with a decrease in }rpitq}2.

In the second adaptive truncation strategy named AS2, we start with the
initialization prev trunc tol :“ 0 and trunc tol :“ 100 stop tol{

?
2H ´ 3.

Then we update the two variables as

prev trunc tol :“ trunc tol,

trunc tol :“ maxpminpprev trunc tol,
b

}rpitq}2 10´4
{
?
2H ´ 3q,

10´16
q.

when }rpitq}2 is computed at iteration it. AS2 starts at a larger trunc tol

and is expected to increase trunc tol more conservatively compared to AS1
and independently of the value of stop tol.

The scalability of the HTD format in the compact vector iterative solvers
of power, JOR, and GMRES using the above adaptive truncation strategies is
investigated on three models for increasing sizes of the reachable state space.
Two of the models are the availability and polling models in Chapter 2, and
the third one is a cloud computing model from [154]. First, we summarize
the effect of using the Newton–Schulz iteration and the equivalence class
approach to compute dinv at the outset for JOR.



6.6 Working with Compact Solution Vectors 225

Each of the availability and cloud computing models has a single reach-
able state space partition and ends up enumerating a large percentage of
the entries in d to construct dinv, since the number of equivalence classes
in dimension h of both models is relatively large with respect to the state
space size |Sphq| for h “ 1, . . . , H. It is observed that the time to compute d
and therefore dinv in HTD format grows quickly for larger values of H in
these two models using both approaches. However, the Newton–Schulz ap-
proach can be made faster by limiting rcp maxit in Algorithm 10. At the
moment, it starts with truncated HOSVD ranks of 1 and increases the ranks
when needed as the iterations progress. For these two models, the equivalence
class approach for computing dinv in HTD format yields a more compact
representation than the Newton–Schulz approach. As for the polling model
which has multiple reachable state space partitions, the number of equiva-
lence classes used to represent d is small. Hence, this approach yields not
only the more compact representation but also the faster one. In this case,
the HTD representation of dinv remains compact even for larger values of
H, with its memory requirements growing more or less linearly in H.

Solution vectors of the Kronecker-based solvers power and JOR using the
HTD format cease to be unit 1-norm due to truncation with trunc tol and
are normalized at each iteration. The check on stop tol is also performed
at each iteration in this case. For Kronecker-based power and JOR solvers
with full vectors, normalization and the stopping test can take place every
some number of (e.g., 10) iterations. The parameters of solvers used in the
experiments are Δ :“ 0.999{maxiPR |qi,i| for power, ω :“ 0.75 for JOR,
m :“ 30 for the Krylov subspace size of GMRES, stop tol :“ 10´8, and
max time :“ 1,000 seconds. Detailed results can be found in [66].

Memory requirements of Kronecker-based full-vector solvers can be calcu-
lated at the outset. Power and JOR each require three vectors of length |R|

(for QD, πpitq, and πpit`1q) and two vectors of length maxp |Rp| (for the shuf-
fle algorithm to carry out the full vector–Kronecker product multiplication),
whereas restarted GMRES(m) requires pm ` 3q vectors of length |R| and
two vectors of length maxp |Rp|. Clearly, largest versions of the three mod-
els cannot be handled with full-vector solvers on a platform having 16 GB
of main memory. Similarly, the Kronecker-based full-vector GMRES solver
cannot be utilized in the six-dimensional polling model. For Kronecker-based
compact vector solvers, it is not possible to forecast memory requirements at
the outset when adaptive truncation strategies are used. This is because the
maximum number of floating-point array elements allocated to matrices in
the HTD format representing vectors and the workspace used in the solution
process depends on the values in the vectors that are represented compactly
at each iteration, and, hence, the character of the particular model and the
behavior of the solver, and also on the value of trunc tol.

There are cases where we have not been able to obtain dinv in HTD format
for JOR(0.75) within max time or due to memory limitations sometimes with
both computational approaches and sometimes with Newton–Schulz alone.
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On the other hand, there is a case where the Kronecker-based compact vector
power method with AS2 exits due to a non-converging LAPACK method that is
used to compute SVD. Similarly, there are a few cases where we have not been
able to obtain results with the Kronecker-based compact vector GMRES(30)
solver using AS1. The solver performs a number of Arnoldi process steps
and then takes an exceedingly large amount of time without producing a
result and therefore is aborted. Finally, there is a case where the Kronecker-
based compact vector JOR(0.75) solver with AS1 using the equivalence class
approach for reciprocation fails due to memory limitations.

Among the Kronecker-based full-vector solvers for all three models, JOR
is almost always the fastest solver yielding the smallest }rpitq}2 with the
smallest memory, which is about one order of magnitude smaller than what
is required by GMRES. Among the compact vector solvers, those that use
AS1 never require a larger number of iterations than their counterparts with
AS2 for the same }rpitq}2. The average time per iteration of compact vector
solvers with AS2 is lower than that with AS1. However, power method with
AS2 stagnates and is not able to meet stop tol in any of the problems.
The convergence behavior of compact vector solvers employing AS2 tend to
be more unpredictable and less satisfactory than that with AS1. Whenever
a compact vector solver using AS1 stops, }rpitq}2 ă stop tol, whereas this
inequality in general does not hold for AS2. Regarding memory requirements
however, AS2 is better, sometimes by several orders of magnitude, than the
respective solver that uses AS1. One would expect this to imply that as
the number of dimensions increases, a larger number of iterations can be
performed by AS2 in the same duration, thereby bringing the solver closer, if
not, to convergence. This seems to be the case especially when the decrease
in memory consumption is substantial. The full-vector approach is faster for
smaller models, but it is outperformed by the compact vector approach for
larger models especially when it is used with the power method and AS2.

