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Chapter 1
Introduction to Ultra-Low Power ECG
Processor

1.1 Motivation

Health monitoring is becoming increasingly vital to the modern day community
since life expectancy has risen and healthcare costs are increasing [1]. The death
count due to cardiac problems is the highest when compared to other diseases [2].
Hence, there is a demand for low cost and reliable wearable biomedical sensors
capable of monitoring patients and connecting them to their doctors before they
reach critical situations. Wearable biomedical devices include heart rate sensors,
ExG sensors, and blood glucose monitors. These portable devices are mobile and
battery powered, which place a strict requirement on the power budget of the
devices.

Electrocardiogram (ECG) is a bio-signal which represents electrical activity of
the heart. It is widely applied in the medical field, due to its non-invasiveness and its
capability of detecting cardiac diseases. ECG is normally recorded in the hospital or
clinical centers in which the patient needs to stay in the hospital for hours or days.
Portable or ECG telemetry devices have enabled patients to monitor their ECG,
record ECG data, and transfer it to the hospital. The transferred data is processed
in health centers for any abnormalities. Recent developments in Internet of Things
(IoT) have enabled continuous healthcare monitors to partially process and transmit
data. Developing IoT healthcare devices has multiple design challenges and trade-
offs. The main constraint of wearable IoT sensor is energy dissipation due to the
limited battery-energy. Efforts have been made to power IoT devices through energy
harvesting sources [3], in which the system needs to operate at ultra-low power
consumption. There is a trade-off between local processing and data transmission.
Most of the raw data could be transmitted, whereas the local processing is limited to
minimal function. In this scenario, complex computations are performed in mobile
phones or PCs. Another option is to integrate ultra-low power accelerators and
extract certain features. Thus, the transmitted data is minimized as it transmits only
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processed data and transmits raw data during critical situations. This configuration
saves the energy dissipation from the energy-hungry transmitters.

There is huge interest in the literature on ultra-low power processors or accelera-
tors that could be integrated into IoT healthcare devices. General-purpose processors
or micro-controllers dissipate more power relative to custom designed digital signal
processors, which makes them unsuitable for most ultra-low power wearable devices
that target long lifetime. It is desirable to design application specific chips that meet
the desired performance in energy constrained configuration.

The rest of this chapter presents the design challenges and ultra-low power
techniques followed by the book contribution.

1.2 Design Challenges and Ultra-Low Power Techniques

A typical wearable ECG IoT device is shown in Fig. 1.1. It consists of electrodes
(to collect the analog ECG data), analog front end (to amplify and digitize the
ECG signal), digital processor (to process digitized data), power management unit
(to provide and control power), and wireless transmitter (to send data to remote
device) [3]. For this system to have long lifetime operation, the power budget is
limited to the microwatt range. It is mandatory that the power management unit
controls the power sequence for each of the modules. Since the transmitter is the
most power hungry modules, it should operate for short duration depending on the
design requirements. Another part which consumes substantial amount of power is
the digital processor, which could be a general-purpose CPU or custom designed
accelerators.

In this research work, an ECG processor which consists of all the digital circuitry
is designed and implemented. The digital processor which is shown in Fig. 1.1 is
contrition of this research as part of an integrated IoT ECG device. In order to realize
an ultra-low power ECG processor, the design challenges are summarized into two
categories: architectural choices and circuit design techniques.
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Fig. 1.1 ECG node for IoT healthcare system
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The architectural choice is determined by the required application and the
available power budget. The digital processor is designed in order to mini-
mize the power consumption and energy dissipation. There are multiple ways
of implementing a digital system either by utilizing a central processing unit
(CPU) or by developing fully custom design. Hardware accelerators, specific to
an algorithm or application, are more computationally and energy efficient. An
algorithm implemented in an ASIC is more energy efficient than an algorithm
implemented in a general-purpose processor or even low-power micro-controllers.
Integrating a CPU along with custom accelerators provides a balance between
energy efficiency and flexibility. Efforts have been made to minimize the energy
consumption both at the architectural level and at the device level while attaining the
desired application performance [4, 5]. ECG sensing devices have been researched
and ECG signal contains wave components such as QRS complex, T-wave, and P-
wave. The QRS complex is the dominant part with highest slope and magnitude.
The ECG wave components (QRS complex, T-wave, and P-wave) along with
their peaks and edges are termed as ECG features. Several ultra-low power ECG
processing architectures were reported for application in QRS detection [6–11],
full ECG feature extraction [12, 13], and ECG classification [8, 12]. Some of these
architectures comprise a CPU [7] that consumes relatively higher power. Others
are more energy efficient and have fully custom designs. Most of the reported
QRS detection architectures are based on wavelet transform [6, 8–10]. Wavelet
transform is robust in detecting QRS complex, however, its implementation requires
multiscale decomposition using a cascade of filters. Others have reported QRS
detection architectures based on an algorithm known as Pan and Tompkins (PAT)
[11, 12]. The PAT algorithm is based on filtering, differentiation, squaring, and
moving integral. All of these operations require hardware-intensive computations.
Wavelet transform using multiscale decomposition has been applied also for full
ECG feature extraction [13]. Time domain signal analysis is applied [12] for full
feature extraction. The challenge in QRS detection or ECG feature extraction is to
attain the desired performance at the lowest possible power consumption. That is
why appropriate architectural choice is necessary.

Circuit design techniques that minimize the energy consumption are widely
explored and implemented in current state-of-the-art portable medical devices.
These techniques include voltage scaling, voltage islands, power gating, clock
gating, and the use of deeply scaled nodes.

The total power consumption in an ultra-low power digital system can be
represented by Eq. (1.1). According to this expression, the factors that affect the
total power consumption are:

PT otal =
∑

(αi × Ci) × f × V 2 + β × Ileakage × V (1.1)

• Ci : load capacitance
• V : supply voltage
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• f : operating frequency
• αi : switching activity factor
• β: leakage factor

Each of the above factors could be reduced to minimize the total power consump-
tion. Firstly, the load capacitance depends on the technology, and it could not be
altered as long as the same standard cell library is used. Secondly, scaling the supply
voltage will reduce the power. The dynamic power is minimized quadratically and
the leakage power is minimized exponentially with the supply voltage. It is an
effective technique; although, there are constraints to limit the supply voltage. These
constraints are the minimum operating voltage of SRAM and the timing requirement
of the design. Thirdly, the operating frequency must be optimized and is determined
by the architecture of the system. Thus, choosing an optimum frequency would
enable further reduction in power consumption. Reducing the operating frequency
will reduce the dynamic power as represented in Eq. (1.1). Fourthly, the switching
activity factor depends on the architecture, and it could be altered by applying
clock gating. Certain blocks could be clock gated whenever they are not used.
Hence, applying a combination of the above techniques would enable the system to
achieve the minimum average power consumption and henceforth the lowest energy
consumption. Lastly, the leakage factor could be reduced by utilizing low-leakage
standard cell library. Certain parts of the design could be power gated in case they
are not used at certain time slots, as power gating reduces the leakage.

The digital processor could be powered from energy harvesting devices or
battery. In recent developments, energy harvesting circuits were capable of powering
full SoC that includes analog front end, digital processor, and a transmitter [14]. It is
necessary that the power consumption remains within the power limit of the energy
harvester. If the system is operating at its lowest energy dissipation, it would have a
long lifetime. Hence, the proposed approaches would investigate achieving lowest
possible power consumption and minimum energy dissipation.

1.3 Book Contribution and Organization

The main objective of this research work was to design an ultra-low power ECG
processor for IoT healthcare devices. Ultra-low power operation was achieved
through novel architectural choices and ultra-low power circuit design techniques. In
this book, two chips were fabricated and tested. The fabricated chips process ECG
signals in order to extract features and classify ECG beats for cardiac autonomic
neuropathy (CAN) severity. Moreover, an improved architecture for ventricular
arrhythmia (VA) prediction is proposed. The designed chips were purely digital
circuits operating in the nano-watt range. The main system components are shown in
Fig. 1.2 and include ECG processing accelerators to extract and classify ECG beats,
custom designed control FSM that controls the overall chip functions, memory
to store temporary data, and digital interface for external communication. Full-
custom design techniques resulted in a much lower power dissipation than did the
incorporation of a general-purpose processing unit.



1.3 Book Contribution and Organization 5

Noise 
Suppression 
/Filtering

ECG Feature
Extractor 

CAN Severity
Detector

Mem Interface

DIGITAL IO Memory

VA
Predictor

Main 
Control 

FSM

D
ig

iti
ze

d
EC

G
 S

am
pl

es

Configuration 
Register 

General Purpose IO

IO Interface

Clk

Data/Address and Control Bus

Fig. 1.2 Integrated biomedical processing platform

The contributions of the book work could be summarized as follows.

1. Combined CLT and DWT-based ECG processor (Chap. 3)

• A combination of CLT and DWT architectures for full ECG feature extraction,
where each technique is chosen for its advantages in reducing hardware
resources without affecting the desired performance.

• Developed a pipelined architecture for CLT which reduces the required
resource by 32× when compared to conventional straightforward implemen-
tation of CLT.

• Designed and implemented ultra-low power techniques such as clock gating
and voltage scaling. Through such techniques, the fabricated chip consumed
only 642 nW at 0.6 V and at a frequency of 7.5 kHz.

2. Ultra-low power QRS detection architecture (Chap. 4)

• An ultra-low power QRS detection architecture was designed that is capable
of detecting QRS at sensitivity and predictivity of 99.37% and 99.38%,
respectively.

• Absolute Value Curve Length Transform was proposed, where the required
hardware resources are minimized.

• Synthesized QRS detection system consumed 6.5 nW when operated at 1 V
and at 250 Hz.

• A lossless compression architecture that enabled reduced transmitted data for
IoT transmitters was implemented.
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3. Ultra-low power CAN detection and VA prediction architecture (Chap. 5)

• On-chip full ECG feature extraction that utilizes ACLT for QRS detection and
low-pass differentiation for other ECG features was implemented.

• Real-time classification of CAN severity is enabled through on-chip classifi-
cation of CAN severity.

• Fabricated chip that extracts full ECG features and detects CAN severity that
consumed only 75 nW at 0.6 V.

• Improved hardware architecture for VA prediction is presented, which
achieves a reduction in the required area by 16.0% and in power consumption
by 62.2%.

1.3.1 Book Organization

The remainder of this book is organized as follows. Chapter 2 discusses background
about ECG processing algorithms and biomedical sensing platforms. Chapter 2
presents existing algorithms, their drawbacks, and analysis. Chapter 3 presents an
ECG feature extraction SoC based on combined curve length transform and discrete
wavelet transform. Chapter 3 discusses the merits of each of these transforms in
ECG processing. Moreover, it presents ultra-low power techniques along with the
measured results. In Chap. 4, an energy efficient QRS detection architecture along
with a compression architecture is proposed. Chapter 5 discusses an ECG processor
aimed at CAN detection. The SoC performs full ECG extraction and on-chip CAN
detection. Measured results are presented along with comparison with literature.
Chapter 6 concludes the book.



Chapter 2
IoT for Healthcare

2.1 Introduction

The Internet of Things (IoT) represents a set of interconnected smart objects and
people at any time and at any place. The IoT incorporates wide spectrum that
can impact businesses, healthcare, social and political aspects. It is a platform
that extends from sensors, local processors, wireless transmitters, and central
management stations [15].

Figure 2.1 shows the trends for IoT healthcare devices. It incorporates wide
sectors that involve many individuals. The main feature of IoT healthcare platform
is the communication between a wearable sensor and central system where doctors
could easily assess patients. In terms of health conditions, it includes early diag-
nostics, emergency situation, and chronic diseases. Such connected platform also
utilizes the existing voice and data communications infrastructures.

2.2 IoT Healthcare Applications

The application of IoT-based healthcare covers wide areas in the healthcare sectors.
It extends from individual applications and in healthcare centers. It includes
care for children, youths, elderly along with wide diversity of patients through
organized system. This section describes the applications for IoT healthcare. The
applications are directly related to the end-users and patients. Current connected
wearable healthcare devices are a good example for IoT healthcare devices. The
next subsections describe numerous IoT healthcare applications.
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Fig. 2.1 IoT healthcare trends

2.2.1 Glucose Level Sensing

Diabetic patients suffer from uncontrolled blood glucose level during the daily lives.
It necessitates the need for periodic monitoring of their blood glucose level, in
order to plan their daily meals, medicines, and activities. Real-time glucose level
sensing in IoT platform is reported in [16]. The reported technique demonstrates
how sensors from patients are connected to respective healthcare centers through
IPv6 connectivity.

2.2.2 Electrocardiogram Monitoring

The electrocardiogram (ECG) records the electrical activity of the heart which
represents the full cardiac cycle. The ECG is the best known technique to monitor
and diagnose the function of the heart. ECG measurements include determining
the beat rate and other patterns of the cardiac cycle which is displayed in ECG
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waveforms. ECG techniques have been applied in prediction [12] and detection
[17] of arrhythmia such as ventricular tachycardia, bradycardia, arterial fibrillation,
and myocardial infarction. An IoT-based ECG monitoring platform is reported
in liu2012internet and the system comprises wearable wireless ECG sensor and
wireless receiving processor. It does real-time cardiac function detection and
abnormality classification.

2.2.3 Blood Pressure Monitoring

IoT is also applied in the blood pressure monitoring as described in [18]. In this
paper, the combination of a touch blood pressure (BP) meter and a near-field-
communication for a BP monitoring systems, where also a mobile phone is utilized.

2.2.4 Oxygen Saturation Monitoring

Blood oxygen saturation is monitored using pulse oximetry technique in portable
healthcare devices. Hence, it is beneficial to integrate pulse oximetry into the IoT
platform. The potential for implementing an IoT-based pulse oximetry is illustrated
in [19]. An IoT-centered low-power and economic low-cost blood oxygen saturation
meter for remote patient monitoring is proposed in [20]. The proposed system
provides continuous measurements by operating from battery.

2.3 IoT Healthcare Technologies

IoT-based solution has been enabled through wide range of technologies. Advanced
electronic solutions have profound effect on the fast growth of IoT solutions. IoT
healthcare solution is supported through many technologies. This section discusses
the core technologies that have the capability to enhance IoT-based healthcare
services.

