Marco Aldinucci

Luca Padovani
Massimo Torquati (Eds.)

Euro-Par 2018:
Parallel Processing

24th International Conference
on Parallel and Distributed Computing
Turin, Italy, August 27-31, 2018
Proceedings

LNCS 11014 | ARCoSS

_ Euro-Par
'-5;201835.

Lecture Notes in Computer Science 11014

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA

Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy
Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Marco Aldinucci - Luca Padovani
Massimo Torquati (Eds.)

Euro-Par 2018:
Parallel Processing

24th International Conference
on Parallel and Distributed Computing

Turin, Italy, August 27-31, 2018
Proceedings

@ Springer

Editors

Marco Aldinucci

Department of Computer Science
University of Torino

Torino

Italy

Massimo Torquati

Department of Computer Science
University of Pisa

Pisa

Italy

Luca Padovani

Department of Computer Science
University of Torino

Torino

Italy

ISSN 0302-9743

Lecture Notes in Computer Science
ISBN 978-3-319-96982-4 ISBN 978-3-319-96983-1 (eBook)
https://doi.org/10.1007/978-3-319-96983-1

ISSN 1611-3349 (electronic)

Library of Congress Control Number: 2018949144
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018, corrected publication 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-8788-0829
http://orcid.org/0000-0001-9097-1297
http://orcid.org/0000-0001-6323-3459

Preface

This volume contains the papers presented at Euro-Par 2018, the 24th International
European Conference on Parallel and Distributed Computing, held during August
27-31, 2018, in Turin, Italy. The whole computer hardware industry has embraced
parallel computing. Today it is clear that in the long term, writing efficient, portable,
and correct parallel programs must be no more challenging than writing the same
programs for sequential computers. Euro-Par envisioned this challenge 24 years ago. It
gracefully evolved from pioneering efforts to the mainstream of parallel computing
maintaining its broad-spectrum coverage on parallel computing topics, from software
to hardware to their co-design. Its adaptability and capability to frame emerging topics
in an independent, consolidated structure is still the key to its success.

The main audience of Euro-Par comprises researchers in academia, public and
private laboratories, and industrial organizations. Euro-Par’s main objective is to be the
primary choice of such professionals for the presentation of new results in the field.

Previous Euro-Par conferences took place in Stockholm, Lyon, Passau,
Southampton, Toulouse, Munich, Manchester, Paderborn, Klagenfurt, Pisa, Lisbon,
Dresden, Rennes, Las Palmas, Delft, Ischia, Bordeaux, Rhodes, Aachen, Porto, Vienna,
Grenoble, and Santiago de Compostela. The 24th edition of Euro-Par was organized by
the Computer Science Department of the University of Turin. The topics were orga-
nized into 12 tracks, namely: Support Tools and Environments; Performance and
Power Modeling, Prediction, and Evaluation; Scheduling and Load Balancing;
High-Performance Architectures and Compilers; Parallel and Distributed Data Man-
agement and Analytics; Cluster and Cloud Computing; Distributed Systems and
Algorithms; Parallel and Distributed Programming, Interfaces, and Languages; Mul-
ticore and Manycore Methods and Tools; Theory and Algorithms for Parallel Com-
putation and Networking; Parallel Numerical Methods and Applications; and
Accelerator Computing for Advanced Applications. Overall, 194 papers were sub-
mitted from 39 countries. The number of submitted papers, the wide topic coverage and
the aim of obtaining high-quality reviews resulted in a difficult selection process
involving a large number of experts. The join effort of the members of the Scientific
Committee and of the 306 external reviewers resulted in 787 reviews: five papers
received three reviews, 173 received four reviews and 16 received five, that is, on
average, 4.06 reviews per paper. The accepted papers were chosen after lengthy dis-
cussions and finalized during the physical selection meeting, which took place on April
27, 2018 in Turin. All local chairs and three members of the Steering Committee
participated in the meeting. In the end, 57 papers were selected to be presented at the
conference and published in the proceedings, resulting in a 29.4% acceptance rate. The
following three papers were nominated as “distinguished” and presented in a plenary
session: “Resource-Efficient Execution of Conditional Parallel Real-Time Tasks,”
“VIoLET: A Large-Scale Virtual Environment for Internet of Things,” “Design Prin-
ciples for Sparse Matrix Multiplication on the GPU.”

VI Preface

Apart the presentation sessions of accepted papers, we were honored to host three
keynote talks given by esteemed colleagues, namely: “ALGORAND: A Better Dis-
tributed Ledger” by Silvio Micali, “Algorithmic Adaptations to Extreme Scale Com-
puting” by David E. Keyes, and “Datacenters for the Post-Moore Era” by Babak
Falsafi. The conference program was complemented by two days of workshops and
tutorials on specialized topics. Dora B. Heras and Gabriele Mencagli deserve recog-
nition for managing them efficiently and effectively. A selection of the papers presented
at the workshops will be published in separated proceedings volumes after the
conference.

With respect to previous editions of Euro-Par, the 2018 edition introduced two
novelties both aimed at improving the relevance and impact of the scientific works
presented at the conference. For the first time in the history of Euro-Par, authors of
accepted papers were encouraged to submit an artifact (e.g., source code, tools,
benchmarks, datasets, models) to assess the reproducibility of the experimental results
presented in the paper. Overall, 13 artifacts were submitted and all of them were
positively evaluated by a separate Artifact Evaluation Committee. Papers with an
associated artifact received a seal of approval in the proceedings and Springer kindly
agreed to permanently host all artifacts on their servers. Although the practice of
evaluating artifacts is becoming commonplace in other computer science conferences,
it should be mentioned that it poses substantial challenges in a conference like
Euro-Par, in which artifacts may require large and dedicated hardware infrastructures
and may involve the processing of gigabytes of data for long periods of time. The
resulting additional effort required of the organizers and the members of the Artifact
Evaluation Committee was largely compensated by the enthusiasm of the authors who
decided to submit an artifact. In the end, nearly one quarter of the papers had an
associated artifact. The second novelty experimented with in Euro-Par 2018 was a
session of chess-timer talks, in which the audience was encouraged to interact with the
speakers, and the session chair balanced solo presentation and discussions using a chess
timer. We got the idea of proposing chess-timer talks from the successful CurryOn
conference as an “unusual solution to making tech conferences a more interactive, more
fun, and better place for learning and discussions.”

The Euro-Par conference in Turin would not have been possible without the support
of many individuals and organizations. We owe special thanks to the authors of all the
submitted papers, the members of the topic committees, in particular, the global and
local chairs, as well as the reviewers for their contributions to the success of the
conference. We would also like to express our gratitude to the members of the
Organizing Committee and the local staff who helped us. We are indebted to the
members of the Euro-Par Steering Committee, especially Christian Lengauer, Luc
Bougé, and Fernando Silva, for their trust, constant guidance, and support. We are
grateful to the staff of Springer, particularly Anna Kramer, Alfred Hofmann, and
Graham Smith, for their support in the preparation of the proceedings and the man-
agement of artifacts. Finally, a number of institutional and industrial sponsors

Preface VII

contributed to the organization of the conference. Their names appear on the Euro-Par

2018 website.
It was a pleasure and an honor to organize and host Euro-Par 2018 in Turin.

June 2018 Marco Aldinucci
Luca Padovani
Massimo Torquati

Steering Committee

Full Members

Luc Bougé (Chair)

Fernando Silva (Vice-Chair)

Dora B. Heras (Workshops
Chair)

Emmanuel Jeannot

Christos Kaklamanis

Paul Kelly

Thomas Ludwig

Tomas Margalef

Wolfgang Nagel

Francisco Fernandez Rivera

Rizos Sakellariou

Henk Sips

Domenico Talia

Jesper Larsson Traff

Denis Trystram

Felix Wolf

Honorary Members

Christian Lengauer
Ron Perrott
Karl Dieter Reinartz

Observers

Marco Aldinucci
Ramin Yahyapour

Organization

ENS Rennes, France
University of Porto, Portugal
CiTIUS, Santiago de Compostela, Spain

LaBRI-Inria, Bordeaux, France

Computer Technology Institute, Patras, Greece
Imperial College, London, UK

University of Hamburg, Germany

University Autonoma of Barcelona, Spain
Dresden University of Technology, Germany
CiTIUS, Santiago de Compostela, Spain
University of Manchester, UK

Delft University of Technology, The Netherlands
University of Calabria, Italy

TU Wien, Austria

Grenoble Institute of Technology, France

TU Darmstadt, Germany

University of Passau, Germany
Oxford e-Research Centre, UK
University of Erlangen-Niirnberg, Germany

University of Turin, Italy
GWDG/University of Goéttingen, Germany

Euro-Par 2018 Organization

Co-chairs

Marco Aldinucci
Luca Padovani
Massimo Torquati

University of Turin, Italy
University of Turin, Italy
University of Pisa, Italy

X Organization

Workshops

Dora B. Heras
Gabriele Mencagli

Tutorials and Industry

Peter Kilpatrick
Claudia Misale

Publicity

Javier Garcia Blas
Dalvan Griebler

Ivan Merelli
Fabio Tordini

University of Santiago de Compostela, Spain
University of Pisa, Italy

Queen’s University Belfast, UK
IBM T.J. Watson Research Center, USA

Universidad Carlos III de Madrid, Spain

Pontifical Catholic University of Rio Grande do Sul,
Brazil

CNR-ITB, Italy

University of Turin, Italy

Submission and Reviewing Process

Daniele D’Agostino
Massimo Torquati

Artifact Evaluation Process

Gabriele Mencagli
Luca Padovani
Massimo Torquati

Web and Social Media

Claudio Mattutino
Sergio Rabellino

Logistics

Katia Lupo
Claudio Mattutino
Sergio Rabellino

Program Committee

CNR-IMATI, Italy
University of Pisa, Italy

University of Pisa, Italy
University of Turin, Italy
University of Pisa, Italy

University of Turin, Italy
University of Turin, Italy

University of Turin, Italy
University of Turin, Italy
University of Turin, Italy

Topic 1: Support Tools and Environments

Global Chair
Siegfried Benkner

Local Chair
Massimo Coppola

Universitit Wien, Austria

CNR-ISTIL Italy

Organization

Chairs

Franz Franchetti Carnegie Mellon University, USA

Michael Gerndt Technische Universitdt Miinchen, Germany
Erwin Laure Royal Institute of Technology, Sweden
Nikos Parlavantzas INSA Rennes and IRISA, France

Topic 2: Performance and Power Modeling, Prediction and Evaluation

Global Chair

Leonel Sousa Universidade de Lisboa, Portugal

Local Chair

Daniele De Sensi University of Pisa, Italy

Chairs

Giorgis Georgakoudis Queen’s University Belfast, UK

Aleksandar Ilic Universidade de Lisboa, Portugal

Piotr Luszczek University of Tennessee, USA

Federico Silla Universitat Politecnica de Valencia, Spain
Guangming Tan Chinese Academy of Sciences, China

Pedro Trancoso Chalmers University of Technology, Sweden

Topic 3: Scheduling and Load Balancing

Global Chair

Anne Benoité ENS Lyon, France

Local Chair

Enrico Bini University of Turin, Italy

Chairs

Maciej Drozdowski Poznan University of Technology, Poland

Lionel Eyraud-Dubois LaBRI-inria, Bordeaux, France

José Gracia HLRS, Stuttgart, Germany

Nan Guan Hong Kong Polytechnic University, Hong Kong,
SAR China

Sascha Hunold TU Wien, Austria

Krzysztof Rzadca University of Warsaw, Poland

Topic 4: High-Performance Architectures and Compilers

Global Chair
Florian Brandner Télécom ParisTech, Université Paris-Saclay, France

Local Chair
Fabio Luporini Imperial College London, UK

XII Organization

Chairs

Alexandra Jimborean Uppsala University, Sweden

Frank Hannig University of Erlangen-Niirnberg, Germany
Gihan Mudalige University of Warwick, UK

Topic 5: Parallel and Distributed Data Management and Analytics

Global Chair

K. Selcuk Candan Arizona State University, USA

Local Chair

Ruggero Pensa University of Turin, Italy

Chairs

Lei Chen Hong Kong University of Science and Technology,

SAR China

Gianmarco De Francisci Qatar Computing Research Institute, Qatar
Morales

Ming Zhao Arizona State University, USA

Topic 6: Cluster and Cloud Computing

Global Chair

Ivona Brandi¢ Vienna University of Technology, Austria

Local Chair

Domenico Talia Universita della Calabria, Italy

Chairs

Toni Mastelic Vienna University of Technology, Austria
Raffaele Montella Universita degli Studi di Napoli Parthenope, Italy
Anne-Cécile Orgerie CNRS, Rennes, France

Thomas Renner Technische Universitit Berlin, Germany

Rafael Brundo Uriarte IMT School for Advanced Studies, Lucca, Italy

Topic 7: Distributed Systems and Algorithms

Global Chair

Sonia Ben-Mokhtar LIRIS, INSA de Lyon, France
Local Chair

Alberto Montresor University of Trento, Italy
Chairs

Christof Fetzer TU Dresden, Germany

Indranil Gupta University of Illinois, Urbana-Champaign, USA

Organization XTI

Topic 8: Parallel and Distributed Programming, Interfaces, and Languages

Global Chair

J. Daniel Garcia University Carlos III of Madrid, Spain
Local Chair

Patrizio Dazzi CNR-ISTI Italy

Chairs

Bryce Adelstein-Lelbach NVIDIA, USA

Marcelo Pasin Université de Neuchatel, Switzerland
Mitsuhisa Sato Riken and University of Tsukuba, Japan
Paolo Trunfio DIMES, University of Calabria, Italy
Chan-Hyun Youn KAIST, South Korea

Topic 9: Multicore and Manycore Methods and Tools

Global Chair

Christoph Kessler Linkoping University, Sweden

Local Chair

Marco Danelutto University of Pisa, Italy

Chairs

Rudolf Eigenmann University of Delaware, USA

Arturo Gonzalez Escribano Universidad de Valladolid, Spain

Kevin Hammond University of St. Andrews, UK

Jesper Larsson Traff TU Wien, Austria

Ana Lucia Varbanescu University of Amsterdam, The Netherlands

Topic 10: Theory and Algorithms for Parallel Computation and Networking

Global Chair

Christos Zaroliagis University of Patras, Greece

Local Chair

Tiziano De Matteis University of Pisa, Italy

Chairs

Leszek Gasieniec University of Liverpool, UK

Ulrich Meyer Goethe-Universitit Frankfurt am Main, Germany

Henning Meyerhenke Universitit zu Koln, Germany

XIV Organization

Topic 11: Parallel Numerical Methods and Applications

Global Chair
Elisabeth Larsson

Local Chair
Pasqua D’ Ambra

Chairs
Aneta Karaivanova

Angeles Martinez
Calomardo
Ulrike Meier Yang

Uppsala University, Sweden

CNR-IAC, Naples, Italy

Institute of Information and Communication
Technology (IICT-BAS), Bulgaria
University of Padova, Italy

CASC-LLNL, USA

Topic 12: Accelerator Computing for Advanced Applications

Global Chair
Angeles Navarro

Local Chair
Maurizio Drocco

Chairs

Raphael de Camargo
Jaejin Lee

Jose Luis Nunez-Yanez

Universidad de Malaga, Spain

University of Turin, Italy

Federal University of ABC, Brazil
Seoul National University, South Korea
University of Bristol, UK

Artifact Evaluation Committee

Javier Garcia Blas
Massimo Coppola
Tiziano De Matteis
Daniele De Sensi
Manuel F. Dolz
Maurizio Drocco

Javier Fernandez Munoz
Salvatore Filippone
Dalvan Griebler

Lu Li

Fabrizio Marozzo
Matteo Nardelli
Mauricio Pilla
Paolo Viviani

University Carlos III of Madrid, Spain

CNR-ISTI Pisa, Italy

University of Pisa, Italy

University of Pisa, Italy

University Carlos III of Madrid, Spain

University of Turin, Italy

University Carlos III of Madrid, Spain

Cranfield University, UK

Pontifical Catholic University of Rio Grande do Sul,
Brazil

University of Edinburgh, UK

DIMES, University of Calabria, Italy

University of Rome Tor Vergata, Italy

Federal University of Pelotas, Brazil

University of Turin, Italy

Euro-Par 2018 Additional Reviewers

Aguilar, Xavier
Ahmed, Laeeq
Ahvar, Ehsan
Alguwaifli, Yasir
Amaris Gonzalez, Marcos
Ancourt, Corinne
Angriman, Eugenio
Aral, Atakan
Areias, Miguel
Atalar, Aras
Atanassov, Emanouil
Aublin, Pierre-Louis
Aupy, Guillaume
Aurangzeb

Bacciu, Davide
Bachstein, Matthew
Bajic, Fani
Bajrovic, Enes
Balouek-Thomert, Daniel
Barker, Andrew
Baroli, Davide
Barwell, Adam
Basumallik, Ayon
Beaumont, Olivier
Behrens, Hans
Belcastro, Loris
Beltran, Viceng
Benedict, Shajulin
Bergamaschi, Luca
Berlinska, Joanna
Bernaschi, Massimo
Bigot, Julien
Bolten, Matthias
Bourgoin, Mathias
Brandes, Thomas
Brown, Christopher
Brown, Dominic
Buesing, Henrik
Buttari, Alfredo
Cardellini, Valeria
Carlini, Emanuele
Caron, Eddy
Carpentieri, Bruno

Carretero, Jesus
Carribault, Patrick
Catena, Matteo
Cavalheiro, Gerson
Caino-Lores, Silvina
Cecilia, José M.
Cesario, Eugenio
Chen, Yitao

Chester, Dean
Chester, Dean G.
Collange, Sylvain
Comito, Carmela
Corbera, Francisco
Coullon, Helene
Danelutto, Marco
Dao, Than Tuan

De Maio, Vincenzo
De Simone, Valentina
de Souza, Diego F.
Decouchant, Jérémie
Del Rio Astorga, David
Denoyelle, Nicolas
Di Girolamo, Salvatore
Dickson, James

Do, Youngdong
Dobrev, Veselin
Dokulil, Jiri

Dolz, Manuel
Dreuning, Henk
Drocco, Maurizio
Du, He

Durastante, Fabio
Dutot, Pierre-Frangois
Dutta, Hritam
Engblom, Stefan
Falcao, Gabriel
Faqgeh, Rasha
Fernandez Fabeiro, Jorge
Fernandez, Javier
Fey, Dietmar

Fey, Florian
Filippone, Salvatore
Flores, Paulo

Organization

Folino, Francesco
Folino, Gianluigi
Forestiero, Agostino
Gadkari, Ashish
Gante, Jodo

Garcia Blas, Javier
Gardner, David
Garg, Yash
Gaspar, Francisco
Gendron, Bernard
Geronimo, Guilherme
Gorlatch, Sergei
Gracia, José
Grahn, Hakan
Grelck, Clemens
Grubel, Patricia
Gu, Chuancai
Guermouche, Abdou
Guerreiro, Jodo
Gurov, Todor
Guyon, David

Ha, Phuong
Herlihy, Maurice
Hiraishi, Tasuku
Hoefer, Martin
Hugo, Andra
Hiickelheim, Jan
Ienco, Dino
Ivanovska, Sofiya
Janna, Carlo
Jeong, Chang-Sung
Jiang, Xu

Jo, Gangwon

Jung, Wookeun
Kallimanis, Nikolaos
Kang, Dong-Ki
Karlsson, Sven
Keller, Jorg

Kim, Heehoon
Kim, Hyngmo
Kim, Jungwook
Kim, Seong-Hwan
Kim, Woojoong

XVI Organization

Kirk, Richard
Kontogiannis, Spyros
Koslovski, Guilherme
Kosta, Sokol

Krall, Andreas
Kritikos, Kyriakos
Kronbichler, Martin
Kukreja, Navjot
Kumar, Rakesh
Kumaraswamy, Madhura
Kunji, Khalid
Lambert, Thomas
Larsson, Elisabeth
Le Quoc, Do

Lee, Jinpil

Lee, Yongjun
Legrand, Arnaud
Li, Ruipeng

Li, Xueqi

Lin, Yuhan

Lirkov, Ivan

Liu, Jun

Liu, Sicong

Liu, Songran

Liu, Weifeng

Low, Tze Meng
Lujic, Ivan

Lulli, Alessandro
Madi-Wamba, Gilles
Maier, Tobias

Mao, Bo

Maouche, Mohamed
Marozzo, Fabrizio
Marques, Diogo
Martin, André
Martins, Paulo
Matsuda, Motohiko
Mazzia, Francesca
McKenney, Paul
Mehofer, Eduard
Mele, Valeria
Melot, Nicolas
Mendes, Rafael
Meng, Ke
Mijakovi¢, Robert
Misale, Claudia

Morais, Mayuri
Mordacchini, Matteo
Mouni¢, Grégory
Nagarkar, Parth
Nakao, Masahiro
Netzer, Gilbert
Neves, Nuno

Nidito, Francesco
Oh, Pyeongseok
Ohshima, Satoshi
Oleksenko, Oleksii
Osborn, Sarah

Owen, Herbert
Owenson, Andrew
Padoin, Edson Luiz
Palkowski, Marek
Park, Sangdon
Pascual, Fanny
Penschuck, Manuel
Perarnau, Swann
Pereira, Fernando
Petri, Matthias

Pham, Linh Manh
Pllana, Sabri

Poccia, Silvestro
Poke, Marius

Ponce, Colin

Popov, Mihail
Popovici, Doru Thom
Prokopec, Aleksandar
Qiao, Bo

Qiu, Sheng

Raca, Valon

Rais, Issam

Raoofy, Amir
Rauchwerger, Lawrence
Rebonatto, M. Trindade
Reguly, Istvan
Rehn-Sonigo, Veronika
Reiche, Oliver

Reis, Valentin
Rezaei, Mohamad
Ricketson, Lee
Rivas-Gomez, Sergio
Romano, Diego

Ros, Alberto

Rupp, Karl
Sabne, Amit
Sadi, Fazle
Sakdhnagool, Putt
Sampathirao, Ajay Kumar
Sandrieser, Martin
Santana, Luis
Santander-Jiménez, Sergio
Santos, Danilo
Sarkar, Subhadeep
Sarkar, Susmit
Sato, Yukinori
Saveski, Martin
Schickedanz, Alexander
Schmitt, Christian
Schroder, Jacob
Schuchart, Joseph
Serafini, Marco
Serrano, Estefania
Shin, Dong-Jae
Shun, Julian
Sjogreen, Bjorn
Skowron, Piotr
Soliman, Amira
Spampinato, Daniele
Spataro, William
Spiga, Filippo
Stramondo, Giulio
Sun, Jinghao
Sun, Tianjiao
Sutra, Pierre
Tairum, Miguel
Tanase, Alexandru
Tang, Yue
Teabe, Boris
Terboven, Christian
Thamsen, Lauritz
Tomas, Andres
Tomov, Vladimir
Torres de La Sierra,
Yuri
Trach, Bohdan
Trinitis, Carsten
Trunfio, Paolo
Traff, Jesper Larsson
Tsai, Yaohung

Tsigas, Philippas
Tsuji, Miwako
Ujaldon, Manuel
Utrera, Gladys
Vaddina, Kameswar
Vasiloudis, Theodore
Vaumourin, Gregory
Veiga, Luis

Veith, David
Venetis, Ioannis
Verbitskiy, Ilya
Verdoolaege, Sven
Vespa, Emanuele
Villegas, Alejandro
Vinci, Andrea

Viviani, Paolo

von Looz, Moritz
Voronin, Kirill
Wacrenier, Pierre-André
Wagner, Martin
Wallschlédger, Marcel
Walulya, Ivan
Wang, Zhan
Weidendorfer, Josef
Wilhelm, Andreas
Wong, Michael

Wu, Meng-Ju

Xie, Zhen

Xu, Guanglin

Yang, Dai

Organization

Yang, Eunju
Yang, Qirui

Yao, Erlin
Yarkhan, Asim
Yasugi, Masahiro
Yeh, Tsung Tai
Zamani, Ali Reza
Zang, Dawei
Zhang, Fa
Zhang, Jiyuan
Zilic, Josip
Zlatev, Zahari
Zounon, Mawussi
Zuk, Pawet

XVII

Euro-Par 2018 Invited Talks

ALGORAND: A Better Distributed Ledger

Silvio Micali

CSAIL, MIT, USA

A distributed ledger is a tamperproof sequence of data that can be read and augmented
by everyone. Distributed ledgers stand to revolutionize the way a democratic society
operates. They secure all kinds of traditional transactions — such as payments, asset
transfers, titling — in the exact order in which they occur; and enable totally new
transactions — such as cryptocurrencies and smart contracts. They can remove inter-
mediaries and usher in a new paradigm for trust. As currently implemented, however,
distributed ledgers cannot achieve their enormous potential. Algorand is an alternative,
democratic, and efficient distributed ledger. Unlike prior ledgers based on “proof of
work”, it dispenses with “miners”. Indeed, Algorand requires only a negligible amount
of computation. Moreover, its transaction history does not “fork” with overwhelming
probability: i.e., Algorand guarantees the finality of all transactions.

Algorithmic Adaptations to Extreme
Scale Computing

David E. Keyes
King Abdullah University, Saudi Arabia

Algorithmic adaptations to use next-generation computers close to their potential are
underway. Instead of squeezing out flops — the traditional goal of algorithmic opti-
mality, which once served as a reasonable proxy for all associated costs — algorithms
must now squeeze synchronizations, memory, and data transfers, while extra flops on
locally cached data represent only small costs in time and energy. After decades of
programming model stability with bulk synchronous processing, new programming
models and new algorithmic capabilities (to make forays into, e.g., data assimilation,
inverse problems, and uncertainty quantification) must be co-designed with the hard-
ware. We briefly recap the architectural constraints and application opportunities. We
then concentrate on two types of tasks each of occupies a large portion of all scientific
computing cycles: large dense symmetric/Hermitian linear systems (covariances,
Hamiltonians, Hessians, Schur complements) and large sparse Poisson/Helmholtz
systems (solids, fluids, electromagnetism, radiation diffusion, gravitation). We examine
progress in porting “exact” and hierarchically rank-reduced solvers for these tasks to
the hybrid distributed-shared programming environment, including the GPU and the
MIC architectures that make up the cores of the top scientific computers “on the floor”
and “on the books.”

Datacenters for the Post-Moore Era

Babak Falsafi

EPFL, Switzerland

Datacenters are growing at unprecedented speeds fueled by the demand on global IT
services, investments in massive data analytics and economies of scale. Worldwide
data by some accounts (e.g., IDC) grows at much higher rates than server capability
and capacity. Conventional silicon technologies laying the foundation for server
platforms, however, have dramatically slowed down in efficiency and density scaling in
recent years. The latter, now referred to as the post-Moore era, has given rise to a
plethora of emerging logic and memory technologies presenting exciting new chal-
lenges and abundant opportunities from algorithms to platforms for server designers. In
this talk, I will first motivate the post-Moore era for server architecture and present
avenues to pave the path forward for server design.

Euro-Par 2018 Topics Overview

Topic 1: Support Tools and Environments

Siegfried Benkner, Massimo Coppola, Franz Franchetti,
Michael Gerndt, Erwin Laure, and Nikos Parlavantzas

Despite an impressive body of research over the last decades, parallel and distributed
programming remains a complex task, a process that is prone to subtle software issues
that can affect both the correctness and the performance of an application. The amount
of implementation details and their hidden connections are getting harder and harder to
manage as multilevel parallel hierarchical and hybrid architectures become more and
more commonplace along the path to Exascale computing systems.

The Euro-Par Support Tools and Environments track focuses on tools, techniques
and environments that help tackling that complexity by addressing the many challenges
related to programmability, portability, correctness, reliability, scalability, efficiency,
performance and energy consumption.

The papers submitted and accepted for this track do well represent the community
that this topic brings together, gathering tool designers, developers, and users to share
their ideas, solutions, products, and concerns for a wide range of parallel platforms.
Key points of the evaluation were solid theoretical foundations and strong experimental
validations on production-level parallel and distributed systems, as well as the novelty
of program development tools and environments that tackle the daunting complexity of
current and future parallel systems.

The track received 14 submissions, which were thoroughly reviewed by the
members of the track program committee with the help of 27 external reviewers
delivering in total 55 distinct reviews. Out of all the submissions and after a careful and
detailed discussion among committee members, we finally decided to accept 5 papers,
resulting in a per-topic acceptance ratio of 36%.

We would like to thank all the authors who submitted papers for their contribution
to the success of this track, as well as all the external reviewers for their high-quality
reviews and their valuable feedback.

Topic 2: Performance and Power Modeling,
Prediction and Evaluation

Leonel Sousa, Daniele De Sensi, Giorgis Georgakoudis,
Aleksandar Ilic, Piotr Luszczek, Federico Silla, Guangming Tan,
and Pedro Trancoso

Power consumption is becoming a major factor to consider when designing hardware
and applications. Due to the tight correlation to performance, these two goals need to
be addressed together in a synergistic way. This topic covers different aspects of
performance and power consumption modeling, prediction and evaluation on different
types of computing architectures and for a wide variety of applications.

This year we received 24 submissions and each paper received 4 reviews, either
from the nine program committee members and/or from external reviewers. After
discussion, we accepted 6 papers (25% acceptance rate). The papers cover different
aspects of performance optimization, power and energy efficiency, addressing the
problem at different levels, from low-level optimizations to visualization tools and
considering different platforms, from mobile devices to large-scale HPC systems.

We would like to thank the authors for their submissions, the Euro-Par 2018
Organizing Committee for their help throughout all the process, and the PC members
and the reviewers for providing timely and detailed reviews, and for participating in the
discussion we carried on after the reviews were received.

Topic 3: Scheduling and Load Balancing

Anne Benoit, Enrico Bini, Maciej Drozdowski,
Lionel Eyraud-Dubois, José Gracia, Nan Guan, Sascha Hunold,
and Krzysztof Rzadca

New computing systems offer the opportunity to reduce the response times and the
energy consumption of the applications by exploiting the levels of parallelism.
Heterogeneity and complexity are the distinguishing characteristics of modern archi-
tectures. Thereby, the optimal exploitation of modern platforms is challenging.
Scheduling and load balancing techniques are key instruments to achieve higher per-
formance, lower energy consumption, reduced resource usage, and predictability of
applications.

This topic invites papers on all aspects related to scheduling and load balancing on
parallel and distributed machines, from theoretical foundations for modeling and
designing efficient and robust scheduling policies to experimental studies, applications
and practical tools and solutions. It applies to multi-/manycore processors, embedded
systems, servers, heterogeneous and accelerated systems, HPC clusters as well as
distributed systems such as clouds and global computing platforms.

A total of 23 full-length submissions were received in this track, each of which
received at least four reviews, from the eight chairs and/or from 21 additional experts.
Following the thorough discussion of the reviews, five submissions have been
accepted, including one that was nominated as distinguished paper.

The chair and local chair sincerely thank all the authors for their submissions, the
Euro-Par 2018 Organizing Committee for all their valuable help, and the reviewers for
their excellent work. They all have contributed to making this topic and Euro-Par an
excellent forum to discuss scheduling and load balancing challenges.

Topic 4: High Performance Architectures
and Compilers

Florian Brandner, Fabio Luporini, Alexandra Jimborean,
Frank Hannig, and Gihan Mudalige

This topic deals with architecture design, programming languages, and compilation for
parallel high-performance systems. The areas of interest range from microprocessors to
large-scale parallel machines (including multi-/many-core, possibly heterogeneous,
architectures); from general-purpose to specialized hardware platforms (e.g., graphic
coprocessors, low-power embedded systems); and from architecture design to compiler
technology and programming language design.

On the compilation side, topics of interest include programmer productivity issues,
concurrent and/or sequential language aspects, vectorization, program analysis, pro-
gram transformation, automatic discovery and/or management of parallelism at all
levels, autotuning and feedback directed compilation, and the interaction between the
compiler and the system at large. On the architecture side, the scope spans system
architectures, processor micro-architecture, memory hierarchy, multi-threading, archi-
tectural support for parallelism, and the impact of emerging hardware technologies.

This year the topic received 11 submissions, covering a wide range of topics
ranging from hardware designs over compilation techniques to programming models.
The five topic co-chairs solicited at least four experts in the respective fields to review
each paper. A lively online discussion followed the reviewing phase, during which the
various co-chairs frequently solicited additional input from the expert reviewers. Based
on the online discussions, 3 papers were proposed for acceptance, which were ulti-
mately confirmed during the final selection meeting held in Turin.

Topic 5: Parallel and Distributed Data
Management and Analytics

K. Selcuk Candan, Ruggero Pensa, Lei Chen,
Gianmarco De Francisci Morales, and Ming Zhao

Many areas of science, industry, and commerce are producing extreme-scale data that
must be processed — stored, managed, analyzed — in order to extract useful knowledge.
This topic seeks papers in all aspects of distributed and parallel data management and
data analysis. For example, HPC in situ data analytics, cloud and grid data-intensive
processing, parallel storage systems, IoT data management and analytics, and scalable
data processing workflows are all in the scope of this topic. Privacy and trust issues in
parallel and distributed data management and analytics systems are also aspects of
interest for this conference topic.

Seven full-length papers were submitted to this topic, and each paper received at
least four reviews, mostly performed by track chairs. After discussion with the
reviewers and track chairs, two papers were selected for publication, one related to the
minimization of network traffic for distributed joins, the second one to
privacy-preserving top-k query processing in distributed systems.

Topic 6: Cluster and Cloud Computing

Ivona Brandi¢, Domenico Talia, Toni Mastelic, Raffacle Montella,
Anne-Cécile Orgerie, Thomas Renner, and Rafael Brundo Uriarte

Cloud Computing evolved from Cluster Computing and Grid Computing as a new
parallel and scalable architecture. Cloud Computing is a paradigm and a technology
that today is largely used. Together with Grid and Cluster computing, Cloud Com-
puting is a reality with many providers around the world. The use of massive storage
and computing resources accessible remotely in a seamless way has become essential
for many applications in various areas, in all these cases Clusters, Grids and Clouds are
useful tools.

Beyond the scene, most of Cloud Computing solutions rely on federations of
large-scale clusters where well-known but still unsolved challenges related to perfor-
mance, reliability and energy efficiency of the infrastructures should be addressed by
research. Moreover, Cloud Computing emphasized the importance of fundamental
capabilities and services that are required to achieve the goal of user-friendly, security
and service guarantees. Our community should also investigate these aspects.

Finally, there are important trends as going from large centralized infrastructures to
smaller ones massively distributed at the edge of the network, and also to execute High
Performance Computing applications on Clouds. The first referred as “fog/edge”
computing, such a dawning paradigm is attracting growing interests as it brings
computing resources closer to end-users, tackling the network overhead issues that
prevent the use of the UC paradigm by latency-aware applications. The second still
needs a large research effort, to allow the use of compute and network intensive
applications without loss of performance on Clouds.

Topic 6 sought papers covering many aspects of Cluster and Cloud Computing
dealing with infrastructure layer challenges, such as performance/energy optimizations,
and security enhancements, as well as cloud-enabled applications, workflow manage-
ment and High Performance Computing on Clouds. This year, 24 papers have been
submitted to Topic 6. There were authors from several countries from all the conti-
nents. Four expert reviewers analyzed each submission. Overall, many specialists were
involved into the reviewing process and, despite the high quality of the submitted
papers, only 8 papers were accepted for publication. We would like to thank all the
authors for their submissions, the PC members and the reviewers for providing us with
constructive and informative reviews, and the Euro-Par 2018 Organizing committee for
all the help that allows us to smoothly take over the whole process.

Topic 7: Distributed Systems and Algorithms

Sonia Ben-Mokhtar, Alberto Montresor, Christof Fetzer,
and Indranil Gupta

Parallel computing is heavily dependent on and interacts with the developments and
challenges concerning distributed systems, such as load balancing, asynchrony, fail-
ures, malicious and selfish behavior, high latencies, network partitions, disconnected
operations and heterogeneity. This track of Euro-Par provides a forum for both theo-
retical and practical research, of interest to both academia and industry, on distributed
computing, distributed algorithms, distributed systems, distributed computing models,
distributed data structures, and parallel processing on distributed systems, in particular
in relation to efficient high performance computing.

This year the track received 10 submissions on various topics of the call and
accepted 3 papers. Each paper had a minimum of four reviews and was discussed
within the track PC meeting. A subset of papers was then proposed to the PC chairs for
final discussions and decisions.

The track chairs would like to warmly thank the track members Indranil Gupta
(University of Illinois Urbana-Champaign, USA) and Christof Fetzer (TU Dresden,
Germany) for their work as well as the 12 external reviewers that greatly helped in the
reviewing process.

Topic 8: Parallel and Distributed
Programming, Interfaces, and Languages

J. Daniel Garcia, Patrizio Dazzi, Bryce Adelstein-Lelbach,
Marcelo Pasin, Mitsuhisa Sato, Paolo Trunfio, and Chan-Hyun Youn

Parallel and distributed applications requires adequate programming abstractions and
models, efficient design tools, parallelization techniques and practices. This topic was
open for submissions of new results and practical experience in this domain: Efficient
and effective parallel languages, interfaces, libraries and frameworks, as well as solid
practical and experimental validation.

The topic emphasizes research on high-performance, correct, portable, and scalable
parallel programs via adequate parallel and distributed programming model, interface
and language support. Contributions that assess programming abstractions, models and
methods for usability, performance prediction, scalability, self-adaptation, rapid pro-
totyping and fault-tolerance, as needed, for instance, in dynamic heterogeneous parallel
and distributed infrastructures, were welcome.

We received nineteen submissions on this topic that went through four independent
reviews. Those reviews where further discussed among the PC members. As a result
eight paper were accepted.

We would like to express our gratitude to all author for submitting their work. We
received very good submissions and the selection of accepted paper was quite hard. We
also would like to thank all the reviewers for their detailed reviews and their partici-
pation in discussions following the reviews. Finally we would like to also thank the
organizing and steering committees for all their help, support and hard work.

Topic 9: Multicore and Manycore Methods
and Tools

Christoph Kessler, Marco Danelutto, Rudolf Eigenmann,
Arturo Gonzalez Escribano, Kevin Hammond, Jesper L. Triff,
and Ana L. Varbanescu

Modern homogeneous and heterogeneous multi-core and many-core architectures are
now part of the high-end, embedded, and mainstream computing scene and can offer
impressive performance for many applications. This architecture trend has been driven
by the need to reduce power consumption, increase processor utilization, and deal with
the memory-processor speed gap. However, the complexity of these new architectures
has created several programming challenges, and achieving performance on these
systems is often a difficult task. This topic seeks to explore productive programming of
multi- and many-core systems, as well as stand-alone systems with large numbers of
cores like GPUs and various types of accelerators. This can also include hybrid and
heterogeneous systems with different types of multi-core processors. It focuses on
novel research and solutions in the form of programming models, algorithms, lan-
guages, compilers, libraries, runtime and analysis tools to increase the programmability
of multi-core, many-core, and heterogeneous systems, in the context of
general-purpose, high-performance, and embedded parallel computing. It also covers
issues such as lock-free algorithms and data structures, transactional memory, static and
dynamic analysis and optimization techniques and tools, performance and power
trade-offs, scalability aspects, and hardware support for programming models and
runtime systems.

This year, 25 papers discussing some of these issues were submitted to this topic.
Each paper was reviewed by four reviewers. Eventually, 6 regular papers were selected.

The accepted papers discuss the following issues: load balancing for parallel graph
traversal algorithms on GPUs, energy-efficient stencil computations on clustered
many-core processors, optimizing the thread placement for overlapping MPI-3
non-blocking collective communication operations on many-core processors, a
lock-free cache-trie data structure, improving performance of multi-program workloads
by cache-criticality aware last-level cache partitioning, and NUMA optimizations for
algorithmic skeletons.

The topic chairs wish to thank all authors contributing their work to the topic, the
PC members and the additional reviewers for their highly useful comments, as well as
the Euro-Par Organizing Committee for creating a smooth process.

Topic 10: Theory and Algorithms for Parallel
Computation and Networking

Christos Zaroliagis, Tiziano De Matteis, Leszek Gasieniec,
Ulrich Meyer, and Henning Meyerhenke

Parallel computing is everywhere, on smartphones, laptops; at online shopping sites,
universities, computing centres; behind the search engines. Efficiency and productivity
at these scales and contexts are only possible by scalable parallel algorithms using
efficient communication schemes, routing and networks. Theoretical tools enabling
scalability, modelling and understanding parallel algorithms, and data structures for
exploiting parallelism are more important than ever. Topic 10 solicits high quality,
original papers on the general topic of theory and algorithms for parallel computation
including communication and network algorithms.

Topic 10 received 9 submissions, all of which received 4 reviews. The papers and
their reviews were discussed extensively, and 3 submissions were eventually accepted.
We thank all authors for their valuable contributions, as well as the PC Committee
members and external reviewers for investing their time in reviewing the papers, for
providing constructive feedback and sharing their expertise, and for keeping the high
scientific level of the Euro-Par conference.

Topic 11: Parallel Numerical Methods
and Applications

Elisabeth Larsson, Pasqua D’Ambra, Aneta Karaivanova,
Angeles Martinez Calomardo, and Ulrike Meier Yang

The need for high performance computing is driven by the need for predictive simu-
lations in science and engineering, as well as in areas such as finance, life sciences, and
humanities, where computational needs have more recently been increasing. This
requires the development of highly scalable numerical methods and algorithms that are
able to efficiently exploit modern, and in general heterogeneous, computer architec-
tures. Another need that is currently arising with the increasing size of computer
systems is fault tolerance, which puts additional demands on algorithms, run-time
systems, and tools such as MPL

This conference topic aims at providing a forum for presenting and discussing
recent developments in parallel numerical algorithms and their implementation on
current parallel architectures, including many-core and hybrid architectures. We
encouraged submissions addressing algorithmic design, implementation details, per-
formance analysis, as well as integration of parallel numerical methods in large-scale
science and engineering applications.

The program committee for this topic consisted of five women with different
specializations in high-performance parallel computing for numerical applications. We
received 17 submissions on a broad variety of topics. Fourty-one additional experts
were involved in the review process. Each submission received at least four reviews.
After the paper selection meeting at the University of Turin, four high quality papers
were accepted for presentation at EuroPar 2018. The topics of the papers cover
application areas in plasma physics, quantum physics, seismic wave propagation, and
matrix factorizations. Algorithmic aspects of the Particle-in-cell method and Cholesky
factorization for dense matrices with compressed blocks are considered. Implementa-
tions are performed using task based parallel programming models as well as explicit
programming models using MPI+threads.

We thank all the authors for their contributions, the reviewers for their careful
reading of the papers, and the organizing committee members for their smooth oper-
ation of the whole process.

Topic 12: Accelerator Computing
for Advanced Applications

Angeles Navarro, Maurizio Drocco, Raphael de Camargo, Jaejin Lee,
and Jose Luis Nunez-Yanez

The need for high-performance computing is constantly growing in all kind of sce-
narios, from high-end scientific applications, to consumer electronics software. Hard-
ware manufactures are involved in a race to develop specialized hardware to cover
these critical demands.

Nowadays, hardware accelerators of various kinds offer a potential for achieving
massive performance in applications that can leverage their high degree of parallelism
and customization. Examples include graphics processors (GPUs), manycore copro-
cessors, as well as more customizable devices, such as FPGA-based systems, and
streaming data-flow architectures. The research challenge for this topic is to explore
new directions for actually realizing this potential. Significant advances in all areas
related to accelerators are considered with special focus on architectures, algorithms,
languages, compilers, libraries, runtime systems, coordination of accelerators and CPU,
debugging and profiling tools, as well as application-related contributions that provide
new insights into fundamental problems or solution approaches in this domain.

The program committee of this topic was formed by five members of different
backgrounds and specializations in the accelerators field, with the collaboration of
several other sub-reviewers. We received 11 contributions from researchers in many
different countries. After the review process and the general PC meeting, three
high-quality papers were selected for presentation in Euro-Par 2018 at Turin. They are
focused on important hot-topics: exploiting the GPUs potential towards advanced
hierarchical matrix computations in large-scale sparse applications, proposing runtime
systems for dynamically adapting the state on heterogeneous systems to enhance its
energy efficiency, or introducing stream processing frameworks that enable easily
programmable and high-performance computations on hybrid CPU/Xeon Phi systems.

The committee members want to thank all the authors that submitted their work to
this track, the reviewers for their timely and constructive comments, and the organi-
zation committee for the efforts to easy our task, and to provide a nice conference
environment in Turin for a high-quality discussion of research results in this emerging
topic.

Contents

Support Tools and Environments

Automatic Detection of Synchronization Errors in Codes that
Target the Open Community Runtime 3
Jiri Dokulil and Jana Katreniakova

A Methodology for Performance Analysis of Applications

Using Multi-layer /O 16
Ronny Tschiiter, Christian Herold, Bert Wesarg,
and Matthias Weber

Runtime Determinacy Race Detection for OpenMP Tasks 31
Hassan Salehe Matar and Didem Unat

Estimating the Impact of External Interference on
Application Performance 46
Aamer Shah, Matthias Miiller, and Felix Wolf

GT-Race: Graph Traversal Based Data Race Detection for Asynchronous
Many-Task Parallelism 59
Lechen Yu and Vivek Sarkar

Performance and Power Modeling, Prediction and Evaluation

Reducing GPU Register File Energy 77
Vishwesh Jatala, Jayvant Anantpur, and Amey Karkare

Taxonomist: Application Detection Through Rich Monitoring Data. 92
Emre Ates, Ozan Tuncer, Ata Turk, Vitus J. Leung, Jim Brandt,
Manuel Egele, and Ayse K. Coskun

Diagnosing Highly-Parallel OpenMP Programs with Aggregated
Grain Graphs e 106
Nico Reissmann and Ananya Muddukrishna

Characterization of Smartphone Governor Strategies 120
Sarbartha Banerjee and Lizy Kurian John

HPC Benchmarking: Scaling Right and Looking Beyond the Average. 135
Milan Radulovic, Kazi Asifuzzaman, Paul Carpenter,
Petar Radojkovi¢, and Eduard Ayguadé

XL Contents

Combined Vertical and Horizontal Autoscaling Through Model
Predictive Control e 147
Emilio Incerto, Mirco Tribastone, and Catia Trubiani

Scheduling and Load Balancing

Early Termination of Failed HPC Jobs Through Machine

and Deep Learning 163
Michat Zasadzinski, Victor Muntés-Mulero, Marc Solé,
David Carrera, and Thomas Ludwig

Peacock: Probe-Based Scheduling of Jobs by Rotating Between
Elastic QUeues e 178
Mansour Khelghatdoust and Vincent Gramoli

Online Scheduling of Task Graphs on Hybrid Platforms 192
Louis-Claude Canon, Loris Marchal, Bertrand Simon,
and Frédeéric Vivien

Interference-Aware Scheduling Using Geometric Constraints 205
Raphaél Bleuse, Konstantinos Dogeas, Giorgio Lucarelli,
Greégory Mounié, and Denis Trystram

Resource-Efficient Execution of Conditional Parallel Real-Time Tasks. 218
Sanjoy Baruah

High Performance Architectures and Compilers

Improving GPU Cache Hierarchy Performance with a Fetch

and Replacement Cache. 235
Francisco Candel, Salvador Petit, Alejandro Valero,
and Julio Sahuquillo

Abelian: A Compiler for Graph Analytics on Distributed,

Heterogeneous Platforms 249
Gurbinder Gill, Roshan Dathathri, Loc Hoang, Andrew Lenharth,
and Keshav Pingali

Using Dynamic Compilation to Achieve Ninja Performance for CNN
Training on Many-Core Processors 265
Ankush Mandal, Rajkishore Barik, and Vivek Sarkar

Parallel and Distributed Data Management and Analytics

Privacy-Preserving Top-k Query Processing in Distributed Systems. 281
Sakina Mahboubi, Reza Akbarinia, and Patrick Valduriez

Contents XLI

Minimizing Network Traffic for Distributed Joins Using Lightweight
Locality-Aware Scheduling., 293
Long Cheng, John Murphy, Qingzhi Liu, Chunliang Hao,
and Georgios Theodoropoulos

Cluster and Cloud Computing

VIoLET: A Large-Scale Virtual Environment for Internet of Things 309
Shreyas Badiger, Shrey Baheti, and Yogesh Simmhan

Adaptive Bandwidth-Efficient Recovery Techniques in Erasure-Coded

Cloud Storage. oo vttt e 325
Rekha Nachiappan, Bahman Javadi, Rodrigo N. Calheiros,
and Kenan M. Matawie

IT Optimization for Datacenters Under Renewable Power Constraint. 339
Stephane Caux, Paul Renaud-Goud, Gustavo Rostirolla,
and Patricia Stolf

GPU Provisioning: The 80 —20Rule 352
Eleni Kanellou, Nikolaos Chrysos, Stelios Mavridis, Yannis Sfakianakis,
and Angelos Bilas

ECSched: Efficient Container Scheduling on Heterogeneous Clusters. 365
Yang Hu, Huan Zhou, Cees de Laat, and Zhiming Zhao

Combinatorial Auction Algorithm Selection for Cloud Resource Allocation
Using Machine Learning 378
Diana Gudu, Marcus Hardt, and Achim Streit

Cloud Federation Formation in Oligopolistic Markets 392
Yash Khandelwal, Karthik Ganti, Suresh Purini,
and Puduru V. Reddy

Improving Cloud Simulation Using the Monte-Carlo Method 404
Luke Bertot, Stéphane Genaud, and Julien Gossa

Distributed Systems and Algorithms

Nobody Cares if You Liked Star Wars: KNN Graph Construction
onthe Cheap i e 419
Anne-Marie Kermarrec, Olivier Ruas, and Francois Taiani

One-Sided Communications for More Efficient Parallel State Space
Exploration over RDMA Clusterst 432
Camille Coti, Sami Evangelista, and Laure Petrucci

XLII Contents

Robust Decentralized Mean Estimation with Limited Communication 447
Gabor Danner and Mark Jelasity

Parallel and Distributed Programming, Interfaces, and Languages

Snapshot-Based Synchronization: A Fast Replacement
for Hand-over-Hand Locking 465
Eran Gilad, Trevor Brown, Mark Oskin, and Yoav Etsion

Measuring Multithreaded Message Matching Misery 480
Whit Schonbein, Matthew G. F. Dosanjh, Ryan E. Grant,
and Patrick G. Bridges

Global-Local View: Scalable Consistency for Concurrent Data Types 492
Deepthi Akkoorath, José Branddo, Annette Bieniusa,
and Carlos Baquero

OpenABL: A Domain-Specific Language for Parallel and Distributed

Agent-Based Simulations 505
Biagio Cosenza, Nikita Popov, Ben Juurlink, Paul Richmond,
Mozhgan Kabiri Chimeh, Carmine Spagnuolo, Gennaro Cordasco,
and Vittorio Scarano

Bulk: A Modern C++ Interface for Bulk-Synchronous Parallel Programs 519
Jan-Willem Buurlage, Tom Bannink, and Rob H. Bisseling

SharP Unified Memory Allocator: An Intent-Based Memory

Allocator for Extreme-Scale Systems. 533
Ferrol Aderholdt, Manjunath Gorentla Venkata,
and Zachary W. Parchman

Multi-granularity Locking in Hierarchies with Synergistic Hierarchical
and Fine-Grained Locks. 546
K. Ganesh, Saurabh Kalikar, and Rupesh Nasre

Efficient Communication/Computation Overlap with MPI+OpenMP

Runtimes Collaboration 560
Marc Sergent, Mario Dagrada, Patrick Carribault, Julien Jaeger,
Marc Pérache, and Guillaume Papauré

Multicore and Manycore Methods and Tools

Efficient Lock-Free Removing and Compaction for the Cache-Trie
Data Structure. o e 575
Aleksandar Prokopec

NUMA Optimizations for Algorithmic Skeletons. 590
Paul Metzger, Murray Cole, and Christian Fensch

Improving System Turnaround Time with Intel CAT by Identifying LLC

Critical Applicationsot e 603
Lucia Pons, Vicent Selfa, Julio Sahuquillo, Salvador Petit,
and Julio Pons

Dynamic Placement of Progress Thread for Overlapping MPI Non-blocking
Collectives on Manycore Processor. 616
Alexandre Denis, Julien Jaeger, Emmanuel Jeannot, Marc Pérache,
and Hugo Taboada

Efficient Load Balancing Techniques for Graph Traversal Applications
on GPUs 628
Federico Busato and Nicola Bombieri

Energy Efficient Stencil Computations on the Low-Power Manycore

MPPA-256 Processor. e 642
Emmanuel Podesta Jr., Bruno Marques do Nascimento,
and Marcio Castro

Theory and Algorithms for Parallel Computation and Networking

High-Quality Shared-Memory Graph Partitioning 659
Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz

Design Principles for Sparse Matrix Multiplication on the GPU 672
Carl Yang, Aydin Bulug, and John D. Owens

Distributed Graph Clustering Using Modularity and Map Equation 688
Michael Hamann, Ben Strasser, Dorothea Wagner, and Tim Zeitz

Improved Distributed Algorithm for Graph Truss Decomposition 703
Venkatesan T. Chakaravarthy, Aashish Goyal, Prakash Murali,
Shivmaran S. Pandian, and Yogish Sabharwal

Parallel Numerical Methods and Applications

Exploiting Data Sparsity for Large-Scale Matrix Computations. 721
Kadir Akbudak, Hatem Ltaief, Aleksandr Mikhalev, Ali Charara,
Aniello Esposito, and David Keyes

Hybrid Parallelization and Performance Optimization of the FLEUR Code:

New Possibilities for All-Electron Density Functional Theory. 735
Uliana Alekseeva, Gregor Michalicek, Daniel Wortmann,
and Stefan Bliigel

XLIV Contents

Efficient Strict-Binning Particle-in-Cell Algorithm for Multi-core

SIMD Processorst e 749
Yann Barsamian, Arthur Charguéraud, Sever A. Hirstoaga,
and Michel Mehrenberger

Task-Based Programming on Emerging Parallel Architectures

for Finite-Differences Seismic Numerical Kernel. 764
Salli Moustafa, Wilfried Kirschenmann, Fabrice Dupros,
and Hideo Aochi

Accelerator Computing for Advanced Applications

CEML: a Coordinated Runtime System for Efficient Machine

Learning on Heterogeneous Computing Systems. 781
Jihoon Hyun, Jinsu Park, Kyu Yeun Kim, Seongdae Yu,
and Woongki Baek

Stream Processing on Hybrid CPU/Intel® Xeon Phi"™" Systems 796
Paulo Ferrdo, Heélder Marques, and Hervé Paulino

Tile Low-Rank GEMM Using Batched Operations on GPUs 811
Ali Charara, David Keyes, and Hatem Ltaief

Correction to: Early Termination of Failed HPC Jobs Through Machine

and Deep Learning e El
Michal Zasadzinski, Victor Muntés-Mulero, Marc Solé, David Carrera,
and Thomas Ludwig

Author Index e 827

Support Tools and Environments

®

Check for
updates

Automatic Detection of Synchronization
Errors in Codes that Target the Open
Community Runtime

Jiri Dokulil!®™) and Jana Katreniakova?

L Faculty of Computer Science, University of Vienna, Vienna, Austria
jiri.dokulil@univie.ac.at
2 Comenius University, Bratislava, Slovakia
katreniakova@dcs.fmph.uniba.sk

Abstract. The complexity of writing and debugging parallel programs
makes tools that can support this effort very important. In the case of
the Open Community Runtime, one major problem is ensuring that the
program manages runtime objects correctly. For example, when one task
uses an object and another task is responsible for deleting the object, the
tasks need to be synchronized to ensure that the object is only destroyed
once it is no longer being used. In this paper, we present a tool which
observes program execution and analyzes it in order to find cases where
the required synchronization is missing.

1 Introduction

Task-based runtime systems, including StarPU [1], HPX [7], UPC++ [15], or
PaRSEC [2] have received a lot of interest given the increased complexity, per-
formance variability, and heterogeneity of emerging architectures. The Open
Community Runtime (OCR, [9]) is a recent specification [10] for an event-driven
task-based runtime system developed within the US XStack targeting next gen-
eration extreme scale architectures. The basic idea of OCR is to use tasks to
decouple computation from compute units and data blocks to decouple appli-
cation data from specific memory. Synchronization is also abstracted by depen-
dences among tasks. Events can be used to build more complex dependence
patterns. The responsibility for work scheduling and data placement is moved
to the runtime. The application issues tasks to the runtime, along with their
dependences. The runtime examines this task graph (which should be a DAG)
and decides when and where to execute the tasks.

Writing parallel programs is a difficult task [8]. This is especially true when
writing programs directly at the level of a task-based runtime system like OCR.
When the work is split into tasks, which are scheduled and executed by the
runtime, the global execution-time context normally available as the stack trace
is lost. Debuggers are not able to map a running task to the place where it was
created, like they do with a function and the corresponding call site. This makes
debugging task-based applications tricky. Tools that can support the developers’
effort to write and debug such programs are therefore important.

© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 3-15, 2018.
https://doi.org/10.1007/978-3-319-96983-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_1&domain=pdf

4 J. Dokulil and J. Katreniakova

To support our research on OCR [3-5], we created a single-threaded imple-
mentation of OCR, called OCR-~V1, which can be used to aid the development of
new OCR applications'. When an application is run with OCR-V1, the runtime
checks that the OCR API is used correctly by the application, for example by
testing that data blocks are not used after being released or destroyed. Many
problems can be discovered this way, but because OCR-V1 uses a determin-
istic serial task schedule, its ability to detect synchronization errors is limited.
Therefore, we have also extended OCR-V1 to collect execution traces, which can
be analyzed to find synchronization errors. An unmodified OCR, application is
compiled and linked with the modified OCR-V1 runtime. When executed, the
application generates an execution trace, which is then analyzed by a new tool
that we developed to find errors. Due to the way synchronization is done in OCR,
it is sufficient to use the instrumented runtime and the unmodified application.

Based on the OCR specification, we have defined a set of rules that a correct
OCR application must follow. We detect errors by looking for violations of these
rules. The rules (and errors) share one basic principle. Some operations on OCR
objects (performed by the application via OCR, API calls) need to happen in a
certain order. For example, any object must not be used before it is created and
it may not be used after it is destroyed. So, if one task accesses a data block
and another task destroys the data block, the application must ensure that the
access done by the first task happens before the delete operation in the second
task. Dependences among the tasks have to be set up in such a way that there is
causal relation (happens-before) among the operations. Our trace analyzer finds
and reports instances where the synchronization is missing.

Existing tools like Valgrind/Helgrind [12] may not be able to detect these
errors, as synchronization that is done internally by the runtime (for example,
to ensure atomicity of concurrent operations) may appear as sufficient on the
low level where Helgrind works. Naturally, we can only detect errors in the way
the program interacts with the OCR runtime system, not application errors. If
the desired algorithm is implemented incorrectly, but properly synchronized, no
errors will be detected.

Our main contributions are: (1) the error-checking OCR-V1 runtime, which
also generates execution traces of OCR programs; (2) definition of rules that a
correct OCR application has to observe when dealing with OCR runtime objects;
(3) trace analyzer, which finds violations of the rules in execution traces; (4)
during our work, we have identified one problem where the OCR specification
does not sufficiently specify how certain tasks should be synchronized.

The rest of the paper is organized as follows. First, related work is discussed
in Sect. 2. In Sect. 3, we briefly describe key OCR concepts and explain how OCR
programs are synchronized. Section4 explains how we analyze OCR programs
and find problems in them. Section5 provides concrete examples of programs
and the detected errors. The final section concludes the paper and discusses
future work.

! OCR-V1 is available at: http://www.univie.ac.at/ocr-vx/.

http://www.univie.ac.at/ocr-vx/

Automatic Detection of Synchronization Errors 5

2 Related Work

There are existing tools that try to find errors in parallel programs. One type are
tools that observe execution of the parallel program and check for various error
conditions. Probably the best know example is Valgrind [12], which is mostly
used to look for incorrect use of memory, but it also includes two modules that
detect threading errors (Helgrind and DRD). Clang ThreadSanitizer performs
similar function. Intel Inspector is an example of a similar commercial tool.

There are also tools which use static code analysis. For example, there are
tools like FindBugs that analyze either source or bytecode of Java and try to
find concurrency problems [13].

Another option is too look at the way operations are ordered in threads.
The rr tool saves program execution and allows it to be deterministically
replayed. This solves at least two problems: concurrency problems are often
non-deterministic (two subsequent executions of the same program on the same
data may not encounter the same failure) and running the parallel program in
the debugger changes timing, potentially preventing the problem from occurring
at all. An alternative approach is taken by CHESS [11] and Maple [14], which
influence the execution of a multi-threaded program in order to systematically
explore possible thread schedules.

The architecture of our system is similar to the first category (e.g., Valgrind
and its modules), where the parallel execution of the program is analyzed and
the analyzer looks for known error “patterns”. One pattern that Helgind, DRD,
and ThreadSanitizer check are data races where access to a shared variable
from multiple threads is not properly synchronized — they check the presence of
the happens-before relation among the operations. Our solution uses a similar
approach, but as data in OCR is handled differently from plain C/C++ and data
races are generally not an issue, we focus on the correct use of OCR objects. But
the basic principle is the same: observe the behavior of the program and then
check that concurrent operations have been properly synchronized.

Our approach could be also applied to similar programming models. The key
requirement for such model is that synchronization is done on the task level
using dependences. Examples of such models are OpenCL (kernels correspond
to tasks), CUDA (with multiple streams and events), and StarPU. In TBB and
UPC++, where fine-grained synchronization (locks, atomic operations, ...) can
be used in tasks or if there can be malicious data races caused by individual read
and write operations, Valgrind and ThreadSanitizer are better starting points.

It would also be possible to apply those fine-grained techniques to data
accesses made by OCR tasks. Although data in OCR is stored in data blocks
which are acquired and released as whole, there are two different pairs of access
modes that can be used. The first pair are the constant and exclusive-write
access modes, where the runtime is responsible for ensuring that all data access
is consistent (there are no data races). The second pair are read-only and read-
write access modes, which permit data races (both read-write and write-write).
We do not consider these. There is however ongoing work done at Georgia Tech,
attempting to also find such data races.

6 J. Dokulil and J. Katreniakova

3 OCR and Synchronization

In OCR, all work (all application code) should run inside tasks, which are sched-
uled by the runtime. Similarly, all application data is stored in data blocks, which
are relocatable blocks of data also managed by the runtime. The tasks are non-
blocking, which means that once a task starts, it is expected to run to completion
without waiting for any other work to be done. The only way tasks can synchro-
nize is using dependences with the help of events. The application defines what
the dependences are, but they are evaluated by the runtime, which figures out
when a task is ready to start.

3.1 Event Driven Synchronization

Events are used to synchronize tasks in OCR, hence the name used for tasks in
OCR — Event Driven Tasks (EDTs). Events and tasks in OCR can be connected
using dependences. Tasks and events have slots that can be used as sources
(post-slots) and destinations (pre-slots) of a dependence. A task has to wait for
all of its pre-slots to be satisfied before it can start. Slots can either be satisfied
directly using an OCR API call or they are satisfied automatically when they
are connected to a post-slot of an event and the event itself is satisfied.

There are different types of events that have different rules that determine
when the event is satisfied. The simplest one, the once event, gets satisfied as
soon as its single pre-slot is satisfied. In other words, it directly propagates the
satisfaction signal. We also say that the event has been triggered to distinguish
satisfaction of the event from satisfaction of its pre-slot. Another interesting
type of event is the latch event. It has two pre-slots and maintains an internal
counter. The counter is incremented when the first of the two slots gets satisfied
and decremented when the second slot gets satisfied. When the counter reaches
zero, the event itself is satisfied and forwards the satisfaction signal — satisfies all
pre-slots that are connected to its post-slot. Another important kind of events
are output events. These are not a specific type of event (they are in fact once
or latch events), but events used in a specific situation. For every task, there is
a matching output event, which is satisfied after the task finishes.

3.2 State of OCR Objects

We have already introduced three types of OCR objects: tasks, events, and data
blocks. All OCR objects carry some state. For example, a latch event needs
to store the value of its counter. A data block needs to know the size of the
corresponding buffer and it may also track which tasks have acquired it. However,
the actual data stored in a data block is not considered to belong to the state of
the data block object. The data plays a special role in the OCR specification and
cannot be modified by OCR API calls, but only directly by reading and writing
memory via a pointer. Note that dependences are generally not considered to be
OCR objects. Therefore, adding a dependence is considered to be a change of
state of the two connected objects (event and task/event).

Automatic Detection of Synchronization Errors 7

3.3 The happens-before Relation

Events and dependences are used to define the happens-before relation among
the operations performed inside tasks. If operation A happens-before operation
B, it means that they are synchronized in a way that ensures that operation B
sees the results of operation A. A simple example is when an output event of a
task is used as a source of a dependence connected to a second task. In that case,
the satisfaction of the event happens after the first task finishes and the second
task can only start after the event is satisfied. Therefore, all operations done by
the first task happen-before all operations done by the second task. The OCR
memory model guarantees that all changes made by the first task are visible in
the second task. This is true not only for changes to the application data (in
data blocks), but also to state changes of runtime objects. For example, a newly
created event is valid in the second task. Also, if the counter of a latch event is
incremented from 0 to 2 by the first task and the second task decrements it, it is
a valid operation which changes the value from 2 to 1. If the second task was not
synchronized after the first task, it could run in parallel and try to decrement
the counter while it is still zero, which is illegal.

There are only two types of operations that may change the state of OCR
objects. First, the OCR, API calls made inside the tasks (e.g., ocrDbCreate cre-
ates a new data block). Second, the runtime may modify the state automatically.
For example, after a task finishes, the associated output event is satisfied. This
also causes tasks and events connected (via dependences) to this event’s post-
slot to be also satisfied. Additionally, the finished task and its output event are
automatically destroyed by the runtime. The only exception are data blocks,
whose data is modified by memory reads and writes done inside tasks. But the
state of the data block object itself (the size of the buffer, etc.) is still managed
purely by OCR API calls. Because we only focus on the state of the OCR objects
and not the application data and since all synchronization has to be done using
OCR objects (tasks, events, and dependences), we only need to observe OCR
API calls being made by the application and implicit operations done by the
runtime. Since the runtime processes all the OCR, API calls, we only need to
instrument the runtime to collect the relevant data, not the application itself.

Consider the following example in OCR pseudo-code:

running tasks: ti

available tasks: t2

events: el, e2

t1 {
ocrAddDependence (NULL,t2); //allow t2 to start
ocrAddDependence (el,e2);//set up dependence el->e2

}
t2 {

ocrEventSatisfy(el); //satisfy event el
}

Here, t2 has only one pre-slot, so when t1 sets up a dependence from a NULL
object to the pre-slot, it effectively satisfies, allowing t2 to start. Then, t1 goes

8 J. Dokulil and J. Katreniakova

on to set up a dependence between events el and e2. For correct execution,
the dependence should be set up before el is satisfied. Most of the time, the
runtime will manage to set up the dependence before t2 starts and satisfies
el, resulting in correct execution. However, it’s also possible that after t2 is
allowed to start, t1 gets suspended. This could for example be due to the OS
scheduler suspending the thread. So, t2 starts and satisfies el. There is not yet
a dependence connecting el and e2, therefore e2 is not satisfied and el gets
destroyed. Then, t1 resumes and tries to add a dependence from the destroyed
el, resulting in an undefined behavior (e.g., a crash). There is a race condition
among the two operations on the event. The error may be very hard to reproduce,
especially if t2 performs other work before satisfying el. Although OCR-V1
attempts to detect application errors, this error would never be detected, because
t1 would always finish before t2 can start due to the sequential task execution.
Using happens-before, we can clearly see the problem. To make sure that
the dependence is set up in time, we need ocrAddDependence(el,e2) happens-
before ocrEventSatisfy(el). This is not the case here, only these hold:
ocrAddDependence (NULL,t2) happens-before ocrAddDependence(el,e2) and
ocrAddDependence (NULL, t2) happens-before ocrEventSatisfy(el).

4 Automatic Checking of OCR Programs

Our approach for checking of OCR programs is based on a OCR-V1, a single-
threaded implementation of OCR. OCR-V1 was specifically designed to help
debugging by exposing errors through explicit checks (using the standard C
asserts). There are almost 100 checks like this in OCR-V1. Although they
are very useful, these checks are only one of two parts of our system, which is
complemented by the tracing functionality of OCR-V1 and the trace analyzer.

4.1 OCR Application Tracing and Trace Analyzer

As we have already shown with the example in the previous section, there are
errors that cannot be detected by OCR-V1, since they only manifest when mul-
tiple tasks are executed concurrently. To cover these cases, we have extended
OCR-V1 to export the list of operations (OCR API calls and implicit operations)
performed by the OCR program. Only the operations relevant to synchroniza-
tion are exported. Furthermore, OCR-V1 exports a subset of the happens-before
graph that connects the operations. As the happens-before relation is transitive,
we don’t need to export the full graph, but only edges that are sufficient to con-
struct it by transitive closure. The trace is loaded by the trace analyzer, which
builds the full happens-before relation by performing a transitive closure. Then,
it iterates through all OCR objects and checks that they are used correctly (the
actual rules to check are described in Sect.4.3). Rule violations are reported,
along with the relevant context, like the file name and the line number of the
location where the API call that violated the rule was made.

Automatic Detection of Synchronization Errors 9

4.2 The happens-before Graph

To make checking the rules easier, the graph exported from OCR-V1 is not
directly the graph of OCR API calls and happens-before relations among them.
We modify the graph by introducing additional nodes and edges. For every
operation performed by a task (cause node), there is also another node (effect)
where the changed mandated by the operation is applied to the affected object.
For example, when an OCR task invokes ocrEventSatisfy(el), the effect is
the actual satisfaction of the event, which can be denoted as el.satisfied().
The happens-before relation is also modified (extended) to ensure that the cause
happens-before the effect, but also that if there is a happens-before relation among
two causes, their effects also have this relation. This is achieved by back edges,
which are edges connecting the effect of a cause to the operation that comes right
after the cause. One cause can have multiple effects, for example connecting
two events by dependence (ocrAddDependence(el,e2)) changes both events
(el.connectPostSlot(e2) and e2.connectPreSlot(el)). This format makes
it easier to check if an event e is being used properly, as it is enough to check
all actions applied to the event — e. *.

Furthermore, helper nodes (virtual operations) are added to objects. For
example, we add e.triggered () to each event, signifying the point in time where
the event is triggered. In the happens-before relation, this operation follows all
satisfactions of the event and precedes satisfaction of all pre-slots connected to
the event’s post-slot. Also, a x.destroyed() node added to all objects that are
automatically destroyed. This further simplifies checking of the rules.

Figure 1 shows an example of a graph of operations and their synchronization.
The visualized graph corresponds to the example in Sect. 3.3.

4.3 Error Detection Rules

A set of rules are applied to the graph by the trace analyzer, in order to
check for errors. We've already shown one example of such rule. For any
once event, any ocrAddDependence call must happens-before satisfaction of
the event. When viewed as by the effects of the operations, we require that
e.connectPostSlot (x) happens-before e.satisfy (). The full list of rules is as
follows:

1. Any use of an object must be (as per happens-before) between its creation
and its destruction.

2. All dependences that start with a post-slot of a once or latch event have to

be set up before the event is satisfied.

A once event can only be satisfied once.

ocrShutdown should be called from a task that comes after all other tasks.

5. Any valid (per happens-before) order of increments and decrements of a latch
event must be correct — it must start with an increment, only reach zero once,
and only reach zero at the end.

-

10 J. Dokulil and J. Katreniakova

tl

satisfyPreSlot(t2,NULL) |-

satisfied(NULL)

el . VeZ

addDependence(el,e2)

-‘ connectPostSlot(e2) l l connectPreSlot(el) l

e

enezel
destroyed()

satisfy(el)

ended()
destroyed()

satisfied()

triggered()

destroyed()

satisfy(e2)

destroyed()

Fig. 1. The trace of the example in Sect. 3.3. Operations performed on two tasks (t1
and t2) and two events (el and e2). The black arrows are normal happens-before edges,
the gray arrows are the back edges, which also contribute to happens-before. The red
dotted arrow is the missing happens-before that would ensure that the event is used
correctly. Note that happens-before is formed by transitive closure, so the shown arrows
are only a subset. But even if transitivity is applied, it would not add the missing arrow.
(Color figure online)

The first rule is probably the most important one, as it covers all types of
objects and different possible error scenarios. The last rule, which checks latch
events, is difficult to verify with a large number of increment and decrement
operations, as we need to check all permutations of the operations.

5 Examples

To demonstrate the functionality of our tool, we have tried it on several OCR
applications?. There are not many OCR applications and most of the exist-
ing ones have already been extensively debugged, so only very few errors were
detected. Our tools are more useful when used by the application developer while
the application is still being created, to identify problems as soon as possible.

5.1 Late Dependence Definition

The following code fragment is taken from an OCR tutorial. It is similar to
the example given in Sect.3.3. Two tasks £ill and print are created and the
output event of the £ill task is used as a dependence for print, to make sure
that print runs after £i1l. However, the dependence is added too late, after
the print task is allowed to start. The task may run in parallel and destroy its
output event before the dependence can be set up.

2 https:/ /xstack.exascale-tech.com/git /public?p=apps.git.

https://xstack.exascale-tech.com/git/public?p=apps.git

Automatic Detection of Synchronization Errors 11

//create templates, fill has 1 pre-slot, print has 2
ocrEdtTemplateCreate (&§£fi11TML, £fill, 0, 1);
ocrEdtTemplateCreate (&printTML, print, 0, 2);

//create startEVT - an event which launches the computation
ocrEventCreate (&startEVT, OCR_EVENT_ONCE_T);

//create one instance of fill and print each

ocrEdtCreate (§fil1EDT, fillTML, O, O, 1, NULL, &fillEVT);
ocrEdtCreate (&printEDT, printTML, O, O, 2, NULL, NULL);
//set up startEVT as predecessor of both tasks
ocrAddDependence (startEVT, fillEDT, O, DB_MODE_EW);
ocrAddDependence (startEVT, printEDT, 1, DB_MODE_CONST);
//trigger the computation

ocrEventSatisfy (startEVT, NULL_GUID);

//set up a dependence from the output of fill to print
ocrAddDependence (fillEVT, printEDT, O, DB_DEFAULT_MODE);

The trace analyzer reports the following error message:

ERROR: ONC.EVT may be satisfied before all post-slot are added
Event 18:EVT.ONC-output-of (17:£ill)
satisfied by 73 in epilogue of 17:fill
Missing happens-before from 52 in 10:mainEdt
invoked from ocr\apps\app_lab.cpp:75

The error message tells us that there is a problem with the event with ID 18.
The event is the output event of task 17, which is the £ill task. The event is
satisfied by operation 73, which is one of the operations executed automatically
by the runtime after £ill finished. In the main task (ID 10), the event is used
to perform operation 52, which is at the specified line in the source code. This
happens to be the last line of the example, where ocrAddDependence is called.

5.2 Conflicting Operations in Parallel Tasks

The following program was created specifically to demonstrate our tools. It shows
a scenario where multiple tasks contribute to the error. The code shows the whole
program, except for includes, function argument lists, and some unimportant
arguments in function calls. Besides the mainEdt task, which is the entry point
of any OCR program, there are three other tasks. Tasks taskl and task2 run
in parallel. The mainEdt task creates a data block (called data) and passes it to
both tasks. While taskl only accesses the data block, task2 destroys it. Task
task3 shuts down the runtime after taskl and task2 finish. A task graph for
this example is shown in Fig.2. This figure is generated as a side-effect by the
trace analyzer tool (it generates a DOT file for GraphViz [6]).

void taskl(/*arguments omitted for brevityx*/){
int i = *(int*)depv[0].ptr; //access the data block
}
void task2(/*arguments omitted for brevityx/) {
ocrDbDestroy (depv [0].guid);//line 10 in the actual file

12 J. Dokulil and J. Katreniakova

}
void task3(/*arguments omitted for brevity*/) {
ocrShutdown () ;
}
void mainEdt (/*arguments omitted for brevityx*/) {
ocrGuid_t data,tmll,tml2,tml3,edtl,edt2,edt3,evtl,evt2;
void* ptr;
ocrDbCreate (&data, &ptr, 8);
ocrEdtTemplateCreate (&tmll, taskl, 0, 1);
ocrEdtTemplateCreate (&tml2, task2, 0, 1);
ocrEdtTemplateCreate (&tml3, task3, 0, 2);
ocrEdtCreate (&edt1, tmll, O, O, 1, 0, &evtl);
ocrEdtCreate (&edt2, tml2, 0, O, 1, 0, &evt2);
ocrEdtCreate (&edt3, tml3, 0, 0, 2, 0, 0);
ocrAddDependence (evtl, edt3, O, DB_MODE_NULL);
ocrAddDependence (evt2, edt3, 1, DB_MODE_NULL);
ocrAddDependence (data, edtl, O, DB_MODE_RW);
ocrAddDependence (data, edt2, O, DB_MODE_RW);

}

When the program is executed and analyzed, the following error is reported:

ERROR: operation may be after destruction
data block 13 destroyed by 78 in 19:task2
invoked from ocr\src\src\apps\app_lab.cpp:10
61: acquire in 17:taskl may be after destruction

The error message tells us that when the data block 13 (the data) is acquired
by task 17 (type taskl), it may already have been destroyed by ocrDbDestroy
(line 10 of the actual source code), which is in task 19 (type task2).

Note that the identifiers of tasks and events are their actual IDs used by the
runtime, so when the program was running, the data variable in the main task
actually contained 13, edtl contained 17, etc. However, the identifiers of the
operations, like 61 used for the acquire operation, are only internal identifiers
of OCR-V1 and cannot be accessed from the application code. As is often the

Fig. 2. Tasks and their dependences from the second example. The number is the ID
of the task, the text label is the name of the C function which implements the task.

Automatic Detection of Synchronization Errors 13

case when debugging programs based on logs, the developer therefore needs to
carefully interpret the output to figure out what the operation is. In the case of
78, it is clear from the reference to the source code. To identify operation 61,
one has to realize that the data block data is acquired by taskl automatically
before it starts, so there is no direct counterpart in the code.

5.3 SPMD Application — Synchronization Using Data Blocks

When we tested our tools on existing OCR, applications, it reported a large
number of errors in one of them. The application is an SPMD (single program
multiple data) code which mimics the way MPI programs work®. There are
virtual processes which are assigned numerical ranks and they can exchange data
by send and receive calls using the rank numbers. Internally, the communication
is handled by writing an identifier of the sent data into a so called channel data
block, which is then read by the recipient. As part of the exchange, the sender
creates an event which is satisfied by the recipient when the data is received.
The tool reported that the event is being used but there is no guarantee that
it’s not used before it is created. There is no happens-before relation between the
code that performs the send and the code that handles the received data.

This is not an error inside our tool. The relation really does not exist. The
problem is that if two tasks acquire the same data block in exclusive write mode,
no happens-before is established among them. However, looking from the outside,
it seems it should not be detected as an error. The sender creates the event and
then stores it in the channel data block. If the recipient initiates the receive
operation (and acquires the channel data block) before the channel is updated
by the sender, it does not see the event (it is not there yet), so it does not satisfy
it. If the recipient acquires the channel data block after it has been modified, it
means that the event has already been created and it can be satisfied. Because
both sides acquire the data block in exclusive write mode, the recipient has to
see one of the two consistent states.

On the other hand, it is conceivable to implement OCR so that the recipient
sees the modified data block but the event is not yet valid. The specification [10]
either needs to be updated to require the relation to be established in such cases
or developers need to be very careful and avoid such scenarios.