The availability model has highly unbalanced transition rates due to in-
frequent failures. Failures correspond to local transitions, and since they are
infrequent, the system is available most of the time, and the steady-state
distribution is skewed. Effects of varying the original transition rates given
in Section 5.3 for H “ 6 are investigated on two variants. The first variant
has one tenth, and the second variant has ten times the failure rates of the
original model. The steady-state distribution becomes more skewed in the
first variant since the system is even more available in the long run. This
translates into a less difficult problem to solve, meaning it takes a smaller
number of iterations for the same accuracy of the solution. The results show
that indeed all solvers are sensitive to the transition rates in the model. Mem-
ory requirements and computation time of dinv increase in the more difficult
variant. Memory requirements of power and JOR(0.75) compact solvers in-
crease when the problem becomes more difficult, resulting in longer time per
iteration and a smaller number of iterations in the same time duration.
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In summary, the compact vector approach when coupled with an adaptive
truncation strategy is memory and relatively time efficient, having the poten-
tial to increase the size of solvable models on a given platform significantly,
and therefore deserves further investigation.



Chapter 7

Transient Analysis

Transient analysis for MCs refers to computing the probability distribution
at a particular time instant starting from an initial probability distribution.
As such, steady state need not exist to carry out transient analysis, and the
more interesting problem formulation turns out to be related to CTMCs.

For a CTMC with reachable state space R and generator matrix Q in

Kronecker form, let π0 P R
1ˆ|R|

ě0 be the probability distribution at time 0

with π0e “ 1. Then the transient probability distribution vector πt P R
1ˆ|R|

ě0

of the CTMC at time t P Rě0 with πte “ 1 is given by

πt :“ π0e
Qt. (7.1)

Transient solution methods are based on computing the matrix exponen-
tial eQt explicitly or implicitly [305]. Since computing eQt explicitly is not
feasible when Q is large, sparse, and in Kronecker form, methods that are
able to follow the latter approach are considered. These are uniformization
[164, 169, 275], projection methods [261, 294], and ordinary differential equa-
tion (ODE) solvers [164, 275, 294]. Among these solvers, projection methods
require the computation of a polynomial approximation associated with the
Krylov subspace which is tackled using dense methods. Furthermore, projec-
tion methods require the use of a large number of supplementary vectors as
previously discussed for steady-state analysis. These are shortcomings of pro-
jection methods as transient solvers not only for generator matrices in Kro-
necker form but also for compact solution vectors. Therefore, in this chapter
we concentrate on uniformization and ODE solvers.

The equivalent problem for a DTMC with reachable state space R and
transition probability matrix P in Kronecker form is to compute the prob-
ability distribution at a particular step starting from an initial probability

distribution πp0q P R
1ˆ|R|

ě0 at step 0 with πp0qe “ 1. In this case, the transient
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probability distribution vector πpmq P R
1ˆ|R|

ě0 of the DTMC at step m P Zě0

with πpmqe “ 1 is given by

πpmq :“ πp0qP
m,

where Pm is the m–step transition probability matrix. The form of the so-
lution suggests using vector–Kronecker product multiplications to compute
the product πpitqP in

πpit`1q :“ πpitqP for it “ 0, . . . ,m ´ 1

when P is large, sparse, and in Kronecker form to obtain πpmq. In other
words, the transient distribution of a DTMC is given by the power method
with iteration matrix P . For finite irreducible DTMCs, this requires P to
be aperiodic, hence ergodic, for convergence to steady state. Note that con-
vergence to the steady-state vector π in computer precision may take place
before reaching the mth step when P is ergodic. Therefore, it is customary to
execute a test on the error or residual norm of the solution, say, every 10 steps
so that the iteration can be terminated earlier if convergence is detected.

We start with uniformization, a very simple method for the computation
of the transient distribution vector of CTMCs in Kronecker form.

7.1 Uniformization

Given a CTMC with generator matrix Q as in (2.10), uniformization [164,
169, 275] considers the uniformized transition probability matrix

P :“ I `
1

Γ
Q, Γ ě max

iPR
|qi,i|

scaled by a rate Γ that is greater than or equal to the largest exit rate
maxiPR |qi,i| among the states in R, that is,

ΓP “ ΓI ` Q,

so that transitions occur at the same (uniform) rate of Γ in each state. Here,
maxiPR |qi,i| is the smallest value of Γ for which P is a stochastic matrix.

The uniformized DTMC underlying P can be viewed as a discretized
continuous-time process associated with the CTMC that is embedded in a
Poisson process of rate Γ , since the time to exit each state is exponentially
distributed with rate Γ . Then the uniformization equation at time t P Rě0

is given by

eQt
“

8
ÿ

m“0

e´Γt pΓtqm

m!
Pm
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from the Maclaurin series (i.e., Taylor series around 0) expansion of the ma-
trix exponential eQt after substituting Q “ ΓP ´ΓI (see also [90]). Observe
in eQt that

Probpm transitions in time tq :“ e´Γt pΓtqm

m!

is the Poisson probability of having m transitions during a time interval of
length t in which each transition takes place at rate Γ and Pm is the m–step
transition probability matrix, hence also the name randomization.

The infinite series corresponding to the matrix exponential can be trun-
cated, say, at a maximum number of Mr transitions within time t and used
to compute an approximation to πt from (7.1) as in

π̃t :“ π0

Mr
ÿ

m“0

e´Γt pΓtqm

m!
Pm . (7.2)

Equation (7.2) is the simplest way by which the transient solution can be
stably computed since it involves only positive floating-point arithmetic and
therefore avoids subtractive cancellation. The approach is originally proposed
in [191] and also called Jensen’s method.

The uniformization method has the known truncation error [164]

Mr
ÿ

m“0

pΓtqm

m!
ě

1 ´ ε

e´Γt
implying }πt ´ π̃t} ď ε

obtained from the fact that Poisson probabilities sum to 1. The number of
terms given by the right truncation point Mr to satisfy the truncation error
bound ε increases linearly with Γt. With the increase in Γt, the Poisson
probabilities for smaller values of m start to become negligible. In such a
situation, it is useful to have also a left truncation point, Ml, to save on
computations. This modification in uniformization yields

π̃t :“
Mr
ÿ

m“Ml

e´Γt pΓtqm

m!
π0P

m .

