
Towards Exploratory Software Design
Environments for the Multi-
Disciplinary Team

Patrick Rein, Marcel Taeumel, and Robert Hirschfeld

Abstract The creation of a new software system can be a wicked problem. Conse-
quently, it is important for such projects to have a collaborating team of experts from
multiple disciplines. While agile development processes foster such a collaboration
on the social level, the tools used by individual experts still prevent team members
from seeing the overall result of their collective modifications on the resulting
system. Roles in the process, such as content designers and user experience
designers, only get feedback on the impact of their changes on their artifacts.
Based on the concept of exploratory programming environments, we propose a
new perspective on the environments used in software development, called explor-
atory software design environments. We describe the properties of such an environ-
ment and illustrate the perspective with existing related tools and environments.

1 Introduction

Software development has the properties of a wicked problem: Requirements might
only become apparent after an interim solution was proposed and software is “never
done” as the intended real-world use cases for the software constantly change (Rittel
andWebber 1973; Conklin 2006; DeGrace and Stahl 1990). Further, the creators of a
software system have to account for a variety of properties such as technical stability
and maintainability, usability of the user interface, correctness of the domain model,
and actual usefulness for the users. Consequently, software development can benefit
from insights of the Design Thinking methodology, in particular the consideration of
multiple viewpoints for solving such wicked problems (DeGrace and Stahl 1990;
Beck 2000).

In order to create an appropriate solution, a multi-disciplinary team has to closely
collaborate, as only then can the multiple perspectives of the participants actually

P. Rein (*) · M. Taeumel · R. Hirschfeld
Software Architecture Group, Hasso Plattner Institute for Digital Engineering,
Potsdam, Germany
e-mail: patrick.rein@hpi.de; marcel.taeumel@hpi.de; robert.hirschfeld@hpi.de

© Springer Nature Switzerland AG 2019
C. Meinel, L. Leifer (eds.), Design Thinking Research, Understanding Innovation,
https://doi.org/10.1007/978-3-319-97082-0_12

229

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-97082-0_12&domain=pdf
mailto:patrick.rein@hpi.de
mailto:marcel.taeumel@hpi.de
mailto:robert.hirschfeld@hpi.de
https://doi.org/10.1007/978-3-319-97082-0_12


contribute to the design. In such close collaboration, team members are not only
interested in finishing their individual tasks but continuously assess the impact of
their own contributions on the overall design and comments on any other contribu-
tion if they think it necessary. A commonly described factor for creating such a team
culture is the creation of a common purpose within the team.

230 P. Rein et al.

Software development can benefit from teams of experts that incorporate multi-
disciplinary knowledge. The variety of properties of a software system makes it
essential for the design process that a variety of people with different backgrounds
are involved in the creation of the software, such as back-end developers, user
interface designers, actual users, and experts of the application domain. The com-
mon purpose of such software development teams is ideally the collective and
continuous evolution of a system that brings value to its users. Agile processes are
based on the notion of a team sharing a common purpose. These processes try to
support the team culture through appropriate techniques. For example, Extreme
Programming (XP) lists “The Whole XP Team” as one of its practices and describes
it as if “. . . they [the team] were roped together. Walking abreast, they could make
more progress than if any one group tried to force the others to follow.” (Beck 2000).

While such development practices aim to support a culture of working together
on a single system, this culture is often not reflected in the software tools used by
individual participants. All experts operate their own tools, creating an output which
is only later combined into the running system. For example, technical writers are
often passed a file with a long list of placeholders which they should, for example,
translate into full-length labels. The effects of changes to the text might only first
become visible to the other team members much later in the process and only in case
where they actually run the new system version. Consequently, even in cases where
an agile development process might aim at collaboration on one system, the tools
only allow for cooperation almost resembling a software factory with single work-
stations (see Fig. 1).

Instead, we should aim for a software workshop in which all participants of the
process work together on the actual, running system (see Fig. 2). In such a workshop,
a technical writer would change the labels while the software is running and others
would shortly afterwards see the changed labels as well. Whenever someone applies
a change to the system, the effect should be visible to the other team members shortly
thereafter. This workflow facilitates a sense of working together on one system and
makes collaboration more likely.

In this article, we illustrate the factors impeding collaboration during the design of
software in traditional environments. Further, we show how so-called exploratory
programming environments can serve as a foundation for a software workshop in
which people with different roles can collaborate directly on one system. We do so
by describing the properties of exploratory programming environments and illustrate
these properties with two exemplary programming systems. We then generalize
these properties as properties for exploratory software design environments, which
provide an exploratory workflow for all participants of the process. To show how
such an environment might work we further describe a number of exemplary tools
and environments that implement characteristic aspects.



