
Exploiting Data Sparsity for Large-Scale
Matrix Computations

Kadir Akbudak1 , Hatem Ltaief1 , Aleksandr Mikhalev1(B) ,
Ali Charara1 , Aniello Esposito2, and David Keyes1

1 Extreme Computing Research Center,
Division of Computer, Electrical,

and Mathematical Sciences and Engineering,
King Abdullah University of Science

and Technology, Thuwal Jeddah 23955,
Kingdom of Saudi Arabia

{kadir.akbudak,hatem.ltaief,
aleksandr.mikhalev,ali.charara,david.keyes}@kaust.edu.sa

2 Cray EMEA Research Lab, Bristol, UK
esposito@cray.com

Abstract. Exploiting data sparsity in dense matrices is an algorithmic
bridge between architectures that are increasingly memory-austere on
a per-core basis and extreme-scale applications. In this work, we lever-
age the Hierarchical matrix Computations on Manycore Architectures
(HiCMA) library in order to tackle this challenging problem by achiev-
ing significant reductions in time to solution and memory footprint,
while preserving a specified accuracy requirement of the application.
We have extended HiCMA to provide a high-performance implementation
on distributed-memory systems of one of the most widely used matrix
factorization in large-scale scientific applications, i.e., the Cholesky fac-
torization. It employs the tile low-rank data format to compress the
dense data-sparse off-diagonal tiles of the matrix. It then decomposes
the matrix computations into interdependent tasks and relies on the
dynamic runtime system StarPU for asynchronous out-of-order schedul-
ing, while allowing high user productivity. Performance comparisons and
memory footprint on matrix dimensions up to eleven million show a per-
formance gain and memory saving of more than an order of magnitude for
both metrics on thousands of cores, against state-of-the-art open-source
and vendor optimized numerical libraries. This represents an important
milestone in enabling large-scale matrix computations toward solving
big data problems in geospatial statistics for climate/weather forecast-
ing applications.

1 Introduction

State-of-the-art dense linear algebra libraries are confronting memory capacity
limits and/or are not able to produce solutions in reasonable times, when per-
forming dense computations (e.g., matrix factorizations and solutions) on large
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 721–734, 2018.
https://doi.org/10.1007/978-3-319-96983-1_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_51&domain=pdf
http://orcid.org/0000-0002-1057-1590
http://orcid.org/0000-0002-6897-1095
http://orcid.org/0000-0002-9274-7237
http://orcid.org/0000-0002-9509-7794
http://orcid.org/0000-0002-4052-7224


722 K. Akbudak et al.

matrix of size n, with n in the billions. The current trend of hardware over-
provisioning in terms of floating-point units (e.g., with wide SIMD implemen-
tations) and the increase of memory capacity (e.g., with new fast non-volatile
memory layer) are not sufficient to cope with the emergence of big data problems
involving dense matrices due to the prohibitive cubic algorithmic complexity
O(n3) and the expensive quadratic memory footprint O(n2). To overcome both
challenges, matrix approximations may be considered as an effective remedy, as
long as the numerical fidelity of the original problem is preserved.

This paper introduces the Hierarchical matrix Computations on Manycore
Architectures (HiCMA) library, which exploits the data sparsity structure of dense
matrices on shared and shared to distributed-memory systems. In particular,
the class of covariance-based matrices emerges from various scientific big data
applications in environmental applications, including geospatial statistics for cli-
mate/weather forecasting [29,30]. Under such an apparently dense matrix rep-
resentation lies a family of sparse representations. HiCMA currently employs a
tile low-rank (TLR) data format, which leverages the data descriptor behind the
traditional dense/plain tile format [1,2,13]. The idea consists in compressing the
off-diagonal tiles, and retaining the most significant singular values with their
associated singular vectors up to an application-dependent accuracy threshold.
HiCMA can then perform matrix operations on these compressed tiles. A dynamic
runtime system StarPU [10] orchestrates the various computational tasks rep-
resenting the nodes of a directed acyclic graph, and asynchronously schedules
them on the available processing units in an out-of-order fashion, while care-
fully tracking their data dependencies. This systematic approach enhances the
productivity for the library development, while facilitating the code deployment
from shared to distributed-memory systems [4].