2.3.1 Ultra-Low Power Sensing

Ultra-low power sensors that include sensors, analog front end, and digitization form
a key part for signal acquisition in IoT healthcare devices. These components which
have ultra-low power dissipation, could be integrated in battery powered systems
and attain long battery lifetime.
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2.3.2 IoT Processors

The processing part of an IoT device could perform from simple to complicated
tasks based on the desired application. Some of the main tasks are signal acquisition,
local processing, data transmission, security, and encryption. Local processors
could support an operating system, firmware, and device management. The main
constraint of local processors is power consumption. There is a trade-off between
power dissipation, supported features, hardware costs, and software costs. Hence,
deep analysis of the system is necessary to select appropriate selection of the
processor.

2.3.3 Cloud Computing

Cloud computing facilitates resource sharing among various IoT healthcare tech-
nologies and devices. Its capability enables service upon request for specific
resources through the network.

2.3.4 Grid Computing

Since medical sensor nodes have limited processing capabilities, complicated
computational processing is supported by grid computing. Grid computing forms
the backbone of cloud computing.

2.3.5 Big Data

Large amount of data is normally collected by wide range of medical sensors.
Systematic handling and processing of big data improves the efficiency of the health
diagnosis and monitoring. Moreover, disease classification is performed through
big-data analysis.

2.3.6 Communication Networks

IoT-based healthcare networks share the existing communication networks that
could be short range (WLAN, 6LoWPANs, WBANs, WBANs, and WSNs) or
long-range communications (cellular networks). Moreover, other wireless com-
munication networks such as bluetooth, near-field communication, and RFID
communication technologies are powerful instruments in achieving ultra-low power
IoT healthcare sensors.
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2.3.7 Wearable

Wearable technology has enabled continuous monitoring and active engagement of
patients. Wearable devices bridge the communication between the patient and the
doctors. Local processing in wearable sensors has also a life saving benefits through
alerting patients on time before they reach critical situations.

2.4 IoT Challenges in Healthcare

IoT-based healthcare services have several challenges that arise from the sensors,
communication networks, and central servers. Here, we will describe some of the
main challenges of IoT healthcare devices.

2.4.1 IoT Healthcare Security

Since the IoT connected devices are increasing day by day, security is a major issue
that we have to develop. The IoT is growing rapidly and it is expected widespread
adoption of the IoT healthcare systems. Healthcare devices and applications are
expected to deal with vital private information such as personal healthcare data. In
addition, such smart devices may be connected to global information networks for
their access anytime, anywhere. The protection of captured health data from various
sensors and devices from illicit access is crucial. Therefore, stringent policies
and technical security measures should be introduced to share health data with
authorized users, organizations, and applications. This tradition of confidentiality
is the most essential thing, which personal data must be obtained for a specified
purpose, and must not be disclosed to any third party except in a manner compatible
with that purpose. A robust system security must be introduced to prevent an attack,
vulnerability, or data loss.

2.4.2 Energy Consumption of IoT Healthcare Devices

There are many devices in IoT healthcare scenarios, and such devices tend to be
heterogeneous in terms of their sleep, deep-sleep, receive, transmit, and composite
states, among others. In addition, in terms of service availability, each communica-
tions layer faces an additional challenge in terms of power requirements. Regardless
of the type of connection behind an IoT product, minimizing power use can be a
challenge. However, it is also critical to attain low energy and low costs. Radios are
a key component of the energy budget for IoT products. Instead of WiFi, cellular
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or Bluetooth, combined with smart design, and component selection, will help
developers create low-energy systems.

2.4.3 Communication Network

Various networks ranging from networks for short-range communications to long-
range communications are part of the physical infrastructure of the IoT-based
healthcare network. In addition, the employment of ultra-wideband (UWB), BLE,
NFC, and RFID technologies can help achieve low-power medical sensor devices
as well as communication protocols.

2.4.4 Data Storage and Continuous Monitoring

There is a trade-off between local processing and transmission in continuous
monitoring. Moreover there is a trade-off between local data storage and central data
storage. Such situations are decided based on the application and the architectural
choices.



Chapter 3
Background on ECG Processing

3.1 Introduction

Wearable healthcare devices play a crucial role in our daily lives starting from
monitoring our daily well-being to performing safe exercise. Health issues predic-
tion systems would reduce the risk of sudden death through early alarms before
catastrophic health situations. Among all global deaths, cardiovascular disease and
sudden cardiac arrest contribute the largest percentage of deaths (31% in the year
2012 [21]). Continuous monitoring of heart activity using ECG and local processing
in wearable devices would enable preventive measures for high risk individuals.

This chapter describes the state-of-the-art biomedical systems, biomedical fea-
ture extraction algorithms, and digital circuit architectures. Generally, any biomed-
ical system consists of an analog front end, signal conditioning, signal processing,
and transmission blocks as shown in Fig. 3.1. Each of these blocks has its own
design requirements. All biomedical systems require an analog front end with high
common mode rejection ratio in order to suppress common mode noise that is
present on the output of bio-signal sensors. The signal conditioning block depends
on the nature of the biomedical signal and necessary filtering. Once a clean signal
is available, robust algorithm could be constructed to extract clinical information in
the digital signal processing. The transmission block is utilized to transmit raw data
to a central unit or processed data for display.

3.2 ECG Basics

The ECG signal represents the electrical activity of the heart that can be captured by
non-invasive technique. It is one of the most prevalent and commonly used signals in
the medical field. Figure 3.2 shows the heart which is the source of ECG signal and
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Fig. 3.1 ECG system
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Fig. 3.2 Basic ECG signal

a typical ECG waveform. ECG is characterized by distinct morphologies, namely
P-wave, QRS complex, T-wave, and U-wave. The U-wave is not commonly visible
and most of time is not clinically applicable. These ECG wave components such as
P-wave, QRS complex, and T-wave along with their peaks and edges are termed as
ECG features. All of these components are linked to different activities in the heart
cardiac cycle. The QRS complex, which is a principal component in the cardiac
cycle, is used as a reference and represents the depolarization of ventricles in the
heart. Its amplitude rises to 1 or 2 mV above or below the isoelectric line for normal
beats and can go several times larger for abnormal beats. The time required for the
ventricles to depolarize defines the QRS width or interval where it typically lasts
between 80 and 120 ms [22]. Other intervals such as PR interval (from Ponset to
Qonset ) and QT interval (from Qonset to Toff set ) range from 120 to 200 ms and 350
to 430 ms, respectively.

In addition to the time domain nature of an ECG signal it is necessary to
investigate the frequency spectrum of an ECG signal. Figure 3.3 shows the spectrum
of a typical normal ECG signal. The QRS complex has frequency components in the
range 5–15 Hz. The P and T waves are concentrated in the lower frequency range
3–5 Hz. Based on their respective frequency range appropriate extraction techniques
could be developed for each of the ECG waveform features.

Due to the ease of use of ECG and non-invasiveness of ECG detection, it is not
only used as a prime tool to monitor the heart but also to diagnose cardiac arrhythmia
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by extracting information about intervals, amplitudes, and wave morphologies such
as P, QRS, and T waves [23]. Features extracted from the ECG signal play an
essential role in diagnosing many cardiac diseases. Hence, the development of
real-time and accurate delineation methods is crucial especially for abnormal ECG
signals.

3.3 ECG Feature Extraction Techniques

In order to develop a robust signal processing platform, the nature of ECG signal in
time and frequency domain has to be taken into account. Since the QRS complex
forms relatively higher amplitude and higher slope, its detection is key to automatic
techniques. Various signal processing techniques for QRS detection have been
proposed in the literature. Time domain thresholding along with filtering (first
derivative, second derivative, both derivatives, matched filter, etc.) were some of
the earliest techniques and are suitable for real-time implementation [24–26]. Other
methods that provide enhanced accuracy were based on the spectral analysis of the
ECG signal. In [27–30], wavelet transform was presented as a tool to analyze ECG
signals. As a part of the spectral analysis techniques, discrete Fourier transform
was reported in the literature to detect the QRS complex [31]. Empirical mode
decomposition and Hilbert transform were introduced to improve the analysis of
the QRS detection of nonlinear and non-stationary ECG signals [32, 33]. Moreover,
principal component analysis (PCA) that linearly transforms the ECG data into new
coordinate system was proposed in [34]. QRS detection techniques could also be
based on the concept of machine learning, classification, and pattern recognition,
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mostly applicable when the QRS complex is used in the diagnosis of cardiac
arrhythmia. Such techniques include fuzzy logic [35], artificial neural network [36],
neuro-fuzzy networks [37], support vector machine [38], or combinations [39, 40].

Delineation, which is the stage of determining the fiducial points and the limits
of the ECG waves, is very essential to extract the different ECG parameters such
as ST interval and QT interval. The localization of wave peaks is easier than the
onsets and offsets, as the signal to noise ratio is higher and becomes lower at the
wave boundaries where the noise level dominates the signal, which in turn leads
to a complex delineation process. Usually, ECG wave delineation is done after
detecting the QRS complex where a set of search windows are defined to locate T
and P waves. The search window enhances the characteristics of the targeted waves
using different approaches proposed in the literature. In [41], a delineation technique
based on time curve derivative of a digital signal is proposed. Adaptive filters in
many different forms were also used in an ECG delineation process [42, 43]. Time
domain morphology and gradient [44], hidden Markov models[45], and Bayesian
approach and Gibbs sampler [46] were other methods that offer a wide range of
complexity, flexibility, accuracy, and hardware implementation cost.

3.3.1 Methods Based on Discrete Wavelet Transform

Discrete wavelet transform (DWT) provides both time and frequency information
without resolving all frequencies equally. At high frequencies, DWT provides good
time resolution and poor frequency resolution while it does the opposite at low
frequencies. Thus, it is a useful tool when the signal has high frequency components
for short duration and low-frequency components for long as in ECG signal. DWT
was widely used and became an important tool to analyze the ECG signal and
delineate its fiducial points [27, 44].

Wavelet transform (WT) provides a decomposition of the signal over a set of
basic functions, obtained by dilation and translation of a mother wavelet by a scale
factor α and a translation parameter β. The WT of a signal x(t) is defined as [27]:

Wax(b) = 1√
α

∫
x(t) φ

(
t − β

α

)
dt (3.1)

WT can be evaluated with discrete mathematical operations, which leads to the
formulation of discrete wavelet transform (DWT). The DWT is implemented as an
octave filter bank by cascading low-pass and high-pass filters. To keep the temporal
resolution at different scales, a technique named Algorithme T rous [47] was
implemented as shown in Fig. 3.4, where h[n] and g[n] are given in Eqs. (3.2) and
(3.3), respectively. A mother wavelet based on quadratic spline wavelet is selected
due to its ease of implementation and accuracy for analyzing the ECG signals. The
Fourier transform of the selected mother wavelet is given in Eq. (3.4) [27].
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[H ]h[n] = 1

2
[δ[n + 2] + δ[n + 1] + δ[n] + δ[n − 1]] (3.2)

g[n] = 2 [δ[n + 1] − δ[n]] (3.3)

[H ]�(�) = j �

(
sin(�

4 )

�
4

)4

(3.4)

3.3.1.1 Detection and Delineation of ECG Signal Based on DWT

The ECG signal is coupled with different forms of noise such as baseline drift,
sudden body movement, and power-line interference. Figure 3.5 illustrates the
effect of 50 Hz power-line interference and baseline wander due to body movement.
Unlike other ECG detection and delineation methods, DWT suppresses the noise
in a single step without the need for pre-filtering. In this subsection, DWT based
full ECG feature extraction will be presented as reported in [27]. The analysis will
try to review the various aspects of ECG feature delineation. The different ECG
components are visible at different DWT scales and the zero crossings of maximum
modulus pair (MMP) across these scales correspond to the fiducial points.

3.3.1.2 QRS Complex Detection and Delineation

Multiscale DWT was applied for QRS detection as reported in [27]. A window
of 4 s is designed to search for the QRS complex; whenever a QRS complex is
detected, an eye blocking window of 200 ms is utilized before searching for the next
peak. The significant slopes of the QRS complex are associated with the maximum
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Fig. 3.5 Effect of artifacts on
ECG. (a) Clean ECG. (b)
50 Hz corrupted ECG. (c)
Baseline-wander ECG
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of MMP in | W 3
2 x[n] |. The zero crossing of MMP corresponds to an R peak.

Q onset and Q offset are at the edge of these slopes before and after the R peak,
respectively. A pair of maximum modulus lines at scale 22 before and after R peak
represents Q wave and S wave, respectively. An MMP is classified to correspond
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Fig. 3.6 Examples of QRS detection and delineation. The first row represents the raw ECG signal.
The DWT of X[n] across scales 21 and 22 are shown in rows 2 and 3, respectively

to R peak, Q onset, or Q offset based on thresholds, and the threshold values are
given in Eqs. (3.5)–(3.7). Whenever ϑR changes, ϑQon and ϑQon are consequently
updated in each heartbeat. A temporal window is defined before and after the R peak
and the thresholds are applied to search for Q onset and Q offset. In Fig. 3.6, two
examples of QRS detection based on DWT across the first and second scales are
illustrated.

[H ]ϑR = 1.5 RMS (winRR | W 3
2 x[n] |) (3.5)

ϑQon = 0.1 ϑR (3.6)

ϑQoff = 0.1 ϑR (3.7)

3.3.1.3 T and P Wave Delineation

The T wave is the representation of repolarization of ventricles whereby the
myocardium is prepared for the next cycle of the ECG. The P wave is the
representation of repolarization of atrial. In the automatic delineation of the ECG,
it involves locating peaks, onsets, and offsets. Among all ECG features the most
challenging is the detection of T wave ends. This is mainly due to the slow transition
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of the signal near the end of T wave. In addition, the T waves have oscillatory
patterns that vary from one individual to another which make the delineation process
even more challenging. After the QRS detection, two search windows at scale 24

are defined depending on the location of the QRS complex and the previously
computed RR interval. Different size of windows is identified to look for T and
P wave separately. A T wave is located in window winT if MMP exists in DWT
scale 4 (| W 4

2 x[n] |) and the local maxima exceeds a threshold ϑT . Similarly, a
P wave is identified within the window winP if MMP exists in | W 4

2 x[n] | and
the maxima points exceed a threshold ϑP . T and P wave threshold levels are given
in Eqs. (3.8) and (3.9), respectively. The wave boundaries are identified by looking
at the positive maxima and negative minima of their respective MMP. The zero
crossing of their MMPs is mapped to their peaks. The delay due to higher scales is
also taken into account when mapping to the original ECG signal. Examples of T
and P wave delineation of different morphologies are illustrated in Fig. 3.7.