5.4 Performance

As OCR-V1 was designed with safety and not performance in mind, the extra
overhead introduced by exporting the graph is noticeable but not a game
changer. On a machine equipped with dual core (4 threads) Intel i7-7500U CPU,
a highly tuned native OCR seismic simulation code, which executes 768517 tasks,
takes 105s to complete with OCR-V1. The graph data size is around 3.5 GB.
Without the graph export, it takes 22 s, almost 5x faster. However, on the same

3 https://xstack.exascale-tech.com/git /public?p=apps.git;a=tree;f=apps/libs/src/
spmd.

https://xstack.exascale-tech.com/git/public?p=apps.git;a=tree;f=apps/libs/src/spmd
https://xstack.exascale-tech.com/git/public?p=apps.git;a=tree;f=apps/libs/src/spmd

14 J. Dokulil and J. Katreniakova

machine, a shared-memory OCR implementation takes 2.4 s, improving the per-
formance by another 9x, to a total speedup of around 44x. So, even though the
graph export slows the execution down, it is still manageable for an application
with hundreds of thousands of tasks.

The trace analyzer needs to explore the transitive closure of the exported
happens-before subset. We store the closure as a dense adjacency matrix, which
results in significant memory usage. The matrix is dense, because the existing
OCR applications are often iterative algorithms and a task in iteration ¢ is likely
to be synchronized with all tasks from previous and subsequent iterations. The
complexity of searching all permutations of n operations on a latch event is n!.
For most other rules, the execution should be roughly n? for n operations.

The example from the first paragraph of this section cannot be analyzed in
a reasonable amount of time. If we reduce it to just one thousand tasks (this
version takes a quarter of a second to finish in OCR-V1), it produces around
48k operations and 77k edges. These can be analyzed in 10s. However, if we
double the number of tasks, the time goes up to over 40, following the predicted
quadratic time complexity. This makes searching large graphs impractical.

In applications with some regular structure, it is possible to take a small work-
load and use that to check for errors. For example, the seismic simulation only
has three different kinds of iterations (first, last, and all iterations in between)
and in each iterations, there are 3 kinds of tasks (top, bottom, in between), so
even a small run with 49 tasks in total is sufficient to test all these cases. As
we are detecting all potential synchronization errors, increasing the number of
tasks will not increase the chance of finding an error, as the process is not at
all probabilistic. However, not all applications have a regular structure like this
and it may not always be possible to test all cases with such a small sample.

6 Conclusion and Future Work

We have created a tool which can automatically detect synchronization errors in
OCR applications, in cases where OCR objects are being used by the application
without proper synchronization. While no automatic tool may detect all errors
in such applications, any programmer aid is important for the difficult task of
writing such programs.

In the future plan to use more sophisticated graph processing techniques to
reduce overall memory footprint and processing time. We would also like to be
able to efficiently handle common cases of very large latch events, without having
to search all permutations.

Acknowledgment. The work was supported in part by the Austrian Science Fund
(FWF) project P 29783 (Dynamic Runtime System for Future Parallel Architectures)
and by VEGA 1/0684/16.

Automatic Detection of Synchronization Errors 15

References

10.

11.

12.

13.

14.

15.

Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: STARPU: a unified
platform for task scheduling on heterogeneous multicore architectures. In: Sips,
H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863-874.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03869-3-80
Bosilea, G., et al.: PaRSEC: exploiting heterogeneity to enhance scalability. IEEE
Comput. Sci. Eng. 15(6), 36-45 (2013)

Dokulil, J., Sandrieser, M., Benkner, S.: Implementing the open community run-
time for shared-memory and distributed-memory systems. In: 2016 24th Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing
(PDP), pp. 364-368, February 2016

Dokulil, J., Benkner, S.: OCR extensions - local identifiers, labeled GUIDs, file 10,
and data block partitioning. CoRR abs/1509.03161 (2015). http://arxiv.org/abs/
1509.03161

Dokulil, J., Sandrieser, M., Benkner, S.: OCR-Vx - an alternative implementation
of the open community runtime. In: International Workshop on Runtime Systems
for Extreme Scale Programming Models and Architectures, in conjunction with
SC15, Austin, Texas (2015)

Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz—
open source graph drawing tools. In: Mutzel, P., Jinger, M., Leipert, S. (eds.) GD
2001. LNCS, vol. 2265, pp. 483-484. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45848-4_57

Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: HPX - a task based
programming model in a global address space. In: The 8th International Conference
on Partitioned Global Address Space Programming Models (PGAS) (2014)

Lee, E.A.: The problem with threads. Computer 39(5), 33—42 (2006). https://doi.
org/10.1109/MC.2006.180

Mattson, T.G., et al.: The open community runtime: a runtime system for extreme
scale computing. In: 2016 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1-7 (2016)

Mattson, T., Cledat, R. (eds.): The Open Community Runtime Interface, April
2016. https://xstack.exascale-tech.com/git/public?p=ocr.git;a=blob;f=ocr/spec/
ocr-1.1.0.pdf

Musuvathi, M.: Systematic concurrency testing using CHESS. In: Proceedings of
the 6th Workshop on Parallel and Distributed Systems: Testing, Analysis, and
Debugging, PADTAD 2008, p. 10:1. ACM, New York (2008)

Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: SIGPLAN Notices, vol. 42, no. 6, pp. 89-100 (2007)

Rutar, N., Almazan, C.B., Foster, J.S.: A comparison of bug finding tools for Java.
In: 15th International Symposium on Software Reliability Engineering, pp. 245
256, November 2004

Yu, J., Narayanasamy, S., Pereira, C., Pokam, G.: Maple: a coverage-driven testing
tool for multithreaded programs. In: SIGPLAN Notices, vol. 47, no. 10, pp. 485-502
(2012)

Zheng, Y., Kamil, A., Driscoll, M.B., Shan, H., Yelick, K.: UPC++: a PGAS
extension for C++. In: 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, pp. 1105-1114, May 2014

https://doi.org/10.1007/978-3-642-03869-3_80
http://arxiv.org/abs/1509.03161
http://arxiv.org/abs/1509.03161
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1109/MC.2006.180
https://doi.org/10.1109/MC.2006.180
https://xstack.exascale-tech.com/git/public?p=ocr.git;a=blob;f=ocr/spec/ocr-1.1.0.pdf
https://xstack.exascale-tech.com/git/public?p=ocr.git;a=blob;f=ocr/spec/ocr-1.1.0.pdf

)

Check for
updates

A Methodology for Performance Analysis
of Applications Using Multi-layer 1/0

Ronny Tschiiter®™), Christian Herold, Bert Wesarg, and Matthias Weber

Center for Information Services and High
Performance Computing, Technische Universitéat
Dresden, Dresden, Germany

ronny .tschueter@tu-dresden.de

Abstract. Efficient usage of file systems poses a major challenge for
highly scalable parallel applications. The performance of even the most
sophisticated I/O subsystems lags behind the compute capabilities of
current processors. To improve the utilization of I/O subsystems, sev-
eral libraries, such as HDF5, facilitate the implementation of parallel
I/O operations. These libraries abstract from low-level 1/O interfaces
(for instance, Posix I/O) and may internally interact with additional
I/O libraries. While improving usability, I/O libraries also add com-
plexity and impede the analysis and optimization of application I/O
performance. In this work, we present a methodology to investigate
application 1/O behavior in detail. In contrast to current methods, our
approach explicitly captures interactions between multiple I/O libraries.
This allows to identify inefficiencies at individual layers of the I/O stack
as well as to detect possible conflicts in the interplay between layers.
We implement our methodology in an established performance monitor-
ing infrastructure and demonstrate its effectiveness with an 1/O analysis
study of a cloud model simulation code. In summary, this work pro-
vides the foundation for application I/O tuning by exposing inefficiency
patterns in the usage of I/O routines.

Keywords: I/O - Performance analysis + Monitoring
Instrumentation

1 Introduction

Modern HPC systems provide powerful storage hardware equipped with high
bandwidth interconnects and parallel file systems. Nevertheless, input and out-
put (I/O) operations still present a major limitation factor for the performance
of scientific applications. Current research topics, such as big data and machine
learning, further increase the trend of processing large data volumes.
Highly-scalable applications transfer data in parallel to cope with large data
volumes and efficiently utilize available I/O resources. A wide range of I/0
libraries, such as HDF5 [24], NetCDF [26], and MPI I/O [18, Chap. 13] sup-
port developers in implementing parallel I/O operations by abstracting from

© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 16-30, 2018.
https://doi.org/10.1007/978-3-319-96983-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_2&domain=pdf

A Methodology for Performance Analysis 17

Application

NetCDF

HDF5

MPI /O

Posix I/0

- o o <O

File System

Fig. 1. Software layers of an application using three I/O interfaces concurrently.

low-level I/O interfaces. Often, these libraries provide features for storing meta-
data to describe the data format and units along with specific data values. This
further increases the data volume in addition to the actual raw data.

Hiding the complexity of implementing low-level parallel I/O operations is
a major benefit of I/O libraries. Yet, using I/O libraries does not necessar-
ily guarantee efficient I/O resource utilization [10]. Improved usability gained
by abstraction also implies a more challenging I/O performance analysis. This
is especially true for applications using multiple I/O interfaces concurrently.
Figure 1 shows an example application that uses multiple I/O libraries indepen-
dently. The application itself calls NetCDF, MPI I/0O, and Posix I/O functions
directly. The NetCDF library issues HDF5 function calls. HDF5 in turn contains
MPI I/0O and Posix I/0 in its software stack. Complex interactions between I/0
libraries and user code impact each other. It is essential to gather information
from all involved I/O layers to evaluate the effectiveness of resulting I/O opera-
tions. This allows detailed understanding of the actual I/O behavior and enables
the identification of underlying root causes of I/O problems. For example, I/O
operations are propagated through the I/O software stack. An open call at the
top level will also cause open operations in lower levels. Hence, each layer of the
I/O software stack maintains own file descriptors to manage I/O resources. In
case of writing data, each I/O layer may rearrange operations or add additional
meta-information to the actual raw data. Thus, to correctly assign and evaluate
specific operations, we need to capture information at each individual I/O layer.

Monitoring of multi-level I/O operations poses two challenges: (a) recording
I/O operations arising from multiple I/O libraries and (b) recording of inter-
actions between individual I/O libraries. This work addresses both challenges.
Thereby, we support users in investigating and improving the I/O performance
of parallel applications. Our contributions are:

— An approach to record information about I/O resources used by applications
as well as performance relevant data of I/O operations including the interac-
tions of multiple I/O libraries.

18 R. Tschiiter et al.

— Tracking the mount information of I/O resources in order to determine their
generic scope and recording this information for enhanced analyses.

— Implementation of the approach in an established monitoring infrastructure.

— A detailed I/0 analysis study of a real-world application to demonstrate the
applicability of our approach.

2 Related Work

Several techniques exist for monitoring I/O activities. In principle these
approaches can be distinguished by: (a) the data acquisition scope (system or
application) (b) the recorded data format (statistics or event log) and (c) the
ability for monitoring relations between individual I/O layers.

Statistics on System-Level: The tools iotop [15], iostat [14], blktrace [5], and
sar [20] monitor system performance with special focus on I/O resource usage.
These tools collect statistics and report measurement values per device, parti-
tion, or network filesystem as well as a global view of the whole system.

Statistics on Application-Level: Arm MAP [4], Darshan [8], and TAU [22] moni-
tor individual applications. Among other runtime events, like function entry and
exit, they can record information about I/O operations. With respect to I/0O,
Arm MAP focuses on Posix I/O and captures Lustre [16] counters, whereas
Darshan and TAU record Posix I/O and MPI I/O activities. HPCToolkit [1]
intercepts selected I/O operations and records their number of bytes read or
written to mark I/O intensive application phases. In contrast to our work, all of
the previously mentioned tools collect statistics.

Event Logs on Application-Level: VampirTrace [19] records I/O activities and
writes the collected information to event logs. However, it only records calls to
1/0 functions of the standard C library and is no longer supported. Its successor
Score-P [11] does not support I/O recording yet. ScalalOTrace [28] generates
compressed event logs of MPII/O and Posix I/O function calls. None of the
mentioned tools explicitly correlates individual layers of the I/O software stack.

Visualization: Vampir [2] visualizes event logs generated by VampirTrace and
Score-P in timeline and statistical charts. Event logs retain temporal information
of each individual event. This enables detection of performance problems with
changing characteristics over application runtime. The Virtual Institute for 1/0
(VI4IO) [27] is a collaboration platform for research groups in the field of HPC
1/0. It provides an overview about I/O middleware, benchmarks, and tools.

3 Methodology

This section describes our approach for analyzing applications using multiple
I/0 libraries. We cover both I/O resources (e.g., files and file descriptors) as well
as I/O activities (e.g., reading and writing). Therefore, we distinguish between
definitions and events. Definitions provide detailed information about 1/0
resources, whereas events represent 1/O activities during application runtime.

A Methodology for Performance Analysis 19

3.1 Definitions

Definitions describe resources of I/O operations. Posix I/O operations do not
directly work on input/output resources, but use file descriptors as an abstract
handle. This allows multiple processes/threads to access the same file indepen-
dently. Consequently, our definitions, Fig.2, distinguish between 1/0O resources
and file descriptors. The following paragraphs introduce each definition in detail.

geaneagazazas <] IoRegularFile

IoFileProperty v hame
file > IoFile j, scope
name TTAT A_
type : IoDirectory
value name

scope
IoParadigm IoHandle
identification file IoPreCreatedHandleState
name l¢————<f paradigm €4— handle
class name mode
flags group flags

properties ;0 parent

Fig. 2. Overview of definitions to reflect I/O resources and their relationships.

Definitions of I/O Resources: According to the “Everything is a file” phi-
losophy Unix and its derivatives treat a wide range of I/O resources as a file,
e.g., files, directories, and sockets. This is reflected by the polymorph IoF'ile def-
inition that provides a common namespace for objects used by I/O operations.
Currently, definitions for files (IoRegularFile) and directories (IoDirectory)
are available within this namespace. However, it is possible to add further defi-
nitions to this namespace.

IoRegularFile and IoDirectory definitions store the name of a file or directory.
HPC machines mount several file systems concurrently. Thus, name or path alone
do not represent unique identifiers for I/O resources. In principle, two categories
of file systems can be distinguished: (a) local file systems available only on a
single compute node (b) global file systems shared via network on the whole
machine. Figure 3 depicts an example. The illustrated compute nodes node, and
nodey, use two different file systems—a shared network file system fs;,;,, and
a local scratch file system fs;,.,;. The file file, in fsg;,;, is accessible on the
whole machine. In contrast file, represents two distinct physical files, because
they reside in separate file systems fs,,.,;- Therefore, the scope attribute marks
the physical scope with regard to the system topology.

The IoFileProperty definition attaches user-defined attributes (e.g., mount
point information or Lustre strip policy) to an IoFile definition.

20 R. Tschiiter et al.

p N
Machine
S —_
File File System - -Machine
System fslocal

fsglobal L node,
B))

File System
fslocal
[nodey,)
\ /
(a) Hardware topology (b) System tree representation

Fig. 3. A file’s scope depends on its storage position (global or local file system).

Definitions of I/O Handles: IoParadigm describes an available I/O library.
The identification attribute categorizes an IToParadigm (e.g., “MPI I/O”),
while the name distinguishes specific implementations (e.g., “OMPIO” [9] or
“ROMIO” [23]). The class attribute specifies whether the I/O paradigm is
serial or parallel. Only parallel I/O paradigms enable collective 1/O operations
within a group of multiple processes/threads. The flags attribute allows to set
further boolean characteristics for the I/O paradigm (e.g., mark if the paradigm
either directly accesses the operating system or maps its functionality to other
I/0 paradigms such as HDF5 or NetCDF). In addition, JoParadigm provides an
extensible mechanism to specify further properties such as version information.

An ToHandle definition reflects a file descriptor based on a prior I/O resource
definition specified by the file attribute. The parent attribute of an IoHandle
models hierarchical relations between I1/0O handles. This mechanism enables cor-
relation of operations between individual layers of the I/O software stack. If the
paradigm supports collective I/O operations, the group attribute specifies the
set of participating processes/threads.

The IoPreCreatedHandleState definition marks a handle that is stan-
dardly created (e.g., stdin, stdout, stderr) or inherited from a parent pro-
cess/thread. The definition holds the access mode (e.g., read or write) and status
flags of this default I/O handle.

3.2 Events

Events represent 1/O activities at application runtime. In this work, we focus
on events required for performance analysis. Therefore, we assume that 1/0
operations finish successfully, otherwise performance analysis is not reason-
able. However, our approach is not limited to performance analysis and we
plan to support the handling of unsuccessful I/O operations (see Sect. 7). We
distinguish events into meta data (e.g., open/create, close) and data trans-
fer (e.g., read/write) operations. All events store an accurate timestamp and

A Methodology for Performance Analysis 21

information about the issuing process/thread. Additional information depend on
the specific event type.

Meta Data Operations: Events of this category indicate the creation and
the destruction of file descriptors. The IoCreateHandle event marks the cre-
ation of a new handle (e.g., after opening a file). The mode attribute determines
the access mode to the file descriptor (e.g., read-only, write-only, or read-write).
According to the Posix I/O API, IoCreateHandle stores optional creationFlags
(e.g., create if the file does not exist) and statusFlags (e.g., open file in append
mode). An IoDestroyHandle marks the end of an active I/O handle’s lifetime.
Thus, a pair of consecutive IoCreateHandle and IoDestroyHandle events defines
the time in which the handle is active and can be used by other events. The
IoDuplicateHandle event represents the duplication of an existing file descrip-
tor. This event references the original file descriptor (o1dHandle) as well as the
newly created one (newHandle). The IoDuplicate Handle activates the newHandle
and the oldHandle remains active. In our event design, the new handle does not
inherit the status flags. Instead, the statusFlags attribute explicitly records
this information. This option releases analysis tools from the need of tracking
the inheritance. Figure 4 illustrates the life cycle of tracked I/O handles.

precreated ju
- >

create

Fig. 4. Events create and destroy I/O handles at runtime. Commands to duplicate
handles build a special case: the original handle remains in active state, the newly
created handle changes from inactive to active state.

The following events track the status of active I/O handles. The IoSeek event
records changes of the position within a file. The event stores the offset requested
by the user (offsetRequest), the position to which the offset should be applied
(whence), e.g., absolute from the start or end, relative to the current position,
and the resulting offset relative to the beginning of the file (offsetResult). An
IoChangeStatusFlags event tracks changes to the status flags of an active
handle. The statusFlags attribute holds the updated status.

The IoDeleteFile event marks the deletion of an I/O resource. Similar to
deletion functions, such as unlink, rename, or remove, this event operates on
I/0O resources instead of I/O handles. In addition to the affected £ile, this record
stores the paradigm that issued the deletion.

Data Transfer Operations: Events of this category record data transfer opera-
tions. One complete transfer operation might be split into basic events. Further,
we distinguish between blocking and non-blocking operations. For example, a
blocking Posix I/O read operation consists of two events—one for its start and

22 R. Tschiiter et al.

H[IoOperationBegin)—b[IoOperationComplete}—b

(a) Event sequence of blocking I/O operations.

[IoOperationComplete)—b

H[IoOperationBegin)—b[IoOperationIssued]—b[IoOperationTest)

[IoOperationCancelledj—b

(b) Event sequence of non-blocking I/O operations.

Fig. 5. Sequence of generated events for different I/O operation types.

one for its completion. Consequently, both events need an identifier to relate all
parts composing an I/O operation. Therefore, these events contain a matchingId
attribute, identifying an I/O operation in-flight. The attribute is valid for a pro-
cess including all its threads. The IoOperationBegin event lists the affected
handle, the operation mode (e.g., reading or writing), and operationFlags
providing additional semantic information. In particular, the operationFlags
attribute defines two distinct characteristics of an operation: (a) collective or
non-collective, and (b) blocking or non-blocking. The bytesRequest attribute
reflects the user defined maximum number of transferred bytes. An IoOpera-
tionComplete event marks the end of a data transfer operation. It references
the affected handle. The bytesResult attribute stores the actual number of
transferred bytes. Corresponding loOperationComplete-IoOperationBegin event
time stamps define the transfer operation duration. Figure 5a shows the event
sequence generated by blocking I/0 data transfer operations. The “blocking” bit
in the operationFlags of the loOperationBegin event is set accordingly. The
semantic of blocking operations ensures that a pair of matching IoOperationBe-
gin and ToOperationComplete events occurs within the event stream of the same
thread. In contrast, Fig. 5b illustrates the event sequence of a non-blocking I/0
data transfer operation (e.g., aio_write). Typical for non-blocking operations is
the decoupling of issuing and completing operation, i.e., started on one thread
but completed on another thread of the same process. Non-blocking data trans-
fer operations also start with loOperationBegin events. In case of a successful
initiation an IoOperationlssued event follows. ToOperationBegin and its corre-
sponding IoOperationlssued event must occur on the same thread. Users can test
active non-blocking operations to ensure their completion. IoOperationTest
events represent unsuccessful tests (I/O operation not finished yet), ToOpera-
tionComplete events indicate finished operations. The IoOperationCancelled
event represents the successful cancellation of a non-blocking operation. Any
thread of the same process can test, cancel, or complete a non-blocking 1/0
operation in-flight.

A Methodology for Performance Analysis 23

Collective I/O operations are executed by all processes/threads of the respec-
tive I/O handle. The “collective” bit in the operationFlags attribute of the
ToOperationBegin event marks the special semantic of such operations.

4 Implementation

In the previous Sect.3, we presented our approach for recording I/O operation
information, whereas we focus on the implementation details in this section.
We implement our design in OTF2 (Open Trace Format Version 2) [12]. Many
analysis tools, such as Vampir and Scalasca [13], process OTF2 event traces.
The OTF2 library provides an API for reading and writing event traces. It
already supports events for function entry and exit, parallelization constructs,
and communication. In this work, we extend OTF2 with definitions and events
implementing the I/O operations presented in Sect.3. OTF2 maintains a list of
parallelization paradigms (e.g., MPI, OpenMP, Pthreads) as a C-enumeration
in its application programming interface'. Adding support for new paralleliza-
tion paradigms would require to extend this enumeration as well. However, this
could result in inconsistencies due to unknown enumeration members, when older
OTF2 versions read event logs written by a newer OTF2 version. Considering
the wide range of available I/O interfaces, we conclude that this approach is
unsuitable. Therefore, we abstain from providing a fixed list of supported 1/0
paradigms in our implementation. Instead, we implement the loParadigm def-
inition record using a self-describing mechanism. For the sake of convenience,
the OTF2 library maintains a list of known I/O paradigms in its documenta-
tion2. Users are encouraged to follow these suggestions when generating their
own event logs.

Besides OTF2, we require a software component that monitors the applica-
tion behavior at runtime. For this purpose, we select the Score-P measurement
infrastructure and add components for intercepting calls to specific I/O libraries.
In order to intercept calls to MPI, we utilize the existing MPI profiling inter-
face (PMPI) [18, Sect.14.2]. For all remaining I/O interfaces we use a generic
interception method [6]. Each time an application issues an I/O function, we
intercept this call. The control flow passes to the Score-P measurement system
which has access to all function parameters and can record performance rele-
vant data. Then, the measurement system calls the original function. After the
original function returns, the control flow passes back to the application and the
program execution continues.

We strive to support a flexible list of I/O paradigms in Score-P. There-
fore, Score-P must handle the interactions of I/O paradigms in a generic way.
Especially, the mapping of I/O operations to an a priori known lower-level
1/0 paradigm requires a paradigm agnostic implementation. We achieve this by
implementing a shared per-thread I/O management stack. Individual paradigms

! https://silc.zih.tu-dresden.de/otf2-2.1.1/OTF2__GeneralDefinitions_8h.html#
2a14d0751354081d258913145a80e79a9.
2 https:/ /silc.zih.tu-dresden.de/otf2-2.1.1/group__io.html.

https://silc.zih.tu-dresden.de/otf2-2.1.1/OTF2__GeneralDefinitions_8h.html#aa14d0751354081d258913145a80e79a9
https://silc.zih.tu-dresden.de/otf2-2.1.1/OTF2__GeneralDefinitions_8h.html#aa14d0751354081d258913145a80e79a9
https://silc.zih.tu-dresden.de/otf2-2.1.1/group__io.html

24 R. Tschiiter et al.

can communicate via this stack. The following describes this approach using
the example case of MPI I/O implemented on-top of ISO-C. If the MPI I/0O
component from Score-P intercepts a call to MPI_File_open, it creates a new
IoHandle (handle;) and pushes it to the I/O management stack. Then, the
PMPI File_open function is called via the MPI profiling interface. The MPI
implementation may than call fopen, which is subsequently intercepted by
Score-P as well. The ISO-C component inspects the top element of the 1/0
management stack to determine whether a potential higher-level I/O paradigm
is active. If a handle is available on the stack (handle; in this example), this han-
dle is used as parent for the newly created ToHandle (handles). After leaving
fopen and MPI File_ open, the top element from the I/O management stack is
removed for each involved paradigm. In summary, whether lower-level paradigms
will create new IoHandles is unknown a priori. Therefore, each I/O component
must push and pop its current active handle onto the I/O management stack.
This ensures proper references to controlling higher-level I/O paradigms in indi-
vidual handles. As a result, all occurring IoHandles create a root-directed tree.

5 Case Study

We evaluate our methodology and implementation in an analysis of the Met
Office NERC Cloud model (MONC) simulator. Our study checks MONC for
I/O performance penalties and exposes insights of operations using multiple
I/0O layers. MONC, a Fortran+MPI code, utilizes NetCDF to write results to
disk. The cloud simulator has two kinds of processes: (a) simulation processes
for computing the cloud model and (b) I/O server processes for storing results to
disk. Users can individually set the number of I/O server processes. At runtime,
the I/O servers keep simulation results in main memory. After N simulation
steps or at program termination, the I/O servers flush the results to disk [7].
We record the I/O behavior of MONC using our Score-P prototype. Score-P
instruments the source code and intercepts library calls to Posix I/O, MPI I/O,
and NetCDF. We conduct our experiments on ARCHER [3]. This Cray XC30
system consists of 4920 compute nodes, each containing two 12-core E5-2697 v2
(Ivy Bridge) processors running at 2.7 GHz. Our experiments use a 4.4 PB Lus-
tre file system (stripe count 1, stripe size 1 GiB) to store simulation results and
collected event logs. We run MONC on 112 processes, distributed over 8 nodes.
Each node hosts one I/O server process with a pool of 10 additional threads. The
remaining 104 simulation processes compute the cloud model. In our experiment
setup, MONC simulates 100 timesteps. At the end of the application run, the
I/0O server processes write the data to disk via calls to NetCDF. Using our app-
roach, we can inspect internal function invocations of MPI I/O and Posix I/O.
In order to avoid interference with the I/O behavior of the observed application,
we keep all collected performance data in main memory during application run-
time. After the application has finished, event logs are written to disk. In our
experiments the recording of performance data caused an increase in application
runtime of about six percent. We visualize the resulting event logs using the tool

A Methodology for Performance Analysis 25

All Processes, Accumulated Exclusive Time per Function Group
3,000 s 2,000 1,000 s 0s

2SS A S Aopiication
MPI

178.568 s (2.11%) [MPI /O
70.868 5 (0.84%) | POSIX 10 sum
3.867 s (0.05%) I PTHREAD 1929 /fs2/d131/d131/s.../RCE_dump_329.nc
3.677 5 (0.04%) | IS0 C 1/0
0.354 5 (0%) | NetCDF

All Processes, Number of I/0 Operations per File Name for NetCDF
1,500 1,000 500 0

. (b) NetCDF
(a) Function summary over all processes
shows few time spent in I/O operations.
A Procsss, Hamber o U0 Operans e i o o PO A Process, Kumber of U0 Operations e i e o POSI 0
2.0k 15k 1.0k 0.5k 0.0k 50 k 40 k 30k 20k 10k 0k
2,312 sum [s
2312 /fs2/d131/d131/...RCE_dump_329.nc 46,406 /fs2/d131/d131/s../RCE_dump_329.nc
114" gkl
714 Jprocicpuinfo
(c) MPII/O (d) Posix I/O

Fig. 6. Function and I/O statistics of the MONC experiment run.

Vampir. Since version 9.4 Vampir features new displays with special focus on
the visualization of I/O behavior of applications. The paper “Visualization of
Multi-layer I/O Performance in Vampir” [17] presents a detailed description of
these sophisticated visualization techniques using I/0O related performance data.

Figure 6a depicts the overall exclusive time spent in particular function
groups. The event log contains 7 groups, while most of the time is spent in
application code (about 50%). Furthermore, the simulator spends more time in
MPI communication routines than in I/O operations. Although this first analysis
suggests that MONC does not exhibit poor I/O performance it is worth taking
a closer look at I/O operations.

To investigate I/O performance in detail, Fig.6 depicts three I/O sum-
mary charts for NetCDF (Fig. 6b), MPI I/O (Fig. 6¢c), and Posix I/O (Fig. 6d),
respectively. All three layers utilize the same RCE_dump_329.nc file. The num-
ber of accesses to this file increases while traversing the NetCDF, MPI 1/0, and
Posix I/0 layer. This statistic reflects how each library abstracts functionality in
order to hide complex operations. Furthermore, the figure shows that Posix I/0
also utilizes additional files. In further analyses we will identify the origin of
these file accesses.

Figure 7 depicts the I/O timeline (top) and the process summary (bottom)
for Thread 7 of Rank 0. The I/O timeline displays the performed type of 1/O
operations (Read (orange), Write (yellow), Open (blue), Close (green)) on the
x-axis and the accessed files as well as associated handles on the y-axis. If an
I/0 library (e.g., NetCDF) utilizes another I/O library, the individual handles
of each library are attached to each other, as represented in a tree-like hierarchy
to the left of the upper chart. The top chart in Fig. 7 depicts all handles used to
access the NetCDF file RCE_dump_329.nc. Thereby, NetCDF internally utilizes
MPI I/O (see handle MPI-I0 #0) which in turn performs Posix I/O operations
(see POSIX I/0 #20) on RCE_dump_329.nc. This view also shows that MPI I/O
opens (blue bars) maps-files from the /proc filesystem through the ISO-C APIL
Each I/O server process reads (red boxes) its maps-file before transferring sim-
ulation data to the NetCDF file.

26 R. Tschiiter et al.

1/0 Events over Time
- 7).../RCE_dump_329.nc
~ T NetCDF #0 Write
~ % MPI-IO #0
) /proc/5468/maps
0c/28906/maps

l

:
!ull i
iI

1...0c/43867/maps
1ISO C /0 #24

1,POSIX 1/0 #20 | Write Wiite Wite

Pthread thread 7:0

L > > S

v
v
v
v
4

l

CENO LA WN

'1

write rite write

Fig. 7. The I/O timeline (top) shows individual I/O operations of Thread 7 from Rank
0 on specific files. The process summary (bottom) depicts the call stack. (Color figure
online)

Pthread thread 7:0

© 0NV A WN

© 0NV AWN

Fig. 8. Call stack comparison of two different I/O server processes. (Color figure online)

A Methodology for Performance Analysis 27

Values of Metric "Number of syscalls" over Time in number of ops

Location Value

~ machine Cray XC
» nodenido1713 RSSO
» node nid01714 159.000
» node nid01716 158.000
» node nido1717
» node id01715
» node nido1720
» node nido1721
» node id01722

0k 20k 40k 60 k

Fig. 9. Number of syscalls in MPI I/O mapped to the system tree topology.

The bottom chart in Fig. 7 depicts the process timeline for Thread 7 of Rank
0 and provides details about the calling context of I/O operations in this time
slice. For example, the execution of nc_put_vara double (bottom chart, level 7)
creates an I/O write event of the NetCDF #0 handle (top chart). This operation
in turn calls MPI_File Write_at_all (bottom chart, level 8) which generates the
I/0 write event of the MPI-I0 #0 handle (top chart). Level 9 in the bottom chart
shows internal details of this collective MPI I/0O routine. It depicts the fgets call
to access the maps-file (/proc/43867/maps). write calls to store the final data
which correspond to the write events of the POSIX I/0 #20 handle (top chart).
Interestingly, NetCDF executes MPI communication operations (bottom chart,
level 8, red bars) within the nc_put_vara_double routine. In this time slice,
these operations are small compared to the MPI_File Write_at_all routine and
do not impede performance. However, in a different scenario, these functions
may lead to a communication bottleneck or undesirable wait states.

So far we investigated only one I/O server process. In the next analysis we
will compare different I/O server processes. Figure 8 shows the process timelines
of I/0O server Rank 0/Thread 7 (top) and Rank 14/Thread 2 (bottom). Both
servers call identical functions with similar durations until call level 9. On this
level, both servers perform ISO-C I/O operations (brown bars) at the beginning
of MPI_File Write_at_all. Then, one server process (top) executes write func-
tions. It seems that only one I/O server process accesses the RCE_dump_329.nc
file through the collective I/O operation. The collective operation appears to syn-
chronizes all processes (causing waiting time) except process Rank 0/Thread 7,
that performs the actual I/O operations. Figure 9 depicts the number of syscalls
within MPI I/O routines aggregated per compute node. Node nid01713 per-
forms the most syscalls within MPI. This confirms, that only one I/O server
transfers data to the RCE_dump_329.nc file. Reasons could be the (small) data
size or missing support for parallel accesses in the current implementation. For
MONC, our analysis suggests optimization potential by switching from collective
operations to individual accesses per I/O server process.

6 Conclusions

This work presents a methodology for recording calls to I/0O libraries on multiple
layers of the software stack. In contrast to current approaches, our methodology

28 R. Tschiiter et al.

explicitly correlates operations between multiple I/O libraries. This enhanced
level of detail in the recorded performance data is essential for understanding the
overall I/O behavior of applications. Consequently, users can now identify root
causes of I/O bottlenecks inside a complex I/O stack. We prove the applicability
of our approach in an analysis study of the Met Office/NERC Cloud Model
(MONC) code.

7 Future Work

In this work, we show that our approach records valuable information about the
I/0 behavior of applications. With an intuitive presentation of this information,
we support application developers in optimizing I/O-intensive applications. Cur-
rently, we are working on integrating our approach into the Score-P open-source
measurement infrastructure and OTF2 trace format. Consequently, it will be
available in one of the next official Score-P releases. Meanwhile, we provide a
prototype implementation [25].

Automatic analysis as a complementary technique to visualization directly
guides users to performance bottlenecks. Tools like Scalasca or Casita [21] apply
detection mechanisms to identify inefficiency patterns in MPI message transfers
or computation offloading to accelerator devices. Similar analysis techniques can
be applied to our I/O performance data recordings.

This work focuses on performance analysis of file I/O operations. However,
it can be easily extended to monitor I/O operations on sockets. This use case
would only require new definitions for representing sockets as an 1/O resource
(besides files and directories). Furthermore, we plan to add information about
failed operations to the current records. This would extend their usability from
performance analysis to debugging and correctness checking applications.

Data Availability Statement and Acknowledgments. This research was under-
taken as part of the NEXTGenlO project, which is funded through the European
Union’s Horizon 2020 Research and Innovation programme under Grant Agreement
no. 671951. The datasets and code generated during and/or analysed during the cur-
rent study are available in the figshare repository: https://doi.org/10.6084/m9.figshare.
6384164 [25].

References

1. Adhianto, L., et al.. HPCTOOLKIT: tools for performance analysis of optimized
parallel programs. In: Concurrency and Computation: Practice and Experience
(2010). https://doi.org/10.1002/cpe.1553

2. Kniipfer, A., et al.: The vampir performance analysis tool-set. In: Resch, M., Keller,
R., Himmler, V., Krammer, B., Schulz, A. (eds.) Tools for High Performance Com-
puting. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68564-7_9

3. Archer Hardware Specification, February 2018. https://www.archer.ac.uk/about-
archer /hardware

https://doi.org/10.6084/m9.figshare.6384164
https://doi.org/10.6084/m9.figshare.6384164
https://doi.org/10.1002/cpe.1553
https://doi.org/10.1007/978-3-540-68564-7_9
https://www.archer.ac.uk/about-archer/hardware
https://www.archer.ac.uk/about-archer/hardware

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

A Methodology for Performance Analysis 29

Arm MAP - Low-Overhead Profiling to Optimize C, C++, Fortran and F90
Codes, February 2018. https://www.arm.com/products/development-tools/hpc-
tools/cross-platform/forge/map

blktrace(8) - Linux man page, February 2018. https://linux.die.net/man/8/
blktrace

Brendel, R., Wesarg, B., Tschiiter, R., Weber, M., Ilsche, T., Oeste, S.: Generic
library interception for improved performance measurement and insight. In: Pro-
ceedings of the 6th Workshop on Extreme Scale Programming Tools, ESPT 2017,
November 2017

Brown, N., et al.: A highly scalable met office NERC cloud model. In: Proceedings
of the 3rd International Conference on Exascale Applications and Software, EASC
2015, pp. 132-137 (2015)

Carns, P., et al.: Understanding and improving computational science storage
access through continuous characterization. Trans. Storage 7(3), 8:1-8:26 (2011).
https://doi.org/10.1145/2027066.2027068

Chaarawi, M., Gabriel, E., Keller, R., Graham, R.L., Bosilca, G., Dongarra, J.J.:
OMPIO: a modular software architecture for MPI I/O. In: Cotronis, Y., Danalis,
A., Nikolopoulos, D.S., Dongarra, J. (eds.) EuroMPI 2011. LNCS, vol. 6960, pp.
81-89. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24449-0_11
Cyrille Rossant: Should you use HDF5? February 2018. http://cyrille.rossant.net/
should-you-use-hdf5/

Dieter An Mey and others: Score-P: A Unified Performance Measurement System
for Petascale Applications. In: Competence in High Performance Computing (2012)
Eschweiler, D., et al.: Open trace format 2 - the next generation of scalable trace
formats and support libraries. In: Proceedings of the 14th Biennial ParCo Confer-
ence on Applications, Tools and Techniques on the Road to Exascale Computing.
Advances in Parallel Computing, vol. 22, pp. 481-490 (2012)

Geimer, M., Wolf, F., Wylie, B.J.N., Abrahém, E., Becker, D., Mohr, B.: The
scalasca performance toolset architecture. Concurr. Comput.: Pract. Exp. 22(6),
702-719 (2010). https://doi.org/10.1002/cpe.v22:6

iostat, February 2018. https://github.com/sysstat/sysstat

iotop, February 2018. http://guichaz.free.fr /iotop/

Lustre, February 2018. http://lustre.org/

Mix, H., Herold, C., Weber, M.: Visualization of multi-layer I/O performance in
vampir. In: 2018 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), May 2018

MPI Forum: MPI: A Message-Passing Interface Standard, Version 3.1, 14 June
2015. https://www.mpi-forum.org/docs/mpi-3.1/. Accessed May 2018

Miiller, M., et al.: Developing scalable applications with Vampir, VampirServer and
VampirTrace. In: Parallel Computing: Architectures, Algorithms and Applications.
Advances in Parallel Computing, January 2007

sar(1) - Linux man page, February 2018. https://linux.die.net/man/1/sar
Schmitt, F., Stolle, J., Dietrich, R.: CASITA: a tool for identifying critical optimiza-
tion targets in distributed heterogeneous applications. In: 43rd International Con-
ference on Parallel Processing Workshops, pp. 186-195, September 2014. https://
doi.org/10.1109/ICPPW.2014.35

Shende, S., Malony, A.D., Spear, W., Schuchardt, K.: Characterizing I/O perfor-
mance using the TAU performance system. In: PARCO, pp. 647-655 (2011)

https://www.arm.com/products/development-tools/hpc-tools/cross-platform/forge/map
https://www.arm.com/products/development-tools/hpc-tools/cross-platform/forge/map
https://linux.die.net/man/8/blktrace
https://linux.die.net/man/8/blktrace
https://doi.org/10.1145/2027066.2027068
https://doi.org/10.1007/978-3-642-24449-0_11
http://cyrille.rossant.net/should-you-use-hdf5/
http://cyrille.rossant.net/should-you-use-hdf5/
https://doi.org/10.1002/cpe.v22:6
https://github.com/sysstat/sysstat
http://guichaz.free.fr/iotop/
http://lustre.org/
https://www.mpi-forum.org/docs/mpi-3.1/
https://linux.die.net/man/1/sar
https://doi.org/10.1109/ICPPW.2014.35
https://doi.org/10.1109/ICPPW.2014.35

30

23.

24.

25.

26.

27.
28.

R. Tschiiter et al.

Thakur, R., Gropp, W., Lusk, E.: On implementing MPI-IO portably and with
high performance. In: Proceedings of the 6th Workshop on 1/O in Parallel and
Distributed Systems, IOPADS 1999, pp. 23-32 (1999). https://doi.org/10.1145/
301816.301826

The HDF Group: Hierarchical Data Format, version 5, February 1997-2018.
http://www.hdfgroup.org/HDF5/

Tschueter, R., Herold, C., Wesarg, B., Weber, M.: Score-P measurement system
code and event logs for Euro-Par 2018 paper: a methodology for performance
analysis of applications using multi-layer I/O. figshare. Fileset (2018). https://doi.
org/10.6084/m9.figshare.6384164

Unidata: Network Common Data Form (NetCDF) [software| (2018). https://doi.
org/10.5065/D6HT70CW6,https://doi.org/10.5065/D6HT0CW6

Virtual Institute for 1/O, February 2018. https://www.vidio.org/start
Vijayakumar, K., Mueller, F., Ma, X., Roth, P.C.: Scalable I/O tracing and anal-
ysis. In: Proceedings of the 4th Petascale Data Storage Workshop, PDSW 2009
(2009). https://doi.org/10.1145/1713072.1713080

https://doi.org/10.1145/301816.301826
https://doi.org/10.1145/301816.301826
http://www.hdfgroup.org/HDF5/
https://doi.org/10.6084/m9.figshare.6384164
https://doi.org/10.6084/m9.figshare.6384164
https://doi.org/10.5065/D6H70CW6,
https://doi.org/10.5065/D6H70CW6,
https://doi.org/10.5065/D6H70CW6
https://www.vi4io.org/start
https://doi.org/10.1145/1713072.1713080

®

Check for
updates

Runtime Determinacy Race Detection
for OpenMP Tasks

Hassan Salehe Matar®™) and Didem Unat

Kog University, Istanbul, Turkey
{hmatar,dunat}@ku.edu.tr

Abstract. One potential problem when writing parallel programs with
OpenMP is to introduce determinacy races where for a given input,
the program may unexpectedly produce different final outputs at dif-
ferent runs. Such startling behavior can result from incorrect ordering
of OpenMP tasks. We present a method to detect determinacy races
in OpenMP tasks at runtime. Based on OpenMP program semantics,
our proposed solution models an OpenMP program as a collection of
tasks with inferred dependencies among them where a task is implic-
itly created with a parallel region construct or explicitly created with
a task construct. We define happens-before relation among tasks based
on such dependencies for determining an execution order when detect-
ing determinacy races. Based on this formalization, we developed a tool,
TaskSanitizer, which detects and reports concurrent memory accesses
whose tasks do not have common dependencies. Finally, TaskSanitizer
works at runtime, has been able to find bugs in micro-benchmarks and
it is reasonably efficient to be utilized in a working environment.

1 Introduction

OpenMP 3.0 introduced shared memory task execution model [1] in which pro-
grammers specify computations in units called tasks, which can be executed by
concurrent threads. In OpenMP 4.0 [2], a programmer can specify execution
order between tasks through in and out data dependencies, where a succeeding
task waits for the completion of the preceding task’s execution. Even though
programmers have more flexibility to express various types of parallelism with
the new tasking attributes, these new features can introduce subtle bugs if the
operational semantics and scheduling policy of the OpenMP runtime are not rea-
soned about. One of such concurrency bugs is a determinacy race which occurs
when concurrently executing entities access the same memory location without
specified ordering between them and at least one access is a write to that mem-
ory location [8,16,21,22]. As a result, a program with determinacy races may
produce different final output results at different runs on the same input [18].
Determinacy races are possible if the programmer does not specify necessary
dependency between concurrent tasks which access the same memory locations.
Since there is no specific order defined by the programmer, the scheduler is free
to execute the tasks in any order or concurrently.

© Springer International Publishing AG, part of Springer Nature 2018

M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 31-45, 2018.
https://doi.org/10.1007/978-3-319-96983-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_3&domain=pdf

32 H. S. Matar and D. Unat

The existing state-of-the-art runtime race detection tools for OpenMP such
as Archer [3] — and general race detectors [11] — check for proper locking in
programs which protects shared memory objects but can fail to detect determi-
nacy races which stem from improper ordering of executions. Protecting memory
accesses with critical sections or other explicit locking is not sufficient to avoid
determinacy races. Rather, proper ordering of the executing entities is essential
to avoid undesirable nondeterminism in OpenMP programs for correctness.

We present an algorithm to detect determinacy races in OpenMP programs
by utilizing the concept of OpenMP tasks and their dependencies. Unlike the
state-of-the-art race detection tools [3] that rely on happens-before model at
thread level, we apply happens-before model at task level, which provides the
advantage of reducing randomness due to scheduling. We implement our algo-
rithm as an open source tool based on compile-time instrumentation through
LLVM [15] compiler pass to instrument shared memory accesses in the pro-
gram. The tool uses the OpenMP Performance Tools API (OMPT) [7] to moni-
tor OpenMP-related events such as task creation, scheduling, and execution. In
summary, the main contributions of this paper are:

— A formal definition of the determinacy races and a technique for detecting
such races in OpenMP tasks. To our knowledge, no prior work has been done
for detecting determinacy races in OpenMP tasks with mixed structures of
critical and non-critical sections.

— Determinacy race detection tool for OpenMP called TaskSanitizer [20].

— Evaluation of our method using micro-benchmark applications and compari-
son of results against a race detection tool for OpenMP programs.

2 Background in OpenMP Tasks

Explicit tasks in OpenMP can be created with the construct omp task, which
is readily available since OpenMP 3.0 [1]. For each task, OpenMP creates a
work block which includes a sequence of program statements and the data envi-
ronment. This block is set aside to be executed by a thread until the runtime
schedules it. Starting with OpenMP 4.0 [2], it is possible to specify execution
order among explicit tasks using the depend clause, where a programmer spec-
ifies input and output data dependencies between tasks. A collection of tasks
through dependencies forms an implicit task dependency graph in which a task
is not runnable until all its dependencies are satisfied. The runnable tasks can
then be scheduled by the OpenMP runtime. If two or more tasks are simulta-
neously runnable at a given point in time, they can execute in any order or
concurrently.

Every part of an OpenMP program executes in a task assigned to one or more
threads. For example, implicit tasks can be generated at parallel regions with the
OpenMP parallel construct and each implicit task is executed to completion by
one thread in the thread group of the parallel region [1]. Figure 1 shows a simple
OpenMP program, where a default implicit task is created as part of the main
program. This task then creates two implicit tasks through the parallel region

Runtime Determinacy Race Detection for OpenMP Tasks 33

at line 3. One of these tasks executes the single region at line 4, which creates
two explicit tasks ¢ and u at lines 6 and 10, respectively. Both of these tasks
have critical sections, in which they set different values to a shared variable .
This example has a determinacy race which is explained in detail in Sect. 3.

(a) Example code (b) Task dependency

int main() {
inti=0; | ilicit initi
#pragma omp parallel num_threads(2)

#pragma omp single inti-e
{ g "single" task 2
#pragma omp task shared(i) /\
#pragma omp critical(lock_i) task o / N task u
{i=1;} ask 1 : Sfask t |)
: i=
i=1

#pragma omp task shared(i) L
#pragma omp critical(lock_i)
{i=2} Nz
} ?
printf ("i=%d\n",i);

it "
return o; LRI

¥

Fig. 1. OpenMP example illustrates explicit and implicit tasks and their logical flow
dependency between tasks. The code example has a determinacy race.

3 Determinacy Race Detection

In this section, we first define determinacy races and present motivation on
detecting them with the help of an OpenMP example. Then, we formally define
a task with its operations and we devise happens-before (HB) relations between
these operations for capturing partial ordering among them. Finally we use the
defined HB relations to present our algorithm for detecting determinacy races.

3.1 Definition and Motivating Example

Determinacy race occurs between two tasks if the following two conditions are
satisfied: (i) there is no ordering between these tasks enforced by task depen-
dency, and (7i) both tasks access a common shared memory location and at least
one access is a write. If simultaneously runnable tasks modify the same memory
locations, different scheduling (i.e; order of execution) of these tasks may result
in nondeterministic final values on these memory locations.

Many runtime race detection algorithms [9,23,24] do not take the notion of
dependency into account. They monitor proper synchronization of threads on
memory accesses to detect races. In this work, we monitor the proper ordering
of tasks and critical sections to ensure that different possible ordering of critical
sections in these tasks always generate a single, deterministic final program state.
This helps the programmer to notice if nondeterminisim was not intentional.

34 H. S. Matar and D. Unat

We have provided a simple OpenMP program in Fig. 1, where there is no
specified dependency between tasks t and u. As a result, their critical sections
can execute in any order and thus the final result for ¢ can either be 1 or 2
despite the fact that accesses to the shared variable are protected by a common
lock. Unless the developer intends the program to behave as such, only one
deterministic result is expected. The same issue arises if one of the tasks reads
the value of ¢ in a critical region and the other task writes to i. It is worth noting
that in a typical program these two tasks might have been created in separate
function calls, thus the critical sections may be well far apart from each other
and can be easily overlooked.

3.2 Formalizing Task Operations

In order to establish HB relations and set up rules between tasks for detecting
determinacy races, we first define relevant task operations:

— create(t,u): task t creates task u.

— wait(t,u): task t awaits termination of task uw at taskwait or at a barrier.

— read(t,mem): task ¢ reads value from shared memory location mem.

— write(t,mem,v): task t writes value v to shared memory location mem.

— out(t,u,x): signifies dependency from task t to task w through storage
location z. Task t is the predecessor and u is the dependent task.

— in(u,t,x): signifies dependency from task ¢ to task u through storage loca-
tion z. Task u becomes runnable once t completes its execution.

Having defined task operations, we elaborate on shared memory accesses and
associate them to segments of a task, rather than the task itself. We define a task
as an enclosed sequence of unique tasksegments and synchronization operations
executed together, as shown in Fig.2. A tasksegment is a sequence of consecu-
tive shared memory accesses between two synchronization operations in a task.
Therefore, a synchronization operation in a task ends the current tasksegment
and a new tasksegment starts at the next shared memory access operation in the
task after the synchronization operation. We define synchronization operations
as operations which trigger execution among tasks and are create, wait, out,
and in. For example, Fig. 3 shows three tasks (a parent and two child tasks) but
contains four tasksegments. In other words, in our formal task operations we dif-
ferentiate the code bodies (e.g. tasksegment s1 and tasksegment s4) that result
from imperfectly nested tasks. Since this is necessary to establish HB relations,
we revise the shared memory access operations as follows:

— read(t,s,mem) shared memory access that appears in tasksegment s where
task t reads a value from shared memory location mem.

— write(t,s,mem,v) shared memory access that appears in tasksegment s
where task t writes value v to shared memory location mem.

Runtime Determinacy Race Detection for OpenMP Tasks 35

— create(t,u), wait(t,u), out(t,u,x), +
taSkt = in(u,t,x), taskseg(t,s)
taskse = [read(t,s,mem), write(t,s,mem,v)]+
B(t,s)

Fig. 2. Defining a task as a sequence of tasksegments (taskseg) and synchronizations

3.3 Happens-Before Relations Between Task Operations

For partial ordering of operations in an OpenMP program, we use happens-before
(HB) ordering of events [14] by employing dependency among synchronization
operations. Happens-before relation is a transitive-closure relation. For given
three operations a, b, and c if there is an HB relation from a to b and from b
to ¢, then there is an HB relation from a to ¢. We will infer this relation while
categorizing HB relations between tasks operations. We use symbol < to refer
to an HB relation in general and use <, to refer to an inferred HB relation due
to transitive-closure property.

a<b/\b<c—>a<7rc‘

We identify four types of HB edges among operations between tasks. These
are (i) an HB relation among memory operations performed within a taskseg-
ment; (ii) between a task and its child task through create; (iii) relation between
out and in dependency operations; and (iv) relation at wait operation. We then
use these HB relations to infer HB relations among tasksegments in tasks.

1. HB by program order: This is the basic type of HB relation where pro-
gram operations within a tasksegment are ordered according to their execution
sequence. Similarly, tasksegments within a task are ordered by program order.

2. HB relation by task dependency: If tasks ¢t and u have a commonly
specified data dependency such that w has an input dependency from ¢, then
all tasksegments — as well as their enclosing memory operations — in ¢t happen-
before all tasksegments in u.

out(t,u,x) < in(u,t,)
vtaskseg(t,a)vtu,skseg(u,b)ta5k36.9(15,ce) <z taSkseg(u,b)

3. HB relation between a task and its child task: tasksegments of a task
which execute before creating a child task happens-before the tasksegments exe-
cuted in the created child task. For two tasks ¢ and wu:

create(t, u)

Vtaskseg(tya)taskseg(t,a) <r create(t,u) — ‘v’mskseg(uyb)taskseg(t,a) <x taskseg(u,p)

4. HB relation at taskwait and barrier synchronizations: The last oper-
ation of a child task happens before the taskwait or implicit barrier synchro-
nization operation of the parent task. Therefore, all tasksegments of such task

36 H. S. Matar and D. Unat

have HB relation with subsequent tasksegments of the parent task after the wait
operation is completed.

wait(t, w)

Vtaskseg(w)wait(t,u) <r taskseg(s,q) — Vtaskseg(uvb) taskseg(u,p) <= taskseg(,aq)

1 #pragma omp single
2
tas‘ksegments1 3 ’ total = 42;
4 i count = @; —
5 #pragma omp task depend(out:x HB relation by task
6 { creation
tasksegment s2 —
:ﬁ} count++;
8 ¥ ‘
9 #pragma omp task depend(in:x) gfp;ﬂs‘e'ﬁzybyta“
10 {
tasksegment s3 ‘ . 4+
I:J-l;> int temp = total + count; — H relation by program
12 7 total = temp; R order
v B
tasksegment s4 | 14 #pragma omp taskwait “— HB relation by task wait
) . i
\ 15 print(total) i
16 } ‘

Fig. 3. Example with four categories of HB relation among operations of tasks

We use example Fig. 3 to illustrate the four categories of HB relations. The
memory operations at lines 11 and 12 belong to the same tasksegment s3 and
thus are ordered by program order. Moreover, there is an HB relation between
memory operations at lines 4 and 7 because their corresponding tasksegments
have an HB relation through task creation synchronization operation as task t
executing the single region creates an explicit task u at line 5. Moreover, all oper-
ations in tasksegment s2 happen-before all operations in tasksegment s8 because
of specified dependency between tasks v and v. Finally, memory operations in
tasksegments s3 and s4 happen before the print statement in tasksegment s4
because of the wait synchronization operation at line 14. Without taskwait, we
would not be able to establish an HB relation between s/ with s2 or s3.

3.4 Determinacy Race Detection Algorithm

Algorithm 1 provides pseudo-code for determinacy race detection between any
two memory operations (o and) in an OpenMP program. Between lines 4
and 9, it retrieves information of the operations: their task identifiers (IDs),
tasksegment IDs as well as the memory addresses they accessed. Then at line
10, the algorithm checks if the operations access the same memory location

Runtime Determinacy Race Detection for OpenMP Tasks 37

and belong to two different tasks and tasksegments. At line 11, it checks if the
corresponding tasksegments do not have an HB relation as inferred using the
four HB types from Sect. 3.3. If there is no HB, then it reports a determinacy
race bug if one operation is a write and the other a read at lines 12 and 13. In
the case that they both are write actions, it reports a determinacy race if they
are not commutative (lines 14-16).

Algorithm 1. Detecting determinacy race between two shared memory opera-
tions
1: procedure CHECKDETERMINACYRACE(«, ()

2: Input: « > a shared memory operation
3: Input: ¢ > another shared memory operation
4: t « getTaskID(«)

5: u « getTaskID(3)

6: segr < getTasksegmentID(«)

T: sega «— getTasksegmentID(/3)

8: mem; «— getMemoryAddress(c)

9: mems «— getMemoryAddress(3)

10: if mem; = mems and t # u and seg: # seg> then > on different tasks
11: if not HappensBefore(segi, segz) then > check if no HB
12: if isWrite(a) # isWrite(3) then > one write, one read
13: REPORTBUG (o, 3)

14: else if isWrite(a) and isWrite(3) then > both write
15: if not isCommutative(c, 3) then > check commutativity
16: REPORTBUG (o,)

17: end if

18: end if

19: end if

20: end if

21: end procedure

Detecting Commutative Operations: Shared memory accesses can result in
falsely detected determinacy races if these accesses involve in commutative arith-
metic operations between same-lock critical sections. Two concurrent arithmetic
operations on a shared memory location are commutative if their order of execu-
tion does not alter the final value produced. For example, if var += temp1 and
var -= temp2 are in two different same-lock critical sections, then re-ordering
them does not affect the final value of var. Thus in line 16 of Algorithm 1, we
use the formalization of commutativity operation detection proposed in [18] to
identify such memory actions and do not report determinacy races on them.

4 Implementation

As shown in Fig.4, we implement our method as a tool that has three main
parts (i) instrumentation; (ii) inferring happens-before relation between program
operations; and (iii) determinacy race detection at runtime.

38

1.

H. S. Matar and D. Unat

s N —
Determinacy Race OMPT
Detection Runtime Callbacks

N c B [U C R CR

Shared Memory T ~OM\ Determinacy 3
| OpenmP | e o Ol Race (| Ermor
Code ‘—> Access —V\\\\Lmkmg/// _>405<Q> Detection Report
1/ ~_— W

Instrumentation
Q@ ©

Fig. 4. Showing implementations of TaskSanitizer: architecture and tool flow

Instrumentation: We instrument an OpenMP program source code at
compile-time through LLVM/Clang infrastructure [15]. The instrumentation
injects our determinacy race detection runtime callbacks, which implement
Algorithm 1, in step). We customize the shared memory instrumentation
module of ThreadSanitizer [24] to identify shared memory operations and
associated source code line numbers and functions for traceability in case
of determinacy races. Moreover, we identify and store program statements
which are in critical sections. These are later used by our algorithm to detect
commutative operations on potential determinacy races where our tool does
not report them if the ordering of those critical sections does not alter the
final output.

Constructing HB relations: To capture HB ordering between tasks and
operations, we implemented a module that uses the OMPT interface [7] in
step @ of Fig.4 to register callbacks which capture synchronization opera-
tions. First, we locate the implicit tasks as well as explicit tasks defined using
the tasking clause for specifying the ordering of program events. Second,
task dependencies through depend clause as well as custom synchronization
idioms such as locks and barriers are located to reason about the happens-
before ordering. Finally, we use these operations to infer HB relations between
task operations. Moreover, we assign a unique identification to each task and
tasksegment at creation, during program execution. This has three advantages
(a) Unique ID differentiates different instances of the same task code block or
tasksegment executed at different times. (b) A task may run to completion by
a single thread or its parts may be scheduled to different threads. Similarly
two concurrent tasks may be executed by the same thread. Our approach is
transparent from threads, hence regardless which thread(s) execute a task, a
unique ID preserves its dependencies with other tasks and avoids false deter-
minacy race alarms. (¢) Each tasksegment has the same set of HB meta-data,
as opposed to each memory operation, thus unique ID of the tasksegment is
used to retrieve HB metadata for each of its memory operations.

Runtime determinacy race detection: As shown in Fig.4, we link the
library we implemented at step) to produce the instrumented executable
binary, which executes at step @). At step (®) relevant program events are
captured at runtime and detection is performed and a bug report is generated
in step 6. The tool reports a pair of line numbers where a common shared
memory location was accessed by concurrent tasks. This pair is helpful for

Runtime Determinacy Race Detection for OpenMP Tasks 39

the developer to revisit the source code and eliminate determinacy races. This
module also implements the technique proposed in [18] to check if operations
with determinacy races are commutative as they execute in critical sections
of the same lock given that their execution order does not affect final output
of the program to reduce false positives.

5 Results

We evaluate our tool on nine micro-benchmarks on three categories: (a) the
number and nature of determinacy races reported as well as no determinacy races
reported in correct programs, (b) detection comparison with Archer [3], (c) the
runtime overhead with respect to input size. We first provide a brief summary of
the applications before discussing evaluation results. The first five applications
are custom implementations with races, accessible through TaskSanitizer®.

— RacyBackgroundExample: implements the example in Fig.1. There are
two tasks each containing a critical section associated with the same lock.
One task sets 1 to shared variable ¢ while the other sets 2 without enforced
dependency thus exhibiting a determinacy race as these operations do not
commute even though they are in critical sections.

— RacyBanking: We mimic the motivating banking example in [18]. An initial
task sets the account balance to 1000. Then three concurrent tasks access
the account balance without specified dependency among them, thus causing
three determinacy races and the updates on the account do not commute.

— RacyFibonacci: This program computes Fibonacci of a given number n
using memoization technique of caching intermediate results in a shared
integer array. A task for n creates two concurrent child tasks to compute
Fibonacci of n-1 and n-2, respectively, and each stores its result in the mem-
oization array. The task then sums the results from the array after a syn-
chronization barrier with the child tasks. There are determinacy races in
this example on five program locations between two concurrent sibling tasks
as they access the memoization array without inferred dependency between
them.

— RacyMapReduce: constructs histogram of words from a text file. It splits
the input text into four chunks. Then each chunk is processed by map tasks.
The partial results are merged into a final histogram by reduce tasks which are
concurrent to each other, exhibiting four determinacy races while inserting
new words into the final histogram and updating word counts.

— RacyPointerChasing: traverses a singly-linked list and creates an explicit
task for each node to insert a number to the node for the purpose of forming
an arithmetic sequence in the linked-list. In this program, two random nodes
in the list mistakenly contain common memory address for storing their terms
which breaks the arithmetic sequence. As a result, their corresponding tasks
concurrently write values to the memory, causing a determinacy race.

! https://github.com /hassansalehe/ TaskSanitizer /tree/master /src/benchmarks.

https://github.com/hassansalehe/TaskSanitizer/tree/master/src/benchmarks

40

H. S. Matar and D. Unat

sectionslock1-orig-no: As part of the DataRaceBench micro-benchmark
suite [17], this program creates two parallel sections, which have critical sec-
tions in which one section increases a shared variable by 1 and other section
increases it by 2. There are no determinacy races because these operations in
critical sections commute and our tool does not report a bug.
taskdep1-orig-no: As part of DataRaceBench, the program creates two
explicit tasks with the first task setting 1 to a shared variable and the suc-
ceeding sibling task setting 2. These tasks have specified dependency between
them and thus no determinacy races.

taskdep3-orig-no: As part of DataRaceBench, this program creates two
explicit tasks. The first task has dependency with each of the other sibling
tasks which are concurrent to each other. Since the concurrent tasks only read
from a shared variable, there is no determinacy race.
taskdependmissing-orig-yes: As part of DataRaceBench, this program
creates two concurrent explicit tasks which have no dependency in between.
They modify a shared variable and thus constitute a determinacy race.

Table 1. Comparing detection results of TaskSanitizer against Archer

Application Input | Number | Known | TaskSanitizer | Archer
size of tasks |races Races found | Races found
RacyBackgroundExample |- 6 1 1 0
RacyBanking - 11 3 3 2
RacyFibonacci 5 137 8 8 11
RacyMapReduce - 17 4 4 1
RacyPointerChasing 14 34 1 1 0
sectionslock1-orig-no - 2 0 0 0
taskdepl-orig-no - 6 0 0 0
taskdep3-orig-no - 8 0 0 0
taskdependmissing-orig-yes | - 6 1 1 Oorl

5.1 Precision Evaluation of TaskSanitizer

Table 1 lists the reported bugs by our tool, TaskSanitizer and number of determi-
nacy races known in advance for micro-benchmarks. In RacyBackgroundEx-
ample two concurrent tasks execute two critical sections which each sets differ-
ent value to a shared memory location. This exhibits a determinacy race since the
tasks do not have HB relation and their memory operations do not commute in
critical sections. Our tool does not check for commutativity in remaining buggy
programs as their operations happen outside critical sections. Even though tasks
with critical sections in sectionslock1-orig-no do have dependency, there is no
determinacy race reported because increment operation in these sections com-
mute. Finally, our tool does not report false positives in the remaining programs.

Runtime Determinacy Race Detection for OpenMP Tasks 41

5.2 Comparing Detection with Archer

We compare our determinacy race detection results with data race detection
results of Archer [3], which is an efficient tool based on ThreadSanitizer for
detecting data races. Data race detection in Archer differs from determinacy race
detection in our approach on two essences: (i) It relies on thread-level concur-
rency and thus it fails to detect races in concurrent tasks scheduled to execute by
the same thread. (ii) It aims at detecting violations of locking critical sections
which have shared memory accesses whereas our method focuses on different
ordering of events leading to determinacy races.

As shown on Table 1, Archer failed to detect races in RacyBackgroundEx-
ample and RacyPointer Chasing despite multiple runs. Archer fails to detect
the race in RacyBackgroundExample because memory operations are pro-
tected by a common lock. However, our tool detects determinacy races because
the locks do not enforce deterministic ordering and thus the program can produce
different results at different runs.

Archer does not detect a race in taskdependmissing-orig-yes and other
buggy programs when concurrent tasks in the program are scheduled to exe-
cute with one thread. Therefore, Archer detects the race only if two tasks are
executed by different threads whereas our tool detects the determinacy race in
the program at all runs. This is because Archer depends on program threads
to infer concurrency whereas our approach abstracts away threads and detects
determinacy races at task level. Moreover, the number of races it reported on
the remaining buggy programs varied from zero to the expected depending on
scheduling of concurrent tasks to different threads. However it detected two races
in RacyBanking and did not produce false alarms in correct programs.

5.3 Overhead Evaluation

Even though the focus of this work is the method for detecting determinacy
races, we also measured the slowdown of determinacy race detection in the
micro-benchmark applications which accept varying input sizes, namely Racy-
Fibonacct and RacyPointerChasing as shown in Fig. 5. By increasing input

o 11 - 1.25
g g
3 g 1.2
E 1.05 E
n n

1 1.15

20 70 120 100 200 300
number (n) number of nodes
—e— RacyFibonacci ‘ —— RacyPointerChasing

Fig. 5. Slowdown of determinacy race detection in programs as input size increases

42 H. S. Matar and D. Unat

size, we calculated execution times of the application without determinacy race
detection as well as with detection. We calculated slowdown by dividing detec-
tion time by execution time without detection. The determinacy race detection
slowdown from this experimental setting ranges from 1.0 to 1.26X, but we plan
to evaluate with larger applications in our future work.

6 Related Work

Archer is an efficient tool for detecting data races in OpenMP programs between
concurrent threads [3]. Through LLVM, it uses static analysis polyhedral tech-
niques to ignore sequential code and instrument concurrent portion of the pro-
gram. Then it uses runtime analysis to detect races in those parts by employing
ThreadSanitizer [24] race detector in the background. In contrast, we detect
determinacy races where ordering between concurrent components is missing.
Archer may fail to detect such cases and it also misses concurrent tasks exe-
cuted by the same thread. By building the happen-before relations on tasks
rather than threads, we can catch these situations.

Determinacy race detection in [25] targets task-based programming models
with async, finish and future constructs. There are works on detecting deter-
minacy races in a very strict two-dimensional pipeline parallel program struc-
tures which restrict task dependency to at most two [6,27]. Other works target
determinacy races [8,16,21,22] for structured parallelism programming models
like X10 and Habanero. Most work targets data race detection [9,12,19,23,24]
which manifest as a result of improper synchronization in programs.

DFinspec [18] proposes a technique for detecting output nondeterminism for
Atomic Dataflow (ADF) [10] programs due to missing or improper ordering
among tasks. It assumes that all concurrent portions of the program execute in
atomic tasks. Unlike ADF, in OpenMP tasks are not atomic, thus the proposed
solution in DFinspec would not work on OpenMP programs. The Starsscheck
tool [5] identifies inconsistencies in pragma annotations for programs written in
Starss programs [13]. The tool verifies that the programmer correctly annotates
the application by checking the input and output dependencies of tasks. By
assuming that a task accesses shared memory through only input dependencies,
it fails to detect concurrent tasks accessing shared memory locations that are
not specified through input dependencies.

A closely related work [8] proposes an algorithm for detecting determinacy
races for Cilk programs [4] in which a spawned thread may execute concurrently
with parent or sibling threads. These threads may need proper synchronization
for shared memory accesses. We target OpenMP tasks where a task becomes
runnable when all its dependencies are satisfied. Vechev et. al [26] uses a static
sequential analysis to verify determinism for task-based parallel programs by
leveraging numerical abstractions. They locate code sections that can execute
concurrently and check for dependent memory accesses between those sections.

Runtime Determinacy Race Detection for OpenMP Tasks 43

7 Conclusion

We propose a method to detect determinacy races in OpenMP tasks where
unintended missing dependency between tasks can result in nondeterministic
execution. We define happens-before relation among tasks based on their depen-
dencies for determining an execution order when detecting determinacy races
and implement our algorithm as a tool on top of ThreadSanitizer. We evalu-
ated our solution with a set of small applications in terms of bug detection and
overhead. The tool successfully finds bugs in benchmarks and its efficiency is
reasonable.

Acknowledgments. This work has been funded under the Affordable Safe & Secure
Mobility Evolution (ASSUME) project for smart mobility.

Data Availability Statement and Acknowledgments: The datasets and code
generated during and/or analysed during the current study are available in the Figshare
repository: https://doi.org/10.6084 /m9.figshare.6392252

References

1. Openmp 3.0 api. www.openmp.org/wp-content/uploads/spec30.pdf
Openmp 4.0. http://www.openmp.org/wp-content /uploads/OpenMP4.0.0.pdf

3. Atzeni, S., et al.: ARCHER: effectively spotting data races in large OpenMP appli-
cations. In: 2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), pp. 53-62, May 2016

4. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. SIGPLAN Not. 30(8), 207216
(1995)

5. Carpenter, P.M., Ramirez, A., Ayguade, E.: Starsscheck: a tool to find errors in
task-based parallel programs. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.)
Euro-Par 2010. LNCS, vol. 6271, pp. 2-13. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15277-1_2

6. Dimitrov, D., Vechev, M., Sarkar, V.: Race detection in two dimensions. In: Pro-
ceedings of the 27th ACM Symposium on Parallelism in Algorithms and Architec-
tures, SPAA 2015, pp. 101-110. ACM, New York (2015)

7. Eichenberger, A.E., et al.: OMPT: an OpenMP tools application programming
interface for performance analysis. In: Rendell, A.P., Chapman, B.M., Miiller, M.S.
(eds.) IWOMP 2013. LNCS, vol. 8122, pp. 171-185. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40698-0-13

8. Feng, M., Leiserson, C.E.: Efficient detection of determinacy races in cilk programs.
Theory Comput. Syst. 32(3), 301-326 (1999)

9. Flanagan, C., Freund, S.N.: FastTrack: efficient and precise dynamic race detection.
In: Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, pp. 121-133. ACM, New York (2009)

10. Gajinov, V., Stipic, S., Unsal, O., Harris, T., Ayguade, E., Cristal, A.: Integrating
dataflow abstractions into the shared memory model. In: 2012 IEEE 24th Interna-
tional Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), pp. 243-251, October 2012

N

https://doi.org/10.6084/m9.figshare.6392252
www.openmp.org/wp-content/uploads/spec30.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://doi.org/10.1007/978-3-642-15277-1_2
https://doi.org/10.1007/978-3-642-15277-1_2
https://doi.org/10.1007/978-3-642-40698-0_13

44

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

H. S. Matar and D. Unat

Hong, S., Kim, M.: A survey of race bug detection techniques for multithreaded
programmes. Softw. Test. Verif. Reliab. 25(3), 191-217 (2015)

Kuru, I., Matar, H.S., Cristal, A., Kestor, G., Unsal, O.: PaRV: parallelizing run-
time detection and prevention of concurrency errors. In: Qadeer, S., Tasiran, S.
(eds.) RV 2012. LNCS, vol. 7687, pp. 42-47. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-35632-2_6

Labarta, J.: StarSs: a programming model for the multicore era. In: PRACE Work-
shop “New Languages & Future Technology Prototypes” at the Leibniz Supercom-
puting Centre in Garching (Germany) (2010)

Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558-565 (1978)

Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO 2004), Palo Alto, California, March
2004

Lee, I.T.A., Schardl, T.B.: Efficiently detecting races in cilk programs that use
reducer hyperobjects. In: Proceedings of the 27th ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA 2015, pp. 111-122. ACM, New York (2015)
Liao, C., Lin, P.H., Asplund, J., Schordan, M., Karlin, I.: DataRaceBench: a bench-
mark suite for systematic evaluation of data race detection tools. In: Proceedings
of the International Conference for HPC, Networking, Storage and Analysis, SC
2017, pp. 11:1-11:14. ACM, New York (2017)

Matar, H.S., Mutlu, E., Tasiran, S., Unat, D.: Output nondeterminism detection for
programming models combining dataflow with shared memory. Parallel Comput.
71, 42-57 (2018)

Matar, H.S., Tasiran, S., Unat, D.: EmbedSanitizer: runtime race detection tool
for 32-bit embedded ARM. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol.
10548, pp. 380-389. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67531-2_24

Matar, H.S., Unat, D.: Source code and user guide for euro-par 2018 paper: runtime
determinacy race detection for OpenMP tasks. Figshare (2018). https://doi.org/
10.6084/m9.figshare.6392252

Raman, R., Zhao, J., Sarkar, V., Vechev, M., Yahav, E.: Efficient data race detec-
tion for async-finish parallelism. In: Barringer, H., et al. (eds.) RV 2010. LNCS,
vol. 6418, pp. 368—-383. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16612-9_28

Raman, R., Zhao, J., Sarkar, V., Vechev, M., Yahav, E.: Scalable and precise
dynamic datarace detection for structured parallelism. In: Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2012, pp. 531-542. ACM, New York (2012)

Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a
dynamic data race detector for multi-threaded programs. In: Proceedings of the
16th ACM Symposium on Operating Systems Principles, SOSP 1997, pp. 27-37.
ACM, New York (1997)

Serebryany, K., Iskhodzhanov, T.: ThreadSanitizer: data race detection in practice.
In: Proceedings of the Workshop on Binary Instrumentation and Applications,
WBIA 2009, pp. 62-71. ACM, New York (2009)

Surendran, R., Sarkar, V.: Dynamic determinacy race detection for task parallelism
with futures. In: Falcone, Y., Sdnchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp.
368-385. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9_23

https://doi.org/10.1007/978-3-642-35632-2_6
https://doi.org/10.1007/978-3-642-35632-2_6
https://doi.org/10.1007/978-3-319-67531-2_24
https://doi.org/10.1007/978-3-319-67531-2_24
https://doi.org/10.6084/m9.figshare.6392252
https://doi.org/10.6084/m9.figshare.6392252
https://doi.org/10.1007/978-3-642-16612-9_28
https://doi.org/10.1007/978-3-642-16612-9_28
https://doi.org/10.1007/978-3-319-46982-9_23

26.

27.

Runtime Determinacy Race Detection for OpenMP Tasks 45

Vechev, M., Yahav, E., Raman, R., Sarkar, V.: Automatic verification of deter-
minism for structured parallel programs. In: Cousot, R., Martel, M. (eds.) SAS
2010. LNCS, vol. 6337, pp. 455-471. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15769-1_28

Xu, Y., Lee, I.T.A., Agrawal, K.: Efficient parallel determinacy race detection for
two-dimensional dags. In: Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2018, pp. 368-380.
ACM, New York (2018)

https://doi.org/10.1007/978-3-642-15769-1_28
https://doi.org/10.1007/978-3-642-15769-1_28

l‘)

Check for
updates

Estimating the Impact of External
Interference on Application Performance

Aamer Shah®, Matthias Miiller!, and Felix Wolf2(=)

1 IT Center, RWTH Aachen University, Aachen, Germany
{shah,mueller}@itc.rwth-aachen.de
2 Laboratory for Parallel Programming, TU Darmstadt, Darmstadt, Germany
wolf@cs.tu-darmstadt.de

Abstract. The wall-clock execution time of applications on HPC clus-
ters is commonly subject to run-to-run variation, often caused by exter-
nal interference from concurrently running jobs. Because of the irregu-
larity of this interference from the perspective of the affected job, perfor-
mance analysts do not consider it an intrinsic part of application execu-
tion, which is why they wish to factor it out when measuring execution
time. However, if chances are high enough that at least one interference
event strikes while the job is running, merely repeating runs several times
and picking the fastest run does not guarantee a measurement free of
external influence. In this paper, we present a novel approach to estimate
the impact of sporadic and high-impact interference on bulk-synchronous
MPT applications. An evaluation with several realistic benchmarks shows
that the impact of interference can be estimated already based on a single
run.

1 Introduction

On many HPC systems, the execution time of applications varies considerably
between runs, which makes performance measurements hard to reproduce and
challenges their validity. Possible sources of variation include operating system
jitter, different process-to-node mappings, or contention on shared resources.
While modern operating systems reduced their noise footprint [16], contention
on heavily loaded centralized file systems and communication interconnects, such
as torus and dragonfly networks, are still contributing to performance varia-
tion [3,21]. Because such external interference occurs randomly, benchmarking
has become complicated.

Usually, performance analysts prefer measurements that are as close as pos-
sible to an application’s intrinsic behavior, that is, without external influence
beyond their control. To achieve this on a system with strong performance inter-
ference among jobs, one could take multiple measurements and pick the run with
the shortest execution time or the average or median if a certain degree of inter-
ference is considered natural. No matter how, this strategy is both expensive
and unreliable because neither may the minimum be free of interference nor the
© Springer International Publishing AG, part of Springer Nature 2018

M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 46-58, 2018.
https://doi.org/10.1007/978-3-319-96983-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_4&domain=pdf

Estimating the Impact of External Interference 47

average or median representative. After all, the system load also changes along
macroscopic time scales (e.g., daytime or season).

To help performance analysts decide how much they can “trust” their bench-
marking results and whether they need to repeat measurements, we present a
novel approach to estimate the impact of external interference on the execu-
tion time of a common class of MPI applications. As a distinctive feature, our
method can deliver such an estimate with negligible overhead based on a single
run. Moreover, it is agnostic to the source of interference. Instead, it exploits the
properties of bulk-synchronous MPI applications that perform frequent global
all-to-all operations. Such applications not only make up a significant portion of
HPC workload (almost two-thirds of unique benchmarks in the SPEC MPI suite
fall in this category), they are also most sensitive to external interference [1,7,10].

The remainder of the paper is structured as follows. While Sect. 2 provides
the details of our approach, Sect.3 demonstrates the accuracy of our estimates
in a series of experiments. After presenting related work in Sect.4, we review
our results in Sect. 5.

2 Approach

Most HPC applications are iterative in nature. After a brief initialization, they
go through different phases that are repeated over and over. Similar phases have
similar execution times unless a phase instance is struck by external interference.
The stronger the impact, the greater the elongation of the execution time.

Figure 1a shows a trace snippet of a typical HPC application. The application
performs several iterations, whose execution times are, however, not uniform.
The execution-time histogram in Fig. 1 illustrates two sources of variation — one
intrinsic and one extrinsic. Intrinsic variation arises from programmatic differ-
ences because, for example, some iterations may calculate some extra physics
every once in a while or store checkpoints. The example shows two classes of
iterations, A and B, distinguished by their programmatic characteristics and
visible as two peaks in Fig. 1b. The variation that remains after separating these
two classes, as shown in Fig. 1c and 1d, is extrinsic and the result of noise such
as interference from other jobs that happen to run at the same time.