We assess the numerical robustness and parallel performance of HiCMA using
two matrix kernels. The first one is a synthetic matrix kernel, and has been
inspired from wave-based frequency domain matrix equation problems. It gives
a useful flexibility, since it permits to generate customized matrices with various
rank sizes and accuracy thresholds. This flexibility can be employed to avoid
stressing the solver infrastructure. The second kernel corresponds to a realistic
application coming from the family of parametrizable Matérn covariance func-
tion [22], and represents the state-of-the-art in modeling geostatistics and spa-
tial statistics [16]. The resulting covariance matrices for both aforementioned
kernels are symmetric and positive-definite. The Cholesky factorization is the
core operation when solving linear systems of equations for the former or calcu-
lating the matrix determinant for the latter. The Cholesky factorization reduces
a symmetric positive-definite matrix into lower or upper triangular form and is
usually used as a pre-processing step toward solving dense linear system of equa-
tions. Thanks to the resulting low arithmetic intensity of the numerical kernels,
HiCMA is able to translate the original dense compute-bound application into a
data-sparse communication-bound on distributed-memory systems. While time
to solution is significantly reduced, the bottlenecks are shifted and data traffic
reduction may rapidly become central in strong scaling mode of operation, as
usually observed for sparse computations.



Exploiting Data Sparsity for Large-Scale Matrix Computations 723

We report performance comparisons and memory footprint on matrix dimen-
sions up to eleven million and 16, 000 cores. We show a gain of more than an
order of magnitude for both metrics against state-of-the-art open-source and
vendor optimized numerical libraries, when applicable. In these experiments,
we employ a threshold which preserves the specific accuracy requirement of the
application while removing the irrelevant information data from the matrix. We
also provide a comprehensive profiling and tracing results to identify current per-
formance bottlenecks in HiCMA. Last but not least, we show preliminary power
profiling results to study the impact of the numerical accuracy on the overall
energy consumption. The energy consumption stands as a new critical metric to
monitor and optimize, especially when solving big data problems in geospatial
statistics for climate/weather forecasting applications.

The remainder of the paper is organized as follows. Section 2 provides a bib-
liography in hierarchical low-rank matrix computations and our research con-
tributions. Section 3 introduces and describes the HiCMA software infrastructure
for solving large-scale data-sparse problems. Section 4 defines the kernels for
synthetic matrix generations and real world applications from climate/weather
forecasting applications based on a geospatial statistics approach. Section 5 gives
implementation details of the tile low-rank Cholesky, which relies on the StarPU
dynamic runtime system. Section 6 presents the results and a comprehensive
performance analysis. It compares our implementation against existing state-of-
the-art implementations on distributed-memory system. We conclude in Sect. 7.

2 Related Work

Discovered around two decades ago [17–19,21,31], hierarchical low-rank matrix
approximations are currently a leading algorithmic trend in the scientific commu-
nity to solve large-scale data-sparse problems. Based on recursive formulations,
they exploit the data sparsity of the matrix by compressing the low-rank off-
diagonal blocks using an adequate data storage format such as HODLR [6,9],
H [20], HSS [5,27] and H2 [12]. The aforementioned data compression formats
are characterized by linear and log linear upper bounds for their algorithmic
complexities. The resulting low arithmetic intensity of the kernel in addition to
the recursive formulation impede their parallel performance. They turn out to be
difficult to implement, and not amenable to effectively map on manycore shared
and distributed-memory systems, due to their fork-join paradigm.

More recently, with the emergence of asynchronous task-based programming
models, these hierarchical low-rank matrix approximations algorithms have been
revisited by flattening their recursions and exposing them to task-based run-
time systems such as Intel Threading Building Blocks (Intel TBB) [24] and
OpenMP [4]. While these dynamic runtimes permit to mitigate the overhead
from the bus bandwidth saturation on single shared-memory nodes, they do not
support distributed-memory systems. Moreover, the authors in [14] have also
demonstrated the importance of flattening the recursion during the compres-
sion of H2-matrices, when targeting massively parallel GPU accelerators. Since



724 K. Akbudak et al.

memory is a scarce resource on the GPU, porting the H2-matrix approximation
kernel to multiple GPUs appears mandatory but seems to be a very tedious
exercise, due to the complex handmade memory management across GPUs.