ϑT = RMS (winT | W 4
2 x[n] |) (3.8)

ϑP = RMS (winP | W 4
2 x[n] |) (3.9)

T-window P-window T-window P-window
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Fig. 3.7 Examples of T and P wave detection and delineation. The first raw represents the raw
ECG signal. The DWT of X[n] across scales 24 and 25 are shown in rows 2 and 3, respectively
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3.4 ECG Classifiers

The ECG features are utilized to define parameters for further classification in order
to detect or predict cardiac disease. Out of these features, many intervals such
as the QT interval, PR interval, and RR interval could be defined based on the
application. Some classifiers are used for detecting arrhythmia that make use of
multiple parameters extracted from the ECG waveform [48]. The reported system
consists of a weak linear classifier and a strong support vector machine classifier.
Low power is achieved using weak linear classifier and relatively at a higher power
consumption the accuracy is enhanced using the integrated support vector machine.

Others have reported cardiac autonomic neuropathy (CAN) detection system that
makes use of ECG features. CAN is a cardiac disease related to diabetic patients.
The CAN severity detector is described in [49]. Its main objective is to determine
CAN based on heart rate variability and the QT variability index (QTVI), which
will be discussed in detail in Section 6.2.3. Figure 3.8 demonstrates how the QTVI
could be utilized in CAN detection and QTVI is evaluated as in Eq. (3.10).

QTVI = log10

⎡

⎣
QTv

QTm2

HRv
HRm2

⎤

⎦ (3.10)

3.5 Review of Biomedical SoCs

A brief survey of the most relevant current state-of-the-art biomedical SoCs along
with their architectures, complexity, performance, and power reduction techniques
will be presented.

Figure 3.9 shows an architecture of a biomedical sensing platform [4] that could
be used for ECG or EEG. The platform contains a 16-bit CPU with extended
logic to support software debugging as well as a direct memory access (DMA)
block. Moreover, accelerators that perform DSP algorithms, namely FFT, median
filter, FIR filter, and CORDIC are incorporated in the system. The system achieves
10.2× and 11.5× energy reduction when running EEG and EKG applications,
respectively, compared to CPU-only implementation. Implemented accelerators
along with voltage scaling scheme and architectural optimizations contribute to
the energy efficiency and substantial power requirement reduction of the system.
Though the system contains multiple accelerators, it contains a power hungry CPU.
The power consumption from the CPU is dominant and the CPU is always ON,
which has negative impact on the energy dissipation. Replacing the CPU with
custom application specific block would be more power and energy efficient.

Zhang et al. [14] developed a body-area-sensor node capable of operating at a
total chip power of 19µW. The system is powered by a thermal energy harvester
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Fig. 3.8 Detection of CAN based on RR and QTVI [49]
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Fig. 3.9 Architecture of a biomedical signal processing platform [4]

from the human body heat as depicted in Fig. 3.10. Power reduction is achieved
by employing digital power management unit and hardware accelerators such as
programmable FIR, dedicated accelerator for ECG heart rate (RR) extraction, atrial
fibrillation (AFib) detection, and EMG band energy calculation. A digital section
provides mode control and power management enabling dynamic voltage scaling.
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Fig. 3.10 Architecture of a biomedical signal processing platform [14]

Moreover power and clock gating techniques are implemented in order to minimize
the power consumption. The system does many functions and can sense multiple
signals such as ECG, EMG, and EEG. However, it still contains an always-ON
micro-controller unit, which affects the energy dissipation negatively. Fully custom
processing of the individual signals would be more power efficient.

Recent work in an integrated biomedical system for the Internet of Things
(IoT) was reported in [3]. The system comprises photovoltaic and thermoelectric
generator, analog front end, digital processor, and wireless interface as revealed in
Fig. 3.11. Its key feature is that it demonstrates the highest level of integration and
highest energy harvesting efficiency. It incorporates switchable power domain for
maintaining ultra-low power operation.

Some biomedical chips are meant for implantable applications. The work in
[50] presents implantable ECG monitoring system capable of running an ECG RR
interval extraction at a power consumption of only 64 nW. The chip is powered by a
thin film Li battery and contains ECG electrodes, analog circuits, digital processor,
and wireless circuits as shown in Fig. 3.12.

3.5.1 Ultra-Low Power Digital Circuit Design Techniques

The power consumption in digital circuits is the sum of leakage Pleak and dynamic
power Pdyn given by Eqs. (3.11)–(3.13) [51]. The Pdyn is proportional to the
summation of all capacitance in the circuit and operating frequency, whereas Pleak

is proportional to the supply voltage and leakage current. The most commonly



24 3 Background on ECG Processing

Fig. 3.11 Biomedical system for IoT [3]

used power reduction techniques in this respect are voltage scaling, power gating,
and clock gating. Voltage scaling is an effective technique, as the dynamic power
consumption is proportional to the square of the supply voltage. At low supply
voltages, the leakage is also minimized. Hence, it is necessary to find an optimum
supply voltage which gives the minimum energy point.

PT otal = Pdyn + Pleak (3.11)

Pdyn ∝ CT otal × f × V 2 (3.12)

Pleak ∝ Ileakage × V (3.13)

where, CT otal : total capacitance, f : operating frequency, V : supply voltage,
Ileakage: leakage current.

Another important power saving mechanism is duty cycling. Wearable devices
perform repetitive tasks that do not require the whole system to be always ON. In
duty-cycled ultra-lower power systems, the average power consumption is given
by Eq. (3.14) [51] and its operation is illustrated in Fig. 3.13. There are three
components of the power consumption: the power dissipated by the always ON
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block (Palways-on), the power in the sleep mode (Psleep), and the active power
(Pactive). Highest power consumption occurs when all blocks are on during the
active operation. In such duty-cycled systems there is a trade-off between ON-
time, leakage power, and active power. Lowest energy operating point could be
obtained depending on the design complexity and power dissipation of each part.
Such duty-cycling is advantageous in IoT devices especially for transmitter since
the transmitter is the most energy-hungry part and it does not have to be turned on
always. Transmission could be done periodically.

Pave = Palways-on + Psleep + Eactive

Twkup

(3.14)
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Fig. 3.14 Duty-cycled
energy optimization [52]

The advantages of duty-cycled operation [52] are illustrated in Fig. 3.14. It was
applied to reduce the energy consumption of one block of the design. As the
supply voltage is lowered both leakage and dynamic power reduce. In order to
avoid leakage energy per cycle, it was proposed that the system operate at higher
frequency than the minimum required number of cycles per task. The block that
was optimized was performing arrhythmia detection and required to operate for 500
cycles every 10 s window. Though 500 Hz was sufficient, it was made to operate
at 10 kHz in burst mode. Through such optimization the energy per operation was
797 pJ/op when operating at 400 mV.

3.6 Summary

In this chapter, several ECG processing techniques were reviewed. ECG processing
algorithms for QRS detection, full ECG feature delineation, and ECG classification
were briefly described. In addition, various biomedical SoCs for sensing various
physiological signals have been reported. All of the recent biomedical SoCs employ
one or more power reduction techniques such as voltage scaling, clock gating, and
near threshold operation. In addition hardware accelerators aid in enhancing energy
efficient operation.



Chapter 4
Combined CLT and DWT-Based ECG
Feature Extractor

4.1 Introduction

Wearable ECG processing platform includes signal sensing, acquisition, local pro-
cessing, recording, and transmission. All of these components have to be designed
to fit on an integrated system fulfilling the stringent power and area requirement.
Signal sensing utilizes electrodes to pick the signals from the human body while
acquisition is achieved through amplifier and analog to digital converter.

Analyzing the acquired ECG signal requires efficient algorithms in order to
extract vital features from ECG. Existing techniques in ECG processing included
discrete wavelet transform (DWT) [29, 53] for full ECG feature extraction, time
domain based on Pan and Tompkins technique (PAT) [24] for QRS detection, and
curve length transform [54] for QRS detection. DWT could be utilized specifically
for T and P wave detection as in [53]. DWT has good noise suppression capabilities;
however, its hardware implementation requires huge memory in order to store
multiscale resolutions. PAT implementation involves multiple operations such as
differentiation, moving averaging, and squaring which have computational com-
plexity. In this chapter, these issues will be addressed by optimizing computations
and reducing memory requirement.

Optimization, both at an algorithmic level and an architectural level, enables
ultra-low power consumption for on-chip implementation of such systems. Reported
state-of-the-art ECG processors were capable of operating at 8.47µW for QRS
detection [7] and at 5.97µW for full ECG feature extraction [8]. Low energy
dissipation is obtained through this specialized configuration such as non-volatile
memory configuration for QRS detection [7], or application of low-power tech-
niques (e.g., voltage scaling, frequency scaling, or clock gating) [55].

This chapter presents the design and implementation of an ultra-low power ECG
feature extraction engine as part of a self-powered integrated platform that utilizes a
thermal energy harvester. Thermal energy harvesters have limited power in the order

© Springer International Publishing AG, part of Springer Nature 2019
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of 20–40µW. Hence the power dissipation has to be low enough (less than 10µW)
in order to be supported by thermal energy harvesters. Existing micro-controllers
have an active power dissipation of greater than 100µW [56], which makes them
incapable of being powered by energy harvesters [57]. Moreover, the active power
consumption is directly related to the energy dissipation and battery life, which
enable the proposed system to fit in energy constrained wearable devices.

The performance of the overall system was validated using an ECG signal
database (for real patients) acquired from the American Heart Association (AHA).
Extracted features using the proposed processor could be utilized to determine the
intervals in order to detect or predict cardiac diseases [12]. System description along
with ECG feature extraction architecture and ultra-low power operation is described
in Sect. 4.2. Section 4.3 shows the measurement results and analysis. Section 4.4
summarizes the chapter.

4.2 System Description

The system architecture consists of all the digital circuitry required for ECG feature
extraction as depicted in Fig. 4.1. ECG, being a non-stationary signal, is corrupted
by various types of noise: including power-line interference, baseline wonder, and
motion artifacts [58]. All ECG processing systems comprise one or more noise
suppression components. The proposed system has a bandpass filter to suppress
noise. Following the ECG pre-processing, the main component in the system is ECG
feature extraction. It is the task of the feature extraction engine to delineate each of
the ECG wave components. The flow of data and all the operations of the digital
circuitry are controlled through a custom finite state machine (FSM). Custom-
designed FSM is much more power efficient when compared to a general-purpose
processor-core. Moreover, the control FSM provides the necessary timing signals
for the coordination of each stage and implements clock gating. The architecture
for feature extraction (illustrated in Fig. 4.1) is constructed based on an algorithm
in [59] and is described in the following subsection. In [59] the algorithm was
implemented in Matlab using double precision; however, the proposed architecture
uses fixed-point precision, which is fully optimized for hardware realization.

4.2.1 ECG Feature Extraction Architecture

The flowchart of the feature extraction process is shown in Fig. 4.2. It performs three
functions: filtering, ECG transformation, and ECG delineation. Filtering enhances
the SNR of the ECG wave and removes low-frequency artifacts, such as baseline
wonder and motion artifacts as well as high frequency interference. Various ECG
features have their own unique characteristics. For instance, the QRS complex forms
a relatively higher amplitude, whereas the P and T waves are characterized by
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curved structures with relatively smaller deviation from the baseline. Detecting the
QRS complex is a primary step in feature extraction process. Robust and accurate
detection of QRS complex is followed by refined determination of T and P waves.
In the proposed architecture, CLT is used for QRS detection, and DWT is utilized
for T and P wave detection. CLT offers a computationally efficient QRS detection
technique [54, 59].
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The main features of ECG are contained in the frequency range 0.5–50 Hz,
hence the sampling frequency of our proposed architectures is 250 Hz. ECG is
oversampled above Nyquist rate to enhance detection accuracy. Digitized ECG
samples with 8-bits are directly filtered and the filter is pipelined operating at a
clock rate of 250 Hz and is clock gated at other time slots.

The system contains a buffer of 512 samples for both the filtered and CLT signal
as shown in Fig. 4.2. The main purpose of the CLT buffer is to enable backward
search and forward search for QRS onset/QRS offset points based on a window
relative to the detected QRS peak. The buffer for the filtered signal is utilized for
detecting T and P waves. Even though these buffers exist, the QRS detection is
continuous fulfilling the real-time requirement of the ECG signal. The minimum
heart rate that could be detected using our proposed system is 30 bpm (1 beat/2 s)
and 2 s corresponds to 512 samples based on a sampling rate of 250 samples/s.
Thresholds for QRS detection are evaluated with each new sample. Also a new
sample is stored in the buffer even if the system is processing, since it only requires
one clock cycle to filter, CLT transform and store a single sample. It requires 2.048 s
in order to acquire 512 samples, and on average, 2000 clock cycles are required to
process 512 samples so as to extract one full P-QRS-T wave. The required clock
cycles vary according to the morphology of the incoming signal hence the operating
frequency is set higher than the minimum necessary frequency to accommodate the
variations. The proposed system was verified to operate at a minimum frequency of
7.5 kHz. The total energy required to perform 2000 cycles is 171.2 nJ.

4.2.1.1 QRS Detection

QRS detection was performed using CLT. CLT extracts slopes and lengths of
successive points of a wave as given in Eq. (4.1). When CLT is applied to ECG,
it enhances the QRS complex and relatively suppresses the TP waves. CLT signal
obtained from chip test results for different ECG records is shown in Fig. 4.4.
CLT has an advantage in that it handles various ECG morphologies and suppresses
baseline drift.