The key idea of our approach is to divide the execution of a program into
segments and classify them according to their intrinsic characteristics. In a noise-
free environment, segments within each class are then expected to consume the
same amount of time. Conversely, variations that occur within each class are
likely caused by noise. Because execution time is subject to such noise, we have
found hardware and software counters that reflect computation, communication,
and file I/O features to be suitable metrics for our programmatic classification
of execution segments.

To identify segments, we take advantage of the bulk-synchronous nature of
many HPC applications, specifically we exploit periodic (blocking) all-to-all com-
munication. Although this practically restricts our method to such applications,
we claim that we can still cover major portions of today’s HPC workloads. After

48 A. Shah et al.

Iteration 1 Iteration 2 = Iteration 3 Iteration 4 Iteration 5 Iteration 6

SRINNRRK]

R
| %% SR
o oo Soraosanets SIS IR

= oA e oot te o0t oositess R RIAIRE R ORIRRKIRK
ORI BRI oottt esatetosatesore!
RN BRRIRRRRRRRRERR] RN
d B R POAOINIIIEN Sttt

BINIIIILIIIEe2e%?
Class A Cla

Class B Class B

(a) An example application trace

200 200 200

o2

2150 2150 150

S o <

= 100 = 100 3 100

.2 2

£ 50 g 50 50

& =

0] | 0] | 0] |
Time Time Time
(b) Combined histogram (c) Class A histogram (d) Class B histogram

Fig. 1. Application iterations and their histograms.

all, this is not an uncommon feature. For example, almost two-thirds of unique
benchmarks in the SPEC MPI suite fall into this category. At the same time,
applications with frequent all-to-all communication suffer more than others from
external interference because every delay of a process will likely induce waiting
time in all others.

We use global all-to-all communication operations as a boundary between
execution segments. These might not exactly match programmatically specified
iterations, but are expected to divide the execution into repeatedly executed
pieces. For example, an all-to-all operation will likely appear at least once in
every iteration of the core loop. Furthermore, such all-to-all operations consti-
tute global synchronization points among processes. Although the MPI standard
does not explicitly require it, the nature of all-to-all operations implies it. This
makes the execution segments between them independent with respect to the
propagation of wait states that occur in response to external interference. A
wait state whose root cause lies within a segment will not propagate across a
global synchronization point [4]. For applications using non-blocking collectives,
the wait operation of the collective call could be used as a boundary indica-
tor, while for non-bulk-synchronous applications recurring MPI calls may serve
this purpose. However, in both cases, adjacent execution segments may not be
fully independent, with wait states and interference-induced delays potentially
propagating across segment boundaries. We therefore concentrate on blocking
collectives in this study and consider the remaining cases as future work.

Profiling Methodology. To classify segments, we count computation, com-
munication, and file I/O operations or volumes per segment and process using
LWM? [18], a low-overhead profiler, which leverages the PMPI interface to find
segment boundaries and collect metrics related to MPI. The specific metrics we
capture are discussed further below. At the end of each all-to-all collective call,
the profiler stores information pertaining to the completed segment in memory.

Estimating the Impact of External Interference 49

To reduce storage requirements, the values for each metric are quantized into 256
unique bins. When the number of unique values exceeds the number of bins, the
two bins with the least distance between them are merged. Instead of actual val-
ues, a segment profile stores the indices of the corresponding bins. Whenever bins
are merged, the indices in the segment profiles are updated accordingly. After
the program has ended, we merge per-process bins into 512 unique program-wide
bins. To keep computation diversity among segments manageable, a segment is
always represented by the median of the computation feature metric across pro-
cesses. For communication and file I/O, such aggregation is only performed if
the diversity among segments exceeds a threshold.

Grouping Segments Based on Computation Features. To classify seg-
ments, we first compare them in terms of the amount of computation they are
supposed to complete. To measure the amount of work, we count the number
of floating-point instructions using hardware counters. When the floating-point
counter is not available, as on some generations of modern processors, we use the
total number of completed instructions as a proxy. To shield them from noise, we
only count them outside communication or I/O operations. While the captured
values are still perturbed by OS jitter, we have found floating-point operations
to be most stable. The total instruction count shows still less than 1% variability.

We establish similarity among segments by clustering them based on the
above instruction counts as features. As the duration of segments in an appli-
cation can vary widely, the possible range of feature values can be quite large.
Furthermore, OS jitter and inaccuracies introduced when reading and storing
hardware counters [6] cause variation among hardware-counter values from sim-
ilar segments. Therefore, the most appropriate clustering algorithm for our task
needs to handle a large range of values, and at the same time be tolerant to
variations inside a cluster.

Common clustering algorithms such as k-means require the number of clus-
ters to be known a priori. If such information is not available, such algorithms
are executed for a range of cluster counts and an internal cluster criterion, such
as the Calinski and Harabasz (CH) criterion, is applied to identify the most
appropriate number of clusters. Even for a particular number of clusters, these
clustering algorithms require several iterations to find the optimum centroids.
These factors result in algorithms that, overall, are complex to implement and
can take a significant amount of time for large numbers of data points.

Clustering with Relative Distance. Density-based algorithms such as
DBScan seem to present an alternative. They can identify the appropriate num-
ber of clusters in a single pass. Such algorithms use a distance threshold to split
the data points into clusters. However, relying on a fixed distance for a large
range of values results in either merging distinct clusters with lower values if the
threshold is too large, or splitting a single cluster with a modest range of higher
values into multiple clusters if the threshold is too small.

To overcome these difficulties, we designed a simple clustering algorithm that
can identify clusters in one-dimensional data even with a large value range in

50 A. Shah et al.

a single pass. The algorithm requires the data type to have a total order and
a threshold for the maximum relative distance between any two data points in
a cluster. We define the relative distance between two points as their distance
divided by the smaller of the distances of the two points from the origin. As
the algorithm relies on relative distance, it can identify clusters with a modest
degree of internal variance both at the lower and higher end of the value range.
Our algorithm first sorts all the values in ascending order and then assigns the
smallest element to the first cluster. After that, it iterates through the remaining
sequence and, at each step, picks the value at position i from the sorted list that
was assigned to a cluster in the previous step and determines the relative distance
to the next value at i + 1. If the relative distance is less than the threshold, the
value at ¢ + 1 is placed in the same cluster as the value at . Otherwise, a new
cluster is created for the value at ¢ + 1.

Using SPEC MPI benchmarks, we compared our new algorithm with k-
means and an expectation-maximization (EM) algorithm that assumes the data
to exhibit a mixed Gaussian distribution. Specifically, we analyzed the mean
normalized standard deviation of the created clusters and the percentage of
segments that ended up in clusters of less than five elements, which is the min-
imum size below which clusters are not considered for interference estimation.
K-means identified tightly fitting clusters but left a larger portion of segments
unclustered (up to 8%). EM, on the other hand, clustered almost all segments,
but created clusters of high internal variance. We tried our new algorithm with
several relative-distance thresholds, including 0.2, 0.1, and 0.05. With a relative-
distance threshold of 0.1, the threshold we use in the remainder of this study,
our customized algorithm identified clusters with slightly higher variance than
k-means, but left only half the number of segments unclustered.

Grouping Segments Based on Communication and File I/O Features.
As communication and I/O features of a segment we consider the number and
accumulated volume of communication and I/O operations, including the num-
ber of point-to-point send/receive calls broken down by their blocking seman-
tics, the number of collective calls broken down by their number of senders vs.
recipients, and the number of bytes sent or received through them. Similarly, as
file-I/O features we capture the number of open/close operations, the number
of read /write operations and the accumulated number of bytes read or written.
Since there is no clear relationship between these metrics and the execution time
of a segment, we consider the corresponding values as nominal data. For exam-
ple, a segment may run longer than another segment, although its number of
sends is smaller. At the same time, these metrics are fairly stable and usually
not subject to any jitter. Thus, we consider all segments that share the same
unique combination of communication and file I/O metrics a separate group.

Estimating Interference. We estimate the impact of interference based on the
segment profile of a single run. First, we cluster the segments according to their
computation features, as described earlier. After that we split each cluster into

Estimating the Impact of External Interference 51

groups according to the communication and file-I/O features of its elements.
The segments in each of the resulting groups are assumed to exhibit similar
behavioral characteristics and consume about the same intrinsic execution time.

Any segment in a group that has a significantly higher execution time is
considered to be affected by interference. More precisely, we classify a segment as
interfered if its execution time is four MAD greater than the median of the group,
with MAD (Median Absolute Deviation) being MAD = median(|X; —median(X)]).
Median and MAD are known for their robustness to variability. The threshold of
four MAD greater than median gives a confidence interval of more than 99.5%.
The impact of interference on a segment is estimated as the portion of execution
time of the segment in excess of the threshold. Adding the interference impact
computed for all segments yields the interference impact for the entire program
and is provided as a percentage of the (interfered) execution time.

Separating Instantaneous Interference from Continuous Interference.
Execution time variation can arise from either high-frequency but usually low-
impact interference such as certain types of OS jitter or from low-frequency
but often high-impact interference such as sudden I/O contention. We call the
former kind continuous interference, and the latter kind instantaneous interfer-
ence. Continuous interference affects almost all segments of a profile, and as a
result also affects the median in a group. In contrast, instantaneous interference
only affects selected segments, and the median remains largely unaffected. While
both kinds of interference prolong execution time, instantaneous interference is
more likely to create undesirable artifacts in performance measurements a perfor-
mance analyst may wish to remove. In contrast, continuous interference is often
seen as an unavoidable evil one has to live with on a given system. Our app-
roach only reports instantaneous interference. The median displacement caused
by continuous interference ensures that it leaves no imprint on our estimates.

Tool Workflow. LWM? profiles the target application during execution, cap-
turing the required metrics separately for each segment. At the end of the exe-
cution, LWM? writes a segmented profile to disk. Later, the profile is subjected
to automatic interference estimation in Matlab. First, we classify the segments
into different groups based on their features. Later, we estimate the impact of
interference first for each segment group, and then aggregate the results for the
whole application.

3 Evaluation

To evaluate our approach, we use the following benchmarks: (i) those seven
codes from the SPEC MPI 2007 suite V2.0 that are bulk-synchronous accord-
ing to our definition and that have a large data set available; (ii) Sweep3D, a
time-independent 3D neutron transport simulation; and (iii) HACC, an appli-
cation that simulates the formation of collision-less fluids and whose regular

52 A. Shah et al.

checkpointing behavior makes it a popular I/O benchmark. We test our method
both in a controlled environment with artificially injected interference, and on a
production system with real interference.

Experimental Setup. Because of its low OS jitter, we chose JUQUEEN, an
IBM BlueGene/Q system, as our controlled environment. Each of its 28,672
compute nodes consist of a 16 core IBM PowerPC®A2 processor and 16 GB
of memory. JUQUEEN has a 5D Torus communication interconnect and mini-
mizes network interference by making node boards with 512 cores the smallest
allocation unit. Since its GPFS file system is shared, JUQUEEN cannot be con-
sidered controlled for I/O intensive workloads though, which, however, among
our benchmarks only affects HACC. For our tests under production conditions,
we use Hazel Hen, a Cray XC40 system with 7712 compute nodes, each of them
featuring two 12-core Intel Haswell E5-2680v3 processors and 128 GB of memory.
Applications running on Hazel Hen are known to experience significant run-to-
run variation, majorly due to cache misses in the Aries chip under heavy network
load from multiple applications [9].

Evaluation Methodology. With the exception of the file system, our con-
trolled environment is without any significant natural interference. This is why
the runtime of a job is usually close to its intrinsic execution time, providing us
with a ground truth for interference-free execution. To test our method, we inject
artificial interference into application runs using a tool called intM (interference
Modeler), which we have developed for this purpose. intM sits as an interposition
wrapper between an application and the runtime, and mimics network and file
I/0 interference by introducing delays in function calls. intM supports interfer-
ence injection in MPI communication and I/O functions, as well as in POSIX
I/O. The interference added to the regular execution time follows a Gaussian
distribution, with configurable mean and standard deviation. The probability of
when an interference event strikes a communication or file I/O operation is also
configurable.

Specifically, we inject gradually increasing interference into multiple runs of
a benchmark. Figure 2 shows such runs for the SPEC MPI benchmark tera_tf as
an example. We compare the estimated with the measured impact of interference
on each run. Measured interference is the execution-time difference between a
run and the fastest run in percent of the (interfered) runtime. Estimated inter-
ference is calculated individually for each run as percentage of its runtime using
our approach without considering any other run. To clean the measured interfer-
ence from effects of continuous interference and other influences that are largely
constant across the entire duration of a run but may vary between runs, such as
different process-to-node mappings, we reduce the measured interference by the
amount of time the medians are displaced. We observe the median displacement
during clustering, and attribute it to continuous interference.

We categorize the impact of interference into the classes low, medium, and
high, as shown in Fig. 2. A low-interference run is perturbed to a negligible degree

Estimating the Impact of External Interference 53

[=2}
[en}

In\easured " Estimated

Interference [%]
= [\~ w = [
s S & 5 3

o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Runs

Fig. 2. Multiple runs of tera_tf on JUQUEEN, with measured and estimated interfer-
ence classified as low, medium, or high. Runs are sorted by execution time in descending
order.

1 1 ||lMcasuer Estimatodl
High
- 0.8 pmmmrmmmrme oo | 8 B8 B EF N [T T
= . (11.25, 0.5) =
Z06 _ 206
—g Medium % Medium
g 04 £04
U e A, WP B3 5E £ EF BE BN 53 NS A3 O II -------------------------
Low ’ I L
0 T - 0 j J N DT
0 5 10 15 20 25 30 2 4 6 8 10 12 14 16 18 20
Interference (%) Runs
(a) Logistic function (b) Highly interfered run probabilities

Fig. 3. Logistic function and the highly interfered run probabilities, when the function
is applied on the tera_tf runs.

and can be used for performance analysis, whereas a high-interference run is
heavily perturbed and should be discarded. The medium category is between
these extremes: It might be worthwhile to invest in a new performance mea-
surement, while, at the same time, the run can be used to gauge performance
at large. Using the analogy of a traffic light, low means green light for perfor-
mance analysis, medium means yellow light, and high red light. We have set
the threshold for low interference to below 7.5%, for high interference to above
15%, and classify everything in-between as medium. While such categorization is
useful to distinguish runs in practice, accuracy evaluation via hard classification
into these three categories can run into pitfalls. For example, even if the dif-
ference between measured and estimated interference of a run is small, the two
interference values can still fall into different classes, as it happened for runs 12
and 13 in Fig. 2. An alternative way of aggregating our results is calculating the
percentage-point difference between measured and estimated interference. The

54 A. Shah et al.

downside of this approach is that for highly interfered runs, the percentage-point
difference is not that critical as long as both agree on the judgment that the run
is highly interfered. Runs 1 and 2 in the figure are such cases.

Based on the intuition that the impact of interference is a measure of a run’s
suitability for performance analysis, we use a logistic function as a soft classifier
to convert the magnitude of interference into the probability of a run being
highly interfered. Using soft classification, the probability that a run previously
categorized as low is actually highly interfered should be close to zero, while for
runs categorized as high it should be near one. Similarly, at the mid-point of
the medium category, the probability should be exactly 0.5. Figure 3a shows a
logistic function that we have designed for this purpose, while Fig. 3b shows the
corresponding probabilities for the tera_tf runs.

Formally, a logistic function is an“S” shaped function that maps values from
(—o00,00) onto (0,L). It is defined as f(x) = WL’“(“W)’ where k is the
steepness, xg is the inflection point, and L is the maximum. As explained before,
we define the inflection point, xg, to be 11.25, the mid-point of the medium
class. Similarly, setting the maximum value, L, to 1, and steepness, k£ to 0.35,
the probabilities at interference magnitudes of 7.5%, 11.25%, and 15% are 0.21,
0.5, and 0.79, respectively.

Using this logistic function, we derive probabilities for measured and esti-
mated interference for each run of a benchmark. The difference between the
two probabilities is the inaccuracy of interference prediction, and its compli-
ment is the accuracy. We determine the accuracy of our approach for all the
runs of each benchmark and draw the results as boxplots (Fig. 4). As the logistic
function in Fig. 3a shows, an accuracy of less than 0.5 means a significant devi-
ation between measured and estimated interferences. To also give a more direct
impression of the results, we complement probability differences with boxplots
of the percentage-point difference between measured and estimated interference.

Results. On JUQUEEN, our controlled environment, each benchmark was exe-
cuted at least 15 times with a gradually increasing amount of artificial interfer-
ence injected. Figure2 shows the series for tera_tf as an example. The inter-
ference was adjusted in such a way that multiple runs were produced for each
interference class. We executed each benchmark on 256 nodes, with 4 processes
running on each node. Figure4a presents on the left how accurately we pre-
dict the interference probabilities and on the right the percentage-point differ-
ence between measured and estimated interference. Except for GAPgeofem, the
median accuracy for all the benchmarks on JUQUEEN is above 0.9. Similarly,
for most benchmarks, the minimum accuracy is above 0.8. This shows that in
most cases estimated and measured interference leads to the same conclusion.
That the accuracy of our predictions for certain runs of GAPgeofem was low can
be attributed to its high collective-call rate of around 300 Hz. At such a high
frequency, large numbers of small execution segments are created, easily leading
to measurement artifacts that disturb our analysis.

Estimating the Impact of External Interference 55

%?E?§PF§?§?E?E¥?%Eéé
%éé§é55
0 9V = RO

&

—_

=

o
=
o

o
>

I
=
=

Prediction accuracy

et
o

Percentage point difference

o

o

o

x\\“\)ﬁ e o \\\\‘L \‘Q\\\ \’»?‘(Q ?mo\c
G

§
e o RS %LQ‘\ e
S

(a) JUQUEEN

+ +
+

+

-
=

=3
®

=

>
—
=

=
=
ot

Prediction accuracy

=
o

Percentage point difference

e w\““;o\\’h e 9 x,*c o\‘“’\“\; \\;\\j\?ﬁc

o

? &n\c\“\\\“\v *’\\L QO\) x’\\\’c ,,,e\‘”\\\; \\\’\ \?‘CC

NS
[

(b) Hazel Hen

Fig. 4. Prediction accuracy as difference of soft classification probability (left) and
percentage-point difference (right) between measured and estimated interference.

Because of its low run-to-run variation, we also used JUQUEEN to evaluate
the overhead of our profiler. Using the same set of benchmarks, we executed
each benchmark on 128 nodes, with 4 processes running on each node. For each
benchmark, we executed two series of experiments, one instrumented and one
uninstrumented. To avoid bias caused by daytime differences, we interleaved
the execution of the two series, alternating between the instrumented and the
uninstrumented version. Each series consisted of nine experiments. Measured by
comparing execution time medians of the two series of experiments, the max-
imum dilation of execution time induced by our profiler was around 4%, but
stayed below 1% for the majority of benchmarks.

On Hazel Hen, our production environment, we executed the benchmarks
using 16 nodes, with 24 processes on each node. FEach benchmark was executed
12 times. Due to the relative small scale of the runs and the sporadic nature of
interference, many benchmarks were affected by interference to a smaller degree.
Nonetheless, highly interfered runs were encountered and were accurately clas-
sified. On the left, Fig.4b shows the prediction accuracy of benchmark runs,
complemented by the percentage-point difference between measured and esti-
mated interference on the right. The figures show that, except for GAPgeofem,
the impact of interference was estimated with a high degree of accuracy. GAP-
geofem shows again low accuracy, which may again be attributable to its high
collective-call frequency. Since the call frequency is measurable, we believe that

56 A. Shah et al.

it would be generally possible to warn the user of possible inaccuracies in such
rare cases. Finding an appropriate threshold, however, is left to future work.

4 Related Work

Performance interference from operating system jitter has been the subject of
several studies [2,5,11,17,20]. However, recent work has shown that modern
operating systems managed to reduce their noise footprint [16]. Our approach
therefore focuses on interferences from other jobs that cause contention on shared
resources such as the network or the file system. Moreover, we base our estimates
of interference on software and hardware counters that are insensitive to oper-
ating system jitter.

At the same time, network and file I/O interference became the focus of more
recent studies: Jokanovic et al. attributed loss in network throughput on slim
fat trees to inter-application contention [12]. Bhatele et al. observed significant
performance variation on Hopper due to neighbor jobs [3]. Yang et al. evalu-
ated different job placement strategies on dragonfly networks to reduce inter-
application interference [21]. Similarly, several studies identified variability in
applications I/O performance and listed simultaneous file access as one of the
possible reasons [14,15,19]. Furthermore, Kuo et. al. investigated how file access
patterns influence the degree of I/O contention [13]. All these studies show that
simultaneous access to shared resources is a major source of interference, which
our method now allows users of HPC systems to quantify.

Mondragon et al. applied extreme value theory to create interference models
that predict the execution times of bulk-synchronous applications under interfer-
ence from OS noise, asynchronous checkpointing, and in situ analytics [16]. Our
approach estimates the amount of low-frequency but high-impact interference
such applications suffer in actual runs with the goal of obtaining performance
data with low degrees of interference.

To identify similarity among execution phases of an application for the pur-
pose of performance analysis, Gonzalez et. al. used the density-based cluster-
ing algorithm DBScan [8]. To estimate interference impact, we designed a 1D-
clustering algorithm based on relative distance.

5 Conclusion

We have demonstrated that we can estimate the impact of interference with high
accuracy based on a single run. Our tool chain now provides a warning light to
performance analysts that tells them when they need to rerun their experiments
because the data they have just collected was subject to interference. It can
be integrated with other performance-analysis tools using the P*MPI interface.
In the future, we plan to create composite performance profiles free of perfor-
mance artifacts from multiple interfered measurements. This will allow judging
the intrinsic performance of applications in environments where interference is
random but due to its frequency unavoidable, making performance measure-
ments (e.g., of different code versions) easier to compare.

Estimating the Impact of External Interference 57

Acknowledgment. This work has been supported by the German Research Founda-
tion (DFG) through the Program Performance Engineering for Scientific Software and
the ExtraPeak project, by the German Federal Ministry of Education and Research
(BMBF) under Grant No. 01IH16008D, and by the US Department of Energy under
Grant No. DE-SC0015524. Additional funding was provided through the Hessian
LOEWE initiative within the Software-Factory 4.0 project. Finally, we would like to
express our gratitude to Jiilich Supercomputing Centre and High Performance Com-
puting Center Stuttgart for giving us access to their supercomputers JUQUEEN and
Hazel Hen, respectively.

References

10.

Agarwal, S., Garg, R., Vishnoi, N.K.: The impact of noise on the scaling of collec-
tives: a theoretical approach. In: Bader, D.A., Parashar, M., Sridhar, V., Prasanna,
V.K. (eds.) HiPC 2005. LNCS, vol. 3769, pp. 280-289. Springer, Heidelberg (2005).
https://doi.org/10.1007,/11602569-31

Beckman, P., Iskra, K., Yoshii, K., Coghlan, S., Nataraj, A.: Benchmarking the
effects of operating system interference on extreme-scale parallel machines. Cluster
Computing 11(1), 3—-16 (2008)

Bhatele, A., Mohror, K., Langer, S.H., Isaacs, K.E.: There goes the neighborhood:
performance degradation due to nearby jobs. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (SC 2013). IEEE Computer Society, November
2013

Béhme, D., Geimer, M., Wolf, F., Arnold, L.: Identifying the root causes of wait
states in large-scale parallel applications. In: Proceedings of the 39th International
Conference on Parallel Processing (ICPP), San Diego, CA, USA, pp. 90-100. IEEE
Computer Society, September 2010. https://doi.org/10.1109/ICPP.2010.18

De, P., Kothari, R., Mann, V.: Identifying sources of operating system jitter
through fine-grained kernel instrumentation. In: Proceedings of the IEEE Inter-
national Conference on Cluster Computing (CLUSTER), pp. 331-340, September
2007

Dongarra, J., London, K., Moore, S., Mucci, P., Terpstra, D., You, H., Zhou, M.:
Experiences and lessons learned with a portable interface to hardware performance
counters. In: Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS), pp. 1-6, April 2003

Garg, R., De, P.: Impact of noise on scaling of collectives: an empirical evaluation.
In: Robert, Y., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2006.
LNCS, vol. 4297, pp. 460-471. Springer, Heidelberg (2006). https://doi.org/10.
1007/11945918_45

Gonzalez, J., Gimenez, J., Labarta, J.: Automatic detection of parallel applications
computation phases. In: Proceedings of IEEE International Symposium on Parallel
Distributed Processing (IPDPS), pp. 1-11, May 2009

HLRS: Communication on Cray XC40 Aries network, May 2017.
wickie.hlrs.de/platforms/index.php/Communication_on_Cray_XC40_Aries_network
Hoefler, T., Schneider, T., Lumsdaine, A.: The impact of network noise at large-
scale communication performance. In: Proceedings of the IEEE International Par-
allel and Distributed Processing Symposium (IPDPS), pp. 1-8, May 2009

https://doi.org/10.1007/11602569_31
https://doi.org/10.1109/ICPP.2010.18
https://doi.org/10.1007/11945918_45
https://doi.org/10.1007/11945918_45
https://wickie.hlrs.de/platforms/index.php/CommunicationonCrayXC40Ariesnetwork

58

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A. Shah et al.

Hoefler, T., Schneider, T., Lumsdaine, A.: Characterizing the influence of system
noise on large-scale applications by simulation. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (SC 2010), pp. 1-11. IEEE Computer Society,
Washington, DC, USA (2010)

Jokanovic, A., Rodriguez, G., Sancho, J.C., Labarta, J.: Impact of inter-application
contention in current and future HPC systems. In: Proceedings of the IEEE Sym-
posium on High Performance Interconnects, pp. 15-24, August 2010

Kuo, C.S., Shah, A., Nomura, A., Matsouka, S., Wolf, F.: How file access pat-
terns influence interference among cluster applications. In: Proceedings of the IEEE
International Conference on Cluster Computing (CLUSTER), pp. 1-8 (2014)
Lang, S., Carns, P., Latham, R., Ross, R., Harms, K., Allcock, W.: I/O performance
challenges at leadership scale. In: Proceedings of the ACM/IEEE Conference on
Supercomputing (SC 2009), pp. 40:1-40:12. ACM, New York (2009)

Lofstead, J., Zheng, F., Liu, Q., Klasky, S., Oldfield, R., Kordenbrock, T., Schwan,
K., Wolf, M.: Managing variability in the IO performance of petascale storage
systems. In: Proceedings of the ACM/IEEE Conference on Supercomputing (SC
2010), pp. 1-12. IEEE Computer Society, Washington, DC, USA (2010)
Mondragon, O.H., Bridges, P.G., Levy, S., Ferreira, K.B., Widener, P.: Understand-
ing performance interference in next-generation HPC systems. In: Proceedings of
the ACM/IEEE Conference on Supercomputing (SC 2016), pp. 384-395, November
2016

Petrini, F., Kerbyson, D., Pakin, S.: The case of the missing supercomputer per-
formance: achieving optimal performance on the 8,192 processors of ASCI Q. In:
Proceedings of the ACM/IEEE Conference on Supercomputing (SC 2003) (2003)
Shah, A., Wolf, F., Zhumatiy, S., Voevodin, V.: Capturing inter-application inter-
ference on clusters. In: Proceedings of IEEE International Conference on Cluster
Computing (CLUSTER), pp. 1-5, September 2013

Shan, H., Shalf, J.: Using IOR to analyze the I/O performance for HPC platforms.
In: Cray User Group Conference (2007)

Tsafrir, D., Etsion, Y., Feitelson, D.G., Kirkpatrick, S.: System noise, OS clock
ticks, and fine-grained parallel applications. In: Proceedings of the 19th annual
International Conference on Supercomputing (ICS 2005), pp. 303-312. ACM, New
York (2005)

Yang, X., Jenkins, J., Mubarak, M., Ross, R.B., Lan, Z.: Watch out for the bully!
job interference study on dragonfly network. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (SC 2016), pp. 750-760, November 2016

®

Check for
updates

GT-Race: Graph Traversal Based Data
Race Detection for Asynchronous
Many-Task Parallelism

Lechen Yu and Vivek Sarkar(®)

College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
{lechen.yu,vsarkar}@gatech.edu

Abstract. Asynchronous Many-Task (AMT) parallelism is growing in
popularity because of its promise to support future platforms with new
heterogeneity and resiliency requirements. It supports the construction
of parallel programs with fine-grained tasks, thereby enabling portability
across a wide range of platforms. However, applications written for AMT
parallelism still remain vulnerable to data races, and existing data race
detection tools are unsuitable for AMT programs because they either
incur intractably large overheads or are limited to restricted task struc-
tures such as fork-join parallelism.

In this paper, we propose GT-Race, a new graph-traversal based data
race detector for AMT parallelism. It leverages the computation graph
data structure, which encodes the general happens-before structures in
AMT programs. After introducing a baseline algorithm for data race
detection, we propose key optimizations to reduce its time and space
complexity, including the epoch adjacency list to compress the compu-
tation graph representation, the reachability cache combined with depth
filtering to reduce the number of unnecessary traversals, and bounded
race detection to limit the range of data that is monitored. The impact
of these optimizations is demonstrated for nine benchmark programs
written for the Open Community Runtime (OCR), an open source AMT
runtime that supports point-to-point synchronization and disjoint data
blocks.

Keywords: Debugging and correctness tools - Data race detection
Asynchronous many-task parallelism

1 Introduction

With the ever-increasing complexity of modern computing architectures (e.g.,
large numbers of heterogeneous processing units, multi-level hierarchical memo-
ries, and high-bandwidth interconnect networks), applications on these machines
must leverage the architectural complexity to perform efficiently. Although
widely used high-performance parallel runtimes (e.g., PThreads, MPI, and
OpenMP) provide comprehensive low-level interfaces to help programmers

© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 59-73, 2018.
https://doi.org/10.1007/978-3-319-96983-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_5&domain=pdf

60 L. Yu and V. Sarkar

leverage the underlying architecture, the programmers have to tune the appli-
cation to select the best granularity manually. In addition, manually tuned
applications are not performance-portable. In order to mitigate these two prob-
lems, Asynchronous Many-Task (AMT) runtimes [1] (e.g., Cilk [2], Habanero-C
(HC) [3], Realm [4] and Open Community Runtime (OCR) [5]) become a new
trend in HPC area. AMT runtimes hide low-level details of architecture from
programmers. When writing a parallel program executing on top of AMT run-
times (we refer to it as AMT program in this paper), programmers only need
to split the program logic into tasks, a hardware agnostic abstraction of code
snippets that can execute independently on any process unit, and specify the
dependences among tasks. AMT programs can achieve higher performance with
less programming and tuning efforts, compared to MPI implementations [4].

Although AMT parallelism alleviates the difficulty of writing efficient and
portable parallel programs, AMT programs are still prone to data races, a noto-
rious error in parallel programs. A data race occurs when a parallel program
issues two unordered memory accesses to the same location, such that at least
one of the accesses is a write.

There has been a lot of past work on detecting data race automatically at
runtime [6-11]. But all of them suffer from at least one of the following four
limitations:

— Incurring a space overhead that is proportional to the square of the number
of dynamic tasks.

— Leveraging a locking scheme to detect data races, which introduces false pos-
itives for parallel programs that use synchronization primitives other than
locks.

— Forcing the parallel program to execute in sequential order, which wastes the
available hardware parallelism.

— Detecting data races based on restricted parallel structures.

Currently, there does not exist any data race detection algorithm with tractable
overhead that can support the general AMT parallelism.

In this paper, we propose GT-Race, a new graph-traversal based data race
detector for AMT parallelism. It leverages the computation graph data struc-
ture [12], which encodes the general happens-before structures in AMT pro-
grams. After introducing a baseline algorithm for data race detection, we propose
key optimizations to reduce its time and space complexity, including the epoch
adjacency list to compress the computation graph representation, the reacha-
bility cache combined with depth filtering to reduce the number of unnecessary
traversals, and bounded race detection to limit the range of data that is moni-
tored. The impact of these optimizations is demonstrated for nine benchmark
programs written for the Open Community Runtime (OCR), an open source
AMT runtime that supports point-to-point synchronization and disjoint data
blocks.

The rest of this paper is organized as follows: In Sect.2 we discuss a case
study to show how an AMT program can encounter data races. Based on the
clarified notion of data race, we illustrate the graph traversal based race detection

GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 61

algorithm and several optimizations. We discuss the implementation of GT-Race
in Sect.3. We evaluate the performance of GT-Race in Sect. 4. Section 5 sum-
marizes some related works about data race detection, and finally in Sect.6 we
briefly conclude with some possible directions for future works.

2 GT-Race

In this section, we introduce GT-Race, an on-the-fly dynamic data race detector
for AMT programs. First, we illustrate the architecture of GT-Race, and then
we present several optimizations applied by GT-Race, which reduce the space
overhead and improve the efficiency of data race detection.

2.1 Computation Graph and Data Races

The constructs in an AMT program can be divided into three classes according
to their semantics:

— spawn constructs: They submit a new task to the underlying AMT runtime.
The new task may execute in parallel with the caller.

— synchronization constructs: They specify dependences among tasks that can
impact task scheduling in the AMT runtime. A task will be ready for execu-
tion after all its specified dependences are satisfied [13].

— computation constructs: All other constructs not related to task management
belong to this class.

In a computation graph for a dynamic AMT program execution, each node
denotes a step [12], an arbitrary sequential computation belonging to a task,
which ends with a spawn construct or a synchronization construct, and each
edge denotes an ordering constraint among the involved tasks. For any two steps
in the computation graph, the happens-before relation holds if and only if there
exists a directed path between the two steps. When two unrelated steps issue
memory accesses to the same shared variable, and at least one step writes to
that variable, the two memory accesses create a data race. Figure 1 shows how
data races can occur in an AMT program. Figure la is a buggy implementation
of parallel summation, and Fig. 1b is the corresponding computation graph. To
fix the program, we need to link ¢3 to ¢4 by a join edge to guarantee that t4 will
observe t3’s result.

2.2 Overview

Figure 2 shows GT-Race’s architecture. It comprises three components: computa-
tion graph, shadow memory, and data race checker. The computation graph and
shadow memory update dynamically according to the AMT program’s runtime
behaviors. These two components record happens-before relations and historical
memory accesses respectively. Our implementation of shadow memory is similar

62 L. Yu and V. Sarkar

Task t1

data = | |
load(data)
sum = [0, 0]

size = len(data)

spawn t2

}

sum[1] = temp

Task t2 .t
temp = 0 .-
L Task t3 task:2
end = size / 2 spawn t4 pr— 1
while (i < end) { t4 depends t2 i= size /2 step: .
temp += datali] end = size . RN
}1+7 while (i < end) {
temp += datali task:3
sum|0] = temp o step:1

- task:1
- step:4
« V - inserted edge
Task t4 | task:4 to piz data race
final = sum|0] step:1
final = suml1]

print (final) —» continue ----- » spawn - - = join
(a) A problematic implementation of par- (b) Corresponding computation graph for
allel summation containing a data race the AMT program in Figure la

Fig. 1. Case study

o [14]. In order not to miss potential data races, the shadow memory records
the latest write and all reads after the write for each shared memory location.
The key module of GT-Race is the data race checker, which leverages the data
in the computation graph and shadow memory to analyze the order of memory
accesses. For each read (write) to a shared variable, the data race checker carries
out a graph traversal on the computation graph to verify the read is causally
ordered after the concurrent write(concurrent write and all concurrent reads).
If the graph traversal fails to find any paths between the concurrent memory
accesses, GT-Race will output the associated debug information of the conflict-
ing memory accesses and the computation graph to help programmers figure out
the cause of the detected race.

2.3 Epoch Adjacency List: A Compressed Representation
for Computation Graph

Since the computation graph is a sparse graph, a straightforward way to store it is
by using an adjacency list. Due to the large number of steps a task may contain,
it is not memory efficient to allocate a list for each step. Further, explicitly
storing all steps and edges may also slow down the graph traversal because of
the redundant continue edges.

GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 63

Since all steps in the same task execute sequentially, we can determine their
execution order in constant time by numbering steps belonging to the same task
(we refer to these numbers as epochs). Inspired by this idea, we propose the
epoch adjacency list, a compressed storage for computation graphs. In an epoch
adjacency list, each task occupies an edge list that records incoming spawn and
join edges. For each edge in the edge list, the associated cell marks its source
step using the source task ID and epoch.

2.4 Optimization: Reachability Cache

The original graph traversal algo-
rithm is a breadth-first search that Rt :

GT-Race

loops through the computation graph o | —
to find out directed paths between O
the two memory accesses. It is inef- : :

. . . AMT Program ! Graph Traversal based
ficient due to failing to utilize the Exceution ! Data Race Checker
locality in the AMT program. For 7,
two tasks that both access a shared £ ;

%, 1+ Shadow Memory
o

variable, it is highly possible they
have other common variables so that
the race checker will check their
causal ordering multiple times during
the program execution.

In order to reuse the results of previous graph traversal, we store them in a
reachability cache and look up the cache during graph traversal to avoid redun-
dant explorations. This can be implemented by adding cache lookup and cache
update operations to the graph traversal algorithm. If there exists a record in the
cache, the graph traversal terminates immediately. Otherwise, the graph traver-
sal proceeds to check the next enqueued step. This optimized graph traversal
algorithm is shown in Algorithm 1.

Fig. 2. GT-Race architecture

2.5 Optimization: Depth Filtering

Since the time overhead of graph traversal is dominated by the number of nodes
and edges it accessed, traversing a large computation graph in a brute-force man-
ner is always time-consuming. Every time after accessing a task, the algorithm
will loop through all incoming edges and enqueue connected dependent tasks to
avoid omitting any potential path to the expected destination, which leads to
the inefficiency of graph traversal. In order to mitigate the time overhead, we
introduce a guidance depth to help prune irrelevant tasks when looping through
incoming edges. For any task t, its depth is defined by these two formulas:

— depth(tg) = 0, where t; is the entry point of the whole program.
— depth(t) = Max(depth(t;)) + 1, where t; is a dependent task of ¢.

64 L. Yu and V. Sarkar

Data: Computation Graph C'G, Reachability Cache cache, Operation
opl, op2
Result: If opl happens before op2, return true, otherwise return false

1 // Bounded Race Detection

2 if lisBounded M emory(op2.get M emoryAddress()) then
3 ‘ return true

4 end

5 dst — CG.getStep(opl), src «+ CG.getStep(op2), queue —
6 queue.push_back(src)

7 while lqueue.empty() do

8 curr «— queue.next(), queue. findNext()

9 if curr.task = dst.task N\ curr.epoch > dst.epoch then
10 cache.update(src, dst)
11 return true
12 end
13 // Reachability Cache

14 if cache.reachable(curr, dst) then

15 cache.update(src, dst)

16 return true

17 end

18 for prev in curr.incomingEdges do

19 if lqueue.contain(prev) then
20 // Depth Filtering
21 if prev.depth >= dst.depth then
22 | queue.push_back(prev)
23 end
24 end
25 end
26 end

27 return false

Algorithm 1. Revised Graph Traversal

The calculation of depth executes along with the computation graph con-
struction and it does not increase the time complexity. According to the defini-
tion, we can deduce Theorem 1 (Depth-Reachability Theorem) and apply it to
filter tasks.

First we introduce Lemma 1 and prove its correctness. Then we derive The-
orem 1 on the basis of Lemma 1. For simplicity, we assume that all tasks in an
AMT program are indivisible, so that each node in the corresponding computa-
tion graph represents a single task. It is straightforward to extend the theorem
to the step level.

Lemma 1. For two tasks a, b, if these exists a directed edge in the computation
graph from a to b (we denote the edge as a — b), then depth(a) < depth(b).

Proof. We need to consider two cases:

GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 65

— Suppose b is the entry point of the program, then b has no preceding tasks,
which is contrary to the assumption of Lemma 1.

— Suppose b is not the entry point of the program. Then depth(b) =
Max(depth(t;)) + 1, for all predecessors, t; of b (with edges ¢t; — b). So
depth(b) > depth(a) + 1. Hence, the lemma statement is true.

Theorem 1 (Depth-Reachability Theorem). For two tasks t;, t;, if
depth(t;) > depth(t;), then there exists no directed path from t; to t; in the
computation graph.

Proof. We prove Theorem 1 by contradiction. Suppose there exists two tasks a, b
such that depth(a) > depth(b) and there is a path a — t; — t2 ...t, — b in the
computation graph. By Lemma 1, we know depth(a) < depth(ty), depth(t1) <
depth(te) ...depth(t,) < depth(b). So depth(a) < depth(b), which contradicts
the assumption. Theorem 1 is thus proved by contradiction.

2.6 Optimization: Bounded Race Detection

Apart from the graph traversal, the majority of time and space overhead comes
from the shadow memory. Since GT-Race allows the AMT program to execute in
parallel, all threads have to access shadow memory with proper synchronizations
when they try to record a memory access or get previous memory accesses. These
synchronizations are indispensable for the correctness, but they slow down GT-
Race’s execution.

For better performance and higher accuracy, in GT-Race, we bound the range
of data race detection by programmers’ knowledge. Since programmers have a
full understanding of the AMT program, they are eligible to point out error-
prone shared variables. We add an additional option for GT-Race which allows
programmers to mark these variables before launching GT-Race. GT-Race will
only record memory accesses and carry out data race detection for marked shared
variables and ignore the accesses to other variables.

Line 2 in Algorithm 1 shows how bounded race detection works after cap-
turing a memory access. Before starting a graph traversal, the algorithm first
checks the desired address of the memory access to see whether it falls in the
range of marked variables. If the memory access is to an outside memory location,
the algorithm returns true immediately since programmers assume the accessed
memory location will not be involved in any data race. The memory address
check in line 2 avoids needless graph traversal during the program execution,
which is beneficial for efficiency.

3 Implementation

We have developed a prototype implementation of GT-Race (see Fig.3 for the
architecture), based on the algorithm in Sect. 2. GT-Race works as a back-end

66 L. Yu and V. Sarkar

tool of Intel Pin', a dynamic instrumentation framework that monitors the pro-
gram execution and inserts callbacks for certain operations such as construct
calls and memory accesses. These callbacks record parameters of operations at
runtime and pass them to GT-Race. GT-Race will call corresponding modules
to analyze the collected data.

The prototype is designed for gememmonosssesneonoocee e .
Open Community Runtime (OCR) '

. E Race Checker E
[5], an open-source AMT runtime ;

that supports point-to-point synchro- |, . . gﬁ:}‘l‘fl"‘“‘?} &ﬁ}:(‘j
nizations. An OCR program con- : ;
sists of three basic objects: (a) Event e
Driven Task (EDT) (b) data block @Ca“s
(c) event.

Sy, i :
y H

% i Access Recorder |
H

Graph Builder
Dop

s
O, ﬁ Happens-before ﬁ Memory
Relations Accesses

AMT Callbacks for

An EDT is the basic execution Runtime | APL CaHb: Intel Pin
unit that performs its computation
asynchronously. It may have depen- Fig. 3. Prototype architecture

dences on other EDTs and events.

Once all its dependences are satisfied, an EDT can run non-preemptively with-
out being interrupted by other EDTs. A data block is a chunk of consecutive
memory managed by the OCR runtime automatically. It is the only way to
share data among EDTs and may have various access modes (e.g. read-only,
read-write, exclusive write, constant). Although data blocks in read-only and
constant modes are supposed to be data race free, it is still possible to introduce
data races for these blocks since the OCR runtime will not prevent EDTs from
issuing write operations to these data blocks. In order not to miss any data race,
we take all data blocks into consideration when detecting data races. However, it
is also possible to constrain GT-Race so that it only performs data race detection
for a specified subset of data blocks. Event is a synchronization object used to
coordinate the activity of EDTs. The semantics is similar to that of a semaphore
or latch. An EDT linking to an event, e, through its outgoing edges must wait
for the termination of all EDTs linking through e’s incoming edges.

As shown in Fig. 3, the inserted callbacks hide the internal details of OCR
objects from GT-Race. They instead record operations on OCR objects as gen-
eral happens-before relations and memory accesses that GT-Race can handle.
Callbacks tackling APT calls are injected into the OCR runtime. They treat both
EDTs and events as tasks (an event can be viewed as a no-op task created solely
for the purpose of synchronization) and dependences as directed edges among
corresponding tasks. Callbacks for memory operations are weaved into the OCR
application. When the application executes memory operations on data blocks,
associated callbacks will convert them into equivalent memory read/write oper-
ations on shared memory locations. The separation of data collection and data
race detection avoids unnecessary modifications to GT-Race when applying it
to a new AMT runtime.

! https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-
tool.

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 67

4 Performance Evaluation

4.1 Environment and Benchmarks

To evaluate the performance of GT-Race, we carried out several experiments
using the OCR benchmarks. All experiments were conducted on an Intel work-
station with a 24-core Intel Xeon E5-2667 processor and 125 GB of memory,
running 64-bit Ubuntu 15.04. We performed experiments on nine OCR bench-
marks from the OCR app repository?. These benchmarks are either scientific
computing programs or mini-apps derived from real-world applications. All nine
OCR benchmarks were compiled using GCC 4.9.2 with -O3 optimization level,
and executed on top of a customized OCR v1.1 runtime with 24 threads. No
data races were detected in these benchmarks used for performance evaluation,
but we separately tested our tool for correctness with synthetically introduced
data races. Note that the performance of our algorithm is not impacted by the
absence or presence of data races.

Though we compare the technical aspects of our approach with related work
in Sect.5, we did not find any implementation of related work that could be
used to obtain useful performance comparisons with GT-Race. For example,
direct use of the vector clock approach is not practical for AMT parallelism
because it would require that each task have its own entry in every vector clock.

4.2 Space Overhead of GT-Race

Table 1 contains dynamic statistics for each benchmark, when executed with a
standard input from the OCR repository. Furthermore, the “Memory Usage of
CG” columns show the space overhead of the computation graph with different
storage strategies. We see that the memory space used by the optimized epoch
adjacency list is only 29.20%-37.85% of that used by the unoptimized adjacency
list representation. The improvement in memory usage is due to the implicit
storage of steps and continue edges in the epoch adjacency list. UTS generates
the largest computation graph, which spawns more than 400,000 tasks with
millions of dependences at runtime. The corresponding computation graph is
around 32 MB, which demonstrates the memory efficiency of epoch adjacency
list.

4.3 Performance of GT-Race

Summary of Results. Table2 lists the uninstrumented execution time and
overhead of data race detection for each benchmark. All timing measurements
are the geometric mean of 10 runs. We use separate columns in Table 2 to analyze
the performance and the effectiveness of different optimizations in GT-Race. All
listed slowdowns are relative to the uninstrumented running times in the “Base
Time” column.

2 https:/ /xstack.exascale-tech.com /git /public/apps.git.

https://xstack.exascale-tech.com/git/public/apps.git

68 L. Yu and V. Sarkar

Table 1. Dynamic benchmark statistics. The first four columns contain the benchmark
name, along with the numbers of tasks, events, and dependences created when execut-
ing the benchmark on a standard input in the OCR repository. The next two columns
give the computation graph size in bytes for the unoptimized case, and the optimized
case using epoch adjacency lists. The last column shows the ratio of the optimized size
to the unoptimized size.

Benchmark Tasks Events |Dependences | Memory usage of CG (bytes)
Original Epoch adjacency | Ratio
list

Cholesky 222 605 1,101 81,504 30,848 37.85%
FFT 9 9 38 2,560 896 35.00%
Fibonacci 364,179 | 242,785 | 1,213,925 82,546,936 | 29,134,224 35.29%
QuickSort 3,937 7,871 19,678 1,385,360 503,776 36.36%
SmithWaterman 6,401 | 19,683 51,5621 3,511,192 1,241,680 35.36%
UTsS 302,014 | 111,116 | 1,692,399 104,689,464 | 33,688,464 32.18%
RSBench 30,033 50 766,540 43,648,232 | 12,745,968 29.20%
XSBench 36,835 52 898,874 51,222,232 | 14,972,176 29.23%
LCS 9,817 | 24,578 74,505 4,997,760 1,742,400 34.86%

Performance of Computation Graph Construction. The “CG” column
reports the overhead of GT-Race when only constructing the computation graph.
The geometric mean overhead is 1.11x which is not significant. Since we utilize
a lock-free data structure to store the computation graph in GT-Race, it reduces
overhead due to unnecessary synchronizations and can also handle a large com-
putation graph efficiently.

Performance of Shadow Memory. The “CG + SM” column shows the over-
head of GT-Race when tracking shadow memory but performing no graph traver-
sals for data race detection. Although the geometric mean overhead is 4.95x,
RSBench has an overhead greater than 10x. Since each instance of shadow mem-
ory has to synchronize concurrent accesses from multiple threads to maintain a
consistent historical record, GT-Race sacrifices some performance for correct-
ness. But the slowdown is acceptable compared to existing work.

Performance of Data Race Detection. The last two “Slowdown” columns
compare the effectiveness of optimizations for graph traversal. With the help of
the reachability cache, GT-Race completed every benchmark’s test in 4 min and
incurred 7.77x slowdown on cache usage. We also list the statistics on the cache
usage in Table 3. The cache miss ratio is less than 2% for all benchmarks except
Fibonacci and UTS. Besides, reachability cache also helps reduce the number
of accessed steps during graph traversal. For all benchmarks except RSBench
and XSBench, the average (arithmetic mean)? number of accessed steps is much
smaller compared to the size of computation graph.

3 We use geometric mean for ratios, and arithmetic mean for absolute counts such as
accessed steps.

GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 69

Depth filtering further reduces the slowdown of data race detection. For UTS
and RSBench, it reduces the slowdown from 10.22x to 5.50x and 83.19x to
80.86%. For other benchmarks, the improvement is not substantial. Although
FFT sees an increased overhead, the slowdown is close to the version without
depth filtering. The reason for the performance for depth filtering in FFT is that
its computation graph is not large and reachability cache already improves the
performance of graph traversal, which causes the overhead of calculating depths
to overshadow the performance gain.

Table 2. Benchmark results. Columns 4-6 contain slowdowns relative to the base time.

Benchmark Base time |Slowdown
(sec)
CG |CG + SM | Race detection | Race detection
(cache only) (cache + depth filtering)

Cholesky 1.66 1.01| 1.86 1.88 1.83
FFT 1.58 1.00| 2.94 3.08 3.01
Fibonacci 5.54 1.05| 1.22 1.31 1.29
QuickSort 1.46 1.02| 7.58 7.62 7.73
SmithWaterman | 1.59 1.05| 8.39 8.89 8.43
UTS 6.29 1.45| 3.88 10.22 5.50
RSBench 2.07 1.25/28.10 34.68 34.22
XSBench 2.68 1.20| 7.03 83.19 80.86
LCS 1.62 1.03| 5.50 6.81 6.71
Geometric mean 1.11] 4.95 7.7 7.12

Performance of Bounded Race Detection. We performed another exper-
iment on RSBench and XSBench (the two benchmarks with the largest over-
heads) to evaluate the impact of bounded race detection. During the experiment,
GT-Race only monitored memory accesses and executed data race detection for
a subset of data blocks whose size is smaller than a predefined threshold. For

25 ‘ w w w w Table 3. Cache usage
20 1 Benchmark Cache Cache hit Arith. mean

a miss steps

g15¢1 1 Cholesky 550 224,510 4

E FFT 6 262,144 6

=2 10f RSBench 1 Fibonacci 653,329 849,746 4

Quicksort 19,431 283,366 4

5t XSBench {1 SmithWaterman| 25,281 | 1,452,800 5

UTS 549,166 | 2,629,321 48

0 s s s . s RSBench 30,029 | 14,876,544 | 1,743

0 20 40 60 80 100 120 XSBench 73,632 | 3,128,693 | 3,204

Threshold of Data Block Size (bytes) LCS 20,480 | 2,329,707 144

Fig. 4. Bounded race detection result

70 L. Yu and V. Sarkar

each threshold, GT-Race tested 10 runs for each benchmark. We utilize this
experiment to roughly evaluate the impact of the number of monitored data
blocks on the slowdown of data race detection.

We list the data in Fig.4. For both RSBench and XSBench, the slowdown
is small when GT-Race carried out data race detection with a low threshold.
At a certain point, the slowdown increases significantly then stays constant for
a long period. This scenario is because the workload of data race detection is
irregular on different data blocks and the slowdown is dominated by a few shared
variables that are frequently accessed. These results show that input from the
programmer, or perhaps a smart debugger, on which data blocks to monitor can
have a significant impact on the overhead of data race detection.

5 Related Work

Since GT-Race is a graph traversal based dynamic data race detector, we relate
our work to the state-of-art studies in the following areas.

Dynamic Data Race Detection for Multithreaded Programs: Most
dynamic data race detectors are based on vector clock or lockset. FastTrack [6]
is the state-of-art vector clock based race detector. It applies a concise repre-
sentation of vector clock to compress the timestamps of concurrent operations.
Although FastTrack reduces the time overhead of vector clock comparison and
the space overhead of shadow memory, the size of each vector clock is still pro-
portional to the number of threads. Furthermore, FastTrack can only report data
races in the executed thread interleaving.

Eraser [7] is a lockset based lightweight race detector which finds out data
races by the locking discipline. It incurs less runtime overhead to the program
and can predict data races in other possible interleavings, but it may generate a
large amount of false positive. Some work [8] combine lockset with vector clock
to achieve both high accuracy and low overhead. They use lockset to replace
the expensive vector clock when the program issues lock operations, and report
data races when both vector clock and lockset do not prove the correctness of a
memory access. These hybrid race detectors can achieve a good trade-off between
accuracy and performance.

Because the above-mentioned race detectors are designed for general mul-
tithreaded programs, They either cannot handle synchronization constructs in
AMT parallelism, or incur unacceptable time and space overhead due to the
neglect of structural properties in AMT programs.

Dynamic Data Race Detection for AMT Programs: Some data race
detectors are only targeting specific AMT runtimes and utilize the structural
properties of the computation graph to verify AMT programs efficiently. SP-
bags [9] and ALL-SETS [15] utilize the serial-parallel (SP) structure of Cilk
programs to detect data races in amortized bound time and constant space.
ESP-bags [16] is an extension to SP-bags that supports finish construct in async-
finish AMT runtimes. The determinacy race detector in [10] leverages dynamic

GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 71

task reachability graph to handle async-finish AMT runtimes with futures. How-
ever, all these approaches require the program to execute in depth-first order,
which wastes the available hardware parallelism in the underlying platform.
PTRacer [11] is a parallel on-the-fly data race detector for async-finish AMT
runtimes that support locks. It combines SPD3 and ALL-SETS to detect data
races with constant memory space. PTRacer also adds a symbolic diagnosis
phase after the dynamic analysis to predict hidden races at schedule sensitive
branches of the not-taken paths. But PTRacer does not provide any support to
point-to-point synchronization constructs.

Reachability Query for DAGs: GT-Race can be abstracted as conduct-
ing reachability queries on the computation graph to verify the causal order-
ing between concurrent memory accesses. Although reachability query has been
comprehensively studied over decades, existing work is not suitable for GT-Race.
According to the survey presented by [17], state-of-art reachability query algo-
rithms [18-20] compute a label for every node when preprocessing the graph,
and return the reachability between any two nodes by comparing assigned
labels. These algorithms can answer reachability queries efficiently, but they
require an expensive labeling process in advance, which is too time-consuming
for large graphs. In addition, the space overhead of each label is proportional,
or even square to the number of nodes, which will deplete available memory
space quickly. The unacceptable time and space overhead of the labeling process
restrict the usage of reachability query algorithms in GT-Race.

6 Conclusion and Future Work

In this paper, we propose GT-Race, a new graph-traversal based data race detec-
tor for AMT parallelism. It leverages the computation graph data structure,
which encodes the general happens-before structures in AMT programs. GT-
Race executes a graph-traversal based data race detection algorithm for each pair
of concurrent memory accesses. After one execution, GT-Race can report data
races in all possible thread interleavings for the same input. In order to reduce
the time and space complexity for race detection, we also apply a few optimiza-
tions in GT-Race, such as epoch adjacency list to compress the representation
of computation graph, reachability cache and depth filtering to avoid unneces-
sary explorations, and bounded race detection to reduce the range of monitored
memory space. Based on our race detection techniques, we have implemented a
prototype of GT-Race for OCR. The evaluation on a set of open source OCR
benchmarks shows that our tool handles all OCR constructs and incurs accept-
able time and space overhead to the program execution.

GT-Race addresses the challenges of data race detection for AMT programs
mentioned in Sect.1 as follows (a) The space complexity of the computation
graph is linearly proportional to the number of tasks and dependences, which
makes GT-Race scalable to AMT programs (b) GT-Race detects data races by
using the happens-before relations among tasks, which incurs no false positives
(c) When detecting data races, GT-Race doesn’t require the AMT program to

72

L. Yu and V. Sarkar

execute in sequential order. GT-Race works in parallel, thereby fully utilizing
hardware parallelism for debugging executions as well (d) Since the computation
graph is a general representation of happens-before relations, GT-Race can be
applied to other AMT runtimes beyond OCR.

For future research, we plan to combine some static analysis techniques with

GT-Race to filter out race-free shared variables during dynamic data race detec-
tion. We also plan to further improve the efficiency of graph traversal by learning
the structural properties in the computation graph more comprehensively.

References

10.

11.

12.

13.

. Pebay, P., Bennett, J.C., et al.: Towards asynchronous many-task in situ data anal-

ysis using legion. In: 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops. IEEE, pp. 1033-1037 (2016)

Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. J. Parallel Distrib. Comput.
37(1), 55-69 (1996)

Chatterjee, S., Tasirlar, S., et al.: Integrating asynchronous task parallelism with
MPI. In: 2013 IEEE 27th International Symposium on Parallel & Distributed Pro-
cessing (IPDPS), pp. 712-725. IEEE (2013)

. Treichler, S., Bauer, M., Aiken, A.: Realm: an event-based low-level runtime for

distributed memory architectures. In: Proceedings of the 23rd International Con-
ference on Parallel Architectures and Compilation, pp. 263—276. ACM (2014)
Mattson, T.G., Cledat, R., et al.: The open community runtime: a runtime system
for extreme scale computing. In: 2016 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1-7. IEEE (2016)

Stenzel, O.: The Physics of Thin Film Optical Spectra. SSSS, vol. 44, pp. 163-180.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21602-7_8

Savage, S., Burrows, M., et al.: Eraser: a dynamic data race detector for multi-
threaded programs. ACM Trans. Comput. Syst. (TOCS) 15(4), 391-411 (1997)
O’Callahan, R., Choi, J.D.: Hybrid dynamic data race detection. In: ACM Sigplan
Notices, vol. 38, pp. 167-178. ACM (2003)

Feng, M., Leiserson, C.E.: Efficient detection of determinacy races in cilk programs.
Theory Comput. Syst. 32(3), 301-326 (1999)

Surendran, R., Sarkar, V.: Dynamic determinacy race detection for task parallelism
with futures. In: Falcone, Y., Sdnchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp.
368-385. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9_23
Yoga, A., Nagarakatte, S., Gupta, A.: Parallel data race detection for task parallel
programs with locks. In: Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, pp. 833-845. ACM
(2016)

Sarkar, V.: Comp 322: fundamentals of parallel programming module 1: paral-
lelism (2017). https://wiki.rice.edu/confluence/download/attachments/4435861/
modulel.pdf?version=5&modificationDate=1519055242728& api=v2

Tasirlar, S., Sarkar, V.: Data-driven tasks and their implementation. In: Proceed-
ings of the 2011 International Conference on Parallel Processing, ICPP 2011, pp.
652-661, Washington, DC, USA. IEEE Computer Society (2011)

https://doi.org/10.1007/978-3-319-21602-7_8
https://doi.org/10.1007/978-3-319-46982-9_23
https://wiki.rice.edu/confluence/download/attachments/4435861/module1.pdf?version=5&modificationDate=1519055242728&api=v2
https://wiki.rice.edu/confluence/download/attachments/4435861/module1.pdf?version=5&modificationDate=1519055242728&api=v2

GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 73

14.

15.

16.

17.

18.

19.

20.

Nethercote, N., Seward, J.: How to shadow every byte of memory used by a pro-
gram. In: Proceedings of the 3rd International Conference on Virtual Execution
Environments, pp. 65-74. ACM (2007)

Cheng, G.I., Feng, M., Leiserson, C.E., Randall, K.H., Stark, A.F.: Detecting data
races in Cilk programs that use locks. In: Proceedings of the Tenth Annual ACM
Symposium on Parallel Algorithms and Architectures, pp. 298-309. ACM (1998)
Raman, R., Zhao, J., et al.: Efficient data race detection for async-finish parallelism.
Form. Methods Syst. Des. 41(3), 321-347 (2012)

Wei, H., Yu, J.X., Lu, C., Jin, R.: Reachability querying: an independent permu-
tation labeling approach. Proceed. VLDB Endow. 7(12), 1192-1202 (2014)
Wang, H., He, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling: answering graph
reachability queries in constant time. In: 2006 Proceedings of the 22nd Interna-
tional Conference on Data Engineering, p. 75, ICDE 2006. IEEE (2006)

Cheng, J., Huang, S., et al.: TF-label: a topological-folding labeling scheme for
reachability querying in a large graph. In: Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, pp. 193-204. ACM (2013)
TriBl, S., Leser, U.: Fast and practical indexing and querying of very large graphs.
In: Proceedings of the 2007 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 845-856. ACM (2007)

Performance and Power Modeling,
Prediction and Evaluation

®

Check for
updates

Reducing GPU Register File Energy

2(=) 1(=)

Vishwesh Jatala!®)®, Jayvant Anantpur , and Amey Karkare
! Indian Institute of Technology Kanpur, Kanpur, India
{vjatala,karkare}@cse.iitk.ac.in
2 Mentor Graphics India Pvt. Ltd., Bangalore, India
jayvant.anantpur@gmail .com

Abstract. Graphics Processing Units (GPUs) maintain a large register
file to increase the thread level parallelism (TLP). To increase the TLP
further, recent GPUs have increased the number of on-chip registers in
every generation. However, with the increase in the register file size, the
leakage power increases. Also, with the technology advances, the leakage
power component has increased and has become an important consid-
eration for the manufacturing process. The leakage power of a register
file can be reduced by turning infrequently used registers into low power
(drowsy or off) state after accessing them. A major challenge in doing
so is the lack of runtime register access information.

To address this, we propose a system called GREENER. It employs
a compiler analysis that determines the power state of the registers, i.e.,
which registers can be switched off or placed in drowsy state at each pro-
gram point and encodes this information in program instructions. Fur-
ther, it uses a runtime optimization that increases the accuracy of power
state of registers. We implemented the proposed ideas using GPGPU-
Sim simulator and evaluated them on 21 kernels from several bench-
marks suites. We observe that when compared to the baseline without
any power optimizations, GREENER shows an average reduction of reg-
ister leakage energy by 69.04% with a negligible number of simulation
cycles overhead (0.53%).

Keywords: Register file - Power * Energy - Performance

1 Introduction

Graphics Processing Unit (GPU) achieves high throughput by utilizing thread
level parallelism (TLP). Typically, GPUs maintain a large register file in each
streaming multiprocessor (SM) to improve the TLP. GPUs allow a large number
of resident threads [2] in each SM, and the resident threads can store their
thread context in the register file, which facilitates faster context switching of
the threads. The threads that are launched in each SM are grouped into sets of 32

Vishwesh Jatala is supported by Tata Consultancy Services (TCS) Research Schol-
arship Program. Amey Karkare acknowledges the travel fund received from TCS.
© Springer International Publishing AG, part of Springer Nature 2018

M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 77-91, 2018.
https://doi.org/10.1007/978-3-319-96983-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_6&domain=pdf
http://orcid.org/0000-0002-3105-922X
http://orcid.org/0000-0003-3353-0625
http://orcid.org/0000-0002-3664-6490

78 V. Jatala et al.

11
10

Register Number

o =N WwH OO N

Y
RO N SN)
2 % %2 % % @

Simulation Cycle
Each data point shows the access of a register (Y-axis) during a cycle (X-axis).

Fig. 1. Register access pattern for MUM [5]

threads (called warps), and they execute the instructions in a single instruction,
multiple threaded (SIMT) manner. To keep improving the TLP of the GPUs,
GPU architects increase the maximum number of resident threads and register
file sizes in every generation.

Earlier studies [12,17] show that register files in GPUs consume around 15%
of the total power. With the technology advances, the leakage power component
has increased and has become an important consideration for the manufacturing
process [16]. Moreover, registers in a GPU continue to dissipate leakage power
throughout the entire execution of its warp even when they are not accessed by
the warp.

1.1 Motivation

To understand the severity of leakage power dissipation by register file, consider
Fig.1 which shows the access patterns of some registers of warp 0 during the
execution of MUM application (The experimental methodology has been dis-
cussed in Sect.4). We use the access patterns of the registers of a single warp as
a representative since all the warps of a kernel typically show similar behavior
during execution [4]. We make the following observations:

— Register 10 is accessed very infrequently—it is accessed for only 7 cycles
during the complete execution (life time) of the warp (29614 cycles).

— Register 1 is the most frequently accessed register during the warp execution.
However, it is accessed for only 330 cycles (~1.11%) during the life time of
the warp.

This shows that registers are accessed for a very short duration during the warp
life time. However, they continue to dissipate leakage power for the entire life
time of the warp. Figure 2 shows that the behavior is not specific to MUM, but
is seen across a wide range of applications. The figure shows the percentage of
simulation cycles spent in register accesses (averaged over all the registers in all

Reducing GPU Register File Energy 79

1.6%
1.4%
1.2%
1.0%
0.8%
0.6% % —
0.4% B BEGREN B BN B MESEAESAE EEESE M M
0.0%

Simulation Cycles

7

1,

Fig. 2. Percentage of simulation cycles spent by a register (average of all the registers)

the warps) for several applications. We observe that registers on an average spend
<2% of the simulation cycles during the warp execution while leaking power
during the entire execution. This behavior is expected since GPU allows large
number of resident warps in each SM and these warps get executed according to
a pre-defined scheduling policy. If a warp gets scheduled less frequently, then its
registers leak power for a longer duration.

One solution [3] to reduce the leakage power of the registers is by putting
the registers into drowsy or SLEEP! state immediately after the registers of an
instruction are accessed. However, this can have run-time overhead whenever
there are frequent wake up signals to the sleeping register. Consider Fig. 1 again:

— Putting register 10 to SLEEP state immediately after its accesses saves signif-
icant power due to the gaps of several thousands of cycles between consecutive
accesses.

— In contrast, register 1 is accessed very frequently. If it is put to SLEEP after
every access, it will have a high overhead of wake up signals.

— The access pattern of register 7 changes during the warp execution. It is
accessed frequently for some duration (for example, between cycles 10500—
11250), and not accessed frequently for other duration (between cycles 3000—
7500). To optimize energy as well as run-time, the register needs to be kept
ON whenever it is frequently accessed, and put to SLEEP otherwise.

— The last access to register 8 is at cycle 1602. The register can be turned OFF
after its last access to save more power.

In summary, the knowledge of registers’ access patterns helps improve energy
efficiency without impacting the run-time adversely. Our proposed solution
GREENER . statically estimates the run-time usage patterns of registers to
reduce GPU register file leakage power.

! Drowsy [3,9] and SLEEP [14,18,19] states refer to the same low power data preserv-
ing states. In this paper, we use the term SLEEP. Also, the techniques [14,18] to
reduce leakage power using low power states address the subthreshold leakage power.
Hence, in this paper the savings on leakage energy refer to savings on subthreshold
leakage energy.

80 V. Jatala et al.

1.2 Contributions

GREENER uses a compile-time analysis to determine the power state of the reg-
isters (OFF, SLEEP, or ON) for each instruction by estimating the register usage
information. Further, it transforms an input assembly language by encoding the
power state information at each instruction to make it energy efficient. The static
analysis makes safe approximations while computing power state of the regis-
ters, therefore, the choice of the state can be suboptimal at run-time. Hence, to
improve the accuracy and energy efficiency, it provides a run-time optimization
that dynamically corrects the power state of registers of each instruction. We
make the following contributions:

1. We introduce a new instruction format that supports the power states for
the instruction registers (Sect. 3.2). We propose a compile-time analysis that
determines the power state of the registers at each program point and trans-
forms an input assembly language into a power optimized assembly language
(Sects. 3.1 and 3.2).

2. We propose a run-time optimization to reduce the penalty of suboptimal (but
safe) choices made by static analysis (Sect. 3.3).

3. We implemented the proposed compile-time and run-time optimizations using
GPGPU-Sim simulator [10]. We integrated GPUWattch [17] with CACT-P
[18] version to enable power saving mechanism (Sect. 4).

4. We evaluated our implementation on wide range of kernels from different
benchmark suites: CUDASDK [8], GPGPU-SIM [5], Parboil [1], and Rodinia
[7]. We observe a reduction in the register leakage energy by an average of
69.04% and maximum of 87.95% (Sect.4) when compared to the baseline
approach, which does not have any power optimizations.

In the paper, Sect. 2 briefs the background required for GREENER, while the
system itself is described in Sect. 3. Section 4 gives the experimental evaluation.
Section 5 describes related work, and Sect. 6 concludes the paper.

2 Background

GPUs consist of a set of streaming multiprocessors (SMs). Each SM contains a
large number of execution units such as ALUs, SPs, SFUs, and Load/Store units.
GPUs achieve high throughput because they can hide long memory execution
latencies with massive thread level parallelism. Each SM has a large register file,
which allows the resident threads to maintain their contexts, and hence can have
faster context switching.

NVIDIA provides a programming language CUDA [8] to parallelize appli-
cations on GPU. A program written in CUDA is translated to an intermediate
representation (PTX), which is finally translated to an executable code. NVIDIA
provides tools such as cuobjdump to disassemble the executable into SASS assem-
bly language. GPGPU-Sim converts SASS code to PTXPlus code for simulation.

GPUWattch [17] framework uses the simulation statistics of GPGPU-Sim to
measure the power of each component in the GPUs. The framework is built on
McPAT [19], which internally uses CACTI [6]. McPAT models the register files

Reducing GPU Register File Energy 81

as memory arrays to measure the register power. GREENER inserts power state
information of registers in the PTXPlus code to enable reduction in the leakage
power of the register files.

3 GREENER

To understand the working of GREENER, we need to understand the different
access patterns of a register and their effect on the wake up penalty incurred. Let
W (threshold) denotes the minimum number of program instructions that are
required to offset the wake-up penalty incurred when a register state is switched
from OFF or SLEEP state to ON state. Consider a program that accesses some
register R in a statement S during execution. The future accesses of R in this
execution govern its power state. The following scenarios exist:

1. The next access (either read or write) to R is by an instruction S’ and there
are no more than W instructions between S and S’. In this case, since the
two accesses to R are very close, it should be kept ON to avoid any wake-up
penalty associated with SLEEP or OFF state.

2. The next access to R is a read access by an instruction S’ and there are more
than W instructions between S and S’. In this case, since the value stored in
R is used by S’, we can not switch R to OFF state as it will cause the loss of
its value. However, we can put R in SLEEP state.

3. The next access to R is a write access by an instruction S’ and there are more
than W instructions between S and S’. In this case, since the value stored in
R is being overwritten by S’, we can put R in OFF state.

4. There is no further access to R in the program. In this case also, R can be
safely turned OFF.

We now describe the compiler analysis used by GREENER to capture these
scenarios.

3.1 Compiler Analysis

To compute power state of registers at each instruction, we perform compiler
analysis at the instruction level. Determining the power state of each register
requires knowing the life time of registers as well as the distance between the
consecutive accesses to the registers. We use the following notations.

— IN(S) denotes the program point before the instruction S. OUT(S) denotes
the program point after the instruction S.

— SUCC(S) denotes the set of successors of the instruction S. An instruction I
is said to be successor of S if the control may transfer to I after executing
the instruction S.

— isLive(r, R) is true if there is some path from program point 7 to Exit that
contains a use of R not preceded by its definition.

— Dist(m, R) denotes the distance in terms of number of instructions from pro-
gram point 7 till the next access to R. Dist(m, R) is set to oo when it exceeds
the threshold W.

82 V. Jatala et al.

Dist(IN(S), R) = {1’ if S.accesses R _ Table 1. Computing power state of a
INC(Dist(OUT(S), R)), otherwise register R at a program point
oo, if zis W or oo
INC(z) = { .
@+ 1, otherwise isLive(rr, R) | SleepOff (, R) | Power(, R)
o0, if S is Exit
. _ ’ True True SLEEP
Dist(QUT(S), R) = { max_Dist(IN(SS), R), otherwise True Falso ON
SSESUCC(S)
False True OFF
Fig.3. Data flow equations. Note that False False ON

INC(x) is a saturating increment operator.

— SleepOff(r, R) is true if the register R can be put into SLEEP or OFF state
at .
— Power(m, R) denotes the power state of the register R at program point .

The liveness information of each register, isLive(w, R), can be computed
using traditional liveness analysis [15]. The data flow equations to compute the
Dist(IN(S), R) and Dist(OUT(S), R) are given in Fig. 3. Since our analysis aims
to reduce the power consumption, we compute Dist(OUT(S), R) as the maximum
value of Dist(IN(SS), R) over the successors SS of S. A register R can potentially
be put into SLEEP or OFF state at a program point 7 if it is not accessed within
the distance window W on some path, i.e., SleepOff(m, R) = (Dist(m, R) == 00).

The power state of each register at each program point can be computed
according to Table 1. Note that in GPUs, all the 32 threads of a warp execute the
same instruction in SIMT manner, hence power state computed by the analysis
is applicable to 32 registers corresponding to the 32 threads of a warp.

3.2 Encoding Power States

The power state (Power_State) of a register can be one of the three states:
OFF, SLEEP, or ON. Thus, it requires two bits to represent Power_State of
one register. Since the power state can change after every instruction at run-time,
we need to encode the Power_State of the operand registers of an instruction in
the instruction itself.

PTXPlus instructions [10] can support up to 4 source and 4 destination reg-
isters. Encoding Power_State of all the registers will require 16 bits. We observed
that in our benchmarks, most instructions use only up to 2 source registers and 1
destination register. Therefore, to reduce the number of bits required to encode
Power_State in each instruction, we encode information only for 2 source registers
and 1 destination register. For instructions having more registers, Power_State
of the remaining registers is assumed to be SLEEP to enable power saving. The
modified instructions format is:

’ <Opcode> <Options> <Operand_List> < Power_State_List >

where Power(OUT(S), R) is Power_State encoded for a register R for an instruc-
tion S.

Reducing GPU Register File Energy 83

Bd:set.le.s32.s32 $p2/$0127, $r8, $r0, ON, SLEEP, ON;
ssy 0x00000110;
mov.u32 $rl, $r0, SLEEP, ON;
$p2.ne bra B8;
B5:shl.u32 $rl0, 5r0, 0x00000002, ON, SLEEP;
mov.u32 $rl2, $rl24, ON, SLEEP;
add.half.u32 $rll, s[0x0018], $rl10, ON, ON;
add.half.u32 $rl10, s[0x0020], $rl10, ON, ON;
B6:1d.global.u32 $rl4, [$rll], ON;

W oUW N

©

10 ld.global.u32 $rl13, [$rl10], ON;

11 mad.f32 $r12, $rl4, $rl13, $rl2, SLEEP, OFF, OFF;

12 add.u32 rl, srl, 0x00000400, ON, ON;

13 set.gt.s32.s32 $p2/$0127, $r8, $rl, ON, SLEEP, SLEEP;
14 add.u32 $rl0, $r10, 0x00001000, SLEEP, SLEEP;

15 add.u32 $rll, $rll, 0x00001000, SLEEP, SLEEP;

16 $p2.ne bra B6;

17 |B7:bra B9;

18 |B8:mov.u32 $rl2, S$rl24, ON, SLEEP;

19 |B9:add.u32 $r0, $r0, $r5, ON, ON, SLEEP;

20 shl.b32 $ofsl, $r9, 0x0, ON, ON;

21 set.le.s32.s32 $p2/$0l27, $r0, $r6, ON, SLEEP, SLEEP;
22 mov.u32 s[$ofsl1+0x0000], $rl2, OFF;

23 add.u32 $r9, $r9, $r7, SLEEP, SLEEP, SLEEP;

N
=~

$p2.ne bra B4;
(a) Power Optimized PTXPlus. (b) CFG

The shaded text in part (a) denotes the power states inserted by GREENER. The first power state
corresponds to power state of the destination register and the subsequent two power states
correspond to that of two source registers.

Fig. 4. A Snippet of the program and its CFG for SP benchmark [8]

Ezample 1. Figure4(a) shows a snippet of power optimized PTXPlus code,
which is generated for SP benchmark using a threshold value (W) 7. The con-
trol flow graph (CFG) corresponding to the snippet is shown in Fig.4(b). Note
that the CFG is shown with respect to traditional basic block level to show it
in compact. In Fig. 4(a), explicit branch addresses have been replaced by block
labels for ease of understanding. a

At run-time, power state of the source registers are set after the register
contents have been read, i.e., in the read operands phase in the GPU pipeline,
and the power state of the destination registers are set after the register contents
have been written, i.e., in the write back stage of the pipeline.

3.3 Run-Time Optimization

Recall that the compiler analysis described in Sect.3.1 computes
Dist(OUT(S), R) as the maximum distance value over all successors when
OUT(S) is a branch point. This decision increases the chances of power sav-
ings, but it can be suboptimal at run-time as shown by the following example.

Ezample 2. Consider the CFG in Fig.5(a) for a hypothetical benchmark.
Assume the threshold value of 7 for GREENER. Instruction SO defines a register
r0. The next access to r0 occurs along two paths: the path along S10 has a use
at a distance of 2, and the other (along S1) has a use in S9 at a distance of
oo (>7). GREENER computes Dist(OUT(S50),r0) as oo, the maximum of the

84 V. Jatala et al.

Distance Threshold = 7
S0 Dist(OUT(50), z0) = oo
SleepOff(OUT(50), £0) = true
isLive(OUT(50), £0) = true
| Power(oUT(50).x0) = SLEEP

T osi] | s1o]

SLEEP r0

so:[F[D [1s][EX [wB]

9 Instructions

Y 59 510 [FILD s (;H;\Ii()\ [WB]
sie[[] si1: [F (b J[15 [Ex] wB]

(a) Computing Distance at Branch Diver- (b) Correcting Power State at Run-time
gence
The pipeline phases are: Fetch (F), Decode (D), Issue (IS), Execute (EX), and Writeback (WB)

Fig. 5. Example for run-time optimization

distances along the successors. Further, the state Power(OUT(S50),70) is com-
puted as SLEEP. When the program executes the path along S1, power is saved.
However, if the program executes the path along S10, then the register needs an
immediate wake up, causing an overhead. a

GREENER’s compile-time decision can be corrected at run-time by looking
at near future accesses of a register in the pipeline. The hardware is modified
to check in the pipeline if any decoded instruction from the same warp accesses
a register whose power state is being changed to SLEEP or OFF. If so, then
the register power is kept ON. This avoids the wake up latencies for instruc-
tions that access the same register within a short duration, thereby avoiding the
performance penalty.