Another data compression format has been introduced [7], i.e., the block low-
rank data format, which is a subset of the H-matrix class of data-sparse approx-
imation. It consists of splitting the dense matrix into blocks and to perform
low-rank matrix computations, while compressing the final results on-the-fly.
Although distributed-memory systems do not appear as a hostile environment
anymore with this new format in the context of sparse direct solvers [8], there
may be still two main limitations: the lack of a systematic approach to schedule
the computational tasks onto resources and the high memory footprint, since
the matrix is not compressed initially, but rather gets compressed as the com-
putation goes.

This paper introduces the HiCMA library, the first implementation of task-
based tile low-rank Cholesky factorization on distributed-memory systems. Com-
pared to the initial implementation on shared-memory environment [4] based
on OpenMP, this paper uses instead the StarPU [10] dynamic runtime system
to asynchronously schedule computational tasks across interconnected remote
nodes. This highly productive association of task-based programming model with
dynamic runtime systems permits to tackle in a systematic way advanced hard-
ware systems by abstracting their complexity from the numerical library devel-
opers. This separation of concerns between hardware and software facilitates in
solving large-scale simulations and allows porting HiCMA onto large resources and
large problems sizes, i.e., 16, 000 cores and 11 million, respectively. We have also
conducted performance and power profiling analysis to provide further insights
when scheduling this new class of algorithms for hierarchical low-rank matrix
computations. The HiCMA software library1 has been released and is freely avail-
able for public download under the open-source modified BSD license.

3 The HiCMA Software Library

The HiCMA software library provides a high-performance implementation of
the Cholesky factorization for symmetric positive-definite matrices with a data
sparse structure. A complete list of HiCMA features can be found at https://
github.com/ecrc/hicma. HiCMA is rooted in tile algorithms for dense linear alge-
bra [2], which split the matrix into dense tiles. HiCMA leverages the tile data
descriptor in order to support the new tile low-rank (TLR) compression format.
While this data descriptor is paramount to expose parallelism, it is also criti-
cal for the data management in distributed-memory environment [1,13]. HiCMA
adopts a flattened algorithmic design to bring to the fore the task parallelism,
as opposed to plain recursive approach, which has constituted the basis for per-
formance of previous H-matrix libraries [18,19,21].

1 https://github.com/ecrc/hicma.

https://github.com/ecrc/hicma
https://github.com/ecrc/hicma
https://github.com/ecrc/hicma


Exploiting Data Sparsity for Large-Scale Matrix Computations 725

Once the matrix has been divided into tiles, HiCMA relies on the STARS-H
library 2, a high performance H-matrix market, to generate and compress each
tile independently. This allows to create the TLR matrix in compressed format,
without having a global dense representation, and therefore, opens opportunities
to solve large-scale applications, thanks to a low memory footprint. This may
eventually become cumbersome even for sparse solvers [7], when dealing with
high dimensional problems, since the global intermediate dense matrices are
explicitly generated. Figure 3(b) in [4] sketches the TLR matrix after compress-
ing on-the-fly each tile with a specific application-dependent fixed accuracy. This
may result into low-rank tiles with non-uniform ranks to maintain the overall
expected accuracy. Although the scope of HiCMA described in this paper focuses
on dense covariance-based scientific applications, it may have a broader impact.
Indeed, as previously mentioned, it can also service sparse direct solvers, i.e.,
supernodal [23,28] and multifrontal numerical methods [8,26], during the low-
rank Schur complement calculations on the fronts/supernodes, which are the
crux of sparse computations. Furthermore, the fixed rank feature of HiCMA, as
shown in Fig. 3(a) in [4], allows to generate TLR matrices with uniform ranks
across all low-rank tiles. This rough approximations may be of high interest
for speeding up sparse preconditioners (e.g., incomplete Cholesky/LU factoriza-
tions) during iterative solvers, since important a priori assumptions can be made
to optimize and improve parallel performance.

4 Definition of Matrix Kernels

The matrix kernel is a function that generates matrix entries, i.e., Aij = f(xi, yj),
from two sets {xi} and {yj}. Typically, the matrix kernel function f(x, y) calcu-
lates the interaction between two objects x and y, using a distance-based formu-
lation. Although some matrix kernels may lead to sparse matrices, we investigate
matrix kernels that translate into dense matrices.