Towards Exploratory Software Design Environments for the Multi-Disciplinary Team 231

Fig. 1 The current workflow in software development. Most team members work on just their type
of artifacts (bold arrows). They only get feedback on the impact of their changes on the system at a
later point in time—first after submitting their artifacts to the program designers (dashed lines)

Fig. 2 The ideal workflow in exploratory software design environments for the whole team. Every
team member can work on their artifacts but also get direct feedback on their modifications as they
relate to the system as a whole. Further, they can see how their modification interacts with
modifications of others



232 P. Rein et al.

2 From Cooperation to Collaboration in Software
Development

Agile processes such as Extreme Programming (XP) share a number of principles
and values with the design thinking methodology. Both are iterative in nature, make
creating value for the user a primary goal, and emphasize self-sufficient and multi-
disciplinary teams. To actually leverage the different viewpoints of a multi-
disciplinary team, team members have to collaborate beyond mere cooperation. As
software development already entails particular tasks, a multi-disciplinary software
development team has a set of artifacts and tools that correspond to typical roles:
content creation, user experience design, program design, and user.

2.1 Design Thinking, Wicked Problems, and Agile Processes

Wicked problems are problems with “no definitive formulation” due to requirements
which are incomplete from the start or might change during the design of a solution.
Traditional examples of wicked problems are social problems such as drug abuse
and homelessness. In a more general way, they are defined by a set of six charac-
teristics (Conklin 2006) [derived from a larger catalogue of 11 characteristics (Rittel
and Webber 1973)]:

1. The problem is not understood until after the formulation of a solution.
2. Wicked problems have no stopping rule.
3. Solutions to wicked problems are not right or wrong.
4. Every wicked problem is essentially novel and unique.
5. Every solution to a wicked problem is a ‘one shot operation.’
6. Wicked problems have no given alternative solutions.

The design thinking process is suitable for approaching wicked problems
(Buchanan 1992). For example, the iterations in the design process allow team
members to refine their understanding of the problem after each iteration (charac-
teristic 1). Further, the novel and unique nature of the problem is covered by
techniques for ideation to support the team in creating new and fitting solutions
(characteristic 4). Even early design thinking methodologies already focused on
similar types of problems (Arnold 1956, 1959/2016). Further, wicked problems
consist of interdependencies of various individual factors. Each factor might only
be understood in terms of a particular field, such as sociology, art, and mechanical
engineering. Thus, design teams should ideally consist of experts from a variety of
fields. Due to their different backgrounds, each team member has a different
perspective on the original problem and can hence determine sub-problems related
to their field.

The design of software systems is also considered a wicked problem (DeGrace
and Stahl 1990). A major aspect which makes software development wicked is that



Towards Exploratory Software Design Environments for the Multi-Disciplinary Team 233

the actual requirements for a software system are only understood after parts of the
software have been built and are actually in use. Often, users require an intermediate
state of the software to determine what they actually need. Further, software also
does not have a “stopping rule” (characteristic 2). As the context of its use is
constantly changing, software has to adapt accordingly. This is summarized by the
saying in software industry that “software is never done”.

Agile processes acknowledge the wicked nature of software development. One of
the principles of Extreme Programming (XP) is, for example, “embrace change,”
meaning that development should happen in small iterations to get feedback from
users in a timely manner. Based on this feedback, the system can then directly be
adapted to best fit the new requirements (Beck 2000). In this respect, every iteration
of an XP team is a design iteration. At the beginning, needs and wishes from the
users are collected. The team then works out a solution for these challenges and
produces a small increment in the features of the system. This increment serves as a
prototype which is directly evaluated with the users by incorporating it into the
running software. Observations and feedback from users are directly incorporated
into the next iteration. Also, software development covers more than the mere
production of source code. Software development also covers activities such as
user experience design, interface design, and content creation by domain experts.
Consequently, XP also emphasizes a “whole team” and collaboration becomes
paramount in the process. Every activity or aspect of the software should be covered
by someone in the multi-disciplinary team.

2.2 From Cooperation to Collaboration

For multi-disciplinary teams to be effective, they have to collaborate on solving the
problem and not only cooperate. Although both of the words “cooperation” and
“collaboration” generally refer to working together, the style of working together
they describe differs.

Cooperation is defined by Merriam Webster as “to act or work with another or
others; act together or in compliance.” The emphasis here is on team members
merely acting together. This does not imply a shared goal or active support for
fellow members. Individuals who cooperate have some overlap of their goals but the
individual goal dominates. An example for cooperation are bureaucratic organiza-
tions. The group of people who make up the organization cooperate by each member
fulfilling an individual task and thereby together providing the service of the
organization.

Collaboration is a special form of cooperation defined by MerriamWebster as “to
work jointly with others or together especially in an intellectual endeavor.” People
who collaborate closely work with others to achieve a common goal. Design teams
typically collaborate as they discuss ideas in the group together. For a team to
collaborate closely, it is necessary that each member has a shared understanding of
the common purpose of the team. Further, every team member has to assess the



234 P. Rein et al.

complete situation continuously and put it in relation to the strategic goal of the team,
similar to the way each soccer player has to continuously monitor the complete
soccer field and not only concentrate on their “patch of grass.” (McChrystal 2015).