A novel pipelined architecture is proposed for implementing the CLT as shown in
Eq. (4.2). During each stage of the pipeline, only one square root function is required
(the second term in Eq. (4.2)), whereas the other terms are obtained from preceding
transforms. In each stage of the pipeline only one square root, one addition, and one
subtraction are enabled. This pipelined architecture is illustrated in Fig. 4.3 where
the first block evaluates the difference of successive samples followed by squaring
and summation. The last two blocks perform square root and accumulation. The
window size for the proposed CLT is 32. There are another two approaches for
realizing the CLT Approach 1: Replicating the resources 32 times such as the
squaring, square root, and addition, and Approach 2: Reusing the same resources
for 32 clock cycles. Approach 1 requires 32× more resources than the proposed
technique and consequently more power. Moreover, approach 2 requires 32× more
clock cycles than the proposed technique. Table 4.1 summarizes synthesis results
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Table 4.1 Comparison of CLT realization techniques

CLT technique Approach 1 Approach 2 Proposed technique

No. of combinational cells 33,498 1028 1028

No. of sequential cells 1985 598 598

Total no. of cells 35,483 1626 1626

Leakage power (µW) 1.47 0.10 0.10

Dynamic power (µW) 3.83 1.23 1.23

Power at 100 kHz (µW) 5.3 1.33 1.33

Energy per single transform
(nJ)

0.053 0.4256 0.0133

for three approaches in terms of the required resources and energy dissipation. The
proposed pipelined CLT requires only 7.4% of the total area need for Approach 1
and it requires 32× lower energy than Approach 2 in order to obtain one sample of
the CLT. Moreover, the throughput is increased by 32× compared to Approach 2,
eliminating the need for 32 clock cycles to obtain one sample of CLT output. The
leakage power is reduced by 10× when comparing Approach 1 and the proposed
technique due to the reduction in the required resources. Though Approach 1 uses
parallel operation for implementing the CLT, its input is coming from a set of ECG
samples stored in registers which requires pipelining the input samples. Hence, the
throughput for Approach 1 and the proposed pipelined architecture is the same. For
every new sample, there is one transformed output.

L(ω, i) =
i∑

k=i−ω

√
C2 + (
yk)2 (4.1)

L(ω, i) = L(ω, i − 1) +
√

C2 + (
yi)2

−
√

C2 + (
yi−1−ω)2

(4.2)

T hup = 2

3
[mean (CLTPrebeat

) + T hpre] (4.3)

A sample CLT signal for two different ECG records is illustrated in Fig. 4.4. The
transformed signals are similar though their respective original signal has variations
(e.g., ECG with upward and inverted QRS). This makes it easier to develop a unified
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Fig. 4.4 CLT signal out of chip for sample ECG

method for QRS detection for wide range of ECG morphologies. The CLT signal,
which is saved in memory, is used to evaluate the threshold required for the detection
of QRS peaks. The threshold is adaptive to the incoming signal and is evaluated as
in Eq. (4.3). After QRSpeak is detected, the system goes on to locate the Qon and
Qoff by defining a search window to the left and right of QRSpeak . Qon and Qoff

are also obtained by applying thresholds on the CLT signal.

4.2.1.2 DWT-Based T and P Wave Delineation

T and P are obtained by applying DWT on a window after and before the QRS
complex on the filtered ECG, respectively. The search windows are adaptive and are
updated based on the previously detected RR interval. DWT is implemented as a
cascade of filter banks and provides a multiscale decomposition. A single scale 23

is used for the TP wave delineation process. Since the DWT is performed in a small
window (less than 120 samples) and a single scale is used, the required memory is
minimized relative to utilizing multiscale decomposition on the whole ECG signal.

The wavelet decomposition forms a pair of maxima based on the concave or
convex nature of the TP waves around the baseline. This pair of maxima known as
maximum modulus pair (MMP) is detected in order to locate the positions of the TP
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Fig. 4.5 Clock gating
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waves. First, a threshold is set as the mean of the absolute value of the DWT signal,
and then a peak is detected followed by zero crossing and second peak. If the first
peak is a maxima, then it is a concave signal around the isoelectric line, and if the
first peak is a minima, then it is a convex signal. The zero crossing point sets the
location of the T or P wave peaks. Their respective onset and offset are obtained by
extrapolating the distance between the zero crossing of the DWT and the peaks to
the left and right of the zero crossing.

4.2.2 Power Reduction Techniques

In the proposed design, clock gating is utilized to minimize the overall power
consumption. Clock gating enables power saving by reducing the dynamic power
and leakage. Since all the procedures are not performed simultaneously, some
blocks could be clock gated. Figure 4.5 depicts the clock gating setup, and Fig. 4.6
depicts the timing diagram for the clock gating setup. The clock gates are controlled
by the main control FSM. Signals EN-F, EN-CLT, EN-QRS, EN-TP, and EN-MEM
correspond to enabling filters, CLT, QRS detector, TP delineation, and memory,
respectively. Filtering is done whenever a new sample is acquired which is at the
250 Hz sampling rate, hence the filter is clock gated at all other time slots. CLT
is also performed at the speed of the sampling rate since its pipelined architecture
requires only one clock cycle to transform an incoming sample. QRS detection and
TP detection are clocked at different time slots as in Fig. 4.5 since the TP wave
detection depends on the QRS detection. Moreover, the clock to the SRAMs is
enabled only during the write and read operations.

A total of 2237 bits out of 4037 bits that map into registers are utilized for
analyzing the clock gating. These registers are contained in the filter, CLT, QRS,
and TP blocks. Figure 4.7a shows the power consumption with and without clock
gating when operating at 7.5 kHz. Power saving due to clock gating is illustrated in
Fig. 4.7b. A maximum power saving of 34% is achieved when it operating at 0.7 V.
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Fig. 4.8 ECG feature extraction example

4.3 Implementation and Measurement Results

The proposed architecture was implemented on chip using 65 nm low power
technology. Figure 4.8 demonstrates the automatically extracted ECG features
annotated on top of an input ECG signal. Figure 4.9 reveals the extracted intervals
such as Pon − R, R − Tpeak , and QT. Moreover, the figure shows the extracted
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Fig. 4.9 Extracted PonR, RTpeak , QT intervals, and heart rate

heart rate. These intervals, along with the heart rate, could be utilized for a classifier
system, such as arrhythmia detection or VA prediction.

The proposed architecture is computationally efficient. Feature extraction is
performed using CLT and DWT. The CLT is pipelined and requires only one square,
one square root, and an addition for each sample. And the DWT is implemented as a
cascade of filters. The filter coefficients are 2 and 1/2 which are implemented using
shift and do not require multiplication or division. Besides, the DWT is performed
on a small length of the signal on a window which is the probable location of TP
waves. Only 256 bytes of memory is required for the DWT since only a single scale
is used for the delineation process and the maximum window size does not exceed
256.

Prior to tapeout, the power consumption of the design was estimated using
state-of-the-art chip design tools for synthesis and layout tools for digital circuits.
For fabricated chips, the power was measured using DC-power supply that has
integrated power analyses from Agilent. Figure 4.10 reveals the power consumption
of the system when operating at a different frequency. The system could operate
from a supply voltage of 0.6 V up to 1.2 V and is characterized at an operating
frequency of 7.5–200 kHz. The power consumption is dominated by leakage, and if
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Fig. 4.10 (a) Measured power consumption. (b) Energy per cycle

Table 4.2 Leakage power

Supply voltage (V) 0.6 0.7 0.8 0.9 1.0 1.1 1.2

Leakage power (µW) 0.54 0.98 1.50 2.45 3.37 5.35 7.90

the leakage is reduced, then overall power consumption would reduce significantly.
According to Fig. 4.11 and Table 4.2 the dynamic power is less than 40% of the
overall power consumption. Even though the power is dominated by leakage, the
energy per cycle is lower at higher frequencies which implies that a higher operating
frequency leads to better energy efficiency. The proposed system is suitable to
be powered from an energy harvester which could supply power in the order of
microwatt range [57].

Performance evaluation results show that the QRS detector has a sensitivity of
98.5% and a predictivity of 98.2% when verified using the AHA database.

Figure 4.13 shows the die photo of the fabricated chip and summarizes the per-
formance of the system. The presented system performance results in comparison
to the state of the art is revealed in Table 4.3. Our proposed system achieves full
ECG feature extraction, with a power consumption of only 642 nW, when operating
at a supply voltage of 0.6 V and a frequency of 7.5 kHz. The power consumption
is 2% of the power dissipation of the QRS detector reported in [6] though the
proposed system does full feature extraction. In addition, it is less than 15% of
the power dissipation of the systems [7–9]. Even though the power in these systems



4.3 Implementation and Measurement Results 37

Supply Voltage (V)

D
yn

am
ic

 P
ow

er
 (u

W
)

0

2

4

6

8
Dynamic Power Consumption versus Supply Voltages

7.5kHz
31.2kHz
62.5kHz
100kHz
200kHz

7.5kHz
31.2kHz
62.5kHz
100kHz
200kHz

Supply Voltage (V)

D
yn

. E
ne

. p
er

 c
yc

le
 (n

J)

0

0.02

0.04

0.06

0.08
Dynamic Energy per cycle versus Supply Voltages

0.6 0.7 0.8 0.9 1.0 1.1 1.2

0.6 0.7 0.8 0.9 1.0 1.1 1.2

a

b

Fig. 4.11 (a) Measured dynamic power. (b) Dynamic energy per cycle

Table 4.3 Comparison with published work

[6] [7] [8] [9] Proposed

Technology (nm) 65 130 180 350 65

Area mm2 0.41 15.91 2.47 1.2 0.243

Oper. freq. (kHz) 7 32 0.12 1 7.5

Supply voltage 0.7 1.2 1.2 3 0.6

AFE NA IA IA SAR NA

ADC ADC ADC

ECG features QRS QRS QRS P-QRS-T P-QRS-T

Power (µW) 33 8.47 5.97 13.6 0.642

Energy per 4.714 0.265 49.75 13.6 0.0856

cycle (nJ)

includes an instrumentation amplifier and ADC, their respective power consumption
is dominated by their respective digital circuits. Moreover, the proposed system
has the lowest average energy per cycle relative to [6–9]. In our proposed system,
the energy required to process 512 samples of ECG is 171.2 nJ. However, the
comparison is done based on the power consumption and the energy per cycle,
since the papers that are used for comparison do not clearly indicate how many
clock cycles are required to process a block of ECG.
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In the fabricated chip, there were no power switches. Hence, it was not
characterized for duty cycle operation. However, we can demonstrate how we can
obtain the minimum energy based on the measured active and leakage power. This
is illustrated in Fig. 4.12 where the chip is operating at 200 kHz for supply voltage
greater than 0.7 and at 31.2 kHz at 0.6 V. Accordingly the optimum energy point will
be at 0.7 V and at 200 kHz. Further analysis could be performed if we have a system
that operates in the sub-threshold region. The supply voltage of the fabricated chip
was limited due to the minimum operating voltage of SRAMs (Fig. 4.13).

4.4 Summary

An ultra-low ECG feature extraction engine was presented. The overall architecture
was optimized for ultra-low power operations through the application of efficient
computations and clock gating. A CLT-based QRS detection and DWT-based TP
wave delineation were introduced. The system was fabricated using GF-65 nm
low power technology and consumed 642 nW only when operating at a frequency
of 7.5 kHz from a supply voltage of 0.6 V. The presented engine is suitable for
integration in SoCs for wearable biomedical devices powered by energy harvesting.



Chapter 5
ACLT-Based QRS Detection and ECG
Compression Architecture

5.1 Introduction

Ultra-low power medical devices are imperative in the era of the IoT. Healthcare
sensors capture vital physiological data for monitoring and diagnosing patients.
Holter monitors is a case in point where it records and monitors continuous ECG
data for 24 h. They are constrained by power consumption since they need to operate
for an extended period continuously. On the other hand, IoT healthcare platform
enables minimum local processing and transfers data to cloud-connected servers
that help resolve drawbacks of Holter monitors and similar devices. Cloud platforms
provide easy access for doctors to continuously follow up on their patients. Various
platforms of IoT architectures for healthcare were proposed as in [60, 61]. IoT
healthcare connects patients, doctors, and devices according to the philosophy
shown in Fig. 5.1.

IoT infrastructure extends from sensors, communicating devices up to central
servers which incorporate efficient devices [62]. IoT platform challenges result from
system engineering that involves signal acquisition, local processing, transmission,
central processing, and generating feedback [63]. Each of these stages has chal-
lenges, especially with increasing numbers of connected devices.

ECG is one of the most vital signals in IoT healthcare devices. ECG, which
represents the electrical activity of the heart, is used as a prime tool to monitor
and diagnose cardiac diseases due to the non-invasive nature of ECG sensors and
the accuracy of mapping between ECG signals and heart physical activity. ECG is
utilized in cardiac arrhythmia prediction and detection by extracting ECG intervals,
amplitudes, and wave morphologies of the different components such as the P, QRS,
and T waves [23]. The basis for extracting such parameters depends on the accurate
real-time delineation of the ECG wave components. The development of real-time
and accurate delineation methods is crucial for abnormal ECG signals that occur
with different types of cardiac diseases.

© Springer International Publishing AG, part of Springer Nature 2019
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Fig. 5.1 IoT healthcare platform

The QRS complex, which is a principal component of the cardiac cycle, is used as
a reference and represents the depolarization of ventricles in the heart. Its amplitude
rises to 1 or 2 mV above or below the isoelectric line for normal beats and can
go several times larger for abnormal beats. The time required for the ventricles
to depolarize defines the QRS width or interval where it typically lasts between
80 and 120 ms [22]. QRS detection is a key for automatic delineation techniques.
Various signal processing of QRS detection techniques have been proposed in the
literature. Time domain thresholding along with filtering (first derivative, second
derivative, both derivatives, matched filter, etc.) are some of the techniques that are
suitable for real-time implementation [24–26]. In [24] Pan and Tompkins algorithm
(PAT), which is one of the most widely researched and implemented techniques, was
proposed, since it is robust in detecting QRS [12, 64]. Other methods that provide
enhanced accuracy are based on the spectral analysis of the ECG signal. In [27–
30], wavelet transform is presented as a tool to analyze ECG signals. As a part
of the spectral analysis techniques, discrete Fourier transform has been reported in
the literature to detect the QRS complex [31]. Empirical mode decomposition and
Hilbert transform have been introduced to improve the analysis of the QRS detection
of nonlinear and non-stationary ECG signals [32, 33].