Ezample 3. Figure5(b) shows a possible execution sequence of a program whose
CFG is shown in Fig. 5(a). The instruction S0 writes to register r0. After writing
the register value in write back stage (WB), the register needs to be put into
SLEEP state. Assume that the program takes the path along S10 and decodes
the instruction S11 before the write back stage of S0. Our run-time optimization
detects the future access to r0 by S11, and keeps the register in ON state instead
of putting it into SLEEP state to avoid additional wake up latencies. On the
other hand, if the program takes the path along S1, then the instruction present
in the S9 would appear much later in the pipeline (after WB stage of S0). The
register r0 will be set to SLEEP state. a

4 Experimental Analysis

Implementing GREENER requires to modify the GPU pipeline. We imple-
mented the proposed hardware changes and compiler optimizations in GPGPU-
Sim V3.x [10]. The details of the modified GPU architecture and the corre-
sponding overheads (negligible) are discussed in [11] and ignored for brevity. The
GPGPU-Sim configuration used for the experiments is shown in Table 2. We also
evaluated GREENER on various other GPU configurations, whose results are
reported in our technical report [11]. We measured the power consumption of
register file using GPUWattch [17].

Reducing GPU Register File Energy 85

Note that GPUWattch inter- Table 2. GPGPU-Sim configuration
nally uses CACTI [6], which
does not support leakage power _Resource Configuration

. . Architecture NVIDIA Tesla K20x
saving mechanism. Therefore, Rimber of Shis 7
we modified GPUWattch to use _Shader core clock 732 MHz

. . Technology node 22nm
CACTI-P version [18]’ which Register file size per SM 256 KB
supports the leakage power sav- Number of register banks 32
ing mechanism. CACTI-P uses ﬁax numEer °£ ?fs per SM - ;348
. . . ax number o reads per

minimum data retention voltage ~Warp scheduling LRR
to enable the SRAM cells to Number of schedulers per SM 4

enter into SLEEP state without

losing their data. We chose SRAM,cemin to be the default value (provided by
CACTI-P depending on the technology node, 22 nm in this case). To put SRAM
cells in OFF state, we configured SRAMycemin to 0 V. After running several
experiments, we chose the threshold value (W) as 3, which achieves lowest energy
for maximum number of kernels. We used the latency to change a register state
from SLEEP to ON to be 1 cycle, and the latency to change a register state
from OFF to ON to be 2 cycles. We report these latency and energy overheads
in our results and also include these overheads throughout our results. We eval-
uated GREENER on 21 kernels from the benchmark suites CUDA-SDK [§],
GPGPU-SIM [5], Parboil [1], and Rodinia [7] as shown in Table 3.

Table 3. Benchmarks used for evaluation

Benchmark Application Notation Kernel H # Benchmark Application Notation Kernel

1 RODINTA backprop BP bpnn_adjustweights_cuda 12 GPGPU-SIM MUM MUM mummergpuKernel
2 RODINTA bfs BFS1 Kernel 13 GPGPU-SIM NN NN1 executeFirstLayer

3 RODINIA bfs BFS2 Kernel2 14 GPGPU-SIM NN NN2 executeSecondLayer
4 CUDA-SDK Blackscholes BS BlackScholesGPU 15 GPGPU-SIM NN NN3 executeThirdLayer
5 RODINIA lavaMD LMD kernel_gpu_cuda 16 GPGPU-SIM NN NN4 executeFourthLayer
6 GPGPU-SIM LIB LIB Pathcalc_Portfolio_Kernel GPU || 17 RODINIA pathfinder PF dynproc_kernel

7 GPGPU-SIM LPS LPS GPU laplace3d 18 CUDA-SDK scalarProd SP scalarProdGPU

8 CUDA-SDK MonteCarlo MC1 inverseCNDKernel 19 PARBOIL sgemm SGEMM mysgemmNT

9 CUDA-SDK MonteCarlo MC2 MonteCarloOneBlockPerOption| | 20 PARBOIL spmv SPMV spmv_jds

10 PARBOIL mri-q MR1 ComputePhiMag GPU 21 CUDA-SDK vectorAdd VA VecAdd

11 PARBOIL mri-q MR2 ComputeQ_-GPU

We use Baseline to denote the default GPGPU-Sim implementation that
does not use any leakage power saving mechanisms. Sleep-Reg denotes the app-
roach that optimizes the baseline approach by (1) turning OFF the unallocated
registers and (2) turning the allocated registers into SLEEP state immediately
after the registers are accessed [3].

Comparing Register Leakage Power: Figure6 shows the effectiveness of
GREENER and Sleep-Reg by measuring the reduction in leakage power with
respect to Baseline. From the figure, we observe that GREENER shows an
average (Geometric Mean denoted as G.Mean) reduction of leakage power by
69.21% when compared to the Baseline. It shows the GREENER is effective
in turning the instruction registers into lower power state, such as SLEEP or
OFF state depending on the behavior of the registers. The Baseline does not

86 V. Jatala et al.

g 9% o ! [Sleep-Reg =5 GREENER & |
2 000 Pl : ; ;
S 80%
2, 70% |
g
S 60% .]
Q
)
< 50% ol Ll Ll
S 40% t| l--1 i1 -l i . - - T 1l :
o
3 30% t| -l it -1l 18- B1R1R1K - -
[}
IZO%@@@@(«(;;;;;¢¢¢¢«smmm4
2 S S % 0 ke 2 S Q
R ®TBICRRRELEL BT L QY g
I

Fig. 6. Comparing register leakage power

12%

Sleep-Reqg =2 GREENER mm

9%

6%
3% H -
0% J .
1] i
e)
Z
kS

-6%

Reduction in Simulation Cycles

R N T Z 72 7 1 7 %9 9 9 £ Q
R T S R G SR 22 %% %787 37 %
Z >

Fig. 7. Comparing performance in terms of simulation cycles

provide any mechanism to save the leakage power, as a result, the registers
of a warp continue to consume leakage power throughout the warp execution.
Figure 6 also shows that Sleep-Reg approach reduces the register leakage power
by 60.23% when compared to Baseline, however, GREENER. is more power
efficient than Sleep-Reg. It is because Sleep-Reg approach reduces the leakage
power by turning the instruction registers into SLEEP state immediately after
the instruction operands are accessed, without considering the access pattern of
the registers. If a register needs an immediate access, then keeping the register
into SLEEP instead of ON state requires additional latency cycles to wake up
the register, and during these additional cycles, the registers consume power.

Performance Overhead Using Simulation Cycles: Figure 7 shows the per-
formance overheads of GREENER and Sleep-Reg approaches in terms of the
number of simulation cycles with respect to Baseline. On an average, the applica-
tions show a negligible performance overhead of 0.53% with respect to Baseline.
A slowdown is expected because GREENER turns the registers into SLEEP or
OFF states to enable power savings, and these registers are turned back to ON
state (woken up) when they need to be accessed. This wake up process takes
few additional latency cycles which leads to increase in the number of simula-
tion cycles. Interestingly, some applications (BP, LPS, MC2, MR1, NN2, SP,
and VA) show improvement in their performance. This occurs due to the change
in the issuing order of the instructions. The warps that require their registers
to be woken up can not be issued in its current cycle, instead other resident
warps that are ready can be issued. This change in the issue order leads to

Reducing GPU Register File Energy 87

5 90% Sleep-Req =1 GREENER &
2 80% :
w

© 70%

g

< 60%

3

2 50% [

& 40% |

S

3 30% |

(o)

T 20%

P\

-, <
% 229 % % %

% 9
5%

vt
P
N
w
2
an

© o @ £ 0
Z %

Fig. 8. Comparing register leakage energy

90%
80%
70%
60%
50%
40%
30%
20%

Sleep-Reg &&_Comp-OPT GREENER mm

Reduction in Leakage Energy

Fig. 9. Comparing effectiveness of individual optimizations

change in the memory access patterns, which in turns changes .1 and L2 cache
misses etc. For instance, in case of BP, LPS, MC2, and NNI1 applications, we
observe an improvement in the performance due to less number of pipeline stall
cycles with GREENER when compared to Baseline. Figure 7 also shows that
Sleep-Reg has an average performance degradation of 1.48% when compared to
the Baseline approach. This degradation is more when compared to GREENER
because Sleep-Reg turns all the instruction registers into SLEEP state after the
instruction operands are accessed, irrespective of their usage pattern.

Comparing Register Leakage Energy: Figure8 compares the total energy
savings of GREENER and Sleep-Reg w.r.t. Baseline. The results show that
GREENER achieves an average reduction of register leakage energy by 69.04%
and 23.29% when compared to Baseline and Sleep-Reg respectively. From Figs. 6
and 7, we see that GREENER shows more leakage power saving, also has neg-
ligible performance overhead with respect to the Baseline, hence we achieve a
significant reduction in leakage energy.

Effectiveness of Optimizations: We show the effectiveness of the proposed
optimizations in Fig.9. We observe that the compiler optimization (discussed
in Sect.3.1, and denoted as Comp-OPT) saves more energy (average 69.09%)
when compared to Sleep-Reg (59.65%). This shows that turning the registers
into low power states (SLEEP or OFF state) with the knowledge of register
access pattern is more effective than turning the registers into SLEEP state
after accessing them.

88 V. Jatala et al.

Table 4. Overheads of sleep transistors

Parameter Overhead

Area 0.00875 mm?*
SLEEP to ON latency 0.0197ns (<1 cycle)
OFF to ON latency 0.0551 ns (<1 cycle)
Energy for SLEEP to ON and vice versa | 0.0633 nJ

Energy for OFF to ON and vice versa 0.198nJ

The run-time optimization (discussed in Sect. 3.3) is evaluated by combining
it with Comp-OPT, and we denote them as GREENER in the figure. From the
results, we observe that, for most of the applications, GREENER show minor
improvements when compared to Comp-OPT respectively. This is because the
run-time optimization helps only in correcting power state of a register by turn-
ing to ON state when it detects the future access to the register at run-time.
However, if the register is not found to be accessed in the near future at run-time,
it does not modify and retains the power state as directed by the Comp-OPT.
For some applications (e.g. NN3), GREENER is less efficient when compared to
Comp-OPT. Tt occurs when a register that is determined to be accessed in the
near future does not get accessed due to reasons such as scheduling order, score-
board stalls, or the unavailability of the corresponding execution unit. Note that
the effectiveness of run-time optimization depends on the application behavior
at the branch divergence points.

Analyzing Hardware Overheads: To support leakage power saving,
CACTI-P [18] introduces additional sleep transistors into the SRAM structures.
These transistors enable us to put the registers into low power states (SLEEP
or OFF) after accessing the operands. For the configuration used in our exper-
iments, Table4 shows the additional area, latency, and energy associated with
the additional sleep transistors circuitry. Note that in our experiments, we con-
servatively consider the latency overhead to change the power state from OFF to
ON state to be 2 cycles. We also evaluated GREENER by varying the wake up
latency cycle overhead (the results are reported in [11]). We observed that even
with varying the wake up latency, the applications show significant reduction in
the leakage energy when compared to Baseline.

5 Related Work

Leakage power has become a major source of power dissipation in CMOS tech-
nology. Reducing the leakage power has been well studied in the context of CPUs
when compared to GPUs. Though GREENER is only for saving leakage power
consumption of GPU register files, we describe briefly the techniques to save
leakage power in the context of both CPUs as well as GPUs. A comprehensive

Reducing GPU Register File Energy 89

list of architectural techniques to reduce leakage power of CPUs are described
n [14]. A survey of methods to reduce GPU power is presented in [20].

CPU Leakage Power Saving Techniques: Powell et al. [22] proposed a state
destroying technique, Gated-Vy4, to minimize the leakage power of SRAM cells
by gating supply voltage. Several methods [13,23] leverage Gated-Vy4 technique
to reduce the leakage power of cache memory by turning off the inactive cache
lines. However, these techniques cannot preserve the state of the cache lines. To
maintain the state, Flautner et al. [9] proposed an architectural technique that
reduces the leakage power by putting the cache lines into a drowsy state. Other
approaches [21] exploit this by using cache access patterns to put cache lines
in the drowsy state. As expected, the leakage power savings in this (drowsy)
approach are less when compared to Gated-Vy4 approach.

GPU Leakage Power Saving Techniques: Warped register file [3] leverages
this drowsy approach to reduce leakage power of register files by putting the
registers into the drowsy state immediately after accessing them. However, it
does not take into account the register access pattern while turning the registers
into low power states. Their approach is closest to GREENER and has been
quantitatively compared in our results. Register file virtualization [12] reduces
the register leakage power by reallocating unused registers to another warp.
Pilot register file [4] partitions the register file into fast and slow register files,
and it allocates the registers into these parts depending on the frequency of the
register usage. The partition of the registers is done statically. Therefore, if a
register is accessed more frequently for some duration, and less frequently for
other duration, then allocating the register to either of the partitions can make
it less energy efficient. GREENER changes power state during the execution, so
it does not have this drawback.

6 Conclusions and Future Work

This paper focuses on reducing the leakage power of the register file in GPUs. We
discuss various opportunities to save leakage power of the registers by analyzing
the access patterns of the registers. We propose a system called GREENER that
employs compiler analysis to determine the power state of each register at each
program point. To improve the effectiveness further, we introduce a run-time
optimization that dynamically corrects the power states determined by the static
analysis. On evaluating GREENER using several applications, we observed that
the knowledge of register access patterns and the compiler optimizations help
in improving the energy efficiency of register file with a negligible number of
simulation cycles overhead.

In future, we plan to explore several hardware and software strategies to
reduce the register leakage energy further. For instance, we can study the effect
of various register allocation mechanisms, scheduling polices and propose algo-
rithms that minimize leakage energy by leveraging GREENER.

The register leakage power constitutes a part of the total leakage power.
Similarly, other resources in the GPU such as shared memory, cache, and DRAM,

90

V. Jatala et al.

dissipate leakage power during a kernel execution. In future, we plan to work on
reducing the power consumption of the other GPU resources by analyzing the
application behavior and the resource access patterns.

References

N

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Parboil Benchmarks. http://impact.crhe.illinois.edu/Parboil/parboil.aspx

Kepler Architecture (2014). http://www.nvidia.com/object/nvidia-kepler.html
Abdel-Majeed, M., Annavaram, M.: Warped register file: a power efficient register
file for GPGPUs. In: HPCA (2013). https://doi.org/10.1109/HPCA.2013.6522337
Abdel-Majeed, M., Shafaei, A., Jeon, H., Pedram, M., Annavaram, M.: Pilot reg-
ister file: energy efficient partitioned register file for GPUs. In: HPCA (2017).
https://doi.org/10.1109/HPCA.2017.47

Bakhoda, A., Yuan, G., Fung, W., Wong, H., Aamodt, T.: Analyzing CUDA work-
loads using a detailed GPU simulator. In: ISPASS (2009). https://doi.org/10.1109/
ISPASS.2009.4919648

CACTL. http://www.hpl.hp.com/research/cacti

Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: IISWC
(2009). https://doi.org/10.1109/TISWC.2009.5306797

CUDA-SDK (2014). http://docs.nvidia.com/cuda/cuda-samples

Flautner, K., Kim, N.S., Martin, S., Blaauw, D., Mudge, T.: Drowsy caches: simple
techniques for reducing leakage power. SIGARCH Comput. Archit. News 30(2)
(2002). https://doi.org/10.1145/545214.545232

GPGPU-Sim Simulator (2014). http://www.gpgpu-sim.org

Jatala, V., Anantpur, J., Karkare, A.: GREENER: a tool for improving energy
efficiency of register files. CoRR abs/1709.04697 (2017)

Jeon, H., Ravi, G.S., Kim, N.S., Annavaram, M.: GPU register file virtualization.
In: MICRO (2015). https://doi.org/10.1145/2830772.2830784

Kaxiras, S., Hu, Z., Martonosi, M.: Cache decay: exploiting generational behavior
to reduce cache leakage power. In: ISCA (2001). https://doi.org/10.1145/379240.
379268

Kaxiras, S., Martonosi, M.: Computer Architecture Techniques for Power-
Efficiency, 1st edn. Morgan and Claypool Publishers (2008)

Khedker, U., Sanyal, A., Karkare, B.: Data Flow Analysis: Theory and Practice,
1st edn. CRC Press Inc., Boca Raton (2009)

Kim, N.S., et al.: Leakage current: Moore’s law meets static power. Computer
36(12) (2003). https://doi.org/10.1109/MC.2003.1250885

Leng, J., et al.: GPUWattch: enabling energy optimizations in GPGPUs. In: ISCA
(2013). https://doi.org/10.1145/2485922.2485964

Li, S., Chen, K., Ahn, J.H., Brockman, J.B., Jouppi, N.P.: CACTI-P: architecture-
level modeling for sram-based structures with advanced leakage reduction tech-
niques. In: ICCAD (2011). https://doi.org/10.1109/ICCAD.2011.6105405

Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen, D.M., Jouppi, N.P.:
The McPAT Framework for multicore and manycore architectures: simultaneously
modeling power, area, and timing. TACO 10(1) (2013). https://doi.org/10.1145/
2445572.2445577

Mittal, S., Vetter, J.S.: A survey of methods for analyzing and improving GPU
energy efficiency. ACM Comput. Surv. 47(2) (2014). https://doi.org/10.1145/
2636342

http://impact.crhc.illinois.edu/Parboil/parboil.aspx
http://www.nvidia.com/object/nvidia-kepler.html
https://doi.org/10.1109/HPCA.2013.6522337
https://doi.org/10.1109/HPCA.2017.47
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISPASS.2009.4919648
http://www.hpl.hp.com/research/cacti
https://doi.org/10.1109/IISWC.2009.5306797
http://docs.nvidia.com/cuda/cuda-samples
https://doi.org/10.1145/545214.545232
http://www.gpgpu-sim.org
https://doi.org/10.1145/2830772.2830784
https://doi.org/10.1145/379240.379268
https://doi.org/10.1145/379240.379268
https://doi.org/10.1109/MC.2003.1250885
https://doi.org/10.1145/2485922.2485964
https://doi.org/10.1109/ICCAD.2011.6105405
https://doi.org/10.1145/2445572.2445577
https://doi.org/10.1145/2445572.2445577
https://doi.org/10.1145/2636342
https://doi.org/10.1145/2636342

21.

22.

23.

Reducing GPU Register File Energy 91

Petit, S., Sahuquillo, J., Such, J.M., Kaeli, D.: Exploiting temporal locality in
drowsy cache policies. In: CF (2005). https://doi.org/10.1145/1062261.1062321
Powell, M., Yang, S.H., Falsafi, B., Roy, K., Vijaykumar, T.N.: Gated-Vdd: a circuit
technique to reduce leakage in deep-submicron cache memories. In: ISLPED (2000).
https://doi.org/10.1145/344166.344526

Zhang, M., Asanovié, K.: Fine-grain CAM-tag cache resizing using miss tags. In:
ISLPED (2002). https://doi.org/10.1145/566408.566444

https://doi.org/10.1145/1062261.1062321
https://doi.org/10.1145/344166.344526
https://doi.org/10.1145/566408.566444

)

Check for
updates

1

Taxonomist: Application Detection
Through Rich Monitoring Data

Emre Ates!®)®, Ozan Tuncer!, Ata Turk?,
Vitus J. Leung?, Jim Brandt?,
Manuel Egele!, and Ayse K. Coskun!

! Boston University, Boston, MA 02215, USA
{ates ,otuncer,ataturk,megele, acoskun}@bu. edu
2 Sandia National Laboratories,
Albuquerque, NM 87185, USA
{vjleung,brandt}@sandia.gov

Abstract. Modern supercomputers are shared among thousands of
users running a variety of applications. Knowing which applications
are running in the system can bring substantial benefits: knowledge of
applications that intensively use shared resources can aid scheduling;
unwanted applications such as cryptocurrency mining or password crack-
ing can be blocked; system architects can make design decisions based
on system usage. However, identifying applications on supercomputers is
challenging because applications are executed using esoteric scripts along
with binaries that are compiled and named by users.

This paper introduces a novel technique to identify applications run-
ning on supercomputers. Our technique, Taxonomist, is based on the
empirical evidence that applications have different and characteristic
resource utilization patterns. Taxonomist uses machine learning to clas-
sify known applications and also detect unknown applications. We test
our technique with a variety of benchmarks and cryptocurrency miners,
and also with applications that users of a production supercomputer ran
during a 6 month period. We show that our technique achieves nearly
perfect classification for this challenging data set.

Keywords: Supercomputing - HPC - Application detection
Monitoring + Security + Cryptocurrency

Introduction

Resource utilization and efficiency of supercomputers are top concerns for both
system operators and users. It is typical to use figures of merit such as occupation
of compute nodes or total CPU usage to assess utilization and efficiency; however,
these metrics do not measure if the compute capacity is used meaningfully.

In fact, fraud, waste, and abuse of resources have been major concerns in

high performance computing (HPC) [1]. Wasted resources in supercomputing

© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 92-105, 2018.
https://doi.org/10.1007/978-3-319-96983-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_7&domain=pdf
http://orcid.org/0000-0002-2292-2626

Taxonomist: Application Detection Through Rich Monitoring Data 93

stem from a variety of sources such as application hangs due to software and
hardware faults, contention in shared resources (such as high speed networks,
shared parallel file systems or memory), and fraudulent use (e.g., bitcoin min-
ing, password cracking). Bitcoin mining in supercomputing environments has
recently been gaining media attention [20,23]. Knowing which applications are
running on the system is a strong aid in addressing fraud, waste, and abuse
problems.

Knowledge of applications running on the system can also be used for
various system-level optimizations. Bhatele et al. have shown that network-
intensive applications can slow down other applications significantly [7]. Sim-
ilarly, Auweter et al. presented a scheduling method that leverages application-
specific energy consumption models to reduce overall power consumption [5].
Knowing the most common applications and their characteristics is also useful
to system architects who make design decisions, or to the supercomputer procur-
ers who can make better funding and procurement decisions based on knowledge
of typical application requirements.

Typically, supercomputer operators and system management software run-
ning on these large computers have no knowledge of which applications are exe-
cuting in the supercomputer at a given time. A supercomputer is shared by many
users and runs hundreds to thousands of applications concurrently per day [19].
These applications are compiled by users using different compiler settings, which
result in vastly different executables even if compiled from the same source. It
has been shown that static analysis of the binaries is not enough to detect the
same application compiled with different compilers or flags [13]. Furthermore,
users tend to use non-descriptive names for the binaries and scripts used in their
job submission (e.g., submit128.sh, a.out, app_runner.sh). Therefore, naive
methods for detecting applications such as looking at the names of the processes
and scripts are not useful.

To address these challenges, we present Tazxonomist, an automated tech-
nique for identifying applications running in supercomputers. To identify appli-
cations, Taxonomist leverages monitoring data that is periodically collected
at runtime from a supercomputer’s compute nodes. Monitoring data includes
detailed resource usage information (e.g., CPU utilization, network events, etc.),
and is typically used for application tuning [2], gaining information on system
usage to aid procurement [12], or for anomaly detection [26]. Each application
has (often non-obvious) resource utilization patterns that can be observed in
the monitored data. Taxonomist uses machine learning techniques to learn these
patterns in the data. Taxonomist can then identify known applications, even
when they are running with new input configurations, and also new (unknown)
applications. Specifically, our contributions in this paper are as follows:

— We present Taxonomist: a novel technique that uses machine learning to
identify known and unknown applications running in a supercomputer based
on readily available system monitoring data (Sect.4). Taxonomist is able to
detect applications that are new to the system, as well as previously unseen
input configurations of known applications.

94 E. Ates et al.

— We demonstrate the effectiveness of Taxonomist on a production supercom-
puter using over 50,000 production HPC application runs collected over
6 months of cluster usage, a wide selection of benchmarks, and cryptocur-
rency miners (Sect. 5). We report greater than 95% F-score with this data set
(Sect. 6).

2 Related Work

Several prior approaches have explored identifying applications. Peisert has iden-
tified application detection as a problem in supercomputers [21]. He focused on
using MPT calls through Integrated Performance Monitoring (IPM) [24] to iden-
tify application communication patterns. Further work by Whalen et al. refined
the method to classify applications based on their communication graphs [28],
and DeMasi et al. used system utilization data collected by IPM to identify
applications [11]. These works are based on IPM, which is a tool that monitors
the MPI calls in HPC applications. IPM needs to be linked with the applications
and introduces up to 5% performance overhead [11].

Combs et al. have studied the applicability of using power signatures to
identify applications [8]. As Combs et al. observed, power traces from different
servers are not consistently comparable, so such a method is not scalable for
large-scale systems. Our evaluation confirms that using only power signatures is
insufficient to identify a diverse set of applications in large-scale systems.

Monitoring data has traditionally been used for analyses other than applica-
tion detection. One of the earlier examples of data analysis in supercomputers
was presented by Florez et al., who monitored system calls and library function
calls for anomaly detection in applications [14]. Similarly, Tuncer et al. used
monitoring data to detect node-level anomalies [26]. Agelastos et al. leveraged
monitoring data for troubleshooting and application optimization in a 1200-node
supercomputer [3].

In contrast to related work, Taxonomist uses a monitoring system with neg-
ligible overhead [2] that is capable of monitoring every application regardless of
MPI use, and does not need to be linked with the applications. Taxonomist can
be trained with a selection of applications of interest, and can reliably distinguish
these applications from the remaining applications. Our method can also detect
unknown applications it has not been trained with, which is very important for
practical real-world scenarios.

Another line of work aims at blocking unwanted applications. One way to
block cryptocurrency mining in supercomputers is to prevent miners from get-
ting the most recent blockchain additions using firewalls [22]. However, many
unwanted applications such as password crackers do not need to be connected to
the Internet. Furthermore, firewalls may result in packet losses, and it has been
shown that even very small packet loss is unacceptable for scientific computing
because of the high bandwidth requirements [10]. Another approach to prevent
waste might be to whitelist only applications compiled by the system adminis-
trators. However, availability is considered to be an important aspect of HPC

Taxonomist: Application Detection Through Rich Monitoring Data 95

ft sp kripke X CoMD Vv cg » miniGhost
o mg I miniAMR lu bt miniMD
)
©
« £ & 37000
O'm+
0o 2
290 E I
© £ > 36000 g
95 E X
<gE % 1 ﬁ»" x
%= 35000
lI]I v
=
< 4000 5000 6000 7000 8000 9000 10000

Median of nr_inactive_anon from vmstat

Fig. 1. Two example metrics from /proc/vmstat for 11 applications with two different
input configurations, where each application is running on 4 nodes. These two metrics
can be used to distinguish among some applications, but cannot be used to reliably
detect each of the 11 applications.

300

N
ul
o

N
o
o

Cluster Distance
[
o w
o o

u
o

o

[T
[os)

(M 7T [T

A\) W <R * ROSE RYIR\]
« «\'\(&\P&‘\ \6\6\(\0 ° ° (({\“&\ C°$\ \L‘\Q\é (({\(\\V‘\

Application

Fig. 2. Clustering of 11 different applications, where each application is running on 4
nodes with two different input configurations. We manually assign different colors to
represent different applications. (Color figure online)

systems, and limiting the users to use only specific applications would harm the
user experience and limit the flexibility and usability of the systems. Therefore,
knowledge of the applications running on the system can be a very important
aid in blocking unwanted applications.

3 Motivation

Taxonomist uses monitoring data to identify applications. Modern monitoring
systems are able to continuously collect hundreds of metrics per second from
every compute node in an HPC system [2]. It is infeasible to manually inspect
this data and identify applications relying on rules of thumb and expert knowl-
edge; therefore, we design an automated approach to systematically discover the
differences between the applications.

Figure1 shows two example metrics for a set of 11 applications we run
on a supercomputer (see Sect.5 for details on experimental setup). The x-
axis shows the median of nr_inactive_anon, which represents the number of

96 E. Ates et al.

ML models

APP 1

NOT
w, IHEEN
EEEEEN

training runs

features

Offline
Trainin

g features DiagnOSiS
= [4] z%g;z; B 6:5‘3‘_ Nodi f::\f
S| [o3p3y3 [T 2|App 3

o

test runs

ad,B4y4, ... 3|Unknown
4|App 2

Fig. 3. Overview of Taxonomist.

anonymous memory pages that are inactive, and the y-axis shows the mean of
nr_slab_unreclaimable, which is the number of pages in the slab memory that
cannot be reclaimed. As seen in the figure, applications have different resource
usage characteristics. However, these two metrics are not sufficient to distinguish
between all applications. It is rather challenging to determine the best metrics to
distinguish among a large set of applications using intuition or simple methods.

Figure2 demonstrates clustering of the same 11 applications using all
721 metrics we collect (see Sect.4.1 for details of the metrics). To con-
struct this figure, we extract statistical features such as percentiles and stan-
dard deviation from the collected data (see Sect.4.2), and cluster the statis-
tics corresponding to the compute nodes. For clustering, we use Ward’s
method and standardized Euclidean distance (our implementation uses Python
scipy.cluster.hierarchy.linkage). The results indicate that nodes running
the same application are close to each other in the feature space, but the clus-
tering is not perfect (e.g., miniMD is clustered incorrectly).

Manually finding which metrics are important to distinguish each applica-
tion among hundreds of monitored metrics requires extensive knowledge on the
metrics and applications. With supervised learning, the most relevant features
can be automatically selected, and applications can be reliably identified. Thus,
Taxonomist uses supervised learning techniques.

4 Taxonomist: A Technique for Identifying Applications

Taxonomist, outlined in Fig. 3, is a technique for identifying applications in large-
scale systems using monitoring data collected from the machine. The monitoring
data is collected from every compute node in a timeseries format. We then gen-
erate statistical features that reduce our storage and computation overhead,
while enabling us to retain meaningful information in the timeseries. Finally,
we train a classifier for each application to separate that application from the
rest of the applications using labeled historical data. At runtime, Taxonomist
analyzes monitoring data and labels each node’s application according to the
predictions from the classifiers. We also mark applications as unknown, based on
the confidence of each classifier.

Taxonomist: Application Detection Through Rich Monitoring Data 97

4.1 Monitoring

The first step of our technique is data collection. Typically some form of moni-
toring is in place in supercomputers. These systems collect numeric information
about the usage of the network, memory, CPUs and other subsystems.

We monitor individual nodes and consider data from all nodes that are run-
ning a specific application separately. This enables us to recognize a known
application that possibly runs on a different number of nodes than the number
of nodes in that application’s training runs.

4.2 Statistical Feature Extraction

After collecting monitoring data, Taxonomist removes a segment (40s in our
implementation) from each end of the timeseries to account for the transient
initialization and finalization phases from the applications. We have observed 40
seconds to be sufficient for all applications in this study; however, this duration is
application dependent. We also remove any constant metrics and convert metrics
that represent counter values to their deltas.

We generate statistics from the timeseries data gathered from the compute
nodes. The statistics used are the minimum, maximum, mean, standard devi-
ation, skew, kurtosis and the 5'", 250 50t 75th and 95*" percentiles. Each
metric’s timeseries is distilled into these 11 features. These statistics have been
shown to be useful in analyzing timeseries from supercomputers [26,27]. They are
also easy to calculate, reduce storage requirements, and enable us to compare
applications that have different durations. We scale each feature to the [0, 1]
range according to the values observed in the training set. The same scaling
factors are used at runtime.

4.3 Classification

To distinguish a set of given applications, we train a machine learning model
using a training set of these labeled applications. Taxonomist labels each run
with the corresponding application or it can also label new runs as unknown.

For each classifier, we use a one-versus-rest version of that classifier: i.e., for
each application in the training set, we train a separate classifier that differen-
tiates the application. This approach makes it easy to add a new application to
the ensemble of classifiers and to get information about the nature of each appli-
cation. This approach also enables us to train for only applications of interest,
and we do not have to re-train every classifier when a new application is added.

For evaluation purposes, we compare the following classification algorithms:
random forests, forests of extremely randomized trees (ExtraTrees), decision
trees and the support vector machine classifier (SVC) with linear and radial
basis function kernels. In practice, the best performing one for our data is the
random forest (Sect. 6).

From every classifier, we obtain confidence values on whether a new observa-
tion belongs to one of the existing training classes. For example, the confidence
threshold for the random forest is the percentage of trees in the forest that

98 E. Ates et al.

agree with the final classification. If none of the confidence values are above a
predetermined confidence threshold, we mark this new observation as unknown.

Confidence Threshold Selection. A very high threshold would result in
conservatively labeling new inputs of known applications as unknown, while too
low values would result in unknown applications being labeled as a similar known
application. To select the confidence threshold we first remove each application
from the training set and perform testing with examples of that application in
the training set while changing the confidence threshold. Then, we remove one
input of each application and perform the same test. We select the threshold
that results in the highest average F-score for both scenarios.

Hyperparameter Selection. Most classifiers have hyperparameters that
describe the configuration of the algorithm. We find the best hyperparameters
by splitting the training set into 5 cross validation folds. With 4/5 of the train-
ing data we train classifiers with different hyperparameters, and pick the best
performing one using 1/5 of the training set. We choose the important hyperpa-
rameters for each classifier and over a certain range we train all combinations of
hyperparameters, i.e., grid search. We find the best hyperparameter separately
for each application’s classifier. Note that we never use any test data during
training or hyperparameter selection.

4.4 Operation of Taxonomist

During normal operation, Taxonomist uses the monitoring data to label each
node of each application after a job finishes. These labels can be used to raise
alarms in the case of cryptocurrency mining and to generate system usage reports
or other summaries. They can also be used in further research and development
on application-specific system optimizations. Furthermore, identifying fraud,
waste, and abuse after application completion is still valuable.

As Taxonomist relies on machine learning, it requires a labeled training data
set as input. This data set can be collected by a collaboration of users, operations
staff, and analysts. After the applications of interest are determined, data can
be collected by running them with different input configurations. This training
is a one-time effort unless the applications of interest change.

In our current implementation, the application needs to finish before we
identify it; however, Taxonomist can be modified to work with only the first few
minutes of application data. The strategy proposed by Thebe et al. [25], which
executes applications for a short time before the main run is scheduled, can be
used with Taxonomist.

5 Experimental Methodology

We run our experiments on a production supercomputer, using the Lightweight
Distributed Metric System (LDMS) [2] already in place. We evaluate our system
with 11 benchmarks, 5 different unwanted applications, and also with 6 months
of typical supercomputer usage.

Taxonomist: Application Detection Through Rich Monitoring Data 99

Table 1. Applications used.

Application # of inputs | # of ranks | Description

BT [6] 3 169 Block tri-diagonal solver

CG [6] 3 128 Conjugate gradient

FT [6] 3 128 Fourier transform

LU [6] 3 192 Gauss-Seidel solver

MG [6] 3 128 Multi-grid on meshes
Representative SP [6] 3 169 Scalar penta-diagonal solver
applications miniAMR [15] 4 192/1536 | Adaptive mesh refinement

miniMD [15] 4 192/1536 | Molecular dynamics

CoMD [15] 3 192 Molecular dynamics

miniGhost [15] 4 192/1536 | Structured PDE solver

Kripke [17] 4 192/1536 | Sy transport

minerd 10 2/4 CPU cryptocurrency miner

BFGminer 2 2/4 Cryptocurrency miner
Unwanted xenon 2 96/192 Zcash competition [29] winner
applications® davidjaenson 1 2/4 Zcash competitor

tromp 1 2/4 Zcash competitor

John the Ripper | 194 96/192 Password cracker
®minerd: www.github.com/pooler/cpuminer, BFGminer: www.github.com/luke-jr/bfgminer,
xenon: www.github.com/xenoncat/equihash-xenon, davidjaenson: www.github.com/

davidjaenson/equihash, tromp: www.github.com/tromp/equihash, John the Ripper: www.
openwall.com/john

5.1 Platform

We run all of our experiments on Volta, a Cray XC30m supercomputer located at
Sandia National Laboratories. Volta is composed of 13 fully-connected routers,
with 4 nodes each, leading to a total of 52 compute nodes. The operating system
used is SLES 11 (SUSE Linux Enterprise Server) with kernel version 3.0.101.
Each node has 64 GB of memory and two Intel Xeon E5-2695 v2 CPUs with 12
2-way hyper-threaded cores.

LDMS is a scalable monitoring system deployed on Volta. We use the memory
metrics collected from /proc/meminfo and /proc/vmstat, CPU usage informa-
tion from /proc/stat, and network usage information from Cray network inter-
face card (NIC) counters. 721 metrics from every node every second in total.

5.2 Applications

Representative Applications. We pick a collection of 11 benchmarks and
proxy applications, described in the upper section of Table 1. We choose these
applications to be representative of characteristic HPC workloads. All represen-
tative applications use MPI, and are compiled with the Cray compilers. For each
application, we use 3 different input configurations, and we run the applications
on 4 nodes. We also run miniAMR, miniMD, miniGhost and Kripke on 32 nodes
with an additional input. We run each application on the maximum number of
hardware threads available that the application can utilize.

www.github.com/pooler/cpuminer
www.github.com/luke-jr/bfgminer
www.github.com/xenoncat/equihash-xenon
www.github.com/davidjaenson/equihash
www.github.com/davidjaenson/equihash
www.github.com/tromp/equihash
www.openwall.com/john
www.openwall.com/john

100 E. Ates et al.

Unwanted Applications. These are applications that are usually not allowed
on supercomputers such as cryptocurrency miners and password crackers. The
tromp, davidjaenson, and xenon miners are from an open source miner compe-
tition [29]; BFGminer and minerd are popular miners for mining with CPUs.
Xenon is single-threaded, so we execute 48 copies per node. Other cryptocur-
rency miners are multi-threaded, so we execute them one copy per node, using
48 threads. John the Ripper is a popular password cracking application which
supports MPI; we execute it one rank per hardware thread. The inputs for John
the Ripper are various password formats; and for the cryptocurrency miners, the
inputs are the different types of cryptocurrencies. Due to ethical considerations,
we ran all of the unwanted applications in benchmark mode to ensure that none
of the cryptocurrency mined was connected to the main blockchains.

Typical Volta Usage. This data includes unlabeled applications run by 28
unique Volta users, consisting of 58,366 jobs, from August 2016 until January
2017. Our controlled experiments are removed from these runs.

5.3 Baseline Technique

Combs et al. [8] have proposed a technique (referred to as Combs) for application
detection using power data instead of performance monitoring data. Combs uses
a similar feature extraction approach, but in contrast to our method, it extracts
serial correlation, non-linearity, self-similarity, chaos, and trend from the time-
series, as well as skew, kurtosis, serial correlation and non-linearity from the
timeseries with the trend component removed. Furthermore, Combs et al. nor-
malized maximum and median with the minimum for each timeseries to generate
two additional features. Their method uses a random forest classifier and does
not have a method for labeling unknown applications, so we do not implement
any thresholding for Combs’ method.

6 Evaluation

We evaluate the capability of Taxonomist in detecting applications with a variety
of workloads and scenarios. First, we examine the classification performance in
identifying known applications with new input configurations. Then, we evaluate
the performance in labeling unknown applications.

For all tests, we first perform 5-fold cross validation, where we split the whole
data into five sets with equal distributions of applications with the original data
set. We then train five different Taxonomist instances using four of the sets.
For testing, we use the fifth set that was removed from training data. For the
normalization and hyperparameter selection steps, Taxonomist performs another
5-fold cross-validation on the training set.

For the results, we report the F-Score, which is a widely used measure of
classifier performance. For binary classification, F-Score is defined as the har-
monic mean of precision and recall. Precision is the ratio of true positives to

Taxonomist: Application Detection Through Rich Monitoring Data 101

1.000 ' 1.00
1
0975 I
0950 == =T == s=s= == == N 0.95
o
()
0.925 \ \ g
g —_— v § 0.90
3 0.900 I o
o 1
0.875 ! 0.85
0.850 —— RandomForest =r==+ LinearsvC — |*
0825 Eztcriz-iror:'?:ee — z\éibs 080
- - Ad S e C C S
0.800 i dom;og;;a—((ee \é\o“‘(g“ea(s\‘ N co®
00 02 04 06 08 1.0 o 0ec
Confidence Threshold Classifier

(a) F-scores for classifiers, vertical dashed (b) F-scores for classifiers at the chosen
line indicates the chosen confidence thresh- confidence threshold, 0.75. Error bars in-
old. dicate the 95% confidence interval.

Fig. 4. F-scores with one input configuration removed from training. In most cases,
the applications are correctly identified in spite of the unknown input configuration.

the number of all positive predictions, and recall is the ratio of true positives
to the number of all actual positives in the data set. F-Score ranges between 1
(best) and 0 (worst). All of our results are multi-class; therefore we calculate
the average precision and recall for each class, and take the harmonic mean to
calculate the overall F-score.

Full Data Set. Table 2 shows the 5-fold Table 2. Five-fold cross validation
cross validation results on the 11 repre- results with the full data set.

sentative applications. All of the results ~classifier Procision T Recall [F-score
except the baseline technique (Combs) RandomForest|1.000 |1.000 |1.000
ExtraTrees 1.000 1.000 | 1.000
haye an F?Score of over 099 However, = o 0 0 os 5998 T0-695
this scenario where the training data con- TinearSVC 0.999 0.999 | 0.999
tains all applications and all input con- SYC 0.994 0.994]0.994
Combs 0.932 0.931 | 0.931

figurations is unrealistic. SVM with the
linear kernel (LinearSVC) performs better than the rbf kernel (SVC). This is
likely due to the large data set with many features and datapoints, and this
behavior is consistent with the literature [16].

Detecting Applications with Unknown Input Configurations. Appli-
cations’ resource usage is affected by their input configurations. To evaluate
Taxonomist’s robustness against input configurations that are not in the train-
ing set, we remove one of the input sets from the training set. For the test set, we
keep the cross validation folds the same. Figure 4 shows that the classification is
successful unless the confidence threshold is over 0.9, in which case the unknown
input configurations are marked as unknown applications.

102 E. Ates et al.

1.000 . 1.00
0.975
0.950 0.95
0.925 =
g S 0.90
% 0.900 o
w
0.875 0.85
0.850 === RandomForest ===== LinearSVC ﬁ
0825 =Z" lE?v);:iasE:‘T'fee == i\;abs 0-80
- - S e C C
0.800 ' dommgira‘ eec\s\o‘\ve“ears\l s
0.0 0.2 0.4 0.6 0.8 1.0 o€
Confidence Threshold Classifier

(a) F-scores for classifiers, vertical dashed (b) F-scores for classifiers at the chosen
line indicates the chosen confidence thresh- confidence threshold, 0.75. Error bars in-
old. dicate the 95% confidence interval.

Fig. 5. F-scores with one application removed from the training set. With the correct
confidence threshold choice, the unknown application can be correctly identified.

Detecting Unknown Applications. Figure5 shows classification results with
one application removed from the training set. If the removed application is
labeled as unknown, we mark it as a correct prediction. In the majority of the
cases, the unknown application is correctly identified as such. The lowest F-
Scores are for the BT and SP applications, which are both partial differential
equation solvers and they have been shown to have similar behavior [18]. Hence,
the classifiers tend to mispredict SP and BT.

The confidence threshold that gives the maximum value for the average F-
scores of the unknown input and unknown application cases is 0.75, and Random
Forest is the classifier that gives the best average F-score.

Unwanted Applications and Typical Volta Usage. We show Taxonomist’s
ability to identify unknown applications from different domains by testing with
unwanted applications such as bitcoin miners, shown in Fig.6a, and with 6
months of Volta usage data, shown in Fig.6b. In both of these tests, we train
Taxonomist with the 11 representative applications, and consider the unknown
label to be correct. Random Forest, Extra Trees and SVC have an almost per-
fect F-score for identifying any of these applications as unknown. Combs is not
shown, because it is unable to identify unknown applications.

Feature Importance. In order to present the importance of different statisti-
cal features and metrics, we train a decision tree for each application, using all of
the data from the 11 applications. To compare feature importances, we use Gini
reduction, which is used to measure the reduction of heterogeneity in the data.
A feature that can divide the data set well has a high Gini reduction, which
means the resulting divided data sets are more homogeneous. We use the imple-
mentation in Python scikit-learn library (sklearn.DecisionTreeClassifi-
er.feature_importances._).

Taxonomist: Application Detection Through Rich Monitoring Data 103

Unwanted Applications Normal Volta Usage

1.0 - — 1
¢ 1
g 1
0.8 """".'"' i i 1
R | '.' : == RandomForest
v o6 I ! 1 === ExtraTrees
S : ! : = = DecisionTree
u‘f 0.4 7 e 04 LinearSVC
] H 1 — = SVC
L] 1 I K 1
02, : H 1
' K 1 1
JOPE Rt 1
0.0 T e 00 e e [———
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Confidence Threshold Confidence Threshold

(a) F-scores when tested with bitcoin min- (b) F-scores when tested with HPC appli-
cations that are not known to the classi-

ers and password crackers.
fiers.

Fig. 6. The classifiers can correctly identify unknown applications, whether they are
HPC applications or bitcoin miners and password crackers.

cg: VmallocUsed, meminfo ﬂ:—| .

lu: Inactive, meminfo -| + ¢
miniMD: Inactive(file), meminfo
sp: AR_PI_STALLED, metric_set_nic
miniAMR: nr_inactive_file, vmstat

L
oo
I
mg: user, procstat I-—| +
{
| s

Maximum I—ED-!
Minimum I-—|
Mean I—ﬂ:—l
Standard Deviation HT
skew [
Kurtosis I-I
5th Percentile I—ED—|
25th Percentile —{IH
50th Percentile # [H ¢
75th Percentile HIH
95th Percentile HH ¢
0.0 0.1 0.2 0.3
Total Gini Reduction

‘¢ ¢
ft: AR_BTE_RD_FLITS, metric_set_nic

bt: nr_file_pages, vmstat
kripke: Active(anon), meminfo [[_H
CoMD: AR_AMO_FLITS, metric_set nic ~ HIllH ¢ .
miniGhost: per_core_user4, procstat lO L]
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Total Gini Reduction

Statistic
Application: Metric, Subsystem

(a) The importance of each statis- (b) The most important metric for each 11 applica-
tions and the metric’s source subsystem.

tical measure.
Fig. 7. The importance of different metrics and statistics. Box-plots are constructed
using the different decision trees for each application. The box shows the quartiles
while the whiskers show the rest of the distribution except outliers, which are points
away from the low and high quartiles by more than 1.5 x IQR.

In the decision trees corresponding to our 11 applications, we calculate the
total Gini reduction of features extracted using the 11 statistics (Sect. 4.2), and
report it in Fig. 7a. The box-plots are constructed using the data from the deci-
sion trees, and the individual importance values from the trees are summed up.
Figure 7b shows the most important metric from each decision tree. The impor-
tant metric and subsystem' are highly application specific.

! metric-set-nic: Cray network counters [9], vmstat: /proc/vmstat, meminfo: /proc/
meminfo, procstat: /proc/stat, AR stands for AR-NIC-RSPMON-PARB-EVENT-

CNTR.

104 E. Ates et al.

7 Conclusion

We have presented Taxonomist, a technique for classifying applications in super-
computers with the help of readily available monitoring data. The technique
builds classifiers from historical data, and detects new applications while being
robust to new input configurations of applications. We have evaluated Tax-
onomist using a comprehensive data set including controlled experiments and
real-world workloads and demonstrated F-scores of over 95%.

Data Availability Statement and Acknowledgment. The datasets gen-
erated during and/or analyzed during the current study are available in the
Figshare repository: https://doi.org/10.6084/m9.figshare.6384248 [4].

This work has been partially funded by Sandia National Laboratories. Sandia
National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under Contract DE-NA0003525.

References

1. ASCR cybersecurity for scientific computing integrity. DOE Workshop Report
(2015)

2. Agelastos, A., et al.: The lightweight distributed metric service: a scalable infras-
tructure for continuous monitoring of large scale computing systems and applica-
tions. In: International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pp. 154-165 (2014)

3. Agelastos, A., et al.: Toward rapid understanding of production HPC applications
and systems. In: IEEE International Conference on Cluster Computing, pp. 464—
473 (2015)

4. Ates, E., et al.: Artifact for taxonomist: application detection through rich moni-
toring data (2018). https://doi.org/10.6084 /m9.figshare.6384248

5. Auweter, A., et al.: A case study of energy aware scheduling on SuperMUC. In:
Kunkel, J.M., Ludwig, T., Meuer, HW. (eds.) ISC 2014. LNCS, vol. 8488, pp.
394-409. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07518-1_25

6. Bailey, D., et al.: The NAS parallel benchmarks. Int. J. Supercomput. Appl. 5(3),
63-73 (1991)

7. Bhatele, A., Mohror, K., Langer, S.H., Isaacs, K.E.: There goes the neighborhood:
performance degradation due to nearby jobs. In: SC 2013, pp. 41:1-41:12. ACM,
New York (2013)

8. Combs, J., et al.: Power signatures of high-performance computing workloads. In:
Proceedings of the 2nd International Workshop on Energy Efficient Supercomput-
ing, E2SC 2014, pp. 70-78. IEEE Press, Piscataway (2014)

9. Cray: Aries hardware counters (s-0045-20). Technical report (2015). http://docs.
cray.com/books/S-0045-20/S-0045-20.pdf

10. Dart, E., Rotman, L., Tierney, B., Hester, M., Zurawski, J.: The science DMZ: a
network design pattern for data-intensive science. In: SC 2013, pp. 1-10 (2013)

https://doi.org/10.6084/m9.figshare.6384248
https://doi.org/10.6084/m9.figshare.6384248
https://doi.org/10.1007/978-3-319-07518-1_25
http://docs.cray.com/books/S-0045-20/S-0045-20.pdf
http://docs.cray.com/books/S-0045-20/S-0045-20.pdf

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Taxonomist: Application Detection Through Rich Monitoring Data 105

DeMasi, O., Samak, T., Bailey, D.H.: Identifying HPC codes via performance logs
and machine learning. In: Proceedings of the First Workshop on Changing Land-
scapes in HPC Security, pp. 23-30. ACM, New York (2013)

Dongarra, J., et al.: The international exascale software project roadmap. Int. J.
High Perform. Comput. Appl. 25(1), 3-60 (2011)

Egele, M., Woo, M., Chapman, P., Brumley, D.: Blanket execution: dynamic sim-
ilarity testing for program binaries and components. In: 23rd USENIX Security
Symposium, pp. 303-317. USENIX Association, San Diego (2014)

Florez, G., Liu, Z., Bridges, S.M., Skjellum, A., Vaughn, R.B.: Lightweight moni-
toring of MPI programs in real time: research articles. Concurr. Comput.: Pract.
Exp. 17(13), 1547-1578 (2005)

Heroux, M.A., et al.: Improving performance via mini-applications. Technical
report SAND2009-5574, Sandia National Laboratories (2009)

Hsu, C.W., Chang, C.C., Lin, C.J.; et al.: A practical guide to support vec-
tor classification. Technical report (2003). https://www.csie.ntu.edu.tw/~cjlin/
papers/guide/guide.pdf

Kunen, A., Bailey, T., Brown, P.: KRIPKE-a massively parallel transport mini-
app. Technical report, Lawrence Livermore National Laboratory, Livermore (2015)
Ma, C., et al.: An approach for matching communication patterns in parallel appli-
cations. In: IEEE International Symposium on Parallel Distributed Processing, pp.
1-12 (2009)

NERSC: Number of NERSC users and projects through the years (2016). www.
nersc.gov/about/nersc-usage-and-user-demographics/number-of-nersc-users-and-
projects-through-the-years/

Office of Inspector General: Semiannual report to congress (2014). https://www.
nsf.gov/pubs/2014/0ig14002/0ig14002.pdf

Peisert, S.: Fingerprinting communication and computation on HPC machines.
Technical report, Lawrence Berkeley National Laboratory (2010). https://doi.org/
10.2172/983323

RedLock CSI Team: Lessons from the cryptojacking attack at Tesla. Technical
report (2018). https://blog.redlock.io/cryptojacking-tesla

Rosenberg, E.: Nuclear scientists logged on to one of Russias most secure computers
to mine bitcoin. The Washington Post (2018)

Skinner, D., Wright, N., Fuerlinger, K., Yelick, K., Snavely, A.: Integrated perfor-
mance monitoring IPM (2009). http://ipm-hpc.sourceforge.net/

Thebe, O., Bunde, D.P., Leung, V.J.: Scheduling restartable jobs with short test
runs. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2009. LNCS, vol.
5798, pp. 116-137. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04633-9_7

Tuncer, O., et al.: Diagnosing performance variations in HPC applications using
machine learning. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC
2017. LNCS, vol. 10266, pp. 355-373. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58667-0_19

Wang, X., Smith, K., Hyndman, R.: Characteristic-based clustering for time series
data. Data Min. Knowl. Disc. 13(3), 335-364 (2006)

Whalen, S., Peisert, S., Bishop, M.: Multiclass classification of distributed memory
parallel computations. Pattern Recogn. Lett. 34(3), 322-329 (2013)

Zcash Electric Coin Company: Zcash open source miner challenge (2016).
www.zcashminers.org

https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
www.nersc.gov/about/nersc-usage-and-user-demographics/number-of-nersc-users-and-projects-through-the-years/
www.nersc.gov/about/nersc-usage-and-user-demographics/number-of-nersc-users-and-projects-through-the-years/
www.nersc.gov/about/nersc-usage-and-user-demographics/number-of-nersc-users-and-projects-through-the-years/
https://www.nsf.gov/pubs/2014/oig14002/oig14002.pdf
https://www.nsf.gov/pubs/2014/oig14002/oig14002.pdf
https://doi.org/10.2172/983323
https://doi.org/10.2172/983323
https://blog.redlock.io/cryptojacking-tesla
http://ipm-hpc.sourceforge.net/
https://doi.org/10.1007/978-3-642-04633-9_7
https://doi.org/10.1007/978-3-642-04633-9_7
https://doi.org/10.1007/978-3-319-58667-0_19
https://doi.org/10.1007/978-3-319-58667-0_19
https://zcashminers.org/

)

Check for
updates

Diagnosing Highly-Parallel OpenMP
Programs with Aggregated Grain Graphs

Nico Reissmann and Ananya Muddukrishna(®®
Norwegian University of Science and Technology, Trondheim, Norway
{nico.reissmann,ananya.muddukrishna}@ntnu.no

Abstract. Grain graphs simplify OpenMP performance analysis by
visualizing performance problems from a fork-join perspective that is
familiar to programmers. However, when programmers decide to expose
a high amount of parallelism by creating thousands of task and paral-
lel for-loop chunk instances, the resulting grain graph becomes large and
tedious to understand. We present an aggregation method that hierarchi-
cally groups related nodes together to reduce grain graphs of any size to
one single node. This aggregated graph is then navigated by progressively
uncovering groups and following visual clues that guide programmers
towards problems while hiding non-problematic regions. Our approach
enhances productivity by enabling programmers to understand problems
in highly-parallel OpenMP programs with less effort than before.

1 Introduction

The grain graph [1] is a recent visualization method that simplifies OpenMP
performance analysis by highlighting problems from a fork-join perspective. Task
and parallel for-loop chunk instances are collectively termed grains in the grain
graph method. Grains that suffer performance problems such as work inflation,
inadequate parallelism, and low parallelization benefit are pinpointed on the
grain graph along with precise links to the problematic source code. This enables
programmers to perform optimizations productively without relying on experts
or trial-and-error tuning.

Programmers optimize OpenMP programs for large machines with hundreds
of cores by exposing a high amount of parallelism during execution. This is
achieved by adjusting special program inputs called cutoffs and chunk sizes such
that a large number of fine-grained tasks and for-loop chunks are created. Scala-
bility problems invariably occur when the runtime system is unable to efficiently
handle the parallelism exposed [2-4]. These problems are pinpointed on the grain
graph using metrics that isolate low parallelization benefit, work inflation, and
poor memory hierarchy utilization to specific grains.

However, the large grain graphs resulting from highly-parallel OpenMP exe-
cution make problem diagnosis tedious (Fig. 1). Programmers have to zoom and
pan to different sections while remembering characteristics of visited sections.
Problems that are spread out become difficult to locate. Non-problematic grains
© Springer International Publishing AG, part of Springer Nature 2018

M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 106-119, 2018.
https://doi.org/10.1007/978-3-319-96983-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_8&domain=pdf

Diagnosing Highly-Parallel OpenMP Programs 107

that are shown dimmed to increase focus on problems combine at lower zoom
levels and become pronounced. Programmers can perceive the dimming effect
and spot problematic grains only when zoomed into higher levels. A powerful
workstation with a large screen and copious amount of memory is required to
render large grain graphs responsively. In light of these demands, programmers
prefer to pore over text summaries and tabular formats of large graphs and
reserve the visual approach only for small graphs.

S %
S

Ly

Fig.1. The grain graph of the task-recursive sort program from the Barcelona
OpenMP Task Suite (BOTS) for a high-parallelism input (n=20971520,
cutoffs={65536, 8192, 128}) is dense with 11059 grains. Inset (blue box) zooms into
a section at magnification 40X. (Color figure online)

This paper contributes with a new aggregation method that makes visual
analysis of large grain graphs practical. The aggregation method (Sect. 3) groups
related nodes by matching recurrent patterns in the grain graph, ultimately
resulting in an aggregated graph with a single group node. Programmers navi-
gate the aggregated graph by progressively opening and closing groups. Groups
with problems are highlighted and non-problematic sections are removed from
sight for distraction-free diagnosis. Navigation is further sped up through new
group-based metrics that enable programmers to traverse the critical path and
compare groups for structural similarity. Using highly-parallel executions of stan-
dard OpenMP programs, we demonstrate (Sects.3 and 4) that aggregated grain
graphs enhance the state-of-the-art in OpenMP problem diagnosis.

2 Background on Grain Graphs

The grain graph [1] is a visualization for OpenMP that connects performance
problems to the fork-join program structure at the resolution of grains — task
and parallel for-loop chunk instances created during execution. This simplifies
problem diagnosis as programmers can readily identify with the fork-join pro-
gram structure. In contrast, existing visualizations based on timeliness and call
graphs complicate diagnosis by connecting performance problems to scheduling
events that are unfamiliar and unpredictable to programmers [1,5]. Experts who
understand scheduling internals nevertheless find it tiring to follow timelines and
call graphs that depict recursive task-based execution — a popular style of using
OpenMP.

108 N. Reissmann and A. Muddukrishna

2.1 Structure

The grain graph is a directed acyclic graph whose nodes denote grains and run-
time system operations, and edges denote control-flow. Parent and child grains
are shown in close proximity on the graph using logical-time placement [5,6] to
maintain familiarity with the fork-join perspective (Fig.2a'). The grain graph
is laid out using the Sugiyama layout [7,8]. This layout places nodes in lay-
ers, removes cycles, and prevents edge crossings. These features are essential to
depict fork-join progression in an uncluttered manner.

lg g E]
(c) (d) (e) (F) (g) (h)
1 bool is_graingroup(Node n) {
2 return is_grain(n) || is_forkjoin(n) || is_linear(n)
3}
4
i 5 void reduce(Node n) {
/]\ 6 if (is_graingroup(n) && is_graingroup(succ(n))) {

|:| o D] |:| grepgoe | L] sogoggeq v n' + reduce_linear(n)
8 reduce(n)
9 } else if (is_graingroup(n) &k is_fork(succ(n))) {
10 reduce (succ(n))

Em EEER am 11 n' reduce_linear(n)
12 reduce(n')
13 } else if (is_fork(n)) {
14 forall s in succ(n)
15 reduce(s)
[] 16 n’ « reduce_forkjoin(n)
17 reduce (n')
18 5
19 3
(b) (i)

Fig.2. Grain graph of the task-based Sort program from BOTS for small input
(n=512, cutoffs={256, 64, 16}). (a) Structural view (b) problem view highlighting
low parallel benefit in red (c) after two fork-join pattern reductions of the highlighted
subgraph (d-g) linear pattern reductions leading to a single group node (h) after nor-
malization (i) reduction pseudocode (Color figure online)

2.2 Diagnosing Problems

Grains are annotated with unique schedule-independent identifiers, links to
source code locations, as well as performance metrics measured during profil-
ing and derived post profiling. Profiled metrics include execution time, cache
miss ratio, memory latency, and timestamps of control-flow events such as grain
creation and synchronization. These metrics are used to compute derived met-
rics such as critical path, work deviation, instantaneous parallelism, memory
hierarchy utilization, scatter, load balance, and parallel benefit.

Parallel benefit is a custom metric used in several discussions of this paper.
It is computed by dividing a grain’s execution time by its parallelization cost

! Readers should print in color as they are crucial to appreciate grains graphs.

Diagnosing Highly-Parallel OpenMP Programs 109

including creation time. This metric aids inlining and cutoff decisions as grains
with low parallel benefit should be executed sequentially to reduce overhead.

Commonly sought out metrics are encoded visually for quick identification
on the graph (Fig. 2a). The length of a grain is set proportional to its execution
time. Grain colors denote source code locations by default. Edges are colored by
type and highlighted red if they are on the critical path.

Grains with metric values that cross programmer-defined thresholds are
inferred as problematic. The thresholds have sensible values by default. Prob-
lematic grains are highlighted with a color that encodes problem severity in a
separate view while non-problematic grains are dimmed (Fig. 2b). Additionally,
problems are summarized in a separate text file and highlighted in a tabular
form of the grain graph shown on a separate visualization widget.

Grain graphs have multiple conceptual views with colors encoding a sin-
gle problem or property per view. Programmers shift between these views to
understand properties or tackle problems. Problematic grains are highlighted
and non-problematic grains are dimmed, and clicking on a grain opens a separate
window that shows the grain’s properties and performance metrics. Figure 2a—b
show the programmer cycling between the low parallel benefit problem view and
the structural view where no problems are highlighted.

3 Grain Graph Aggregation Method

Our aggregation method for grain graphs conceptually consists of four phases:

1. Reduction matches and replaces subgraph patterns with group nodes to
construct an aggregation tree. This tree captures the graph structure and
serves as a basis for further processing. After aggregation is complete, the
tree is converted back to an aggregated grain graph with problematic grains
exposed and non-problematic grains hidden.

2. Normalization transforms the aggregation tree into a canonical form, sim-
plifying further processing.

3. Propagation propagates grain metrics at the leaves of the tree to upper
levels in a sensible manner.

4. Separation transforms the aggregation tree to separate problematic nodes.
This enables grouping and hiding of non-problematic grains in the resulting
aggregated graph.

The algorithmic complexity of all four phases is linear in the number of
graph nodes plus edges. The rest of this section explains the phases in detail and
discusses the navigation of the resulting aggregated graph at the end.

3.1 Reduction

The reduction phase matches a fork-join and linear pattern, and replaces them
with group nodes to construct an aggregation tree. The fork-join pattern consists

110 N. Reissmann and A. Muddukrishna

of a single fork node connected to child grains or groups, which in turn are
connected to a join node (Fig.2c). The linear pattern has two nodes, either a
grain or a group node, that are connected to each other (Fig.2d). Both patterns
are repeatedly matched, and replaced by a single group node until the entire
grain graph is reduced to a single node (Fig. 2d—g).

The pseudocode of the reduction algorithm is shown in (Fig.2i). The key
steps in the pseudocode are explained next:

— Line 6 matches the linear pattern (Fig.2d—g). It uses the helper function
is_graingroup to detect whether a node and its successor is a grain or a
group, and reduces the pattern to a linear group node. Reduction continues
with the newly-created group node.

— Line 9 matches a grain or group node with a fork node as successor.
The matched fork node is recursively aggregated to a fork-join group node
(Fig. 2c). The resulting linear pattern is then reduced to a linear group node.
Reduction continues with the linear group node.

— Line 13 matches a fork node (Fig. 2a) and recursively aggregates all successors
of the fork node. The resulting fork-join pattern is then reduced to a fork-join
group node. Reduction continues with the fork-join group node.

The grain graph is reduced greedily by the reduction algorithm. It always
continues with the newly-created group node after a pattern match and never
traverses past a join node. This ensures that the innermost fork-join in a nesting
is reduced first.

The aggregation tree consisting of group and grain nodes explicitly captures
the grain graph’s nesting and fork-join structure. The leaves of the tree are
grains and its intermediate nodes are the newly-created group nodes. Linear
group nodes have the two matched nodes from the pattern as children, whereas
fork-join group nodes have the children of the matched fork node as children.

The reduction algorithm is applicable to grain graphs where parents synchro-
nize with all their children before completion. This essential property ensures
that fork-join patterns are properly nested, permitting their reduction in a hier-
archy of group nodes. While this property holds for well-behaved OpenMP 3.X
programs, the taskgroup construct in OpenMP 4.0 violates this property. The
construct permits parents to synchronize with their children and descendants in
one step. This impedes reduction unless the grain graph is restructured so that
all descendants are placed as immediate children of the root parent.

3.2 Normalization

Normalization transforms the aggregation tree into a canonical form by flatten-
ing nested linear group nodes. In the reduction phase, linear group nodes are
always created for a pair of grain or group nodes, even if more nodes are chained
together. This constructs nested linear subtrees where linear group nodes are the
children of other linear group nodes as exemplified in Fig. 2d—g. Normalization
flattens these subtrees to a single linear group node with all non-linear group
nodes from the subtree as its children (Fig.2h). In practice, this phase can be
incorporated into the previous phase to speedup aggregation.

Diagnosing Highly-Parallel OpenMP Programs 111

3.3 Propagation

This phase propagates leaf node metrics to the enclosing groups all the way up to
the root node. It traverses the aggregation tree in post-order and attributes group
nodes with metrics sensibly-derived from their children. For example, the work
metric of a group node is the sum of the execution times of its children, while
the schedule-independent identifiers of children are concatenated with the group
node’s depth to derive a schedule-independent identifier.

Metrics are attributed such that problems propagate to the root group. If
a child is problematic, then its parent is marked as problematic as well. The
minimum of the memory hierarchy utilization, parallel benefit, and instantaneous
parallelism as well as the maximum of the load balance, work deviation, and
scatter metrics of children are attributed to the parent group. Programmers can
refine existing propagation metrics and define new ones. Given this ability, the
range of values and other summary statistics of a group can be easily captured
(for example, as string attributes). One useful custom metric that programmers
could define is the percentage of time spent by a group on the critical path.

3.4 Separation

The separation phase groups non-problematic nodes to separate them from prob-
lematic nodes. This enables programmers to focus on problems and reduces graph
viewer load. For example, consider a fork-join group that encloses a thousand
grains among which only a single grain is problematic. An unseparated graph
would require all grains to be rendered, while a separated graph requires only
the rendering of one problematic grain and a non-problematic group node.

U]

o

n
..DD.HDD 7 %
HE] g%
o (o) ‘/
(@) (b) (©) (@ (e)

Fig. 3. Separation of problematic from non-problematic nodes. (a-b) Fork-join node
separation. (c—d) Linear node separation. (e) Local (blue) and global (red) critical
paths (Color figure online)

Separation traverses the aggregation tree in post-order and separates sub-
trees rooted at fork-join and linear nodes. In a fork-join separation, all non-
problematic children of a fork-join node are grouped under a newly-created

112 N. Reissmann and A. Muddukrishna

group node (Fig.3a-b), while in a linear node separation, all consecutive non-
problematic children of a linear group node are grouped under a new linear group
node (Fig. 3c—d). After the separation phase, the aggregation tree is converted
back to a grain graph where non-problematic subgraphs are hidden.

3.5 Navigation

The navigation of an aggregated graph starts at the root and continues by pro-
gressively opening/closing group nodes to understand graph structure and prob-
lems (Fig. 4). In contrast to the navigation in unaggregated graphs, the cognitive
load on programmers and the graph viewer’s resources are reduced as only a sub-
set of the grains are laid out. Navigation is sped up using several optimizations:

LELTLT Tl

(=]} L] L]

IIIIIII

(e)

Fig. 4. Navigating the aggregated grain graph of NQueens program from BOTS for
high-parallelism input (n=14, cutoff=4). The graph has 21492 grains and 3073 group
nodes. Grains with low parallel benefit are highlighted as problems. (a—d) Drilling down
to sibling groups at a depth of 3 from the root group. (a) Root group. (b) At depth
1. (c) At depth 2. (d) At depth 3. (e) Drilling down along the critical path to sibling
groups at the lowest depth.

1. Groups can be opened to show all grains including those inside subgroups
(full collapse), or drilled down to a specific group or depth level (Fig.4).

2. Group nodes are drawn as rounded rectangles with no filling to differentiate
them from grains. Group metrics are shown in a separate property window,
similar to grains. Opened groups grow as large as required to envelop members
whereas closed group nodes have a constant size. The borders of problematic
closed groups are colored red to draw programmer attention, while the bor-
ders of non-problematic groups are colored green for quick identification. Our
choices of group colors and sizes allow programmers already familiar with
grain graphs to smoothly transit to the aggregation feature.

Diagnosing Highly-Parallel OpenMP Programs 113

3. Once a group’s structure is known, other similarly structured groups can be
navigated confidently or skipped if problem-free. For example, twelve groups
in Fig. 4d have the same structure. Group similarity is computed on-demand
using a Weisfeiler-Lehman graph kernel [9)].

4. Groups on the global critical path (gcb) are inspected first since they are
good optimization candidates (Fig.4e). The local critical path of groups not
on the gcb can be computed on-demand and used for prioritized inspection
(Fig. 3e). If off-gcb grains are optimized to reduce the total amount of work,
the resulting slack can be used to execute grains on the gcb.

4 Prototype Implementation

The grain graph visualization is implemented in a prototype [10] that produces
grain graphs in GRAPHML by processing profiling data from OMPT exten-
sions [11] or the MIR runtime system [4,12,13]. We extended the prototype
to produce aggregated graphs upon programmer request [14]. The aggregation
method was implemented in C++, leveraging support for nested groups [15] in
GRAPHML and using the igraph [16] library for basic graph processing.

We used the graph viewer yEd [17] to visualize aggregated grain graphs since
it has sufficiently mature support for GRAPHML files with nested aggregations.
For example, it has features to interactively open and close groups, and jump to
groups at any hierarchy level. Its property editor dialog shows the annotations of
group nodes. Switching between problem views was achieved by cycling through
tabs that highlighted different problems.

External programs parameterized by group identifiers were used to compute
local critical path and similarity. These programs do not update the visualization
and programmers are required to manually load their output into yEd. Similarity
was computed using a third-party implementation [18] of the Weisfeiler-Lehman
graph kernel.

We recognize that interactions with aggregated graphs in yED have quite
some room for improvement. Qur plan is to incorporate improvements in a ded-
icated grain graph viewer as yEd is closed-source. The dedicated viewer will
also enable programmers to define custom metrics derived from basic grain and
group metrics in a GUIL. This improves over the prototype where programmers
customize metrics by editing source-code in convenient locations.

5 Evaluation

We tested our prototype on C/C++ benchmarks from SPEC OMP 2012 (SPEC-
OMP12), Barcelona OpenMP Task Suite v2.1.2 (BOTS) and Parsec v3.0 (Par-
sec). The benchmarks were compiled with MIR-linked GCC v4.4.7 and profiled
on a 48-core machine with 64 GB memory and four AMD Opteron 6172 pro-
cessors running at 2.1 GHz with frequency scaling disabled. We provided input
values that exposed abundant, fine-grained parallelism to standard OpenMP
programs to obtain large grain graphs (Table1).

114 N. Reissmann and A. Muddukrishna

5.1 Visible Node Count

We use the metric visible node count (8) to judge the ability of our aggregation
method to reduce programmer effort in navigating and diagnosing problems.
0 is defined as the minimum number of visible nodes in a grain graph while
diagnosing a problematic grain. If it is small, the cognitive load on programmers
and the resource requirements of viewers are reduced.

The visible node count for a problematic grain in an aggregated graph is the
number of nodes exposed by opening groups in the path leading to the grain. In
contrast, the visible node count in an unaggregated graph is equal to the number
of nodes in the entire graph irrespective of the position of the problematic grain,
assuming programmers do not pan and zoom to the vicinity of the problematic
grain manually.

Table 1 shows the maximum 6 for two cases. The first is a conservative case
(6*) that assumes all grains in the graph are problematic, while the second
(0;’,@”) considers graphs with low parallel benefit. For both cases, the reduction
in maximum # compared to the total size of the graph, i.e., the maximum 6 for
the unaggregated graph, is reported as Savings.

Table 1. Benefit of aggregation for standard OpenMP benchmarks.

Benchmark Input #Nodes | #Grains 92”‘“” Savings | Low parallel benefit
(%)

#Prbl. 6’;’;’)‘” Savings

Grains (%)
Strassen® 8192, 128, 2000 176480 | 137258 60 |99.97 157 49 [99.97
]30dyt1rackb B261, 4, 261, 4000, 5, 3, 48, 0| 126615 69061 5767 |95.45 24627 5757 |95.45
Floorplan® 15, 7 117960 82490 149 |99.87 31125 148 99.87
376.kdtree® 200000, 10, 2 32808 16400 58 199.82 2055 57 199.83
NQueens® 14, 4 24565 21492 70 199.71 10540 66 |99.73
359.botsspar® | 64, 64 24161 23905 1154 |95.22 2 9 199.96
358.botsalgn® | prot.200.aa 20505 20101 406 |98.02 7 17 199.92
Sort® 20971520, 65536, 8192, 128 20293 11509 55 |99.73 288 51 |99.75
FFT? 16777216, 8192, 2 9240 4592 53 199.43 414 49 199.47
367.imagick® | See caption of Fig.5 3935 3801 405 |89.71 649 182 |95.37
Blackscholes® | 4M 2205 1201 112 | 94.92 400 112 | 94.92
Freqmineb kosarak-990k.dat, 790 2111 2017 389 |81.57 66 30 |98.58
2BOTS
Parsec

°SPEC-OMP12

For the conservative case, we see a large reduction in #. The biggest saving
is 99.97% for the Strassen benchmark and the smallest saving is 81.57% for
Freqmine, with an average saving of 95.98%. This shows that aggregation can
significantly reduce 6 for any problematic grain in our evaluation setup.

For the second case, we see a further reduction in 6 since non-problematic
grains are grouped during the separation phase (Sect. 3). Benchmarks Freqmine,
367.imagick, 358.botsalgn, 359.botsspar, show large savings from aggregation
since they contain a small number of problematic grains. On the other hand,

Diagnosing Highly-Parallel OpenMP Programs 115

Bodytrack and Floorplan show barely any improvement over the conservative
case due to a higher concentration of problematic grains that are clustered as
siblings. Problematic siblings are ignored during separation by design.

5.2 Reducing Distractions

We further illustrate the benefit of aggregation using the 367.imagick benchmark
from SPEC-OMP12 for an input that SPEC programmers noticed as poorly
scaling. The unaggregated grain graph shows a chain of nine dense for-loops
(Fig. 5a). The sixth loop contains several chunks that suffer from low parallel
benefit since several instances of the parallelization-throttling macro omp_throttle
are missing in the source. Diagnosing these problematic chunks requires pro-
grammers to sweep attentively across the graph ignoring the abundance of non-
problematic grains and the frequent non-responsive rendering of the graph. The
aggregated graph enables programmers to diagnose problematic chunks group
by group (Fig.5b), keeping only those groups with problematic chunks open,
while uninteresting loops and non-problematic chunks are hidden from sight.
This results in a more responsive graph viewer since fewer nodes need to be
rendered.

|—guR-pul Ruj Eul Euispupupuiul Eul Eul Euj Eul Eujl gimpul Ruy Eul Eul Eul Eul Ruy N N Eul Rupul Eui- Ny

(a)

i

BLALELE R R B

o Moacood

(b)

Fig. 5. Diagnosing problems with grains of 367.imagick from SPEC-OMP12 for input
-shear 31 -resize 1280x960 -negate -edge 14 -implode 1.2 -flop -convolve
1,2,1,4,3,4,1,2,1 -edge 100 ref/input/inputl.tga. (a) Sweeping across the
entire unaggregated graph with 3801 grains to spot problems. (b) Aggregated
grain graph enables programmers to diagnose problematic grains group-wise.
Non-problematic grains are separated to promote focus (inset).

116 N. Reissmann and A. Muddukrishna

5.3 Similarity Across Runs

Grain graphs produced from two independent executions of a given program can
be different in shape due to unpredictable inlining decisions taken by the run-
time system or if the program adapts its behavior sensitive to available execution
resources. Understanding such changes can provide vital clues for problem diag-
nosis. However, detecting the dissimilar sections by manually inspecting a pair
of large grain graphs is extremely tiring and akin to finding matches between
fingerprints using a magnifying lens.

Similarity is a powerful metric that not just helps to skip over structurally
similar groups within the same graph (as demonstrated in Sect.3.5), but can
also compare groups across runs to detect structural differences. Programmers
can gradually open two graphs side-by-side and compute the similarity met-
ric for visible groups using their schedule-independent identifiers. Those groups

L1

M1,N1,01 P1,Q1 R1

i
L2
[}

seomss | | Besesans

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

(b)

Fig. 6. Finding dissimilar sections in grain graphs from two independent executions of
the non-deterministic Floorplan program from BOTS for input cell-file=input.5,
cutoff =5. (a) Graph produced from execution on 4 cores has 7974 grains. (b) Graph
produced from execution on 48 cores has 3190 grains. The similarity metric allows
programmers to understand without inspection that groups L1-2, M1-2, N1-2, and O1-
2 have the same structure but P1-2, Q1-2, and R1-2 do not. Groups R1-2 are opened
to show the dissimilarity. R2 encloses fewer subgroups than R1.

Diagnosing Highly-Parallel OpenMP Programs 117

that have the same identifier but different similarity metrics are the sections
that have changed between the graphs. We demonstrate this for the Floor-
plan program from BOTS in Fig. 6. Floorplan is a search-based program whose
pruning behavior changes non-deterministically when more cores are allotted for
execution.

6 Related Work

Aggregation is a standard approach to scale visualizations with increasing
data [19,20]. Sensible dimensions for aggregation include the program struc-
ture (e.g. tasks), middleware stack (worker threads), physical processing com-
ponents (processors), and the visualization (node-links). However, aggregation
can remove vital diagnosis data when applied aggressively across several dimen-
sions. Isaacs et al. [19] recognize the balance between aggregation aggressiveness
and information preservation as an important challenge. Our method strives to
maintain this balance by reducing the size of the rendered graph and focusing
it on problematic sections, while keeping the expected fork-join perspective.

For space reasons, we restrict the discussion to abstraction-centric, logical-
time aggregated visualizations similar to grain graphs, and refer readers for other
visualizations to recent surveys [19,20] and a visualization explorer [21].

The dominant aggregation scheme in visualizations is statistical rather than
visual, i.e., metrics of selected elements in the main visualization are aggregated
statistically and reported separately, typically as a property table [22-27]. The
cognitive load of the main visualization is only reduced by zooming out to focus
on large elements, while support for visual aggregation at the same zoom level is
absent. Consequently, such visualizations suffer similar navigation and diagnosis
difficulties as large unaggregated grain graphs.

The aggregation method for task graphs in DAG Viz [28] resembles our work.
It presents programmers with a single aggregated node that can be interactively
opened to reveal subgraphs as well as a dedicated viewer. However, our approach
is tailored to grain graphs and is unique in tracing the critical path and identify-
ing the similarity of subgraphs. Unaggregated grain graphs are more effective in
pinpointing problems than unaggregated DAGViz graphs due to more derived
metrics. The expansion of DAGViz graphs results also in the rendering of more
nodes as they show a fork-node per grain. Grain graphs avoid this thanks to
fork-node reductions that produce a fork-node per set of siblings. DAGViz com-
bats the scaling problem by using an elegant aggregation method that reduces
subgraphs that executed wholly on a single worker-thread into a single, non-
collapsible node.

ThreadScope [29] visualizes the logical-time structure of task-parallel pro-
grams. Its memory operations nodes can be grouped to improve clarity, but it
is unclear whether programmers can interact with groups to uncover members.