Synthetic Matrix Kernel. The first matrix kernel is a synthetic one, inspired
from the core matrix kernel of wave-based matrix equations, as in electrodynam-
ics, electromagnetic and acoustic applications. The matrix kernel can be defined
as f(x, y) = sin(λr(x,y))

r(x,y) , where λ is a wave number and r(x, y) is an Euclidian
distance between x and y. In fact, this corresponds to the imaginary part of
a fundamental solution eiλr

r of the Helmholtz equation. This modified function
is very convenient, since the wave number has a direct impact of the rank dis-
tribution on the TLR matrix. This permits to test the numerical robustness of
HiCMA with a large number of rank configurations. Figures 1(a)-(d) depict the
rank distribution for various wave numbers λ on a matrix of size 2500 × 2500
with an accuracy threshold set to 10−9. It shows a homogeneity among rank
sizes of the off-diagonal tiles for a given λ, while it displays rank growth as λ
increases.
2 https://github.com/ecrc/stars-h.

https://github.com/ecrc/stars-h


726 K. Akbudak et al.

Fig. 1. Rank distributions for the synthetic matrix kernel with different wave numbers
λ and acc=10−9 (a)-(d). Rank distributions the spatial statistics applications with
acc=10−8 (e). Distribution of normalized singular values for both matrix kernels on
the bottom-left off-diagonal tile (f). Matrix size N = 2500.

Matérn Matrix Kernel for Covariance Problems. The Matérn matrix
kernel is at the core of spatial statistics and is used as the state-of-the-art model
to drive climate/weather forecasting applications [22]. We have implemented
the square exponential variant of this Matérn matrix kernel to demonstrate the
effectiveness of our TLR approach for solving real world applications. The square

exponential kernel can be defined as f(r) = e− r2

2l2 , where r is a distance between
spatial points and l is a correlation length. For the experiments presented in
the paper, we set the correlation length to 0.1. The resulting TLR covariance
matrix is then used to evaluate the maximum likelihood function during an
optimization and iterative procedure, as explained in [4]. Each iteration requires
the calculation of the matrix determinant involving the Cholesky factorization,
which is the most time-consuming phase. Figure 1(e) shows the rank distributions
on a matrix of size 2500×2500 with tile size 250 for the square exponential kernel.
The ranks are not too disparate for the corresponding accuracy of 10−8.

The singular value distributions for the tile located at the bottom-left of the
TLR matrix generated from each type of matrix kernels is depicted in Fig. 1(f).
Their distributions highlight an exponential decay, and therefore, reveal the
data sparsity structure of such matrices. It is also clear that, given these rank
heatmaps, data compression formats with weak admissibility conditions (i.e.,
HODLR and HSS) may not be appropriate for this application, due to nested
dissection, which operates only for diagonal super tiles. The off-diagonal super



Exploiting Data Sparsity for Large-Scale Matrix Computations 727

tiles may then engender excessive larger ranks after compression, which may
eventually have a negative impact on performance and memory footprint.

5 Implementation Details

This section provides insights into two main ingredients for porting the HiCMA
library to distributed-memory systems: the data descriptor and the StarPU
dynamic runtime system.

The Data Descriptor. The data descriptor defines the backbone of HiCMA, as
it dictates how the data management takes place across the distributed-memory
computational nodes. Originally developed for ScaLAPACK [11] and inspired later
DPLASMA’s [13], the descriptor draws how the data is scattered among processing
units following the classical two-dimensional block cyclic distribution to ensure
load balancing between nodes. HiCMA leverages this single descriptor for dense
matrices and creates three descriptors to carry on computations over the com-
pressed bases of each tile, calculated by using the randomized SVD compression
algorithm from the STARS-H library. These bases, i.e., U and V, are of sizes nb-
by-k and k-by-nb, respectively, with nb the tile size and k the tile rank. The
first descriptor stitches the rectangular bases U and VT of each tile together.
Since k is not known a priori, we define a maximum rank (maxrk), which can be
tuned for memory footprint as well as performance. The second descriptor con-
tains the actual ranks of each tile after compression and gets updated during the
computation accordingly. The last descriptor store information about the dense
diagonal tiles. The main challenge with these descriptors is that they enforce
each data structure they inherently describe to be homogeneous across all tiles.
While the rank and dense diagonal tiles descriptors are obviously important
to maintain for numerical correctness, the descriptor for the off-diagonal tiles
has a direct impact on the overall communication volume. Therefore, tuning
the maxrk parameter is mandatory. However, dense data-sparse matrices with a
large disparity in the ranks of the off-diagonal tiles may encounter performance
bottlenecks, due to excessive remote data transfers. One possible remedy is to
implement a fine-grained descriptor for each single tile, as explained in [25].

