Chapter 7
Neutrality, Robustness, and Evolvability Qs
in Genetic Programming

Ting Hu and Wolfgang Banzhaf

Abstract Redundant mapping from genotype to phenotype is common in evolu-
tionary algorithms, especially in genetic programming (GP). Such a redundancy
leads to neutrality, a situation where mutations to a genotype may not alter
its phenotypic outcome. The effects of neutrality can be better understood by
quantitatively analyzing its two observed properties, robustness and evolvability. In
this chapter, we summarize our previous work on this topic in examining a compact
Linear GP algorithm. Due to the choice of this particular system we can characterize
its entire genotype, phenotype, and fitness networks, and quantitatively measure
robustness and evolvability at the genotypic, phenotypic, and fitness levels. We then
investigate the relationship between robustness and evolvability at those different
levels. Technically, we use an ensemble of random walkers and hill climbers to
study how robustness and evolvability are related to the structure of genotypic,
phenotypic, and fitness networks and influence the evolutionary search process.

Keywords Genetic programming - Linear GP - Neutral networks - Robustness -
Evolvability - Genomic diversity - Structural diversity - Behavioral diversity

7.1 Introduction

In evolutionary algorithms in general, but especially in genetic programming (GP),
a redundant genotype-to-phenotype mapping is common where multiple unique
genotypes map to the same phenotype [1, 12, 16, 23, 25]. A related notion of
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neutrality has been put forward to describe the mutational connectivity amongst
those genotypes mapped to the same phenotype [2]. Specifically, if a single-point
mutation changes one genotype to another without altering the phenotypic outcome,
the mutation is called neutral. Redundancy and neutrality are different but closely
related concepts. Redundancy is needed for, but does not guarantee, neutrality. It
is possible that although a phenotype can be represented by multiple genotypes,
these genotypes cannot be traversed from one to the other through single-point
mutations. In such a case, any mutations applied to those genotypes will change
their phenotype.

Neutrality appears as an embedded property of many evolutionary algorithms
and its influence on evolution has seen many debates in the field of evolutionary
computation. On the one hand, neutrality may seem to hamper the evolutionary
search since neutral mutations are not phenotypically effective [7, 27]. On the other
hand, neutrality is considered beneficial for the search by providing a buffer against
deleterious mutations [32] and, more importantly, by offering mutational potential
through expanding neutral genotypic regions which are not subject to selection
pressure [14, 29]. These two aspects relate neutrality to two notions that have drawn
much attention in studies on both computational and natural evolution, namely to
robustness and evolvability.

Robustness describes the resilience of an evolutionary system in the face of
constant genetic and environmental perturbations, while evolvability captures the
ability for generating novel and adaptive phenotypes. These two properties may
seem contradictory at first glance, but are commonly observed coexisting in living
organisms, and are both results of neutrality.

The interplay between robustness and evolvability has been a focus of research
in evolutionary biology. Both theoretical [20, 30] and empirical studies [10, 19, 21]
have been put forth to elucidate the relationship between them. Using RNA
molecules, some argued that neutral mutational connections constrain evolution
since evolution yields phenotypes which are genotypically abundant even when they
are not the most fit [8]. Others argued that robustness could facilitate evolvability,
and long-term innovation could only emerge in the presence of the mutational
robustness [6, 9].

The relationship between robustness and evolvability is system-dependent, and
it is crucially influenced by the distribution of genotypic redundancy and the
mutational interconnections among phenotypes [17, 25]. Robustness promotes
evolvability only if genotypic redundancy leads to more connections to different
phenotypes.

A quantitative understanding of the relationship between robustness and evolv-
ability can help resolve conflicting reports and clarify outstanding research ques-
tions. Genotype networks, a.k.a., neutral networks, provide a general framework for
quantitatively characterizing robustness and evolvability, and have found applica-
tions in a wide array of systems [6, 11, 22, 24, 26].