In his book “Team of Teams”, Stanley McChrystal does not mention the two
terms cooperation and collaboration explicitly. Instead he illustrates the two styles of
working together through a comparison of traditional command structures in the
military and team-based structures in a variety of domains (McChrystal 2015). The
author describes command structures as a way of cooperation: “[. . .] in a command,
the leader breaks endeavors down into separate tasks and hands them out. The
recipients of instructions do not need to know their counterparts, they only need to
listen to their boss. In a command, the connections that matter are vertical ties.” The
author states that this cooperation in command structures is efficient, but at the same
time rigid, which accordingly is not a good fit for modern challenges. The context
and requirements of modern challenges change too quickly for any pre-determined
plan to be applicable. Instead, organizations should focus on small empowered
teams whose members collaborate on working towards a common goal. Again,
one of the characteristics of such teams is that “team members tackling complex
environments must all grasp the team’s situation and overarching purpose [. . .] They
must be collectively responsible for the team’s success and understand everything
that responsibility entails.”

The design of a software system depends on such collaboration between experts
from multiple disciplines. However, the fact that these team members are experts of
their own discipline and masters of their own tools makes it easy for them to stick to
just their own “patch of grass.”

2.3 The Whole Team: Multiple Disciplines for Multiple
Perspectives

Software development benefits from a pre-defined type of artifact to be produced: the
software system. There are particular roles relevant to the software design process
(Beck 2000), such as testers, interface designers, programmers, technical writers,
and managers. Depending on the type of system to be created, different roles might
be more active in the process than others. For example, in the development of a
computer game, artists can make up more than half of the team. Similarly, when
working on a software tool for a particular domain, domain experts might outnumber
programmers (for example, the biochemistry software tool company Synthace lists
two biochemistry scientists as technical leads and only one software engineer1).
Enabling all the roles to participate equally during software design is beneficial for
the quality of working together.

1https://web.archive.org/web/20171205131307/https://synthace.com/who-we-are/ accessed on 5th
of December 2017.

https://web.archive.org/web/20171205131307/https://synthace.com/who-we-are


Further, these roles are only approximate groupings of activities. For example, in
XP “roles on a mature XP team aren’t fixed and rigid. The goal is to have everyone
contribute the best he has to offer to the team’s success.” (Beck 2000). We summa-
rize these roles into the four categories:

Towards Exploratory Software Design Environments for the Multi-Disciplinary Team 235

• User
• User experience designer
• Content designer
• Program designer

We want to illustrate the typical contributions, tools, and artifacts each role
creates in an iteration during the development process.

Users provide new requirements and general use cases for the software. They can
have a precise idea of these qualities or they might only be able to visualize them
roughly. Generally, users are the ones who generate value with the software system
produced. They are affected by all the decisions of the other roles and at the same
time provide the requirements, use cases, and the overall purpose of the software to
be produced. Besides the direct users, we also include customers and domain experts
in this role. In consumer software, users often interact with the system design team
through issue tracking software. In more specialized software they might be able to
talk in person to the design team and may even be able to join them during an
iteration.

Early in the process user experience designers might first produce paper-based
sketches of user interfaces to check with users whether this is what they need.
Additionally, they can create storyboards to document a workflow users want to
have supported in the system. In general, the user experience designers determine the
actual interactions and feedback mechanisms of the system to make the program
useful to the users. They take care of the intricacies of single user interfaces as well
as the efficiency complete workflows throughout the system. Activities of this role
might also be subsumed under the terms “usability engineer” or “user interface
engineer.” They work with a variety of tools, starting with pencil and paper. For
visual design, user experience designers might use graphical editors in which they
create screenshots of the future interface. They might also use user interface builder
tools in which they can already define the actual user interface in a graphical manner.

Content designers generally create the texts, graphics, or pre-loaded data and
examples used throughout a system. The particular type of output depends upon the
domain of the system. Being artists, they create texts and graphics and have to take
care of aspects such as a consistent aesthetic appearance or fitting the content to the
culture of the system’s user. Correspondingly, the tools used also depend on the
domain of the system. Either way, most of these tools are specialized to the content
format, such as the Adobe Photoshop2 graphics editor for graphical content or the Qt

2https://web.archive.org/web/20171205125120/http://www.adobe.com/de/products/photoshop.html
accessed on 5th of December 2017.

https://web.archive.org/web/20171205125120/http://www.adobe.com/de/products/photoshop.html


236 P. Rein et al.

Linguist3 for translation tables. Depending on the system the content designers
might also be domain experts contributing domain specific knowledge to the system,
such as mathematical formulas or business rules.

Program designers create and maintain the technical side of a software system.
This field covers the design of the overall system architecture as well as fine-granular
decision such as the names used in the source code. Further, as test engineers they
might also write automated tests for checking whether the system behaves as
expected, or as tool engineers, they might create tools for making the overall design
of the system easier for all roles. When working on a new feature, program designers
add, edit, and remove source code. These changes to the source code are often done
in so-called integrated development environments (IDEs) which provides a set of
integrated development tools in one environment. When working on the overall
structure, program designers often use graphical modelling tools that allow them to
draw diagrams representing the system structure.