The Poisson probabilities can be computed stably by the algorithm in
[148]. Therein, left truncation is suggested for ε :“ 10´10 when Γt ě 25 and
the number of terms pMr ´ Ml ` 1q, required to satisfy a fixed truncation
error is shown to be proportional to

?
Γt. To minimize the rounding error

that is incurred by adding small numbers to large ones when summing the
probabilities for normalization, an approach that performs the summation
from both ends toward the mode is used so that small numbers are summed
with small numbers first.
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Once the Poisson probabilities are available, a Horner-like implementation
of uniformization would be

p :“ e´Γt pΓtqMl

Ml!
π0P

Ml , π̃t :“ p,

p1 :“ pP, p :“ pΓt{mqp1, π̃t :“ π̃t ` p for m :“ Ml ` 1, . . . ,Mr.

The initialization of p requires Ml multiplications of π0 with P using ef-
ficient vector–Kronecker product multiplication followed by scaling of the
resulting vector with ProbpMl transitions in time tq. Thereafter, for m “

Ml ` 1, . . . ,Mr step m consists of the multiplication of p with P using effi-
cient vector–Kronecker product multiplication to obtain p1 followed by the
scaling of p1 with Γt{m to obtain p and the addition of p to the running sum
π̃t. This requires three vectors of length |R| for πt, p, p

1 and two vectors
of length maxp |Rp| to carry out the efficient vector–Kronecker product mul-
tiplication. The uniformization method is implemented within the NSolve

package of the APNN toolbox [7, 22].
The disadvantage of uniformization is the need to partition t into time

steps as in multistep ODE methods and use a smaller ε for each subinterval
when Γt is large [305]. In passing to ODE solvers, we remark that existence of
state exit rates, |qi,i| for i P R, belonging to different time scales in a CTMC
coupled with the choice of t proportional to the reciprocal of the smallest
exit rate, that is, t 9 1{miniPR |qi,i|, implies stiffness in the corresponding
problem [275]. Note that this definition of stiffness can be interpreted as the
largeness of the ratio maxiPR |qi,i|{miniPR |qi,i| when t 9 1{miniPR |qi,i|, and
the performance of uniformization degrades when the problem becomes stiff.

7.2 Ordinary Differential Equation Solvers

Numerical ODE methods to solve (1.2) attempt to follow a unique solution
curve from an initial value of the transient probability distribution vector

πt P R
1ˆ|R|

ě0 at time t “ 0 with πte “ 1 to its value at some other prescribed
time t P Rě0 [305]. Thus, an initial value problem [12] involving a system of
linear first-order ODEs as in

dπt

dt
“ fpt,πtq with fpt,πtq “ πtQ given π0 P R

1ˆ|R|

ě0 , π0e “ 1 (7.3)

is to be solved.
The solution employs discretization on the interval r0, ts and approxima-

tions to the solution at intermediate time steps. Given a discrete set of
time steps tm for m “ 0, . . . ,M with t0 “ 0 and tM “ t in r0, ts and
Δtm “ tm ´ tm´1 as the step size of step m, the exact solution of (7.3)
at time tm is denoted by πtm . A numerical ODE method computes an ap-
proximation πpmq to πtm for m “ 1, . . . ,M starting from the initial condition
πp0q “ π0.
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In computing the approximation πpm`1q, an ODE method may incorpo-
rate the values of previously computed approximations πplq for l “ 0, . . . ,m
or even use an approximation of πtm`1

. A method that uses only ptm,πpmqq

to compute πpm`1q is said to be an explicit single-step method. It is said to
be a multistep method if it uses approximations at several previous steps to
compute its new approximation. A method is said to be implicit if compu-
tation of πpm`1q requires an approximation to πtm`1

; otherwise, it is said to
be explicit [305].

In the next two sections, we present examples of single-step and multistep
methods. Then an explicit single-step method will be used to initialize the
first few approximations of an implicit multistep method to compute the tran-
sient solution of a countably infinite system of stochastic chemical kinetics
known to be stiff.

7.2.1 Runge–Kutta Methods

Runge–Kutta (RK) methods [12, 305] are single-step methods that may be
explicit or implicit. An RK method of order o, denoted RKo, provides an
accuracy comparable to a Taylor series approximation to πpm`1q of order o
around πpmq, however without having to determine and evaluate the deriva-

tives f p1q, f p2q, . . . , f po´1q. Instead, for a step size of Δt, the evaluation of

kpsq “ f

˜

tm ` csΔtπpmq ` Δt
S

ÿ

s1“1

as,s1kps1q

¸

“

˜

πpmq ` Δt
S

ÿ

s1“1

as,s1kps1q

¸

Q for s “ 1, . . . , S

at S selected points tm `csΔt called stages between tm and tm`1p“ tm `Δtq
is performed, so that the approximation at time step tm`1 is computed from

πpm`1q :“ πpmq ` Δt
S

ÿ

s“1

bskpsq.

The derivation of b P R
Sˆ1 and A P R

SˆS with c “ Ae whose entries
are used at each stage of RKo is obtained from a comparison with the terms
through Δto in the Taylor series approximation [12] for the first step, that
is, the computation of πp1q from the initial condition pt0,πp0qq [305]. The
order conditions that must be satisfied by RK methods are given in [12].
These methods are explicit for strictly lower-triangular A and implicit other-
wise. In the former case, kpsq can be computed by vector–Kronecker product
multiplications when Q is in Kronecker form and therefore the method is
relatively easy to use. In the latter case, there will be dependencies between
the left- and right-hand sides of the equation for kpsq implying a more costly
implementation to obtain the solution at each step.
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An important issue pertains to the choice of step size. The step size should
be sufficiently small so that the desired accuracy of the computed solution is
attained but large enough to avoid redundant computations when obtaining
the solution [305]. The error that is made in single-step methods such as RK
within one step assuming that the solution obtained at the previous step was
exact is named as being local. For RKo, local error due to truncation of the
Taylor series [305] is given by

}πt0`Δt ´ πp1q} “ CΔto`1
` OpΔto`2

q for some C P Rě0.

Note that this result does not include any rounding errors that may accrue
during the computation. On the other hand, global error can be defined as
the error in the computed solution at time t, that is, }πt ´ πpMq}.