In genotype networks (Fig.7.1), vertices represent unique genotypes and muta-
tional connections are represented as edges between pairs of genotypes. A genotype
network is comprised of all genotypes that encode the same phenotype. Mutations
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Fig. 7.1 Schematic diagram of genotype networks. Each vertex represents a genotype and all
genotypes encoding the same phenotype define one genotype network. An edge links two vertices
if the two genotypes can be transferred from one to another through a single point mutation. Single
point mutations can also connect genotypes from different phenotypes, shown in dashed lines

within a genotype network are neutral by definition. Multiple genotype networks
representing different phenotypes can also be connected through non-neutral single-
point mutations. Genotype networks quantitatively characterize the distribution of
genotypic redundancy among phenotypes, i.e., over-represented phenotypes have
larger genotype networks and under-represented phenotypes have smaller networks.
Genotype networks also capture the mutational potential among different pheno-
types using different edges representing non-neutral mutations between genotypes
that belong to two phenotypes.

Phenotype and fitness networks can be constructed in a similar way by represent-
ing phenotypes (or fitness values) as vertices and their mutational connections as
edges. By building networks at these different levels, we are enabled to take a close
look at the relationship of robustness and evolvability at the genotypic, phenotypic,
and fitness levels.

Most existing studies of neutrality in evolutionary algorithms look at the effect of
neutrality on the evolutionary search indirectly, i.e., they ask whether neutrality by a
redundant representation improves or hampers the search ability of an evolutionary
algorithm. Very little has been done to quantitatively measure robustness and
evolvability directly and to study their relationship and influence on evolution
dynamics.

In this chapter, we discuss the use of genotype networks to quantitatively
analyze robustness and evolvability in a Linear Genetic Programming system.
Linear GP has a compact representation and is especially amenable to an exhaus-
tive enumeration of all possible genotypes and phenotypes. We characterize its
genotype, phenotype, and fitness networks and their properties, and examine the
diffusion and dynamics of an evolutionary population on those networks. We
report on a quantitative examination of neutrality and elucidate the relationship of
robustness and evolvability in GP. We hope that our analysis can find application
in other GP instances and in other evolutionary algorithms, that it provides a better
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understanding of evolutionary mechanisms, and that it will eventually inspire new
and more sophisticated evolutionary algorithms [3, 15].

7.2 Linear GP Algorithm

7.2.1 Representation

Linear Genetic Programming is a branch of Genetic Programming (GP) where
the chromosomal representation is a set of instructions that are executed sequen-
tially [5]. Although LGP follows a linear instructional structure, it is very powerful
and capable of modeling complex nonlinear relationships among multiple attributes.
LGP has gained increasing popularity due to its fast speed of program execution and
individual evaluation [4, 13, 18, 28].

Here, we consider a two-input one-output Boolean function (Boolean circuit)
modeling problem. Each LGP instruction is comprised of one return value, two
operands, and one Boolean operator producing the return value from the operands.
Registers R; and R, store the two Boolean input values. Register R takes a default
initial Boolean value and its final value after the execution of all instructions is
returned as the LGP program’s output. To enhance the computational capacity of
LGP programs, we add an extra calculation register R3. Calculation registers Rg
and R5 can serve as either return values or as operands, whereas input registers
R; and R, are read-only and can only serve as operands with their input content
being protected from overwriting. The Boolean operator in each LGP instruction is
chosen from a pre-defined operator set opr = {AND, OR, NAND, NOR}. An example
Boolean LGP program with a length L = 4 can be given as:

Ry =R, AND R;
Ro=R; OR R,
R; = R, NAND Ry

Ry = R3 NAND Rg

7.2.2 Genotype, Phenotype, and Fitness

In our LGP system, the genotype is an unique LGP program. To enable exhaustive
enumeration of the entire genotype space, we set a fixed length of L = 4 for all
LGP programs. The total number of possible instructions is 2 x 4 x 4 x 4 = 27,
and thus, the total number of possible four-instruction programs, i.e. genotypes, is
(2")* = 228 > 268 million. We see that even for a small problem instance and a
short fixed program length the genotype space can be quite large.
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We define the two-input, one-output Boolean function f : B2 — B, where B =
{TRUE, FALSE} represented by a LGP program as its phenotype. The total number
of possible phenotypes is thus 22 = 16. A phenotype can be represented by a
set of outputs observed across each of the 22 possible combinations of Boolean
inputs (Fig.7.2). Compared to the large genotype space, the phenotype space is
very small. This suggests a high redundancy in the mapping from genotype to
phenotype, i.e., a large number of different genotypes should map to the same
phenotype (approximately 16.7 million genotypes per phenotype, on average).