2.4 The Impact of Tools on Cooperation and Collaboration

Agile processes, such as XP, try to tackle the wickedness of software development
similar to the way design thinking methodologies tackle wicked problems. Collab-
oration of multi-disciplinary teams is a key component of Extreme Programming.
Thus, XP lists a number of principles and practices to foster this collaboration in
social interactions.

However, when it comes to actually working together on the system to be created,
the software tools used by team members do not support close collaboration. Every
team member uses a specialized tool set to produce artifacts which are particular to
their activity. Regarding the concrete artifact to be produced, team members might
get feedback in a short amount of time, for example a content designer creating a
new icon can see the icon directly in the graphics editor. However, the impression of
the icon in the running system might only become available much later when the files
representing the icon are merged into the software system. This is similar to the way
production in a factory works: individual workers working on optimized stations
with their specialized tool. The resulting end product might never be visible to them.
Both share the characteristic that there is a long delay between the new artifact
produced and a visible change in the resulting system, which might span hours
or days.

Such a long delay between one’s modifications and an actual change in the
software to be created hinders individual team members in assessing the overall
state of the software and their impact on it. They work on their local view of the
system for an extended period of time. As a result, interdependencies between

3https://web.archive.org/web/20171205125218/http://doc.qt.io/qt-5/linguist-translators.html
accessed on 5th of December 2017.

https://web.archive.org/web/20171205125218/http://doc.qt.io/qt-5/linguist-translators.html


Towards Exploratory Software Design Environments for the Multi-Disciplinary Team 237

modifications, positive as well as negative ones, can only be detected late in the
process. For example, translators have to wait for the merge of their translation tables
only to find out that a translated text is too long because the interface designer
changed the width of some buttons simultaneously. For translators to find such
problems, they would have to review their translated texts in the user interface at a
later point in time. Further, these long delays can lead to actual deadlocks between
two roles with one team not being able to continue working, for example without
being able to examine the dimensions of new graphics. Sharing partial results early
on would improve this situation.

Agile teams of program designers generally strive for a short roundtrip time
between someone’s change to the system and a visible change in the system
behavior. For example, Extreme Programming proposes having only one branch
of source code and just working on separate branches for a few hours maximum.
Thereby, all changes to the system always become visible to other team members at
least at the end of the day. Although, XP promotes a whole team, this practice only
refers explicitly to source code. Other artifacts relevant to the system are not
mentioned. In the end, only program designers can effectively modify the system.

Ideally, every team member would contribute to the system directly. This would
still allow for experts to work on their tasks with a special tool set, for example a
wireframe editor. However, the resulting artifact should directly have an impact on
the system, for example the wireframe could directly determine the layout of a user
interface without a program designer translating from the wireframe to source code.
Thus, the team would work in a workshop-like environment in which the final
product is at the center and while every team member would work on it using their
specialized tools, they would still all contribute to one result. Further, as they would
all work in the same room, they can always see the changes made by others and the
overall state of the product.

An example of how design teams can implement such a workshop-like environ-
ment can be found at Boeing. The team constructing the Boing 777 airplane used a
shared 3D model which was always kept up to date with the newest modifications
from each team. Further, every team could access it, see the overall state of the
airplane design, and examine any interactions between their modifications and the
modifications of others (McChrystal 2015).

For software development, there is no need for an additional model as the system
to be designed is already a digital artifact and could theoretically directly be accessed
by every team member.

3 Learning from Program Designers

Exploratory programming environments are based on “the conscious intertwining of
system design and implementation” (Sheil 1983). They rely on a variety of proper-
ties to support divergent and convergent approaches throughout the design process
(Trenouth 1991). However, so far they are based on a very narrow definition of



software design as programming. The properties of these environments might
actually be generalized to form the conceptual foundation to describe exploratory
software design environments in which all roles can benefit from these properties.
We will first describe the original idea of workflows in exploratory programming
environments, the corresponding properties, and illustrate them with two exploratory
programming systems: Squeak/Smalltalk (Ingalls et al. 1997) and Lively Kernel
(Ingalls et al. 2008; Lincke et al. 2012). We then describe a generalization of this
workflow for “exploratory software design environments” and the adapted proper-
ties for such systems.

3.1 Exploratory Programming Environments for Program
Designers

The idea of exploratory software development originates from the observations that
static, linear development processes do not cope well with complex and often-
changing requirements. While the process model was not very explicit, the idea
was helpful in shaping programming environments which support the iterative and
divergent style of programming, which are called exploratory programming envi-
ronments (Sheil 1983; Trenouth 1991; Sandberg 1988). According to a survey by
Trenouth, four properties define such systems (Trenouth 1991):

238 P. Rein et al.

• Continuously executable: The product of the exploration process might not only
be the software system but also a greater insight that will inform the future
process. Thus, a mere static representation of the software as source code is not
desirable. The system to be created should ideally be continuously running and
usable.