Keeping the step size constant throughout the solution process is not a
good idea since the computed solution πpmq may exhibit different variations
in different parts of the solution interval r0, ts. It is preferable to change the
step size so that the local error is roughly equal to a user-specified tolerance,
stop tol, at each step. Many times this tolerance is multiplied by a safety
factor less than but close to 1 so that the step size change is carried out more
conservatively [12]. In order to obtain an estimate of the local error, it is
customary to compute two approximations πpmq and π̂pmq to the solution at
step m and take }π̂pmq ´ πpmq} as an estimate of the local error. If

}π̂pmq ´ πpmq} ă stop tol

does not hold, then Δt is discarded. A new step size Δt˚ is computed from

Δt˚ :“ Δt

ˆ

stop tol

}π̂pmq ´ πpmq}

˙
1

o`1

,

and the computation for step m is repeated until an acceptable step size is
found [12, 305]. Runge–Kutta–Fehlberg (RKF) we discuss next is one such
method that can be used to this end.

At step m, the embedded RK method due to Fehlberg [133] uses two ap-
proximations of different orders, πpmq for estimating the solution with order
o and π̂pmq for estimating the local error in the solution with order o ` 1
[12, 305]. The RKo method uses A, b, and c, while the RKpo ` 1q method

uses A, b̂, and c. Because RKo is embedded inside RKpo ` 1q, the two ap-
proximations can share stage computations.

The RKF method, written RFKopo`1q, with o “ 4 is used in [275] for the
transient analysis of CTMCs. For RKF4(5), we have the six-stage single-step
method of order 4 with (or a method of order 5 without) an error estimate
[12] using
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A “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
4
3
32

9
32

1,932
2,197 ´
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2,197

7,296
2,197

439
216 ´8 3,680

513 ´
845
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´
8
27 2 ´

3,544
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40

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚
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¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

25
216

1,408
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2,197
4,104

´
1
5

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, b̂ “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

16
135

6,656
12,825
28,561
56,430

´
9
50
2
55

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Observe that A is strictly lower-triangular.
It is difficult to estimate the global error [12, 305]. Often multiple solu-

tions with different values of stop tol are obtained, and the solutions are
compared to provide an estimate of the global error. On the other hand, one
can always use the sum of local errors as an upper bound on the global error;
however, the resulting bound may not be satisfactory. For stiff systems the
step size, Δt, may need to be intolerably small before acceptable accuracy
is obtained, resulting in unacceptable rounding errors and computation time
requirements. In general, explicit methods do not work for stiff problems.

7.2.2 Backward Differentiation Formulae

Backward differentiation formulae (BDF) are a class of multistep methods
that are widely used to cope with stiffness in the solution of ODEs [152].
In this class of solvers, time is discretized, and solutions at intermediate
time steps are computed using backward differences. We remark that the
lth backward difference [12] approximates the lth derivative f plq times Δtl

for step size Δt ą 0. Only implicit BDF methods are popular due to the
fact that explicit versions can be used solely with one or two steps and are
not effective [12, 305]. In this section, we will be referring to implicit BDF
methods as BDF methods without using the qualifier implicit.

BDF methods are constructed by differentiating a degree o interpolat-
ing polynomial zt that passes through the o ` 1 points ptl,πplqq for l “

m ` 1 ´ o, . . . ,m ` 1. Furthermore, πpm`1q is determined so that zt sat-
isfies the ODE at time step tm`1, that is, dztm`1

{dtm`1 “ πpm`1qQ [305].
Hence, the BDF method is o-step because it uses the previous o approxi-
mations πpm`1´oq, . . . ,πpmq at step m ` 1, it is implicit because it uses an
approximation to πtm`1

when computing πpm`1q, and it is of order o be-
cause the linearity of the method in f implies a local truncation error that is
proportional to Δto [12].

Now, let πpm`1´lq be the approximation to the transient probability distri-
bution vector of the model at time step tm`1´lp“ tm`1´lΔtq for l “ 0, . . . , o.
Then, the BDF method of order o, denoted BDFo, at step m ` 1 is given by

o
ÿ

l“1

1

l
∇lπpm`1q “ Δtπpm`1qQ,
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where the backward difference vectors are defined recursively [305] as

∇lπpm`1q “

"

πpm`1q if l “ 0

∇l´1πpm`1q ´ ∇l´1πpmq if l “ 1, . . . , o
. (7.4)

BDFo may be rewritten in the form of a linear system of equations as in

πpm`1q pI ´ θoΔtQq “

o´1
ÿ

l“0

βo,l∇lπpmq, (7.5)

where θo, βo,0, . . . , βo,o´1 P Rą0 are obtained using the coefficients in Ta-
ble 5.3 of [12] after substituting the expressions for backward difference vec-
tors and rearranging the terms into common parentheses. BDF methods can
be used when o ď 6. For instance, when o “ 5 we have θ5 “ 60{137, β5,0 “ 1,
β5,1 “ 77{137, β5,2 “ 47{137, β5,3 “ 27{137, and β5,4 “ 12{137.

The right-hand side in (7.5) can be computed as a linear combination of
o backward difference vectors ∇lπpmq with coefficients βo,l from

π
prhsq

pm`1q
:“

o´1
ÿ

l“0

βo,l∇lπpmq. (7.6)

Then the linear system

πpm`1q pI ´ θoΔtQq “ π
prhsq

pm`1q
(7.7)

can be solved using an iterative method when Q is in Kronecker form.
BDFo local error at step m` 1 due to truncation can be approximated as

rpm`1q «
1

o ` 1

´

πpm`1q ´ π
p0q

pm`1q

¯

, (7.8)

where

π
p0q

pm`1q
:“

o
ÿ

l“0

∇lπpmq (7.9)

is the prediction vector [291]. Note that at step m ` 1 the prediction vec-
tor is the sum of o ` 1 backward difference vectors associated with step m,
where ∇0πpmq “ πpmq. Hence, the prediction vector at step m ` 1 can be
viewed as the approximation obtained in step m plus the correction vector
řo

l“1 ∇lπpmq. We will return to the benefit of having such a prediction vector
associated with BDFo in the next section.