The causality graph [30] visualization permits programmers to manually
select and repeatedly aggregate nodes into supernodes, while special care must
be taken to avoid graph cycles on their creation. Supernode metrics include

118 N. Reissmann and A. Muddukrishna

the local critical path and metrics computed using user-defined combinators.
The causality graph presents an unaggregated graph by default, while we
present a fully aggregated graph and use sensible aggregation metrics to guide
programmers.

7 Conclusion

This paper contributes an aggregation method for grain graphs that enables
programmers to easily understand problems in highly-parallel OpenMP pro-
grams. Our method groups nodes arranged in recurring patterns to produce
an aggregated graph that programmers can navigate by progressively opening
and closing groups. Problematic groups are highlighted and non-problematic
sections are cleared from sight, enabling focus without compromising the fork-
join perspective expected by programmers. Using standard OpenMP programs
as examples, we demonstrate a significant reduction of visible nodes through-
out problem diagnosis. For future work, we plan to implement a dedicated grain
graph viewer that smoothly and precisely guides programmers towards OpenMP
problems and hints at solutions.

Acknowledgment. The paper was funded by the TULIPP project (grant num-
ber 688403) and the READEX project (grant number 671657) from the EU Hori-
zon 2020 Research and Innovation programme. The authors thank NTNU colleagues
Peder Voldnes Langdal, Magnus Sjidlander, Jan Christian Meyer, and Magnus Jahre
for constructive comments and KTH Royal Institute of Technology for providing test
machinery.

References

1. Muddukrishna, A., et al.: Grain graphs: OpenMP performance analysis made easy.
In: PPoPP (2016)

2. Olivier, S.L., et al.: Characterizing and mitigating work time inflation in task
parallel programs. In: SC (2012)

3. Yoo, R.M., et al.: Locality-aware task management for unstructured parallelism: a
quantitative limit study. In: SPAA (2013)

4. Muddukrishna, A.; et al.: Locality-aware task scheduling and data distribution for
OpenMP programs on NUMA systems and manycore processors. Sci. Program.
2015 (2015). https://doi.org/10.1155/2015/981759. Article no. 5

5. Isaacs, K.E., et al.: Combing the communication hairball: visualizing large-scale
parallel execution traces using logical time. In: InfoVis (2014)

6. Cuny, J.E., et al.: Logical time in visualizations produced by parallel programs. In:
IEEE Conference on Visualization (1992)

7. Sugiyama, K., et al.: Methods for visual understanding of hierarchical system struc-
tures. SMC 11, 109-125 (1981)

8. Eiglsperger, M., et al.: An efficient implementation of Sugiyama’s algorithm for
layered graph drawing. In: International Symposium on Graph Drawing (2004)

9. Shervashidze, N., et al.: Weisfeiler-Lehman graph kernels. JMLR 12, 2539-2561
(2011)

https://doi.org/10.1155/2015/981759

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Diagnosing Highly-Parallel OpenMP Programs 119

Muddukrishna, A., et al.: anamud/grain-graphs: Grain Graphs v1.0.0 (2017).
https://doi.org/10.5281/zenodo.439355

Langdal, P.V., Jahre, M., Muddukrishna, A.: Extending OMPT to support grain
graphs. In: de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Miiller,
M.S. (eds.) IWOMP 2017. LNCS, vol. 10468, pp. 141-155. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-65578-9_10

Muddukrishna, A., et al.: anamud/mir-dev: MIR v1.0.0 (2017). https://doi.org/
10.5281/zenodo.439351

Muddukrishna, A., et al.: Characterizing task-based OpenMP programs. PLoS
ONE 10(4), 0123545 (2015). https://doi.org/10.1371/journal.pone.0123545
Reissmann, N.: phate/ggraph: VPA17 (2017). https://doi.org/10.5281/zenodo.
836838

Brandes, U., et al.: GRAPHML primer (2017). http://graphml.graphdrawing.org/
primer/graphml-primer.html. Accessed 27 July 2017

Csardi, G., et al.: The igraph software package for complex network research. Inter-
Journal 1695, 1-9 (2006)

yWorks GmBh: yEd Graph Editor (2015). http://www.yworks.com/en/products_
yed_about.html. Accessed 10 Apr 2015

Sugiyama, M., et al.: GraphKernels: R and python packages for graph comparison.
Bioinformatics 34, 530-532 (2017)

Isaacs, K.E., et al.: State of the art of performance visualization. In: EuroVis (2014)
Von Landesberger, T., et al.: Visual analysis of large graphs: state-of-the-art and
future research challenges. In: Computer Graphics Forum (2011)

Katherine I.: Performance visualization: living digital library of state of the art
of performance visualization (2017). http://cgi.cs.arizona.edu/~kisaacs/STAR/.
Accessed 31 July 2017

Brinkmann, S., Gracia, J., Niethammer, C.: Task debugging with TEMANEJO.
In: Cheptsov, A., Brinkmann, S., Gracia, J., Resch, M., Nagel, W. (eds.) Tools
for High Performance Computing 2012, pp. 13-21. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37349-7_2

Barcelona Supercomputing Center: OmpSs task dependency graph (2013). http://
pm.bsc.es/ompss-docs/user-guide/run-programs-plugin-instrument-tdg.html.
Accessed 10 Apr 2015

Subotic, V., et al.: Programmability and portability for exascale: top down pro-
gramming methodology and tools with StarSs. J. Comput. Sci. 4, 450-456 (2013)
Blochinger, W., et al.: Visualizing structural properties of irregular parallel com-
putations. In: VISSOFT (2005)

Haugen, B., et al.: Visualizing execution traces with task dependencies. In: VPA
(2015)

Drebes, A., Bréjon, J.-B., Pop, A., Heydemann, K., Cohen, A.: Language-centric
performance analysis of OpenMP programs with aftermath. In: Maruyama, N., de
Supinski, B.R., Wahib, M. (eds.) IWOMP 2016. LNCS, vol. 9903, pp. 237-250.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45550-1_17

Huynh, A., et al.: DAGViz: a DAG visualization tool for analyzing task-parallel
program traces. In: VPA (2015)

Wheeler, K.B.: Visualizing massively multithreaded applications with Thread-
Scope. Concurr. Comput.: Pract. Exp. 22, 45-67 (2010)

Zernik, D., et al.: Using visualization tools to understand concurrency. IEEE Softw.
9, 87-92 (1992)

https://doi.org/10.5281/zenodo.439355
https://doi.org/10.1007/978-3-319-65578-9_10
https://doi.org/10.5281/zenodo.439351
https://doi.org/10.5281/zenodo.439351
https://doi.org/10.1371/journal.pone.0123545
https://doi.org/10.5281/zenodo.836838
https://doi.org/10.5281/zenodo.836838
http://graphml.graphdrawing.org/primer/graphml-primer.html
http://graphml.graphdrawing.org/primer/graphml-primer.html
http://www.yworks.com/en/products_yed_about.html
http://www.yworks.com/en/products_yed_about.html
http://cgi.cs.arizona.edu/~kisaacs/STAR/
https://doi.org/10.1007/978-3-642-37349-7_2
http://pm.bsc.es/ompss-docs/user-guide/run-programs-plugin-instrument-tdg.html
http://pm.bsc.es/ompss-docs/user-guide/run-programs-plugin-instrument-tdg.html
https://doi.org/10.1007/978-3-319-45550-1_17

)

Check for
updates

Characterization of Smartphone Governor
Strategies

Sarbartha Banerjee(g) and Lizy Kurian John

University of Texas at Austin, Austin, TX 78705, USA
{sarbartha, 1john}@utexas. edu

Abstract. The voltage and frequency of the various components of a smart-
phone processor such as CPU cores, graphics, multimedia and display units can
be independently controlled by their own dynamic voltage and frequency
(DVEFS) governors to fit the requirement of the workload. The dynamic change
of the voltage and frequency performed by governors is targeted either towards
achieving the optimal performance with the minimum energy consumption or
choosing a mode which requires minimum supervision of workload and minimal
change of DVFS modes (since changes in modes are accompanied by overheads
of switching).

This paper explores the behaviour of different governors run on a wide variety
of workloads and enlists the best strategy for different scenarios exemplifying
the need for workload characterization. We also analyze the performance and
power efficiency of workloads in a system having a common power source and
study their behavior when multiple such blocks are operating together pushing
the power source to its limit. Our results show that choosing the correct CPU
governor alone is not sufficient but tuning the DVFS of different resources is
necessary to achieve the best performance with minimum energy expenditure.
We observe that the powersave governor does not always give the best energy
efficiency. It was found to be sub-optimal for CPU intensive workloads due to
increased execution time. Moreover, the race-to-idle strategy was found to be
optimal for workloads in which one component is utilized for majority of the
time. These results demonstrate the necessity for characterizing workloads and
tuning the DVFS while distributing the power between the various components
based on the workload’s characteristics.

Keywords: SoC - Governor - Power budget + Race-to-idle + Pace-to-idle

1 Introduction

Getting desirable performance with optimum energy efficiency have become the major
design criteria for modern smartphones. This is primarily because battery technology
development has been much slower than processor development, with the form factor
of the phones limiting the battery capacity and the stringent thermal limit of the device.
To address this issue, all modern smartphones have multiple DVFS (Dynamic Voltage
Frequency Scaling) modes to run different components in the most efficient mode. In
typical DVFES, the frequency and the voltage of the processor is modified based on the
component utilization. Tuning the frequency of the essential component not only saves

© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 120-134, 2018.
https://doi.org/10.1007/978-3-319-96983-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_9&domain=pdf

Characterization of Smartphone Governor Strategies 121

power but also increases performance in certain scenarios. In smartphones, sometimes a
single power source is shared among various components. There is a peak power limit
of the power source in addition to thermal constraints. These constraints led to the
development of new governor strategies which are not only focused on increasing
performance but also tackling the workload in the most energy efficient way.

The availability of DVFES in different components and a high number of DVFS
modes within a component makes the optimal choice very difficult. Moreover, pro-
viding the user with a satisfactory performance for prolonged period with high energy
and thermal efficiency has become a new paradigm.

One simple heuristic for power management using DVES is to run the job on the
target system at the maximum possible frequency (maximum performance mode) and
then throttle down to minimum or deep-sleep state as quickly as possible. This method
is termed as race-to-idle. This method is simple, reduces latency and saves energy in
certain use cases. The energy saving comes from the fact that the processing unit is
active for the minimum amount of time and leakage power is saved in inactive modes.
But, its validity and usefulness is yet to be conclusively established for smartphones as
workloads tend to use different resources intermittently sometimes using multiple
processing units at the same time. More complex methods can optimally switch the
processor frequently to the optimum DVFS mode based on the workload performance
requirement by polling the resource usage and trying to finish it in the most energy
efficient manner. This is termed as pace-to-idle. But in such cases, some energy is
wasted monitoring the workload continuously. Moreover, mapping a workload
dynamically into heterogeneous clusters of multicore processors and various acceler-
ators like the GPU cannot be done without efficient workload behavior characterization.

Furthermore, there are situations when the smartphone is running on low battery.
Normally, the frequency of all the blocks are toned down to consume less energy. But
the increasing leakage current raises the question if it really increases the energy
efficiency when we need to run an application on the system at lower frequency?

Thus, understanding the workload behavior is essential while choosing the gov-
ernor. At least if one can classify the workload and figure out the functional units
needed, it will greatly help in choosing an appropriate governor for each resource.
Also, most of the governors are designed for the CPU. But global decision of the
various DVFS modes in an energy constrained system based on the workload improves
the power efficiency and less temperature rise of the smartphone system-on-chip (SoC).

Our study encompasses the analysis of various categories of governors for different
kind of workloads to explain the optimal strategy in a mobile platform. The race-to-idle
strategy has been shown to be effective for servers where the quality of service and
latency of the requests are important. But for mobile devices, an acceptable quality of
service is desirable within the bounds of power limit of the source must be provided
while respecting the thermal limits making it an optimization problem.

Some power-hungry governors are good for performance while some relaxed
governors might be power saving. With the availability of multiple DVFS modes, finite
DVES switching time and workload detection, researchers are coming up with
improved governors that predict the pattern of the workload and choose the appropriate
DVES point. The analysis shown in the paper is a start point for any governor designer
to make reasonable decisions for a governor.

122 S. Banerjee and L. K. John

The rest of the paper is organized in the following format: Sect. 2 provides
background about the DVFS modes, the governors and their characteristics. Section 3
elaborates on the experimental setup. Section 4 explains the workloads and bench-
marks used. Section 5 shows results of our experiments. Section 6 explains the
benchmark characteristics and their behavior with different governors. Section 7 pro-
vides our observations from the experiments conducted and conclusion in Sect. 8.

2 Background

The smartphone system on a chip (SoC) comprises of multi-core CPUs, a GPU and
multimedia units running on a separate DVFS point while sharing the same current
source. With the demand for new aggressive power saving techniques, designers have
added more voltage-frequency (VF) points to individual units and added governors for
independent control of different units. Power can be saved if one enables the desired
unit at the appropriate frequency. But switching the DVFS modes consumes energy
and has non-zero latency. Too much switching is also not desirable. In addition, every
unit can also be separately put in the different idle power modes like clock gating,
retention or deep sleep. All these low power modes have different wake up latency and
leakage current consumed.

2.1 Governors

In this section, we will first give a brief overview of the types of CPU governors present
in the Linux kernel of an android smartphone today and then go over some of the
common governors and frequency scaling points of other units in the SoC.

Performance Governor. This governor is a constant frequency governor which keeps
the system in highest possible voltage and frequency irrespective of the workload. This
is highly power hungry and the core latches itself to maximum frequency. Worth noting
is that this governor works best when a series of compute intensive job is run in the
system. Moreover, it also keeps the bus to DDR at its peak frequency. It doesn’t waste
extra time and power in DVFS switching. But keeping the processor in this frequency
can cause thermal throttling and unnecessarily running it near the peak current of the
supply. But once the processor run queue is empty, it goes back to the sleep state. It is
considered as a ‘race’ governor which finishes the job as quickly and goes to idle.

Interactive and Ondemand Governor. The ondemand governor [2] switches the
system in highest possible voltage and frequency whenever a job is scheduled and
immediately ramps down to lower frequency when the resource utilization fades. The
interactive governor find the optimal frequency based on the load average of the
system. If the load average is more than a pre-specified value, it switches to higher
frequencies. Similarly, if the load average is low, the ondemand ramps down imme-
diately while the interactive waits for a certain hysteresis time. This works well when
we have a sequence of compute intensive jobs interspersed with long delays. The
immediate return to low frequency ensures that it spends minimum time in the highest
DVFS mode. However, if the idle time between jobs is very low, this governor hops

Characterization of Smartphone Governor Strategies 123

between frequencies repeatedly. The Interactive governor adds a hysteresis timer on top
of the ondemand governor to filter some of the switching. This governor can be
considered as a pace’ governor which will adapt the frequency based on the workload
requirement.

Powersave Governor. Powersave governor is designed to save energy by running the
CPU at the lowest possible operating frequency. This gives slow response but reduces
average power in many situations and is often used when battery is low or during
thermal throttling. It also gives good performance when the application is using another
component of the SoC like the GPU with minimal CPU utilization but might falter in
certain cases as the overall energy consumption may exceed others due to significantly
higher runtime. It also fails to attain desirable QoS and provide poor user experience.

GPU Governors. Most of the chips have GPU as a proprietary unit, so the governors
supported are specific to the hardware used in the experiment. Since our test setup had a
Qualcomm Snapdragon processor, we will list down a couple of GPU governors.

Most of the fancy governors are largely pacing governors whose performance lie
between the performance and the powersave governors. Msm-adreno-tz is one such
governor which works like the interactive governor and tunes based on the GPUbusy
data stating GPU utilization. It also has performance and powersave governors which
are like the CPU counterparts working of GPU frequencies.

The optimization of the GPU governors can improve energy efficiency of the
overall system as it is a high-power resource. Thus, the above options do tell us that
battery power saving is not only limited to the CPUs but in every units of the SoC.
Similar changes can be done to the DDR frequency and multimedia components.

2.2 DVFS Points

Owing to the need to save power and to provide flexibility to choose the appropriate
mode to perform a task, hardware designers provide several DVFES points for different
resources. Our testing platform is a Dragonboard 410c [14] platform consisting of a
Qualcomm Snapdragon 410 processor having Quad-core ARM AS53 processor with all
four cores running at the same voltage & frequency. The cores can be independently
put into low power mode but they cannot be run at different frequency. This Snap-
dragon processor supports the following eight different frequency points each having a
different voltage.

* 1209 MHz » 800 MHz
* 1152 MHz * 533 MHz
» 1094 MHz * 400 MHz
* 998 MHz * 200 MHz

Apart from that the DDR memory also has different frequencies of 533, 400 or
200 MHz. Either it can be scaled independently or in tandem with the CPU frequency.
Similarly, the GPU has its own independent DVFS modes but shares the same power
rail as the CPU and others.

124 S. Banerjee and L. K. John

Choosing wrong DVEFES points for individual components may prevent providing
enough budget to the crucial component adversely affect performance. For instance, if
there are a lot of I/O operation or if a multimedia application is running, keeping the
CPU in performance mode will allocate a larger power budget from the current source
to the CPU and the multimedia unit will simply perform poorer due to lack of power
budget for this unit. In our test setup, we have observed a similar scenario by running
Geekbench 3 by keeping the CPU at different frequencies. It is observed that the
memory intensive tests that perform occasional computation perform poorly when the
CPU is in its highest frequency as simple computations can be performed in lower
frequency with same latency but without reaching the power limit of the device.
Moreover, there can be thermal throttling forcing all units to tone down its activity. It is
unique in smartphones as a lot of blocks share a single power source. Not only does it
show poor performance but also consumes higher leakage and clock tree power when
the processor fails to shut down when it is not required. Thus, choosing the correct
DVEFS point for each resource is essential for efficient power budget distribution for
maximizing performance of the highest used resource.

2.3 Quality of Service

A governor should not only work towards energy efficiency but also provide user
acceptable performance. The performance need not be the best but needs to comply to
some standard. Researchers have collected user surveys to determine the level of user
satisfaction for mobile devices. We compiled QoS data from prior research [7-10] and
enlist them in the result section. Furthermore, we specify that the benchmark scores
should be within 95% of the maximum possible score attained by the device.

3 Experimental Setup

We used Dragonboard 410c [14] for the analysis of energy consumption across various
workloads and benchmarks. It contains a Qualcomm Snapdragon 410 consisting of
Quad-core ARM Cortex AS53 processors running Android 5.1.1. There are shunt reg-
isters provided on board [15] to check the incoming current to the processor. The
reason of choice for this processor is its prevalence in value-tier market and the fact that
it has a shared power source. Below are some of the specifications of this processor are
listed in Table 1.

Table 1. Snapdragon 410c specification

CPU 4 x ARM Cortex A53 1.2 GHz
CPU arch | 64 bit ARM V8 architecture
GPU Qualcomm Adreno 306 400 MHz
DSP Qualcomm Hexagon DSP
Memory | 1 GB LPDDR3 533 MHz

Characterization of Smartphone Governor Strategies 125

The points across the shunt resistor (R77) on the board are tapped and a INA219 current
sensor is connected to measure the current. The output of the current sensor is sampled
using a microcontroller to get the data. A block diagram of the setup is shown in Fig. 1.

Some of the parameters of the hardware are tuned during the study of governor
behavior. It includes CPU governor, Governor tuning, DDR frequency, GPU fre-
quency, Thermal throttler, Hotplugging setting. All the parameters are tuned for every
run and then the workload is run in the system. The android debug bridge [14]
(ADB) is used for the measurements and various comparisons are performed.

1 I
i i
1 I
I (g '
R77 410c I
| =y / H
'] !
i ! i
[O [P R]
ADB over | i
WIFI |
\
N Linux Host
Vin+ Vin- use T
12C, 3.3V i
INA 219 —— Arduino

Fig. 1. Block diagram of the experimental setup

4 Applications and Benchmarks

A brief analysis of some of the experiments performed are described in this section.
The results in term of scores and the normalized energy consumed in reported in
Table 2. Linaro workload Automation suite [16] is used to run a host of applications
explained in the Table 2 and standard benchmarks which includes the following:

* Antutu * Ebizzy

* Geekbench * Dhrystone
* BBench * Linpack

* Nenamark * Memcpy

Table 2. A description of the applications

Applaunch Launches either the calculator, browser or google Maps application when no other
application is running in the system

Multi_applaunch | Launches calculator, browser and maps application in a sequence on top of one another

Video Playing a 720p video file in the native android video player

Audio Plays an audio file in the native android audio player

Maps Open google maps and perform a navigation task

Adobereader Scrolls, zooms and searches a word after opening a pdf file

Facebook Performs a series of tasks after logging in a facebook account including scrolling

through the wall, like a friend’s photo, post a status and comment on an existing post

Tozone Performs a series of 10 performance tasks

126 S. Banerjee and L. K. John

5 Results

First, we provide a distinction between race-to-idle and pace-to-idle governor strate-
gies. The performance and powersave governors keep the CPU frequency at the max
and the min operating point. This accounts for the least governor software overhead
and no time wasted on voltage and frequency modulation. However, they cannot adapt
to phase changes. Performance governor is a race-to-idle governor. On the other hand,
the pace-to-idle strategies like the interactive and ondemand frequently changes DVFS
points based on CPU utilization. These works better in the application workloads which
interleaves different resources. A view of the number of switching is shown in Table 3.
Antutu shows frequency toggles in performance mode because of thermal throttling
pointing out the drawback of race-to-idle strategy in mobile devices. Interactive filters
out some modulation using hysteresis as compared to ondemand governor and per-
forms better in terms of performance and energy efficiency in most applications.
Moreover, the performance must meet minimum standards which we compile from
prior research and is enlisted in Table 4.

Table 3. DVFS mode switching of different governors

Benchmarks | Performance Interactive Ondemand Powersave
governor governor governor governor
Antutu 18 842 3809 0
Applaunch 0 1897 7463 0
Audio 0 43 112 0
Dhrystone 0 8 12 0
Geekbench 0 229 887 0
Homescreen 0 44 51 0
Linpack 0 31 83 0
Memcpy 0 10 12 0
Nenamark 0 1178 8383 0

Table 4. Quality of service of different user actions

Behavior Quality Application

Webpage load time 4 BBench, firefox

Online video loading time | 2-10 s Stream, Youtube
Facebook comment post |3 s Facebook

Interactive tasks 100 ms Applaunch, Adobereader
Video playback 30 fps—60 fps | Video/Game rendering
PDF rendering 1-10 s Adobereader

Some of these are benchmarks like the Antutu, Geekbench, Dhrystone and
Nenamark whose scores are directly reported in Table 5 when run with different
governors. Antutu and Dhrystone primarily stresses the CPU. The interactive governor
gives similar performance as performance governor but consumes more power because

Characterization of Smartphone Governor Strategies 127

it unnecessarily toggles the frequency. Nenamark is a graphics benchmark running
OpenGL-ES 2.0. The powersave governor gives best frame rate as the GPU governor is
tweaked to performance and bus frequency is changed while the CPU is in powersave
mode. This shows that changing the DVFS modes for the critical component not only
increases performance but also consumes less power. Applaunch of both single and
multiple application works best when the CPU is in performance mode as the QoS is
for the quickest application load time. Moreover, there is not much difference in
response time whenever we are launching light application like the calculator. The
effect is more pronounced when heavier or multiple applications are launched. Table 5
shows the performance of different applications and benchmarks. The values are
marked in green for the acceptable QoS and red for unacceptable ones.

Table 5. Performance comparison among different CPU governors and green ones have
acceptable QoS.

Workload metric : Gf)vernors
performance interactive ondemand powersave

Antutu Score 19246 19038 19027 12201
Dhrystone DMIPS 4053 4053 4052 2679
Applaunch . .

0.7 0.
caleulator Launch time (s) 1 4 0.79 0.89
Applaunch . -

00 2
Browser Launch time (s) 1. 1.02 1.07 1.46
BBench Runtime(s) 190.9 184.17 187.2 246.24
Adobereader Runtime(s) 77.14 79.14 79.95 103.61
ebizzy Total records/sec 2017 2011 1757 472
Nenamark Frames per second 35.6 35.2 34.9 37.4
Bandwidth (in _

3 3060 2970 3

Memcpy MB/s) 3114 306(297(588

6 Benchmark and Application Classification

A host of benchmarks and user workloads were run with different governors. The
workloads are classified in this section into the following categories:

6.1 CPU Intensive Workloads

These are the workloads that are compute intensive and works best when the processors
are at peak frequency. Race-to-idle scheme gives better performance and is often
energy efficient as well by reducing the number of DVFS switches and also keeping the
SoC active for the minimum amount of time. The pace-to-idle governors on the other
hand, suffer from too many unnecessary DVFS modulations. Interactive and ondemand
governor works good if the workload is continuously CPU demanding and behaves like
performance in Dhrystone [1]. This can be viewed in the minimal number of DVFS
modulations in Table 3. Figure 2 shows the average current of CPU intensive

128 S. Banerjee and L. K. John

benchmarks. Applaunch of calculator (simple application) and firefox works fastest in
performance governor. Antutu benchmark shows that the performance has the highest
power efficiency while meeting QoS. Powersave consumes the least power as its
frequency is clipped to the lowest operating mode but it gives drastically poor per-
formance. Thus, if we can categorize a phase of a workload as compute intensive, we
can move to performance mode until the phase completes to get the maximum per-
formance and minimal DVFS switching overhead.

6.2 Intermittent CPU Workloads with I/O Operation

Some of the workload we tested like the BBench which loads saved webpages by I/O
operation and scrolls through the webpages which is CPU intensive works best in
pace-to-idle type of governors. Since the CPU is only used intermittently, interactive
governor is the most efficient as it lowers the frequency of the CPU while doing I/O
operation. The lowering of CPU frequency also provides more power budget to the /O
unit and it can provide better response. Figure 3 shows that BBench is a heavy
benchmark and consumes good amount of current throughout its execution. Facebook,
Adobereader also are I/O intensive and saves CPU power during user interactions.
Geekbench also has a lot of memory operations where interactive aces out. Perfor-
mance governor scores better in the CPU intensive workloads of the Geekbench suite.

Average currentin mA

dhrystone applaunch applaunch_browser antutu

Fig. 2. Power comparison of CPU intensive benchmarks of different governors.

Average currentin mA

adobereader bbench geekbench facebook

Fig. 3. Power comparison of user interactive applications of different governors.

Characterization of Smartphone Governor Strategies 129

We went in deeper into the Geekbench 3 workload and compared the race-to-idle
(performance) and pace-to-idle(interactive) strategies closely. The performance gov-
ernor aced in the compute intensive integer and floating point benchmarks. But due to
constrained power budget, it performs poorly in most of the memory benchmarks.
Since it clocked the CPU continuously at the highest frequency, it failed to provide
enough power to the memory bus degrading performance. On the other hand, the
interactive governor clocked the CPU at minimum operating point for simple opera-
tions and redirected the entire power to the memory bus giving better bandwidth as
shown in Fig. 4(a).

‘ Geekbench score comparison

Stream Triad(MC)
2000
Stream Triad(SC) ﬁ/ 1800 wPerformance
1600
M Interactive
Stream add(MC) 1400
p 1200 Ondemand
Stream add(SC) g 1000
<800 Powersave
Stream Scal ‘Mc’i‘ o
ream Scale 1
400
< [l 1) .
z s >

Stream Scale(SC) 0
Stream Copy(MC) °
g
2
Stream Copy(SC)
N performance [interactive
I I I
0 05 1 15 2 2

Memory Bandwidth in GB/sec

ore
core

Int-multicore

FP-multicy

Mem-multi

5

Fig. 4. (a) Geekbench 3 memory perf comparison between performance and interactive
governor (b) Geekbench 3 score comparison of different types of workloads.

6.3 Application Requiring Other Blocks in the SoC

There are other applications like playing a video which requires the multimedia unit to
be active. The CPU can stay in the powersave mode while providing power budget to
the DDR and the multimedia unit to perform. Moreover, playing games require the
GPU to be in higher performance mode to render better user experience.

Average Currentin mA

nenamark video stream

Fig. 5. Power comparison of governors running applications using other resource

130 S. Banerjee and L. K. John

In Fig. 5, the GPU is in performance mode in the Nenamark benchmark and the
powersave not only consumes least power but also provides the highest fps as more
power budget is allocated to the accelerator. Thus, application-wise characterization is
useful to provide better power efficiency. Running in powersave ensures that the device
remains cooler for a longer period which is the normal usage pattern of video and audio
playback applications.

7 Observations

After running various types of workloads on all the different kinds of governors, it is
seen that choosing the correct governor in a battery-operated system-on-a-chip is a
multi-variable problem where one should consider the balance of activities in the
various units. Governors should also minimize thermal throttling hardware to attain
best efficiency and performance in addition to better chip life.

As mentioned in the introduction that a race-to-idle scheme works well for servers
because more importance is given on the performance, this scheme is thought to be a
poor fit for battery-operated devices. But our observation states that in compute
intensive workloads, the race-to-idle scheme performs better not only in performance
but also it gives better energy efficiency in some cases. In multicore devices, normally
there is provision of switching off each core into several idle low power states. So, if a
governor finishes the pending work in the minimum time and goes to idle, it will save
operating power. This strategy will work even better with technology shrinking as the
leakage current becomes comparable with the dynamic current. With more
application-specific units are put in the SoC, having a global governor controlling the
DVES modes of every component based on workload characterization will be the
desired solution as we observe by classifying the workload and showing that CPU
powersave coupled with resource race-to-idle works better in scenarios which use
accelerators. The race-to-idle scheme also makes sharing of power source easier as the
units are active for the minimum amount of time. Last but not the least is the fact that
race-to-idle schemes give better performance most of the time.

The pace-to-idle strategy also performs well in multiple scenarios where multiple
resources are used together or in a sequential manner. For instance, the BBench
workload loads a set of heavy webpages from the memory making it a memory
intensive workload followed by the execution of contents in the webpages, which is
compute-intensive. In these scenarios, the pace-to-idle strategies work best as all the
units like the memory-bus and the CPUs are appropriately scaled whenever it is nee-
ded. It also performs better in applications like Facebook which requires user inter-
action where the CPU frequency can be opportunistically modulated to reduce power
and temperature of the device. It also helps in thermal distribution as the cores get
heated up when it is constantly at higher frequency reducing reliability and perfor-
mance by engaging the thermal throttler. We tested the Adobereader applications in
which we opened a document, scrolled through it and adjusted the zooming. Since
there were enough idle times between these operations, interactive was the most effi-
cient. The responsiveness of the interactive governor was like the performance

Characterization of Smartphone Governor Strategies 131

governor but it performed poorly while searching a word in the file ending up con-
suming more power. But mere scrolling through the text would have been more effi-
cient in the interactive governor.

Moreover, for video playback or a GPU-intensive game, the multimedia or GPU is
used and changing the CPU governor doesn’t make any difference in performance. But
changing the governor of the corresponding block improves both performance and
energy efficiency. Based on the above trends, we conclude that characterization of
workload would help design a high performing energy efficient governor.

8 Related Work

There has been considerable amount of research performed to enhance the native
interactive(default) governor of the system. The related works are grouped into the
following categories:

8.1 Race-to-Idle vs Pace-to-Idle Schemes

Some works suggested pace-to-idle strategy is the better strategy [3] due to the
intermittent CPU usage pattern of the workloads and waiting for I/O interrupts. With
the constrained system power/thermal budget, it is not feasible to make all resources
available simultaneously. But on the other hand, transistors are shrinking in size and
leakage is comparable to the dynamic current. The reduction in resource active time by
race-to-idle schemes are making it attractive. Moreover, Race-to-idle schemes give
better performance. Coupled with all these benefits, the race-to-idle is becoming
popular. Albers and Antoniadis [4] have proposed that the race-to-idle strategies pro-
vide better energy efficiency provided the system has multi-level and deep sleep states
which is common in smartphones. It causes the minimum DVFS transitions causing
less halts and power wastage. While Hoffman [3] claims that pace-to-idle betters than
race-to-idle in smartphones due to the intermittent use of a specific resource diluting the
effectiveness and energy efficiency of the resource. But workload characterization can
help improve the effectiveness of the resource by deploying race-to-idle strategy for the
required resource making it fully available when necessary thereby improving energy
efficiency.

8.2 Governor Design Based on Runtime Phase Behavior and QoS
Deadline

Isci et al. and others [5, 22] has used runtime phase behavior to perform dynamic
DVFS management of a device. The phase behavior was identified from the branch
predictor. On the other hand, some of the DVFS governors were designed keeping in
mind the idea of meeting a quality-of-service(QoS) deadline while running the pro-
cessor at the optimum frequency to achieve the highest energy efficiency [19, 20].
These policies explore the search space to figure out the most energy efficient DVFS
mode. Though these works [6, 11] are promising but their applicability is restricted to
limited applications like web browsing and video playback. Moreover, it doesn’t

132 S. Banerjee and L. K. John

consider system-wide power budget. A single power source can be shared among
multiple resources like multi-core CPUs, GPUs and other accelerators. Redirecting the
power to the most useful resource is important when the current consumed is near the
limit of the source.

8.3 Power Sharing Among Different Resources

Paul et al. and others [18, 21] has evaluated the need of cooperative boosting between
CPUs and GPUs in a AMD APU processor. This is critical in smartphones when
multiple resources are sharing a power source or when the device is thermally limited.
However, this work is focused on desktop CPUs. A smartphone CPU like the one used
in this work has more resources sharing a current source and the QoS metrics are quite
different. We evaluated the different smartphone governors on similar lines with higher
granularity in the type of resource.

8.4 Reducing DVFS Switch Time

Another line of radically different effort is put to reduce the DVFS switch time. The
pace-to-idle can be made even more aggressive in the switching time is reduced. New
PLLs and voltage regulators have better response time to quickly switch the modes with
minimum current spikes which improves the overall energy efficiency. Several
researchers have proposed elegant methods [12, 13] to reduce the switch time. But still the
DVES switching time is of the order of several micro-seconds as it involves changing the
voltage. Workload characterization and identification of phases based on usage pattern
can reduce the number of DVFS mode changes and will increase efficiency but the
algorithms can be made more aggressive when the DVFS switching time reduces.

9 Conclusion

In this paper, we studied various governor strategies and their impact on performance
and energy consumption while running various workloads for a smartphone. We con-
clude that a good governor must wisely choose the DVFS mode of not only the CPU, but
also the various non-CPU components when the workload demands varied utilization of
multiple blocks sharing a current source. System wide governors tuning the DVFS
modes of different units of SoC will provide efficient utilization of the available current.
Since, smartphone applications mostly use a specific component of the SoC, charac-
terization of workloads to boost the frequency of the corresponding component to the
required level gives better performance with increased energy efficiency. Analyzing
phase behavior and usage pattern of the program can further help in selection of the
optimum DVFS mode. It was observed that turning on the powersave mode does not
necessarily save battery in many scenarios. The powersave governor led to increased
energy consumption for CPU intensive workloads because of higher run time causing
more leakage energy consumption. Hence, characterization of a workload and wise
current distribution to the critical components is imperative in designing a governor
giving it desirable performance but also yields high energy and thermal efficiency.

Characterization of Smartphone Governor Strategies 133

Acknowledgement. This work was partially supported by National Science Foundation
(NSF) under grant numbers 1725743 and 1745813. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of NSF or other sponsors.

References

10.
11.

12.

13.

14.

15.

16.

17.
18.

. Weicker, R.P.: Dhrystone: a synthetic systems programming benchmark. Commun. ACM 27

(10), 1013-1030 (1984)

Pallipadi, V., Starikovskiy, A.: The ondemand governor. In: Proceedings of the Linux
Symposium, vol. 2, pp. 215-230 (2006)

Hoffmann, H.: Racing and pacing to idle: an evaluation of heuristics for energy-aware
resource allocation. In: Proceedings of the Workshop on Power-Aware Computing and
Systems, p. 13. ACM (2013)

Albers, S., Antoniadis, A.: Race to idle: new algorithms for speed scaling with a sleep state.
ACM Trans. Algorithms (TALG) 10(2), 9 (2014)

Isci, C., Contreras, G., Martonosi, M.: Live, runtime phase monitoring and prediction on real
systems with application to dynamic power management. In: Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society (2006)
Rao, K., Wang, J., Yalamanchili, S., Wardi, Y., Handong, Y.: Application-specific
performance-aware energy optimization on android mobile devices. In: 2017 IEEE
International Symposium on High Performance Computer Architecture (HPCA), pp. 169—
180 (2017)

Halpern, M., Zhu, Y., Reddi, V.J.: Mobile CPU’s rise to power: quantifying the impact of
generational mobile cpu design trends on performance, energy, and user satisfaction. In:
2016 IEEE International Symposium on High Performance Computer Architecture (HPCA).
IEEE (2016)

Shneiderman, B.: Designing the User Interface. Addison-Wesley, Boston (1992)

Zhu, Y., Halpern, M., Reddi, V.J.: Event-based scheduling for energy-efficient QoS (eQoS)
in mobile web applications. In: 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA). IEEE (2015)
https://blog.kissmetrics.com/speed-is-a-killer/

Zhu, Y., Reddi, V.J.: Optimizing general-purpose cpus for energy-efficient mobile web
computing. ACM Trans. Comput. Syst. 35, 1 (2017)

Eyerman, S., Eeckhout, L.: Fine-grained DVFS using on-chip regulators. ACM Trans.
Archit. Code Optim. (TACO) 8(1), 1 (2011)

Kim, W., Gupta, M.S., Wei, G.Y., Brooks, D.: System level analysis of fast, per-core DVFS
using on-chip switching regulators. In: 2008 IEEE 14th International Symposium on High
Performance Computer Architecture, HPCA 2008, pp. 123-134. IEEE (2008)
Dragonboard 410c. https://developer.qualcomm.com/hardware/dragonboard-410c
Measuring power consumption for Dragonboard 410c. https://developer.qualcomm.com/
download/db410c/power-measurement-appnote.pdf

Linaro workload automation. https://media.readthedocs.org/pdf/workload-automation/latest/
workload-automation.pdf

Android debug bridge. https://developer.android.com/studio/command-line/adb.html

Paul, I., et al.: Cooperative boosting: needy versus greedy power management. In:
ACM SIGARCH Computer Architecture News, vol. 41, no. 3. ACM (2013)

https://blog.kissmetrics.com/speed-is-a-killer/
https://developer.qualcomm.com/hardware/dragonboard-410c
https://developer.qualcomm.com/download/db410c/power-measurement-appnote.pdf
https://developer.qualcomm.com/download/db410c/power-measurement-appnote.pdf
https://media.readthedocs.org/pdf/workload-automation/latest/workload-automation.pdf
https://media.readthedocs.org/pdf/workload-automation/latest/workload-automation.pdf
https://developer.android.com/studio/command-line/adb.html

134 S. Banerjee and L. K. John

19. Shingari, D., et al.: DORA: optimizing smartphone energy efficiency and web browser
performance under interference. In: 2018 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE (2018)

20. Gaudette, B., Wu, C.J., Vrudhula, S.: Improving smartphone user experience by balancing
performance and energy with probabilistic QoS guarantee. In: 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE (2016)

21. Kim, Y., John, L., Paul, I., Manne, S., Schulte, M.: Performance boosting under reliability
and power constraints. In: International Conference on Computer Aided Design (ICCAD),
November 2013

22. Bircher, W.L., John, L.: Predictive power management for multi-core processors. In:
Varbanescu, A.L., Molnos, A., van Nieuwpoort, R. (eds.) ISCA 2010. LNCS, vol. 6161,
pp. 243-255. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24322-6_21

http://dx.doi.org/10.1007/978-3-642-24322-6_21

®

Check for
updates

HPC Benchmarking: Scaling Right
and Looking Beyond the Average

Milan Radulovic’2®) Kazi Asifuzzaman®?, Paul Carpenter?,
Petar Radojkovié!, and Eduard Ayguadé!»?

! Barcelona Supercomputing Center (BSC), Barcelona, Spain
{milan .radulovic,kazi.asifuzzaman,paul.carpenter,
petar.radojkovic}@bsc.es
2 Universitat Politecnica de Catalunya (UPC), Barcelona, Spain
eduard@ac.upc.edu

Abstract. Designing a balanced HPC system requires an understanding
of the dominant performance bottlenecks. There is as yet no well estab-
lished methodology for a unified evaluation of HPC systems and work-
loads that quantifies the main performance bottlenecks. In this paper, we
execute seven production HPC applications on a production HPC plat-
form, and analyse the key performance bottlenecks: FLOPS performance
and memory bandwidth congestion, and the implications on scaling out.
We show that the results depend significantly on the number of execu-
tion processes and granularity of measurements. We therefore advocate
for guidance in the application suites, on selecting the representative
scale of the experiments. Also, we propose that the FLOPS performance
and memory bandwidth should be represented in terms of the propor-
tions of time with low, moderate and severe utilization. We show that
this gives much more precise and actionable evidence than the average.

Keywords: HPC applications - Bottlenecks + FLOPS
Memory bandwidth - Scaling-out

1 Introduction

Deploying an HPC infrastructure is a substantial investment in time and money,
so it is extremely important to make the right procurement decision. Unfortu-
nately, evaluating HPC systems and workloads and quantifying their bottlenecks
is hard. There are currently three main approaches. The approach taken by
TOP500 and Green500 is to evaluate systems using a prominent HPC bench-
mark, such as High-Performance Linpack (HPL) [20] or High Performance Con-
jugate Gradients (HPCG) [5]. Another approach is to measure the sustained
performance of the various components in the system using specialized kernel
benchmarks, such as HPC Challenge [13]. By design, kernel benchmarks quan-
tify only the sustainable performance of individual system components, so they
lack the capability to determine how a real-world production HPC application
will behave on the same platform.

© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 135-146, 2018.
https://doi.org/10.1007/978-3-319-96983-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_10&domain=pdf

136 M. Radulovic et al.

The final approach, which is the one taken in this paper, is to mimic pro-
duction use by running a set of real HPC applications from diverse scientific
fields [23]. We execute seven production HPC applications, together with HPL
and HPCG, on a production x86 platform, and we reach two main conclusions.
Firstly, we find that HPC application performance and CPU/memory system
bottlenecks are strongly dependent on the number of application processes.
This is typically overlooked in benchmark suites, which seldom define how many
processes should be used. We argue that it is essential that HPC application
suites specify narrow ranges on the number of processes, so that the results are
representative of real world application use, or that they at least provide some
guidelines. Secondly, we find that average values of bytes/FLOP, bytes/s
and FLOPs/s can be highly misleading. Our results show that the applica-
tions under study have low average FLOPs/s utilization and moderate pressure
on the memory bandwidth. However, we identified several applications, such
as ALYA and GENE, with a moderate average memory bandwidth that spend
more than 50% of their computation time in phases where the memory band-
width bottleneck is severe. We therefore recommend that rather than thinking in
terms of average figures, one measures the percentage of time that the utilization
of memory bandwidth or FLOPs/s is low (below 40% of sustainable maximum),
moderate (40% to 80%) and severe (above 80%). These three figures give a much
more precise picture of the application behavior than the average.

In summary, given the substantial investment of time and money to deploy an
HPC system, it is important to carefully evaluate HPC architectures. Compared
with benchmarks or kernels, system evaluation with HPC application suites can
give a more complete picture of the HPC system behavior. However, our results
show that it is very important that HPC application suites specify narrow ranges
for the number of processes that are representative of real-life application behav-
ior, or at least provide some guidelines so users themselves could determine
these ranges for their target platforms. In addition, reporting key application
measurements using the average values may conceal bursty behavior, and give
a misleading impression of how performance would be affected by changes in
the platform’s memory bandwidth. We suggest to avoid average figures when
evaluating performance or bottlenecks, and instead measure the percentage of
time that these figures are low, moderate and severe, with respect to their sus-
tained peak, which gives a more precise picture of the application’s or system’s
behavior.

We hope our study will stimulate awareness and dialogue on the subject
among the community, and lead to improved standards of evaluating and report-
ing performance results in HPC.

2 Experimental Environment

In this section, we explain the experimental platform, workloads, methodology
and tools we used in our analysis.

HPC Benchmarking: Scaling Right and Looking Beyond the Average 137

2.1 Experimental Platform

The experiments are executed on the MareNostrum 3 supercomputer [3], the
third version of one of the six Tier-0 (largest) HPC systems in Europe [21]. It
comprises dual-socket Intel Sandy Bridge-EP E5-2670 nodes. Each socket com-
prises eight cores operating at 3.0 GHz. As in most HPC systems, hyperthreading
is disabled. The processors connect to main memory through four channels, each
with a single DDR3-1600 DIMM. Regular MareNostrum compute nodes include
32 GB of DRAM memory, i.e., 2 GB per core. The nodes are connected with an
InfiniBand FDR-10 (40 Gb/s) interconnect, as a non-blocking two-level fat-tree
topology.

2.2 Workloads

High-Performance Linpack

For a long time, the High-Performance Linpack (HPL) [20] benchmark has been
the de facto metric for ranking HPC systems. It measures the sustained floating-
point rate (GFLOPs/s) for solving a dense system of linear equations using
double-precision floating-point arithmetic. The linear system is randomly gen-
erated, with a user-specified size, so the user can scale the problem to achieve
the best performance on a given system. HPL stresses only the system’s float-
ing point performance, without stressing other important contributors to overall
performance, such as the memory subsystem. The most prominent evaluation
of HPC systems constitutes the TOP500 list [24], which has been criticized for
assessing system performance using only HPL [12]. The community has pointed
out the weaknesses of HPL and advocated for a way to evaluate HPC systems
that is better correlated with the needs of production HPC applications [6].

High-Performance Conjugate Gradients

High Performance Conjugate Gradients (HPCG) [5], has been released as a com-
plement to the FLOPs-bound HPL. It is based on an iterative sparse-matrix con-
jugate gradient kernel with double-precision floating-point values. While HPL
can exploit data locality and thus cope with relatively low memory bandwidth,
HPCG performance is largely proportional to the available memory bandwidth.
HPCG is a good representative of HPC applications governed by differential
equations, which tend to have much stronger needs for high memory bandwidth
and low latency, and tend to access data using irregular patterns.

HPC Applications

Evaluating HPC systems using benchmarks that target specific performance
metrics is not enough to determine the performance of a real-world application.
It is therefore essential to execute production applications on an HPC system to
better understand the bottlenecks and constraints experienced by a production
HPC application. There are efforts in making suites of HPC applications that
could be used in benchmarking purposes, such as NSF [17], NCAR [15] and
NERSC Trinity benchmarks [16] in USA, and EuroBen [8], ARCHER [25] and
Unified European Application Benchmark Suite (UEABS) [18] in Europe.

138 M. Radulovic et al.

Table 1. Scientific HPC applications used in the study

Name Area Selected no. of processes
ALYA Computational mechanics | 16-1024
BQCD* Particle physics 64-1024

CP2K Computational chemistry |128-1024
GADGET | Astronomy and cosmology | 512—-1024

GENE Plasma physics 128-1024
NEMO Ocean modeling 512-1024
QEP Computational chemistry |16-256

#*Quantum Chromo-Dynamics (QCD) is a set of five kernels.
We study Kernel A, also called Berlin Quantum Chromo-
Dynamics (BQCD), which is commonly used in QCD simulations.
PQE stands for Quantum Espresso application. QE does not scale
on more than 256 processes.

In our evaluation, we used a set of UEABS applications. UEABS represents
a set of production applications and datasets, from various scientific domains,
designed for benchmarking the European HPC systems, included in the Part-
nership for Advanced Computing in Europe (PRACE) [21], for procurement and
comparison purposes. Parallelized using the Message Passing Interface (MPI),
these applications are regularly executed on hundreds to thousands of cores. We
study 7 of 12 applications from UEABS [18], listed in Table 1.1

Tools and Methodology

The applications come with input datasets and a recommended range of CPU
cores for the experiments. We use the Test Case A datasets, which are deemed
suitable for Tier-1 systems up to about 1,000 cores [18]. In all experiments, we
execute one application process per CPU core. The number of processes starts
from 16 (a single MareNostrum node) and it increases by powers of two until
1,024 processes. Some of the applications have memory capacity requirements
that exceed the available node memory, which limits the lowest number of pro-
cesses in the experiments, e.g., BQCD cannot be executed with fewer than 64 pro-
cesses (four nodes). The presented analysis keeps constant the input dataset and
varies the number of application processes, which refers to a strong scaling case.?

1 We could not finalize the installations of Code_Saturne and GPAW. The errors have

been reported to the application developers. The remaining three applications had
problems once the measurement infrastructure was included.
The alternative would be a weak scaling analysis, in which the problem size scales
with the number of nodes. Unlike HPL and HPCG, for which the problem size
is defined by the user and the input data is generated algorithmically, application
benchmark suites include specific input problem data. We are not aware of a pro-
duction application benchmark suite that has problems suitable for weak scaling
analysis. Although some of the UEABS benchmarks are distributed with two input
datasets, small and large, they are not comparable so are insufficient for weak scaling
analysis [26].

»

HPC Benchmarking: Scaling Right and Looking Beyond the Average 139

The application’s computation bursts were instrumented with Limpio [19]
and Extrae [4]. We used core performance counters [10] to measure FLOPS
performance (scalar and vector FLOPS counters) and uncore performance coun-
ters [9] to measure memory bandwidth (read and write CAS commands coun-
ters).

We analyze the application behavior at two levels of granularity. First, we
plot mean FLOPs and memory bandwidth utilization using end-to-end measure-
ments and averaging the values of all application processes. Second, we analyze
the fine-granularity measurements done at the computational burst level. For
each computational burst, we measure the FLOPs, bandwidth utilization and
the burst execution time. Afterwards, we analyze the cumulative distribution
function of the measurements.® As we show in this paper, these two levels of the
analysis can, and often do, actually lead to different conclusions.

3 Results

In this section, we analyze the stress of the production HPC applications on the
CPU and memory resources, and pay special attention to understand how this
stress may change during execution and as the application scales.

3.1 Floating-Point Performance Analysis

Figure la plots the average FLOPs/s utilization for different numbers of appli-
cation processes. The results show that the average FLOPs/s utilization of pro-
duction HPC applications is fairly low: for most applications it is below 30%,
and in the best case it reaches only 51% (CP2K-128 experiment). Figure 1b sum-
marizes the distribution of measurements done at computational burst level. We
divide the computational burst measurements into five clusters: 0-20%, 20-40%,
40-60%, 60-80% and 80-100% of sustained FLOPs/s, and then plot the portion
of execution time represented by each cluster. For example, in the BQCD-64
experiment, 72% of the time the FLOPs/s utilization is between 0 and 20%,
while for the remaining 28% of the time it is between 20% and 40%.

Our results show that detailed measurements are indeed needed, and that
plotting only average values may hide important information. The most obvious
case would be the QE-16 experiment. Although the average FLOP utilization
is only 24% (Fig. 1a), the application actually puts extremely high pressure on
CPU FLOPs for around 18% of its computation time (Fig. 1b).

We also analyze changes in the application behavior when executing them
using different numbers of processes. Both, average and per-burst measurements
indicate significant changes in the application behavior as the applications scale-
out?.

3 The cumulative distribution function, y = F(x), in this case presents the fraction of
samples y that are less or equal to a certain value x.

4 We remind the reader that we used the official input datasets, and followed the
recommendations about the range of CPU processes that should be used in the
experiments (see Sect. 2.2).

140 M. Radulovic et al.

100% r—

§§ 80% | |HEE Lowest number of processes
Ed’i [Highest number of processes
° 60%
=
$28 sl
558 00 . 2426
5z W% 4 1010
0% 0.1 0.1 0.6
6 3 b “b b) o X
N 5\ Q” BSat\Y Ao a‘) N \’L Q’l 5\ o A Q’L
0 P v\ N \»
V\QQCQ @“\o %0 QQ"O é ?,» ﬂv» o@v”& O%é %‘ieg

N

(a) Average FLOPS utilization

l [30-20% [C320-40% 3 40-60% H 60-80% HM 80-100% of the max. sus. FLOPs

o

£ 100%

£ 8% ﬁ 45

=

S 60% L 0

:_’ 100{100{ |100| 99 100[100([100{100

S 40% 80 | 75

aa;n 72 55 2%

£ 20% {45

3 18

L 0% N
00\6 s 5\1\@ ob\@ Q@\gfﬁ’ R \Q, }\b @“\Lcﬂ*\@“ 50\@? \6\@

‘<\?\>\ S @@\ 207 $$@ 4?' R Q'v‘@ k\\x

(b) FLOPS utilization on burst granularity

Fig. 1. Production HPC applications show fairly low FLOPS utilization, both on lowest
and highest number of processes.

This opens a very important question: Which application behavior is the
correct /representative one, i.e. which number should we report?

3.2 Memory Bandwidth Analysis

Memory bandwidth has become increasingly important in recent years. Keeping
the memory bandwidth balanced with the CPU’s compute capabilities, within
affordable costs and power constraints, has become a key technological challenge.
The increasing awareness of this challenge also resulted in the introduction of
the HPCG benchmark, as an alternative to HPL. The industry also responded to
the growing need for more memory bandwidth, and high-bandwidth 3D-stacked
DRAM products are hitting the market. Their manufacturers promise significant
performance boosts over standard DDRx DIMMSs, although some independent
studies doubt whether and to what extent high-bandwidth memory will benefit
HPC applications [22].

Memory bandwidth collision can indeed have the strong negative perfor-
mance impact. When a workload uses more than 40% of maximum sustainable
bandwidth, concurrent memory accesses start to collide, which increases memory
latency causing performance penalties. Using more than 80% of maximum sus-
tainable bandwidth causes severe collisions among concurrent memory requests;
thus memory latency increases exponentially and memory bandwidth becomes
a serious performance bottleneck [11].

HPC Benchmarking: Scaling Right and Looking Beyond the Average 141

100% 28
80%
60%
40%
20%

0%

I I owest number of processes
[Highest number of processes

Percentage of max.
sustainable bw (STREAM)

6\b Q, 5\’@?‘
o
x\;gc *’o“\ @0

O N0 R, m g QX g o>
AR N 5 \Qv N
0 ¥ \4 ?‘\; {?' “"q}é g qu\/
o

00

(a) Average memory bandwidth utilization

l [30-20% [320-40% [40-60% [60-80% MM 80-100% of the max. sus. bw l

AT

X NS o0 o % SN
N 5\ GO 050 O S 0 @ X Q’l' \ B\
N N\ 0 QQ» IR \ & N

\>3 Cc’ &V‘\@O 9 \A\ﬁ) \, ?%q = \X

C)

100%
80%
60%
40%
20%

0%

Percentage of execution time

(b) Memory bandwidth utilization on burst granularity

Fig. 2. Contrary to FLOPS, memory bandwidth utilization of production HPC appli-
cations is substantial.

Figure2 plots the memory bandwidth usage of UEABS applications. The
memory bandwidth values are plotted relative to the maximum sustained mem-
ory bandwidth measured by the STREAM benchmark. Again, we plot the results
at two levels of granularity: Fig. 2a plots average utilization over computation
time and for different numbers of application processes, while Fig. 2b shows fine-
granularity measurements at the computational burst level. The applications
under study show higher utilization of memory bandwidth, than FLOPs perfor-
mance, even for the average values.

Next we analyze the computational bursts measurements, presented in
Fig.2b. The chart shows moderate to high memory bandwidth utilization. All
the applications under study have segments in which memory bandwidth uti-
lization exceeds 40%, and all but two of them, CP2K and GADGET, spend a
significant portion of time with bandwidth utilization above 60% or even 80%.

The computational burst measurements reveal some interesting scenarios,
which are more apparent in Fig. 3. In this figure, the z-axis is the average mem-
ory bandwidth utilization, as in Fig. 2a. The y-axis is the proportion of time for
which the memory bandwidth utilization is severe; i.e. more than 80% of the sus-
tainable maximum, which corresponds to the darkest shade parts of the bars in
Fig. 2b. Figure 3 shows that considering the average memory bandwidth on the
z-axis, ALYA-16 and CP2K-128 may seem to be bandwidth insensitive, as their
average bandwidths are around 50% and 40% of the sustained bandwidth. How-
ever, detailed in-time measurements show that they spent significantly different
proportions of the time with severe memory bandwidth utilization: CP2K-128

142 M. Radulovic et al.

spends only about 4% of its computation time, but ALYA-16 spends 55% of
its computation time, which presents a serious performance penalty. We find a
similar situation with BQCD-1024, GENE-128 and QE-1024. These applications
all have average memory bandwidth of around 60% of the sustained maximum.
Even so, QE-256 spends only 12% of its computation time with severe mem-
ory bandwidth utilization (more than 80% of maximum sustained). In contrast,
BQCD-1024 and GENE-128 spend 58% and 72% of their computation time,
respectively, with severe memory bandwidth utilization.

This is another confirmation that detailed measurements are needed, and that
plotting only the average values may be misleading. Applications under study
that spend significant amount of their computation time using more than 80% of
the sustained bandwidth have a severe performance bottleneck. In these phases of
their computation time, the applications would benefit out of increased available
memory bandwidth in the system. In our case, ALYA-16, but not CP2K-128, is
likely to benefit from higher bandwidth memories. It would reduce the bottle-
neck and increase the application performance. However, reporting only average
values of memory bandwidth cannot point out the necessary details.

Our suggestion would be that memory bandwidth utilization should be
defined at least with three numbers—as the percentage of execution time that
applications use 0-40%, 40-80% and 80-100% of the maximum sustained band-
width. This would correspond the portion of the execution time in which the
application experiences negligible, moderate and severe performance penalties
due to collision on concurrent memory requests.

3.3 Discussion

Our analysis emphasizes that HPC application behavior is tightly coupled with
the number of application processes. There are two main reasons for this. First,
application scaling-out increases the inter-process communication time. To illus-
trate this, in Fig. 4 we plot the portion of overall execution time that applications
under study spend in inter-process communication.

g Z100% ® |®OHPCG (6, 1029)
B ol 2 NEMO (512, 1024)
2 X .
é ':oo '§ 80% v 6 A A BQCD (64, 1024)
5 A 8 6ov > A x ’<>QE(16, 1024)
25 3 V¥ V GENE (128, 1024)
S = : 40% B> [> ALYA (16, 1024)
o= 5 « <] CP2K (128, 1024)
.5 § E 20% O ® B [0 GADGET (512, 1024)
E S ow vV | | |4 - HPL (16, 1024)
(ST 0% 20% 40% 60% 80% 100%

Average memory bandwidth utilization

Fig. 3. Average memory bandwidth can mislead and hide potential bottlenecks.
BQCD-1024, GENE-128 and QE-256 have similar average memory bandwidths, how-
ever BQCD-1024 and GENE-128 spend significantly more time utilizing more than
80% of max. sustainable bandwidth, which is a serious bottleneck.

HPC Benchmarking: Scaling Right and Looking Beyond the Average 143

o 100% — |® ® ALYA A—A CP2K @@ GENE << QE
= 20% %X BQCD << GADGET p—P» NEMO
= 2 0

g
5= 60%
ag
g 2 40% _
ES 20% @ - ~&
@] 0% bl |

16 32 64 128 256 512 1024

Number of execution processes

Fig. 4. Portion of total execution time spent in the inter-process communication for
UEABS applications, strong scaling.

Even for the low number of application processes, the communication is non-
negligible, and as the number of processes increases, it becomes the dominant
part of the overall execution time. The higher the portion of time that is spent in
communication, the lower the average utilization of FLOPs and memory band-
width (as detected in Figs. 1a and 2a). Also, in general, the higher the number
of processes, the smaller the portion of the input data handled by each process,
which changes the effectiveness of cache memory and the overall process behavior
(as detected in Figs. 1b and 2b).

HPC application behavior may be known by the application developers, but
it is often overlooked in all HPC application suites for benchmarking purposes.
State-of-the-art HPC application suites do not strictly define the number of
processes to use in experiments. For example, UEABS recommends running the
applications with corresponding input datasets on up to approximately 1,000
processes, but the minimum number of processes is not specified. Similarly, other
HPC application suites either provide loose recommendations about the number
of processes [15-17,25] or do not discuss this issue at all [8]. However, it is not
surprising that HPC application suites overlooked the problem that application
behavior is tightly-coupled with number of application processes. After all, this
problem does not exist for single-threaded benchmarks, and it was not detected
for HPC benchmarks that put high stress to a single resource, such as HPCG,
HPL or HPCC suite.

The essence of benchmarking is to provide representative use cases for char-
acterization and valid comparison of different systems. If the application suite
does not provide it, then the results are misleading. Our results show that it is
very important that HPC application suites specify narrow ranges for the num-
ber of processes that are representative of real-life application behavior, or at
least provide some guidelines so users themselves could determine these ranges
for their target platforms.

144 M. Radulovic et al.

4 Related Work

There are not many studies that analyse benchmarking methodologies and how
to represent evaluation results of HPC systems and applications. Bailey [1] pro-
vides common guidelines for reporting benchmark results in technical comput-
ing, following his similar summary of misleading claims for reporting results in
system evaluation [2]. He points out the possibilities of misleading conclusions
and potential biases from using projections and extrapolations, tuning levels,
evaluating non-representative segments of the workloads, etc. Nevertheless, he
presents several rules and advocates the community to pay attention and avoid
the biased results.

Hoefler and Belli [7] attempt to define ground rules and guidelines for the
interpretation of HPC benchmarking. The authors propose statistical analysis
and reporting techniques in order to improve the quality of reporting research
results in HPC and ensure interpretability and reproducibility. In their study,
they identify several frequent problems and propose rules to avoid them. Their
analysis covers methods for reporting the results of speed-up, usage of various
means, summarizing ratios, confidence intervals, normalization, usage of various
chart techniques, and others.

Sayeed et al. [23] advocate the use of real applications for benchmarking in
HPC, and that small benchmarks cannot predict the behavior of the real HPC
applications. They discuss important questions, challenges, tools and metrics in
evaluating performance using HPC applications. Afterwards, they evaluate the
performance of four application benchmarks on three different parallel archi-
tectures, and measure the runtime, inter-process communication overhead, 1/0O
characteristics and memory footprint. This way, they show the importance of
reporting various metrics, in order to have a better representation of application
and system performance. Since they measure these metrics on several numbers
of execution processes, the results differ from one execution to another. It is
clear from their results that on different numbers of execution processes, differ-
ent platforms perform better or worse, which can significantly bias the analysis
on certain scale of the experiments.

Marjanovié et al. [14] explore the impact of input data-set for three repre-
sentative benchmarks: HPL, HPCG and High-performance Geometric Multigrid
(HPGMG). They perform an analysis on six distinct HPC platforms at the
node level, and perform scale-out analysis on one of the platforms. Their results
show that exploring multiple problem sizes gives a more complete picture of the
underlying system performance, than a single number representing the best per-
formance, which is the usual way of reporting the results. They advocate for the
community to discuss and propose a method for aggregating these values into a
representative result of the system performance.

In our study, we focus on two important aspects of benchmarking with HPC
applications: the importance of defining the representative scale of the exper-
iments and measurement granularity in quantifying performance bottlenecks,
which are often overlooked by the community. To our knowledge, this is the first
study that analyses the importance of a deterministic range for the number of

HPC Benchmarking: Scaling Right and Looking Beyond the Average 145

execution processes. We also suggest a simple way to show several values for por-
tions of time spent in different utilizations of certain metric. It does not require
additional executions or special evaluation infrastructure, yet it gives much bet-
ter representation of application behavior and clearer focus on its bottlenecks.

5 Conclusions

A clear understanding of HPC system performance factors and bottlenecks is
essential for designing an HPC infrastructure with the best features and a rea-
sonable cost. Such a perception can only be achieved by closely analysing existing
HPC systems and execution of their workloads.

When executing production HPC applications, our findings show that HPC
application performance metrics strongly depend on the number of execution
processes. We argue that it is essential that HPC application suites specify nar-
row ranges on the number of processes, for the results to be representative of
a real-world application use. Also, we find that average measurements of per-
formance metrics and bottlenecks can be highly misleading. Instead, we suggest
that performance measurements should be defined as the percentage of execution
time in which applications use certain portions of maximum sustained values.

Overall, we believe this study offers new guidelines for accurately measuring
key performance factors and their impact on overall HPC performance.

Acknowledgements. This work was supported by the Spanish Ministry of Science
and Technology (project TIN2015-65316-P), Generalitat de Catalunya (contracts 2014-
SGR-1051 and 2014-SGR-1272), Severo Ochoa Programme (SEV-2015-0493) of the
Spanish Government; and the European Union’s Horizon 2020 research and innovation
programme under ExaNoDe project (grant agreement No 671578).

References

1. Bailey, D.H.: Misleading performance claims in parallel computations. In: 2009 46th
ACM/IEEE Design Automation Conference, pp. 528-533, July 2009. https://doi.
org/10.1145/1629911.1630049

2. Bailey, D.H.: Twelve ways to fool the masses when giving performance results on
parallel computers. In: Supercomputing Review, pp. 54-55, August 1991

3. Barcelona Supercomputing Center: MareNostrum 111 System Architecture (2013).
http://www.bsc.es/marenostrum-support-services/mn3

4. Barcelona Supercomputing Center: Extrae User guide manual for version 3.1.0,
May 2015

5. Dongarra, J., Heroux, M., Luszczek, P.: The HPCG Benchmark (2016). http://
www.hpcg-benchmark.org

6. Heroux, M., Dongarra, J.: Toward a New Metric for Ranking High Performance
Computing Systems. Technical report SAND2013-4744, UTK EECS and Sandia
National Labs, June 2013

7. Hoefler, T., Belli, R.: Scientific benchmarking of parallel computing systems: twelve
ways to tell the masses when reporting performance results. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 73:1-73:12, November 2015

https://doi.org/10.1145/1629911.1630049
https://doi.org/10.1145/1629911.1630049
http://www.bsc.es/marenostrum-support-services/mn3
http://www.hpcg-benchmark.org
http://www.hpcg-benchmark.org

146

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.
25.

26.

M. Radulovic et al.

Home page of the EuroBen Benchmark. http://www.euroben.nl

Intel Corporation: Inte1®Xe0n Processor E5-2600 Product Family Uncore Per-
formance Monitoring Guide. Technical report, March 2012

Intel Corporation: Intel® 64 and TA-32 Architectures Software Developer’s Manual.
Technical report, July 2017

Jacob, B.L.: The memory system: you can’t avoid it, you can’t ignore it, you can’t
fake it. Synth. Lect. Comput. Archit. 4(1), 1-77 (2009)

Kramer, W.T.: Top500 versus sustained performance: the top problems with the
Top500 list - and what to do about them. In: Proceedings of the 21st International
Conference on Parallel Architectures and Compilation Techniques, pp. 223-230,
September 2012

Luszczek, P.R., et al.: The HPC Challenge (HPCC) Benchmark Suite. In: Proceed-
ings of the ACM/IEEE Conference on Supercomputing (2006)

Marjanovié, V., Gracia, J., Glass, C.W.: HPC benchmarking: problem size mat-
ters. In: Proceedings of the 7th International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computing Systems, pp. 1-10,
November 2016

National Center for Atmospheric Research: CISL High Performance Comput-
ing Benchmarks. http://www2.cisl.ucar.edu/resources/computational-systems/
cisl-high-performance-computing-benchmarks

National Energy Research Scientific Computing Center: NERSC-8 / Trin-
ity Benchmarks. http://www.nersc.gov/users/computational-systems/cori/nersc-
8-procurement/trinity-nersc-8-rfp /nersc-8-trinity-benchmarks

National Science Foundation: Benchmarking Information Referenced in the NSF
11-511 High Performance Computing System Acquisition: Towards a Petascale
Computing Environment for Science and Engineering. https://www.nsf.gov/pubs/
2006 /nsf0605 /nsf0605.pdf

Partnership for Advanced Computing in Europe (PRACE): Unified european appli-
cations benchmark suite (2013). www.prace-ri.eu/ueabs/

Pavlovic, M., Radulovic, M., Ramirez, A., Radojkovi¢, P.: Limpio: LIghtweight
MPI instrumentatiOn. In: Proceedings of the 23rd IEEE International Conference
on Program Comprehension, pp. 303-306 (2015)

Petitet, A., Whaley, R.C., Dongarra, J., Cleary, A.: HPL - A Portable Imple-
mentation of the High-Performance Linpack Benchmark for Distributed-Memory
Computers, September 2008. http://www.netlib.org/benchmark /hpl/

PRACE Research Infrastructure. www.prace-ri.eu

Radulovic, M., et al.: Another trip to the wall: how much will stacked DRAM
benefit HPC? In: Proceedings of the International Symposium on Memory Systems,
pp- 31-36 (2015)

Sayeed, M., Bae, H., Zheng, Y., Armstrong, B., Eigenmann, R., Saied, F.: Measur-
ing high-performance computing with real applications. Comput. Sci. Eng. 10(4),
60-70 (2008). https://doi.org/10.1109/MCSE.2008.98

TOP500 List, November 2014. http://www.top500.org/

Turner, A.: UK National HPC Benchmarks. Technical report, UK National Super-
computing Service ARCHER (2016). http://www.archer.ac.uk/documentation/
white-papers/benchmarks/UK_National HPC_Benchmarks.pdf

Zivanovic, D., et al.: Main memory in HPC: do we need more or could we live with
less? ACM Trans. Archit. Code Optim. 14(1), 3:1-3:26 (2017)

http://www.euroben.nl
http://www2.cisl.ucar.edu/resources/computational-systems/cisl-high-performance-computing-benchmarks
http://www2.cisl.ucar.edu/resources/computational-systems/cisl-high-performance-computing-benchmarks
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nsf.gov/pubs/2006/nsf0605/nsf0605.pdf
https://www.nsf.gov/pubs/2006/nsf0605/nsf0605.pdf
www.prace-ri.eu/ueabs/
http://www.netlib.org/benchmark/hpl/
www.prace-ri.eu
https://doi.org/10.1109/MCSE.2008.98
http://www.top500.org/
http://www.archer.ac.uk/documentation/white-papers/benchmarks/UK_National_HPC_Benchmarks.pdf
http://www.archer.ac.uk/documentation/white-papers/benchmarks/UK_National_HPC_Benchmarks.pdf

®

Check for
updates

Combined Vertical and Horizontal
Autoscaling Through Model Predictive
Control

Emilio Incerto!®), Mirco Tribastone!, and Catia Trubiani?

L IMT School for Advanced Studies, Piazza San Francesco 19, Lucca, Italy
{emilio.incerto,mirco.tribastone}@imtlucca.it
2 (ran Sasso Science Institute, Viale Francesco Crispi 7, L’Aquila, Italy
catia.trubiani@gssi.it

Abstract. Meeting performance targets of co-located distributed appli-
cations in virtualized environments is a challenging goal. In this context,
vertical and horizontal scaling are promising techniques; the former varies
the resource sharing on each individual machine, whereas the latter deals
with choosing the number of virtual machines employed. State-of-the-art
approaches mainly apply vertical and horizontal scaling in an isolated
fashion, in particular assuming a fixed and symmetric load balancing
across replicas. Unfortunately this may result unsatisfactory when repli-
cas execute in environments with different computational resources.

To overcome this limitation, we propose a novel combined runtime
technique to determine the resource sharing quota and the horizon-
tal load balancing policy in order to fulfill performance goals such as
response time and throughput of co-located applications. Starting from
a performance model as a multi-class queuing network, we formulate a
model-predictive control problem which can be efficiently solved by lin-
ear programming. A validation performed on a shared virtualized envi-
ronment hosting two real applications shows that only a combined ver-
tical and horizontal load balancing adaptation can efficiently achieve
desired performance targets in the presence of heterogeneous computa-
tional resources.

Keywords: Performance - Queuing networks - Control
Resource sharing - Load balancing

1 Introduction

Performance adaptation of co-located distributed applications consists in sat-
isfying quality-of-service agreements expressed as response-time or throughput
requirements for multiple applications that share common resources. It is con-
sidered a challenging activity [12]. Indeed, current resource schedulers blindly
operate in a performance unaware fashion, both at the level of the hypervisor of
virtual machines (VMSs) or of the operating system [19,20]. As a consequence, the
© Springer International Publishing AG, part of Springer Nature 2018

M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 147-159, 2018.
https://doi.org/10.1007/978-3-319-96983-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_11&domain=pdf

148 E. Incerto et al.

expected performance isolation, i.e., the behavior of one VM should not nega-
tively impact performance of other running VMs (e.g., [11]), must be guaranteed
by the computing platform providers [1,17,18].

Here we focus on CPU-intensive applications running on a virtualized envi-
ronment. To effectively allocate resources at runtime and in an adaptive manner,
vertical and horizontal scaling are promising techniques; the former varies the
resource shares on each individual machine, whereas the latter deals with choos-
ing the number of virtual machines employed [23]. Unfortunately, state-of-the-art
approaches mainly apply vertical and horizontal scaling in an isolated fashion.
According to a recent survey on this topic [23], among the 87 surveyed approaches
only two have explored optimization techniques to search for combined vertical
and horizontal scaling [8,9]. However, in both cases horizontal scaling assumes
a fixed symmetric load balancing toward all the horizontal replicas. This may
not be appropriate when machines have different hardware characteristics (i.e.,
due to uncertain runtime disruptive events such as software ageing or hardware
degradation), since a symmetric load distribution may worsen performance.

To overcome this limitation, we propose a novel technique combining hori-
zontal and vertical scaling that can efficiently determine the load distribution
policy to continuously fulfill performance goals of distributed co-located appli-
cations (Sect.2). We consider a model-based approach using queuing networks
(QNs) [3]. In particular, we employ multi-class QNs, where each class represents
an application with its own demand on the CPU and specific performance tar-
gets. Our analysis is based on a compact, approximate representation of QNs
based on ordinary differential equations (ODEs) [5,16]. This avoids the state
space explosion problem arising from the exact transient analysis of the Markov
chain underlying the QN, thus enabling an effective runtime adaptation.

We formulate the question of finding a combined horizontal and vertical scal-
ing strategy as a Model Predictive Control (MPC) problem [10]. MPC performs
runtime optimization which uses the ODE model to predict the future evolution
of the system given the currently measured state; the output is an allocation of
the resource-sharing quotas on each machine and the routing probabilities across
replicas that steer the model toward the reference set points for each application.

The use of MPC with an ODE model to control performance-related indices
of a distributed application has been studied in [13], but for queuing models with
a single class of users only. In this paper we present two significant extensions:

1. A multi-class model that enables an accurate representation of the capped
allocation paradigm [4]. This is a CPU-sharing mechanism available in most
modern off-the-shelf hypervisors (e.g., [2,22]), which defines the maximum
share that a VM can receive from the CPU.

2. The specification of latency-based response-time requirements, enriching [13],
which was limited to queue-length and throughput requirements only.

A positively surprising side effect of our new multi-class MPC formulation is
the reduced computational cost, since the whole control problem is now encoded
as a linear programming problem (LP, see e.g., [6]) as opposed to the mixed-
integer program of the single class formulation of [13]. This is due to the fact

Combined Vertical and Horizontal Autoscaling 149

that in [13] the control was acting on an integer variable representing the number
of CPUs in each machine, whereas here we control a continuous variable that
represents the CPU share allocated to each application.

We conducted the evaluation of the proposed approach on a real shared virtu-
alized environment hosting two load-balanced applications (Sect.3) by showing
that only a combined vertical and horizontal load balancing adaptation can effi-
ciently achieve desired performance targets when heterogeneous computational
resources are considered.

2 Combined Vertical and Horizontal Autoscaling

A Running Example: Figurel
B Adaptation knobs <H1,1, 1,1, M1,2, #1,2 , S1>
shows a QN model of a pro-

totypal system on which to m@

perform combined autoscaling. <Ho,1, Ho,2, Sg=00> Ny
There are two processing nodes

represented by the queuing sta- —mg—
tions N; and Ns. Each node No
serves two application classes;
each class may have different ser- —‘m _‘
vice demands and performance N2
requirements. The demands are

expressed as exponential distri- Fig. 1. Sample QN model.

butions; for instance, 1/ is

the average service time of class-2 application on node 1. Node N; represents
a dispatcher that submits user’s requests (the jobs circulating in the QN) to
either computational node. Horizontal scaling is achieved by choosing the rout-
ing probability with which the dispatcher selects the actual processing node.
For example, setting po,1,1 = Po,2,1 = Po,1,2 = Po,2,2 = 0.5 induces a symmetric
load balancing policy according to which requests are evenly distributed across
all the processing nodes. Vertical scaling is achieved by choosing the CPU quo-
tas assigned to the applications in each machine. For example, fixing a1 2 = 0.3
assigns a share of 30% of computational resources to class-2 jobs. The parameter
s1 indicates the total number of CPU cores available in node 1. We note that
the shares need not to sum up to one at a node—in which case the computation
resources are not fully utilized. The adaptation knobs, i.e., the values that can
be changed at runtime are indicated in red. In the following we formally define
all the different components of the proposed approach.

<Po,1,1, Po,1,2>

<Po,2,1, Po,2,2>

KH2,1, @2,1, 2,2, @2,2 , S2>

Multi Class Parametric QN: Formally, let us consider a set of stations S
and a set of service classes C. A Multi-class parametric QN is described by a
set of parameters, denoted by P, as follows:

— s; € P is the concurrency level of station ¢, with ¢ € S;
— pic € P is the service rate of station i for the jobs of service class ¢, with
1€ S8,ceC;

150 E. Incerto et al.

— Pi,jc € P is the routing probability, i.e., the probability that a request of class
¢ from station ¢ goes to j, with 4,7 € S and ¢ € C;

— a4, is the processing share assigned to jobs of class ¢ at station ¢ such that
Y ece @ie <land a; . >0, with i € S,ce C.

Finally, to formally justify the ODE approximation, the service rates p; . are
assumed to be exponentially distributed. However, using [15] our framework can
be extended to the nonexponential case with phase-type distributions [3].

Moreover in order to formally define the adaptation, we denote by V" C P
the subset of adaptation knobs. For each parameter that is fixed, i.e., pe P—-V,
p is its given value. Finally we denote by x; .(0),7 € S the initial condition, i.e.,
the initial number of jobs of class ¢ assigned to station 4.

ODFE Model: The ODE model is systematically derived from the parametric
QN and it gives estimate of the average queue lengths x; .(t) as a function of
time. The evolution of the multi-class QN under a cap share resource allocation
policy is described by the following ODE system:

dl’i’c(t)
dt

= —p;.c(t) min{z; (1), ;. (¢)s:(¢) }

+ 3 pjae(t)pge(t) min{a; o (t), 0055 ()} (1)

JjeSs

with initial condition z; .(0), for all i € S,c € C.

Here the term 7; .(t) = p; () min{z; o(t), o c(¢)s:(t)} represents the over-
all nonlinear instantaneous average throughput of station ¢ for jobs of class c:
when the queue length x; .(t) in station ¢ is less than the reserved fraction of
servers «; o(t)s;(t), then the x; .(f) jobs are served in parallel; otherwise some
of the jobs are enqueued and only «; .(¢)s;(t) of them are processed at once.
The throughputs may be weighted by the class-dependent routing probabilities
pjic(t), because a station may receive only a fraction of the jobs elsewhere.
Using the instantaneous average queue length z; .(¢) and the throughput 7; .(¢),
we define R; o(t) = x;.(t)/7; (t) as the instantaneous average response time for
jobs of class ¢ at station 4; this is the time spent by the last job of class ¢ while
competing for service at station 7.

Basically, assuming a cap share resource allocation policy is equivalent to
assuming that s; . = oy .(t)s;(t) is the fraction of the original physical station
capacity s;(t) assigned to the service class ¢, scaled by the sharing factor a; .,
such that) .~ a;c(t)si(t) < s;(t). In Sect.3 we validate this ODE model by
comparing prediction results against real measurements taken from a multi-class
system hosted in a shared virtualized environment.