• Easily extensible: Programmers should be able to modify the software easily
“without adversely affecting existing behavior”.

• Conveniently explorable: In order to allow the exploration of design alternative,
the environment should support the management of alternatives. It should,
consequently, allow programmers to quickly switch between the alternatives.

• Usefully explainable: The exploratory programming process aims to allow pro-
grammers to understand the problem and design space. As such, the environment
should provide means to enable programmers to understand the system, for
example through state inspection or visualizations of the dynamic system
behavior.

3.2 Case “Desktop Development”: Squeak/Smalltalk

Squeak/Smalltalk is an exploratory programming environment (Ingalls et al. 1997;
Sandberg 1988). It was designed as a media-authoring and simulation environment.



Towards Exploratory Software Design Environments for the Multi-Disciplinary Team 239

Fig. 3 A screenshot of a list morph on the left (1) with an open halo (2). On the right, the code
browser (3) shows parts of the implementation of the help browser tool shown on the left. On the
bottom right, an object explorer (4) shows the internal state of the list morph on the left

Several versions and extensions explicitly targeted children exploring ideas and
models through the environment.

A fundamental principle of the environment is object-orientation which states that
every “thing” in the environment is active in the sense that it has some behavior. This
behavior is invoked by sending a message to such an object. For example, sending
the message capitalized to the object representing the text “smalltalk”would result in
the text calculating a capitalized version of itself which is “Smalltalk”. Object-
orientation is fundamental for Squeak/Smalltalk as everything is an object. This
means all artifacts making up the system, such as source code, pictures, sounds, and
layout specifications, are objects.

Squeak/Smalltalk provides special support for the exploratory creation of graph-
ical objects. All visual elements on the screen are so-called morphs. A morph can be
manipulated through halos—a kind of meta-menu allowing access to graphical
operations such as resizing or rotation (see Fig. 3). Through the halos, users can
also copy a morph and thereby create multiple versions of a morph. Beyond these
graphical operations, halos also give users access to some programming facilities per
mouse click such as defining the behavior of the morph.

Squeak/Smalltalk is also used as a programming system and thus it provides
mature tool support for exploratory programming (see Fig. 3). Squeak/Smalltalk
supports the continuously executable features as it allows developers to run appli-
cations next to their development tools in the same environment. Programmers can
further change the system while it is running without any need to restart it. As
Squeak/Smalltalk is a class-based object-oriented environment, it is easily extensible
trough the addition or modification of classes. The support for convenient



240 P. Rein et al.

exploration is available for source code as well as runtime state. Alternative versions
of the source code can be managed on a small scale through local versioning of
methods. The state of the system can be versioned by saving the current state of the
running system into an image file. When the system is loaded from that file it will be
in the exact same state it was before. Finally, the environment provides tools to
support the usefully explainable feature. With the object explorer and inspector tools,
programmers can inspect and manipulate any object. The Squeak/Smalltalk debug-
ger enables programmers to stop the execution of any Smalltalk process and inspect
and manipulate the state on the stack.

3.3 Case “Web Development”: Lively Kernel

Lively Kernel is another exploratory programming environment (Ingalls et al. 2008;
Lincke et al. 2012). As it originates from the Smalltalk tradition of programming
systems, it is also object-oriented and exhibits similar tools for exploratory program-
ming. Additionally, it also provides a graphical interface based on morphs and halos.

Lively Kernel, however, allows its users to create the final applications graphical
user interface through direct manipulation. After users have assembled their appli-
cation by combining morphs they can publish their newly assembled graphical
object as a part. The place where all the published graphical objects are gathered
is called the PartsBin (see Fig. 4) (Lincke et al. 2012). Other users of Lively Kernel
can instantly see a newly published part and create their own copy by dragging a part
out of the PartsBin. These copies of the part can then be modified by other users and

Fig. 4 A screenshot of the parts bin in the Lively Kernel environment. Each graphical element can
be dragged out and will create a local copy that can be modified by the local user (Lincke et al.
2012)



comment on the modi cations.

republished as a new part. Thereby, all users can quickly make small changes to parts
and share them quickly with other team members.

3.4 Towards Environments for Exploratory Software Design

In the original description of exploratory programming environments, the features
refer to the relation between programmers, source code, and the running system.
However, in a more general sense, the features can be applied to any role in the
development process to create exploratory design environments. Thereby, we move
the focus from creating source code to create a running program to creating a variety
of artifacts resulting in a software system:

Towards Exploratory Software Design Environments for the Multi-Disciplinary Team 241

• Continuously executable: The software design process should be about creating a
working software system that is useful to the user. Thus, everyone participating in
the process should be able to execute a current version of the system. This current
version should always include a participant’s own changes. That means, a content
designer creating new sounds should always be able to try these sounds in the
environment and interaction designers should always be able to try a new
workflow. This property also should hold for the user who should always be
able to run a current development version of the system.