The StarPU Dynamic Runtime System. The StarPU dynamic runtime sys-
tem [10] maps a sequential task-based application onto a complex underlying
parallel shared and/or distributed-memory systems. This allows endusers to
focus on getting correctness from their sequential implementations and leave the
challenging part of porting their codes to parallel environment to the runtime.
The pseudo-code for the task-based TLR Cholesky factorizations is presented in
Algorithm 1. We refer readers to [4] for the full description of the sequen-
tial kernels. The Insert Task API encapsulates the task, its parameters with
their data directions, i.e., read and/or write (STARPU R, STARPU W and
STARPU RW). Not only does StarPU execute its tasks asynchronously within



728 K. Akbudak et al.

Algorithm 1. hicma dpotrf (HicmaLower, D, U, V, N, nb, rank, acc)
p = N / nb
for k = 1 to p do

StarPU Insert Task(hcore dpotrf, HicmaLower, STARPU R, D(k), rank, acc)
for i = k+1 to p do

StarPU Insert Task(hcore dtrsm, STARPU RW, V(i,k), STARPU R, D(k,k))
end for
for j = k+1 to p do

StarPU Insert Task(hcore dsyrk, STARPU RW, D(j), STARPU R, U(j,k), STARPU R, V(j,k))
for i = j+1 to p do

StarPU Insert Task(hcore dgemm, STARPU R, U(i,k), V(i,k), STARPU R, U(j,k), STARPU R, V(j,k),
STARPU RW, U(i,j), STARPU RW, V(i,j), rank, acc)

end for
end for

end for

each node in an out-of-order fashion, but it also performs remote non-blocking
point-to-point MPI communications to mitigate the data movement overhead by
overlapping it with computations.

6 Performance Results

Our experiments have been conducted on two Cray systems. The first one,
codenamed Shaheen-2, is a Cray XC40 system with the Cray Aries network
interconnect, which implements a Dragonfly network topology. It has 6174 com-
pute nodes, each with two-socket 16-core Intel Haswell running at 2.30 GHz
and 128 GB of DDR3 main memory. The second system, codenamed Cray-SKL,
has roughly 300 nodes with mixed stock keeping units (SKUs) The majority
of nodes has at least two-socket 20-core Intel Skylake and at least 192GB of
DDR4 memory, where the base frequency of the different SKUs varies between
2.1 GHz and 2.4 GHz. HiCMA and StarPU have been compiled with Intel compiler
suites v16.3.3.210 and v17.0.4.196 on Shaheen-2 and Cray-SKL, respectively.
Calculations have been performed in double precision arithmetic and the best
performance after three runs is reported.

(a) Synthetic (λ = 100). (b) Statistics.

Fig. 2. Time to solution of Intel MKL’s dense dpotrf and hicma dpotrf for both
matrix kernels on Sandy Bridge, Haswell, and Skylake shared-memory systems.



Exploiting Data Sparsity for Large-Scale Matrix Computations 729

Figure 2 shows the performance of the dense and TLR Cholesky factorizations
from Intel MKL and HiCMA Cholesky factorizations, respectively, on shared-
memory systems. We compare against various Intel chip generations, i.e., Sandy
Bridge, Haswell and Skylake, for both matrix kernels. Not only can HiCMA solve
larger problems than Intel MKL and with a much lower slope when scaling up,
the obtained performance gain is also between one and two orders of magnitude
for the synthetic and the square exponential matrix kernels, respectively.