Processed ECG data or extracted features in the IoT platform are transmitted
wirelessly. Wireless data transmission is the most energy-hungry part in IoT devices.
One of the effective ways in reducing energy consumed in wireless transmitters is
to reduce the data transmitted through data compressors. In healthcare applications,
lossless compression during transmission is a primary choice for reliability issues.
Lossless ECG compressor architectures were reported in [65, 66]. Some recent
data-compression schemes focused on lossy compression since it provides a high
compression ratio [67]; however, it is less reliability when compared to lossless
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techniques. Lossy techniques have a high compression ratio in the range 2× up to
15×. However, lossless compressors provide a compression ratio range of 1× up
to 3×.

Another option of reducing transmitted or processed data is decreasing the
number of samples. In [68] a non-uniform time sampling technique is proposed
with an adaptive sampling rate to reduce the energy consumption of the sampling
process. Such a scheme is applicable to slowly varying signals. In [69] compressed
sensing is presented as a potential technique for reducing the sample count, which
is advantageous in reducing the overall power dissipation.

General-purpose micro-controllers could be the central processing unit of an
IoT device. However, existing micro-controllers have an active power dissipation
of greater than 100µW and a leakage power of greater than 1µW [70, 71], which is
much higher power dissipation than that of custom ASIC solutions. Henceforth,
the main reason to have a custom HW solution is to enable ultra-low power
operation. The objective of this chapter is to present an ECG processing and
compression architecture that will help IoT medical devices to achieve ultra-low
power operation and to minimize the data needed to be transmitted to minimize
power consumption. Operating at an ultra-lower power would enable the device to
be powered by an energy harvester that generates power in the order of µW [72]. In
this chapter, a multiplier-less ECG QRS detection architecture, which is based on
a single transformation, is presented. Moreover, a compression technique based on
first-derivative is proposed. The proposed QRS detection architecture consumed a
6.5 nW when implemented in 65 nm low-power process.

The remaining part of the chapter is organized as follows: Section 5.2 pro-
vides a summary of existing QRS detection techniques, Sect. 5.3 contains the
full description of the proposed QRS detection architectures, Sect. 5.5 presents
performance evaluation and results, Sect. 5.6 discusses the compressor comparison
with literature, and Sect. 5.7 concludes the chapter.

5.2 Summary of QRS Detection and Compressor
Architectures

5.2.1 Summary of QRS Detection Architectures

QRS detection is challenging due to the following reasons. ECG (being low
amplitude in nature) is contaminated by noise and artifacts, such as electrode noise,
motion artifacts, muscle noise, power-line interference, ADC quantization noise,
and noise in acquisition devices. Moreover, QRS waves have wide morphological
variations among different people with different health conditions. Several QRS
detection architectures have been reported in literature each having its own merits
and demerits. Here are some of the commonly existing architectures.
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A. Discrete Wavelet Transform QRS detection based on quadratic spline wavelet
transform is reported in [73]. Even though the system achieves high sensitivity and
predictivity (99.31% and 99.7%) for QRS detection when validated using MIT-BIH
database, its implementation is so complex that requires scale-3 wavelet transforms
and maximum modulus recognition. Its operating power consumption is 0.85µW.

B. Differentiation and Adaptive Thresholding In [64] a QRS detection archi-
tecture (QRS detection using differentiation, moving average, and squaring) is
reported. Dynamically adaptive thresholds are applied to a squared ECG signal
in order to detect QRS peaks. The system is optimized for an ultra-low power
application that reduces computational complexity, however, still uses hardware-
intensive operations such as multiplication and division.

5.2.2 Summary of ECG Compression Architectures

Several ECG compression architectures have been proposed and some of them are
summarized below.

Fan Architecture Fan architecture for lossy ECG compression is reported in [74].
Fan is initially proposed in [75]. It operates by drawing the longest possible straight
line between the starting sample and the ending sample, in such a way that during
the reconstruction of samples, the error is less than the maximum specified error
value, ε.

Lossless-Compressor Based on Linear Slope Predictor A low-power ECG
compressing architecture, based on linear slope predictor, is reported in [65].
Moreover, it includes a fixed-length packaging-scheme for serial transmission. The
architecture was implemented in 0.35µm technology and achieves a compression
ratio of 2.25×, at a power consumption of 535 nW, from a supply of 2.4 V for ECG
sampled at 512 Hz.

Lossless-Entropy Encoder with Adaptive Predictor The system in [66] presents
a unique lossless ECG encoder based on an adaptive rending predictor and two-
stage entropy encoder. When the design was synthesized in 0.18µm technology, it
consumed 36.4µW at operating frequency of 100 MHz. It achieved a compression
ratio of 2.43×.

5.3 Proposed QRS Detection Architecture

The overall block diagram of the proposed ACLT architecture, along with the
compressor, is illustrated in Fig. 5.2. In this chapter, the main contribution is in
the QRS detection architecture and compressor. Even though the ultimate goal of
the compressed data is to be transmitted wirelessly, issues related to the transmitter
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Fig. 5.2 Block diagram of
proposed algorithm
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such as transmission error are beyond the scope of this chapter. However, in IoT
devices, it is necessary to quantify the packet error rate with regard to the signal-to-
noise ratio of the wireless transmitter [76].

QRS detectors should be robust enough to deal with the noise and artifacts
mentioned in the previous section. It is challenging to come up with a generalized
system that deals with all the artifacts at the same time. Filtering has been
widely used especially for removing low-frequency noise, baseline drift, and high-
frequency interference. Transformation is applied to enhance a portion of the
ECG waves. Our proposed system provides optimized QRS detection architectures
that could deal with all the artifacts with minimum hardware resources without
compromising accuracy.

5.3.1 Algorithm Formulation

Conventional ECG processing flow consists of pre-processing, transformation, and
thresholding. Each of these stages requires huge computation in filtering and
enhancing ECG. In this proposed technique, the pre-processing and transformation
are lumped into one component, forming a modified version of curve length
transform (CLT). CLT was reported in [54, 59] and it offers a computationally
efficient QRS-detection technique.

CLT, for a discrete signal yi over a time window ω, is given in Eq. (5.1).
Equation (5.1) is referred to as conventional-CLT (C-CLT) in this chapter. The
CLT can be re-written and evaluated as in Eq. (5.2). The symbol 
i2 corresponds
to the square of the sampling period (which is a constant value) and replacing it
with a nonlinear scaling factor C2 adds flexibility to manipulate the length-response
ratio. C2 is determined experimentally, taking into account the window size and the
maximum height of the QRS complex. By choosing a proper value for it, a particular
portion of the signal is improved and boosted in comparison to the rest of the signal.
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As shown in Eq. (5.2), the CLT integrates successive lengths over a fixed
window. Hardware realization of Eq. (5.2) would require addition, multiplication,
and calculation of the square root. In order to minimize the resources, Eq. (5.2) could
be reformulated as in Eq. (5.3) where the square root is removed. In this chapter,
Eq. (5.3) is referred to as squaring-CLT (S-CLT).

L(ω, i) =
i∑

i−ω

C2 + 
y2
i (5.3)

Furthermore, Eq. (5.3) is modified to form Eq. (5.4) where absolute value
function replaces the squaring. Hence in this approach both the square and square
root functions in Eq. (5.2) are replaced by the absolute value function. This becomes
an absolute-value-CLT (ACLT). A multiplying factor 4 is added in Eq. (6.3) to
relatively enhance higher ECG slopes and suppress noise which is centered at the
baseline. Multiplication by a factor of 4 is implemented as shifting in hardware
realization. Using this approach, we are minimizing the resources that would be
required to implement the CLT. Its performance and required hardware resources,
with respect to other approaches, will be discussed in Sect. 5.3.

L(ω, i) =
i∑

i−ω

∣∣∣C2 + |4 × 
yi |
∣∣∣ (5.4)

All of the above three approaches (Eqs. (5.2), (5.1), (5.4)) could be applied for
QRS detection as the CLT also has an inherent behavior for suppressing the baseline
wander of ECG. Based on the above analysis, the CLT could be evaluated using
these three approaches, namely: (1) conventional CLT, (2) squaring-CLT (S-CLT),
and (3) absolute-value CLT (ACLT). Figure 5.3 shows the transforms for ECG data
from MIT-BIH record 112, where the signals have baseline wandering. Though all
of the three approaches are feasible, in this chapter, only C-CLT and ACLT are
implemented and compared since S-CLT has a large amplitude range about the other
two approaches to such a degree that its hardware realization would require more
bit width. Also, S-CLT has poor performance in suppressing baseline wander as
could be observed in Fig. 5.3, and consequently, its detection accuracy was low. The
detailed architecture of the ACLT is presented in the next subsection.
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Fig. 5.3 ACLT for MIT-BIH Record 112

5.3.2 Proposed ACLT Architecture

Figure 5.4 shows the proposed ACLT architecture for detecting QRS complex. It is
an architecture for the algorithm formulated in Eq. (5.4). It performs transformation
followed by QRS peak detection using adaptive threshold. The transformation
is done using derivative, absolute value, and integration (all lumped into one
realization of the ACLT). The transformation distinctively enhances QRS complex
even for noisy ECG signals corrupted with baseline wander. Its uniquely inherent
behavior removes the need for additional complicated circuits for high-pass or low-
pass filters. All of the computations for the transformation are performed using
addition and shifting. Moreover, comparison is required for detecting QRS peaks
using thresholds. There is no need for multiplication, division, or square root
function. Hence its hardware implementation requires only adders, shifters, and
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comparators. These components are less hardware intensive relative to multipliers,
dividers, and square root functions. For instance, if we compare an N -bit multiplier
with an N -bit adder, an N -bit multiplier would require N times N -bit adders.
Alternatively, a multiplier would need N -times clock cycles. Division and square
root are much more complicated than addition or shifting.

The integration over a window in the proposed architecture is pipelined. Pipelin-
ing enables it to transform directly whenever there is a new ECG sample. Accord-
ingly, the required clock frequency for the architecture is equal to the sampling
frequency of the incoming ECG signal. The sampling frequency of the system is
250 Hz. This is the lowest operating frequency possible for such a configuration.
Such a low operating frequency reduces the dynamic power dissipation. Depending
on the proposed architecture duty cycling would not give advantage since the design
is operating at the sampling rate of the incoming ECG signal. Buffering the ECG
signal and then processing at higher frequency would require buffers (SRAM) which
add more leakage to the design.

5.3.3 QRS Peak Detection

QRS detection is performed using adaptive threshold. Applying threshold has been
commonly used in detecting QRS peaks. However, it is necessary to construct an
optimized technique to evaluate the thresholds. A threshold technique where the
threshold is set to a mean of all previously detected Rpeaks is reported in [64].
This threshold is updated according to Eq. (5.5) with every new sample, where the
threshold factor PT h is given by Eq. (5.6). The previous threshold is multiplied by a
factor with every new sample. Even though using this adaptive threshold produced
sensitivity and predictivity above 99%, it requires multiplication with every sample.

T hn = T hn−1 ∗ e
−PT h

f s (5.5)

PT h = 0.7 ∗ Fs

128
+ 4.7 (5.6)
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Fig. 5.5 Window and threshold factor selection

In our proposed architecture, the threshold is evaluated based on the equation
given in Eq. (5.7). The threshold is updated whenever a new beat is detected and
is proportional to the mean of the previously detected QRS peaks. Only eight
previously detected QRS peaks are utilized in this stage. In hardware realization,
division by 8 is implemented using shifting. The most challenging part in this step
is finding the appropriate threshold factor to handle wide morphologically variant
ECG waves from different standard databases. Many experiments were done using
the standard database from Physionet in order to obtain optimum threshold factor.
Figure 5.5 shows the effect of threshold factor on the sensitivity of QRS detection.
The experiment was done on MIT-BIH. It is observed that, for a fixed window size
of the ACLT, the sensitivity improves with as the threshold factor decreases. Further
reduction of the threshold factor would lead to misdetection in which noise or T
wave of ECG would be detected as QRS peaks. Figure 5.6 demonstrates the ACLT,
along with the threshold, for record 112 from MIT-BIH ECG database.

T hi = T hf actor ∗ mean

i∑

k=i−8

Rpeaksk (5.7)

Once a threshold is defined, the next step is to find a peak in the ACLT signal
within a window in which the signal is greater than the threshold. Figure 5.7 shows
the FSM that is developed to detect the QRS peaks. State 1 checks if the incoming
ACLT signal is greater than a pre-calculated threshold. Initially, the threshold is set
to half of the first maximum value of the first 2 s of ECG data. Then the threshold
is updated by accumulating newly detected beats, as discussed above, according to
Eq. (5.7). When the ACLT signal crosses the threshold value, the system goes on
to state 2. In state 2, the system finds the maximum values in a window where the
signal is greater than the threshold value. This max value is set as the location of
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the QRS peak. State 3 generates a pulse indicating the detection of a new beat. This
pulse is a fixed offset from the max value obtained in state 2 since the system has
to check the whole window for locating the max value. After this, the system goes
back to detecting the threshold crossing.

5.3.4 Optimization Parameters

According to the proposed architecture, there are two parameters that need optimum
selection. These are the window size (w in Eq. (5.4)) and the threshold factor
(T hf actor ) in Eq. (5.7). In order to set these parameters, the sensitivity and
predictivity of the resulting QRS detection are evaluated. Figure 5.5 shows the effect
of window size and the threshold factor on the sensitivity of QRS detection. Note
that (for a fixed window) the threshold factor has a major impact on Se. For a fixed
threshold less than 0.6, the window size does not have much impact on Se. Based on
this analysis, a window size of 15 and a threshold factor 0.375 are chosen. Threshold
factor 0.375 is 1/2 + 1/8, so in hardware realization, multiplication by 0.375 is
implemented by shifting.
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5.4 Proposed ECG Compression Architecture

A novel compression technique based on derivative is proposed. The system
takes the first derivative and does a variable bit length compression on the f irst

derivative signal. The reason the f irst derivative was chosen is that values from
f irst derivative as well as from second derivative are concentrated around zero,
as shown in Fig. 5.8. However, the amplitude of the original ECG is large amplitudes
due to the fact that the QRS complex and its values are concentrated around the
baseline. As a consequence more bits would be required to represent the original
ECG than were necessary for the f irst derivative.