Based on a predefined phenotypic target, fitness can be assigned to each of the
16 phenotypes. We define the fitness of a phenotype to be the Hamming distance
between its four-digit binary vector and that of the target. While this is technically
the error between the two functions, we use the term fitness for this quantity, despite
it being minimized. There are five possible fitness values, for example if the target
phenotype is TRUE (i.e., (1111)) the fitness of phenotype FALSE (i.e., (0000)) is 4.
The phenotype x OR vy (i.e., (0111)) has an improved fitness of 1. The mapping
from phenotype to fitness is redundant again, i.e., from 16 phenotypes to five fitness
values, but depends on which phenotype is set as the target. Redundancy between
phenotype and fitness is less strong (approximately 3.2 phenotypes per fitness value,
on average).

A single-point mutation to a genotype changes any one of the four elements of
an instruction and replaces it with a randomly chosen possible allele. Single-point
mutations that do not alter the phenotypic outcome are called neutral mutations.
Mutations that lead to a change of phenotype are called non-neutral mutations.

7.3 Genotype, Phenotype, and Fitness Networks

Our Boolean LGP system now has 16 genotype networks, each corresponding to
a particular phenotype. The distribution of genotypic redundancy is highly uneven,
with the largest genotype network FALSE having more than 60 million genotypes
(>23% of the entire genotype space) and the smallest genotype networks x ==
y and x XOR y having less than 25 thousand genotypes (1% of the entire
genotype space). The distribution of the sizes of genotype networks is shown
in Fig.7.3. Note that phenotype FALSE has more genotypes than TRUE, simply
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Fig. 7.3 Distribution of the size of genotype networks. Due to the symmetry of Boolean
relationships, multiple phenotypes can have the same number of underlying genotypes. The size of
genotype networks ranges from 25 thousand to 60 million

because all registers are initialized as FALSE before any computation. Programs
whose execution does not change the content of the output register Ro will output
FALSE. The heterogeneous distribution of genotype networks suggests that some
phenotypes are over-represented and some are under-represented. Random sampling
and initializing genotypes likely will generate over-represented phenotypes. If a
phenotypic target is under-represented, the search task will be relatively more
difficult.

A phenotype network can be further constructed by representing a genotype
network, i.e., a phenotype, as a vertex, and connecting two phenotypes using an
edge if there exist at least one pair of genotypes of those two phenotypes that can
be transferred from one to the other through a single-point mutation. Figure 7.4
shows the phenotype network in our setting. Phenotypes as vertices are numbered
using the decimal values corresponding to their binary strings, labeled with their
represented Boolean relationships. The phenotype network of our LGP system here
is a complete graph, meaning that every vertex is connected directly to any other
vertex. However, the connections are also highly heterogeneous, reflected by the
varying width of edges. This suggests that a phenotype has varying mutational
potentials to access other phenotypes. For instance, random mutations to genotypes
of phenotype !y more likely lead to phenotypes y, FALSE, and TRUE, and less
likely to phenotypes x OR y and x.