Figure 3 shows the memory footprint for various accuracy thresholds of dense
(calculated) and TLR (measured) Cholesky factorizations on a million covari-
ance matrix size from the synthetic and real world application matrix kernel, as
introduced in Sect. 4. As seen in the figure, the TLR-based compression scheme
exhibits more than an order of magnitude memory footprint saving with respect
to naive dense Cholesky factorization from ScaLAPACK for both matrix kernels.
We refer the readers to [4] for the TLR algorithmic complexity study. Fur-
thermore, the geospatial statistics matrix kernel can not support high accuracy
thresholds, since the overall matrix looses its positive definiteness. However, the
fixed accuracy of 10−8 is used for the latter matrix kernel, as required by the
original application.

Fig. 3. Memory footprint of ScaLAPACK
and hicma dpotrf on 1M matrix size.

Fig. 4. Runtimes of ScaLAPACK’s
pdpotrf and hicma dpotrf on
Shaheen-2. Synthetic λ = 100.

Figure 4 shows performance comparisons of HiCMA against Intel ScaLAPACK
for the TLR and dense Cholesky factorization on Shaheen-2 distributed-memory
system using both matrix kernels (including generation and compression). Since
ScaLAPACK performs brute force computations, it is agnostic to the matrix kernel
applications. HiCMA outperforms ScaLAPACK by using only 16 nodes as opposed
to 256 nodes, up to half a million matrix size.

Figure 5 shows the time breakdown spent in generation and compression
versus computation for HiCMA and ScaLAPACK Cholesky factorization on both



730 K. Akbudak et al.

(a) ScaLAPACK. (b) HiCMA, synthetic. (c) HiCMA, statistics.

Fig. 5. Time breakdown of ScaLAPACK’s pdpotrf and hicma dpotrf on Shaheen-2 for
both matrix kernels. λ = 100 for the synthetic application.

Fig. 6. Runtimes of hicma dpotrf for
different accuracy thresholds on 64
nodes of Shaheen-2. Matrix size n =
1M and nb = 2700. Synthetic λ = 200.

Fig. 7. Power profiling and energy con-
sumption of hicma dpotrf for differ-
ent accuracy thresholds on 64 nodes of
Cray-SKL. Matrix size n = 1M and
nb = 2700. Synthetic λ = 200.

matrix kernels. The cost of generating the dense matrix for ScaLAPACK is negli-
gible compared to the computational time. However, the time to generate and
compress is noticeable for HiCMA and counts around 25% of the elapsed time, on
matrix sizes up to half a million.

Figure 6 highlights the performance impact of various accuracy thresholds for
both matrix kernels. The curves have expected trends, although varying accuracy
threshold does not seem to impact the performance of the square exponential
matrix kernel. This is due to maxrk, which stays relatively the same across the
accuracy thresholds.



Exploiting Data Sparsity for Large-Scale Matrix Computations 731

Figure 7 show some preliminary results of power profiling and energy con-
sumption for HiCMA TLR Cholesky factorization with various accuracy thresholds
on both matrix kernels using Perftools from Cray-SKL. The energy consumption
saving is commensurate to the performance gain in time. The recorded power
offset of HiCMA compared to running HPL corresponds the under-utilized CPUs,
due to low arithmetic intensity kernels.

(a) Synthetic, λ=50, Shaheen-2. (b) Synthetic, λ=100, Shaheen-2.

(c) Statistics, Shaheen-2. (d) Statistics, Cray-SKL.

Fig. 8. Elapsed time of hicma dpotrf for larger matrices (up to 11 million) for both
matrix kernels on Shaheen-2 and Cray-SKL.

Figure 8 depicts the strong scaling of HiCMA on both systems for the two
matrix kernels. The synthetic matrix kernel is indeed important since it permits
to show the performance bottleneck of the HiCMA’s data descriptor supporting
homogeneous ranks for large-scale problem sizes. Due to a large disparity of
the ranks, maxrk has to be set to the actual maximum rank for all low-rank
tiles, which engenders excessive data movement. The computation is, however,



732 K. Akbudak et al.

only applied on the eligible data. For the square exponential matrix kernel, the
obtained scalability is decent on both systems, considering the low arithmetic
intensity of the kernels.