Our objective is to design an ultra-low power compressor that requires minimum
hardware resource. The f irst derivative requires only adders. Moreover, the
variable bit length encoder requires comparators or a priority encoder which could
be easily implemented using combinational logic. Figure 5.9 shows the compressor
architecture. However, the f irst derivative would be shared with the ACLT.
There will be no additional hardware required to compute the f irst derivative.
Figure 5.10 illustrates the flow chart for variable length encoder. A lesser number
of bits are used for low-amplitude signals, and greater number of bits are used for
large amplitude signals. Such encoding reduces the total number of bits required to
represent the whole ECG signal, since the f irst derivative values are concentrated
around zero.
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5.5 Performance and Results

To evaluate the performance of the algorithms, manually annotated ECG signals
from Physionet MIT-BIH Arrhythmia Database and QT database are used [77].
MIT-BIH database contains 30-min-long, 48-two lead-ECG records sampled at
360 Hz, while the QTDB contains 15-min-long, 105-records, out of which 75
contain annotations for the QRS peaks. QTDB contains a wide variation of ECG
data collected from other databases [78]. The proposed system was evaluated using
the 48 records from MIT-BIH and 75 records from QTDB. MIT-BIH database
contains randomly selected subjects as well as subjects with known arrhythmia that
have clinical significance [79]. Moreover, the subjects are both men and women
aged between 22 and 89 years. It has been widely used as a standard database for
evaluating ECG QRS/arrhythmia detectors.

5.5.1 QRS Detection Performance

The proposed QRS detection architecture could detect various ECG morpholo-
gies including those with baseline wander, motion artifact, and noise corruption.
Figure 5.11 shows ECG record 112 from MIT-BIH annotated with reference
annotations (green) and detected annotations (red).

The performance of QRS complex detectors is evaluated before it is used
in medical devices. The performance metric used in standard procedures is the
sensitivity (Se) and positive predictivity (P +). Detected QRS peaks are compared
with reference annotation from experts. The sensitivity and positive predictivity are
defined by Eqs. (5.8) and 5.9, respectively, where T P stands for the number of truly
detected beats, FN denotes the number of false negative detection in which a beat
exists but is not detected, and FP refers to the number of false-positive detection in
which a beat does not exist but is detected.

Se = T P

T P + FN
× 100 (5.8)

P + = T P

T P + FP
× 100 (5.9)
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Fig. 5.10 Variable length
compressor flow chart
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The detection performance obtained by the self-adaptive QRS detectors imple-
mented in this work and other published detectors including [25, 27, 28, 73] and
[64] are displayed in Table 5.1. The overall sensitivity of the implemented QRS
detectors (based on C-CLT and ACLT) is found to be at levels of 99.0% and
99.37%, respectively. Following the same order, the positive predictivity is 99.3%
and 99.38% when evaluated against the annotated beats in MIT-BIH. Table 5.1
shows that proposed ACLT performs well in the order of greater than 99.3% though
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Fig. 5.11 QRS detection for MIT-BIH record 112

Table 5.1 Sensitivity and
positive predictivity of QRS
complex detectors (MIT-BIH)

Technique Se P +

[25] 99.69% 99.77%

[27] 99.8% 99.86%

[28] 99.63% 99.89%

[73] 99.31% 99.7%

[64] 99.54% 99.74%

C-CLT 99.0 % 99.33 %

ACLT 99.37% 99.38%

its implementation is much less complex than that of the other referenced systems.
Systems reported in [27], [28], and [73] are based on wavelet transform that requires
multiscale decomposition which is implemented using FIR filters [64].

5.5.2 Computational Complexity of QRS Detector

Computational complexity gives a measure to evaluate the system for its suitability
in ultra-low power IoT systems. For comparison, we have implemented three
versions of the CLT. Moreover, we have made a comparison with the system
implemented in [64] along with PAT as implemented in [64]. PAT is a widely
reported QRS detection technique.

The computational complexity of the proposed algorithm is measured using the
number of multipliers, adders, and comparators needed for the design. Table 5.2
reveals the resources required for the proposed architecture. The main superiority of
the proposed ACLT architecture is that it does not require any multipliers. Though
the number of adders and additions per second required in the proposed system is
greater than in [64], the total operations per second is less than 50%. The proposed
system requires 35% of the comparators required in [64] and 53% of the PAT
implemented in [64].
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Table 5.2 Resource
consumption

PAT as Conventional Proposed
Technique [64] in [64] CLT ACLT

Memory cells 28 123 18 18

Multipliers 6 6 1 0

Adders 5 41 13 13

Comparators – – 3 3

Square root – – 1 –

Square root./s – – 250 0

Mult./s 1107 1201 250 0

Adds./s 1205 1107 1261 1261

Comp./s 2163 1416 750 750

Total Ops./s 4475 5434 2512 2012

Table 5.3 Hardware
resources and power

Conventional Proposed
Technique CLT ACLT

Combinatorial cells 1082 657

Sequential cells 341 445

Buffers/inverters 101 146

Total cells 1423 1102

Area µm2 13,940 10,074

Operating frequency 250 Hz 250 Hz

Leakage power 7.3 nW 5.16 nW

Dynamic power 1.6 nW 1.34 nW

Power 8.9 nW 6.5 nW

Relative to the C-CLT implemented by the authors, the proposed system does
not use squaring or square root functions. Both squaring and square root functions
(especially square root) are hardware-intensive operations. This implies that there is
a 100% saving in multiplications and square root by implementing ACLT. Moreover,
there is a saving of 27% on the power consumption as revealed in Table 5.3. Even
though these operations are removed in order to attain ACLT, the performance is
comparable. Even if we compare their sensitivities, ACLT achieves better results. If
we look at Table 5.1, the proposed ACLT has a sensitivity and predictivity greater
than 99%.

5.5.3 Compression Architecture Performance

Our proposed compressor is based on variable bit length for the first derivative of an
ECG signal. Figure 5.12 illustrates a sample ECG and its first derivative. Relative to
the original ECG, the signal amplitude range is reduced by a factor of 2. In addition,
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Fig. 5.12 Compression: first derivative for MIT-BIH record 112
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Fig. 5.13 Compression ratio for MIT-BIH (a) using first derivative and (b) using second derivative

the values in the first derivative are concentrated around zero; though, the original
ECG has baseline drift.

The bit compression ratio is evaluated as in Eq. (5.10) where a total number of
bits of uncompressed samples corresponds to the product of the number of samples
with a fixed number of bits per sample (Eq. (5.11)). The MIT-BIH is sampled using
11 bits/sample. The number of bits of the compressed data corresponds to the
summation of all bits from each sample (Eq. (5.12)). An average compression ratio
of 2.05× and 2.10× is attained using the first and second derivative of ECG from
MIT-BIH (as illustrated in Fig. 5.13). Figure 5.13 presents the compression ratio
for all the records from MIT-BIH database. The compression ratio for all records
is illustrated because the records have different morphologies and represent various
cardiac conditions. Hence, it is a verification that the compression algorithm could
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handle various morphologies at a small range of compression ratio (within 1.7× and
2.4×).

BCR = T. No. of bits uncompressed samples

T. No. of bits compressed samples
(5.10)

Total number of bits uncompressed samples

= No. samples × (bits/sample) (5.11)

Total number of bits compressed samples

=
∑

All bits of each sample (5.12)

5.5.4 Hardware Implementations and Synthesis Results

The proposed architecture is coded using Verilog and simulated for functional
verification. Its realization schematic is shown in Fig. 5.14. The design was syn-
thesized using state-of-the-art tools from Synopsys, and layout was also generated.
The standard cell library was fully characterized in silicon and is in an industry-
standard tape-out-ready form. The standard cells were three flavors: LVT, RVT,
and HVT. Though LVT cells have high leakage, they are more suitable for high
speed applications and HVT cells for low-leakage applications where speed is not
a major concern. RVT lies between LVT and HVT in terms of leakage and speed.
The implementation was done using HVT cells, as HVT cells have more than 10×
lower leakage than RVT cells in 65 nm, in addition to the design being operated at
low frequency. Post-layout power analysis shows that the ACLT system consumed a
total power of 6.5 nW when operated from a supply of 1 V at an operating frequency
of 250 Hz. The leakage power is 5.16 nW, accounting for 79% of the total power.
The leakage power could be optimized by powering from a lower supply voltage,
and the system could go up to 0.4 V for 65 nm technology [52]. We can estimate
leakage saving at lower voltages, as the leakage is linearly related to the supply
voltage. For instance, if the leakage at 1 V is 5.16 nW, then the leakage will be
2.064 nW at 0.4 V (which is a reduction of 60% in the leakage power).
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Fig. 5.14 Schematic ACLT core

Fig. 5.15 Layout of the ACLT core

The layout of the proposed ACLT architecture is revealed in Fig. 5.15 which was
generated using IC compiler from Synopsys. Design hierarchy and the worst case
timing path are annotated in the figure. Timing verification was also performed,
and the design has positive slack meeting all setup and hold time requirements.
Timing closure was achieved using design constraint based on the standard cell
characteristics.

5.6 Compressor Comparison with Literature

Table 5.4 shows the comparison of the proposed compressor with literature. The
proposed lossless compression architecture consumed only 3.9 nW when operating
at a frequency of 3 kHz, at supply voltage 1 V. The leakage is 0.51 nW, accounting
for 13.1%. Operating frequency is set to 3.0 kHz so as to transmit the maximum
number of bits serially from the variable length encoder within the sampling time of
the input ECG signal. Even though the proposed architecture has a compression of
2.05, slightly lower than that reported in [65, 66], its implementation only requires
0.179 K gates and only consumes 3.9 nW. The system in [66] (being a standalone
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compressor) consists of a predictor followed by the entropy encoder. However, the
compressor in [65] is part of a complete ECG processing system that includes
an analog front end. Since the compressor subsystem performance (power and
area) are reported separately, these metrics are used for comparison. Therefore, the
comparison that is reported in Table 5.4 is apple-to-apple.

Table 5.4 Compressor
comparison with published
work

[66] [65] Proposed

Technology (nm) 180 350 65

Oper. freq. 100 MHz 32 kHz 3 kHz

Supply voltage 1.8 2.4 1

Compression ratio 2.43 2.25 2.05

ECG channels 1 1 1

Total gate count 3.57 K 2.26 K 0.179 K

Power (μW) 36.4 0.535 0.0039

5.7 Summary

This chapter presented a real-time QRS detector and ECG compression architecture
for energy constrained IoT healthcare wearable devices. An ACLT that effectively
enhances QRS complex detection with minimized hardware resources was pro-
posed. The proposed implementation required adders, shifters, and comparators
and avoided the need for any multipliers. QRS detection was accomplished using
adaptive thresholds in the ACLT transformed ECG signal. The proposed QRS
detector achieved a sensitivity of 99.37% and a predictivity of 99.38% when
validated using databases acquired from MIT Physionet. Furthermore, a lossless
compression technique was incorporated into the proposed architecture using the
ECG signal first derivative and variable bit length, an average compression ratio
of 2.05 was achieved when evaluated using MIT-BIH database. The proposed
QRS detection architecture was implemented using 65 nm low-power process; it
consumed an ultra-low power of 6.5 nW when operated at a supply of 1 V. Also, the
proposed compressor consumed only 3.9 nW when operated at a supply of 1 V.



Chapter 6
Ultra-Low Power CAN Detection and VA
Prediction

6.1 Significance of CAN

Type 2 diabetes mellitus is one of the major prevalent diseases worldwide, and it
is also one of the main causes of cardiovascular abnormalities leading to increased
morbidity and mortality. Cardiac autonomic neuropathy (CAN) is a complication of
diabetes and is characterized by an abnormality in the associated cardiac rhythm.
Furthermore, CAN is often associated with other diabetes related complications
such as organ dysfunction including altered sudomotor dysfunction, pupillary
reflexes, gastroparesis, exercise intolerance, sexual dysfunction, and impaired neu-
rovascular function [49–80].

Cardiac autonomic reflex testing (CARTs) were used to diagnose CAN and
progression of CAN as proposed in [81]. These are non-invasive and consist of
five tests that include heart rate responses stimulated by controlled breathing,
the Valsalva maneuver, standing from seated or supine position, and the changes
in blood pressure induced by standing and forced handgrip. CARTs are time
consuming and in many instances counterindicated for use in general screening
and are therefore mostly performed in hospitals or healthcare centers. It is also not
possible to use CARTs with mobile device.

CARTs are the standard procedure for determining the normal procedure for
determining CAN progression. However, CARTs also have limitations that require
the active participation of the patient. This is not always possible due to the loss
of mobility in older or fragile patients, those with cardiorespiratory pathology or
obesity [82]. Methods that can diagnose CAN using only surface ECG require
minimum patient interaction and are increasing in popularity. In [82], QT variability
alone independent of HR variation was proposed for detecting CAN.

Heart rate variability (HRV) is commonly analyzed relative to frequency domain
or time domain measures as well as nonlinear measures including the fractal
dimension using information derived from ECG datasets. Heart rate variability
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analysis is used to detect arrhythmia which might lead to adverse cardiac events.
Interbeat interval differences which are related to heart rate can be assessed using
Shannon entropy and the more generalized Renyi entropy. Renyi entropy can be
extended to a multiscale distribution akin to fractal analysis [83]. The report in [83]
presents spectral analysis of multiscale Renyi entropy measures. Multiscale Renyi
entropy has further information with regard to the common mean and variance
measures, and should be applied as potential early markers of arrhythmia risk [83].
In [83–85] Renyi entropy is reported for the detection of cardiac autonomic
neuropathy.