Introducing fitness further groups genotypes to build a higher-level fitness
network. Since the fitness function is defined as the Hamming distance between the
target phenotype and the reference phenotype, the assignment of fitness values and
thus the structure of the fitness network depend on the setting of the phenotypic
target. Figure 7.5 shows two fitness networks using different target phenotypes.
When selection is present and rejects mutations that worsen the fitness, the fitness
network becomes directed, where single-point mutations are only accepted if fitness
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Fig. 7.4 The phenotype network. Vertices represent phenotypes and edges link two phenotypes if
there exist at least one pair of genotypes mapped to the two phenotypes that can be transferred from
one to the other through one single-point mutation. Vertex size is proportional to the total number
of genotypes mapped to a corresponding phenotype. Edge width is proportional to the total number
of one point mutations that change genotypes of one phenotype to another
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Fig. 7.5 The fitness networks with target phenotype TRUE (left) and x ==y (right). Each vertex
is a fitness value with white representing the best fitness zero and black representing the worst
fitness four. The vertex size is again proportional to the total number of underlying genotypes.
When selection prevents worsening fitness, point mutations may become irreversible, and the
mutational transitions among fitness values, represented by edges, is now directed. Edge width
is proportional to the total number of point mutations changing genotypes from one fitness value
to another
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is improved or remains the same. Again, we observe heterogeneous mutational
potential for transitioning from one fitness level to another.

7.4 Quantitative Analysis of Robustness and Evolvability

Using the framework of genotype and phenotype networks, robustness and evolv-
ability can be quantitatively analyzed. In the context of RNA genotypes and their
secondary structure phenotypes, it has been argued that the paradoxical tension of
mutational robustness and evolvability can be solved by distinguishing robustness
and evolvability at genotypic and phenotypic levels [31]. The relationship of
robustness and evolvability can be different at those two levels. We discuss the
quantitative analysis of robustness and evolvability of a genotype and a phenotype
in the following subsections.

7.4.1 Genotypic Robustness and Evolvability

The robustness of a genotype can be measured as the fraction of its neutral neighbors
among all neighbors [31]. This definition follows the intuition that if a random
single-point mutation to a genotype likely leads to a different genotype but retains
the same phenotype, this genotype can be regarded as robust.

The measure of the evolvability of a genotype, on the other hand, should reflect
the innovation ability of a genotype. It is defined as the fraction of the number
of phenotypes that are accessible through non-neutral single-point mutations to a
genotype to the number of all phenotypes [31].

We now look at the distribution of genotypic robustness and evolvability within a
genotype network. Note that all phenotypes have very similar behavior, so we only
show results of one typical and representative phenotype x >= vy. If the genotype
network of x >= vy is visualized with more robust genotypes located more towards
the center, the bi-modal distribution of genotypic robustness (Fig.7.6a) suggests
a dense core and a thick periphery of the network. The genotypic evolvability
(Fig.7.6b) resembles a normal distribution, with the majority of genotypes being
able to reach 50% of other phenotypes though single-point mutations. The genotypic
evolvability and robustness are negatively correlated (Fig.7.6c). This negative
correlation is weak (R> = 0.015) but highly significant (p <« 0.001). This
observation is in line with findings in RNA networks where at the genotypic level
robustness and evolvability share an antagonistic relationship [31]. It is also intuitive
that if random mutations to a genotype do not change its phenotype most of the time,
this genotype may have less access to other different phenotypes.
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Fig. 7.6 Robustness and evolvability of genotypes and phenotypes. A typical and representative
phenotype x>=y is chosen to show the genotypic properties in its genotype network. (a) and (b)
show the distributions of genotypic robustness and evolvability, and (c) shows the scattered plot
and correlation of genotypic robustness and evolvability. The correlation of phenotypic robustness
and evolvability is shown in (d). The fitted lines provide a visual guidance of correlations

7.4.2 Phenotypic Robustness and Evolvability

The robustness of a phenotype is defined as the size of its genotype network, i.e., the
total number of unique genotypes that map to the phenotype. The more genotypes a
phenotype has, the more robust it appears.

The definition of phenotypic evolvability has seen different proposals. It can be
defined similarly to genotypic evolvability as the fraction of different phenotypes
that can be reached via non-neutral single-point mutations from a given pheno-
type [31]. However, given the complete connectivity of our phenotype network
(Fig.7.4), this phenotypic evolvability measure will assign the same value of 1 to
all phenotypes.