(a) Dense dpotrf time=18.120s (b) Data-sparse dpotrf time=1.761s

Fig. 9. Execution traces of Chameleon’s dpotrf (a) and hicma dpotrf (b) on 4 nodes
of Shaheen-2 with a matrix size of 54K. (Color figure online)

Figure 9 presents the execution traces of dense and TLR Cholesky factor-
izations, as implemented in task-based Chameleon [1] and HiCMA, respectively.
These traces highlight the CPU idle time (red color) in HiCMA, since StarPU is
not able to compensate the data movement overhead with the tasks’ computa-
tions (green color). Nevertheless, there is an order of magnitude in performance
between both libraries.

7 Conclusion

This paper introduces the HiCMA numerical library on distributed-memory sys-
tems. HiCMA implements a task-based tile low-rank algorithm for the Cholesky
factorization. It relies on the StarPU dynamic runtime system to asynchronously
schedule computational and communication tasks. HiCMA outperforms state-of-
the-art dense Cholesky implementations by more than an order of magnitude in
performance and saves memory footprint by the same ratio while still preserv-
ing the specific accuracy requirement of the application. The numerical robust-
ness and high performance of HiCMA are demonstrated at scale using synthetic
and real world matrix kernels. In particular, HiCMA stands as a pathfinder for
approximating and effectively solving geospatial statistics applications. Future
work includes using a more flexible data descriptor to better handle situations
with disparate ranks, porting HiCMA to hardware accelerators, introducing batch
processing [15] and integrating HiCMA into existing sparse direct solvers for the
Schur complement calculations.

Data Availability Statement and Acknowledgments. The datasets and code
generated during and analysed during the current study are available in the figshare
repository: https://doi.org/10.6084/m9.figshare.6388202 [3] The authors would like to

https://doi.org/10.6084/m9.figshare.6388202


Exploiting Data Sparsity for Large-Scale Matrix Computations 733

thank the StarPU team at INRIA, France. This work has been partially funded by
the Intel Parallel Computing Center Award. For computer time, this research used
the resources from KAUST Supercomputing Laboratory for Shaheen-2 core hours
allocation.

References

1. Agullo, E., et al.: Achieving high performance on supercomputers with a sequential
task-based programming model. In: IEEE TPDS (2017)

2. Agullo, E., et al.: Numerical linear algebra on emerging architectures: the PLASMA
and MAGMA projects. J. Phys.: Conf. Ser. 180, 12–37 (2009)

3. Akbudak, K., Ltaief, H., Mikhalev, A., Charara, A., Esposito, A., Keyes, D.:
HiCMA (Hierarchical Computations on Manycore Architectures) library. Pre-
sented in Euro-Par 2018 paper. Figshare. Code (2018). https://doi.org/10.6084/
m9.figshare.6388202

4. Akbudak, K., Ltaief, H., Mikhalev, A., Keyes, D.: Tile low rank cholesky factor-
ization for climate/weather modeling applications on manycore architectures. In:
Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC 2017. LNCS, vol. 10266,
pp. 22–40. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58667-0 2

5. Ambikasaran, S., Darve, E.: An O(N log N) fast direct solver for partial HSS matri-
ces. J. Sci. Comput. 57(3), 477–501 (2013)

6. Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D.W., O’Neil, M.:
Fast direct methods for Gaussian processes. IEEE Trans. Pattern Anal. Mach.
Intell. 38(2), 252–265 (2016)

7. Amestoy, P., Ashcraft, C., Boiteau, O., Buttari, A., L’Excellent, J.Y., Weisbecker,
C.: Improving multifrontal methods by means of block low-rank representations.
SIAM J. Sci. Comput. 37(3), A1451–A1474 (2015)

8. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y.: Multifrontal parallel distributed sym-
metric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184(2), 501–
520 (2000)

9. Aminfar, A., Ambikasaran, S., Darve, E.: A fast block low-rank dense solver with
applications to finite-element matrices. J. Comput. Phys. 304, 170–188 (2016)

10. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put.: Pract. Exp. 23(2), 187–198 (2011)

11. Blackford, L.S., et al.: ScaLAPACK Users’ Guide. SIAM, Philadelphia (1997)
12. Börm, S.: Efficient Numerical Methods for Non-local Operators: H2-Matrix Com-

pression, Algorithms and analysis. EMS Tracts in Mathematics, vol. 14. European
Mathematical Society (2010)