Using HRV analysis and principal component analysis (PCA), a CAN detection
algorithm is reported in [86]. It employs multi-dimensional HRV data and two of
the most significant components. It was verified by using data of 11 patients with
definite CAN and 71 subjects without CAN and achieved a classification accuracy
of 87%.

Recent work in CAN detection presents a predictive accuracy of 99.57%. It is
based on automated iterative multiplier ensembles (AIME). However, the method
includes blood biochemistry [87].

We provided a solution for detecting CAN in a portable or wearable healthcare
device. A real-time processing architecture for CAN was realized that is suitable
for battery powered or self-powered wearable devices. The proposed architecture is
energy efficient, operating at an ultra-low power consumption.

In order to enable on-chip CAN classification, ECG processor needs to extract
RR intervals and QT intervals. Several QRS detection and ECG feature extraction
techniques have been reported in literature. Existing full ECG feature extraction
algorithms that are implemented in Matlab include wavelet transform [27, 29] and
low-pass differentiation [88]. Others have reported ECG feature extraction based
on filtering and wavelet transform that are implemented in embedded systems [89].
The most common implemented techniques on-chip full feature extraction are based
on wavelet transform [9, 13]. In addition, ultra-low power state-of-the-art ECG
processors were proposed [13, 90] capable of detecting QRS complexes. Some
systems have embedded a general-purpose CPU core [91], while others are custom
accelerators [13, 90]. In [10] QRS detection is achieved by applying a multiscale
Haar wavelet transform and maximum modulus pair recognition, whereas in [73]
a quadratic spline wavelet transform is used. The system reported in [8] does QRS
detection followed by classification.

The rest of the chapter is organized as follows. Section 6.2 reviews CAN
detection algorithms and Sect. 6.3 presents an overview of the proposed full system.
In Sect. 6.4 detailed description of the implemented architecture is provided. Power
optimization is presented in Sect. 6.6. Section 6.5 gives the implementation results
and discussion. In Sect. 6.7 an improved architecture for VA prediction is presented
followed by summary in Sect. 6.8.
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6.2 CAN Detection Algorithms

Non-invasive methods that are independent of patient cooperation are preferable in
the diagnosis of CAN but still require further research to understand their sensitivity
and specificity in risk assessment of CAN. Heart rate variability analysis is the
most commonly used method [92]. Variation in HRV is regarded as one of the
early signs of CAN [93, 94]. However, conventionally used time and frequency
domain parameters of HRV are not always suitable for analysis because of the
non-stationarity characteristics of the ECG recordings, the influence of respiration,
and the presence of nonlinear phenomena in the physiological signal [95]. Several
CAN detection algorithms either time or frequency domain have been reported in
literature [49, 84, 96]. No clear evidence has been found to date of an alteration
of sympathovagal balance attributed to the severity of CAN. Reductions in the
conventional HRV parameters were reported as evidence of vagal efferent activity
in diabetic patients [93]. However, alterations of sympathovagal balance with the
severity of CAN were not detected. Here we summarize some of the reported
techniques.

6.2.1 Tone-Entropy Technique

The technique presented in [96] demonstrates applying tone and entropy (T-E) in
classifying CAN. Figure 6.1 shows the tone entropy space for three categories of
CAN. The tone entropy represents individual and average value for normal (N),
early (eCAN+), and definite (dCAN+) groups. Entropy decreased with the severity
of CAN, however, tone increased with severity of CAN. Accordingly, the T-E
method is appropriate for detecting the presence of CAN.

6.2.2 Time Domain RR-Based Methods

In [96], time domain RR heart rate variability parameters such as the mean RR,
the standard deviation of normal RR data (SDNN), and the root mean square of
successive difference (RMSSD) of RR data are demonstrated as indicators of CAN
severity. These parameters decrease with severity of CAN, especially SDNN and
RMSSD, which decreased significantly. However, mean RR was not significantly
different between eCAN+ and dCAN+.
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6.2.3 QTVI-Based Methods

CAN detection based on QT variability index (QTVI) was proposed in [49] as a
measure of QT and RR variability [97]. It was used to detect dilated cardiomyopathy
(DCM) which is a cardiac arrhythmia associated with a high incidence of malignant
ventricular arrhythmia and sudden death. The expression of QTVI is given in
Eq. (6.1). QTVI is evaluated as the logarithm of the ratio of normalized QT variance
to the heart rate variance. The mean and variance of the RR intervals as well as the
mean and variance of the QT intervals are computed from the time series of heart
rate (HR) and QT intervals [49].

QTVI = log10

⎡

⎣
QTv

QTm2

HRv
HRm2

⎤

⎦ (6.1)

6.2.4 Renyi Entropy-Based Method

Determining the Renyi entropy for CAN detection and classification was proposed
in [83–85]. Renyi entropy is defined as:

H(α) = 1

1 − α
log2

(
n∑

i=1

pα
i

)
(6.2)
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6.3 Proposed System Architecture

The proposed system architecture for ECG feature extraction and CAN classifica-
tion is depicted in Fig. 6.2. It consists of two main parts which are the ECG feature
extraction and CAN detector. In the first stage, ECG features are extracted that are
utilized for the classification of CAN. These features are the main characteristic
points of an ECG wave which are P-wave, QRS-complex, and T-wave. The peak,
onset, and offset of these waves are also determined. In the second stage the
extracted features are used to evaluate the QT and RR intervals, which are applied
in detecting CAN severity.

The signal processing part is accomplished using an optimized algorithm that
utilizes real-time and adaptive techniques for the detection and delineation of the P-
QRS-T features of an ECG wave. These adaptive techniques are robust across ECG
morphologies with high sensitivity and precision. Figure 6.2 shows the detailed
block diagram of the system. Absolute value curve length transform (A-CLT) is
used for detecting the QRS peaks, whereas QRS wave limits along with TP waves
of the ECG are detected using low-pass differentiation. Memory is required to store
samples to enable a backward search for relevant features. However, the required
system memory is only 2 kB. Latch-based RAM was chosen in order to enable the
system to operate at a low-supply voltage of 0.6 V. The latch-based RAM saved
60% in power-area product relative to an SRAM-based memory and more than 90%
relative to a flip-flop-based RAM (Fig. 6.3). The power-area product is chosen as a
metric for comparison because it gives an indication for the required resources and
the power consumption.

The goal of our architecture is to provide real-time classification of CAN in an
ultra-low power integrated biomedical system-on-chip (SoC). The CAN classifica-
tion architecture is the hardware implementation of the algorithm described in [49]
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and [96]. As described in [49], classification of CAN is enabled by evaluating the
QT variability index which is as shown in Eq. (6.1). Methods described in [96]
include time series and frequency domain analysis of HRV. This chapter focuses
on hardware realization of HRV time domain analysis with respect to classification
of CAN severity.

The main features of the ECG are contained in the frequency range between
0.5 and 50 Hz. The sampling frequency of our proposed architectures is set to
250 Hz. For the current experiments the ECG was oversampled above Nyquist rate
to enhance detection accuracy. Digitized ECG samples with 12-bits are directly
filtered and the filter is pipelined operating at a clock rate of 250 Hz.

This section describes the utilized full ECG feature extraction starting with QRS
peak detection followed by the full delineation process.

6.3.1 Proposed QRS Peak Detector

Figure 6.4 shows the proposed ACLT architecture for detecting the QRS complex.
It is an architecture to realize the algorithm formulated in Eq. (6.3). It performs
transformation, followed by QRS peak detection using an adaptive threshold
technique. The transformation is completed by using derivative, absolute value,
and integration all combined into one realization of the ACLT. The transformation
distinctively enhances QRS complex even for noisy ECG signals that are corrupted
with baseline wander (Fig. 6.5). Its unique inherent behavior removes the need for
additional complicated circuits for high-pass or low-pass filters. All the computa-
tions for the transformation are performed using addition and shifting. Moreover,
a comparison is required for detecting QRS peaks using thresholds. There is no
need for multiplication, division, or applying square root manipulations. Hence the
ACLT hardware implementation requires only adders, shifters, and comparators.
These components are less hardware intensive relative to multipliers, dividers, and
square root functions. For instance, if we compare an N -bit multiplier with an N -bit
adder, an N -bit multiplier would require N times N -bit adders. Division and square
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root are much more complicated than addition or shifting.

L(ω, i) =
i∑

i−ω

∣∣∣C2 + |4 × 
yi |
∣∣∣ (6.3)

The integration over a window in the architecture is pipelined. Pipelining enables
the signal to be transformed directly whenever there is a new ECG sample.
Accordingly, the required clock frequency for the architecture is equal to the
sampling frequency of the incoming ECG signal. The sampling frequency of the
system is 250 Hz, accordingly, this is the lowest operating frequency possible that
allows to process each acquired sample. Such a low operating frequency reduces the
dynamic power dissipation. Depending on the proposed architecture duty cycling
would not provide an advantage since the design is operating at the sampling rate of
the incoming ECG signal. Buffering the ECG signal and then processing at higher
frequency would require buffers (SRAM) which add more leakage power to the
design power consumption.
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QRS detection is achieved by applying a threshold on the transformed signal
(Fig. 6.4). Obtaining an optimum threshold for wide morphological variant ECG
signals is crucial for QRS detection. In the proposed architecture, the threshold
is adaptive with respect to the detected QRS peaks. It is defined as in Eq. (6.4),
where it is evaluated by accumulating Rpeak values for eight beats and dividing the
accumulated result by 16.

T hupdated =
∑i

i−8 Rpeaki

16
(6.4)

6.3.2 ECG Feature Delineation

ECG feature delineation is finding the T-wave, P-wave (onset, peak, and offset)
as well as QRS wave (onset and offset). Accurate delineation of such points
in automated ECG processing systems is necessary for detecting cardiac rhythm
abnormalities. This step follows the QRS peak detection. The flow chart of the
feature extraction process is shown in Fig. 6.6. The full ECG feature extraction
is achieved using differentiation and maximum modulus (MMP) pair recognition.
In order to remove high frequency noise the differentiated signal is filtered before
the feature delineation. This is illustrated in Fig. 6.6, waveforms 2 and 3. Adaptive
windows are defined as probable location of these features, and the delineation
process for each feature is described below.

6.3.2.1 QRSon and QRSoff Detector

QRSon and QRSoff are characterized by the minimum point or minimum slope
before and after the Rpeak , respectively. Differentiation enables identification of the
minimum point or minimum slope. The normal width of the QRS complex ranges
from 80 to 120 ms. In the proposed architecture a fixed offset of 40–120 ms relative
to Rpeak is used as the probable locations of QRSon and QRSoff .

6.3.2.2 Proposed T and P Wave Detector

Since the T-wave and P-wave are characterized by curved features and peaks,
differentiation enables identification of the maximum slope and peaks. The window
size for the P-wave ranges from 0.375 ×RRinterval up to 0.125 ×RRinterval before
the Rpeak location as illustrated in Fig. 6.7. Similarly the window size for the T-wave
ranges from 0.065 × RRinterval up to 0.65 × RRinterval after the Rpeak location
(Fig. 6.7).
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6.3.3 ECG Intervals

In detecting CAN severity, the required features are the RR and the QT intervals
[49]. Hence it is sufficient to detect the QRS peak, QRS onset, and the end of the
T-wave. However, the feature extraction engine delineates all the ECG features as
they are a part of the whole SoC.

6.4 Proposed CAN Severity Detector Architecture

In this section, we present the four CAN detector architectures, where the first three
are implemented in the fabricated SoC.

6.4.1 QTVI-Based CAN Detection

The expression for QTVI is given in Eq. (6.1) [49] for classifying CAN severity.
In order to ease hardware resources, the logarithm in Eq. (6.1) was removed as in
Eq. (6.5). This gives us a linear expression for QTVI.

QTVI =
QTv

QTm2

HRv
HRm2

(6.5)

Figure 6.8 demonstrates the architecture for evaluating the QTVI. As we can see
from the figure the required operations are finding the mean and variance of the RR
and QT intervals. Finding the mean requires accumulating RR or QT and dividing
by the number of entries. Similarly the variance requires accumulating RR or QT
and also accumulating the square of RR or QT, where the variance is evaluated as
difference of expectations of variable X2 and square of expectation of variable X.
Variance of RR or QT is then divided by the respective mean squared. To perform
all these operations, the main blocks are summation, multiplication, and division.
1024 RR and QT values were used so that the division for finding mean or variance
could be implemented using shift operation.
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6.4.2 Mean RR-Based CAN Detection

The mean of RR intervals can be used to detect CAN severity as described in [96].
It is directly evaluated by accumulating extracted RR intervals from the ECG and
dividing by the number of samples. To ease hardware implementation, 1024 points
are taken to determine the mean. In [96] the mean for the three classes of CAN is
presented. The same analysis is used in the proposed architecture to identify CAN
severity. Figure 6.9 shows the architecture for detecting CAN based on mean RR.

6.4.3 RMSSD-Based CAN Detection

Root mean square value of standard difference (RMSSD) is another parameter that
is applicable for CAN detection [96]. It is evaluated by calculating the RMS value
of successive differences of the heart rate as shown in Fig. 6.10.
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6.4.4 SD-Based CAN Detection

Standard deviation (SD) is also used in CAN detection [96]. It is evaluated
by calculating the standard deviation of the heart rate. Figure 6.11 shows the
architecture for detecting CAN based on SD RR.

6.5 Results and Discussion

6.5.1 QRS Detection Results

Figure 6.12 shows the extracted QRS detection results, in which the extracted
Rpeaks are annotated on top of the ECG wave. Figure 6.12 demonstrates the
matching between Matlab results and chip measurement results for the extracted
RR intervals. The extraction results match with an error of less than 1%. Table 6.1
presents the performance comparison of the QRS detector in terms of sensitivity
(Se = T P/(T P + FN)) and predictivity (P re = T P/(T P + FP)). The ECG
data from the MIT-BIH database [98] was used for validation and comparison. The
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Table 6.1 Sensitivity and
positive predictivity of QRS
complex detectors (MIT-BIH)

Technique Se P +

[13] 99.29% NA%

[9] 99.9% 99.9%

[10] 99.60% 99.77%

[73] 99.31% 99.70%

[64] 99.54% 99.74%

Proposed ACLT 99.37% 99.38%

proposed architecture achieves a sensitivity and predictivity greater than 99% which
is acceptable for wearable healthcare devices. These values are also comparable to
the reported systems as shown in Table 6.1.