In order to obtain an estimate of the local error at step m ` 1, we first
compute }rpm`1q}. If

}rpm`1q} ă stop tol
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does not hold, then Δt is discarded. A new step size Δt˚ is computed from

Δt˚ :“ Δt

ˆ

stop tol

}rpm`1q}

˙
1

o`1

, (7.10)

and the computation for step m ` 1 is repeated until an acceptable step size
is found [12, 291]. As in RKo, it is possible to multiply stop tol by a safety
factor less than but close to 1 so that the step size changes more conservatively
[12], or a second tolerance, stop tol1, can be used to lower bound }rpm`1q}

and replace stop tol in (7.10) with pstop tol ` stop tol1q{2. The latter
approach also guards against abrupt decreases in }rpm`1q} which may be
indicative of anomalous computational behavior.

Backward differences are quite useful in that they can also be updated
easily when the step size changes [291]. Letting B and B˚, respectively, denote
matrices with backward difference vectors for old step size Δt and new step
size Δt˚ ‰ Δt as in

B “

ˆ

p∇1πpmqq
T

¨ ¨ ¨ p∇oπpmqq
T

˙

,

B˚
“

ˆ

p∇˚1πpmqq
T

¨ ¨ ¨ p∇˚oπpmqq
T

˙

,

new backward difference vectors can be obtained [291] from

B˚ :“ BR˚U˚,

where R˚ and U˚ are po ˆ oq matrices given entrywise as

r˚
l,l1 :“

1

pl ` 1q!

l
ź

j“0

pj ´ pl1 ` 1qpΔt˚
{Δtqq,

u˚
l,l1 :“

1

pl ` 1q!

l
ź

j“0

pj ´ pl1 ` 1qq for l, l1 “ 0, . . . , o ´ 1.

Since BDFo is an o-step method, the first o solutions πp0q, . . . ,πpo´1q

should be available and OpΔtoq accurate to have a global error of OpΔtoq

[12, 305]. This implies that in order to obtain the first o solutions, for in-
stance, when o “ 5, RFK4(5) can be used without the error estimate as an
order 5 method.

An approximative technique for transient analysis of stiff MCs using ag-
gregation appears in [35]. The approach is based on classifying states of the
MC as fast and slow and eventually aggregating fast states so as to have a
smaller non-stiff MC that approximately models the behavior of the original
MC. Under certain conditions, the introduced approximation is exact. It will
be interesting to see if such an approach can somehow be put to use efficiently
in a Kronecker setting.
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Parallel implementation of ODE solvers for initial value problems is dis-
cussed in [72]. Issues related to parallelization across the method, across time
steps, and across unknowns are investigated. The ideas therein may be useful
when parallel implementations of ODE solvers for the transient analysis of
MCs in Kronecker form are sought.

Implementation of the BDFo method with RFKopo`1q for the first o steps
discussed in the last two subsections and within the NSolve package of the
APNN toolbox [7, 22] is available at [116]. The particular implementation is
able to work with compact vectors and countably infinite state spaces, which
are the subjects of the next section.

7.3 Working with Countably Infinite State Spaces

When the Markovian model at hand has a reachable state space R that
is countably infinite, a number of issues pertaining to transient analysis
emerge. In this section, we will be addressing these issues on CTMC models
with countably infinite R from a Kronecker-based perspective for systems
of stochastic chemical kinetics [117]. The problem (1.2) to be solved in this
particular application area is named the chemical master equation (CME),
which can be challenging even for two-dimensional models [105]. A detailed
overview on this subject may be obtained, for instance, from [161]. We start
by presenting the model considered in [118] for transient analysis.

7.3.1 A Cascade Model

The cascade model of a system of stochastic chemical kinetics is associated
with a biological process in which adjacent genes produce protein that en-
hances the expression of a succeeding gene [183]. The version considered
here has five molecules each corresponding to a submodel with the transition
classes in Table 7.1 for which H “ HI “ 5, HF “ 0, i “ pi1, i2, i3, i4, i5q,
K “ 10, and a, b, c, μ P Rą0. We let a “ 0.7, b “ 1, c “ 5, and μ “ 0.07
as in [183] for the initial state ip0q “ p10, 10, 10, 10, 10q and final time t “ 10.
Observe in this model that the submodel state spaces are countably infinite,
that is, Sphq “ Zě0 for h “ 1, . . . , H, and R “

Ś5
h“1 Sphq.

A Kronecker representation for the cascade model, which has separable
transition rate functions, can be obtained by letting the transition matrix of
submodel h for h “ 1, . . . , H and transition class k “ 1, . . . ,K be denoted by

Q
phq

k P R
|Sphq

|ˆ|Sphq
|

ě0 and given entrywise as

Q
phq

k pih, jhq “

"

α
phq

k pihq if jh “ ih ` v
pkq

h

0 otherwise
for ih, jh P Sphq .
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Table 7.1 Transition classes of the cascade model

k φk α
p1q

k pi1q α
p2q

k pi2q α
p3q

k pi3q α
p4q

k pi4q α
p5q

k pi5q vpkq

1 a 1 1 1 1 1 eT
1

2 μ i1 1 1 1 1 ´eT
1

3 b i1
bi1`c

1 1 1 1 eT
2

4 μ 1 i2 1 1 1 ´eT
2

5 b 1 i2
bi2`c

1 1 1 eT
3

6 μ 1 1 i3 1 1 ´eT
3

7 b 1 1 i3
bi3`c

1 1 eT
4

8 μ 1 1 1 i4 1 ´eT
4

9 b 1 1 1 i4
bi4`c

1 eT
5

10 μ 1 1 1 1 i5 ´eT
5

Then

Q “ QO ` QD, QO “

K
ÿ

k“1

φk

H
â

h“1

Q
phq

k , QD “ ´

K
ÿ

k“1

φk

H
â

h“1

diagpQ
phq

k eq.

Let us now state the issues that emerge in the transient analysis of count-
ably infinite CTMCs as in the cascade model. First, it is nontrivial to truncate
R in such a way that the number of states in the finite truncation is tractable
during transient analysis while the probability of the model being outside the
truncated state space remains small. Second, since transition rates are almost
always dependent on state values, stiffness manifests itself in the underlying
model, and rates become unbounded as state values increase. Consequently,
uniformization and RK methods do not seem as viable solution alternatives
in this application area.

In the next subsection, we look into how Kronecker-based BDF as dis-
cussed in Section 7.2 can be used with JOR to solve the linear system in (7.7)
and employ compact solution vectors as discussed in Section 6.6 when the
system of ODEs underlying a CTMC are countably infinite.