Alternatively, the evolvability of a phenotype can be measured as the distribution
of its mutational potential to other phenotypes [8]. Specifically, we use v;; to denote
the total number of non-neutral single-point mutations between phenotypes i and j.
Letting
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denote the fraction of non-neutral point mutations to genotypes of phenotype i that
result in genotypes of phenotype j, we define the evolvability E of a phenotype i as

Ei=1-)fi (7.2)
j

A phenotype that has more equally distributed mutational potential to other
phenotypes is regarded as more evolvable.

The correlation of phenotypic robustness and evolvability is shown in
Fig.7.6d for all 16 phenotypes. Phenotypic robustness and evolvability are non-
monotonically correlated, with median robust phenotypes having the lowest
evolvability (x AND !y and !x AND vy). Both the least (x XOR y and x ==
y) and most robust (FALSE) phenotypes are highly evolvable. Our results disagree
with previous findings in evolutionary biology that either a monotonic positive [31]
or negative [8] correlation is observed.

We also compare the measured properties across the genotypic and phenotypic
levels. Figure 7.7 shows the average genotypic robustness and evolvability in
relation to the phenotypic robustness. A strong and significant positive correlation
(R?> = 0.98, p < 0.001) is observed between the average genotypic robustness
and the robustness of the corresponding phenotype (Fig. 7.7a). Meanwhile, average
genotypic evolvability is negatively correlated (R> = 0.95, p <« 0.001) with
phenotypic robustness (Fig.7.7b). This suggests that more robust phenotypes are
comprised of more robust and less evolvable genotypes.
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Note that at the level of fitness, robustness and evolvability can be defined simi-
larly to the definition for phenotypes. However, fitness evolvability and robustness
are no longer correlated (data not shown, RZ=1.8x 1074, p =0.91).

7.5 Random Walkers and Hill Climbers

We use an ensemble of random walkers and hill climbers to investigate how the
structures of genotype, phenotype, and fitness networks influence evolutionary
search. We test if the quantitative measures of robustness and evolvability provide
insights into predicting the search dynamics. We perform two sets of simulations. In
the first set, a genotype is allowed to randomly explore the genotypic and phenotypic
spaces, i.e., as a random walker. In the second set of experiments, a specific target
phenotype is chosen and a fitness value is thus assigned to each genotype. Hill
climbers are only allowed to move from genotypes via non-deleterious single-point
mutations.

7.5.1 Random Walks Through Genotype Networks

First we investigate how individual random walkers explore the genotypic space.
We consider a representative phenotype x >= y and confine the random walking
within its genotype network. By doing so, we enforce the selection pressure on
neutrality and observe its influences on evolution. Each step corresponds to a
single-point mutation. We randomly pick a genotype in the phenotype x >= y
and record all genotypes encountered in a total of four million (an approximation
of the total number of genotypes in phenotype x >= vy) steps. Then we compute
the visit frequency of each genotypic robustness value during the entire course. This
distribution is shown in Fig. 7.8a.

The visit frequency follows a bi-modal distribution, similar to the distribution of
genotypic robustness in the genotype network of x >= vy (Fig.7.6a). It is true that
the more frequent a robustness value is observed in a genotype network, the more
likely a random walker will encounter that robustness value. So we normalize the
visit frequency by dividing it by the fraction of a robustness value observed in a
genotype network, i.e., by dividing Fig. 7.8a by Fig. 7.6a. The resulting distribution
is shown in Fig. 7.8b.