13. Bosilca, G., et al.: Flexible development of dense linear algebra algorithms on
massively parallel architectures with DPLASMA. In: IPDPS Workshops, pp. 1432–
1441. IEEE (2011)

14. Boukaram, W.H., Turkiyyah, G., Ltaief, H., Keyes, D.E.: Batched QR and SVD
algorithms on GPUs with applications in hierarchical matrix compression. Parallel
Comput. 74, 19–33 (2017)

15. Charara, A., Keyes, D.E., Ltaief, H.: Tile Low-Rank GEMM Using Batched Oper-
ations on GPUs. In: Aldinucci, M., et al. (eds.) Euro-Par 2018. LNCS, vol. 11014,
pp. xx–yy. Springer, Cham (2018)

16. Chiles, J.P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty, vol. 497.
Wiley, Hoboken (2009)

https://doi.org/10.6084/m9.figshare.6388202
https://doi.org/10.6084/m9.figshare.6388202
https://doi.org/10.1007/978-3-319-58667-0_2


734 K. Akbudak et al.

17. Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. part i: introduc-
tion to H-matrices. Computing 62(2), 89–108 (1999)

18. Hackbusch, W., Börm, S.: Data-sparse approximation by adaptive H2-matrices.
Computing 69(1), 1–35 (2002)

19. Hackbusch, W., Khoromskij, B., Sauter, S.: On H2-matrices. In: Bungartz, H.J.,
Hoppe, R., Zenger, C. (eds.) Lectures on Applied Mathematics, pp. 9–29. Springer,
Heidelberg (2000). https://doi.org/10.1007/978-3-642-59709-1 2

20. Hackbusch, W.: Hierarchical matrices: Algorithms and analysis, vol. 49. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47324-5

21. Hackbusch, W., Börm, S., Grasedyck, L.: HLib 1.4 (1999–2012), Max-Planck-
Institut, Leipzig

22. Handcock, M.S., Stein, M.L.: A Bayesian analysis of kriging. Technometrics 35,
403–410 (1993)

23. Hénon, P., Ramet, P., Roman, J.: Pastix: a high-performance parallel direct solver
for sparse symmetric positive definite systems. ParCo 28(2), 301–321 (2002)

24. Kriemann, R.: H-LU factorization on many-core systems. Comput. Vis. Sci. 16(3),
105–117 (2013)

25. Kurzak, J., et al.: Designing slate: software for linear algebra targeting exascale.
SLATE Working Notes 3, ICL-UT-17-06, University of Tennessee (10–2017 2017)

26. Li, X.S., Demmel, J.W.: SuperLU DIST: a scalable distributed-memory sparse
direct solver for unsymmetric linear systems. ACM TOMS 29, 110–140 (2003)

27. Rouet, F.H., Li, X.S., Ghysels, P., Napov, A.: A distributed-memory package
for dense hierarchically semi-separable matrix computations using randomization.
ACM TOMS 42(4), 27:1–27:35 (2016)

28. SuiteSparse: A suite of sparse matrix software (2017). http://faculty.cse.tamu.edu/
davis/SuiteSparse/

29. Sun, Y., Li, B., Genton, M.G.: Geostatistics for large datasets. In: Porcu, M., Mon-
tero, J.M., Schlather, M. (eds.) Space-Time Processes and Challenges Related to
Environmental Problems. Lecture Notes in Statistics, vol. 207, pp. 55–77. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-17086-7 3

30. Sun, Y., Stein, M.L.: Statistically and computationally efficient estimating equa-
tions for large spatial datasets. J. Comput. Graph. Stat. 25(1), 187–208 (2016)

31. Tyrtyshnikov, E.E.: Mosaic-skeleton approximations. Calcolo 33(1), 47–57 (1996)

https://doi.org/10.1007/978-3-642-59709-1_2
https://doi.org/10.1007/978-3-662-47324-5
http://faculty.cse.tamu.edu/davis/SuiteSparse/
http://faculty.cse.tamu.edu/davis/SuiteSparse/
https://doi.org/10.1007/978-3-642-17086-7_3

	Exploiting Data Sparsity for Large-Scale Matrix Computations
	1 Introduction
	2 Related Work
	3 The HiCMA Software Library
	4 Definition of Matrix Kernels
	5 Implementation Details
	6 Performance Results
	7 Conclusion
	References