7.3.2 State Space Truncation and Compact Solution
Vectors

Initially the model will be in a finite subset of R, many times in a single
state. At time step tm`1, R may be truncated to give Rpm`1q Ă R such
that |Rpm`1q| ă 8 by assuming that the probability of the model being in
RzRpm`1q, that is, in states outside the truncated and finite reachable state
space Rpm`1q, is small. One possible approach is to gradually expand the
truncated state space by adding states that are reachable within a certain
number of transitions as in the finite state projection (FSP) algorithm [247]
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until it includes most of the probability mass and then solving the truncated
model with a prespecified tolerance. The FSP algorithm uses the number of
dimensions, H, in the model in limiting reachability during the truncated
reachable state space expansion process. Unfortunately, this approach yields
a truncated state space including many states with negligible probability.
More information on the FSP algorithm and its variants can be obtained, for
instance, from the survey in [128]. Here, we follow a different approach [117].

The prediction vector π
p0q

pm`1q
of BDFo in (7.9) is a good estimate of the

solution at time step tm`1p“ tm ` Δtq. Therefore, the truncated reachable
state space Rpm`1q will capture most of the probability mass at time tm`1 if

ÿ

iPRzRpm`1q

π
p0q

pm`1q
piq

is small. This approach allows us to choose Rpm`1q before solving (7.5) since

the backward difference vectors ∇0πpmq, . . . ,∇oπpmq forming π
p0q

pm`1q
in (7.9)

are obtained at the previous time step tm. Note that it is also relatively easy

to compute an aggregated version π
p0q

pm`1,hq
of the prediction vector π

p0q

pm`1q

for submodel h using the aggregation operator Rphq in (6.24) as

π
p0q

pm`1,hq
:“ π

p0q

pm`1q
Rphq for h “ 1, . . . , H. (7.11)

Here, we let the truncated reachable state space Rpm`1q at time step tm`1

be a Cartesian product of consecutive integers as in the sliding window ap-
proach [327]. It will be interesting to consider a tighter and smaller Rpm`1q

based on a union of Cartesian products as future work.

At time step tm`1, first the aggregated prediction vector π
p0q

pm`1,hq
for sub-

model h in (7.11) is computed for h “ 1, . . . , H. When a compact vector

in HTD format is used to represent pπ
p0q

pm`1q
qT with orthogonal basis ma-

trices U phq and transfer matrices Bpt̄q forming c (see Section 5.3), then the
aggregated prediction vector for submodel h follows from (6.24) as

pπ
p0q

pm`1,hq
q
T

“

˜

h´1
â

l“1

eT Inl

¸

b Inh
b

˜

H
â

l“h`1

eT Inl

¸

pπ
p0q

pm`1q
q
T

“

˜

h´1
â

l“1

eTU plq

¸

b U phq
b

˜

H
â

l“h`1

eTU plq

¸

c.

Observe that the aggregated prediction vector pπ
p0q

pm`1,hq
qT for submodel h is

in HTD format with basis matrices

Ũ plq :“

#

U plq if l “ h

eTU plq otherwise
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and transfer matrices Bpt̄q forming c. Then the full-vector representation of

pπ
p0q

pm`1,hq
qT may be obtained by computing the basis matrices at the leaves

and moving toward the root in OprmaxpHnmax ` r2max ` nmaxrmaxqq flops.
Once the aggregated prediction vector for each submodel is computed and

a prespecified state truncation tolerance, state trunc tol, is available, the

minimal finite set R̄phq

pm`1q
which is a proper subset of Sphq satisfying

ÿ

ihPSphqzR̄phq
pm`1q

π
p0q

pm`1,hq
pihq ă

state trunc tol

H

is constructed for h “ 1, . . . , H. For submodel h, this condition implies that

the states outside R̄phq

pm`1q
have a total aggregated predicted transient proba-

bility mass which is upper bounded by state trunc tol{H. We remark that

the states in R̄phq

pm`1q
need not be consecutive integers.

Next, using R̄phq

pm`1q
, the set

Rphq

pm`1q
:“ tminpR̄phq

pm`1q
q ´ ψ|R̄phq

pm`1q
|, . . . ,

maxpR̄phq

pm`1q
q ` ψ|R̄phq

pm`1q
|u X Sphq for h “ 1, . . . , H,

which consists of consecutive integers encompassing the states in R̄phq

pm`1q
is

formed. By construction, this set is also a proper subset of Sphq and finite.
Here, ψ P p0, 1q is used as a safety factor to enable the expansion of the
truncated reachable state space at time step tm`1 for each submodel in both
directions. Since

R̄phq

pm`1q
Ď Rphq

pm`1q
,

the transient probability mass that remains outside Rphq

pm`1q
is upper bounded

by state trunc tol{H, implying that

ÿ

iPRzRpm`1q

π
p0q

pm`1q
piq ă state trunc tol

and
ř

iPRzRpm`1q
π

p0q

pm`1q
piq is small when state trunc tol is small.

Having constructed

Rpm`1q :“
H

ą

h“1

Rphq

pm`1q

as a Cartesian product of consecutive integers, the next thing to do is to ob-
tain the backward difference vectors ∇0πpmq, . . . ,∇oπpmq and the prediction

vector π
p0q

pm`1q
incident on Rpm`1q. Note that the entries of these vectors ob-

tained at the previous time step tm correspond to the states of the truncated
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reachable state space Rpmq and need to be updated. This can be achieved by
setting the entries corresponding to (new) states in Rpm`1qzRpmq to 0. Other
entries corresponding to (old) states in Rpm`1q X Rpmq retain their values.
When backward difference vectors and the prediction vector are represented
in HTD format, rows of the new orthogonal basis and transfer matrices are
either zero or can be obtained by copying the corresponding rows from the old
orthogonal basis and transfer matrices. Hence, the updating of these vectors
requires no flops.