Now we can observe a strong positive correlation of the normalized visit
frequency and the genotypic robustness. This suggests that genotypes are not visited
uniformly by single-point mutations, but rather in proportion to their robustness.
Genotypes of high robustness are visited more often, and genotypes of low
robustness are visited less often than would be expected from a random sampling of
genotypes from a phenotype.
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Fig. 7.8 A random walk in the genotype network of phenotype x >= y. (a) Distribution of the
visit frequency, defined as the proportion of steps in a random walk spent at genotypes of a given
robustness value. (b) Visit frequency normalized by the frequency with which a given genotypic
robustness value is observed in the genotype network, i.e., the distribution in (a) divided by the
distribution in Fig. 7.6a

7.5.2 Average Waiting/Adaptation Time

We set each of the 16 phenotypes as the target phenotype and one of the other
15 as the starting phenotype. For each of the 16 x 15 possible combinations of
pairs of unique phenotypes, we then perform 1000 random walks and hill climbs,
starting from a designated source phenotype and ending when the random walker or
hill climber reaches any genotype in the specified target phenotype. We record the
total number of point-mutations/steps required to get from one phenotype to another
and calculate the average waiting (adaptation) time across 1000 random walks (hill
climbs).

Figure 7.9 shows the average waiting (adaptation) time as a function of the
evolvability of the source phenotype (fitness) and the robustness of the target
phenotype (fitness). It is speculated that if a random walker or hill climber starts
from a more evolvable phenotype, it may find a target phenotype faster. However,
the evolvability of the source phenotype fails to make a prediction on the waiting
time (Fig.7.9a, R% = 0.001, p = 0.62), neither does the evolvability of the source
fitness on the adaptation time (Fig. 7.9c, R* = 0.02, p = 0.32). This observation
puts into question the currently available quantification of evolvability. Recall that
the evolvability of a phenotype (fitness) measures the mutational potential to reach
other phenotypes (fitnesses). It only captures the very first step leaving a phenotype
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Fig. 7.9 Average waiting (adaptation) time as a function of the evolvability of the starting
phenotype (fitness) and the robustness of the target phenotype (fitness)

(fitness), but fails to provide further insights on the long-term trajectory of the
evolutionary process.

The robustness of the target phenotype (fitness), on the other hand, shows strong
predictive power for the average waiting (adaptation) time. In Fig. 7.9b, d, a strong
and negative correlation is observed between average waiting time and robustness
of the target phenotype (R? = 0.95, p <« 0.001), as well as between average
adaptation time and robustness of the target fitness (R> = 0.88, p < 0.001).
These results are intuitive and suggest that more robust phenotypes (fitnesses) are
easier to reach from other phenotypes via single-point mutations since they are over-
represented by more genotypes, and random mutations will more likely lead to more
robust phenotypes.

The probabilistic nature of random walks and hill climbing can be captured by
Markov Chain analysis, meaning that the average waiting (adaptation) time could
be predicted analytically rather than through empirical simulations. By considering
each phenotype as a state, and the mutational connections between phenotype i
and phenotype j (f;; in Eq.(7.1)) as their transition probability, we can apply
Markov Chain analysis to determine the expected waiting (adaptation) time for
moving from one phenotype to another. We find a strong correlation between the



114 T. Hu and W. Banzhaf

oy —> TRUE Ay —ly
(predicted) (observed)

5 g 05 A
: 2
= & 04 A
if .
& E o3 A
af . A
&3 02 e®® e%e o0’
g5 22244, 40444, 44040404404 %

c O L
> 0 [ ]
] eg0l

0 ala o

0 0.1 02 03 04 0.5 0.6 0.7 0.8 09
Genotypic robustness

Fig. 7.10 Comparison of mutational transitions from phenotype y to TRUE and to !y. Filled
circles are genotypes of y that have non-neutral mutational connections to genotypes of phenotype
TRUE, and triangles are genotypes of y that have non-neutral mutational connections to phenotype

'y

analytical prediction and the empirical observation, yet also large relative residuals,
i.e., 126 steps comparing to 112 steps in the average waiting and adaptation times,
respectively.