6.5.2 ECG Feature Delineation Results

As described in section IIB, the purpose of the full feature extraction is to extract
all the characteristic points of the ECG wave. From that the ECG intervals that
are necessary for cardiac rhythm abnormality detection are evaluated. Figure 6.13
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Fig. 6.13 ECG feature extraction demonstration

demonstrates the ECG intervals extracted for the record 103 from MIT-BIH
database [98]. All extracted intervals lie within the acceptable range of the intervals.
Normal ECG intervals are Pon − R interval 0.12–0.2 s, QRS width 0.08–0.12 s, and
QT interval 0.35–0.43 s.

6.5.3 CAN Detection Results

The CAN detection methods were validated using CAN database obtained from the
Diabetes Complications Research Institute (DiScRi) [99]. The database contains
ECG records for 223 patients attending the clinic between January and December
2008. CARTs were completed on all the participants who were categorized into
three groups: without CAN (CAN−), early CAN (eCAN+), and definite or severe
CAN (dCAN+) [81]. The CAN data was Lead II ECG over a 20 min recording which
was sampled at 400 Hz. Since the implemented architecture works at 250 Hz, the
data was resampled to 250 Hz. Eleven CAN−, 11 eCAN+, and 5 dCAN+ were used
for validation of the realized CAN detection system. In the first case, these three
types of CAN were analyzed based on RR interval variation. These include mean of
RR, RMSSD, and SD of RR intervals as described in Sect. 6.3. The fourth technique
was based on the combined variability of QT and RR, through evaluating QTVI as
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in Sect. 6.3.1. QTVI, mean of RR, and RMSSD architecture are implemented on-
chip, however, the SD is evaluated in Matlab as a complementary analysis, where
the RR intervals extracted from the chip are used in the evaluation of SD.

Figure 6.14 illustrates the RR time series for the three categories of CAN.
Variability analysis of these intervals using mean, RMSSD, and SD could serve
as indicators for CAN severity as illustrated in Fig. 6.15. Though the mean of the
RR intervals varies with CAN severity, its variation is not statistically significant.
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However the RMSSD was observed to decrease with CAN severity, especially
CAN− and dCAN+ differ with a p-value less than 0.05. Similarly, SD varies for
the different categories of CAN for the investigated dataset.

Figures 6.16 and 6.17 reveal QTc and linear QTVI error bar plots for CAN−,
eCAN+ and dCAN+. QTc alone does not reveal significant differences for these
three categories of CAN. However, the linear QTVI increased with severity of CAN.
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This indicates that linear QTVI is a good candidate for detecting CAN severity on
ECG processing SoCs considering its ultra-low power implementation.

6.6 Chip Implementation and Power Optimization

The proposed SoC was implemented and fabricated using the 65 nm CMOS process
and standard cell library. These standard cells had different flavors such as RVT,
HVT, and LVT. High voltage threshold (HVT) standard cells were used to synthesize
the system, so as to reduce the leakage. Overall power dissipation was reduced
by operating at near threshold. Operating voltage of the system was scaled down
to 0.6 V, which is near to the threshold voltage of 65 nm CMOS technology. The
standard cells library on which the system was fabricated can operate down to
0.6 V, however, the SRAM had a minimum operating voltage of 0.9 V. Hence, to
power the system at 0.6 V a latch-based memory was used. Table 6.2 lists the power
consumption at supply voltages 0.6–1.1 V. The power consumption is dominated
by leakage in all the cases. Probable ways of reducing the energy dissipation is to
enable clock gating or power gating. However, the system does not benefit from
clock gating since the dynamic power is linearly related to the operating clock
frequency. If we double the clock frequency, the dynamic power would be doubled.
The leakage energy over time remains the same. If we want to enable power gating
by operating at higher frequency, extra circuitry would be required to save the state
of the system. The system memory will be on all the time, which is where the
dominant leakage is coming from.

The chip micrograph along with the measured performance summary and
measurement setup is provided in Fig. 6.18. The ECG process occupied an area
of 0.108 mm2 and consumed 75 nW when operating at 0.6 V and 250 Hz. ECG
function for feature extraction and CAN classification was validated by injecting
digitized ECG data through an FPGA. The data is stored in an SD card and the chip
communicates with the FPGA through an SPI interface. The measurement results
are captured using a logic analyzer as depicted in Fig. 6.18. Power consumption is
measured by power supply with built-in DC power analyzer.

In Table 6.3 the comparison with the published work is presented. The realized
CAN detection architecture does full ECG feature extraction and CAN detection.
Its power consumption is less than the related systems [8–10, 13, 90]. Though
the SoCs reported in [8, 13] include instrumentation amplifier and ADC, their
respective digital power is dominant. The CAN detector also occupied relatively
the lowest area.
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Table 6.2 Leakage power of the SoC

Supply voltage (V) 0.6 0.7 0.8 0.9 1.0 1.1

Leakage power (nW) 55.8 94.5 174.4 313.2 537 913

Dynamic power (nW) 19.2 27.3 25.6 28.8 53 46.75

Total power (nW) 75 121.8 200 342 590 959.75
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Table 6.3 Performance comparison with published work

[10] [8] [13] [9] [90] This work

Technology (nm) 180 180 180 350 65 65

Area mm2 0.484 2.47 NA 1.2 0.243 0.108

Oper. freq. (kHz) NA 0.12 500 1 7.5 250

Supply voltage 1.0 1.2 0.5 3 0.6 0.6

AFE NA IA IA SAR NA NA
ADC ADC ADC

ECG features QRS QRS P-QRS-T QRS P-QRS-T P-QRS-T

Power (µW) 0.410 5.97 0.457 13.6 0.642 0.075

Energy per NA 49.75 0.914 13.6 0.0856 0.3
cycle (nJ)

Fig. 6.19 Schematic
representation of the
proposed ventricular
arrhythmia prediction system

Naïve Bayes algorithm

3rd stage: Classification

Unique set of seven ECG features
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Task 1 Task 2 Task 3
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6.7 VTVF Classifier Architecture

The baseline VA processor presented in [12] consists of three main stages: ECG
pre-processing, feature extraction, and classification as shown in Fig. 6.19. In this
section we present the improved architecture of the VA processor [100]. In the ECG
pre-processing stage all the ECG wave features such as QRS complex, T-wave, and
P-wave are extracted. Prior to ECG delineation, filtering is performed because ECG
could be corrupted by baseline drift, power-line interference, and high frequency
noise. After filtering, QRS detection is performed based on the Pan and Tompkins
technique [24]. Along with the QRS peak detection, the QRS onset and offset
are also delineated. Finally, T and P waves are delineated, and the corresponding
fiducial points (P onset, P peak, P offset, T onset, T peak, and T offset) are extracted.

In this work three major modifications were carried out to lower the power
consumption: (1) Elimination of the SRAM block in QRS detection, and thus,
reducing RAM requirements from 8 kB down to 4 kB. (2) Decreasing the operating
frequency to 250 Hz equal to the ECG sampling frequency. (3) The use of high
threshold voltage (HVT) cells to reduce the leakage power. The details of the
optimization are discussed in the following subsection.
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6.7.1 ECG Pre-processing

In the baseline architecture [12], QRS detection was performed on samples that
were stored in SRAM. However, in the updated architecture, QRS peaks are
detected directly from the new samples, eliminating the need for storing transformed
samples. Such a seemingly minor improvement actually leads to major reductions
in area and power consumption. As illustrated in Fig. 6.20, the output of the moving
integral is directly compared to the threshold in the R-peak detection module.
Such an optimization enables the system to reach real-time operation even when
with clock frequency equal to the sampling frequency. Other features such as
the onset/offset of QRS, and onset/peak/offset of T and P waves are computed
using filtered samples which are stored in the memory. Two SRAM blocks are
used in the architecture, which are used alternatively for storing new samples and
reading/processing simultaneously. Whenever the delineation is done from SRAM
1 (Fig. 6.20), new filtered signals are stored in the SRAM 2, and vice versa. Note
that the delineation and switching functions (read/write) of the two SRAMs are
performed when a new QRS peak is detected.

6.7.2 Feature Extraction Stage

This stage extracts the features that are used by the classifier. We start by
determining the unique set of ECG features that best capture the characteristics
of ventricular arrhythmia. The features include: RR, PQ, QP, RT, TR, PS, and SP
intervals [12]. Figure 6.21 shows these intervals on a representative ECG record. It
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Fig. 6.21 An annotated ECG waveform highlighting ECG wave components and the features
extracted for the ECG classifier

is worth mentioning that the features are extracted from two consecutive heartbeats,
unlike other methods which process each heartbeat independently. Utilizing two
consecutive heartbeats give higher accuracy in predicting VA.

6.7.3 Classification Stage

The objective of the classifier is to predict the presence of VA based on the features
mentioned above. Since our system aims at ultra-lower power implementation,
only a classifier architecture that requires minimum hardware resources can be
afforded. Having this in mind, the Naive Bayes classifier was chosen. The Naive
Bayes classifier is a linear classifier and easy to build with no complicated
iterative parameter estimation. It assumes naive and strong independent distributions
between the feature vectors, and this assumption was met since all the extracted
ECG features were analyzed and assessed independently from the beginning [12].

Figure 6.21 shows the six intervals on the ECG record [12]. These features
were thoroughly studied to be the best indicator for VT/VF condition and for the
databases of VA recordings from American Heart Association (AHA). Naive Bayes
classifier was utilized for classification that can predict normal and VA situations.
Mainly, the high differentiation quality of the signals has enabled the successful use
of a linear classifier for the decision-making process.
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Fig. 6.22 Architecture of the proposed secure ventricular arrhythmia prediction processor. The
blocks relevant to security are highlighted in orange color with dashed borders

6.7.4 Secure VA Prediction Architecture

The proposed improved architecture for the VA predictor is integrated into secure
processor IoT sensing platform as shown in Fig. 6.22 [100]. The proposed solution
is able to predict the onset of VA upto 3 h in advance with 86% accuracy where
the classification accuracy is computed as in Eq. (6.6). In Eq. (6.6), TN refers to
the number of true negative detections, TP refers to the number of true positive
detections, FP to number of false-positive detection, and FN to number of false
negative detections. Moreover, the proposed architecture is designed using an
application specific integrated circuits design flow in 65 nm LPe CMOS technology;
the power it consumes is 62.2% less than that of the state-of-the-art approaches [12],
while occupying 16.0% smaller area. The proposed processor makes use of ECG
signals to extract a chip-specific ECG key that enables protection of communication
channel. By integrating the ECG key with an existing design-for-trust solution,
the proposed platform offers protection also at the hardware level, thwarting
hardware security threats, such as reverse engineering and counterfeiting. Through
efficient sharing of on-chip resources, the overhead of the multi-layered security
infrastructure is kept at 9.5% for area and 0.7% for power with no impact on the
speed of the design.

ACC = T P + T N

T P + T N + FP + FN
. (6.6)
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Fig. 6.23 Layout of proposed VA processor

6.7.5 ASIC Design

The VA processor was designed using Verilog-HDL and the layout was generated
using the standard physical design flow; the 65 nm LPe library was used. The design
was synthesized by using the Synopsys design compiler, and then floor-planned,
placed, and routed by using Synopsys ICC compiler. The provided results are based
on post-layout power and area analysis. Since the design is purely digital, it is
natural to expect a very high correlation (within 5% level as accepted in the chip-
design industry) between the post-silicon results and the post-layout design.

Figure 6.23 shows the floorplan of the design. The placed and routed VA
processor footprint dimension was 430µm by 218µm with a total utilization
of 85%. Table 6.4 presents the design results. The design occupied a total core
area of 0.0941 mm2 and consumed a total power of 1.052µW at 250 Hz frequency.
The implementation reported in [12] uses 8 kB SRAMs, 4 kB for the QRS detector,
and 4 kB for detecting the other features. In our improved architecture depicted in
Fig. 6.22, only 4 kB SRAM is needed for detecting the QRS onset/offset, T-wave,
and P-wave. The QRS peaks are directly detected from the output of the moving
average signal. Such scheme reduces the total power by 62.2% and area by 16.0%.
Moreover this new architecture operates at the same frequency as the sampling
frequency. This is the minimum frequency at which ECG processors could operate
in order to fulfill the real-time requirement. Operating at low frequency also reduces
the dynamic power.

The comparison of the proposed VA processor with the existing ECG processors
is presented in Table 6.5. The proposed architecture performs prediction based
on multiple ECG features extracted from the P-wave, the T-wave, and the QRS
complex; on the other hand, the previous processors [8, 52, 101] perform detection
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Table 6.4 Secure VA
processor design metrics

Parameter Figure

Total area 0.0941 mm2

Dynamic power 9.71e−3 µW

Leakage power 1.042µW

Total power 1.052µW

Utilization 85%

based on RR interval only. Although the power consumption reported in [52] is
lower than our proposed processor, [52] is dominated by analog blocks and it only
performs arrhythmia classification with no prediction. The proposed VA processor
has lower power consumption and area compared to [101] and [8].

6.8 Summary

An ultra-low power ECG processing architecture that comprises ECG feature
extraction and CAN classification was presented. The proposed architecture oper-
ates at an ultra-low power dissipation through algorithmic and architectural opti-
mization. An absolute value CLT detects QRS peaks with sensitivity of 99.37%
and predictivity of 99.38%. Full ECG feature extraction is enabled through dif-
ferentiation, windowing, and threshold. System memory was implemented using
latch-based memory, which enables the system to operate down to 0.6 V. The system
was fabricated using 65 nm low power technology and consumed 75 nW only when
operating at a frequency of 250 Hz from a supply voltage of 0.6 V. The CAN severity
utilizes the extracted features. Twenty seven records were utilized to verify the
detection processor, and the QT variability index (QTVI) and RR interval variability
analysis were validated as indicators for differentiating control, early and definite
CAN.

Moreover, an improved architecture for VA prediction was presented in this
chapter. The improved VA prediction architecture achieved a reduction in the
required area by 16.0% and reduction in power consumption by 62.2%.
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