Now, it is possible to move to the solution phase in which JOR(ω) is used
to solve (7.7) as in

πp0,m`1q :“ π
p0q

pm`1q
;

πpit`1,m`1q :“ p1 ´ ωqπpit`1,m`1q

`ω
´

π
prhsq

pm`1q
` πpit,m`1qQOpRpm`1q,Rpm`1qq

¯

‹ dinvpm`1q

for it “ 0, . . . , jor maxit ´ 1;

πpm`1q :“ πpit`1,m`1q,

where π
prhsq

pm`1q
is computed from (7.6) and the elementwise reciprocated vector

dinvpm`1q corresponding to the vector

dpm`1q :“
`

e ´ θoΔtQDpRpm`1q,Rpm`1qqe
˘T

is computed using Algorithm 10. In the particular implementation, JOR(ω)
stops if the 2-norm of the residual vector

nrmpit`1,m`1q :“ }π
prhsq

pm`1q
´ πpit`1,m`1q

`

I ´ θoΔtQpRpm`1q,Rpm`1qq
˘

}2

is less than jor tol, jor maxit iterations are performed, or stagnation is
detected using nrm chg with jor chg tol similar to Algorithm 10.

After πpm`1q is obtained, }rpm`1q}2 can be computed from (7.8) and com-
pared with stop tol and stop tol1. If stop tol1 ă }rpm`1q}2 ă stop tol,
then the new backward difference vectors ∇0πpm`1q, . . . ,∇oπpm`1q are com-
puted from (7.4), and BDFo continues with the next time step tm`2. Oth-
erwise, a new step size Δt˚ is obtained from (7.10) using pstop tol1 `

stop tolq{2 and BDFo repeats computations for time step tm`1. The se-
quence of operations associated with BDFo described above will be executed
for each new time step until the horizon at time t is met.

As accuracy measures of πpMq, sum of the local errors in BDFo

M´1
ÿ

m“0

}πpm`1q ´ π
p0q

pm`1q
}2{po ` 1q
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and sum of the state space truncation errors

M´1
ÿ

m“0

|πpm`1qe ´ πpmqe|

can be considered.
When an iteration vector is not close to the solution, its accurate com-

putation should not be necessary. Furthermore, the imposed accuracy may
introduce additional time and memory requirements. Therefore, as in Sec-
tion 6.6 and as also suggested in [188], we use adaptive truncation strategies
in Newton–Schulz and JOR iterations that allow for the relatively inaccurate
computation of iteration vectors.

In adaptive truncation strategies, the rank bound should be increased only
when it is necessary. Based on the observation that iterative methods do not
converge or converge relatively slowly in case of a small rank bound, the rank
bound is increased if the ratio of two consecutive residual norms, nrm chg,
is larger than a prespecified tolerance. In Newton–Schulz, the rank bound is
initialized to 1 and increased if nrm chg ě rcp chg tol. In JOR, the rank

bound is initialized to the maximum rank of the prediction vector π
p0q

pm`1q
and

increased if nrm chg ě jor chg tol. In the latter case, the stopping criterion
is modified so that JOR assumes stagnation if nrm chg ě jor chg tol at
two consecutive iterations.

Truncation of a vector may be inaccurate if rank is determined by a bound
instead of trunc tol. Hence, errors may be underestimated if backward dif-

ference vectors ∇0πpmq, . . . ,∇oπpmq, prediction vector π
p0q

pm`1q
, right-hand

side vector π
prhsq

pm`1q
, 2-norm of residual vector nrmpit`1,m`1q, and 2-norm

of local truncation error }rpm`1q}2 are not computed accurately. Therefore,
we truncate these vectors only using trunc tol. In other words, fixed and
adaptive rank bounds are considered only when computing elementwise mul-
tiplication d ‹dinv1 in Algorithm 10, vector dinv in Algorithm 10, and iter-
ation vector πpit`1,m`1q in JOR. Regarding trunc tol, the same tolerance
is used when truncating a vector in fixed and adaptive truncation strate-
gies. We, respectively, choose rcp tol{

?
2H ´ 3 and jor tol{

?
2H ´ 3 as

trunc tol in Newton–Schulz and JOR. Other vectors are truncated with
trunc tol :“ stop tol{

?
2H ´ 3 which imposes an accuracy of stop tol.

A time limit of time limit :“ 1,000 seconds is imposed on execution
time, and execution stops at the end of a BDFo step if it has exceeded this
limit. The maximum iteration counts of Newton–Schulz and JOR are set as
rcp maxit :“ jor maxit :“ 100. The initial step size is given by Δt :“ 10´5.
We experiment with values of stop tol P t10´6, 10´7, 10´8, 10´9u. Since
backward difference vectors may have an error of stop tol, we impose the
same error tolerance in state space truncation and BDFo by letting

state trunc tol :“ stop tol and stop tol1 :“ stop tol{5.
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Tolerances in Newton–Schulz and JOR methods are chosen as

rcp tol :“ jor tol :“ stop tol{2 and

rcp chg tol :“ jor chg tol :“ 1{2

so that these methods are efficient yet relatively accurate. The safety factor
is set as ψ :“ 1{20 based on the observation that it is sufficiently small and
yields accurate results. The minimum step size is given by Δtmin :“ 10´6

based on the assumption that this value is sufficiently small. When updating
the step size, we do not let the new step size to be smaller than Δtmin. Finally,
nonzeros less than 10´16 are considered as 0.

Numerical experiments are conducted to evaluate the effects of using adap-
tive truncation strategies with three types of BDFo solvers using compact vec-
tors in HTD format. In solver type 1, we use a fixed rank bound in Newton–
Schulz and JOR with max rank :“ 1,000. In solver type 2, we use a fixed rank
bound with max rank :“ 1,000 in JOR but an adaptive truncation strategy
in Newton–Schulz. In solver type 3, we use adaptive truncation strategies in
Newton–Schulz and JOR.

The particular BDF solver used is BDF5 with RFK4(5) to initialize the
first five solutions. The relaxation parameter of JOR is set to ω :“ 1; hence,
Jacobi is used. This BDF solver requires nine vectors of length equal to
maxm |Rpm`1q| when implemented with full vectors. Backward differences
need six vectors; diagonal, prediction, and solution need three vectors. The
value of maxm |Rpm`1q| hints at the advantage of using compact vectors over
full vectors since full-vector implementations require roughly 9 times this
value.