This discrepancy between the analytical prediction and empirical observations
suggests that the mutational connections between phenotypes might not serve as the
most accurate estimate of transitional probabilities from one phenotype to another.
Let us take a close look at an example for moving from source phenotype y to
target phenotype !x AND y: The predicted most likely path for this transition is
y — TRUE — !x AND vy, but the observed most frequent path is y — !y —
TRUE — !x AND vy, despite the fact that the observed path is longer than the
predicted path and y has more mutational connections to TRUE than !x AND y
(i.e., fy,TRUE =0.19 and fy, ly = 018)'

The transitional probabilities are measured at the phenotypic level, but mutations
occur at the genotypic level. Therefore, if the mutational connections between
phenotypes do not provide the most accurate estimation of the transition likelihoods,
a mutational bias must be introduced at the genotypic level. We take phenotypes
vy, TRUE, and !y as examples and look into the genotypes that allow a transfer
from y to TRUE and to !y. Figure 7.10 shows the comparison of the transitions
between y and TRUE and between y and !y. The non-neutral mutations connect
y to TRUE (filled circles) through more genotypes with low robustness but less
genotypes with high robustness, whereas the non-neutral mutations connect y to !'y
(filled triangles) through less genotypes with low robustness but more genotypes
with high robustness. Recall that more robust genotypes are visited more frequently
(Fig.7.8b). This is the source of the bias required and explains why mutations to
genotypes of y more likely lead to phenotype !y than to TRUE, despite the fact that
the total amount of non-neutral mutations between y and TRUE is greater than that
between y and !y.
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7.6 Conclusion

Neutrality is commonly observed in evolutionary algorithms where mutations may
not alter the phenotypic outcome. Neutrality is a result of the redundant genotype-
to-phenotype mapping and debates have raged on whether neutrality is beneficial
for the search ability of an evolutionary algorithm.

The effects of neutrality on its two observed properties, robustness and evolv-
ability, can be studied quantitatively. Both robustness and evolvability capture
how an evolutionary system responds to genetic changes. Robustness refers to the
resilience to retain phenotypic traits in face of mutational perturbations, whereas
evolvability characterizes the capability of using random mutations to generate
novel and adaptive phenotypes. The relationship of robustness and evolvability may
seem antagonistic, but is in fact highly collaborative.

Studying the relationship of robustness and evolvability helps to better under-
stand the fundamental mechanisms of evolution. The framework of genotype
networks has been used to quantitatively measure robustness and evolvability and to
analyze their relationship. Moreover, the relationship should be better studied at the
genotypic, phenotypic, and fitness levels since robustness and evolvability can take
different qualifications and correlate differently at those levels.

In this book chapter, we reported on the quantitative analysis of robustness and
evolvability at the genotypic, phenotypic, and fitness levels. A small-scale Linear
GP system was adopted as our test system, which provides multiple advantages for
our purposes. The Linear GP algorithm has a compact presentation which allows
exhaustive enumeration of all possible genotypes and phenotypes. Thus the entire
genotype and phenotype spaces can be characterized.

We followed evolutionary biological studies on robustness and evolvability in
RNA networks and defined quantitative measures of robustness and evolvability
at the genotypic, phenotypic, and fitness levels. We showed that robustness and
evolvability correlate differently at those levels. At the genotypic level, a more
robust genotype is less evolvable. At the phenotypic level, the correlation of
robustness and evolvability is non-monotonic with the least robust and the most
robust phenotypes having the highest evolvability. However, no correlation was
observed at the fitness level. This finding calls for more advanced fitness evaluation
methods in the future that incorporate mutational connections at the genotypic and
phenotypic levels rather than simply the similarity between phenotypes.

Using an ensemble of random walkers and hill climbers, we showed how the
structure of genotype, phenotype, and fitness networks can influence the evolu-
tionary search. We found that more robust phenotypes are more accessible from
other phenotypes via random mutations, however starting from a more evolvable
phenotype does not guarantee a more efficient search for novel phenotypes. This
is due to the limitations of evolvability measures currently available and calls for
further studies.

We also found that robust genotypes play a crucial role in the evolutionary search
process. More robust genotypes are visited more often than would be expected in a
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random sampling of genotypes, i.e., random mutations are biased leading to more
robust genotypes. Therefore, robust genotypes can influence the evolutionary search
by guiding it to their adjacent phenotypes. This finding is of particular interest since
it may inspire mechanisms of evolutionary search that utilize robust genotypes.
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