LP Performance Adaptation Formulation: In [13] we showed how employ-
ing MPC for performance runtime adaptation of single class queuing network
could be reduced to the solution of a mixed-integer program (MIP). This formu-
lation relies on a linear time-varying system with auxiliary, “virtual” adaptation

Combined Vertical and Horizontal Autoscaling 151

knobs which will be then related to the original ones. Here we extend this formu-
lation for controlling the multi-class QN under the cap allocation sharing. The
linear time-varying system that we consider is defined as:

dmi.c)
dt<)+) (—et) + Gic(t), i€S,ceC (2)
JjES

where 7; +(t) represents the virtual throughput of station ¢ of class ¢ and (j; . (t)
is a virtual routing probability (which will be related to p;;).

We show how (2), augmented with appropriate constraints, can be used
for building an LP problem suitable for controlling systems whose performance
dynamics can be described by the discrete time version of (1).

Discrete Time Model: In order to employ MPC, we rely on a time discretization
of the ODE model with a finite step size At. MPC finds the optimal values of the
adaptation knobs over a time horizon of H steps. Simple algebraic manipulations
of (2) yield a formulation that reads:

xi’c(k—i_l):‘ri,c(+'Yzc +Z '7]0 +<]’LC())7 1€ 8S,ceC. (3)
JES

Unfolding (3) over H time steps allows us to embed the dynamics of the model
as a discrete set of constraints in the optimization problem:

xi,c(l) = mi,c(+’yzc +Z 7], +C],l C())

jeSs
2i6(2) = i e(1) + Yie(1) + Y (=%.e(1) + Gie(1)
JjeS
Tio(H) = 2io(H = 1)+ yie(H = 1)+ Y (=yje(H = 1) + Gic(H — 1))

JjES
forallie S,ceC.

Virtual Knobs Constraints: In order to relate the virtual adaptation knobs, i.e.,
Vi.e(k), Gijc(k), to the original ones, i.e., a; (k),p;i.c(k), respectively, we add
specific constraints to the optimization problem. Hereafter we focus only on
establishing a formal correspondence between the v, .(k) and the actual shares
since the equivalence between the virtual routing probabilities and the actual
ones is analogous to what discussed in [13].

The term —v; (k) represents the throughput of station ¢ for service of class
c at discrete time step k, i.e., p; (k) min{x; .(k), a; o(k)s;(k)}. Since the shares
can be chosen as close to 0 as desired, this consistency is given by adding the
following constraints to the optimization problem:

~Yie(k) >0, —ie(k) < piesiAt (4)

o (k) < g o(R) A, - Z %H %) _ gt (5)
C 1,C

152 E. Incerto et al.

with i € S,c € C. In (4),(5) we consider a time invariant service rate p; (k) =
i, for each station 7 of service class ¢ and a time invariant parallelism level
si(k) = s;. Indeed differently from [13] in the new LP control formulation the
number of cores assigned to each machine is statically determined and only the
share parameters are used to control the runtime performance of the system.
However we remark that this formulation can be easily extended to those cases
in which the number of virtual machines need to be computed at runtime (i.e.,
by considering a time variant s;).

Objective Function: We define the objective function of the optimization prob-
lem. We consider R performance metrics to be optimized. For each time step
k=0,1,...,H — 1, in the vector m(k) = (ml(k), .. ,mR(k‘)) each component
m,-(k) represents the variable associated with the r-th performance metric, with
1 < r < R. We specify the values that this can take according to the type of
instantaneous average index to optimize: throughput, queue length, or response
time. For all k we set:

i c(k
—M if the r-th metric is the class-c throughput at station i,
zic(k) if the r-th metric is the class-c¢ queue length at station 1.

For the encoding of response time, the treatment is different because we need to

handle the nonlinear expression R; (k) = ;‘EZ; = w_:{(k)(ﬁ)t We linearize this

problem as follows. We let 3; . denote the desired response time requirement for
class ¢ in station ¢ at time step k. Then, the idea is to minimize the quantity
|zi.c(k)At + Bic(k)vic(k)|. In order to do so, we consider auxiliary variables
Z; (k) and let my (k) = &; (k) if the r-th metric is the class-c response time at
station 4. Then, we can observe that by adding the following constraints to the
LP problem

Tjc(k) > i 0(k) At + Bicvie (k) (7)
~Zic(k) < @i (k)AL + Bi oic(k) (8)

minimizing &; (k) results in finding the value for the adaptation knobs such that
the response time at time k for station ¢ and class ¢ is as close as possible to the
desired value f; (k).

Thus, overall we can collect the set points in vectors o(k) = (o1(k),
...,or(k)). Each component of this vector, o.(k), is equal to the desired set
point if the r-th requirement is throughput or a queue length, or 0 if the r-th
requirement is a response time.

Our goal is to minimize the error between the performance indices and their
reference values, i.e., e(k) = m(k) — o(k), across all time steps in the horizon
k=0,1,...,H—1. Thus, overall the LP formulation can be specified as follows:

H-1

minimize{’n,c(k),Ci,j,c(k),:fi,g(k)} Z e(kj)Te(k) (9)
k=0

Combined Vertical and Horizontal Autoscaling 153

--------------------- - ° » »
- oA Ko KK
[
Vo LP Solution W2
v
| J 4
v N
: ? LBy
3 1
' —[Monitor]—)[Analyze& Plan 1 P1 2| P22
| , 3
P ﬁ v
- ' ’ VM VM
b Ci1 Ci,2 Ca1 C22
i HAT:1081 HAT:1082 HAT:1083 HAT:1084
o
HE
' . Ay,p A0 Ao g Ao o
] CPULIMIT . CPULIMIT
share trigger Hypervisor: OpenVz
TCP Backlog Monitor:{1081,1082,1083,1084
9 < 4 LM, LM,
L J L J
RS Y
‘ 6 CPUs: {0-5} 6 CPUs: {6-10}

Operating System: Ubuntu 14.04 64bit openvz-2.6 kernel

:32 CPUs VPS

Fig. 2. Experiment system architecture.

subject to constraints Eqs. (3), (4), (6), (7), (8)

Gi (k) > 7ie(k) if pijeceV
> Gige(k) = yie(k)(IS| = 1),
jES
Gije(k) = vi,e(k)(1 = Pij.c) if psj € P -V (10)

foral k=0,...,H—1, i€ S, c e C, where with (10) we set the values for all
the parameters of the QN that are fixed.

Following [13], it is possible to define a nonlinear MPC formulation built on
a discrete-time representation of the model (1). With the following result, we
can recover the shares and routing probabilities for the original nonlinear model
from the LP formulation above.

Theorem 1. Denoting by S = {a; .(k),p;;.(k)} an optimal solution to the
nonlinear MPC' formulation built on (1) based on [13], there exists an MPC
problem based on an LP formulation with dynamics (3) such that its optimal
solution S" = {~] .(k), 2} .(k), (] ; .(k)} satisfies:

* ’y;,c(k) * 71/70(16) - Cz{,j,c(k)
ai,c()=]) pi,j,c() = 7
8; At ’yi7c(k)

forallk=0,... , H—1.

3 Numerical Evaluation

In this section we evaluate the effectiveness of the proposed adaptation approach
on a real multi class load-balanced system. The code needed for setting up the
experimental infrastructure is publicly available at https://goo.gl/6bNR23.

https://goo.gl/6bNR23

154 E. Incerto et al.

System Description and Implementation: For running our evaluation we
relied on an in-house developed web application, namely HAT (Heavy Task Pro-
cessing application), specifically designed for resembling the behavior of CPU-
intensive systems [7,21]. We conducted our study on a single Virtual Private
Server (VPS) equipped with 32 cores and 6 GB of memory. As a vertically
scalable virtualized environment we used the OpenVz hypervisor [22], while the
horizontal scaling has been enabled through a load balancer implemented in
NodelJS. In order to validate our control approach in a resource contention sce-
nario, we ran two instances of the same load balanced HAT deployment, each
consisting of two OpenVz virtual machines.

Figure2 depicts the architecture of the considered system. There are two
classes of applications and two processing nodes. We emulated a distributed sce-
nario by partitioning the available CPU cores into two Logical Machines LM
with 6 cores each. The remaining cores are used for running the monitoring
infrastructure and the controller. Component C; ; is the instance of the com-
putational service for class j running on logical machine LM;; LB is the dis-
patcher for class j; CTRL is the runtime controller. Component W represents
the workload generator which injects requests of class-j service into the system.
With these settings, LB; dispatches user requests for class j to processing node
¢ with routing probability p; j, while the resource share of class j executing at
node 7 is «; ;. These values are adapted at runtime by the CTRL component,
in a MAPE-K [14] fashion, through operating system signals (see Fig. 2) and the
OpenVz interface.

CTRL ran the LP optimizations using the academic version of CPLEX tool.
We implemented each W; as a multi-process Python based workload generator
running independent concurrent users that iteratively issue requests, waiting an
exponentially distributed delay (i.e., the think time given by 1/uo; > 0) between
successive requests. Components C; ; and LB; have been implemented as multi-
threaded NodeJs servers using the NAPA library.

Model Parametrization and Validation: We modeled the system under
study with a multi-class QN as depicted in Fig. 1. The QN processing node Ny
represents the W1 and Ws workload generators, while nodes N7 and Ny model
the logical machines LM; and LM,.

For model validation, we set think times 1/p91 = 1/po2 = 1s, and pop-

ulation levels X; = X5 = 200 users (i.e., we assumed a closed workload).
We assigned s; = so = 2 cores to each processing node and service rates
wi; = 20.5s71 for i,j = 1,2. These rates were estimated by measuring the

maximum throughput on the actual hardware platform. Finally we deployed the
system in its symmetric configuration, i.e., p; ; = 0.5 for 4, j = 1,2. To exercise
the system under different conditions we considered 10 different resource share
allocations.

Table 1 reports the validation results in terms of the measured and predicted
throughputs for class-j application, denoted by 7p,; and 7,;, respectively, as
well as their relative percentage errors £,;. For each resource share assignment,
the throughputs were measured by averaging 10 independent executions, each

Combined Vertical and Horizontal Autoscaling 155

Table 1. Model validation results. The errors £,1 and &£,.2 between the measured and
predicted throughputs for class 1 and class 2, respectively, are measured as absolute
relative percentage errors.

a1, a1 | 015 0.30| 0.40| 0.50| 0.60| 0.65, 0.70| 0.75| 0.80| 0.85
ai2,a22 | 085 0.70| 0.60| 0.50| 0.40| 0.35| 0.30| 0.25| 0.20| 0.15
Tt 10.85|22.47|29.85 | 40.85 | 45.90 | 50.10 | 54.57 | 57.73 | 62.50 | 65.06
Tp1 12.00 | 24.00 | 32.00 | 39.99 | 48.00 | 52.00 | 56.00 | 60.00 | 63.99 | 67.97
En 10.53 | 6.78| 7.21| 2.12| 4.56| 3.80| 2.61| 3.93| 2.39| 4.48
Tn2 65.94 | 53.40 | 44.54 | 40.80 | 30.67 | 26.83 | 22.90 | 18.72 | 14.79 | 10.84
Tp2 67.97 | 56.00 | 48.00 | 39.99 | 32.00 | 28.00 | 24.00 | 20.00 | 16.00 | 12.00
Era 3.08| 4.87| 7.75| 2.00| 4.34| 4.34| 4.79| 6.82| 8.18 10.62

lasting 2 min. The results show that the model can predict the trends of the real
system adequately. We consider the errors acceptable, since a simple determin-
istic model omits many low-level interactions between the operating system and
the virtualization environment.

Adaptation FEvaluation: We evaluate the effectiveness of our approach by
showing that the combined vertical and horizontal load balancing adaptation
can efficiently meet performance targets when either of the two techniques alone
cannot. We focus on a scenario of hardware degradation. Starting from a sym-
metric set-up where the service rates of nodes C; ; are identical and equal to
20.5 (as in the validation set-up), we inject a degradation event where the service
rate at node LM becomes 3 times smaller.

For both the symmetric and the degraded case, the objective of the adap-
tation was to maintain the following set points: instantaneous average response
time of the class-1 application equal to 2s; and class-2 instantaneous average
throughput equal to 50 requests per second.

We controlled the performance of the system under a workload of X; =
X2 = 200 concurrent users with a think rate po1 = po2 = 1s~'. According
to the system description (see Fig.2), we assigned s; = so = 6 to each logical
machine. For the vertical scaling control we fixed the symmetric distribution
p;i,; = 0.5, with 4, j = 1,2, while the controller could change all resource shares
o ; in an isolated fashion. When the combined control approach is applied also
the routing probabilities are changed at runtime.

We evaluated both the control approaches, i.e., vertical and combined, in two
separated sessions, i.e., symmetric and degraded, each of which was 20-minutes
long. We fixed an ODE sampling interval At = 0.1s, an activation loop rate
= 0.1s, and control horizon H = 10.

Figure 3a and 3b report the class-1 instantaneous average response time dis-
tributions in the symmetric set-up (i.e., no degradation) when vertical scaling
only and the combined approaches are applied, respectively. In this case both the
control approaches are able to fulfill the requirements. This is due to the fact that

156 E. Incerto et al.

3500

ElResponso Time Distiouion i EResponse Time Distrbution
~—Mean Value ~—Mean Value
3000 |- -Requirement 1 3000 |- -Requirement

2500+
000

SN

#0ccurences
o
o
3

1000

15 2 1.5
Time(s) Time(s)
(a) Vertical scaling only (b) Combined vertical & horizontal scaling
5000 ! i i ElResponse Time Distbuton]] 9000F i f | i EIResponse Time Distrbuton)
! ---Mean Value ---Mean Value
| - -Requirement - -Requirement
4000 + H 4 4000t

w
=1
<]
S
T

N
S
=3
3
T
#Occurences

#0Occurences

3000
2000}
1000 4 1000} “
_m ||I|||

5 S—
0 2 4 6 8 10 12 0.5 1 15 2 25 3 3.5 4 4.5

Time(s) Time(s)
(c) Vertical scaling only (d) Combined vertical & horizontal scaling

Fig. 3. Class-1 instantaneous average response time distribution without degradation
(a-b) and with degradation (c-d).

the performance target is locally achievable on each logical machine by varying
the allocation shares only. Under degradation, the advantage of the combined
control (i.e., vertical plus dynamic load distribution policy) becomes evident.
Indeed, Fig. 3c depicts the class-1 response time distribution when the vertical
scaling is applied under the degradation scenario. Since the joint requirements
for class-1 and class-2 are no longer satisfiable locally, all the users sent to LM
will still experience the intended response time, while the ones sent to LM will
be served by a saturated system characterized by poor performance. Figure 3d,
instead, depicts the class-1 response time distribution when the combined verti-
cal and horizontal load balancing autoscaling is applied. In this case the routing
probabilities of both classes are properly adjusted, steering the system toward
the requirements fulfillment regardless of the differences in the service rates.
We remark how, under the same scenario, applying a state-of-the-art horizontal
scaling technique (i.e., [8,9]) would lead to a system with a larger number of
provisioned virtual machines, thus incurring higher costs and adaptation delays.

Regarding class-2 throughput adaptation, when the system works in the sym-
metric case both the control approaches are able to fulfill the requirements (see
Fig.4a and 4b). With degradation, only the combined approach is able to steer
the system toward the desired set points (see Fig. 4c and 4d).

Table 2 reports the average values for the control signals used during each
adaptation trace. We can observe that during the degradation case LM} is satu-
rated since o 1 + a2 =~ 1. In this case the only way to satisfy the requirements

Combined Vertical and Horizontal Autoscaling 157

" [—Average Throughpuf] i i i " [—Average Throughpuf]
__ Requirement — - Requirement
O I Bl B0 | -
454 45
2 Y
340 g 40
o o
35 35
30 30
25 | | | | I 2 | | | | I
200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Time(s) Time(s)
(a) Vertical scaling only (b) Combined vertical & horizontal scaling
s i i i " [—Average Throughpuf] % i i i " [—Average Throughpuf]
- - Requirement - - Requirement
B0 | T B) s -
45+ 45
2 Y
a0l 40
o @
35 r,\\/w 35
30 30
25 | | | | I 2 | | | | I
200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Time(s) Time(s)
(c) Vertical scaling only (d) Combined vertical & horizontal scaling

Fig. 4. Class-2 instantaneous average throughput without degradation (a-b) and with
degradation (c-d).

Table 2. Optimal control signals.

Scenario Ctrl type |11 |21 |2 | @22 | P11 | P21 | P12 | P22
No degradation | Vertical 0.26 0.26 | 0.25 0.27]0.50 | 0.50 | 0.50 | 0.50
Combined | 0.25 | 0.28 | 0.29 | 0.25 | 0.50 | 0.50 | 0.62 | 0.38
Degradation Vertical | 0.46|0.13/0.53|0.28|0.50 | 0.50 | 0.50 | 0.50
Combined | 0.46 | 0.37 | 0.32|0.38 | 0.27|0.73 | 0.24 | 0.76

of both classes is to operate at the load distribution level redirecting the major-
ity of the user requests on the faster machine LMy while properly varying the
CPU shares, i.e., in a combined vertical and horizontal autoscaling fashion.

4 Conclusion

In this paper we have presented an efficient approach for the performance adap-
tation of distributed co-located applications using fluid multi class queuing net-
work (QN) and model predictive control (MPC). The main novelties lay in the
combined usage of vertical and horizontal load balancing autoscaling techniques
and the extension of the fluid model presented in [13] for modeling multiclass
distributed systems under a capped resources allocation scheduler. At each time
step during system evolution a linear programming problem is solved for comput-
ing the adaptation knobs (i.e., routing probability and allocation shares) suitable

158 E. Incerto et al.

to steer the system to throughput or response time set points. As future work
we aim to extend our adaptation problem formulation to explicitly model the
response time distribution instead of its instantaneous average only. Moreover,
we also plan to: (i) study the scalability of the approach while varying the sys-
tem size, e.g., increasing the number of VMs; (i) extend our method to include
resource contention policies for network, memory, and I/O; (iii) consider more
expressive resource schedulers and system performance interactions such as the
completely fair scheduler [20] and layered queuing networks [24].

Acknowledgement. Mirco Tribastone is partially funded by a DFG Mercator Fel-
lowship (SPP 1593, DAPS2 Project).

References

1. Adam, O., Lee, Y.C., Zomaya, A.Y.: Ctrlcloud: performance-aware adaptive con-
trol for shared resources in clouds. In: International Symposium on Cluster, Cloud
and Grid Computing (CCGRID), pp. 110-119 (2017)

2. Barham, P., et al.: Xen and the art of virtualization. ACM SIGOPS Oper. Syst.
Rev. 37, 164-177 (2003)

3. Bolch, G., Greiner, S., De Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applica-
tions. Wiley, Hoboken (2006)

4. Bolker, E.; Ding, Y.: On the performance impact of fair share scheduling. In:
International CMG Conference, pp. 71-82 (2000)

5. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of
collective system behaviour: a tutorial. Perform. Eval. 70, 317-349 (2013)

6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

7. Corp., L.: Linpack. https://software.intel.com/en-us/articles/intel-math-kernel-
library-linpack-download

8. Dutta, S., Gera, S., Verma, A., Viswanathan, B.: Smartscale: automatic application
scaling in enterprise clouds. In: International Conference on Cloud Computing
(CLOUD), pp. 221-228 (2012)

9. Gandhi, A., Dube, P., Karve, A., Kochut, A., Zhang, L.: Modeling the impact
of workload on cloud resource scaling. In: International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), pp. 310-317 (2014)

10. Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control: theory and
practice—a survey. Automatica 25, 335-348 (1989)

11. Gupta, D., Cherkasova, L., Gardner, R., Vahdat, A.: Enforcing performance iso-
lation across virtual machines in Xen. In: van Steen, M., Henning, M. (eds.) Mid-
dleware 2006. LNCS, vol. 4290, pp. 342-362. Springer, Heidelberg (2006). https://
doi.org/10.1007/11925071-18

12. Huang, D., He, B., Miao, C.: A survey of resource management in multi-tier web
applications. IEEE Commun. Surv. Tutor. 16, 1574-1590 (2014)

13. Incerto, E., Tribastone, M., Trubiani, C.: Software performance self-adaptation
through efficient model predictive control. In: International Conference on Auto-
mated Software Engineering (ASE), pp. 485-496 (2017)

14. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36,
41-50 (2003)

https://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download
https://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download
https://doi.org/10.1007/11925071_18
https://doi.org/10.1007/11925071_18

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Combined Vertical and Horizontal Autoscaling 159

Kowal, M., Tschaikowski, M., Tribastone, M., Schaefer, I.: Scaling size and parame-
ter spaces in variability-aware software performance models. In: International Con-
ference on Automated Software Engineering (ASE), pp. 407—417 (2015)

Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure Markov
processes. J. Appl. Prob. 7, 49-58 (1970)

Lakew, E.B., Klein, C., Hernandez-Rodriguez, F., Elmroth, E.: Performance-based
service differentiation in clouds. In: International Symposium on Cluster, Cloud
and Grid Computing (CCGRID), pp. 505-514 (2015)

Lakew, E.B., Papadopoulos, A.V., Maggio, M., Klein, C., Elmroth, E.. KPI-
agnostic control for fine-grained vertical elasticity. In: International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), pp. 589-598 (2017)

Li, L., Franks, G.: Performance modeling of systems using fair share scheduling
with layered queueing networks. In: International Symposium on Modeling, Anal-
ysis & Simulation of Computer and Telecommunication Systems (MASCOTS), pp.
1-10 (2009)

Molnar, I.: This is the CFS scheduler (1999). https://www.kernel.org/doc/
Documentation/scheduler /sched-design-CFS.txt

NASA: Nas parallel benchmarks. http://www.nas.nasa.gov/Resources/Software/
npb.html

Parallels: OpenVz user guide (2016). https://docs.openvz.org/openvz_users_guide.
webhelp/

Qu, C., Calheiros, R.N., Buyya, R.: Auto-scaling web applications in clouds: a
taxonomy and survey. ACM Computing Surveys 9(4), 34 p (2017)

Tribastone, M.: A fluid model for layered queueing networks. IEEE Trans. Softw.
Eng. 39, 744-756 (2013)

https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.nas.nasa.gov/Resources/Software/npb.html
https://docs.openvz.org/openvz_users_guide.webhelp/
https://docs.openvz.org/openvz_users_guide.webhelp/

Scheduling and Load Balancing

®

Check for
updates

Early Termination of Failed HPC Jobs
Through Machine and Deep Learning

Michat Zasadzinski'®), Victor Muntés-Mulero!, Marc Solé!, David Carrera2,
and Thomas Ludwig?

! CA Technologies, Barcelona, Spain
{michal.zasadzinski,victor.muntes,marc.solesimo}@ca.com
2 Universitat Politecnica de Catalunya, Barcelona, Spain
dcarrera@ac.upc.edu
3 Deutsches Klimarechenzentrum GmbH, Hamburg, Germany
ludwig@dkrz.de

Abstract. Failed jobs in a supercomputer cause not only waste in CPU
time or energy consumption but also decrease work efficiency of users.
Mining data collected during the operation of data centers helps to find
patterns explaining failures and can be used to predict them. Automating
system reactions, e.g., early termination of jobs, when software failures
are predicted does not only increase availability and reduce operating
cost, but it also frees administrators’ and users’ time. In this paper,
we explore a unique dataset containing the topology, operation metrics,
and job scheduler history from the petascale Mistral supercomputer. We
extract the most relevant system features deciding on the final state of
a job through decision trees. Then, we successfully train a neural net
to predict job evolution based on power time series of nodes. Finally,
we evaluate the effect on CPU time saving for static and dynamic job
termination policies.

Keywords: HPC - Slurm - Failure prediction * Failure prevention
Deep learning - Data center

1 Introduction

Data centers are a core element in most I'T systems, hosting cloud applications,
enabling HPC or performing intensive Big Data analytics. Although the opti-
mal architecture of a data center may be different for each of these applications,
general maintenance problems remain the same. Failures in hardware and infras-
tructure can both cause software failures or may be the result of such software
failures. Software errors are the most common cause of failures [4]. Also, many
jobs produce large network and storage system loads which degrade the system
performance [3].

The original version of this chapter was revised: For detailed information please see
correction chapter. The correction to this chapter is available at https://doi.org/10.
1007/978-3-319-96983-1_58

© Springer International Publishing AG, part of Springer Nature 2018

M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 163-177, 2018.
https://doi.org/10.1007/978-3-319-96983-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_12&domain=pdf
https://doi.org/10.1007/978-3-319-96983-1_58
https://doi.org/10.1007/978-3-319-96983-1_58

164 M. Zasadzinski et al.

Data presenting the state of a system is usually so complex that administra-
tors might not take the best decision to recover a system efficiently. Moreover, in
many cloud-oriented services, system monitoring information is limited to hard-
ware metrics, and do not include user application logs. Thus, it is even more
challenging to predict job failures and take proper action. Evaluating jobs in
run-time augments administrative metrics and increases the confidence of taken
decisions. Therefore, jobs which are likely to fail or decrease the performance of
a system can be terminated in advance, saving resources, computing and human
time, and lowering operational costs. According to the dataset used in this paper,
completed jobs in the petascale Mistral' supercomputer consume about 45 mil-
lion CPU hours per month and they are 91.3% of all submitted jobs. Predicting
the final job state at the time of job submission and during run-time allows
for forcing job termination before a failure occurs, enabling savings. However,
deciding when it is necessary to terminate a job is a nontrivial task.

In this paper, we analyze the impact of both static and dynamic job ter-
mination policies using different data center metrics. We propose new job state
prediction algorithms based on Decision Trees (DT) and Convolutional Neural
Networks (CNN). We use data extracted from the Mistral supercomputer that
includes system metrics, job scheduler history, and system topology information.
We augment datasets during the exploration to show how knowledge coming
from job scheduler, monitoring system, and topology and structure, can increase
prediction capabilities and uncover new patterns. We discriminate among job
submission features these that explain the termination status of jobs based on
job traces. We use power series of nodes to build a model used for failure pre-
diction at run-time. For this task, we use machine learning (ML) and a CNN.
The trained CNN achieves 85% of precision in the classification of failed jobs by
power series. The CNN predicts failures for more than 40% of failed jobs in the
20" percentile of their duration.

The remainder of this paper is divided into six sections. Work related to
failure prediction and prevention in HPC is discussed in Sect.2. In Sect. 3, we
provide description of Mistral supercomputer (42°¢ most powerful computer in
November 2017 (See footnote 1)) and data exported from this environment.
Section 4 presents extraction of important features and their discovery by means
of DTs that are created using these data. Then, in Sect.5, we describe the
training and use of a CNN for job state prediction. At the end of Sect. 5, we show
savings applying different policies for early job termination. We discuss results,
the usefulness of the proposed policies and include plans for future research in
Sect. 6.

2 Related Work

Authors in [18] describe the role of software in failures occurring in data centers.
Software problems in an OS, middleware, application, or the wrong configura-
tion, e.g., underestimated resources cause the majority of job failures in HPC

! https://www.top500.org/system /178567.

https://www.top500.org/system/178567

Early Termination of Failed HPC Jobs Through Machine and Deep Learning 165

workload [1,22]. The authors of [5] discover the correlation between failures,
and different characteristics of supercomputer operations, such as node usage,
last state of a job, and hardware metrics. This research explores state sequences
from the perspective of a node. The authors perform job-oriented analysis only
to point users with a high failure rate. Analysis of logs and the rate of failed
jobs allows detecting slow-downs and targeted failures [4]. Recently, the authors
in [10] characterized workload in an HPC environment with the primary goals to
find patterns across different applications and disciplines. Latest work presented
in [9] analyzes failures of the Oak Ridge supercomputer. The authors describe
hardware reliability, correlate failure types, and investigate failure trends in the
time and spatial distribution. However, leveraging user history for prediction of
failed jobs and learning application workload patterns is not a primary focus
area in the prior publications. Also, there are not many publications addressing
the separate analysis of jobs and job steps.

There is many research on ML in data center maintenance for either pre-
diction or classification problems [6,7,17,20]. For instance, research in [8] uses
dynamic association rules to predict failures in the Blue Gene. The authors
of [15] focus on predicting failures in computing nodes, and as a reaction, redi-
recting a job to another set of nodes. Another possible action is checkpointing,
and the authors of [2] investigate the optimal policy to reduce trade-off between
checkpoints frequency and MTBF. The authors in [13] use power and tempera-
ture metrics to predict errors in GPU clusters via neural network (NN) model.
Recently, decision trees are implemented for failure prediction in HPC domain
[12]. The proposed algorithm identifies the causes of failures, performing better
comparing to other SoA techniques.

Despite the popularity and progress in ML algorithms and software, the area
of prediction of the final HPC job states through accurate modeling of power
series seems to be unexplored. The focus of most of the work is put on predicting
failures per hardware unit, rather than learning workload patterns of failed jobs.
The complexity of IT systems and their dynamic structure are one of the main
obstacles to create accurate models. The authors in [21] propose power model-
ing techniques via Petri networks, to estimate power consumption. Also, work
presented in [19] reports research on power profiling in HPC environments. The
authors discuss application network architecture, performance, and scalability
in the dimension of power consumption, and they propose a system for accurate
power monitoring. However, in our work, we aim to use as little information as
possible — power metrics representing the load of nodes.

3 Mistral Supercomputer Dataset

DKRZ Mistral supercomputer contains 3336 computing nodes, about 90 special
nodes dedicated to other activities, and a separate 54 PiB Lustre file system.
Applications for climate science generate the production workload. Slurm? main-
tains node reservations, resource allocation, and accounting.

2 https:/ /slurm.schedmd.com/.

https://slurm.schedmd.com/

166 M. Zasadzinski et al.

3.1 Job Scheduler History

Through analysis of historical data from the scheduler, we investigate which
features are important, thus deciding on a final job state. This goal motivates
our strategy, which is oriented to jobs rather than nodes. We use states from the
scheduler to determine an output of a job. In the dataset, each job finishes with
one of the following states, defined by Slurm documentation.

— Cancelled — A user or administrator cancelled a job. The job may or may
not have been initiated. In the following analysis, we take into account only
cancelled jobs longer than O s.

— Completed — Job has terminated all processes on all nodes with an exit code
of zero.

— Failed — Job terminated with non-zero exit code or another failure condition.
According to Mistral, another failure condition includes failures caused by any
external factor to an allocated node, e.g., failures of Lustre FS, IB.

— Node fail — Job terminated due to a failure of one or more allocated nodes.
This state includes only hardware related problems of a computational node.

— Timeout — Job terminated upon reaching its time limit.

Each job consists of one or more steps. A job submission script defines the
execution order of steps; also the order can be read from Slurm history. The
order can be sequential, parallel, or mixed, see example script in Listing 1.1.

Listing 1.1. Example Slurm batch script. Two steps run sequentially on 80 nodes.

#SBATCH —nodes 80

#SBATCH —tasks —per—node 10

First step

srun —nodes 80 ——tasks 10 mkdir /home/$USER/$SLURM_JOBID
Second step

srun app.mpi in.csv out.csv

Most steps in Mistral dataset are executed sequentially. In the Slurm
database, there are 76 columns. They contain information about jobs: (1) job
configuration specified by a user, and (2) statistics known at the end of a job.
We give more details about these data in Subsect. 3.3. In this paper, we consider
all above job states. For steps, the dataset includes: Completed, Failed and
Cancelled.

3.2 Time Series Data Analysis

Mistral metrics are acquired every 60s into an Open Time Series Database
(OTSDB) instance that is installed on the top of HBase cluster. For this research,
the data from the cluster are exported using the HBase ExportSnapshot tool.
Then, we import a snapshot with the size of 0.5 TB from a regular continuous
period of 10 months of system executions to our analysis environment contain-
ing 8 machines with 120 physical cores, 672 GB of RAM. We use Apache Spark
for data processing. For training of a CNN, we need job scheduler data merged
with power metrics. We merge Slurm steps with data from OTSDB representing
power metrics of nodes used by a step during its run-time. That merged steps

Early Termination of Failed HPC Jobs Through Machine and Deep Learning 167

should contain at least two power measurements. In the worst case, for steps
shorter than 120s, it is possible to merge only one timestamp with node power
metrics. So, in the evaluation, we consider a subset of steps longer than 120s.
Discarding short jobs, we do not lose a lot of data: about 1.2M of all steps from
the set run for more than 60s and 1.1M more than 120s.

3.3 Dataset Split

We show how different knowledge sources: software — job scheduler, hardware
— monitoring system, and platform — topology and structure, impact prediction
and classification accuracy. Also, we detect which part of the data increases the
prediction capabilities of a model when the only used information is the one
known at the time of a job submission; and which part of the data improves
classification capabilities, when we use statistics of finished jobs. Datasets are
divided into the following sets - named with a capital letter for later reference:

— Slurm job configuration data: information of either jobs or steps, which is
known at the time of submission e.g., reserved time, allocated nodes, required
CPU frequency, start time. [we call it dataset C in the experiments]

— Slurm user data: columns with information about prior user allocations.

Also, this dataset contains aggregated user data. The set includes factors of

jobs terminated with each of 5 possible states to a number of all submissions in

different windows. We aggregate the data by user and windows with different

sizes: last N submissions (N = 1, 100, 1k, 10k). [dataset U]

Slurm job summary data: information is known at the end of a job,

e.g., duration, disk read/write (R/W) — the sum of local storage and Lustre

operations done by a job, virtual memory (VM) size, other hardware usage.

[dataset S|

— Power metrics of nodes (OTSDB data): power metrics of computing
nodes (blades). [dataset P]

— Data center topology: topology and localization of nodes. [dataset T)|
— Hardware profiles of nodes: types of nodes, number and types of CPUs,
amount of RAM. [dataset H|

4 Failed Job Analysis

According to the data from the job scheduler, more than 1.3M jobs, and more
than 270k different job names are submitted in the 10-month period that is
represented by the dataset extracted from the Mistral production environment.
These submissions, which are mainly executed in batch mode (98.8%), result in
over 4.8M steps. For detailed statistics, see Mistral technical report [23]. One
of the observations from the statistics is coherent with usual state of the art
reports - failed steps are usually more complex [22]. These statistics represent a
convincing motivation for generating savings with the early termination of jobs
that are predicted to fail. An average failed job consumes many more CPU hours
than completed one and it also decreases resources availability.

168 M. Zasadzinski et al.

4.1 Most Meaningful Features for Prediction of Job States

Extraction of Features. We generate DTs [14] to reveal job and step features
explaining a job state. These ML models learn if-then-else rules, for either clas-
sification or regression task. An advantage of using a DT is the fact that it is a
white-box model so that a human can easily understand a trained tree. We use
all the features from each dataset for generation of a DT. To decide the opti-
mal size of DTs, we consider (1) over-fitting and (2) readability of a model to a
human. Firstly, we split our set into three sets using random stratified sampling.
We create the training set containing 70% of jobs (samples), the validation set
that has 10% of jobs (samples), and the test set with 20% of jobs. During the
training, we measure accuracy on the validation set, while increasing depth of
a tree. We set 100 as the minimum number of instances each node’s child must
have after a split. Trees with depth 5 obtain satisfactory performance. For larger
DTs, the accuracy increase is low (0.03%), and the increase of the number of
nodes is high. For instance, a tree with depth 9 has 275 nodes, and it is 84 nodes
more than a DT with depth 8. Thus, we choose the optimal depth of the DT to
be 5, which has 63 nodes. To check if models are not over-fitting, we evaluate
random forests (RF) for each dataset. RF create DTs and train them with dif-
ferent training sets that are subsets of the main training set. Then, results from
each DT are combined. Created RFs improve neither classification nor prediction
quality when compared to the above DTs.

The test evaluations shows the fitness of generated models of either classifi-
cation (having all information about a finished job), or prediction (having only
information at the time of submission). We present the results of evaluations in
Tables 1 and 2, including only features with importance over 3%.

Table 1. Decision trees — evaluation of different combinations of data sets - jobs

Data set Important features Job state| Completed | Failed | Cancelled | Timeout | Node fail
Configuration (C) Time limit (74%) Precision |0.91 0.0 0.0 0.0 0.0
Daytime (24%) Recall |1.0 0.0 |0.0 0.0 0.0
F1l-score [0.96 0.0 0.0 0.0 0.0
Configuration + Previous job state for a|Precision |0.97 0.75 |0.52 0.68 0.0
user’s history (C + user (96%)
v Number of allocated |Recall |0.98 0.70 |0.44 0.30 0.0
nodes (3%) Fl-score [0.98 0.72 |0.48 0.42 0.0
Statistics + Previous job state (87%) | Precision |0.97 0.77 |0.63 0.81 0.0
configuration + Duration (9%)
user’s history (S + C |Number of allocated Recall 0.99 0.74 0.36 0.35 0.0
+ U) nodes (4%) Fl-score |0.98 0.75 0.46 0.49 0.0
Duration > 120 s Previous job state (85%) | Precision |0.97 0.81 |0.62 0.80 0.0
statistics, Duration (8%)
configuration, user’s |Number of allocated Recall 0.99 0.74]0.31 0.33 0.0
history (S + C 4+ U) |nodes (6%) Fl-score [0.98 0.77 |0.41 0.47 0.0

Jobs. The above results show that the size of resource reservation is a principal
factor determining the final state of a job. Also, the results expose that final

Early Termination of Failed HPC Jobs Through Machine and Deep Learning 169

Table 2. Decision trees — evaluation of different combinations of data sets - steps

Data set Important features Job state| Completed |Failed | Cancelled
Configuration (C) Number of allocated nodes (98%) | Precision |0.95 0.50 |0
Recall 0.99 0.07 |0
Fl-score |0.97 0.12 |0
Configuration, statistics |Number of allocated nodes (47%) | Precision | 0.98 0.83 |0.58
(C+9) Averag,e disk W (40%) Recall 0.99 0.76 |0.04
Duration (4%)
Fl-score |0.99 0.79]0.79
Duration > 120 s Average disk W (47%) Precision |0.95 0.59 |0.89
configuration, statistics |Number of allocated nodes (36%)
(C+9) Average CPU frequency (9%); Recall 0.98 0.23]0.83
Duration (4%) Fl-score |0.97 0.33 |0.86
Configuration, topology, | Number of allocated nodes (79%) | Precision |0.97 0.75]0.49
hardware information Number of nodes 36C 64 GB RAM
(C+ T+ H) (15%) Recall 0.98 0.41 |0.01
Number of nodes 36C 128 GB
RAM (3%) F1l-score [0.98 0.53 |0.01
Configuration, Number of allocated nodes (46%) | Precision|0.98 0.85 |0.52
statistics, topology, Average disk W (41%); Average
hardware information, |disk R (5%)
power statistics (C + S |Average VM size (4%) Recall 0.99 0.75 |0.10
+ T + H + P) F1-score |0.98 0.80 [0.17
Duration > 120 s, (C + |Average disk W (49%) Precision |0.94 0.93 |0.81
S+ T+ H+P) Number of allocated nodes (35%) Recall 0.99 0.79 |0.13
Average CPU frequency (10%)
F1l-score [0.97 0.85 |0.22

states are highly correlated with a user’s history. In general, this correlation is
weaker for longer jobs.

Steps. Generated DTs reveal that the sum of disk RW is often higher for com-
pleted jobs than failed ones. Since the mean duration of failed steps is much
higher than completed ones [23], higher storage usage can be explained by less
active nodes in failed steps. We can state a hypothesis, that some nodes in failed
steps stay in idle state, see Sect. 4.2. The evaluation shows the high importance of
anumber of allocated nodes with 36 cores. An investment done in DKRZ explains
this phenomenon. The dataset includes the period when Broadwell nodes started
their service in the production environment. That time, users were translating
their software and scripts to the recently installed hardware. It is the primary
cause of many job failures.

Conclusions. The evaluation of DT classification tasks shows that a DT model
is unable to learn and recognize cancelled, node failed, or timeout jobs based
only on configuration data. These data are the only information known to the
scheduler after a job is submitted. The fl-score is 0 for all of the mentioned
states. Augmenting this set with past user’s submissions improves recall of failed
jobs to 72% and lifts precision of predicting cancellations to 52% and timeouts
to 68%. This result shows a strong correlation inside a sequence of final job
states. Adding to the training dataset metrics which are known after a job is
finished increases the precision of a classifier. The recall does not change for any
of the states. Regarding steps, precision and recall are lower than those for job

170 M. Zasadzinski et al.

submissions. It is a reasonable result considering that steps have a lower number
of features available for these evaluations. The number of allocated nodes is an
important feature to predict the final state of a job even when used with hardware
metrics features. Other important features are knowledge on past submissions
and their states. According to the hardware statistics, average disk W is a highly
important feature in the classification task of final job states, while general power
statistics are features with low importance.

300

250

250 4

200

Power [W]
Power [W]
3
g

150

I
3

100

5
8

50

w
8

0 25 50 75 100 125 150 175 200 0 10 20 30 40 50 60 70
Time [min] Time [min]

(a) Failed (b) Completed

Fig. 1. Plots presenting power series of 198 nodes running in parallel a job from the
same, user, project, and application. Two jobs were run in different points of time.
First one is failed, the next one is completed.

4.2 Node-Power Analysis

We want to investigate the power statistics of failed jobs in comparison with
completed ones, to detect idle states. Each computing blade is controlled and
monitored by an isolated blade management controller which delivers power
metrics. A controller is an external unit, and acquiring measurements does not
infer with the workload of a blade. Power metrics of these blades perfectly depict
their CPU load. Although in Subsect.4.1 we evaluate the usefulness of power
statistics in prediction, we might also evaluate whether these series can improve
job state prediction during the run-time. We correlate power series of nodes
allocated for a step with this step’s final state and types of nodes. We analyze
power statistics for steps longer than 1000s, grouped by hardware profile to
extract average values of power metrics in the last 300 s of the duration of a job.
This value is at least 10% lower than for completed ones, when considering all
hardware groups, and failed steps. The most probable explanation can be the
fact that once a software failure occurs some of the nodes go to an idle state.
For instance, Fig. 1 presents power series of 1-step jobs, both executed with the
same configuration by the same user. This scenario represents a typical case
where one node is in an idle state, and the rest are executing some workload. On

Early Termination of Failed HPC Jobs Through Machine and Deep Learning 171

the contrary, power series of nodes executing a completed step do not show any
node in an idle state. This phenomenon appears in other cases in the dataset
and suggests that using power metrics would be relevant for classification of
a job state. Moreover, this observation matches with the expert knowledge at
DKRZ. In words of one of its system engineers: “We check the idle state of a
node during a problematic job, looking at InfiniBand traffic of nodes. If it is low,
a job is likely to fail”.

5 Prevention of Failures

Prior data exploration and evaluation of DT's show that power metrics and DT's
can be used for prediction of final job state. Predictions contain probabilities
for each step state. During prediction, we classify a step as failed, when the
probability of failure is higher than a defined threshold and all other probabilities
associated with other classes. Therefore, we propose two types of policies to
be taken: a static and dynamic one. A static policy uses predictions based
on a step configuration data, topology, and hardware information (C + T + H)
through DTs. A dynamic policy uses predictions during run-time which are
produced by a convolutional neural network (CNN), introduced in Sect.5.1. The
inputs to this model are power metrics, which are analyzed in Sect.4.2. While
using a dynamic policy, a job is killed when it is classified as failed for the first
time — the earliest prediction over the given threshold.

The use of different types of models, one as a white-box and the other as
a black-box has several advantages over, for instance, one complex NN model
trained with both static and dynamic data. Firstly, the use of DTs enables to
easily explain phenomena observed in a data center to system administrators.
Since a model can evolve by repeating the training, changes in trends and user
behavior occurred in a data center are observed as results of the comparison
of models. Also, a failure prevention system gains performance during the run-
time because of splitting evaluation to offline (time of submission only) and
online (evaluation of a job during its runtime) one.

5.1 Convolutional Neural Networks

CNNs are a type of deep neural network following a design of biological vision
systems [11]. They are widely used for image classification, natural language
processing, and recommendation systems, and they have also been successfully
used for time series classification and prediction. We propose to use a CNN for
classification and prediction of multivariate time series, which are the power
metrics of nodes (overall energy consumption of a computing blade) used in a
step. Therefore, CNN learns “how a multivariate time series of nodes execut-
ing a step look like”. A major advantage of using CNNs over neural nets with
fully connected (dense) layers only, is that they need much fewer neurons and
parameters to solve a particular classification or prediction problem.

172 M. Zasadzinski et al.

In Fig. 3, we present the best CNN model trained for this task. We create the
final model after a few iterations, through dropping layers from more complex
models which over-fit during the training and do not increase the accuracy. The
model presented in Fig.3 comprises a few types of layers. Each convolutional
layer comprises filters with size 3 x 3, and during the training, each filter learns
weights. This layer is used to extract specific features, in this case from 2D
matrices. Another important layer type used is a drop-out, which regularizes
weights and through dropping neurons and connections, prevent overfitting [16].
A max pooling layer and dense layer are used to aggregate extracted features
and classify them into defined classes and give probabilities. The input data are
2D matrices of size M = 512 (number of nodes) x T'= 120 (length of time series).
For steps with matrices which shape is less than M x T, we pad a sample with
zeros - which are ignored by CNN during the training. For these matrices which
are larger than that size, we downsample a matrix by averaging power metrics.
The value for T' is chosen so that it is large enough to represent the complete
series of most of the steps (only 1.3% of steps are longer than 120 min) and at
the same time it is small enough for the NN training to be practical. The dataset
with steps is split randomly (the same split as in Sect. 4) into three sets: training
(70% of the data), validation (10%), and test (20%) respectively.

The CNN is trained using tensorflow® and keras* libraries by means of 2x
GPU GeForce 1080 Ti. Also, after a few trails and examining a shape of the
loss curve, the learning rate is set to 0.001, and we choose a stochastic gradient
descent optimizer. The final model, which contains 32261 parameters to train,
is trained in 67 epochs with approximately 1h per epoch. We stop training after
lack of significant improvement in the loss curve, and when the model does not
improve more than 1% in 5 epochs. We show results of the trained CNN in
Table 3.

Table 3. CNN test results - classification. Data set: steps — power metrics, dura-
tion > 120s

Completed | Failed | Cancelled

Precision | 0.93 0.85 |0.79
Recall 0.98 0.66 |0.15
Fl-score | 0.96 0.74 10.25

test set | 168875 28605 | 4457

5.2 Evaluation — Static and Dynamic Job-Killing Policies

The primary goal of the evaluation is to explore possible savings and losses
depending on the aggressiveness of job-killing policy. We measure the aggres-

3 https://www.tensorflow.org/.
* https://keras.io/.

https://www.tensorflow.org/
https://keras.io/

Early Termination of Failed HPC Jobs Through Machine and Deep Learning 173

siveness of a policy as the threshold of class prediction probability. For instance,
a threshold of 60% means that a job is classified as failed when the probability
of predicting failed is higher than 60%. An aggressive policy is the one with a
low threshold, and the less aggressive one is the one with a high threshold, e.g.,
greater than 90%. We evaluate the trained CNN model and DT to predict the
final states of steps. We use a test set which contains jobs with total CPU time
of 84.7M h. CNN predicts a final job state and outputs probabilities for each
timestamp during the run of a job. We evaluate proposed policies by depicting
lost and gained CPU time, expressed in hours. Lost CPU time stands for the
resources consumed by a step that is labeled as completed, but it is killed (false
positive). Saved CPU time represents resources that would be used until a step
ends but are saved due to a decision of early step termination. Approximate
performance of CNN evaluation is 5000 samples/s which is considered sufficient
for these experiments.

Table 4. Summary of the dynamic policy evaluation over a test set containing 11M
CPU hours of failed jobs

Dynamic policy metric CPU h | Probability threshold
Maximum savings achievable 7.9M | From 0 to 0.42
Maximum loss (false positive) 4.1M]0.52

Global maximum (savings - loss) 4.0M | From 0 to 0.42

Local maximum of (savings - loss) |0.7M |0.82
with the highest value of threshold

Considering the dynamic policy, the maximum value of true positives is
0.9, and for false positives, the maximum value is 0.45. Both metrics decrease
smoothly when the threshold grows. Figure 2 shows true and false positive rates
depending on the probability threshold for failure prediction with the CNN. On
the other hand, the static policy is characterized by the maximum value of the
true positive rate of 0.47 and a small value of 0.02 for the false positive rate.
The static policy is more accurate in predictions comparing to the dynamic one,
but the maximum number of predicted steps to fail are almost two times lower.

Wastes. When it comes to the CPU time, the static policy allows for maximum
savings of 0.8M CPU h, and the dynamic one of 8M CPU h. In Table4, we
present a summary of the evaluation of the dynamic policy taking into account
CPU hours of jobs. Note, that the earlier we kill a failed job, the bigger savings
are. On the other hand, the confidence of prediction increases with time a job
is running as we gather more data. Regarding this trade-offs, there is a global
maximum of losses for threshold 0.52. For instance, applying a dynamic policy
with a threshold of 0.82 (local maximum with the highest threshold value) to
the test dataset saves 1.6M CPU h with 0.9M CPU h lost and the total profit
of 0.7M CPU h. For instance, a less aggressive policy would be the application

174 M. Zasadzinski et al.

of a threshold equal to 0.96. In this case, we save 210k CPU h, and we lose 24k
CPU h, with the total profit of 190k CPU h. In contrast, executing static policy
allows for maximum savings of 870k CPU h by killing 13k failed jobs with a side
effect of killing 3.8k completed ones. Also, the application of the static policy,
which is more conservative, does not cause a loss in CPU time, because it reacts
after job submission.

Figure4 presents the distribution of job time at which the dynamic policy
will react and terminate a job. We can see that most of the jobs are killed during
the first 30% of their total execution time (the time they take if they are not
killed earlier). Then, for the remaining steps, prediction abilities increase after
60th percentile of their duration. Figure4 shows that the dynamic policy can
predict failures early.

Users and system administrators may use policies with different aggressive-
ness levels. For instance, a user might choose a very aggressive policy, both static
and dynamic with a very low threshold, when the project budget is highly lim-
ited. On the other hand, a less aggressive policy, e.g., a dynamic policy with a
high threshold, above 0.9, can be appropriate for long jobs, where user time is
the most expensive factor to consider. Also, such a policy can maximize savings
comparing to use of a static policy. A static policy used by system administrators
can help eliminating problematic jobs, which may be causing the overload of a
system. However, use of dynamic policy can cause dissatisfaction of users, since
this policy can unexpectedly terminate their jobs without a known reason.

Also, supervised learning through interaction with a user can help improving
the proposed policies. Firstly, users should receive a notification when their jobs
are repeatedly killed after re-submissions. A user or a system administrator could
label such a problematic job. This action provides a model with additional infor-
mation for incremental improvement. Also, system administrators can decide to
perform supervised learning, to set up the optimal aggressiveness of the policy
(threshold).

—— true_positive_rate
—— false_positive_rate

o
)

e o
>~ o
-

rate value

o
N}

|
L
|

T T T T
0.2 0.4 0.6 0.8 1.0
probability (CNN output) threshold over which job is killed

S
o

Fig. 2. Plot presents the evaluation of CNN model for different values of prediction
probability threshold. The lower is the threshold, the more aggressive is the job termi-
nating policy, greater savings, but we kill more good jobs as a consequence of inaccurate
predictions. Total CPU Hours of failed jobs in a set: 11M

Early Termination of Failed HPC Jobs Through Machine and Deep Learning 175

il [input: T (None,512.120.1) |
InputLayer
AT oumput: | (None, 512,120, 1) |

(None, 512,120, 1) (None. 512, 120, 64)

(None, 512, 120, 32)
output: | (None, 512, 120, 64)

o
o

Conv2D Dropout
: output: | (None. 512. 120, 16) POt [utput: | (None, 512, 120, 64) 1.0
20.8
Comap JmuE | (None,512.120.16 Comap Pt | (None. 512,120.64) =3
onv21 onv21
X output: | (None, 512, 120,32) ¢ output: | (None, 512, 120, 128) 206
£0.
b
o
N [input: T (None.512.120.32) | o , [input: T (None.512.120.128) | 504
1} ling2| B
PO [gutput: | (None, 512, 120,32) | 5 Touput: | Nonc,128) | B
l i 0.2
input: | (None, 128) N
Dense 0.0 0.2 0.4 0.6 0.8 1.0
output: | (None,5)

Conv2D

Elapsed time / Actual duration

Fig. 3. Graph presenting a trained CNN with Fig. 4. Cumulative plot present-
layers type and shape of the data ing the time when the probability
of failure exceeds defined threshold
0.82. Number of samples N = 7300

6 Conclusions and Future Work

In this paper, we analyzed a dataset containing metrics, topology and job sched-
uler data for the Mistral supercomputer. We showed important features in a
classification and prediction task of a job state. The number of allocated nodes,
the state of a previous job submitted by a user, average storage writes are the
most important ones. DTs detect specific node types as an important feature
due to migration process from the old to the new computing nodes. DTs perform
well as a classifier, with a recall nearly 80% and a precision of 93% for failed
steps. As a predictor, DTs can point failed steps, using configuration and allo-
cated hardware data exclusively, with a recall of 41% and a precision of 75%. In
the case of CNNs, these scores increase to 66% and 85% respectively. This paper
shows that one of the biggest influence on the next state of a job in a super-
computer like Mistral lies in the diversity and spatial distribution of allocated
nodes, place of a job in a user sequence and number of disk operations.

We evaluated dynamic and static job-killing policies, pointing out possible
savings related to the aggressiveness of both policies. For instance, using medium-
aggressive approach, we can kill more than 28% of failed jobs. Through CNN
predictions, the proposed dynamic policy kills 40% of jobs in the first 20% of
their duration. These effects can be improved by utilizing feedback from users
and system administrators and adjusting weights of CNN by supervised learning.

As future work, we would like to improve prediction capabilities of the created
solution and focus on Lustre FS. Firstly, we can achieve more accurate analysis
of final job states by adding OS logs to the analyzed dataset. Also, this would
help to build prediction algorithm of final job states, which is not limited by
Slurm job state but uses the utility of a job. For instance, the utility can be
measured by analyzing users’ actions after a job finishes, e.g., a user copied
output data, re-run the same code with different parameters, changed the code.
Therefore, this approach can differentiate jobs with a non-zero return code from

176 M. Zasadzinski et al.

these which were run unnecessary and these which can provide any utility to a
user, e.g., development progress, part of results. Then, we can consider a more
complex model which takes into account step sequence for a job. Also, we would
like to consider additional input information such as real-time metrics from the
data center, e.g., Lustre I/O, overall system load and IB traffic. Finally, we would
like to focus more on the deep learning algorithms for prediction of failures and
Root Cause Analysis.

Acknowledgments. This research is supported by the BigStorage project (ref.
642963) funded by Marie Sktodowska-Curie ITN for Early Stage Researchers, and it is
a part of a doctorate at UPC.

References

1. Barroso, L.A., Clidaras, J., Holzle, U.: The datacenter as a computer: an intro-
duction to the design of warehouse-scale machines. Synth. Lect. Comput. Archit.
8(3), 1-154 (2013)

2. Bautista-Gomez, L., Gainaru, A., Perarnau, S., et al.: Reducing waste in extreme
scale systems through introspective analysis. In: 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 212-221 (2016)

3. Casas, M., Bronevetsky, G.: Prediction of the impact of network switch utilization
on application performance via active measurement. Parallel Comput. 67(Suppl.
C), 38-56 (2017)

4. Clark, A.D., Tellez, L.M., Besse, S., et al.: Dynamic prediction and estimation of
intentional failures in HPCs. In: International Conference on Advances in Social
Networks Analysis and Mining, pp. 1244-1250 (2016)

5. El-Sayed, N., Schroeder, B.: Reading between the lines of failure logs: understand-
ing how HPC systems fail. In: 43rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pp. 1-12 (2013)

6. Fu, S., Xu, C.Z.: Exploring event correlation for failure prediction in coalitions
of clusters. In: Proceedings of the Conference on Supercomputing, pp. 41:1-41:12
(2007)

7. Gao, J.: Machine learning applications for data center optimization. Google White
Paper (2014). https://research.google.com/pubs/archive/42542.pdf

8. Gu, J., Zheng, Z., Lan, Z., et al.: Dynamic meta-learning for failure prediction
in large-scale systems: a case study. In: 37th International Conference on Parallel
Processing (2008)

9. Gupta, S., Patel, T., Engelmann, C., et al.: Failures in large scale systems: long-
term measurement, analysis, and implications. In: SC 2017, pp. 1-12 (2017)

10. Jones, M.D., White, J.P., Innus, M., et al.: Workload analysis of blue waters. CoRR,
abs/1703.00924 (2017). http://arxiv.org/abs/1703.00924

11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436444
(2015)

12. Nakka, N.; Agrawal, A., Choudhary, A.: Predicting node failure in high perfor-
mance computing systems from failure and usage logs. In: 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and PhD Forum,
pp. 1557-1566, May 2011

https://research.google.com/pubs/archive/42542.pdf
http://arxiv.org/abs/1703.00924

Early Termination of Failed HPC Jobs Through Machine and Deep Learning 177

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Nie, B., Xue, J., Gupta, S., et al.: Characterizing temperature, power, and soft-
error behaviors in data center systems: insights, challenges, and opportunities. In:
IEEE 25th MASCOTS, pp. 22-31 (2017)

Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology.
IEEE Trans. Syst. Man Cybern. Syst. 21(3), 660-674 (1991)

Sirbu, A., Babaoglu, O.: Towards operator-less data centers through data-driven,
predictive, proactive autonomics. J. Cluster Comput. 19(2), 865-878 (2016)
Srivastava, N., Hinton, G.E., Krizhevsky, A., et al.: Dropout: a simple way to
prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929-1958
(2014)

Tuncer, O., et al.: Diagnosing performance variations in HPC applications using
machine learning. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC
2017. LNCS, vol. 10266, pp. 355-373. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58667-0-19

Vishwanath, K.V., Nagappan, N.: Characterizing cloud computing hardware reli-
ability. In: Proceedings of the 1st ACM Symposium on Cloud Computing, pp.
193-204. ACM (2010)

Wallace, S., Zhou, Z., Vishwanath, V., et al.: Application power profiling on IBM
Blue Gene/Q. Parallel Comput. 57, 73-86 (2016)

Xie, B., Huang, Y., Chase, J.S., et al.: Predicting output performance of a petascale
supercomputer. In: Proceedings of the 26th International Symposium on High-
Performance Parallel and Distributed Computing, pp. 181-192 (2017)

Yu, L., Zhou, Z., Wallace, S., et al.: Quantitative modeling of power performance
tradeoffs on extreme scale systems. J. Parallel Distrib. Comput. 84(Suppl. C), 1-14
(2015)

Yuan, Y., Wu, Y., Wang, Q., et al.: Job failures in high performance computing
systems: a large-scale empirical study. Comput. Math. Appl. 63(2), 365-377 (2012)
Zasadzinski, M., Muntés-Mulero, V., Séle, M., Ludwig, T.: Mistral supercomputer
job history analysis (2018). https://arxiv.org/abs/1801.07624

https://doi.org/10.1007/978-3-319-58667-0_19
https://doi.org/10.1007/978-3-319-58667-0_19
https://arxiv.org/abs/1801.07624

q

Check for
updates

Peacock: Probe-Based Scheduling of Jobs
by Rotating Between Elastic Queues

Mansour Khelghatdoust®™) and Vincent Gramoli®™)

The University of Sydney, Data61/CSIRO, Sydney, Australia
{mansour.khelghatdoust,vincent.gramoli}@sydney.edu.au

Abstract. In this paper, we propose Peacock, a new distributed probe-
based scheduler which handles heterogeneous workloads in data analytics
frameworks with low latency. Peacock mitigates the Head-of-Line block-
ing problem, i.e., shorter tasks are enqueued behind the longer tasks,
better than the state-of-the-art. To this end, we introduce a novel probe
rotation technique. Workers form a ring overlay network and rotate
probes using elastic queues. It is augmented by a novel probe reordering
algorithm executed in workers. We evaluate the performance of Peacock
against two state-of-the-art probe-based solutions through both trace-
driven simulation and distributed experiment in Spark under various
loads and cluster sizes. Our large-scale performance results indicate that
Peacock outperforms the state-of-the-art in all cluster sizes and loads.
Our distributed experiments confirm our simulation results.

Keywords: Scheduling - Distributed system - Load balancing
Big data

1 Introduction

Data analytics frameworks increase the level of parallelism by breaking jobs
into a large number of short tasks operating on different partitions of data to
achieve low latency. Centralized techniques schedule jobs optimally by having
near-perfect visibility of workers. However, with the growth of cluster sizes and
workloads, scheduling time becomes too long to reach this optimality. To solve
this problem, probe-based distributed techniques have been proposed [3-5] to
reduce the scheduling time by tolerating a suboptimal result. These solutions
typically sample two workers per probe and place the probe into the queue of the
least loaded worker. Additionally, they are augmented with amelioration tech-
niques such as re-sampling, work stealing or queue reordering to likely improve
the initial placement of probes. However, the existing algorithms are not able to
improve scheduling decisions continuously and deterministically to mitigate the
Head-of-Line blocking, i.e., placing shorter tasks behind longer tasks in queues,
efficiently. Moreover, the overall completion time of a job is equal to the finish
time of its last task. Due to the distributed and stateless nature of probe-based
schedulers, the existing solutions are not able to reduce the variance of tasks

© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 178-191, 2018.
https://doi.org/10.1007/978-3-319-96983-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_13&domain=pdf

Peacock: Probe-Based Scheduling of Jobs 179

completion time of each job that are scheduled on various workers to reduce job
completion time.

We propose Peacock, a fully distributed probe-based scheduler, which
replaces the probe sampling and the unbounded or fixed-length worker-end
queues with a deterministic probe rotation and elastic queues. This leads to bet-
ter scheduling decisions while preserving fast scheduling of jobs. This probe rota-
tion approach finds an underloaded worker better than probe sampling because
probes traverse a higher number of workers. Workers are organized into a ring
and send probes to their neighbors at fixed intervals. A probe rotation lets a
loaded worker delegates the execution of a probe to its successor on the ring.
Elastic queues regulate the motion of probes between workers and lets a worker
dynamically adjust its queue size to balance load between workers. By decreasing
the queue size, workers are forced to move some of their probes and increase the
queue size to avoid unnecessary motion of probes. More interestingly, a probe
in its journey, from when it is submitted to the scheduler until it runs on any
arbitrary worker, moves between workers, stays in some worker and then con-
tinue rotating until eventually executing on a worker. Furthermore, Peacock is
augmented with a probes reordering to handle the Head-of-Line blocking more
effectively. The probes of one job are annotated with an identical threshold time
equals to the cluster average load at the time of scheduling. This threshold deter-
mines a soft maximum waiting time for probes that are scattered independently
between workers to reduce the variance of job completion time.

We evaluate Peacock through both simulation and distributed experiments.
We use trace from Google [2]. We compare Peacock against Sparrow [3] and
Eagle [4], two state-of-the-art probe-based schedulers. The results show Pea-
cock outperforms Eagle and Sparrow in various cluster sizes and under differ-
ent loads. We evaluate the sensitivity of Peacock to probe rotation and probe
reordering. Section 2 describes Peacock in details. Section 3 explains the evalu-
ation methodology. Section4 describes simulation and implementation results.
Section 5 discusses related work. Section 6 concludes the paper.

2 The Peacock Scheduler

Peacock comprises a large number of workers and a few schedulers. Workers
shape a ring overlay network in that each worker connects to its successor and
additionally stores descriptors to a few successors for fault tolerance purpose.
Each scheduler connects to all workers. Schedulers manage the life cycle of each
job without the need for expensive algorithms. Jobs are represented as a directed
acyclic graph (DAG), with tasks as vertices and data flow between tasks as edges.
This DAG is divided into stages and actually Peacock considers each stage as
a job and hence a DAG consists of a number of dependent jobs. Similar to
other approaches [4,5,7,11], Peacock needs to know the estimated task runtime
of incoming jobs which is measured by methods explained elsewhere [11,18].
Jobs can be scheduled by any of the schedulers, however, all tasks of a job are
scheduled by the same scheduler. When a scheduler has received a job, it submits

180 M. Khelghatdoust and V. Gramoli

probe messages to a set of random workers equals to the number of tasks. Each
worker has a queue. According to the Fig.1, once a worker has received the
probe, (a) if the worker is idle (1.1), it requests the corresponding task of the
probe from the scheduler (1.2) and the scheduler sends back the corresponding
task data (source code) (1.3) and then the worker executes the task (1.4), (b)
if the worker is executing a task and its queue consists of a number of waiting
probes like (2.1) and (3.1), the worker may enqueue the probe for the future
execution or rotation (2.2), or (c¢) the worker may either rotate the incoming
probe instantly or enqueue the probe and rotate other existing waiting probes
(3.2).

2.1 Probe Rotation

There are three important design ques-
tions that should be answered:

(i) How should probes move between 32 A ‘D : E
workers? 3 -
(ii) When should each worker rotate

probes? . ; @
(iii) Which probes should each worker | M :
choose to rotate? - =

=
B

1.1

B
N

([

2.2
Ring Overlay Network. The challeng- ; \ }B S
ing design decision is how probes move I~ =
between workers. The easiest solution is [L3
that workers maintain a complete list of N ‘@
workers and send probe to a sampled .
worker. However, it undermines the scal- Distributed Dtibiicd
ability and burdens some workers while Scheduler ‘ ‘ Scheduler ‘
some others might remain mostly idle. -
The efficient approach should be sym- O Place probeonqueue (] poq
metric, balance load between workers and B probe [4
maximize resource utilization. To this
end, Peacock exploits a ring overlay net-
work as depicted in Fig.1. We discuss Fig. 1. Different scenarios workers han-
whether exploiting a ring overlay network i probes.
adversely impacts the scalability of Pea-
cock. Peer-to-Peer overlay networks are
extensively used to implement routing and lookup services [19]. In this respect,
applying a ring overlay network with 1 in-out degree (i.e., 1 for in-degree and 1
for out-degree) in which lookup time grows linearly with the increment of ring
size ruins scalability. However, there is no routing or lookup service in Peacock.
It only rotates probes through a ring and typically probes are able to execute
on any arbitrary worker node. Schedulers submit probes to sampled workers
and probes are either rotated or stores at workers. Therefore, we can conclude

Execute

XYY Shared state

Peacock: Probe-Based Scheduling of Jobs 181

that exploiting a ring overlay network does not undermine the scalability of the
algorithm.

The Significance of Elastic Queues. Workers should decide when and which
probes to rotate. Each worker utilizes one elastic queue, i.e., the size is adjusted
dynamically and hence is resilient. This elasticity is crucial for queues because it
enables workers to rotate probes between themselves in order to distribute the
probes uniformly. If queues are too short, the resources get under-utilized due
to the existence of idle resources between allocations. If the queues are too long,
then the load among workers gets imbalanced and job completion gets delayed.
Determining a static queue size might lead to an excessive number of probe
rotations when the cluster is heavily loaded and an inefficient reduction in the
number of probe rotations when the cluster is lightly loaded. Peacock bounds
queues using a pair (<size, average load>) which is called shared state. The size
is calculated as the average number of current probes on cluster. The average
load is calculated as the average estimation execution time of current probes on
workers. This pair is adjusted dynamically to make queues resilient.

Shared State. Shared state is a pair of information that consists of the queue
size and the average load of cluster (< queue size, average load>) and is changing
from time to time since the cluster has dynamic workload. Workers require to
get the most recent shared state. However, it is challenging to update the shared
state of workers continuously in a decentralized manner. Peacock is designed
in such a way that workers and schedulers are not strictly required to have an
identical shared state all the time and hence workers may have different values
of shared state at times. Now, we describe how the shared state is calculated and
through what ways workers can get the latest value of shared state. Each sched-
uler calculates the shared state continuously based on the messages it receives.
These messages are when a scheduler receives a job arrival event, receives a task
finish event or receives an update message from other schedulers. For example,
suppose the current aggregation load of cluster is <1500,25000> (the number
of probes, aggregation load) and a task finished event is received for a task with
20s estimated execution time. The scheduler updates the aggregation value to
<1499, 24980> and sends asynchronously the message <—,1,20> to the other
schedulers. Upon receiving this message, the other schedulers update their aggre-
gation value. Similarly, receiving a new job with 10 tasks and 15s estimated
execution time changes the aggregation value to <1510,25150>, with update
message <+, 10, 150> to the other schedulers. As an alternative solution, sched-
ulers can manage shared state through coordination services such as ZooKeeper.
It eliminates direct communication between schedulers. Each scheduler calcu-
lates the value of shared state through dividing aggregation value by the number
of workers. Peacock does not impose extra messages to update the shared state
of workers. The latest shared state is piggybacked by messages that workers and
schedulers exchange for scheduling purposes. Figure 1 shows workers get shared
state through three ways.

182 M. Khelghatdoust and V. Gramoli

(i) When schedulers submit a probe message to workers
(ii) When schedulers send task data as a response of getting task by worker
(iii) When workers rotate probes to their neighbors.

Rotation Intervals. In ring, workers rotate probes to their successor. Pea-
cock rotates probes periodically in rounds. Once a probe has been chosen to be
rotated, it is marked for rotation until the next round. In the next round, work-
ers send all the marked probes in one message to their neighbors. Such design
reduces the number of messages that workers exchange. Most jobs consist of a
large number of probes and it is common that in each round more than one probe
of the same job are marked by the same worker to rotate. Peacock leverages this
observation to remove the redundant information of such subset of probes to
reduce the size of messages. To reduce the number of messages, workers send
rotation message to their neighbor only if either there is/are probe(s) marked
for rotation or when the shared state is updated from the last round. The inter-
val between rounds is configurable from milliseconds to few seconds and it does
not impact the job completion time since one probe is marked for rotation. This
avoids having to wait in a long queue.

2.2 Probes Reordering

It is crucial to reduce the variance of probes queuing time of one job since job
completion time is affected by the last executed task of the job. It is challenging
since probes of a job are distributed on different workers. However, the addi-
tion of the probes to queues in FIFO order (i.e., in the order in which they are
arrived) does not decrease the queuing time variance in the presence of heteroge-
neous jobs and workloads. Probe reordering is a solution to this problem [4,11].
Reordering algorithms should ideally be starvation-free, i.e., no probe should
starve due to existence of infinite sequence of probes with higher priority. To
this end, we propose a novel probe reordering algorithm. It performs collabora-
tively along with probe rotation algorithm to mitigate the Head-of-Line blocking.
Since probes rotate between workers, the algorithm cannot rely on FIFO order-
ing of queues. Assume a scheduler submits probe p; to worker n; at time ¢; and
probe ps to worker ns at time to. Then, ny rotates p; and reaches ny at time t3.
The problem is that p; is placed after ps in the queue of ny while it has been
scheduled earlier. To overcome this problem, schedulers label job arrival time on
probe messages so that workers place incoming probes into queues w.r.t the job
arrival time. Then, schedulers attach task runtime estimation to probe messages.
Once a worker has received a probe, it orders probes by giving priority to the
probe with the shortest estimated runtime. While it reduces the Head-of-Line
blocking, it may ends in starvation of long probes. To avoid this issue, schedulers
attach a threshold value to all the probes of a job at arrival time. The value
is the summation of the current time and the average execution time extracted
from the current shared state. For example, if one job arrives at t1 and the shared
state value is 10s threshold, the value is t1+ 10 for all probes of that job. This

Peacock: Probe-Based Scheduling of Jobs 183

threshold acts as a soft upper-bound to reduce tail latency and hence to reduce
job completion time. It avoids starvation since probes do not allow other probes
to bypass them after exceeding the threshold time and hence they eventually
move to the head of queue and execute on worker.

We now present the algorithm. Workers receive a probe either because their
predecessor rotates it along the ring or because the probe is submitted by a
scheduler. Algorithm 1 depicts the procedure of enqueuing a probe and Table 1
explains the associated notations. Peacock maintains a sorted queue of waiting
probes. Once a new probe has arrived, it is treated as the lowest priority among
all waiting probes (Line 2) and tries to improve its place in the queue by passing
other probes. It starts comparing its arrival time with the lowest existing probe
(Line 4). If the new probe has been scheduled later than the existing probe,
bypassing is not allowed unless it reduces head-of-line blocking without leading
to starvation of the comparing probe. Bypassing the new probe can mitigate
the Head-of-Line blocking if the execution time of the new probe is less than
the existing probe. Such bypassing should not lead to the starvation of the
passed probe which is checked through threshold. If the threshold of the existing
probe has not exceeded in advance or will not exceed due to bypassing, then
the new probe can bypass the existing probe. Otherwise, it is either simply
enqueued or rotated to the neighbor worker on the ring (Lines 4-10). If the
new probe has been scheduled earlier, it cannot bypass if the existing probe has
less execution time. The new probe does not exceed the threshold if it does not
bypass (Lines 11-16). Then, the new probe waits in the queue if it does not
violate the starvation conditions, otherwise it is marked to be rotated in the
next coming round (Lines 25-31). Once the process of enqueuing the probe has
finished, Peacock checks the shared state of the worker and may rotate one or
more probes if needed (Lines 21-23).

Table 1. List of notations

Symbol | Description Symbol | Description

10} Queue size w Max threshold waiting probes

T Current time I Max threshold waiting time for p
A Job arrival time 0 runtime estimation of probe p

« Total runtime of waiting probes | 3 Arrival time probe p

o1 Waiting time estimation probe p | § Relict runtime of running task

3 Evaluation Methodology

Comparison. We compare Peacock against Sparrow [3] and Eagle [4], two
probe-based schedulers which use probe sampling. We evaluate the sensitivity
of Peacock to probe rotation and probe reordering. We use both simulation for
large clusters of 10k, 15k, and 20k workers and real implementation for 100
workers.

184 M. Khelghatdoust and V. Gramoli

Environment. We implemented an event-driven simulator and also all three
algorithms within it to fairly compare them for large scale cluster sizes. In addi-
tion, we implemented Peacock as an independent component using Java and also
a plug-in for Spark [1] written in Scala. We used Sparrow and Eagle source codes
for the distributed experiments.

Workload. We utilize traces of Google [2,17]. Invalid jobs are removed from
the Google traces and Table 2 gives the specification of the pruned traces. To
generate average cluster workloads, job arrival time follows a Poisson process
with a mean job inter-arrival time that is calculated based on expected average
workload percentage, mean jobs execution time, and mean number of tasks per
job. Since jobs are heterogeneous, the workload and expected average percentage
vary over time. We consider 20%, 50%, and 80% as light and 100%, 200%, and
300% as heavy cluster workloads.

Table 2. Workloads general properties

Workloads | Jobs count | Tasks count | Avg task duration
Google 504882 17800843 68

Parameters. The estimated task runtime is computed as the average of job task
durations. Each worker runs one task at a time, which is analogous to having
multi-slot workers, each is served by a separate queue. The results are the average
of a number of runs. Error bars are ignored due to stable results of different
runs. We set rotation interval to 1s and network delay to 5ms for simulation
experiments. Fagle relies on several static parameters. For fair comparison, we
use the values used in the paper [4] even though any algorithm relying on static
values may not be appropriate under dynamic workloads.

Performance Metrics. We measure the average job completion times, cumu-
lative distribution function of job completion times, and the fraction of jobs that
each algorithm completes in less time comparatively, to appraise how efficiently
Peacock mitigates the Head-of-Line blocking.

4 Experimental Results

We deploy our algorithm within an event-driven simulator and a real distributed
experiment to evaluate Peacock in different loads and cluster sizes.

Peacock: Probe-Based Scheduling of Jobs 185

Algorithm 1. Enqueue Probe submitted by scheduler or rotated by predecessor
1: procedure ENQUEUEPROBE(p)

2: Yp — 0 + «

3: for q in reversed waitingProbes do

4 if A, > Aq then

5: if 0, < 0, AND Ay + pg + 0p < 7 then

6: Yo =Y - by

7 else

8: PLACEORROTATE(p); decided = true; break;
9: end if

10: else

11: if 0, <60, AND 7 + v, < Ap + pp then

12: PLACEORROTATE(p); decided = true; break;
13: else

14: Yo = Yp - bq

15: end if

16: end if

17: end for

18: if Not decided then

19: waitingProbes.add(P, 0); « = o + 6,

20: end if

21: while waitingProbes.size() > ¢ OR a > w do

22: q = waitingProbes.removeLast();a = « - 64; rotatingProbes.add(q)

23: end while

24: end procedure

25: procedure PLACEORROTATE(p)

26: if 74+ v <Ay + pp OR Ay + pp < 7 then

27: waitingProbes.add(P); o = a + 6,
28: else

29: rotatingProbes.add(p)

30: end if

31: end procedure

Comparing Peacock Against Sparrow. Figure2 shows that Peacock
achieves better average jobs completion times than Sparrow under all loads and
with all cluster sizes. Peacock outperforms the alternatives under heavy loads.
The reason is that Head-of-Line blocking is reduced (i) locally in each worker by
our reordering and (ii) collaboratively between workers by balancing the distri-
bution of probes through both probe rotation and reordering. In light loads, the
improvement is mostly due to probe rotation and rarely due to the reordering.
Furthermore, Sparrow only uses batch sampling that does not handle workload
heterogeneity. Figure 3 shows that Peacock, unlike Sparrow, is job-aware in the
sense that it reduces the variance of task completion times for each job. Beside
probes rotation and reordering, the way that Peacock assigns threshold value
for jobs appears effective. Figure 4 shows that Peacock significantly outperforms
Sparrow when comparing jobs individually. Under a 20% load, Sparrow shows
better percentage than other loads because two samplings in Sparrow get empty

186 M. Khelghatdoust and V. Gramoli

slots faster than one sampling of Peacock even though probe rotation helps Pea-
cock outperform Sparrow under other loads. We now provide some more detailed
information. Figure2 shows Peacock executes jobs in average between 13% to
77% faster than Sparrow in all settings. Figure 3(b) shows in 50% load, Spar-
row only completes 2.2% jobs in less than 100 seconds while Peacock completes
21.6% jobs at the same time. In Fig.3(a) and under the 300% load, Sparrow
executes 0.3% jobs less than 100 seconds while it is 31.8% for Peacock. Figure 4
shows that Peacock executes between 66% to 91% of jobs faster than Sparrow.

o o140 P

El:(o) Sparrow Eagle 8120 Sparrow ==Eagle ==

— o

5100 ;100

3 g o0 ,

E geot gl H g

Q ” / 40 I,’ | § :fi s

3 I /’/’ g2 B KB b

8 | B s o 0 Lkl BV K % % K /i 25

3 51l o MR EEEE

o R $$S$3S S¢S ¢S S
g 88 dddgEg E 835555 %35 3
FFFFFF N - - - - - - & & «
of workers and average load # of workers and average load

(a) Google-Heavy (b) Google-Light

Fig. 2. Average job completion times for heavy and light load scenarios.

100 eacock 100 ‘eacock
90 | “Eagle 90 | “Eagle
80 Sparrow —— 80 Sparrow —s«—
70 70
60 60
& 50 & 50
O 40 O 40
30 30
20 20
10 10
0 0
100 1000 10000 100000 100 1000 10000
Job completion time (sec) Job completion time (sec)
(a) Google-300% (b) Google-50%

Fig. 3. Cumulative distribution function of jobs completion times. 10000 workers.