• Easily extensible: Every team member should be able to easily extend the system
in a structured way. A content designer should be able to easily replace or modify
content, ideally from within the running system. For example, a graphics designer
should be able to modify an icon directly in the running application using graphic
editing tools. Consequently, all relevant tools should be included in the environ-
ment for every team member. Furthermore, as the design process might unveil
new artifacts to be produced, the environment should allow for the easy addition
of new tools. Such an environment would even allow members of the design team
to change the system in the user’s working environmen. In this way, designers
can see their effects actual user data and users can immediately see, try, and

fi

• Conveniently explorable: All design activities within the process profit from an
interleaving of divergent and convergent approaches. Convergence is a natural
part of the process as there is normally only one current version of the software. In
contrast, divergence has to be additionally supported. Thus, the environment
should allow versioning and branching for all kinds of artifacts produced in the
system. Additionally, switching between versions and comparing versions should
also be possible for all artifacts. Ideally, the versioning mechanism is the same for
all artifacts including source code.

• Usefully explainable: The dynamic nature of a running system affects all artifacts
produced. For example, an interface might be layouted differently because the
displayed name of a user is too long or the display ration of an icon is distorted
because the layout specification changes the border of icons on small screens.



242 P. Rein et al.

Thus, for all team members to effectively evaluate their modifications, the
environment should provide tools for exploring the dynamic version of the
artifact in the running system. For example, these tools should allow interface
designers to determine which user interactions triggered which transitions in the
storyboard so that the system ended up in the current state, or content designers
should be able to see scaling parameters for graphics.

4 Identifying Tools and Environments for Whole Team
Software Design

The ideal environment containing all tools that might potentially become relevant for
any given software project is not possible, due to the variety of domains and
constraints for individual projects. However, the idea and the target properties of
exploratory software design environments might help in identifying tools and
environments which can at least support the collaboration between different roles
in a software design team.

4.1 For Individuals: Specific Tools for Specific Tasks

There are a number of tools that integrate the activity of a role with a running
instance of the system under design or integrate the artifacts produced by different
roles.

Tools have to be created for content designers as part of the system when the
content is specific to the domain or the system. For example, a system for the
automatic assessment of insurance claims might have a dedicated editor for business
rules. For more general use cases, generic tools are available which integrate the tool
and the running system. For example, the CrowdIn tool4 allows translators to
translate a text interactively directly within the webpage where the text is displayed
(see Fig. 5). Further, to make versioning easy for graphics designers and integrate
their artifacts with the source code artifacts of the program designers, tools exist
which support the versioning of graphics files. An example is the Kactus tool5 that
integrates the graphics editor SketchApp6 with the versioning tool Git, which is also
often used for versioning source code. Thereby, graphic designers and program

4https://web.archive.org/web/20171205114216/https://crowdin.com/page/in-context-localization
accessed on 5th of December 2017.
5https://web.archive.org/web/20171205114339/https://kactus.io/ accessed on 5th of
December 2017.
6https://web.archive.org/web/20171205124457/https://sketchapp.com/ accessed on 5th of
December 2017.

https://web.archive.org/web/20171205114216/https://crowdin.com/page/in-context-localization
https://web.archive.org/web/20171205114339/https://kactus.io
https://web.archive.org/web/20171205124457/https://sketchapp.com


Towards Exploratory Software Design Environments for the Multi-Disciplinary Team 243

Fig. 5 A screenshot of the CrowdIn tool for translating text of a webpage within the webpage itself

designers can use the same versioning mechanism and see changes from each other
throughout the version history.

While interface design is often done through mock-ups in graphic editors, it can
also be done with tools for creating the actual interface. For example, the Android
designer environment includes a layout tool for creating individual screen layouts7

(see Fig. 6). The iOS development environment further supports the creation of
executable storyboards which define the actual transitions between different views in
the resulting mobile application.8 In both cases, the resulting layout files are directly
stored in the directory containing the source code of the application and can be
shared with the same tools the source code is shared with.

The degree of participation that is possible for users again depends mostly on the
kind of system to be designed. For specialized systems the user might actually work
next door to the design team and might interact with them in person regularly. For a
system with a broader target audience this process has to work differently. However,
the integration of giving feedback from within the actual context of usage has been
improved by several tools. One example is Instabug.9 In a mobile application
containing Instabug, users can add a new suggestion by shaking the phone. The
app will stop, create a screenshot, and ask users for further information on what they
would have expected in this situation. A research prototype pushed this mechanism
further by converting such suggestions directly into stubs and comments in the
source code at the appropriate locations (Kato and Goto 2017). Thereby, users can
have a very concrete impact on the artifacts making up the system.