The models considered in the numerical experiments are metabolite syn-
thesis with two metabolites and two enzymes [297], which is mentioned in
Section 4.4 and used before as a test case, extended toggle switch [189],
lambda phage [183, 188, 292], and cascade [183] which is presented in the pre-
vious subsection. In general, the BDF(5) type 1 solver with fixed truncation
strategies is not able to compute the solution for lower values of stop tol.
We observe that time and memory requirements decrease significantly when
adaptive truncation is used with Newton–Schulz as in type 2 and 3 solvers.
Furthermore, maximum rank of solution vectors changes smoothly over time
when adaptive truncation strategies are used. Number of nonzeros allocated
for full vectors in the cascade model is more than 2,000 times that of the
compact vectors when BDF(5) is used with adaptive truncation strategies
and stop tol “ 10´8. The results indicate that adaptive truncation strate-
gies avoid increase in memory requirements and execution time when fixed
truncation tolerance and fixed rank bound lead to an inefficient solver and
are to be recommended.
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Conclusion

Multidimensional Markov chains can be used to model systems that are
formed of interacting subsystems. This can be achieved by associating a sub-
model with each subsystem, identifying the state space of each submodel, and
characterizing the transitions in which each submodel participates. The states
such a model occupies are often a proper subset of the Cartesian product of
its submodel state spaces. This subset forms the reachable state space of the
model. In order to represent a multidimensional Markov chain compactly, its
reachable state space needs to be expressed as a union of reachable state space
partitions, where each partition is a Cartesian product of subsets of submodel
state spaces. The intimately related operation for Cartesian product in set
theory happens to be the Kronecker product in matrix theory.

The transition matrix associated with the reachable state space of a multi-
dimensional Markov chain is a block matrix in which each block captures the
transitions from one reachable state space partition to another. Potentially
different types of transitions take place between the states of two reachable
state space partitions. Therefore, each block in the transition matrix can be
expressed as a sum of Kronecker products of submodel transition subma-
trices. Here, the concepts of block (matrix), sum (of matrices), Kronecker
products, and submatrices from matrix theory correspond, respectively, to
the concepts of Cartesian product partitioning of the reachable state space,
set of transitions (from the reachable state space partition associated with the
row index of the block to the reachable state space partition associated with
the column index of the block), Cartesian products, and subsets of submodel
state spaces from set theory.

The compact representation of multidimensional Markov chains based on
Kronecker products is exact as long as the reachable state space is finite.
The transition matrix associated with this representation has a rich block
structure which is nested and recursive. There are block partitionings in this

© Springer Nature Switzerland AG 2018

T. Dayar, Kronecker Modeling and Analysis of Multidimensional
Markovian Systems, Springer Series in Operations Research and Financial
Engineering, https://doi.org/10.1007/978-3-319-97129-2 8

245

https://doi.org/10.1007/978-3-319-97129-2_8


246 8 Conclusion

matrix at as many different levels as there are dimensions in the model and
at one more level when there are multiple reachable state space partitions.
Preprocessing techniques such as reordering, grouping, and lumping can take
advantage of this rich block structure to expedite analysis. When the reach-
able state space is countably infinite, it normally needs to be truncated for
analysis purposes. For steady-state analysis, this truncation can be performed
at the outset using a suitably chosen Lyapunov function. For transient anal-
ysis, however, the truncation needs to be performed at each time step while
moving toward the time at which the solution is desired.

In this Kronecker-based context for multidimensional Markov chains, anal-
ysis methods rely on an efficient vector–Kronecker product multiplication
algorithm. Block iterative methods based on splittings, projection methods
preconditioned with block matrices obtained from splittings, and multilevel
methods for steady-state analysis come across as a strong set of solvers which
should be integrated to software packages working with Kronecker products.
Among these, multilevel methods perform better on a larger number of prob-
lems in the literature. As for transient analysis, implicit ordinary differential
equation solvers can be recommended for continuous-time Markov chains with
transition rates at different time scales. Implementation of these solvers re-
quires intricate programming with dynamically allocated, relatively complex
data structures, which needs time, careful testing, and tuning. The major
challenge in this process is to develop skills to be able to work with the ab-
stract multidimensional reachable state space utilizing Kronecker products.

In order to explain the introduced concepts further, Markovian models
from availability, queueing networks, production lines, communications pro-
tocols, and stochastic chemical kinetics are considered. In each case, the tran-
sition matrix underlying the respective multidimensional Markov chain is ex-
pressed using Kronecker products. Approaches that can be employed to avoid
unreachable states and handle countably infinite state spaces are indicated.
Advantages of using a decompositional iterative method for a particular kind
of availability model to achieve fast convergence, two approximative decom-
positional iterative methods for closed queueing networks with phase-type
service distributions and arbitrary buffer sizes when less accurate results can
be tolerated, and a matrix analytic method for systems of stochastic chemical
kinetics having countably infinite state spaces are shown. Pointers to software
used during this process are given.

Recently, there has been progress in representing solution vectors com-
pactly with Kronecker-based decompositions. Although these representations
are not exact, their accuracy can be user controlled. Issues that arise in devis-
ing and implementing numerical steady-state and transient analyses solvers
for multidimensional Markov chains based on Kronecker products using com-
pact vectors are discussed and compared with their full-vector counterparts.
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These initial results are encouraging; they show that the sizes of problems
that are solvable on a given platform increases when the compact vector
approach is used with adaptive strategies that control accuracy.

Parallel implementation of solvers for multidimensional Markov chains
based on Kronecker products emerges as an area that requires investigation.
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272. Pultarová, I., Marek, I.: Physiology and pathology of iterative aggregation–
disaggregation methods. Numer. Linear Algebr. Appl. 18, 1051–1065 (2011)

273. Ramaswami, V., Lucantoni, D.M.: Algorithm for the multi-server queue with phase-
type service. Stoch. Model. 1, 393–417 (1985)

274. Ramaswami, V., Taylor, P.G.: Some properties of the rate operators in level de-
pendent quasi-birth-and-death processes with a countable number of phases. Stoch.
Model. 12, 143–164 (1996)

275. Reibman, A., Trivedi, K.: Numerical transient analysis of Markov models. Comput.

Oper. Res. 15, 19–36 (1988)



262 References
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