Comparing Peacock Against Eagle. Eagle is a hybrid probe-based sampling
scheduler which divides jobs statically into two sets of long and short jobs. A cen-
tralized node schedules long jobs and a set of independent schedulers using batch
sampling to schedule short jobs. The cluster is divided into two partitions, one is
dedicated to short jobs and the other is shared for all jobs. Eagle mitigates Head-
of-Line blocking using re-sampling technique and a static threshold-based queue
reordering. Figure 2 shows that Peacock outperforms Eagle in average jobs com-
pletion times in all loads. It is because the continuous and deterministic probe

Peacock: Probe-Based Scheduling of Jobs 187

0120
8100
5

80

@
3

N
S

% jobs P/E/S im
a
S

o

(a) Google-Light

oogle-Heavy

Fig. 4. Fraction of jobs with shorter completion time.

rotations through elastic queues along with the workload-aware probe reorder-
ing in Peacock outperforms a randomized re-sampling along with a static probe
reordering through unbounded queues in Eagle. In Fig. 3, we see that Peacock
executes jobs in lower latency than Eagle. Figures 2 shows, Peacock completes
execution of jobs in average 16% to 73% faster than Eagle. Figure 4 shows Pea-
cock executes between 54% to 82% of jobs faster than Eagle. Interestingly, we
see that under 20% load, the percentage of jobs have identical completion time
in both Eagle and Peacock. Figure 3 shows that Peacock executes however a high
percentage of jobs with lower latency than Eagle.

2000 How Much Is the Number
1800 10000 —s— 15000 —5— 20000 of Probe Rotations per Task
Influenced by Cluster Sizes
54200 and Loads? We investigate the
8 average number of probe rota-
tions per task for Google trace.
We observe by increasing the
) cluster size that the number of
05 05 08 p > s rotations decreases. For exam-
Avg load ple, for 80% load, the number
of rotations for 10K, 15K, and
Fig. 5. Avg number of rotations per probe 20K nodes are 901, 656, and 513
respectively. Also, for higher loads, at 300%, the number of rotations are 1791,
1140, and 692 for 10K, 15K, and 20K, respectively. The larger the cluster size,
the lower the number of redundant rotations. It indicates that probe rotation
does not hurt the scalability and hence Peacock can be deployed on large scale
clusters. In addition, by increasing the load, there is a reduction in the number
of rotations for all 3 cluster sizes. The heavier loads trigger a higher number of
rotations than lighter loads. For 10K the number of rotations are 17, 299, 689,
901, 1523, and 1791 for 20%, 50%, 80%, 100%, 200% and 300% loads respectively
(Fig.5).

Avg number of rotati

Sensitivity to Probe Rotation. We analyze the effectiveness of probe rota-
tion on the performance of Peacock. Figures6(a) and (b) reveal that the per-

188 M. Khelghatdoust and V. Gramoli

formance of Peacock stems from probe rotation technique on all loads. From
Fig. 6(a), we see the average job completion time is negatively increased between
70% to 95% in all loads in comparison with complete Peacock version because
probe rotation mitigates Head-of-Line blocking. Specifically, in light loads, probe
rotation balances load between workers which result in increasing the cluster
utilization and greatly reducing the formation of long-length queues. In heavy
loads, due to the existence of long-length queues, Besides balancing the load
between workers through probe reordering, Peacock uses probe rotation to mit-
igate Head-of-Line blocking. Figure 6(b) shows that 70% and 90% percentiles in
the high loads perform better than the same percentiles for the light loads. It
indicates that under high load probe reordering and probe rotation collabora-
tively mitigates Head-of-Line blocking while under light load the performance of
probes rotation is crucial as there is no long queues to apply probes reordering.

Sensitivity to Probe Reordering. Probe reordering is more influential when
the cluster is under a high load since workers have long queues when they are
at high load. Thanks to the novel starvation-free reordering algorithm in which
it allows jobs to bypass longer jobs. The result in Fig.6(c) approves this fact
wherein average job completion time for Peacock without reordering component
is close to the original Peacock for 20% load while by increasing load, we observe
an increasing difference in average job completion time (the biggest difference is
81% for loads 200% and 300%). From Fig. 6(d) we can conclude that reordering
causes most of jobs to be executed faster. It shows an improvement of 90% in 70%
percentile for loads 100%, 200%, and 300% while load 50% with 76% and 74%
improvements has the best percentiles in 90% and 99%. As expected there is no
significant difference for load 20% as there is no waiting probes in queues most
of the time. It is obvious that the elimination of this component significantly
increases the chance of having Head-of-Line blocking.

Implementation Results. We implement Peacock as an independent compo-
nent using Java and a plug-in for Spark [1] written in Scala. We run experiments
on 110 nodes consisting of 100 workers and 10 schedulers. To keep it traceable,
we sample 3200 jobs of Google trace and we convert task durations from seconds
to milliseconds. We implement a Spark job called sleep task. The current thread
sleeps for a duration equals to task duration to simulate the execution time that
each task needs. The method for varying the load is the same as the simulation
experiments described in Sect. 3. We run real implementations of Sparrow and
Eagle with the same specifications to compare Peacock against them. Figure 7(a)
presents average job completion time at both light and heavy loads. The result
shows that Peacock significantly outperforms both the algorithms in all loads.
Peacock outperforms Sparrow with an at most 80% improvement under the 80%
load and at least a 69% improvement under the 20% load scenario. Moreover,
compared to Eagle, the maximum improvement reaches 81% when the load is
50% and the least enhancement is 57% for the load 300%. Figure 7(b) shows the
fraction of jobs that each algorithm runs in less time. Again we can see that
Peacock runs higher percentage of jobs faster than both Sparrow and Eagle.

Peacock: Probe-Based Scheduling of Jobs 189

,2’40 Average job runtime AdBO 70th =zz90th =99th —
720 460
goo o
260 g
=00 =
<40 y:
220 v 2ol m]
o 0] /A i 4 /] /A o 0 e VAR 2 A [2
o 020508 1 2 3 & 0.2 05 08 10 20 30
Average load Average load
(a) w/o rotating AJCT (b) w/o rotating Percentiles
g40 - - 780
= Average job runtime = 70th z=90th =—=99th —
820 ¢! 360
oo
580 El -
£60 g
=40 f
820 2; i J
3 n/m/an 8 VAT vl il L 7
&O 0205081 2 3 &0 020508102030
Average load Average load

(c) w/o reordering AJCT (d) w/o reordering Percentiles

Fig. 6. Peacock versus w/o probes rotation or probes reordering. Google trace.

2140 - 120

[Normalized to Sparrow === 13 Heacock —— Eagle === Sparrow @
{20 Normalized to Eagle ez 100 ? " -
= g
§100 £80
% 80 .
240 . » 40
P i3 / 820
o e EE el | #7
o o~) @ - o~ © N Y O - N ™ N W0 @ o= N @
=) =) =) =) =) =} o 9 o & & o © o o & & o
¢ g g 2 ¢ ¢ & & & S 28 28 & & & S 28
8 8 8 88 8
Number of nodes and average load Number of nodes and avérage load

(a) Avg Job completion time (b) % of shorter completed jobs

Fig. 7. Distributed experiments for heavy and light workloads.

5 Related Work

Original schedulers are usually designed in a centralized manner [9,12-16] and
are a computationally expensive optimization problem. Such algorithms may
increase scheduling times and lead to scalability problems. Distributed and
hybrid schedulers are proposed to resolve the problem. Sparrow [3] is a dis-
tributed scheduler using batch sampling and late binding techniques to be scal-
able and offer low latency. However, it faces challenges in highly loaded clusters
due to the lack of Head-of-Line blocking mitigation. Hawk [5] and Eagle [4] are
hybrid schedulers that augment Sparrow to mitigate Head-of-Line blocking. A
centralized scheduler schedules long jobs and distributed schedulers handles short

190 M. Khelghatdoust and V. Gramoli

jobs. Both divide jobs statically into long and short categories, splits workers into
two partitions statically, and allocate one partition to short jobs and another to
both types of jobs. To mitigate the Head-of-Line blocking in Hawk, idle workers
steal short tasks that get stuck behind long jobs. Instead, Eagle shares infor-
mation among workers called Succinct State Sharing, in which the distributed
schedulers are informed of the locations where long jobs are executing. Eagle also
proposes a Shortest Remaining Processing Time reordering technique to prevent
starvation. Unfortunately, Eagle relies strongly on static parameters which lim-
its its practicality and does not perform well under light loads. In Mercury [§],
jobs are divided into two sets, either served centrally with best effort or sched-
uled by distributed schedulers. It uses a load shedding technique to re-balance
load on workers. Mercury does no cope with the Head-of-Line blocking and faces
scalability issues when there are a large number of guaranteed jobs waiting to
be scheduled. Apollo [11] relies on shared states. Jobs are homogeneous and
scheduled with the same policy. A centralized manager maintains a shared state
updated by connecting with nodes. Unlike Apollo, Peacock imposes a tiny global
information not relying on central coordination.

6 Conclusion

We presented Peacock, a new distributed probe-based scheduler for large scale
clusters. Peacock mitigates the Head-of-Line blocking by combining probe rota-
tion through the elastic queues with a novel probe reordering. Peacock organizes
workers into a ring overlay network and regulates probes to move between work-
ers through the elastic queues of workers to handle workload fluctuations. We
showed that Peacock outperforms state-of-the-art probe-based schedulers in var-
ious workloads through simulation and realistic distributed experiments.

References

1. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing. In: NSDI (2012)
2. GoogleTraceWebsite. ~ Google cluster data. https://code.google.com/p/

googleclusterdata/
3. Ousterhout, K., et al.: Sparrow: distributed, low latency scheduling. In: SOSP
(2013)

4. Delgado, P., Didona, D., Dinu, F., Zwaenepoel, W.: Job-aware scheduling in eagle:
divide and stick to your probes. In: SOCC, October 2016

5. Delgado, P., et al.: Hawk: hybrid datacenter scheduling. In: USENIX Annual Tech-
nical Conference (2015)

6. Tumanov, A., et al.: TetriSched: global rescheduling with adaptive plan-ahead in
dynamic heterogeneous clusters. In: EuroSys (2016)

7. Rasley, J., et al.: Efficient queue management for cluster scheduling. In: Proceed-
ings of the Eleventh European Conference on Computer Systems. ACM (2016)

8. Karanasos, K., et al.: Mercury: hybrid centralized and distributed scheduling in
large shared clusters. In: USENIX Annual Technical Conference (2015)

https://code.google.com/p/googleclusterdata/
https://code.google.com/p/googleclusterdata/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Peacock: Probe-Based Scheduling of Jobs 191

Isard, M., et al.: Quincy: fair scheduling for distributed computing clusters. In:
SOSP (2009)

Hindman, B., et al.: Mesos: a platform for fine-grained resource sharing in the data
center. In: NSDI, vol. 11, no 2011 (2011)

Boutin, E., et al.: Apollo: scalable and coordinated scheduling for cloud-scale com-
puting. In: OSDI, vol. 14 (2014)

Ferguson, A.D., et al.: Jockey: guaranteed job latency in data parallel clusters. In:
EuroSys (2012)

Zaharia, M., et al.: Delay scheduling: a simple technique for achieving locality and
fairness in cluster scheduling. In: EuroSys (2010)

Curino, C., et al.: Reservation-based scheduling: if you’re late don’t blame us!. In:
Proceedings of the ACM Symposium on Cloud Computing. ACM (2014)

Goder, A., Spiridonov, A., Wang, Y.: Bistro: scheduling data-parallel jobs against
live production systems. In: USENIX ATC (2015)

Verma, A., et al.: Large-scale cluster management at Google with Borg. In: Pro-
ceedings of the Tenth European Conference on Computer Systems. ACM (2015)
Reiss, C., et al.: Heterogeneity and dynamicity of clouds at scale: Google trace
analysis. In: SOCC (2012)

Zhou, J., et al.: SCOPE: parallel databases meet MapReduce. Int. J. Very Large
Data Bases 21(5), 611-636 (2012)

Stoica, I., et al.: Chord: a scalable peer-to-peer lookup service for internet appli-
cations. ACM SIGCOMM Comput. Commun. Rev. 31(4), 149-160 (2001)

Chen, Y., et al.: The case for evaluating MapReduce performance using workload
suites. In: MASCOTS (2011)

)

Check for
updates

Online Scheduling of Task
Graphs on Hybrid Platforms

Louis-Claude Canon'2, Loris Marchal?,

Bertrand Simon2®) and Frédéric Vivien2

1 FEMTO-ST Institute — Université de Bourgogne Franche-Comté,
16 route de Gray, 25 030 Besancon, France
louis-claude.canon@univ-fcomte.fr
2 Univ Lyon, CNRS, ENS de Lyon, Inria, Université Claude-Bernard Lyon 1,
LIP UMRA5668, 69342 Lyon Cedex 07, France
{loris.marchal,bertrand.simon}@ens-1lyon.fr, frederic.vivien@inria.fr

Abstract. Modern computing platforms commonly include accelera-
tors. We target the problem of scheduling applications modeled as task
graphs on hybrid platforms made of two types of resources, such as CPUs
and GPUs. We consider that task graphs are uncovered dynamically, and
that the scheduler has information only on the available tasks, i.e., tasks
whose predecessors have all been completed. Each task can be processed
by either a CPU or a GPU, and the corresponding processing times are
known. Our study extends a previous 41/m/k-competitive online algo-
rithm [2], where m is the number of CPUs and k the number of GPUs
(m > k). We prove that no online algorithm can have a competitive
ratio smaller than y/m/k. We also study how adding flexibility on task
processing, such as task migration or spoliation, or increasing the knowl-
edge of the scheduler by providing it with information on the task graph,
influences the lower bound. We provide a (24/m/k+1)-competitive algo-
rithm as well as a tunable combination of a system-oriented heuristic and
a competitive algorithm; this combination performs well in practice and
has a competitive ratio in ©(y/m/k). Finally, simulations on different
sets of task graphs illustrate how the instance properties impact the per-
formance of the studied algorithms and show that our proposed tunable
algorithm performs the best among the online algorithms in almost all
cases and has even performance close to an offline algorithm.

Keywords: Scheduling - Heterogeneous computing + Task graphs
Online algorithms

1 Introduction

Modern computing platforms increasingly use specialized hardware accelerators,
such as GPUs or Xeon Phis: 102 of the supercomputers in the TOP500 list
include such accelerators, while several of them include several accelerator types
[24]. The increasing complexity of such computing platforms makes it hard to
© Springer International Publishing AG, part of Springer Nature 2018

M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 192-204, 2018.
https://doi.org/10.1007/978-3-319-96983-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_14&domain=pdf

Online Scheduling of Task Graphs on Hybrid Platforms 193

predict the exact execution time of computational tasks or of data movement.
Thus, dynamic runtime schedulers are often preferred to static ones, as they are
able to adapt to variable running times and to cope with inaccurate predictions.
Indeed, with the widespread heterogeneity of computing platforms, many scien-
tific applications now rely on runtime schedulers such as OmpSs [22], XKaapi [7],
or StarPU [4]. Most of these frameworks model an application as a Directed
Acyclic Graph (DAG) of tasks, where nodes represent tasks and edges represent
dependences between tasks. While task graphs have been widely studied in the
theoretical scheduling literature [14], most of the existing studies concentrate on
static scheduling in the offline context: both the graph and the running times of
the tasks are known beforehand.

We believe that there is a crucial need for online schedulers, that is, of
scheduling algorithms that rely neither on the structure of the graph nor on
the knowledge of tasks’ running times. First, not all graphs are fully available
at the beginning of the computation: sometimes the graph itself depends on the
data being processed, different inputs may result in different task graphs. This
is especially the case when the behavior of an iterative application depends on
the accuracy of the output. Second, in most existing runtimes, even if the graph
does not depend on the input data, it is not fully submitted at the beginning of
the computation; instead, tasks are dynamically uncovered during the computa-
tion. Third, even if part of the graph is available, schedulers (such as StarPU [4])
usually avoid traversing large parts of the graph each time they take a decision
in order to strongly limit the time needed to take decisions. Finally, tasks’ pro-
cessing times are not always known beforehand, and the occasionally available
predictions may not be very accurate, as two successive executions of the same
task may result in slightly different timings.

There has recently been an effort of the scheduling community to fill the
gap between the assumptions used in theoretical studies and the informa-
tion available to the underlying schedulers of runtime systems (see details in
Sect. 2). Schedulers for independent tasks on hybrid platforms have first been
proposed [5,8,11]. Some of them have been adapted for task graphs: [20] extends
the algorithm of [5] to the (offline) scheduling of task graphs, while [2] adapts
an online scheduler for independent tasks on hybrid platforms [17] to obtain a
competitive online scheduler for task graphs.

In the present paper, we concentrate on the online scheduling of task graphs
on a hybrid platform composed of 2 types of processors that we call CPU and
GPU for convenience. There are m CPUs and k GPUs, where m > k& > 1.
Note that we do not make any assumptions on the CPUs and GPUs (i.e., on
the processing times of each task), so that these results may be symmetrically
applied to the converse case with more GPUs. The objective is to schedule a
DAG G of tasks, so as to minimize the total completion time, or makespan.
Each task can be assigned either to a single CPU or to a single GPU. We adopt
the notations of [2]: the processing time of task T; on a CPU is noted by p; and
on a GPU by p;.

194 L.-C. Canon et al.

We consider the following online problem. At the beginning, the algorithm is
aware of all the input tasks of the graph, and can schedule each one on either a
CPU or on a GPU. A task is released and becomes available to the scheduler only
when all its predecessors are terminated. At any given point in the computation,
the scheduler is totally unaware of tasks that have not yet been released, but it
knows the processing times p; and p; of all available tasks: we assume that tasks
correspond to well-known kernels whose processing times have been acquired
through extensive benchmarking; this happens in particular in linear algebra
applications. We do not take into account the time needed for moving data and
assume that there is no delay between the release of a task and the start of its
processing.

The closer related work considering the very same problem is [2], which pro-
vides a 41/m/k-competitive algorithm for this problem. We recall that an online
algorithm is z-competitive if the makespan returned by this algorithm on any
instance is at most x times larger than the optimal makespan (which can be
computed by an offline algorithm). The present paper brings the following con-
tributions:

— We prove that the competitive ratio of any online algorithm is lower-bounded
by /m/k. We study how the knowledge of the task graph and the flexibility
of the tasks may influence the lower bound; we especially prove that knowing
the bottom-level of any task (i.e., the critical path length from this task to the
end of the graph) or having preemptive tasks does not help much, whereas
the knowledge of the number of descendants allows to reduce the lower bound
to 2(m/k)'/* (Sect.3).

— We propose a (24/m/k + 1)-competitive algorithm, by refining both the algo-
rithm and the analysis of [2] (Sect. 4.1).

— We propose a simple heuristic (Sect. 4.2) based on the system-oriented heuris-
tic EFT, which is both a competitive algorithm and performs well in practice,
as we show with a comprehensive simulation set (Sect. 5).

2 Related Work

We briefly position our contributions in comparison to the existing work, starting
with the offline case where the whole scheduling problem (both task dependences
and running times) is known beforehand.

Offline Algorithms. Several schedulers for independent tasks on hybrid plat-
forms have been proposed. Bleuse et al. [8] designed a polynomial but expensive
(% + ﬁ)-approximation. Low complexity algorithms, which are closer to our
work, have been studied in [5,11] and achieve approximation ratios respectively
equal to 2 and 2 + /2. For tasks with precedence constraints, Kedad-Sidhoum
et al. [18] provided a tight 6-approximation algorithm based on linear program-
ming. In a different setting, Raravi et al. [21] also consider the same platform
composed of two types of processors, on which the objective is to schedule a set

Online Scheduling of Task Graphs on Hybrid Platforms 195

of chains of tasks, with each task having a release date and a deadline. They
design an algorithm that schedules the tasks of each chain on the same proces-
sor, under some assumptions such as the existence of a valid schedule on slightly
slower processors.

Online Algorithms. When tasks with precedences are released over time, Gra-
ham’s List Scheduling algorithm [16] is 2-competitive on homogeneous processors
(note that this is also the best offline approximation for this problem). On our
model with two sets of processors, Imreh [17] and Chen et al. [13] proposed an
algorithm to schedule independent tasks with a competitive ratio smaller than 4.
Based on this work, Amaris et al. [2] exhibited an online algorithm for precedence
constraints, achieving a competitive ratio of 41/m/k.

Runtime Strategies. Actual runtime schedulers usually rely on low-complexity
scheduling policies to limit the time needed to allocate tasks. For instance,
StarPU [4] builds a performance model of tasks that enables to predict their
processing times. When a new task is submitted, it is allocated to the resource
that will complete it the soonest (when using the dm policy, previously called
heft-tm in [3]), which corresponds to the classical Earliest Finish Time (EFT)
scheduling policy [19]. Other strategies have been proposed that take into
account communication times, or precomputed task priorities, depending on the
descendants of each task. We include similar information in the design of the
lower bounds on competitive ratios (Sect. 3).

3 Lower Bound on Competitive Algorithms

In this section, we provide a lower bound on the competitive ratio of any online
algorithm, as outlined in the following theorem. We also study how adding flexi-
bility to task processing or giving some knowledge of the graph to the scheduler
impacts this lower bound.

Theorem 1. No online algorithm has a competitive ratio smaller than v/m/k.

Proof. We prove this result here only when 7 = y/m/k is an integer. The proof
for the general case can be found in the corresponding research report [10].
Consider an online algorithm A. We fix an integer n, which will later be made
as large as we want for the competitive ratio to get closer to 7. We use an
adversary proof: an adversary dynamically builds the graph depending on the
current schedule produced by .A. This results in a graph composed of nm tasks
denoted by 77, with j = 1,...,n7 and ¢ = 1,...,k7. Each task has a CPU
processing time of 7 and a GPU processing time of 1.

The procedure consists of n7 phases. During the jth phase, k7 tasks are
released (tasks T7 for ¢ = 1,...,k7), without dependences between these tasks.
The adversary selects the task that A completes the latest, breaking ties arbitrar-
ily. Let T be this task. The k7 tasks of the next phase are then made successors
of T} . See Fig. 1a for an illustration of the resulting graph.

196 L.-C. Canon et al.

@ Q@@ © @ e
\ g@ CPU B | B, | B
@ @ @ @ @ @ nt =3t
E—@ @) @@ evp—* '

(a) Graph built by the adversary. (b) Buckets used by S.

Fig. 1. Illustration of the graph and the buckets for 7 =2, k =2, n = 3.

We now show how to build an efficient (offline) schedule S of the resulting
graph. A bucket is defined as a set of processors, a starting time and a duration
time. We use buckets to book some processors for an amount of time, and sched-
ule a set of tasks in a given bucket. We consider n + 1 buckets, as illustrated in
Fig. 1b. Each bucket B; for i = 1,...,n contains all m CPUs, has a duration of
7, and starts at time ¢7. Note that m tasks fit into each of these buckets. The
last bucket, B, contains one GPU, starts at time 0 and lasts for a time n7. S
schedules the nt tasks T3 successively on a single GPU, which fit into bucket
B. In parallel, S schedules the remaining tasks on CPU. More precisely, it puts
in bucket By tasks T} such that (¢ —1)7 < j < {7, except for tasks T¢. They all
fit into the bucket as there are less than 7 x k7 < m such tasks. Moreover, task
T completes at time ¢7. Therefore, every task 77 with (¢ — 1)7 < j < {7 can
be started at time ¢7, and thus can be scheduled into bucket B;. Therefore, S
achieves a makespan equal to (n + 1)7.

Now, we consider algorithm A, and we show that the makespan obtained is
at least n72. At each phase, the adversary reveals the next phase only when all
the tasks of the current phase are completed. If one task of the phase is scheduled
on CPU, it takes a time 7. Otherwise, all k7 tasks are scheduled on GPU, and
the last one completes at time at least k7/k = 7. Therefore, A completes each
phase in time at least 7. As there are n7 phases, the whole graph cannot be
scheduled in time smaller than n72. The competitive ratio of A is then at least:

7’LT2

(n+1)7 f—
O

It seems from the above proof that the main difficulty for this problem arises
from choosing on which type of resource (CPU or GPU) a given task should be
processed, and not to come up with the final schedule. This is indeed proven in
the following lemma, which states that given an allocation of the tasks to the
two types of resources, scheduling them among the m + k resources can be done
with constant competitive ratio (for the proof, please refer to [10]).

Lemma 1. If each task can be processed on a single type of resource, then any
online list scheduling algorithm is (3 — %)-competitive, and no online algorithm
has a smaller competitive ratio.

Online Scheduling of Task Graphs on Hybrid Platforms 197

Table 1. Lower bounds for various combinations of flexibility in task processing and
knowledge given to the scheduler (BL stands for bottom-level).

Flexibility Knowledge Lower bound | Special cases

None or spoliation | None or BL m/k if BL and k = 1: 2/m/k
BL + descendants %(m/k)l/4

Migration None or BL %\/m if BL and k = 1: i\/mi/k
BL + descendants i(m/k)l/4

The proof of Theorem 1 heavily relies on the fact that an online algorithm has no
information on the successors of each task. In practice, it is sometimes possible
to get some information on the task graph, for example by pre-computing some
information offline before submitting the tasks. For instance, offline schedulers
usually rank available tasks with priorities based on the dependences. On homo-
geneous platforms, the bottom-level of a task is commonly used, and is defined
as the maximum length of a path from this task to an exit node, where nodes
of the graphs are weighted with the processing time of the corresponding tasks.
In the heterogeneous case, the priority scheme used in the standard HEFT algo-
rithm [25] is to set the weight of each node as the average processing time of the
corresponding task on all resources.

Knowing the bottom-level does not change the lower-bound of Theorem 1:
it is possible to transform the above proof using an adversary that submits
tasks with identical bottom-levels in each phase (see details in the correspond-
ing research report [10]). When there is exactly one GPU, the lower bound is
decreased to %\/ m/k. An interesting component of this proof is that all the tasks
are equivalent (same CPU and GPU computing times) so other heterogeneous
variants of the bottom-level result in the same lower bounds.

When the online scheduler is given the knowledge of the number of descen-
dants of each submitted task in addition to their bottom-level, the lower bound
of Theorem 1 is reduced to % (m/k)'/* when m/k is large enough, so no constant-
factor competitive algorithm exists. Note that all the tasks are equivalent in this
proof. The lower bound is thus also valid if the knowledge of the CPU and
GPU computing times of all the descendants is given to the scheduler and only
the pattern of precedence relations remains unknown. Note that, however, no
algorithm has been proposed that reaches this bound.

Another interesting question is whether adding flexibility on how tasks are
processed changes this bound. Allowing task spoliation (where tasks can be
canceled and restarted on any resource, as done in [5]) does not help, and allowing
task migration (where tasks can be preempted and resumed on any resource)
only halves the bounds. Table 1 summarizes the lower bounds obtained for all
combination of knowledge given to the scheduler and flexibility on the task
processing (for proofs, please refer to [10]).

198 L.-C. Canon et al.

4 Competitive Algorithms

4.1 The Quick Allocation (QA) Algorithm

Amaris et al. [2] designed an online algorithm named ER-LS, which is proved
to be 44/m/k-competitive. The results of Sect.3 show that this ratio can only
be improved by a constant factor, as no online algorithm can be better than
\/m/k-competitive. ER-LS applies the following processing to each available
task T;:

1. (a) If T; can be completed on a GPU before time p;, then assign it to GPUs.
(b) Else, if pi/p; < \/m/k, then assign T; to CPUs, else assign it to GPUs.
2. Schedule T; as soon as possible on the allocated type of resource.

The main objective of Step la is to avoid allocating the first tasks on a slow
resource, which intuitively is desirable only on small graphs. Such a technique
enables a similar online algorithm to be constant-factor competitive for indepen-
dent tasks, see [13]. However, it actually increases the competitive factor with
precedence constraints. We propose to simplify the allocation phase by suppress-
ing Step la. The resulting algorithm QA (which stands for Quick Allocation) is
then defined by Steps 1b and 2. Along with a rigorous analysis, this simplifica-
tion allows us to reach a competitive ratio smaller than 2y/m/k + 1, which is
almost tight, as outlined in the following theorems. The complete proofs of the
following results are available in [10].

Theorem 2. QA is <2s/m/k +1- (mk)_l/Q) — competitive.

Proof Sketch. Consider a graph G and the schedule & obtained by QA, of
makespan Clqq. Let W, (resp. W,) be the sum of the processing times of the
tasks scheduled on CPU (resp. GPU) by S, and CP be the computing time of a
critical path of G, given the allocation of S. We first prove that:

1
Craz < We + Wy + (1 — > CP.
m k m

Now, focusing first on the workload in the optimal solution, and then on the
length of the critical path in the optimal solution, we can show the following
inequalities and conclude:

We Wo (14 /™\oPT and cP<,/™OPT.
m .k Ve V%

Theorem 3. The competitive ratio of QA is at least (2\/m/k‘ +1-— %)

Proof Sketch. Let € be a small processing time. Consider the graph composed of
the three groups of tasks below. The online instance will reveal the tasks in the
same order. The only dependence is from task € to task d.

Online Scheduling of Task Graphs on Hybrid Platforms 199

CPU CPU B
d
1-1/k mlk mlk 142¢
GPU| A B <] GpPU [=
QA ' opr

Fig. 2. Schedule obtained by QA (left) and the optimal one (right).

Group A. k(k — 1) tasks with p; = oo and p; = 1/k.

Group B. mk tasks with p; = (1 +¢)/k and p; = 1/vVmk.

Group C. Task ¢, with pz = 0o and p. = ¢, and task d, with pg = \/m/k
and pg =1 +¢.

As depicted in Fig.2, QA will schedule groups A and B and Task ¢ on GPU,
then task d on CPU, for a total makespan equal to 24/m/k + 1 — % + €. The
optimal solution schedules only group B on CPU, for a total makespan equal to
1 + 2¢, hence the result. ad

The proofs of these two results give some intuition on why choosing a ratio
equal to y/m/k is the best choice in Step 1b. With a smaller ratio (closer to 1),
more tasks would be allocated to GPU. This would allow tasks on the critical
path to be processed faster. However, the GPUs, which can be seen as a rare
resource (since m > k), may be wasted on tasks that are not accelerated enough.
For instance, if the GPU computing time of the tasks of group B in the proof
of Theorem 3 were larger, such an algorithm would perform worse than QA. On
the opposite, with a larger ratio (closer to m/k), the GPU would not be wasted
on such tasks and the loads would be divided more equally on both types of
resources. But computing the critical path, such as task d in the example graph,
could be more expensive because such a task would be inefficiently executed on
CPUs. Intuitively, the geometric mean between these two bounds (1 and m/k)
is then the best solution.

4.2 A Competitive Algorithm that Performs Well in Practice

Although the QA algorithm has the best known competitive ratio, the greedy
strategy EFT (see Sect.2) actually leads to better schedules on most realistic
instances because it balances the load among the resources. However, its perfor-
mance can be 2+ (m — 1)/k times worse than the optimal solution (see [10] for
a proof of this result).

We propose a new tunable algorithm, named MIXEFT that benefits both
from the performance of EFT on most instances, and from the robustness of
QA on the hardest graphs. The idea is to improve EFT by switching to a
guaranteed algorithm if EFT does not perform well enough. The algorithm is
composed of two phases. In the first phase, it is equal to EFT except that it also

200 L.-C. Canon et al.

simulates the schedule that QA would have produced on the same instance. If
the makespan obtained by EFT is more than A times larger than the makespan
obtained by the simulated QA (for a fixed positive parameter \), we switch to
the second phase, and MIXEFT from this point behaves as QA. A small \ leads
to a smaller competitive ratio, but may degrade the performance of MIXEFT
in practice.

The competitive ratio of this algorithm is in O(Ay/m/k). Indeed, the first
phase cannot lead to a schedule more than A\ times worse than QA, and the
second phase has the competitive ratio of QA. Therefore, the algorithm is (A +
1)(2y/m/k+1)-competitive (see [10] for more details). Note that this competitive

ratio is not tight. The worst performance observed so far is max(\, 2y/m/k +1).

5 Simulations

We now provide simulations to illustrate the performance of both competitive
algorithms and simple heuristic strategies on various task graphs.

5.1 Baseline Heuristics

In addition to the four online algorithms discussed above (ER-LS from [2],
QA, EFT, and MIXEFT, implemented with A = 2 unless otherwise specified),
we consider two simple strategies that follow the same scheme as QA, with a
different allocation criteria: QUICKEST allocates each task to the resource type
on which its computing time is smaller; RATIO allocates a task on GPUs if and
only if its GPU computing time is at least m/k times smaller than its CPU
computing time. Intuitively, QUICKEST should perform well on graphs on which
the critical path is preponderant as it minimizes the execution time of each task.
On the opposite, RATIO should perform well on graphs with a high parallelism
throughout the execution, as it will execute more tasks concurrently on the
CPUs. We also used the offline HEFT algorithm [25], which is known to perform
well in practice, as a baseline to compare all online strategies.

5.2 Experimental Setup

We used three types of instances: realistic DAGs corresponding to a linear alge-
bra application, namely the Cholesky factorization, random DAGs used in the
literature, and ad hoc instances designed to be difficult for this problem and
specifically for QA.

Cholesky factorization is a linear algebra application whose parallel imple-
mentation usually uses a blocked algorithm on a tiled matrix for performance
issues. We consider matrix sizes ranging from 2 x 2 tiles to 15 x 15 tiles, which
leads to DAGs with 4 to 680 tasks. Tasks correspond to four linear algebra ker-
nels: GEMM, SYRK, TRSM, and POTRF. Their respective processing times on
a CPU are set to 170ms, 95ms, 88 ms, and 33 ms, and on a GPU to 5.95ms,
3.65ms, 8.11ms, and 15.6 ms, which corresponds to measures [1,6] made using
the Chameleon software [12].

Online Scheduling of Task Graphs on Hybrid Platforms 201

The random instances come from the STG set [23], which is often used in
the literature to compare the performance of scheduling strategies. We report
here the simulations made with 180 graphs of 300 nodes each. We consider that
the cost generated by the STG random generator is the processing time of the
corresponding task on a GPU. Based on the previous measures for linear algebra
kernels, we assume that the average speedup between CPU and GPU is around
15 with a large variance. Thus, to obtain the processing time of a task on CPU,
we multiply its cost on GPU by a random value with expected value 15 and
standard deviation 15. For that, we use a gamma distribution because it has
been advocated for modeling job runtimes [15], it is positive and it is possible to
specify its expected value and standard deviation by adjusting its parameters.

Finally, specific random instances have been designed to test the limitations
of QA. These ad hoc instances consist of a chain of tasks together with a set of
independent tasks, such that all cores are expected to finish simultaneously if a
GPU is dedicated to the chain and all independent tasks are load-balanced on
the other cores. The expected processing time of each task on a GPU is 1 (with a
standard deviation of 0.1). Each instance is parameterized by a number p, which
represents the expected processing time on a CPU, and varies from (m/k)~/*
to (m/k)®* (the standard deviation of the CPU processing times is equal to
10% of). For a given expected CPU cost p, the number of tasks in the chain
is equal to fm], where n = 300 is the total number of tasks. Therefore, the
larger p, the longer the chain.

We have performed simulations for various platform sizes, whose results are
available in [10]. As expected from the theoretical analysis, the behaviors of the
heuristics mainly depend on the value m/k. For the sake of brevity, we only
report here the results obtained for m = 20 CPUs and k = 2 GPUs, as it is
representative of the results for relatively large values of m/k. The code and
scripts used for the simulations and the data analysis are available online [9].

5.3 Results

Figure 3 depicts the performance of the six online scheduling algorithms. Except
when varying its parameter (Fig. 3(d)), MIXEFT performs exactly as EFT (and
is thus omitted for better readability). On Cholesky DAGs (Fig. 3(a)), EFT (and
thus MIXEFT) is always the best strategy. The only difference between QA and
ER-LS concerns the first tasks (as we removed Step la in QA), which explains
why their behaviour is similar for large graphs. QA, ER-LS, and RATIO all put
POTREF tasks on the CPU, which leads to performance loss when the graph is
small because its parallelism is limited and the GPUs are often idle. However, it
is acceptable for larger graphs in which many tasks may be executed in parallel
on the GPUs. On the contrary, QUICKEST puts all tasks on the GPUs. This is
efficient for small graphs with low parallelism but it becomes worse than RATIO
for large graphs.

Figure 3(b) shows similar trends on the random graphs from STG set: EFT
(and thus MIXEFT) gives the best results, followed by QA and ER-LS.

202 L.-C. Canon et al.

2.5- 2.5~
.
]
2.0- 2.0- i %
F 1
1.5- 1.5-
JUO-IIIIII I 1 IIIIII [} 10-
10 100 EFT QA ER-LS RATIOQUICKEST
E Number of tasks Algorithm
= (a) Cholesky DAGs (b) DAGs from STG
Q
2 9-
3
o'
7 -
5=
*
3- s
*
* * *]
l-IIIII! I I IIIIII! 1- ! ! ! ! ! !
1 10 QA 08 1 1.2 14 EFT
Expected CPU cost MIXEFT parameter A
(c) Ad hoc instances (d) Ad hoc instances

Algorithm - EFT -4 QA % ER-LS —+ RATIO % QUICKEST —% MIXEFT

Fig. 3. Ratios of the makespan over HEFT for EFT, QA, ER-LS, RATIO, QUICKEST,
and MIXEFT with m = 20 CPUs and k = 2 GPUs. Except in Figure (d), MIXEFT
is not shown because it performs exactly as EFT. In Figure (d), ER-LS, RaATIO, and
QUICKEST are discarded.

Figure 3(c) first shows that EFT (and MIXEFT) is almost always the best
online heuristic for these ad hoc graphs. For extreme values of the expected
CPU processing time p (significantly smaller than 1 or larger than m/k), all four
other heuristics are equivalent and perform well. Otherwise, when g is slightly
larger than 1, the instance contains many independent tasks and QUICKEST is
almost m/k worst than HEFT because scheduling independent tasks on GPUs
is not efficient. Symmetrically, when p is slightly smaller than m/k, the instance
contains a large critical path and RATIO shows poor performance, because it
schedules the critical path on CPUs. QA and ER-LS take the best of these two

Online Scheduling of Task Graphs on Hybrid Platforms 203

strategies, and have a worst performance y/m/k =~ 3 times larger than HEFT,
when p is close to y/m/k.

Figure 3(d) shows that MIXEFT behaves like QA when its A parameter is
smaller than 1, and rapidly changes to mimic EF'T when the parameter increases
and exceeds 1. Note that in all studied instances, EFT was never far from HEFT
and that there is no practical gain of using MIXEFT rather than EFT. The main
advantage of MIXEFT lies in its competitive ratio whereas EFT can lead to very
large makespans on specific instances.

6 Conclusion

In this paper, we have focused on the problem of scheduling task graphs on hybrid
platforms made of two types of processors, such as CPUs and GPUs. We have
studied the online case, when only the tasks whose predecessors are all completed
are known to the scheduler, and the graph is thus gradually discovered. We
proved that no scheduling algorithm can have a competitive ratio smaller than
/m/k, and studied how this ratio varies when more knowledge on the graph is
given to the scheduler and/or tasks may be migrated between processors. We
have proposed a (24/m/k+1)-competitive algorithm as well as a mixed strategy,
which is both ©(1/m/k)-competitive and performs as well as the best heuristics
in practice. This is demonstrated through an extensive set of simulations. Our
future work includes taking into account communication times when moving
data from/to the GPUs, and coping with inaccurate processing time estimates.

Data Availability Statement and Acknowledgments. The datasets generated
during and/or analyzed during the current study are available in the Figshare reposi-
tory: https://doi.org/10.6084 /m9.figshare.6353456.

This work was supported by the SOLHAR project (ANR-13-MONU-0007) which
is operated by the French National Research Agency (ANR).

References

1. Agullo, E., Beaumont, O., Eyraud-Dubois, L., Kumar, S.: Are static schedules so
bad? A case study on Cholesky factorization. In: IPDPS. IEEE (2016)

2. Amaris, M., Lucarelli, G., Mommessin, C., Trystram, D.: Generic algorithms for
scheduling applications on hybrid multi-core machines. In: Rivera, F.F., Pena, T.F.,
Cabaleiro, J.C. (eds.) Euro-Par 2017. LNCS, vol. 10417, pp. 220-231. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-64203-1_16

3. Augonnet, C., Clet-Ortega, J., Thibault, S., Namyst, R.: Data-aware task schedul-
ing on multi-accelerator based platforms. In: ICPADS, pp. 291-298, December
2010

4. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put. Pract. Exp. 23(2), 187-198 (2011)

5. Beaumont, O., Eyraud-Dubois, L., Kumar, S.: Approximation proofs of a fast and
efficient list scheduling algorithm for task-based runtime systems on multicores and
GPUs. In: IEEE IPDPS, pp. 768-777 (2017)

https://doi.org/10.6084/m9.figshare.6353456
https://doi.org/10.1007/978-3-319-64203-1_16

204

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

L.-C. Canon et al.

Beaumont, O., Cojean, T., Eyraud-Dubois, L., Guermouche, A., Kumar, S.:
Scheduling of linear algebra kernels on multiple heterogeneous resources. In: HiPC
(2016)

Bleuse, R., Gautier, T., Lima, J.V.F., Mounié, G., Trystram, D.: Scheduling data
flow program in XKaapi: a new affinity based algorithm for heterogeneous archi-
tectures. In: Silva, F., Dutra, I., Santos Costa, V. (eds.) Euro-Par 2014. LNCS,
vol. 8632, pp. 560-571. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09873-9.47

Bleuse, R., Kedad-Sidhoum, S., Monna, F., Mounié, G., Trystram, D.: Scheduling
independent tasks on multi-cores with GPU accelerators. Concurr. Comput.: Pract.
Exp. 27(6), 1625-1638 (2015)

Canon, L.C., Marchal, L., Simon, B., Vivien, F.: Code for simulating online schedul-
ing of task graphs on hybrid platforms, figshare, code (2018). https://doi.org/10.
6084/m9.figshare.6353456

Canon, L.C., Marchal, L., Simon, B., Vivien, F.: Online scheduling of sequential
task graphs on hybrid platforms. Research report 9150, INRIA, February 2018
Canon, L.-C., Marchal, L., Vivien, F.: Low-cost approximation algorithms for
scheduling independent tasks on hybrid platforms. In: Rivera, F.F., Pena, T.F.,
Cabaleiro, J.C. (eds.) Euro-Par 2017. LNCS, vol. 10417, pp. 232-244. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-64203-1_17

Chameleon, a dense linear algebra software for heterogeneous architectures.
https://project.inria.fr /chameleon

Chen, L., Ye, D., Zhang, G.: Online scheduling of mixed CPU-GPU jobs. Int. J.
Found. Comput. Sci. 25(06), 745-761 (2014)

Drozdowski, M.: Scheduling parallel tasks — algorithms and complexity. In: Leung,
J. (ed.) Handbook of Scheduling. Chapman and Hall/CRC, Boca Raton (2004)
Feitelson, D.: Workload Modeling for Computer Systems Performance Evaluation,
pp. 1-601. Cambridge University Press, Cambridge (2014). Book Draft, Version
1.0.1

Graham, R.L.: Bounds on multiprocessing timing anomalies. STAM J. Appl. Math.
17(2), 416429 (1969)

Imreh, C.: Scheduling problems on two sets of identical machines. Computing
70(4), 277-294 (2003)

Kedad-Sidhoum, S., Monna, F., Trystram, D.: Scheduling tasks with precedence
constraints on hybrid multi-core machines. In: IEEE IPDPS Workshops, pp. 27-33
(2015)

Leung, J.Y.: Handbook of Scheduling: Algorithms, Models, and Performance Anal-
ysis. CRC Press, Boca Raton (2004)

Beaumont, O., Eyraud-Dubois, L., Kumar, S.: Fast approximation algorithms
for task-based runtime systems. Concurr. Comput.: Pract. Exper. https://
onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4502. Online version of record before
inclusion in an issue

Raravi, G., Andersson, B., Nélis, V., Bletsas, K.: Task assignment algorithms for
two-type heterogeneous multiprocessors. Real-Time Syst. 50(1), 87-141 (2014)
Sainz, F., Mateo, S., Beltran, V., Bosque, J.L., Martorell, X., Ayguadé, E.: Lever-
aging OmpSs to exploit hardware accelerators. In: SBAC-PAD, pp. 112-119 (2014)
Tobita, T., Kasahara, H.: A standard task graph set for fair evaluation of multi-
processor scheduling algorithms. J. Sched. 5(5), 379-394 (2002)

TOP500 Supercomputer Site. http://www.top500.org. List of November 2017
Topcuoglu, H., Hariri, S., Wu, M.: Performance-effective and low-complexity task
scheduling for heterogeneous computing. IEEE TPDS 13(3), 260-274 (2002)

https://doi.org/10.1007/978-3-319-09873-9_47
https://doi.org/10.1007/978-3-319-09873-9_47
https://doi.org/10.6084/m9.figshare.6353456
https://doi.org/10.6084/m9.figshare.6353456
https://doi.org/10.1007/978-3-319-64203-1_17
https://project.inria.fr/chameleon
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4502
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4502
http://www.top500.org

®

Check for
updates

Interference-Aware Scheduling Using
Geometric Constraints

Raphaél Bleuse'2®, Konstantinos Dogeas®, Giorgio Lucarelli'(*9)

Grégory Mounié!®, and Denis Trystram?!

! Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, Grenoble, France
{konstantinos.dogeas,giorgio.lucarelli,gregory.mounie,
denis.trystram}@imag.fr
2 FSTC/CSC, University of Luxembourg, Luxembourg City, Luxembourg
raphael.bleuse@uni.lu

Abstract. The large scale parallel and distributed platforms produce
a continuously increasing amount of data which have to be stored,
exchanged and used by various jobs allocated on different nodes of the
platform. The management of this huge communication demand is cru-
cial for the performance of the system. Meanwhile, we have to deal with
more interferences as the trend is to use a single all-purpose intercon-
nection network. In this paper, we consider two different types of com-
munications: the flows induced by data exchanges during computations
and the flows related to Input/Output operations. We propose a general
model for interference-aware scheduling, where explicit communications
are replaced by external topological constraints. Specifically, we limit
the interferences of both communication types by adding geometric con-
straints on the allocation of jobs into machines. The proposed constraints
reduce implicitly the data movements by restricting the set of possible
allocations for each job. We present this methodology on the case study
of simple network topologies, namely the line and the ring. We propose
theoretical lower and upper bounds under different assumptions with
respect to the platform and jobs characteristics. The obtained results
illustrate well the difficulty of the problem even on simple topologies.

1 Introduction

In High Performance Computing, the demand for computational power is
steadily increasing [16]. To meet up with the challenge of greater performance the
architecture of supercomputers also grows in complexity at the whole machine
scale. This complexity arises from various factors: (i) the size of the machines
(supercomputers now integrates millions of cores); (ii) the heterogeneity of the
resources (various architectures of computing nodes, nodes dedicated to I/0);
(iii) the interconnection topology. The evolution in the interconnection networks
faces two main challenges: first, the community is proposing new topologies [12];
and second, the interconnection network is now unique within the machine (the

© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 205-217, 2018.
https://doi.org/10.1007/978-3-319-96983-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_15&domain=pdf
http://orcid.org/0000-0002-6728-2132
http://orcid.org/0000-0001-7368-355X
http://orcid.org/0000-0002-6757-7432
http://orcid.org/0000-0002-2623-6922

206 R. Bleuse et al.

network is shared for various mixed data flows). Sharing such a single multi-
purpose interconnection network creates complex interactions (e.g., network con-
tention) between running applications, which have a strong impact on their per-
formance [1,5], and limits the understanding of the system by the users [3]. As
the volume of processed data increases, so does the impact of the network.

In this work, we introduce a generic framework for interference-aware schedul-
ing. More precisely, we identify two main types of interleaved flows: the flows
induced by data exchanges for computations and the flows related to I/O. Rather
than explicitly taking into account these network flows, we address the issue
of harmful interactions by constraining the shape of the allocations. Such an
approach aims at taking into account the structure of the new platforms in a
qualitative way that is more likely to scale properly. The scheduling problem is
then defined as an optimization problem with the platform (nodes and topology)
and the jobs’ description as input. The objective is to minimize the maximum
completion time while enforcing constraints on the allocations.

2 Problem Setting

In this work, we model a platform as a set V of m nodes divided in two groups:
a set VC of m€ nodes dedicated to computations, and a set V/%of m?/© nodes
that are entry points to a high performance file system. As a consequence, we
have m = m® + m!/©. We assume that the I/O nodes are exclusively used for
communications with the file system and hence, there is no overlap between
computing and 1/O nodes, i.e., VO N VC = (). Moreover, a computing or an
I/0 node is exclusively allocated to a job for its lifespan, i.e., any node cannot
be used at the same time by more than one job.

The nodes can communicate using an interconnection network with a given
topology, while the localization of every node within the topology is known. In
this direction, we study here the instantiation of this framework with unidimen-
sional topologies, namely the line (Fig.1(a)) and the ring (Fig. 1(b)). Studying
topologies of one dimension is a first step towards the more complicated state-
of-the-art platforms, while these basic topologies provide lower bounds for the
later ones. The line may indeed be seen as a degenerate tree. Fat-tree topolo-
gies are a common interconnect, and are for example used in the Curie and
Oakforest-PACS platforms. On the other hand, the torus topologies, such as the
one of Blue Waters and Titan (3D torus) or the K computer (6D torus), may be
studied from the ring with classical embedding techniques.

Batch schedulers are a critical part of the software stack managing HPC
platforms: their goal is to efficiently allocate resources (nodes from V in our case)
to the jobs submitted by the users of the platform. The jobs are queued in a set
J. The total number of jobs is n. Each job j requires ¢; computing nodes and
one I/0 node. We distinguish two cases with respect to I/O requirements: in the
pinned model each job asks for a specific I/O node, while in the unpinned model
the jobs just need any arbitrary I/O node. The number of allocated computing
nodes is fixed, i.e., the job is rigid [6]. We denote by V(j) the set of nodes

Interference-Aware Scheduling Using Geometric Constraints 207

(a) Line topology. (b) Ring topology.

Fig. 1. Example of platforms with unidimensional topologies. The nodes are numbered
using the natural order. White nodes represent computing nodes, and black nodes
represent 1/O nodes.

allocated to the job j. If needed, we use V¢ () and V/9(4) to distinguish among
the computing and the I/O nodes assigned in j, respectively. Each job j requires
a certain time p; to be processed, and it is independent of every other job. Once
a job starts being executed, it runs until completion, i.e., it is not preemptive.

As stated above, the goal of this paper is not to finely model the full context
of execution. Instead, we propose to model the platform in such a way that
the network interactions are implicitly taken into account. In this direction, we
augment the scheduling problem with geometric constraints on the allocations
of the jobs in the resources based on the platform topology and the application
requirements. Before presenting these constraints, we need to precisely define
the network flows we target. We distinguish two types of flows, directly deriving
from the fact that we are dealing with two kinds of nodes:

computational communications which are induced by data exchanges dur-
ing computations. Such communications occur between two computing nodes
allocated to the same application.

I/0 communications which are induced by data exchanges between comput-
ing and I/O nodes. Such communications occur when computing nodes read
input data, checkpoint the state of the application, or save output results.

In order to avoid computational communication interactions, we consider the
following constraint.

Definition 1 (Contiguity [2,14]). An allocation is said to be contiguous if and
only if the nodes of the allocation form a contiguous range with respect to the
nodes’ ordering.

Note that the contiguity constraint relies on the nodes’ ordering. For topologies
such as lines or rings this ordering is natural (see Fig.1).

The contiguity constraint is well suited to take into account the computa-
tional communications, but not the I/O communications. Indeed, the former
type of communications may occur between any pair of computing nodes within
an allocation: we usually describe this pattern as all-to-all communication. On

208 R. Bleuse et al.

the other hand, I/O communications generate traffic towards few identified nodes
in an all-to-one or one-to-all pattern. Hence, we propose the locality constraint,
whose goal is to limit the impact of the I/O flows to the periphery of the job
allocations. We must emphasize that the locality constraint proposed here is not
related to the locality constraint described in [14].

Definition 2 (Locality). A given allocation for a job j is said to be local iff
it is contiguous, and the I/0 node VV/©(5) is adjacent to computing nodes from
VC(45), with respect to the underlying topology.

In this paper, we are interested in minimizing the maximum completion time
among all jobs (i.e., the makespan of the schedule) while enforcing the contiguity
and the locality constraints. Specifically, we aim at developing algorithms with
performance guarantees by adding geometric constraints on the allocations of
jobs into nodes.

3 Related Work

Most actual implementations of schedulers allocate resources greedily without
any topological constraint in the allocation of the computing nodes. However,
this naive solution has a bad impact on performances [5]. Constraining the
allocations to enhance performance is however not a new idea. For example,
Lucarelli et al. studied the impact of enforcing contiguity or locality in backfill-
ing scheduling [14] (for fat trees). They showed that enforcing these constraints
can be done at a small cost, and has minimum negative impact on usual metrics
such as makespan, flow-time, or stretch.

Tackling the interactions arising from the context of execution, or, more
specifically, network contention, can be done either by preventing these inter-
actions from happening or by mitigating them. Still, the approaches discussed
above require some knowledge about the application communication patterns
(either compute or I/O communications). We review briefly related work in the
prevention/mitigation of interactions before discussing monitoring techniques.

Interactions Prevention. Some steps have been taken towards integrating more
knowledge about the communication patterns of applications into batch sched-
ulers. For instance, Georgiou et al. studied the integration of TREEMATCH into
SLURM [9]. Given the communication matrix of an application, the scheduler
minimizes the load of the network links by smartly mapping the application’s
processes on the resources. This approach however does not consider the tem-
porality of communications. Targeting the mesh/torus topologies, the works of
Tuncer et al. [18] and Pascual et al. [15] are noteworthy. Another way to prevent
interactions is to force the scheduler to use only certain allocation shapes with
good properties: this strategy has been implemented in the Blue Waters sched-
uler [5]. The administrators of Blue Waters let the scheduler pick a shape among
460 precomputed cuboids. Yet, the works proposed above only target compute
communications. HPC applications usually rely on highly tuned libraries such

Interference-Aware Scheduling Using Geometric Constraints 209

as MPI-IO, parallel netCDF or HDF5 to perform their I/O. Tessier et al. pro-
pose to integrate topology awareness into these libraries [17]. They show that
performing data aggregation while considering the topology allow to diminish
the bandwidth required to perform I/O.

Interactions Mitigation. Given a set of applications, Gainaru et al. propose to
schedule I/O flows of concurrent applications [7]. Their work aim at mitigating
1/0 congestion once applications have been allocated computation resources. To
achieve such a goal, their algorithm relies on past I/O patterns of the applications
to either maximize the global system utilization, or minimize the maximum
slowdown induced by sharing bandwidth.

Application/Platform Instrumentation. A lot of effort have been put into devel-
oping tools to better understand the behavior of HPC applications. Character-
izing 1/0 patterns is key as it allows the developers to identify performance bot-
tlenecks, and allows the system administrator to better configure the platforms.
A complementary path is to predict I/O performances during execution [4].
Such instrumentation efforts allow for a better use of the scarce communication
resources. However, as they are application-centric, they fail to capture inter-
application interactions. Monitoring of the platform is a way of getting insight
on the inter-application interactions. We will not address this problem here.

4 Pinned I/0

In this section, we study the problem with respect to the pinned 1/O model,
according to which each job requests a specific I/O node. Such a model is repre-
sentative of HPC platforms where the parallel file system is organized in stripes.
For example, this is the case with the configuration of the Lustre file system in
Blue Waters, where each I/O node is responsible for an address range (i.e., a
stripe). Then, the jobs will request the I/O node corresponding to their data.

4.1 Complexity

We start by proving that the studied problem is AP-complete even in the special
case where all jobs require unit processing time to be executed, while the platform
contains only three I/O nodes.

Theorem 1. The problem of scheduling in the pinned model with respect to con-
tiguity and locality constraints is strongly N'P-complete even in line topologies,
with m!/0 = 3 and p; =1 for each job j € J.

Proof. The problem clearly belongs to NP. We give a reduction from a special
case of the NUMERICAL 3-DIMENSIONAL MATCHING (N3DM) problem [8]. An
instance of the classical N3DM problem consists of three disjoint sets W, X and
Y, each containing M positive integers, and a bound B € Z%. The objective is to
decide whether WUXUY can be partitioned into M disjoint sets A1, Aa, ..., Ay

210 R. Bleuse et al.

such that each A; contains exactly one element from each of W, X, and Y and
ZaeAiCL:B, for1 <i< M.

Consider now SN3DM be the special case of N3DM in which all integers that
belong to the set X are at least g. It is not hard to see that SN3DM is also
strongly NP-complete. Indeed, it suffices to transform an instance of N3DM to
an instance of SN3DM by setting W/ =W, Y' =Y, X' ={x+ B :Vax € X} and
B’ = 2B. Then, any solution for N3DM corresponds to a solution for SN3DM,
and vice versa.

We propose now a transformation from SN3DM to our problem as follows:

- m®=B,m"°%=3;

— the topology is a line starting with an I/O node, followed by g comput-
ing nodes, an I/O node, g computing nodes, and finishing with a third
1/0 node;

— for each a € WU X UY, we create a job j with ¢; = a, and p; = 1. All jobs
derived from sets W, X, and Y target the first, second, and third I/O node,
respectively.

With respect to the ordering of the line topology, we refer to the computing
nodes as 1,2,...,m® and to the I/O nodes as 1,2,... ,m1/0.

We will prove that a solution to SN3DM exists if and only if there is a
schedule that satisfies all constraints and has a makespan at most M.

Assume that there is a solution for SN3DM. Then for each set A;, 1 < i < M,
we schedule the three jobs j; € W, jo € X and js € Y corresponding to
this set at time interval (i — 1,4]. Specifically, j; will use the computing nodes
1,...,4;,, j2 the computing nodes ¢q;, + 1,...,¢;, + ¢;, and jz the computing
nodes q;, +¢qj, +1,... ,mC. Note that each of these three jobs is adjacent to
the targeted I/O node. Indeed, the j; and js are adjacent to the leftmost and
the rightmost I/O node, respectively, while jo is always adjacent to the middle
I/O node, since g;, > g. The makespan of the created schedule is equal to M.

Assume now that there exists a schedule of makespan at most M. As the
total work is M - B, no computing node is idle during the time interval (0, M].
Hence, the partition is directly derived by assigning jobs that start at time i — 1
to Ai, 1 S 7 S M. O

4.2 Approximation Algorithm

In this section, we first propose a constant-factor approximation algorithm for
line topologies and then we argue that it can be used even for ring topologies.
The main idea of our algorithm is to first determine an allocation of each job to a
specific set of computing nodes. We are interested in allocations that are simulta-
neously contiguous and local, while each job j requires a specific I/O node. As a
consequence, there exist at most ¢; + 1 = O(mC) valid allocations for each job j
(see Fig.2). Given an allocation of all jobs to computing nodes, our problem
coincides with the well-studied DYNAMIC STORAGE ALLOCATION (DSA) prob-
lem [10]. Then, we use a known approximation algorithm for the latter problem.

Interference-Aware Scheduling Using Geometric Constraints 211

o O—OCO—0C—8O0O—8O0O——0C—0CO0

Fig. 2. Potential allocations for a job j requesting the middle I/O node with ¢; = 3.

In order to decide the allocation of computing nodes we use an integer linear
program. Let A; be the set of all potential allocations for each job j, where
|A;] < g; + 1. Each allocation a € A; contains exactly ¢; computing nodes as
well as the required I/O node. Note that, an allocation may include more I1/0O
nodes that will not be used during the execution of j neither by j nor by the
other jobs due to the locality constraint. For example, in Fig. 2 the two rightmost
allocations also cover the third I/O node in order to be able to include g; = 3
computing nodes. For each job j € J and allocation a € A;, we introduce a
binary indicator variable x; , which is equal to one if j is executed according to
the allocation a, and zero otherwise. Moreover, for each node ¢ € ¥V we introduce
a non-negative variable L; which corresponds to the total load of jobs whose
assigned allocation includes i. Finally, let A be the maximum load among all
nodes. Then, we propose the following integer linear program which searches for
the allocations that minimize the total load.

minimize A (ILP)
A>L; VieV (1)

Li=))" > wjap VieV (2)

JET a€Aj i€a

> wja=1 VieJd (3)
acAj
Tja € {0,1} Vi GJ,GEA]' (4)

Constraints (2) compute the total load for each node, while Constraints (3)
ensure that each job is assigned an allocation. By relaxing the integrity Con-
straints (4), we can solve the corresponding linear program in polynomial time.
Note that there are O(mn) variables and O(m + n) constraints. Moreover, an
optimal solution to the above integer linear program is a lower bound to the
makespan of an optimal solution for our problem, since it optimizes the maxi-
mum load without handling intersections of jobs in time, that is the scheduling
phase.

Let /L I:Z and Z; , denote the values of the variables in an optimal solution of
the relaxed linear program. Then, the solution of this linear program is rounded
to an integral feasible solution whose variables are denoted by A, L; and 7.
Specifically, we round the indicator variables independently for each job j € J

212 R. Bleuse et al.

as follows: consider all possible allocations for the job j ordered with respect to
the processors’ ordering. The allocation chosen for j is the one with the smallest
index k such that Z];:l Tja > % Then, we set Z;, = 1 and Z,, = 0 for all
a # k. Figure 3 gives an example of this rounding procedure.

0.9

0.8 07

0.5 0.5
01 03 0.2
4@@{}{}+{}{}%ﬂ
g i* iy
Z;,=0.1
Zj0=0.2
Zj3=0.2
Zj4=0.3
Zj5=0.2

Fig. 3. Rounding procedure for the variables that correspond to job j: Z;3 = 1 and
Tj1 =Tj2 = Tja=Tj5 =0.

The following lemma provides an upper bound to the integral solution A
obtained after the rounding procedure.

Lemma 1. A< 24.

Proof. Consider a job j and let k; be the index of the allocation of j in the
rounded solution, i.e., Z;x, = 1. Moreover, let V(j) be the set of nodes (both
computing and I/0) that are included in this allocation. We will first prove the
following statement:

- 1 .
Z Zja > §for everyi € k;
a€Aj: i€a

For example, in Fig. 3 we have that k; = 3 and for each ¢ € {3,...,7} the sum
of the fractional variables that correspond to j and include ¢ is at least 0.5. In
order to prove the statement, let k; = {is,...,i,} be the set of nodes of the
allocation k; as these are ordered in the natural way. Recall that VI/0(4) e k;
is the I/O node required by j and assume that V/9(5) coincides with i*, where
ip < 3% < 4,. By the definition of k;, the statement is true for i = i,. Moreover,
the statement holds for each node i € {is,...,i*} since

Z fj,a 2 Z ‘%j,a Z %

a€A;: i€a a€A;: ig€a

Interference-Aware Scheduling Using Geometric Constraints 213

It remains to prove it for ¢ € {i* +1,...,4,}. We focus first on 4,. Observe that
by the definition of k; it holds that ngll Zjq < 3. Then, we have that

1 1
Z i‘j,a:Zi‘j7a—;§;j7a>1_§:§

a€EA;: irE€a aCA;

Finally, the statement holds for each node ¢ € {i* +1,...,4,} since

1
Yo Taz D Fa>g

a€A;: i€a a€A;: ir€a

In order to finalize the proof of the lemma, consider the load L; of a node i
in the rounded solution. We have that

Eizzpj'l{ifiekj}zzpj Z @waﬁzpﬂ Z Zja

Jj€ET JET a€A;: i€a JjeET a€Aj: i€a

where the last inequality holds by the proven statement and since by Con-
straint (3) we have that ZaeAj: Zjq < 1. Hence,

i€a

ZiSQij Z 1~7j7a:22pj ZZE"MZQZ szjv“ijZL

€T a€A;j: i€a JjET a€A; ica JET a€A; i€a

The lemma follows by considering the node of maximum load in the rounded
solution, i.e., A = max;{L;} < 2max;{L;} = 2A. O

As mentioned before, given the allocations of all jobs, our problem coincides
with the DSA problem [10]. An instance of the DSA problem consists of a set
of n triples. Each triple (¢;,7;,s;) corresponds to a rectangle parallel to z-axis
of size (r; — ¢;) x s;. Specifically, £; and r; are the projections of its leftmost
and rightmost points, respectively, in the z-axis while s; is its size projected in
the y-axis. In other words, the position of the rectangle is fixed with respect to
z-axis, but it can be shifted in any position in y-axis. The objective is to pack
all rectangles without intersections in a strip of minimum height.

In our scheduling context, each job corresponds to a rectangle whose ¢; and
r; values are defined by a given allocation as the leftmost and the rightmost
computing nodes respectively, while p; = s;. Moreover, the makespan coincides
with the height of the strip.

Gergov [10] presented a greedy 3-approximation algorithm for the DSA prob-
lem. The important property of this algorithm is that it uses as lower bound the
maximum load over all z-coordinates, which allows as to use it in our analysis.
The following theorem describes this property in scheduling terms.

Theorem 2 [10]. There is an algorithm which computes a feasible schedule
whose makespan is at most three times the mazximum load of every node.

214 R. Bleuse et al.

Algorithm 1.

Solve the relaxed version of (ILP)

for each job j € J do
Find the smallest index k such that 2221 Tja >
Set Z;,x =1 and Zj,, =0 for all @ # k

W N =

1
2
4

5 Create a feasible schedule by applying the algorithm proposed in Theorem 2
using the allocations determined by the z; , variables

Due to the equivalence of our problem with DSA, we can apply the algorithm
mentioned in Theorem 2 and get a final solution to our problem. A high-level
description of the above described procedure is given in Algorithm 1.

Theorem 3. Algorithm 1 achieves an approzimation ratio of 6 for the line topol-
ogy in the pinned I/0 model.

Proof. Consider a schedule created by Algorithm 1 and let Cy,.x be the makespan
of this schedule. Due to the allocation phase, we know that the maximum load
over all nodes is equal to A. Then, by Theorem 2 and Lemma 1, we have that
Crax < 34 < 6A. Hence, the theorem follows by the fact that the optimal
solution to (ILP) is a lower bound to the optimal solution for our problem. O

We observe that Gergov’s algorithm remains a 3-approximation even in the
case of rings. Moreover, the allocation procedure based on the rounding of (ILP)
can be also applied for rings; we just need to define an ordering of the possible
allocations of each job. Thus, by considering an clockwise ordering, we can apply
Algorithm 1 and get the following theorem.

Theorem 4. Algorithm 1 achieves an approximation ratio of 6 for the ring
topology in the pinned I/0 model.

5 Unpinned I/0

In this section, we study the unpinned 1/O model according to which each job
requires any arbitrary I/O node.

5.1 Complexity

We start by proving that the studied problem is NP-complete even in the spe-
cial case where all jobs require unit processing time to be executed, while the
platform contains only three I/O nodes. The proof is similar with the proof
of Theorem 1 with the difference that the reduction is done by the classical 3-
PARTITION problem [8]. For this reason, it is omitted.

Theorem 5. The problem of scheduling in the unpinned model with respect to
contiguity and locality constraints is strongly N'P-complete even in line topolo-
gies, with m’/© =3 and p; =1 for each job j € J.

Interference-Aware Scheduling Using Geometric Constraints 215

5.2 An Approximation Algorithm for Equidistant I/O Nodes

In this section, we consider both line and ring topologies and we propose an
approximation algorithm in the case where the I/O nodes are uniformly dis-
tributed. In other words, the I/O nodes are equidistant from each other. We
denote by J the distance separating two consecutive I/O nodes. Note that, given
any instance, in line topologies § can be either mef/coj or (mmffo] while the first
value is always the case in ring topologies.

We need some additional notation. We call a job small if it requires fewer
computing nodes than the distance between two consecutive I/O nodes, i.e.,
q](-J < 4. In a similar way, we call a job big if qjC > 6. Let J<5 and J>; be the sets
of small and big jobs, respectively. Our algorithm handles these sets separately.

A small job cannot be adjacent to more than one I/O nodes in any feasible
schedule. Moreover, an I/O node along with § consecutive computing nodes
adjacent to it can be considered as a processing unit that can execute a small
job. Based on this, we partition the set VC into L’”TCJ groups of consecutive
computing units, each one of size at least §. Assume that these groups as well as
the I/O nodes are numbered from left to right and we consider the i-th such group
and the i-th I/O node to compose a processing unit. Note that, by the definition
of §, m!/© can be either LmTCJ or [mTCJ +1. In the second case, which can happen
only in line topologies, the last I/O node is not used. Then, we can transform
our problem for small jobs to an instance of the classical P || Cpax problem with
LmTCj machines [11]. Specifically, each machine corresponds to one processing
unit, while each small job has a processing time as in the initial instance and
requires only one processing unit. Then, we solve the created instance of P ||
Chax by using any known approximation algorithm for it. The following lemma,
whose proof is omitted, summarizes the above procedure. The additional 2-factor
in the line case is due to parity issues.

Lemma 2. Any p;-approzimation algorithm for the P || Cmax scheduling prob-
lem, can be used to obtain a 2pi-approximation algorithm to schedule small jobs
in a line and a py-approzimation algorithm to schedule small jobs in a ring.

Due to the contiguity constraint, the big jobs are structurally guaranteed
to be adjacent to at least one I/O node, i.e., we can then ignore the existence
of I/O nodes when scheduling big jobs. Hence, the objective is to pack the big
jobs and our problem reduces to the strip-packing problem [13]. The following
lemma, whose proof is omitted, summarizes the above reduction. The additional
2-factor in the ring case is due to the degeneration of the ring to a line.

Lemma 3. Any ps-approximation algorithm for the strip-packing problem, can
be used to obtain a p2-approrimation algorithm to schedule big jobs in a line and
a 2ps-approximation algorithm to schedule big jobs in a ring.

By combining Lemmas 2 and 3 the following theorem follows.

216 R. Bleuse et al.

Theorem 6. For the unpinned model, there is a (2p1 + p2)-approzimation algo-
rithm for line topologies and a (p1+2p2)-approximation algorithm for ring topolo-
gies, where p1 and pa are the approzimation ratios for the P || Cinax and the
strip-packing problems, respectively.

Note that a PTAS exists for both P || Cinax and strip-packing problems [11,
13], leading for (3 + €)-approximation algorithms for line and ring topologies.

6 Conclusions

We studied the makespan minimization problem on line and ring topologies,
when the allocations are constrained to be both contiguous and local. We proved
that both the pinned and unpinned models are A/P-complete and we presented
constant-factor approximation algorithms for them. The proposed algorithms
can be also applied in different settings (the proofs will be developed in an
extended version of this work). For example, in the case where the I/O nodes
can be shared by more than one jobs, then the 6-approximation algorithm of
Sect. 4.2 can be simply adapted by excluding the requested I/O node from the
allocation of the job in the definition of the indicator variables of (ILP). Note
that due to the locality constraint an I/O node cannot be shared by more than
two jobs. Another example is the case where each job requires more than one
I/0 nodes. However, this assumption in conjunction with the locality constraint
could lead to several unused nodes, limiting its interest.

As future steps, one could implement the proposed algorithms, and study
their performances through simulation. From a theoretical point of view, the
tightness results show the limits of the two-phase approach in Sect.4.2. The
approximation ratios might be improved by scheduling the problem in a single
phase. Finally, the study of more enhanced topologies, like two-dimensional ones,
is a very interesting direction. In this case, contiguity could be replaced by more
general constraints implying the convexity of the shape of the allocations.

References

1. Bhatele, A., Mohror, K., Langer, S.H., Isaacs, K.E.: There goes the neighborhood:
performance degradation due to nearby jobs. In: SC, pp. 41:1-41:12. ACM, Novem-
ber 2013

2. Bladek, I., Drozdowski, M., Guinand, F., Schepler, X.: On contiguous and non-
contiguous parallel task scheduling. J. Sched. 18(5), 487-495 (2015)

3. Chen, N.-C., Poon, S.S., Ramakrishnan, L., Aragon, C.R.: Considering time in
designing large-scale systems for scientific computing. In: CSCW, pp. 1533-1545.
ACM, February 2016

4. Dorier, M., Ibrahim, S., Antoniu, G., Ross, R.B.: Using formal grammars to predict
I/O behaviors in HPC: the Omnisc’IO approach. IEEE Trans. Parallel Distrib.
Syst. 27(8), 2435-2449 (2016)

5. Enos, J., et al.: Topology-aware job scheduling strategies for torus networks. In:
Cray User Group, May 2014

10.

11.

12.

13.

14.

15.

16.

17.

18.

Interference-Aware Scheduling Using Geometric Constraints 217

Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory
and practice in parallel job scheduling. In: Feitelson, D.G., Rudolph, L. (eds.)
JSSPP 1997. LNCS, vol. 1291, pp. 1-34. Springer, Heidelberg (1997). https://doi.
org/10.1007/3-540-63574-2_14

Gainaru, A., Aupy, G., Benoit, A., Cappello, F., Robert, Y., Snir, M.: Scheduling
the I/O of HPC applications under congestion. In: IPDPS, pp. 1013-1022. IEEE,
May 2015

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

Georgiou, Y., Jeannot, E., Mercier, G. Villiermet, A.: Topology-aware resource
management for HPC applications. In: ICDCN, pp. 17:1-17:10. ACM (2017)
Gergov, J.: Algorithms for compile-time memory optimization. In: SODA, pp. 907—
908. ACM/STIAM, January 1999

Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems: theoretical and practical results. J. ACM 34(1), 144-162 (1987)
Kathareios, G., Minkenberg, C., Prisacari, B., Rodriguez, G., Hoefler, T.: Cost-
effective diameter-two topologies: analysis and evaluation. In: SC, pp. 36:1-36:11.
ACM, November 2015

Kenyon, C., Rémila, E.: Approximate strip packing. In: FOCS, pp. 31-36 (1996)
Lucarelli, G., Mendonca, F.M., Trystram, D., Wagner, F.: Contiguity and locality
in backfilling scheduling. In: CCGRID, pp. 586-595. IEEE Computer Society, May
2015

Pascual, J.A., Miguel-Alonso, J., Antonio, L.J.: Application-aware metrics for par-
tition selection in cube-shaped topologies. Parallel Comput. 40(5), 129-139 (2014)
Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: TOP500 list, June 2018
Tessier, F., Malakar, P., Vishwanath, V., Jeannot, E., Isaila, F.: Topology-
aware data aggregation for intensive I/O on large-scale supercomputers. In:
COMHPCQSC, pp. 73-81. IEEE, November 2016

Tuncer, O., Leung, V.J., Coskun, A.K.: PaCMap: topology mapping of unstruc-
tured communication patterns onto non-contiguous allocations. In: ICS, pp. 37-46.
ACM, June 2015

https://doi.org/10.1007/3-540-63574-2_14
https://doi.org/10.1007/3-540-63574-2_14

l‘)

Check for
updates

Resource-Efficient Execution
of Conditional Parallel Real-Time Tasks

Sanjoy Baruah(®)
Washington University in St. Louis, St. Louis, MO, USA
baruah@wustl.edu

Abstract. Under the federated paradigm of multiprocessor scheduling,
a set of processors is reserved for the exclusive use of each task. We
consider the federated scheduling of parallel real-time tasks containing
conditional (if-then-else) constructs, in which different executions of the
task may result in workloads of substantially different magnitude and
different character (e.g., degree of parallelism and critical path length).
If the task is hard-real-time, then processors must be reserved for it under
worst-case assumptions. However, it may be the case that most invoca-
tions of the task will have computational demand far below the worst-
case characterization, and could have been scheduled correctly upon far
fewer processors than had been assigned to it based upon the worst-
case characterization of its run-time behavior. Provided we could safely
determine during run-time if the worst-case characterization is likely to
be realized during some execution and all the processors are therefore
going to be needed, for the rest of the time the unneeded processors
could be idled in low-energy “sleep” mode, or used for executing non-
real time work in the background. In this paper we propose an algorithm
for scheduling parallel conditional tasks that permits us to do so.

1 Introduction

This research is motivated by two trends in real-time computing: (i) the increas-
ing use of multiprocessor and multicore platforms, and (ii) the increasingly com-
plex control-flow that is to be found in real-time programs.

Modeling Parallelism. The models used in scheduling theory for represent-
ing real-time workloads that are implemented upon multicore platforms should
be capable of exposing the parallelism that may exist within these workloads.
Earlier models [1,2] that were developed in order to represent uniprocessor imple-
mentations of real-time systems, are not particularly suitable for this purpose;
hence the sporadic DAG task model [3] was proposed as an appropriate can-
didate. A task in this model is specified as a 3-tuple (G, D,T), where G is a
directed acyclic graph (DAG), and D and T are positive integers representing
the relative deadline and period parameters of the sporadic DAG task respec-
tively. The task repeatedly releases dag-jobs, each of which is a collection of
(sequential) jobs. Successive dag-jobs are released a duration of at least T' time
© Springer International Publishing AG, part of Springer Nature 2018

M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 218-231, 2018.
https://doi.org/10.1007/978-3-319-96983-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_16&domain=pdf

Resource-efficient execution of conditional parallel real-time tasks 219

units apart. The DAG G is specified as G = (V, E), where V is a set of vertices
and E a set of directed edges between these vertices. Each v € V represents
the execution of a sequential piece of code (a “job”), and is characterized by a
worst-case execution time (WCET). The edges represent dependencies between
the jobs: if (v1,v2) € F then job v; must complete execution before job vy can
begin execution. (Job vy is called a predecessor job of vg, and job vy is called a
successor job of v1.) Jobs that are not predecessors or successors of each other,
either directly or transitively, may execute simultaneously upon different proces-
sors. A release of a dag-job of the task at time-instant ¢ means that all |V jobs
v € V are released at time-instant t. If a dag-job is released at time-instant ¢
then all |V| jobs that were released at ¢ must complete execution by time-instant
t+D.

In this paper we restrict attention to constrained-deadline sporadic DAG
tasks: these are sporadic DAG tasks satisfying the additional property that
D < T (and hence the duration of time during which successive dag-jobs are
to be scheduled do not overlap). We focus upon the scheduling of a single such
constrained-deadline sporadic DAG task upon a dedicated platform comprising
a specified number m of identical processors (i.e., we restrict our attention to
either systems comprising just a single task, or to multi-task systems scheduled
under the federated paradigm of multiprocessor scheduling [4,5]). This problem
is equivalent to the widely-studied problem of makespan-minimization for prece-
dence constrained tasks: we seek to determine whether a single dag-job of the
task can be scheduled to have a makespan' no larger than D upon the pro-
vided number of processors. We will discuss proposed solutions to this problem
in Sect. 3.

Modeling Conditional Branching. As stated above, the sporadic DAG tasks
model assumes that each release of a dag-job of the task causes the release
of jobs corresponding to each and every vertex in V. It is thus successful in
modeling intra-task parallelism: the workload generated by an individual task
may comprise multiple jobs that are allowed to execute in parallel upon dif-
ferent processors. However, as we become more ambitious regarding the kinds
of functionalities we attempt to implement in our real-time systems, these sys-
tems incorporate more complex control-flow than simply the straight-line code
that characterized earlier systems. The presence of control structures such as
conditional—if-then-else—constructs within the code that is being modeled by
the task may mean that different activations of the task (i.e., different dag-
jobs) cause different parts of the code to be executed. Assuming that jobs cor-
responding to all the vertices in V' will execute during each such activation is
pessimistic; there is a need to be able to model the fact that different dag-jobs of
the same task may cause different collections of jobs to be executed. The condi-
tional sporadic DAG tasks model [6,7] therefore further generalized the sporadic
DAG tasks model by allowing for the representation of conditional execution
of parts of a DAG. We will describe this model in detail in Sect. 2; for now, we

! The makespan of a schedule is the duration of it: the difference between the instants
at which the first job begins execution and the last job completes.