7https://web.archive.org/web/20171205124801/https://developer.android.com/studio/features.html
accessed on 5th of December 2017.
8https://web.archive.org/web/20171205131025/https://developer.apple.com/xcode/interface-
builder/ accessed on 5th of December 2017.
9https://web.archive.org/web/20171205131100/https://instabug.com/ accessed on 5th of
December 2017.

https://web.archive.org/web/20171205124801/https://developer.android.com/studio/features.html
https://web.archive.org/web/20171205131025/https://developer.apple.com/xcode/interface-builder
https://web.archive.org/web/20171205131025/https://developer.apple.com/xcode/interface-builder
https://web.archive.org/web/20171205131100/https://instabug.com


244 P. Rein et al.

Fig. 6 A screenshot (https://web.archive.org/web/20171205130930/https://developer.android.
com/studio/write/layout-editor.html accessed on 5th of December 2017) of the Android layout
editor showing new widgets (1), the existing layout tree (2), the toolbar (3), the interactive editor
(4), and the property view for one element (5)

Program design is concerned with the behavior of the system, and thus most tools
are close to the system in some aspect. Traditional tools separate the modification of
source code from the execution of the system, exploratory tools, as described above,
integrate the modification of the source code artifacts and the execution of the system
(see Figs. 3 and 4).

4.2 For Teams: Integrated Tool Environments

For special domains and types of software systems, environments bringing together
several roles of the software design team do exist. However, the integration is often
based on a thorough understanding of the production processes of the type of
software to be created. For example, for a certain type of web application the
requirements and efficient development processes are well known. These environ-
ments however, would not work well in situations in which requirements are
unknown. Alternatively, design tools might be very well integrated for one particular
system, which is sometimes done in game development for the design of one
particular game.

https://web.archive.org/web/20171205130930/https://developer.android.com/studio/write/layout-editor.html
https://web.archive.org/web/20171205130930/https://developer.android.com/studio/write/layout-editor.html


Towards Exploratory Software Design Environments for the Multi-Disciplinary Team 245

One example for integrated environments are content management systems
(CMS) such as the Drupal system.10 Content designers, users, interface designers,
and program designers are thereby provided the tools to modify or use the system.
As exploratory environments, however, such systems lack ways to support
versioning or branching for comparing different versions. Further, they are special-
ized in create-read-update-delete (CRUD) systems which are mostly used for man-
aging and publishing digital artifacts.

Another type of system already integrates many of the relevant tools in one
environment: game development environments. Games are complex software systems
which require a lot of content design. Consequently, the content and programdesign are
well integrated. An example of such an integration are the development tools for a
recent game developed at Nintendo.11 The integration in their development environ-
ment spanned several roles. For example, the interface and programdesignerswere able
to see throughout the game world where test users failed most often and could make
changes accordingly. For task management, program and interface designers could
switch to a task view to see the tasks located next to the relevant location in the world
and easily get “get a look at overall completion rates for the game.” Further, all content
designers were handed the same set of tools: “They created a dedicated software
launcher for all the artists to ensure that they were running the same dev[elopment]
environment syncing Maya preferences and running automatic tool tests.” This focus
on integration might be a result of the culture of Nintendo, which the game designers
described as: “[. . .] at Nintendo, above all else the most important thing is the fun. This
needs to be first and foremost in everyone’s mind, regardless of occupation, and they
have to tune [in] until the very end to ensure it.”12

Another environment integrating the activities of several roles is the Home envi-
ronment which allows the use and modification of productivity tools such as todo lists,
e-mail management, or document editing in one environment (Rein et al. 2017). It is
based on Squeak/Smalltalk and Vivide (Taeumel et al. 2014) and thus inherits its
exploratory properties. However, the Home environment additionally adds user inter-
face elements which make the system usable as an ordinary desktop system. Users can
write emails, create todo items, and store them in a hierarchical ordering system similar
to a file system. At the same time all tools can directly be modified using the built-in
programming tools without any additional setup or any mode changes. This enables
users and program designers to work in the same environment. Program designers can
make live changes in a user’s environment or users demonstrate their desired
workflows directly within the environment of a program designer.

10https://web.archive.org/web/20171205124956/https://www.drupal.org/ accessed on 5th of
December 2017.
11https://web.archive.org/web/20171205124841/https://medium.com/@gypsyOtoko/the-final-botw-
cedec-session-as-far-as-i-know-is-from-the-engineers-botw-project-management-c30f4e42598e
accessed on 5th of December 2017.
12https://web.archive.org/web/20171205124841/https://medium.com/@gypsyOtoko/the-final-botw-
cedec-session-as-far-as-i-know-is-from-the-engineers-botw-project-management-c30f4e42598e
accessed on 5th of December 2017.

https://web.archive.org/web/20171205124956/https://www.drupal.org
https://web.archive.org/web/20171205124841/https://medium.com/@gypsyOtoko/the-final-botw-cedec-session-as-far-as-i-know-is-from-the-engineers-botw-project-management-c30f4e42598e
https://web.archive.org/web/20171205124841/https://medium.com/@gypsyOtoko/the-final-botw-cedec-session-as-far-as-i-know-is-from-the-engineers-botw-project-management-c30f4e42598e
https://web.archive.org/web/20171205124841/https://medium.com/@gypsyOtoko/the-final-botw-cedec-session-as-far-as-i-know-is-from-the-engineers-botw-project-management-c30f4e42598e
https://web.archive.org/web/20171205124841/https://medium.com/@gypsyOtoko/the-final-botw-cedec-session-as-far-as-i-know-is-from-the-engineers-botw-project-management-c30f4e42598e


246 P. Rein et al.

5 Conclusion

We have described exploratory software design environments as a new perspective
on the tools used throughout software development teams consisting of program
designers, content designers, user experience designers, and users. Taking inspira-
tion from exploratory programming environments, these environments provide
individual team members more direct feedback from the system to be designed,
regardless of their own role. Consequently, team members can get an overview of the
current state of the system and see the interaction between their modifications and
modifications of others. While the creation of one true exploratory software design
environment is a wicked problem in itself, individual tools and environments
supporting some form of collaboration do exist. By using such tools and environ-
ments, teams can grow closer together and create an experience of collaborating
while creating a system that brings value to its users.

References

Arnold, J. E. (1956). Problem solving – A creative approach (National Defense University,
Publication No. L57-20). Washington, DC: Industrial College of the Armed Forces.

Arnold, J. E. (1959). Creative engineering. In W. J. Clancey (Ed.), Creative engineering: Promot-
ing innovation by thinking differently (pp. 59–150). Stanford Digital Repository. http://purl.
stanford.edu/jb100vs5754 (Original manuscript 1959).

Beck, K. (2000). Extreme programming explained: Embrace change. Boston: Addison-Wesley
Professional.

Buchanan, R. (1992). Wicked problems in design thinking. Design Issues, 8(2), 5–21.
Conklin, J. (2006). Dialogue mapping: Building shared understanding of wicked problems.

New York: Wiley.
DeGrace, P., & Stahl, L. (1990). Wicked problems, righteous solutions. Upper Saddle River, NJ:

Yourdon Press.

Ingalls, D., Palacz, K., Uhler, S., Taivalsaari, A., & Mikkonen, T. (2008). The lively kernel: A self-
supporting system on a web page. In Proceedings of the Workshop on Self-Sustaining Systems
(S3) 2008. Springer.

Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., & Kay, A. (1997). Back to the future: The story of
squeak, a practical smalltalk written in itself. ACM SIGPLAN Notices, ACM.

Kato, J., & Goto, M. (2017). User-Generated variables: Streamlined interaction design for feature
requests and implementations. In Proceedings of the Programming Experience Workshop
(PX/17) 2017. ACM.

Lincke, J., Krahn, R., Ingalls, D., Röder, M., & Hirschfeld, R. (2012). The lively partsbin –A cloud-
based repository for collaborative development of active web content. In Proceedings of the
Hawaii International Conference on System Sciences (HICSS) 2012.

McChrystal, S. (2015). Team of teams. New York: Portfolio/Penguin.
Rein, P., Lincke, J., Ramson, S., Mattis, T., & Hirschfeld, R. (2017). Living in your programming

environment: Towards an environment for exploratory adaptations of productivity tools. In
Proceedings of the Programming Experience Workshop (PX/17.2) 2017. ACM.

Rittel, H., & Webber, M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4(2),
155–169.

http://purl.stanford.edu/jb100vs5754
http://purl.stanford.edu/jb100vs5754


Towards Exploratory Software Design Environments for the Multi-Disciplinary Team 247

Sandberg, D. W. (1988). Smalltalk and exploratory programming. ACM SIGPLAN Notices, 23(10),
85–92.

Sheil, B. (1983). Power tools for programmers. Datamation Magazine, 29(2), 131–144.
Taeumel, M., Perscheid, M., Steinert, B., Lincke, J., & Hirschfeld, R. (2014). Interleaving of

modification and use in data-driven tool development. In Proceedings of the ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software
(Onward!) 2014. ACM.

Trenouth, J. (1991). A survey of exploratory software development. The Computer Journal, 34(2),
153–163.


	Towards Exploratory Software Design Environments for the Multi-Disciplinary Team
	1 Introduction
	2 From Cooperation to Collaboration in Software Development
	2.1 Design Thinking, Wicked Problems, and Agile Processes
	2.2 From Cooperation to Collaboration
	2.3 The Whole Team: Multiple Disciplines for Multiple Perspectives
	2.4 The Impact of Tools on Cooperation and Collaboration

	3 Learning from Program Designers
	3.1 Exploratory Programming Environments for Program Designers
	3.2 Case ``Desktop Development´´: Squeak/Smalltalk
	3.3 Case ``Web Development´´: Lively Kernel
	3.4 Towards Environments for Exploratory Software Design

	4 Identifying Tools and Environments for Whole Team Software Design
	4.1 For Individuals: Specific Tools for Specific Tasks
	4.2 For Teams: Integrated Tool Environments

	5 Conclusion
	References