220 S. Baruah

1x100

&8 100 x 10

@ -

Fig. 1. Part of an example conditional DAG task. The diamond represents the start of
a conditional (if-then-else) construct; the oval, the corresponding end. Each rectangle

represents a sequential piece of code, and is labelled with its worst-case execution time
(WCET).

illustrate its salient features via the example in Fig. 1. In this figure, the diamond-
shaped vertex and the oval vertex respectively denote the beginning and end of
an if-then-else construct. A conditional expression gets evaluated when flow
of control reaches the diamond-shaped vertex: different executions of the task
may result in the expression evaluating differently. Either the branch denoted
“Branch A” or the one denoted “Branch B” is taken depending on whether this
expression evaluates to true or false. Branch A leads to a single piece of sequen-
tial code of WCET 100, while Branch B leads to one hundred pieces of sequential
code, each of WCET 10, that may execute in parallel.

The Problem Considered. We consider the scheduling of hard-real-time tasks:
tasks for which it is imperative that they always meet their deadlines. For such
tasks, computing resources must be provisioned under worst-case assumptions;
for our conditional real-time tasks, this means that processors must be reserved
for the task that enable it to meet its deadline regardless of which conditional
expressions evaluate to true and which to false. The determination of how many
processors should be assigned to a (regular, i.e., not conditional) DAG task in
order to ensure that it always meets its deadlines is usually based upon com-
puting the cumulative WCET of all the nodes in the DAG (this quantity is
called the work parameter of the DAG) and the maximum cumulative WCET
of any sequence of precedence-constrained nodes (called the span of the DAG).
Algorithms are known for computing work and span of a regular DAG in time

Resource-efficient execution of conditional parallel real-time tasks 221

linear in the representation of the DAG. Techniques for computing work and
span have been developed for conditional DAGs as well [6,7]. However, it may
be the case that work and span for a conditional DAG as computed in this man-
ner correspond to mutually exclusive branches in the conditional code. (E.g., in
the example task segment of Fig.1 span corresponds to the Branch A and is
equal to 100, while work corresponds to Branch B and equals 1000. Clearly this
worst-case work and this worst-case span cannot both occur during any indi-
vidual execution of the task.) Assigning processors to the conditional task on
the basis of such work and span parameters results in over-provisioning of com-
puting resources to this task, and consequent resource under-utilization during
run-time. Due to algorithm complexity considerations (see, e.g., [5] for a dis-
cussion), such under-utilization seems unavoidable in general. However, suppose
that it is determined by extensive experimental profiling of the run-time behav-
ior of this task that Branch A is taken the vast majority of the time. It may
then be possible to carefully design a run-time scheduling strategy that reduces
some of this inefficiency. Specifically, one could provision processors to the condi-
tional task assuming the most conservative characterization (the work and span
parameters as determined by the algorithms of [6,7]), but keeping some of the
provisioned resource in “reserve”, perhaps by placing some processors in sleep
mode or having them execute background (non real-time) work, with the option
of switching them to work upon executing the task if we are able to determine,
during run-time, that the task’s run-time behavior is in fact not likely to app-
roach its most conservative estimates. In this paper, we derive an algorithm that
adopts this approach to enhance run-time efficiency while continuing to ensure
that deadlines are always met.

Organization. We describe the conditional sporadic DAG task model in Sect. 2,
and briefly review some prior results on the scheduling of DAG tasks in Sect. 3.
In Sect. 4 we describe, and prove the correctness of, our proposed approach for
resource-efficient scheduling of hard-real-time sporadic DAG tasks. We conclude
in Sect. 5 by placing this work within a larger context of research on the design
and implementation of complex parallelizable real-time code upon multiproces-
sor platforms.

ty

59 G| = (V{,E}) ¢

. ay=(Vi.Ey) ¢

Fig. 2. A canonical conditional construct with branching factor 2. Vertices s1 and t;
(vertices sz and to, resp.) are the sole source vertex and sink vertex of G} (G4, resp.).

222 S. Baruah

2 Conditional Sporadic DAG tasks [6,7]

Like a regular sporadic DAG task, each conditional sporadic DAG task 7 is speci-
fied as a 3-tuple (G, D, T'), where G = (V, E) is a DAG, and D and T are positive
integers denoting (as with regular DAG tasks) the relative deadline and period
parameters of the task. We require that G have a single source vertex and a sin-
gle sink vertex (of course any DAG with multiple sources and/or multiple sinks
is easily transformed in polynomial time to an equivalent conditional DAG sat-
isfying this requirement, by perhaps adding an additional dummy source and/or
an additional dummy sink). Conditional vertices are special vertices in V' that
are defined in pairs. Let (c¢1,c¢2) be such a pair in the DAG G = (V, E)—see
Fig. 2. Informally speaking, vertex c¢; can be thought of as representing a point
in the code where a conditional expression is evaluated and, depending upon the
outcome of this evaluation, control will subsequently flow along exactly one of
several different possible paths in the code. It is required that all these different
paths meet again at a common point in the code, represented by the vertex co.
More formally,

1. There are multiple outgoing edges from ¢; in E. Suppose that there are exactly
k outgoing edges from ¢; to the vertices si,ss,..., sk, for some k > 1. We
call k the branching factor of this conditional. (The branching factor for an
“if-then-else” condition is 2.) Then there are exactly k incoming edges into
co in F, from the vertices tq,to, ..., tg,

2. For each £ € {1,2,...,k}, let V) C V and E}, C E denote all the vertices and

edges on paths reachable from sy that do not include vertex co. By definition,

s¢ is the sole source vertex of the DAG G, def (V/, E}). It must hold that ¢,

is the sole sink vertex of GY.

3. It must hold that V/NV} = @ for all £, j, £ # j. Additionally, with the exception
of (c1, s¢) there should be no edges in E into vertices in V; from vertices not
in V/, for each £ € {1,2,... k}. Le., EN((V\ V) x V) = {(c1,5¢)} should
hold for all ¢.

Edges (v1,v2) between pairs of vertices neither of which are conditional ver-
tices represent precedence constraints exactly as in traditional sporadic DAG
tasks, while edges involving conditional vertices represent conditional execution
of code. More specifically, let (c¢1, c2) denote a defined pair of conditional vertices
(recall that conditional vertices are always defined in pairs). The semantics of
conditional DAG task execution mandate that

— After the job ¢; completes execution, exactly one of its successor jobs becomes
eligible to execute; it is not known beforehand which successor job may exe-
cute.

— Job ¢ begins to execute upon the completion of exactly one of its predecessor
jobs.

It is important to note that the conditional expressions may evaluate differently
during different executions of a conditional DAG task. Let J denote all possible

Resource-efficient execution of conditional parallel real-time tasks 223

complete collections of jobs that comprise a single dag-job of the task, along with
the precedence constraints amongst these jobs that are imposed by the edges of
the DAG. Thus each J € J denotes a collection of precedence-constrained jobs
obtained by completely executing through the DAG once, taking into account
the conditional branches within it. There may in general be exponentially many
different flows through a graph: consider for example the following skeleton of
code (here each (Ci) represents a boolean condition that may evaluate to either
true or false, and each {Sij} a block of straight-line code):

if (C1) then {S11} else {S12}
if (C2) then {S21} else {S22}

if (Cn) then {Sn1} else {Sn2}
Depending upon whether the (Ci)’s evaluate to true or false, this code fragment
may experience any of 2™ different execution flows through it; hence |J|, the
number of precedence-constrained collections of jobs in J, may be exponential
in the number of vertices in G. As a consequence, algorithms for the analysis

of conditional DAG tasks that are based upon explicitly examining each J € J
will necessarily have exponential worst-case running time.

3 Some Prior Results on Scheduling DAG Tasks

As stated in Sect.1 above, the workload of a DAG is often succinctly charac-
terized via the work (the cumulative worst-case execution time) and span (the
maximum cumulative worst-case execution time of any sequence of precedence-
constrained jobs) parameters. The relevance of these two parameters arises from
well-known results in scheduling theory concerning the multiprocessor schedul-
ing of precedence-constrained jobs (i.e., DAGs) to minimize makespan—this is
the widely-studied P | prec | Smax problem in the classic 3-field a | 8 | v nota-
tion [8]. This problem has long been known to be NP-hard in the strong sense [9];
i.e., computationally highly intractable. However, Graham’s list scheduling algo-
rithm [10], which constructs a work-conserving schedule by executing at each
instant in time an available job, if any are present, upon any available processor,
performs fairly well in practice. It was shown [10] that list scheduling makes
the following guarantee: if Sy, denotes the minimum makespan with which a
particular DAG can be scheduled upon m processors, then the schedule gener-
ated by list scheduling this DAG upon m processors will have a makespan no
greater than (2 — i) X Smax- This result, in conjunction with a hardness result
in [11] showing that determining a schedule for this DAG of makespan S%Smax
remains NP-hard in the strong sense, suggests that list scheduling is a reasonable
algorithm to use in practice, and in fact most run-time scheduling algorithms
that are used for scheduling DAGs upon multiprocessors use some variant or the
other of list scheduling. We will do so in this paper as well.

224 S. Baruah

An upper bound on the makespan of a schedule generated by list scheduling
is easily stated. Letting work and span denote the work and span parameters of
the DAG being scheduled, it has been proved in [10] that the makespan of the
schedule for a given DAG is guaranteed to be no larger than

k —
wor span + span (1)

Computing work and span for Conditional DAGs. As in Sect. 2, let J
denote all possible complete collections of jobs that comprise a single dag-job
of the conditional DAG task under consideration, along with the precedence
constraints amongst these jobs that are imposed by the edges in the DAG. Recall
that the work of a regular (i.e., not conditional) DAG task denotes the sum of
the WCETs of all the nodes, and span the maximum sum of WCETSs of any
precedence-constrained chain of nodes, in the DAG. These definitions have been
extended to conditional DAGs [6]: for each J € J, let work(J) denote the sum
of the WCETS of all the jobs in J and span(J), the maximum sum of WCETs of
any precedence-constrained chain of jobs in J. If .J is the collection of precedence-
constrained jobs yielded during some execution of a dag-job of 7, the makespan
of a schedule generated by the List Scheduling algorithm is, by Expression1,
guaranteed to be no larger than

(work(J)T; span(J) " Span(J))

Letting
def def
E S maxlwork(7)} and span < max{ span(7) }. 2
wor max, wor (J)p and span max span(J) (2)

it has been shown in [5] that (w + Span) is a 2-approximation on the

actual makespan if the conditional DAG is list-scheduled upon m processors. We
therefore use the following sufficient condition for ensuring that conditional spo-
radic DAG task 7, with relative deadline parameter D, is correctly list-scheduled
upon m unit-speed processors:

kf
work —span | < D 3)

It remains to specify how the work and span parameters of a conditional spo-
radic DAG task are to be computed. As mentioned above, an algorithm based
on exhaustive enumeration of 7, and then computing work(J) and span(J) sep-
arately for each J € J would yield an exponential-time algorithm; a recursive
procedure for computing span and work for a given conditional DAG task is
specified in [6,7] that has running time polynomial in the representation of the
task.

4 Our Proposed Scheduling Approach

Given a conditional DAG task that is to be executed upon a platform compris-
ing m identical processors, we will perform some analysis prior to run-time to

Resource-efficient execution of conditional parallel real-time tasks 225

compute the values of two parameters my and Sy. These two parameters are
then used during run-time by the run-time scheduler to ensure that the task
always executes correctly (i.e., always meets its deadline) during runtime.

Pre-run-time analysis comprises three steps: given the conditional DAG task
and the number m of processors that are available for its use,

1. Determine the work and span parameters of the conditional DAG task (as
defined in Expression 2), using the algorithm of [6,7].

2. Check whether Inequality 3 holds. If it does not, our scheduling algorithm
declares failure: it is unable to schedule this task in a manner that guarantees
timing correctness.

3. Otherwise, it computes a pair of values my and Sy—the manner in which
these values are computed will be presented in Sect. 4.1; a property that they
will satisfy is derived in Theorem 1.

Example 1. Consider the example task fragment in Fig. 1. Suppose this has a
deadline D = 300, and that we have m = 7 processors available. Suppose, too,
that upper branch (Branch A) is taken overwhelmingly more frequently than
the lower branch (Branch B).

1. For this task, work = 1000 and span = 100
2. Inequality 3 evaluates as

1000 — 100
7

(w+span§l)) (:)(

+100 < 300) < (228.6 < 300)
which is true. Hence, the task can be scheduled correctly upon the eight
processors provided.

3. In Example 3, we will see that our pre-processing algorithm, using the tech-
nique for computing mpy and Sy derived in Sect. 4.1, would compute the
values my = 2 and Sy = 100 (these parameter values are used during
run-time scheduling as discussed below).

O

Run-Time Scheduling. Suppose that the conditional sporadic DAG task
releases a dag-job at some time-instant ¢, during run-time.

1. Our run-time scheduler sets a timer to go off at time-instant (¢, + Sy), and
begins executing the task upon my processors using the list-scheduling algo-
rithm [10]. The remaining (m — my) processors are placed/remain in sleep
mode.

2. If the task has not completed execution when the timer goes off at time-instant
(to+Sn), then the scheduler awakens the (m —my) sleeping processors, and
uses list-scheduling to execute the remainder of the task upon the entire bank
of m processors.

226 S. Baruah

We highlight that the run-time scheduler does not need to monitor the flow of
control through the code — i.e., which branches are taken — during execution
of the conditional DAG; in fact, no run-time monitoring is needed other than
whether the DAG completes execution within Sy units of arrival or not. This
enables far more efficient implementation than if it needs to actively examine
the internal state (the program counter; the values of the conditional expressions
that are evaluated; etc.) of the task.

Example 2. Returning to the task in Example 1, each time a dag- job of this
task is released the run-time scheduler list-schedules it upon two processors. If
the task does not complete execution within 100 time units of its arrival, the
remaining (7 — 2 =) five processors are awakened, and the task list-scheduled
upon all seven processors for the remaining 200 time units until its deadline. O

In Theorem 1 below we derive sufficient conditions upon the values that are
assigned to my and Sy in order to ensure that this run-time algorithm always
meets the task deadline.

Theorem 1. Suppose that we are given values of my and Sy, with 0 < my <
m and 0 < Sy < D. If these given values satisfy

D — span — (work — span)/m
1 — (my/m)

Sy <

(4)

then the run-time scheduling algorithm described above is guaranteed correct.

Proof: If the task completes execution within Sy time units, correctness is pre-
served since Sy < D. Let us therefore consider the case when it does not com-
plete execution by time-instant Sy. Let work’ and span’ denote the work and
span parameters of the remaining amount of computation, which will execute
upon m processors. By Expression 1 the overall makespan is therefore bounded
from above by

Sn + ((work” — span’) /m + span’) (5)

Since the remaining span at time-instant Sy is span’, an amount (span —
span’) of the critical path of the task has executed during [0, Sy]. At each instant
when the critical path is not executing, all m processors must be busy executing
tasks not on the critical path. Hence the total amount of execution occurring
over [0,Sy) is at least [(Sy — (span — span’)) x my + (span — span’)], from
which it follows that

work’ < work — Sy x my + (span — span’) x my — (span — span’)

= work — Sy x my + span x (my — 1) — span’ x (my —1) (6)

Substituting Inequality 6 into the Expression 5, we obtain the following upper
bound on the overall makespan:

(work — Sy X my + span x (my — 1) — span’ X (my — 1) — span’

SN + -+ span/>

m

k-8 -1
— S 4 (wor N XmN; span X (mn)+spanl o (1_ n;i\z)) (7)

Resource-efficient execution of conditional parallel real-time tasks 227

Since my < m, Expression 7 is maximized when span’ is as large as possible;
i.e., span’ = span. Substituting span’ = span into Expression7, we get the
following upper bound on the overall makespan:

work — Sy X mpy + span X (my — 1) + span (1 B mN)>
m m
(work — SN X mpy — span

5N+<

=S8N + + span)

m

Correctness is guaranteed by having this upper bound on the makespan be <D:

work — Sy X my — span

(SN+(- +span)> <D

- (SNf Sy me) < (D— work — span 7Sp(m)
m m

k—
< SN (1 - —mN) < (D _ work— span Span)
m m

D — span — (work — span)/m
1= (my/m)

&Sy <

which is the same as Expression 4, and the theorem is thus proved. a

4.1 Computing my and Sy

We now describe how we assign values to the parameters my and Sy satisfying
Expression 4. We reiterate that our objective here is to enhance efficiency while
maintaining correctness — the guarantee that the deadline will be met. Our
approach to this will be based on profiling the run-time behavior of the task, in
order to obtain an estimate of the likelihood (i.e., probability) that the make-
span on the my processors will exceed the threshold Sy, thus triggering the use
of the remaining (m — my) processors.

In somewhat greater detail, let us suppose that we seek to minimize the
expected number of processors that will be used during any given invocation of
the task®. We first observe that one strategy for guaranteeing correctness is to
execute the task upon m processors that will be used during each invocation,
where m satisfies

(Lork —span) < D

o> {workspan—‘ ()

D — span

This value of m represents an upper bound on the desired value of mpy: our
run-time scheduler will never need to activate more than m processors upon the

2 We point out that other optimization objectives could also reasonably be considered,
such as minimizing the cumulative expected duration that the processors will be active,
using an approach similar to the one we adopt here — see the discussion in the
paragraphs immediately following displayed equation (10).

228 S. Baruah

arrival of a dag-job. Below, we exhaustively consider each potential value of my
in [0, 70]:

for m’ = 1 to m do
1. Assign Sy (m’) a value as follows:

D — span — (work — span) /m

Sn(m') = 1— (m/ /i))

so that Expression 4 of Theorem 1 is satisfied with my = m’ and Sy =
Sy (m').

2. Profile the run-time behavior of the task upon m’ processors to determine
the probability that the makespan of the task is <Sy(m'). Let p(m’) denote
this probability.

3. Compute E(m’), the expected number of processors that are used during any
given invocation of the task if our run-time algorithm is implemented with
mpy = m/, as follows:

E(m') = p(m’) x m" + (1 = p(m')) x m (10)

This represents the fact that there is a probability p(m’) that just the m/
processors will be used, and a probability (1 — p(m’)) that all m processors
will be used.

If we were interested in optimizing the duration for which the processors are
to be kept active, we would replace Expression 10 with

E(m') = m' x Sy(m’) + (1 —p(m')) x m x (D — Sy(m’))

Let mumin denote the value of m’ for which F(m/'), as computed in Expression 10
above, is the minimum. We assign my and Sy values as follows:

my < Mpin and S «— Sy (Mumin).

Example 3. Let us revisit the example task fragment in Fig. 1, that was con-
sidered in Examples 1 and 2. Recall that this task had work = 1000, span = 100,
and D = 300, and is to be scheduled upon m = 7 processors. Furthermore, we
had assumed that the upper branch in Fig.1 is taken far more frequently than
the lower branch; let p, denote the probability that the uper branch is taken
upon any given execution.

We compute 7 = [(1000 — 100)/(300 — 100)] = [900/200] = 5. From
Expression 9, we have

300 — 100 — (1000 — 100)/7 200 —900/7 500

/
S(m’) 1—m/J7 T Tl-mT T—w

Resource-efficient execution of conditional parallel real-time tasks 229

Hence S(1) = 500/6 =~ 83.3, while §(2)-S(5) are all >100. Making the simpli-
fying conservative assumption that each piece of sequential code executes for
a duration equal to its WCET, it is clear from visual inspection of the task
fragment in Fig.1 that when the upper branch is taken, the makespan is 100;
hence p(1) = 0 while p(2)—p(5) are all equal to p, (the probability that the
upper branch is taken). Consequently, mpyi, = 2 and our algorithm computes
and returns
mpy < 2 and Sy « 100.

5 Context and Summary

To our knowledge, the concept of representing a single parallelizable real-time
task with multiple pairs of work and span parameters was first proposed by
Li et al. [12], in the context of mized-criticality scheduling [13]. Li et al. [12]
were motivated by the fact that determining tight upper bounds on WCET’s
of even sequential pieces of code can be a very challenging problem upon the
kinds of advanced computing platforms that are widely used today; additionally,
upon such platforms the difference between typical-case and worst-case execution
times may be very considerable. They hence proposed that two pairs of work and
span parameters be estimated for each parallel task, one pair that is made under
very conservative assumptions and therefore perhaps very large but trust-worthy
to a very high level of assurance, and another pair made under less conservative
assumptions and therefore considerably smaller than the conservative bounds,
but also to be trusted to a lesser level of assurance. The appropriate pair of
estimates—the more conservative pair, or the less conservative one, could then
be used for validating the correctness of the run-time behavior of each task
depending upon the criticality of the functionality that it is responsible for.

Integrating multiply-specified tasks of this kind with the approach of dynam-
ically changing the number of processors assigned to an individual task during
run-time was originally proposed in [14]. The principal motivation for the work
in [14] was to explore whether ideas and techniques from the considerable body
of prior research (e.g., [15-17]) on measurement-based techniques for estimating
probabilistic worst-case execution time distributions (pWCET) are applicable to
run-time scheduling of parallel real-time tasks.

The work presented in the current paper extends and generalizes these prior
approaches: we have proposed here a method based upon combining worst-case
characterization and experimental profiling of run-time behavior, for modeling
complex parallelizable real-time code that may include conditional branching,
that is to be implemented upon multiprocessor platforms. This model, and the
scheduling algorithms we have derived for it, enables us to obtain implementa-
tions that combine correctness guarantees with improved efficiency. Correctness
depends only upon the conservative worst-case characterization, while the sole
effect of the experimental characterization is on efficiency; hence, system correct-
ness is not compromised at all if the experimental profiling mis-characterizes, or

230 S. Baruah

fails to capture all subtleties of, actual run-time behavior. In this manner the
correctness of safety properties may be validated under worst-case assumptions;
a system so validated may be experimentally profiled to enhance the run-time
efficiency of its implementation.

Acknowledgements. This research was supported in part by NSF Grants CNS
1409175, CPS 1446631, and CNS 1563845.

References

1. Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard real-
time environment. J. ACM 20(1), 46-61 (1973)

2. Baruah, S., Mok, A., Rosier, L.: Preemptively scheduling hard-real-time sporadic
tasks on one processor. In: Proceedings of the 11th Real-Time Systems Symposium,
Orlando, Florida, pp. 182-190. IEEE Computer Society Press (1990)

3. Baruah, S., Bonifaci, V., Marchetti-Spaccamela, A., Stougie, L., Wiese, A.: A gen-
eralized parallel task model for recurrent real-time processes. In: Proceedings of
the IEEE Real-Time Systems Symposium, RT'SS 2012, San Juan, Puerto Rico, pp.
63-72 (2012)

4. Li, J., Saifullah, A., Agrawal, K., Gill, C., Lu, C.: Analysis of federated and global
scheduling for parallel real-time tasks. In: Proceedings of the 2012 26th Euromicro
Conference on Real-Time Systems, ECRTS 2014, Madrid, Spain. IEEE Computer
Society Press (2014)

5. Baruah, S.: The federated scheduling of systems of conditional sporadic DAG
tasks. In: Proceedings of the 15th International Conference on Embedded Soft-
ware (EMSOFT), Amsterdam, The Netherlands (2015)

6. Baruah, S., Bonifaci, V., Marchetti-Spaccamela, A.: The global EDF scheduling
of systems of conditional sporadic DAG tasks. In: Proceedings of the 2014 26th
FEuromicro Conference on Real-Time Systems, ECRTS 2015, Lund, Sweden, pp.
222-231. IEEE Computer Society Press (2015)

7. Melani, A., Bertogna, M., Bonifaci, V., Marchetti-Spaccamela, A., Buttazzo,
G.: Response-time analysis of conditional DAG tasks in multiprocessor systems.
In: Proceedings of the 2014 26th Euromicro Conference on Real-Time Systems,
ECRTS 2015, Lund, Sweden, pp. 222-231. IEEE Computer Society Press (2015)

8. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann. Discret.
Math. 5, 287-326 (1979)

9. Ullman, J.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384—
393 (1975)

10. Graham, R.: Bounds on multiprocessor timing anomalies. SIAM J. Appl. Math.
17, 416-429 (1969)

11. Lenstra, J.K., Rinnooy Kan, A.H.G.: Complexity of scheduling under precedence
constraints. Oper. Res. 26(1), 22-35 (1978)

12. Li, J., Ferry, D., Ahuja, S., Agrawal, K., Gill, C., Lu, C.: Mixed-criticality federated
scheduling for parallel real-time tasks. In: Proceedings of the 22nd IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), April 2016

13. Vestal, S.: Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In: Proceedings of the Real-Time Systems Symposium,
Tucson, AZ, pp. 239-243. IEEE Computer Society Press, December 2007

14.

15.

16.

17.

Resource-efficient execution of conditional parallel real-time tasks 231

Agrawal, K., Baruah, S.: A measurement-based model for parallel real-time tasks.
In: 2018 30th Euromicro Conference on Real-Time Systems. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, July 2018

Edgar, S., Burns, A.: Statistical analysis of WCET for scheduling. In: 2001 TEEE
Real-Time Systems Symposium (RTSS), pp. 215-224, December 2001

Bernat, G., Colin, A., Petters, S.M.: WCET analysis of probabilistic hard real-
time systems. In: 2002 IEEE Real-Time Systems Symposium (RTSS), pp. 279-288
(2002)

Bernat, G., Colin, A., Petters, S.: pWCET: a tool for probabilistic worst-case
execution time analysis of real-time systems. Technical report, The University of
York, England (2003)

High Performance Architectures and
Compilers

®

Check for
updates

Improving GPU Cache Hierarchy
Performance with a Fetch
and Replacement Cache

Francisco Candel' ™) Salvador Petit!, Alejandro Valero?,
and Julio Sahuquillo!

! Department of Computer Engineering, Universitat Politecnica de Valéncia,
46022 Valencia, Spain
fracanma@inf.upv.es,{spetit, jsahuqui}@disca.upv.es
2 Departamento de Informética e Ingenieria de Sistemas,

Instituto Universitario de Investigacién en Ingenieria de Aragén
Universidad de Zaragoza, 50018 Zaragoza, Spain
alvabre@unizar.es

Abstract. In the last few years, GPGPU computing has become one of
the most popular computing paradigms in high-performance computers
due to its excellent performance to power ratio. The memory require-
ments of GPGPU applications widely differ from the requirements of
CPU counterparts. The amount of memory accesses is several orders of
magnitude higher in GPU applications than in CPU applications, and
they present disparate access patterns. Because of this fact, large and
highly associative Last-Level Caches (LLCs) bring much lower perfor-
mance gains in GPUs than in CPUs.

This paper presents a novel approach to manage LLC misses that effi-
ciently improves LLC hit ratio, memory-level parallelism, and miss laten-
cies in GPU systems. The proposed approach leverages a small additional
Fetch and Replacement Cache (FRC) that stores control and coherence
information of incoming blocks until they are fetched from main mem-
ory. Then, fetched blocks are swapped with victim blocks to be replaced
in the LLC. After that, the eviction of victim blocks is performed from
the FRC. This management approach improves performance due to three
main reasons: (i) the lifetime of blocks being replaced is increased, (ii) the
main memory path is unclogged on long bursts of LLC misses, and (iii)
the average L2 miss delaying latency is reduced. Experimental results
show that our proposal increases the performance (OPC) over 25% in
most of the studied applications, reaching improvements up to 150% in
some applications.

1 Introduction

In recent years, GPU (Graphics Processing Unit) architectures have acquired
a great relevance in the field of high-performance computing. The main reason
has been that GPUs are able to accelerate the execution of massively parallel

© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 235-248, 2018.
https://doi.org/10.1007/978-3-319-96983-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_17&domain=pdf

236 F. Candel et al.

applications, since they provide a much higher level of parallelism than CPU
architectures. In addition, GPUs are energetically more efficient [1,2] for a given
performance, than its CPU counterparts. Because of these reasons, many super-
computers in the top 500 list [3] rely on GPUs. For instance, the Piz Daint
supercomputer, ranked in third place of the list in November 2017, was built
with Nvidia Tesla P100 GPU devices.

GPU architectures are optimized to run applications composed of thousands
of logical threads. In order to support the execution of such a high number
of threads, the GPU core must be coupled with a memory subsystem able to
support a high Memory-Level Parallelism (MLP). GPU memory subsystems are
therefore designed to sustain a high memory bandwidth. Because of the poor
data temporal locality of GPGPU applications or kernels, on a very long burst
of L2 accesses many requests can miss, which cause subsequent main memory
accesses.

In this scenario, the memory subsystem of GPUs poorly performs. In this
paper, we look into the reasons explaining this behavior, and we find that one of
the main sources of performance losses of the memory subsystem is the manage-
ment of L2 cache misses. We find that conventional caches designed to address
memory patterns of CPU applications do not properly meet the requirements of
GPGPU applications, but they seriously penalize their performance since they
can significantly slow down the management of L2 cache requests on long bursts
of requests. The previous rationale means that improving the L2 cache man-
agement is a key design concern that should be tackled to improve the system
performance. This paper proposes a novel L2 cache design aimed at boosting
the memory level parallelism by adding a Fetch and Replacement Cache (FRC)
that provides additional cache lines that help unclog the memory subsystem.
The FRC approach uses these extra resources to prioritize the fetch of incom-
ing L2 cache requests and to delay the eviction of the blocks to be replaced.
The proposal has been evaluated considering an AMD GPU based architecture,
although the results would also apply in almost all current GPU architectures
as they implement a similar memory hierarchy.

The proposal has been modeled in the Multi2Sim simulation framework [4],
a state-of-the-art GPU simulator widely used in both the academia and the
industry. Experimental results show that FRC improves the Operations Per cycle
(OPC) more than 25% in most applications by drastically reducing the Misses
Per Kilo-Operation (MPKO) and L2 miss latency.

The remainder of this work is organized as follows. Section 2 describes the
architecture of the AMD Southern Islands family of GPUs. Section 3 motivates
this work by presenting the problems that FRC tackles in current GPU memory
subsystems. In Sect. 4, the proposed approach is described in detail. Section b
presents the experimental results. Section 6 summarizes related studies about
GPU memory subsystems. Finally, in Sect. 7 some concluding remarks are drawn.

Improving GPU Cache Hierarchy Performance 237

2 Background

This section provides some background about the architecture of modern GPUs.
Since this paper focuses on the AMD Southern Islands [5] family of GPUs, AMD
terminology is used throughout this work.

\i

CUo | [SIMD] [SIMD] [SIMD] [SIMD] | L1Do |«
CU: [[SIMD] [SIMD] [SIMD] [SIMD]| L1D:

CUn |[SIMD] [SIVD)] [SIMD] [SIMD] |L1Dn1]

L1-L2 network

L2 bankm-1

Fig. 1. Diagram of an AMD Southern Islands GPU.

Figure 1 depicts a block diagram of an AMD Southern Islands GPU. This
GPU includes up to 32 Compute Units (CUs), each one implementing the Graph-
ics Core Next (GCN) [6] microarchitecture. Internally, a GCN CU consists of 4
Single Instruction Multiple Data (SIMD) arithmetic logic units.

GPU applications or kernels are composed of a massive number of threads or
work-items. These threads are organized in 64-thread bundles, named wavefronts,
which are allocated to SIMD units. During most of the execution time of a kernel,
the GPU ensures that each SIMD unit is assigned tens of wavefronts. In this way,
SIMD units can switch among wavefronts in a fine-grain basis, which helps hide
memory latencies.

A SIMD unit executes instructions from threads of a wavefront in a lockstep
manner. That is, at a given point of the execution time a SIMD unit is performing
the same arithmetic instruction in the 64 threads of the same wavefront. Memory
reference instructions are also executed following the SIMD paradigm; that is, a
wavefront can generate up to 64 memory requests at the same time. To reduce
the overall amount of memory requests, those referencing the same 64-byte cache
block are coalesced into a single memory request, which is issued to the memory
subsystem.

As in a conventional processor, the memory subsystem is organized hierar-
chically. After being coalesced, memory requests access the L1 data cache of
the corresponding CU. Those requests that miss the L1 cache are forwarded
to a multi-banked L2 cache, acting as Last-Level Cache (LLC). L2 banks con-
tain interleaved block addresses at a granularity of 256 bytes, and each bank is
connected to a dual-channel memory controller that manages the correspond-
ing off-chip GDDR5 main memory. This design reduces the number of channel
conflicts and increases the memory bandwidth utilization.

3 Motivation

The coalesce mechanism reduces the number of requests to the memory sub-
system. However, GPGPU applications generate enormous amounts of memory

238 F. Candel et al.

traffic; for instance, a typical GPU can issue thousands of memory requests in
a given cycle. These amounts yield conventional cache organizations to signifi-
cant performance losses. The main reason is that the massive number of threads
is executing in parallel causes sudden bursts of memory transactions, which
involve a high number of cache replacements. As a consequence, in a relatively
short interval of time, a given cache line can suffer a long number (e.g. in the
order of tens) of consecutive block replacements, each one involving different
actions such as coherence invalidations or accesses to lower levels of the memory
hierarchy. Since these actions are serialized at the cache line, the management of
cache replacements becomes a major performance bottleneck, which can heavily
reduce the MLP and the L2 hit ratio.

L2 line CUs events L2 line FRC, FRC,
0 \
Inv. A Req. B
EvictA
Req. C
i 100 Resp. B
Fetch B i
: VA Eerch ©
| EvictA
200 : :
Inv. B || Resp. C > -
Evict B |« Req.D i
2 1| Evict B
£ 300 ' :
F : :
FetchC || : Fetch D
' Resp. D
Inv. C
400 '
Inv.C | '| EvictC
Evict C |!
: 500
V FetchD|!
600 o
(a) Conventional (b) FRC approach

Fig. 2. Sequence of events involved in three consecutive replacements targeting the
same L2 cache line for both the conventional and the proposed approaches.

To help understand the problem, Fig.2 depicts a time diagram with the
events involved in three consecutive replacements all targeting the same L2 vic-
tim line. The three requests causing these replacements have been labeled as
Req. B, C, and D, and have been generated at cycles 0, 90, and 240, respectively,
after the requests miss the L1 cache and are forwarded to the L2 cache.

As can be seen in Fig. 2a, which shows the behavior of a conventional replace-
ment approach, Req. B triggers the replacement of the currently stored block
(block A). From this moment, the victim line is in a transient state (represented
by dashed lines), preventing other requests from accessing the line. To manage
the replacement, depending on the state of A, an invalidation to the L1 cache
and an L2 cache eviction must be performed. Once the victim line is freed, the

Improving GPU Cache Hierarchy Performance 239

requested incoming block (B), must be fetched from main memory and allocated
to this line.

While block B is being fetched, Req. C arrives to L2, which triggers another
replacement in the same victim line. However, because of the line is in a transient
state, Req. C must be enqueued. Thus, Req. C' cannot be attended until cycle
210, delaying its completion until cycle 400. This serialization also affects Reg.
D at cycle 240.

Moreover, the hit ratio is also reduced, since (i) the invalidation and eviction
of the contents of a victim line are performed before fetching the requested block
and (ii) the fetch operation is the longest one involved in a replacement due to
the high main memory latencies. As an example, even if a complex protocol
allows reading the contents of a cache line while it is in a transient state, a load
requesting block A would only hit between cycles 0 and 90, and would miss
afterwards.

Although theoretically possible, it is very rare that this situation occurs in
a conventional CPU processor since there is likely a non-transient line in the
same cache set that can be selected as a victim, which avoids the serialization
of replacements. In contrast, in GPUs, it is often the case that a burst of misses
triggers replacements in all the lines of the same cache set. Therefore, further
misses targeting the same set cannot be served from memory, which impacts on
the exploited memory parallelism.

A naive solution to this problem is blindly increasing cache associativity
so that a set has more available lines. However, this approach incurs in high
latencies and energy penalties since associative tag lookups do not scale well
with the number of ways. Moreover, although such a solution may alleviate the
problem, larger sets can also be blocked provided that bursts of misses affecting
the same cache set are large enough.

4 FRC Approach

The proposed approach is aimed at increasing MLP and LLC hit ratio. With
this aim, we introduce a Fetch and Replacement Cache (FRC) to each L2 cache
bank. The FRC provides additional cache lines that allow (i) start fetching from
memory as soon as an L2 miss rises, increasing MLP, and (ii) performing inval-
idation and eviction actions after fetching the requested block, which increases
the lifetime of victim blocks and the overall hit ratio.

Figure 2b shows how the FRC can help improve the management of consecu-
tive replacements affecting the same line. By cycle 10, when Req. B misses in L2,
instead of immediately invalidating the victim line, a free FRC entry (FRCp)
is allocated and used to fetch block B. After this block is fetched, the contents
of the victim line and FRCj are swapped. Then, the invalidation and eviction
of block A are performed from F RCj, which becomes free when the eviction
is completed. In this way, fetch actions can be performed as long as there are
free FRC entries (e.g. the fetch of block C can start in parallel at cycle 90). To
ensure that there are free FRC entries, they are recycled. Thus, after block A

240 F. Candel et al.

Does
FRC set have
any free

Yes | Allocate a
free FRCi

entries? entry
Fetch target
Evict block and
victim store itin
line the FRCi entry
Fetch target » Swap FRCi Evict ¢ E Free
block and — entry and — FRCi b1 FRCi
store it in } victimline 1 oentry | 1 entry

the victim line b i [T [

Fig. 3. Block diagram with the steps followed on an L2 miss. Those steps introduced
with the FRC are highlighted in gray color.

has been replaced, FRCj is freed, which allows this entry to be used later by
Req. D.

The swap operation guarantees that the victim line is never in a transient
state (note that it is not represented with dashed lines in Fig. 2b), and that the
invalidation and eviction of its contents are performed after the requested block
is fetched. Consequently, FRC supports a higher cache level parallelism that
allows responding to several requests at the same time. Furthermore, compared
to the conventional approach, the lifetime of the victim block becomes longer
when FRC is used.

Tags and control bits of blocks in transient state are stored in the FRC.
Thus, to reduce tag lookup overhead, FRC is organized as a conventional cache,
although its geometry (i.e. associativity and number of sets) can be different
from that of the L2 cache. L2 accesses must search the requested block both in
the target L2 bank and its associated FRC. A hit in the L2 bank is performed
as in the conventional approach, while a hit in FRC for a block being fetched is
enqueued until the fetch operation completes.

As shown in Fig. 3, the FRC approach modifies the classical miss management
by adding the events highlighted in gray color. On an L2 miss (both in the L2
bank and the FRC), and if there are free entries in the FRC’s set mapped to
the missing block, the block is assigned to a FRC ’s entry and the access is
immediately propagated to the lower memory hierarchy level (early fetch). Once
the fetch has been performed, the miss can be already served. In this way, the
victim block eviction is taken out of the critical path. To manage the eviction
without leaving L2 cache lines in a transient state, the data stored in the FRC’s
entry and the victim line are swapped. Thereby, the eviction is done from the

Improving GPU Cache Hierarchy Performance 241

FRC’s entry. Once the eviction has finished, the FRC’s entry is set as free to
handle subsequent L2 misses.

Finally, note that in case there is not any free entry in the FRC’s set tar-
geted by the missing block, the proposed approach operates like the conventional
approach. In addition, FRC does not change the state of blocks stored in the
cache, but only modifies the resources they are using. Thus, it does not affect
the coherence protocol.

Overall, as experimental results will show, FRC has three main impacts on
performance: (i) new requests do not wait (or wait much less) for cache block’s
evictions, which reduces the memory access latency, (ii) the lifetime of an L2
block becomes longer, decreasing the number of misses, and (iii) a higher MLP
is achieved, since FRC allows immediate access to lower memory levels as long
as there are free FRC entries.

5 Experimental Evaluation

To evaluate the proposal, we have modeled the FRC approach with the
Multi2Sim [4] simulation framework. We focus on the Southern Islands GPU
architecture from AMD, which is one of the most recent GPU architectures
modeled on a detailed simulation framework. In particular, we model the char-
acteristics of an HD7770 GPU [6], including CUs, L1 and L2 caches, memory
controllers, and GDDR5 memory [7]. The L2 cache consists of two 16-way 128 KB
banks, which is our baseline configuration. In addition, to evaluate the impact
on performance of cache associativity and capacity, we evaluate two additional
conventional L2 caches consisting of two 32-way 256 KB banks and two 32-way
512 KB banks. Both configurations are compared to the FRC one, which is com-
posed of the baseline configuration plus two additional FRCs (1 per bank). We
analyze the sensitivity our proposal to the number of FRC entries, which ranges
between 4 and 512. All the evaluated FRC configurations, except the smallest
one with 4 entries, are organized with 8-way sets.

Notice that the FRC approach represents a minor area increase over the
baseline, since the area occupied by an additional FRC is much smaller than
doubling or quadrupling the cache bank capacity, which would present roughly
the same cost in area as adding 2048 and 6144 entries, respectively. Nevertheless,
we conservatively assume that all the analyzed L2 cache configurations have the
same access time.

For evaluation purposes, a subset of the OpenCL SDK 2.5 benchmarks [§]
has been used, covering all the possible performance behaviors from the entire
benchmark suite. These benchmarks are executed until completion.

5.1 Performance Analysis

System performance has been quantified in terms of Operations Per Cycle
(OPC), which is analogous to its counterpart IPC used to evaluate CPU pro-
cessors [7]. This metric accounts for the number of single scalar operations each

242 F. Candel et al.

BlackScholes DCT DwtHaarlD MatrixMultiplication
500 200 250
400 150 200
Q 300 300 150
S 200 200 100 100
100 100 50 50
0 0 0
Qua5|RandomSequence RecursiveGaussian 200 Reduction 250 ScanlLargeArrays
450 150 igg
cL 300 100 100
150 50 50
0 0
300 FastWalshTransform MatrixTranspose 500 MersenneTwister 8 RadixSort
400 6
9 200 300 .
S 100 200
"1 1 I 1=l 4 l
0 0
BinomialOption SimpleConvolution SobelFilter URNG
600 300
© 200 450 200
3 300
100 150 100
mmwmwwmwmmm Ommwmmwmwwmm mmwwmwmwmmm Ommwwmwmwmmm
¥ OONTO0ONNY N ¥ OONTO0ONNY N ¥ OONTO0ONNY NV ¥ T OONTO0ONNY N
O+ + T MONNAON O+ + T MONNAON O+ + T MONNAON O+ + T MONNAON
N + 4+ + 7NN N + 4+ + 7NN ~N + 4+ +7 NN ~N + 4+ + 0NN A
— ++ +aun — ++ +aun — ++ +aun — ++ +aun

Fig. 4. Operations Per Cycle (OPC) across the studied applications. (Color figure
online)

GPU instruction executes during the workload execution. For instance, if a given
vector instruction is internally executed as 64 individual scalar operations, this
metric accounts for 64 operations instead of only one instruction.

Figure 4 shows the OPC for the studied benchmarks. The red bar on the left
side of each plot represents the 2 x 128 KB L2 baseline cache, and the two red
bars on the right side represent the 2 x 256 KB L2 cache and the 2 x 512 KB
L2 cache, respectively. The black bars show results of the FRC configuration
varying the number of entries per FRC ranging from 4 to 512, labeled as +Ne,
where N indicates the number of entries. The proposed approach achieves, across
most of the studied applications, OPC improvements higher than 25% com-
pared to the baseline, reaching improvements up to 150% in applications such
as FastWalshTransform and MersenneTwister. In general, it can be observed
that almost all the applications achieve their highest OPC with around 32 or 64
entries, which represents by 64x and 32x less area, respectively, than doubling
the cache bank size to 256 KB. Moreover, in most applications, the performance
achieved by FRC is much higher than that obtained by blindly increasing the
L2 cache capacity with a higher associativity degree.

Three main behaviors can be appreciated:

— Smooth OPC increase. The OPC of applications exhibiting this behavior,
which is the common one, increases in small steps with additional FRC
entries until a given saturation point. This is the case of benchmarks such
as FastWalshTransform, MersenneTwister, and DCT.

— Sharp OPC increase. Applications presenting this behavior show signifi-
cant performance increase with just 4 FRC entries, but no remarkable

Improving GPU Cache Hierarchy Performance 243

OPC improvement is observed with additional entries. This is the case of
MatrixMultiplication.

— Similar OPC. Applications in this category experience the same performance
across all the studied cache approaches. This is the case of BinomialOption
and URNG, mainly due to their low number of memory accesses as discussed
below. Obviously, the OPC of this type of applications is also not affected
when enlarging the L2 cache size and associativity.

5.2 Analysis of Memory Subsystem Metrics

To provide insights into the OPC trend shown by the studied applications, we
analyze the following metrics: number of misses measured in Misses Per Kilo-
Operation (MPKO), percentage of misses served by FRC additional entries, and
the L2 miss latency penalty.

Misses Per Kilo-Operation. We define the metric MPKO for GPUs with
analogous meaning to the MPKI (Misses Per Kilo-Instruction), widely used when
studying the cache hierarchy of the CPU counterparts. Figure 5 plots the results.
It can be observed that the baseline configuration shows high MPKO values,
which can be notably reduced by adding FRC entries. This fact confirms the
benefits on performance brought by the FRC approach by keeping victim blocks
in a non-transient state until fetch actions are completed. As a consequence, the
hit ratio is improved compared to the conventional approach.

1 BlackScholes 1 DCT s DwtHaarlD 3 MatrixMultiplication
0 075 0.75 3.75 5
£ o5 0.5 2.5
=025 0.25 1.25 I I I 1 I I
0 0 0 O m === ===
1QuasiRandomSequence 3 RecursiveGaussian 75 Reduction 3 ScanlLargeArrays
0.75 6
e 2 45 2
x 05 3
= 1 1
ST L T T
0 0 0 0
5 FastWalshTransform 10 MatrixTranspose 3 MersenneTwister 100 RadixSort
o375 7.5 5 75
¥ 25 5 50
=125 2.5 1 I I I 25 I
4 1 P . . Bnwnin laao |
BinomialOption 1 SimpleConvolution 1 SobelFilter 1 URNG
0 075 0.75 0.75 0.75
£ o5 0.5 OSIIIIII II 0.5
=
0.25 0.25 0.25 0.25
. Jhnmnnnnmnnn’™’ "I JHnnnnnnnnl
MYV IIOm MmUYV IOD MmooV IOm MUV IIOm
¥ < 0OONSTOONNVY VY ¥ T 0OWNSSO0ONY VY ¥ T OONSTOONNY VY ¥ T 0OONTOONVY VY
O+ +HMONLH OGN 0+ +HMONIHGBN W+ +=IMONDHGON 0+ +HAMON—HON
N ++ + N N + + + 7NN N + + + N N +++ 7 Q0o A
Ll + + + N — + + +w0 — + + + N — + + + N

Fig. 5. Misses Per Kilo-Operation (MPKO) in the L2 cache.

244 F. Candel et al.

BlackScholes DCT DwtHaarlD MatrixMultiplication

400 100 400 100

2 300 75 300 75

& 200 50 200 50

©

S TTTPPSR R TTTTTTITITRA L1 LR |
i 01 20 0 ST |
QuasiRandomSequence RecursiveGaussian Reduction ScanlargeArrays

800 100 800 400

2 600 75 600 300

& 400 50 400 200

s T R T
0 in 0 0 M
FastWalshTransform MatrixTranspose MersenneTwister RadixSort
0 100 800 400

§4oo 75 600 300

B 50 400 200

mzool II I

k| 25' 200 III 100 I
RITTITTEE L TN R TN TR I L L IT T T

BinomialOption SimpleConvolution SobelFilter URNG

100 100 100 100

Z 75 75 75 75

& 50 50 50 50

S8 25 25 25|I II 25' I
Rttt A A OI' (1 o Illllll o Innncuns I
MmooV YvoYwowowoImm moLvovoyLoYvoYwowoowoImm MmooV oYvoewowoowooImm moovoLvoYvoewoowoommn
¥ OONSTO0ONNY N ¥ OONSTOONNY N ¥ OONSTO0ONNYNY ¥ OONSTOONNY N
B+ FHAMONIN A OGN W+ F+HMONIAHON W+ F+HAMONINAHON W+ F+HMONINAHON
o~ + + + 2NV Nn A o~ + + + N0V o~ + + + 7NN o~ + + +" NN A
— ++ + N0 — ++ 4+ — ++ 4+ N0 — ++ 4+ w0

Fig. 6. Average L2 miss delaying latency quantified in processor cycles.

Overall, a clear inverse correlation between OPC and MPKO can be appre-
ciated. However, in a few applications like DwtHaar1D and Reduction, a signifi-
cant MPKO reduction over the baseline with a few FRC entries has a minimal
effect on OPC. On the other hand, as observed, BinomialOption and URNG
present a near-zero MPKQO, meaning that no OPC gains can be achieved in
these applications by acting on the L2 cache. However, there are applications
like BlackScholes, DCT, QuasiRandomSequence, and SobelFilter, with a rel-
atively low MPKO (below 1.5) in the baseline which improve their OPC with
an FRC. In order to explain these behaviors, the MLP and memory latency are
analyzed below.

L2 Miss Latency. L2 cache misses can be handled either by normal cache
entries or by FRC entries. Misses handled by FRC entries can be considered
as fast L2 misses since, as explained in Sect.4, they are able to access to main
memory with a minimum delay. In other words, the more misses handled by
FRC entries the better the performance. Figure 6 plots the results of the L2 miss
latency (excluding the actual main memory access time), quantified in processor
cycles.

The use of FRC entries reduce the average L2 miss latency for almost all the
applications. As observed, with just 4 FRC entries, latency is largely reduced
with respect to the 256 KB and 512 KB cache configurations. In fact, the largest
FRC configuration completely reduces the L2 contention in most benchmarks.
Nevertheless, it can be seen that just 4 FRC entries only provide a slight latency
improvement in some applications, thus large-sized FRCs are preferred. However,

Improving GPU Cache Hierarchy Performance 245

BlackScholes DCT DwtHaarlD MatrixMultiplication
» 100%
& 75%
£ 50%
5 25% I I
B 0% ™ [| I I - l
1000/(.)uasiRandomSequence RecursiveGaussian Reduction ScanlLargeArrays
- o
& 75%
€ 50%
2l I I
ES 0 m W I I - = I - I
100% FastWalshTransform MatrixTranspose MersenneTwister RadixSort
“ b
& 75%
£ 50%
2z anll l [il
S | | -=nl « 11
100% BinomialOption SimpleConvolution SobelFilter URNG
« b
b 75%
£ 50%
5 259
S |
O%QJQJQJQJQJQJQJQJ Y v 9 O 0 U U O Y 9 O 0 0 UV UV O Y v 0 0 U U OV O
< 0 O N S © © N < 0 W N S © © N < 0 W N ¥ © © N < 00 W N S 0 O N
TEEReNg . FrY9ogn 99885 Y oesSgg
e+t eR + + + + o+ + + o+ +

Fig. 7. Percentage of L2 misses handled by FRC entries.

DwtHaar1D and ScanLargeArrays suffer an increase in latency as the number of
FRC entries grows over around 8 entries. This is because the parallelism level is
higher than the baseline, which increases the memory contention. Notice that,
in spite of this increase, the higher MLP turns into OPC improvements.

Percentage of Misses Served by the FRC. Since the service of misses
is not stalled in case of consecutive replacements over the same victim line,
MLP is also improved. Figure7 shows the percentage of misses served by the
FRC. As observed, FRC with only 64 entries handles by 75% of misses in most
applications. Moreover, this percentage significantly rises, even to almost 100%
in some benchmarks, for configurations smaller than the +512e configuration.

The applications Matrixtranspose and BinomialOption show an unex-
pected behavior as the percentage of misses handled by FRC entries saturate in
a relatively low number of entries, that is, this percentage does not increase even
if more entries are added. In other words, the L2 cache misses are mostly handled
by the cache itself instead of by FRC entries. This is due to two different reasons.
First, the kernel of Matrixtranspose presents bursts of accesses targeting the
same FRC set. This behavior can be improved by increasing FRC associativity
(8-way in these experiments). Second, BinomialOption makes important use of
the local memory of the CU, which significantly reduces the number of accesses
to main memory.

246 F. Candel et al.

6 Related Work

The GPU memory subsystem performance has been widely analyzed in recent
years from different angles, including memory scheduling strategies [9-11], cache
bypassing techniques [12,13], and optimizing the memory subsystem design [14—
18]. This section summarizes prior work in this regard.

Elastic-Cache [14] supports fine-grained L1 cache line management for those
kernels with irregular memory access patterns that do not efficiently exploit
cache space. Auxiliary tags for fine-grained cache line management are stored in
unused shared memory space, which is not fully occupied in many kernels.

Gebhart et al. [15] propose to dynamically adjust the storage partitioning
among registers, primary caches, and scratchpads depending on the kernel mem-
ory requirements, resulting in a reduction of the on-chip access latencies.

IBOM [16] is an integrated architecture that leverages unused register file
entries with lightweight ISA support to enlarge the L1 cache size. With enough
cache capacity, a set balancing technique exploits underutilized sets to improve
cache usage.

Other works have proposed additional memory structures to improve GPU
performance. Wang et al. [17] incorporate a victim cache between L1 and L2 that
presents the same capacity and associativity as the L1 cache. Reused blocks are
kept in the L1 cache by enabling swap operations with the victim cache. Since a
victim cache so large would impact on energy and area, unused entries from the
register file and shared memory are proposed as an alternative to holding data
that otherwise would remain in the victim cache.

In [18], the authors propose to allocate TinyCaches between each lane in
a CU and the L1 cache to filter out memory requests to lower memory lev-
els for energy saving purposes. By leveraging intrinsic characteristics of CUDA
and OpenCL programming models, these caches are kept non-coherent to avoid
incurring additional overheads.

All the above works primarily focus on L1 caches. In contrast, our proposed
FRC design targets LLCs where all accesses from L1 are merged and contention
greatly limits MLP. Furthermore, the FRC approach can be easily implemented
in different memory subsystem architectures, since it does not change the actions
required to handle misses, but the locations where these actions are performed
(i.e. FRC entries).

7 Conclusions

This paper has presented a novel GPU cache subsystem design that leverages
a small Fetch and Replacement Cache (FRC) between the Last-Level Cache
(LLC) and the main memory. The design provides additional cache lines that
allow prioritizing the fetch of incoming LLC cache blocks over the replacement of
victim blocks. The proposed design boosts the system performance by increasing
the Memory-Level Parallelism (MLP) and enlarging the lifetime of the victimized
blocks.

Improving GPU Cache Hierarchy Performance 247

FRC attacks by design three main cache performance related events, which
results in a much better L2 cache management: (i) it reduces the number of
Misses Per Kilo-Operation (MPKO) by keeping victim blocks in cache until
fetch actions are completed, (ii) it reduces the miss latency by starting the fetch
actions from main memory as soon as a miss rises, and (iii) it increases the MLP
by unclogging new block requests whose victim line is already being replaced.

Experimental results have shown that, compared to a conventional LLC
design, FRC increases the Operations Per Cycle (OPC) over 25% in all the
applications suffering contention in main memory.

Acknowledgments. This work was supported by the Spanish Ministerio de
Economia y Competitividad (MINECO) and Plan E funds under Grant TIN2015-66972-
C5-1-R and TIN2016-76635-C2-1-R (AEI/FEDER, UE), and by the Programa de Ayu-
das de Investigacion y Desarrollo (PAID) de la Universitat Politécnica de Valéncia.

References

1. Huang, S., Xiao, S., Feng, W.: On the energy efficiency of graphics processing units
for scientific computing. In: Proceedings of the IEEE International Symposium on
Parallel and Distributed Processing, pp. 1-8 (2009)

2. Glenis, A., Petridis, S.: Performance and energy characterization of high-
performance low-cost cornerness detection on GPUs and multicores. In: Proceed-
ings of the 5th International Conference on Information, Intelligence, Systems and
Applications, pp. 181-186 (2014)

3. Top500.org: Top500 Supercomputer Sites. http://top500.org

4. Ubal, R., Jang, B., Mistry, P., Schaa, D., Kaeli, D.: Multi2Sim: a simulation frame-
work for CPU-GPU computing. In: Proceedings of the 21st International Confer-
ence on Parallel Architectures and Compilation Techniques, pp. 335-344 (2012)

5. AMD: Southern Islands Series Instruction Set Architecture (2012)

6. AMD: AMD Graphics Cores Next (GCN) Architecture White Paper (2012)

7. Candel, F., Petit, S., Sahuquillo, J., Duato, J.: Accurately modeling the on-chip
and off-chip GPU memory subsystem. Future Gener. Comput. Syst. 82, 510-519
(2018)

8. AMD: AMD Accelerated Parallel Processing (APP) Software Development Kit
(SDK) (2012)

9. Mu, S., Deng, Y., Chen, Y., Li, H., Pan, J., Zhang, W., Wang, Z.: Orchestrating
cache management and memory scheduling for GPGPU applications. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 22(8), 1803-1814 (2014)

10. Jia, W., Shaw, K.A., Martonosi, M.: MRPB: memory request prioritization for
massively parallel processors. In: Proceedings of the IEEE 20th International Sym-
posium on High Performance Computer Architecture, pp. 272-283 (2014)

11. Sethia, A.; Jamshidi, D.A., Mahlke, S.: Mascar: speeding up GPU warps by reduc-
ing memory pitstops. In: Proceedings of the IEEE 21st International Symposium
on High Performance Computer Architecture, pp. 174-185 (2015)

12. Li, C., Song, S.L., Dai, H., Sidelnik, A., Hari, S.K.S., Zhou, H.: Locality-driven
dynamic GPU cache bypassing. In: Proceedings of the 29th International ACM
Conference on Supercomputing, pp. 67-77 (2015)

http://top500.org

248

13.

14.

15.

16.

17.

18.

F. Candel et al.

Liang, Y., Xie, X., Wang, Y., Sun, G., Wang, T.: Optimizing cache bypassing and
warp scheduling for GPUs. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
(2018, to appear)

Li, B., Sun, J., Annavaram, M., Kim, N.S.: Elastic-cache: GPU cache architecture
for efficient fine- and coarse-grained cache-line management. In: Proceedings of
the IEEE International Parallel and Distributed Processing Symposium, pp. 82—
91 (2017)

Gebhart, M., Keckler, S.W., Khailany, B., Krashinsky, R., Dally, W.J.: Unifying
primary cache, scratch, and register file memories in a throughput processor. In:
Proceedings of the IEEE/ACM 45th Annual International Symposium on Microar-
chitecture, pp. 96-106 (2012)

Mu, S., Deng, Y., Chen, Y., Li, H., Pan, J., Zhang, W., Wang, Z.: IBOM: an
integrated and balanced on-chip memory for high performance GPGPUs. IEEE
Trans. Parallel Distrib. Syst. 29(3), 586-599 (2018)

Wang, J., Fan, F., Jiang, L., Liang, X., Jing, N.: Incorporating selective victim
cache into GPGPU for high-performance computing. Wiley Concurr. Comput.:
Pract. Exp. 29(24), 1-11 (2017)

Sankaranarayanan, A., Ardestani, E.K., Briz, J.L., Renau, J.: An energy efficient
GPGPU memory hierarchy with tiny incoherent caches. In: Proceedings of the
International Symposium on Low Power Electronics and Design, pp. 9-14 (2013)

®

Check for
updates

Abelian: A Compiler for Graph Analytics
on Distributed, Heterogeneous Platforms

Gurbinder Gill®™, Roshan Dathathri, Loc Hoang, Andrew Lenharth,
and Keshav Pingali

The University of Texas at Austin, Austin, TX 78712, USA
{gill,roshan,loc,pingali}@cs.utexas.edu, andrewl@lenharth.org

Abstract. The trend towards processor heterogeneity and distributed-
memory has significantly increased the complexity of parallel program-
ming. In addition, the mix of applications that need to run on parallel
platforms today is very diverse, and includes graph applications that
typically have irregular memory accesses and unpredictable control-flow.
To simplify the programming of graph applications on such platforms,
we have implemented a compiler called Abelian that translates shared-
memory descriptions of graph algorithms written in the Galois program-
ming model into efficient code for distributed-memory platforms with
heterogeneous processors. The compiler manages inter-device synchro-
nization and communication while leveraging state-of-the-art compilers
for generating device-specific code. The experimental results show that
the novel communication optimizations in the Abelian compiler reduce
the volume of communication by 23X, enabling the code produced by
Abelian to match the performance of handwritten distributed CPU and
GPU programs that use the same runtime. The programs produced by
Abelian for distributed CPUs are roughly 2.4x faster than those in the
Gemini system, a third-party distributed CPU-only system, demonstrat-
ing that Abelian can manage heterogeneity and distributed-memory suc-
cessfully while generating high-performance code.

Keywords: Graph analytics + Heterogeneous computing
Distributed computing + Compilers - High performance computing

1 Introduction

Graph analytics systems must handle very large data-sets with billions of nodes
and trillions of edges [16]. Graphs of this size are too big to fit into the memory
of a single machine, so one approach is to use distributed-memory clusters con-
sisting of multicore processors. Writing efficient distributed-memory programs
can be difficult, so a number of frameworks and libraries such as Pregel [18],
PowerGraph [12], and Gemini [33], have been developed to ease the burden of
writing graph analytics applications for such machines. New trends in proces-
sor architecture have made this programming problem much more difficult. To
© Springer International Publishing AG, part of Springer Nature 2018

M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 249-264, 2018.
https://doi.org/10.1007/978-3-319-96983-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_18&domain=pdf

250 G. Gill et al.

reduce energy consumption, computer manufacturers are turning to heteroge-
neous processor architectures in which each machine has a multicore proces-
sor and GPUs or FPGAs. To exploit such platforms, we must tackle the twin
challenges of processor heterogeneity and distributed-memory computing. Frame-
works like Lux [15] and Gluon [10] permit graph analytics applications writers
to use distributed GPUs, but they require writing platform-specific programs
that are not portable.

Ideally, we would have a compiler that takes single-source, high-level speci-
fications of graph analytics algorithms and automatically translates them into
distributed, heterogeneous implementations while optimizing them for diverse
processor architectures. This paper describes such a compiler, called Abelian.
Application programs are generalized vertex programs written in the Galois
programming model, which provides programming patterns and data structures
to support graph applications [20]. Section 2 describes this programming model
in more detail. The Abelian compiler, described in Sect. 3, targets the Gluon
runtime [10], which implements bulk-synchronous execution. Unlike other sys-
tems in this space, this runtime supports a number of graph partitioning policies
including edge-cuts and vertex-cuts, and the programmer can choose any of these
policies. The compiler exploits domain-knowledge to generate distributed code,
inserting optimized communication code. Back-end compilers generate optimized
code for NUMA multi-cores and GPUs from the output of Abelian.

The experimental results presented in Sect.4 show that the communica-
tion optimizations in Abelian reduce communication volume by 23X, enabling
Abelian-generated implementations to match the performance of hand-tuned
distributed-CPU and distributed-GPU programs on the same platform. In addi-
tion, the distributed-CPU implementations produced by Abelian yield a geomet-
ric mean speedup of 2.4x over those in the stand-alone distributed-CPU system
Gemini [33] on the same hardware. This shows that the flexibility of Abelian
in compiling a high-level, shared-memory, single address space specification for
heterogeneous and distributed-memory architectures does not come at the cost
of performance, even when compared to integrated, homogeneous systems.

2 Programming Model

The Abelian compiler supports a generalized vertex programming model [12,
18,33] that is a restriction of the Galois programming model [20,24]. Nodes
and edges of the graph have labels that are updated iteratively by the program
until some quiescence condition is reached. Updating of labels is performed by
applying operators to active nodes in the graph; this is called an activity. A
push-style operator uses the label of the active node to conditionally update
the labels of immediate neighbors of that node while a pull-style operator reads
the labels of the immediate neighbors and conditionally updates the label of the
active node.

Abelian: A Compiler for Graph Analytics 251

Abelian supports more general operators than other systems in this space. In
particular, an operator is allowed to update the labels of both the active node and
its immediate neighbors, which is useful for applications like matrix completion
using stochastic gradient descent. In addition, Abelian does not require updates
to node labels to be reduction operations. For example, k-core decomposition
evaluated in Sect. 4 uses subtraction on node labels.

In addition to the operator, the programmer must specify how active nodes
are found in the graph [19]. The simplest approach is to execute the program
in rounds and apply the operator to every node in each round. The order in
which nodes are visited is unspecified, and the implementation is free to choose
whatever order is convenient. These topology-driven algorithms [24] terminate
when a global quiescence condition is reached. The Bellman-Ford algorithm for
single-source shortest-path (sssp) is an example.

An alternative strategy is to track active nodes in the graph and apply the
operator only to those nodes, which potentially creates new active nodes. These
data-driven algorithms [24] terminate when there are no more active nodes in
the graph. As before, the order in which active nodes are to be processed is
left unspecified, and the implementation is free to choose whatever order is con-
venient. Chaotic relaxation sssp uses this style of execution. Tracking of active
nodes can be implemented by maintaining a work-list of active nodes. Alterna-
tively, this can be implemented by marking active nodes in the graph and making
sweeps over the graph, applying the operator only to marked nodes; we call this
approach filtering. Fine-grain synchronization in marking and unmarking nodes
can be avoided by using Jacobi-style iteration with two flags, say current and
next, on each node; in a round, active nodes whose current flag is set are pro-
cessed, and if a node becomes active in that round, its next flag is set using
an ordinary write operation. The roles of these flags are exchanged at the end
of each round. In our programming model, data-driven algorithms are written
using work-lists, but the compiler transforms the code to use a filtering imple-
mentation. The correctness of this transformation is ensured by the fact that
active nodes can be processed in any order.

Implementation: This programming model is implemented in C++4 using
the Galois library [20]. Figurel shows a program for push-style data-driven
algorithm of pagerank. A work-list is used to track active nodes. The
Galois::for_each in line 30 populates the work-list initially with all nodes in
the graph and then iterates over it until the work-list is empty. The operator
computes the update to the pagerank of the active node, and it pushes this
update to all neighbors of the active node. If the residual at a neighbor exceeds
some user-specified threshold, that neighbor becomes active and is pushed to the
work-list.

252 G. Gill et al.

The semantics of the Galois::for_each iterator permit work-list elements
to be processed in any order. In a parallel implementation of the iterator, each
operator application must appear to have been executed atomically. To ensure
this, the application programmer must use data structures provided in the Galois
library which include graphs, work-lists, and accumulators. This permits the
runtime to manage updates to distributed data structures on heterogeneous
devices and allows the compiler to treat data structures as objects with known
semantics, which enables program optimization and generation of parallel code
from implicitly parallel programs as described in Sect. 3.

Restrictions on Operators: Like in other programming models for graph ana-
lytics [12,15,26,33] and compilers for data-parallel languages [3,27,30], opera~
tors cannot perform I/O operations. They also cannot perform explicit dynamic
memory allocation since some devices (like GPUs) have limited support for this
in their runtimes. The library data structures can perform dynamic storage allo-
cation, but this is done transparently to the programmer.

3 Abelian Compiler

Figure4 is an overview of how input programs are compiled for execution on
distributed, heterogeneous architectures. The Abelian compiler (implemented as
a source-to-source translation tool based on Clang’s libTooling) analyzes the
patterns of data accesses in operators, restructures programs for execution on
distributed-memory architectures, and inserts code for optimized communica-
tion. The output of the Abelian compiler is a bulk-synchronous parallel C++
program with calls to the Gluon [10] communication runtime (Fig.3). Gluon
transparently handles the graph partitioning while loading the input graph.
The generated code is independent of the partitioning policy, but the parti-
tioning policy determines which portions of this code are executed. This permits
Gluon’s optimization that exploits structural invariants in partitioning without
recompiling the program. The Abelian compiler also generates IrGL [22] inter-
mediate representation kernels corresponding to each Galois::do_all call in the
C++ program and inserts code in the C++ program to switch between calling
the Galois::do_all and the corresponding IrGL kernel depending on the config-
uration chosen for the host (these are not shown in Fig.3 for brevity). The
C++ program and the IrGL intermediate code are then compiled using device-
specific compilers. The output executable is parameterized by the graph input,
the partitioning policy, and the number of hosts and their configuration (CPU
or GPU). The user can thus experiment with a variety of partitioning strategies
and heterogeneous devices with a single command-line switch.

Abelian: A Compiler for Graph Analytics 253
istruct NodeData {
istruct NodeData{ 2> // data on each node
> // data on each node 3 unsigned int nout; // out—degree
3 unsigned int nout; // out—degree 4 ?:031 rank;// _—
4+ float rank; 5 oat res; residua
5 std::atomic<float> res; // residual 6 // compiler added field
o}; "} std :: atomic<float> contrib;
8};
’ oDistributedAccumulator work_done;
gstruct PageRank { ; S .
o Graphs a: 0... // f‘!eldfspeC{f.!c bitvector , flags
’ p g: 1m... // field—specific sync structures
10 PageRank (Graphx g) g(g) {} Lstruct PageRank {
11 void operator () (GNode sre, 3 Graphx g;
12 Worklist& wl) { 14 const float &l_alpha, &l_-tolerance;
13 auto& sd = g—=>getData(src); 15 // copy constructor for members
14 auto res-old=sd.res.exchange (0); 16 void operator () (GNode src) {
15 // apply residual to self 17 auto& sd = g—>getData(src);
16 sd.rank += res_old; 18 if (sd.res > l_tolerance) {
17 auto delta=res_oldxalpha/sd.nout; 19 work_done += 1; // do not terminate
18 for (auto e g—>getEdges(src)) { 20 auto res_old = sd.res;
19 GNode dst = g—>getEdgeDst(e); 21 sd.res = 0;
20 auto& dd = g—>getData(dst); 2 sd.rank += res_old;
21 // update residual of dest 23 Bitvec_rank.set(src);
2 dd.res += delta; 24 auto delta=res_oldxl_alpha/sd.nout;
3 if (dd.res > tolerance) { 25 for (auto e:g—>getEdges(src)) {
2% wl.push(dst); 26 GNode dst = g—>getEdgeDst(e);
25 27 auto& dd = g—>getData(dst);
- } 28 dd.contrib += delta;
N 29 Bitvec_contrib.set(dst);
7} -
Y RN
’ 315
29 e . .
30Galois :: for_each (g, PageRank{g}); ;”:;ur;;,hfagg;eRankispmop {
34 PageRank_splitOp (Graphx g) g(g) {}
35 void operator () (GNode src) {
. 36 auto& sd = g—>getData(src);
Fig. 1. Pagerank source program . od.1es 4= sd.contrib:
38 Bitvec_res.set(src);
istruct Add-contrib { 39 sd.contrib = 0;
> typedef float ValTy; a0}
3 static ValTy extract(NodeData& node){ 4}
4 return node.contrib: 42 ... // 1st round for all nodes in
5} initial work—list
6 static bool reduce(NodeData& node, ado { b/:g;(rb;g]q[u:nt rounds: predicate—
~ , as i r
}; add (node . contrib , ;/)diTy y) { i work_done.reset(); // for termination
o _return true; 46 . /! sync res if required: readSrc
10 . . 47 Galois:: do_all (g. getSources (),
11 static vond_ reset (NodeData& node) { " PageRank{&g, alpha , tolerance });
12 node.contrib = 0; 49 Flag_rank.set_writeSrc();
”}} 50 Flag_contrib.set_reduceDst();
14} 51
15 55 if (Flag-contrib.is_reduceDst()) {
lostruct Bcast_contrib { 53 graph.sync<reduceDst, readSrc,
17 typedef float ValTy; 54 Add_contrib , Bcast_contrib>
18 static ValTy extract(NodeData& node){ 55 (Bitvec_contrib); // executed
19 return node.contrib; 56 Flag_contrib.reset_-reduceDst () ;
0} 57 }else if(Flag_contrib.is_reduceSrc()){
21 static void setVal (NodeData& node , 58 /I sync contrib: reduceSrc, readSrc
» ValTy y) { 59 } else{...}// sync contrib if required
3 node.contrib = y; 0 Galois::do_all(g. getSources (),
o 61 PageRank_splitOp{&g});
75}, 2 Flag_res.set_writeSrc ()
o 63} while(work_done.reduce ());
Fig.2. Compiler-generated Fig.3. Compiler-generated

synchronization structures for
field contrib in pagerank

pagerank program

254 G. Gill et al.
3.1 Graph-Data Access Analysis

The access analysis pass analyzes the .
Galois .
fields accessed in an operator. The results Abelian

LVM AST _Compiler

of this analysis are used to insert required
communication code. Field accesses are [Graph Data Access Analysw}
classified as follows:
[Restmcturmg Computation }
o Reduction: The field is read and)
updated using a reduction operation [tnserting Communication } S]i) Z\:i%ec

inside an edge iterator within the Cit
operator (e.g., addition to residual in
line 22 in Fig.1). This is a common
and important pattern in graph ana-
lytics applications.

e Read: The field is read, and it is not
part of a reduction (e.g., read from
nout in line 17 in Fig. 1). CPUcode ¢ GPU code

o Write: The field is written, and it is Gluon Rumime/ét%)» Gluon Runtime
not part of a reduction (e.g., write to
rank in line 16, Fig. 1). Fig. 4. System overview

Compilers

In addition, it is useful to abstract the context in which a field access is made.

o At source: The field is accessed at the source node of an edge.

o At destination: The field is accessed at the destination node of an edge.

o At any: The field is accessed at a node independent of any edge or at both
endpoints of an edge.

3.2 Restructuring Computation

The goal of computation restructuring is to bridge the semantic gap between the
programming model, which has a single address space, and the execution model,
which is distributed-memory and bulk-synchronous parallel. The semantics of
Galois iterators permit iterations to be executed in parallel as long as each iter-
ation appears to execute atomically. This fine-grain, iteration-level parallelism
must be converted to round-based, bulk-synchronous parallelism by the Abelian
compiler. This includes eliminating global variables (similar to closure conver-
sion in functional languages) by adding them as members of the structure. This
also requires two key transformations.

Splitting Operators. When active nodes are processed in parallel on a shared-
memory machine, fine-grain synchronization may be needed for correct execu-
tion. This problem appears in a different guise on distributed-memory machines:
if the two active nodes are on different hosts, proxies will be created on both hosts
for the common neighbor, and it is necessary to reconcile the values pushed to

Abelian: A Compiler for Graph Analytics 255

these proxies so that the semantics of the program are respected. The bulk-
synchronous execution model does not permit fine-grain synchronization, so
these kinds of problems must be solved, in general, by breaking up the operator
into phases if necessary and introducing sync calls between phases. There are a
number of cases to consider depending on the type of field access as determined
by the graph-data access analysis. We describe this for one such case.

In the PageRank source code in Fig. 1, the residual field is read (line 14) to
update the rank field (line 16) and written (line 14 using exchange(0)) at the
source, but it is also reduced (line 22) at the destination. Since different hosts
could update the residual, the hosts reading it should have the reduced value.
To handle this, the compiler splits any operator that has such a dependence into
multiple operators (a form of loop fission): one with only Read and Write accesses
to the field and another with only Reduction accesses, as shown in the PageRank
and PageRank splitOp operators (lines 12-41) respectively in Fig. 3. This may
involve introducing new fields to store the intermediate values (e.g., contrib).
The compiler also transforms some non-reduction read-after-write operations
(e.g., subtraction) to equivalent reduction operations (e.g., addition) in a similar
way. After this transformation, sync calls are introduced between the parallel
phases, as described in Sect. 3.3.

Eliminating Work-Lists. The Abelian compiler eliminates work-lists by using
filtering, as explained in Sect.2: in a given round, all nodes in the graph are
visited and the operator is applied to nodes whose current flag is set. This flag
is reset, and if a node becomes active in that round, its next flag is set; the roles
of the flags are exchanged at the end of each round.

In some algorithms, the predicate used in the source program to push an
active node to the work-list can be used during filtering to check if the node is
active. Extracting this predicate involves a form of loop fission, and it avoids
introducing flags and synchronizing their accesses. For example, in Fig. 1, the
code in lines 23-24 adds active nodes to the work-list. In the generated code,
this is eliminated, and a new operator is created to conditionally activate nodes
as shown in line 18 in Fig. 3. Another operator is created to execute all nodes that
would have been on the initial work-list (line 42). Abelian can also directly take
filter-based implementation of data-driven algorithms as an input, in which case
this transformation is not required. Termination is detected using a distributed
accumulator (lines 19 and 63) provided by Gluon.

3.3 Inserting Communication

The final pass of the Abelian compiler inserts code for communication and syn-
chronization. A simple approach is the following: in each round, every mirror
sends its value to its master where these values are combined, and the result
is broadcast back to all the mirrors. This is essentially the gather-apply-scatter
model used by most systems in this space, and it can be implemented by inserting
a Gluon [10] sync call after each operator for every field that might be updated

256 G. Gill et al.

by that operator. Compilers for heterogeneous systems, such as Falcon [30], Dan-
delion [27], LiquidMetal [3], and DMLL [6], take a similar approach since their
granularity of synchronization is an object or field. This coarse-grained approach
can be seen as a more elaborate version of the write-broadcast cache coherence
protocol used in systems with hardware cache-coherence. Abelian implements
a different, fine-grained communication protocol to reduce the communication
volume: a host sends the value of a field to other hosts only if that field has
been updated in the previous rounds and if this value will be read in the current
round. Static analysis is not adequate to determine these properties, so instru-
mentation code is inserted to track this dynamically. The actual communication
is performed by the Gluon runtime, and it is invoked by inserting sync calls into
the code.

Fine-Grained Communication. In graph analytics applications, each round
typically updates the field of only a small subset of graph nodes. A device-local,
field-specific bit-vector is used to track updates to nodes’ fields that participate
in communication. The analysis pass determines points in the operator where
these fields might be updated, and the compiler inserts instrumentation code at
those points to also update the node’s bit in the bit-vector for that field (lines 23,
29, 38 in Fig.3). The Gluon sync interface permits this bit-vector to be passed
to the runtime system, which uses it to avoid sending node values that have not
been updated in the current round.

On-Demand Communication. Using the bit-vector ensures only updated
values are communicated, but it does not permit Gluon’s communication opti-
mization that exploits structural invariants in partitioning policies [10]. To do
so, the domain-specific knowledge of abstract write and read locations for the
last reduction access(es) and next read access of the field must be specified,
respectively. If it is unspecified or imprecise, Gluon may conservatively perform
some redundant synchronization. The Abelian compiler can only precisely iden-
tify the abstract locations of fields accessed within an operator and cannot be
precise about the future accesses. Therefore, after an operator, it inserts code
that sets or invalidates the sync-state invalidation flags for fields that could be
written in the operator using its write location (lines 49, 50, 62 in Fig. 3). Before
an operator, it inserts the synchronization structures, as shown in Fig. 2 (equiv-
alent GPU functions generated for a vector of nodes are omitted for brevity),
and the communication code for fields that could be read in the operator (lines
46, 52-59 in Fig. 3). The code checks the field-specific sync-state flags and calls
the Gluon sync routine with the precise write and read locations if the flag is
invalidated.

3.4 Device-Specific Compilers

The Abelian compiler outputs C++ code that can be compiled using existing
compilers like g++ to execute on shared-memory NUMA multicores using the

Abelian: A Compiler for Graph Analytics 257

Galois runtime [20]. A naive translation of this C++ code to CUDA or OpenCL
is not likely to yield high-performance code because it will not exploit SIMD exe-
cution. We instead use the IrGL [22] compiler, which produces highly optimized
CUDA and OpenCL code from an intermediate representation that is intended
for graph applications. This compiler exploits nested parallelism, which is impor-
tant when processing scale-free graphs. To interface with the IrGL compiler, the
Abelian compiler generates IrGL intermediate code, translating data layout of
fields from arrays of structures to structures of arrays.

4 Experimental Results

To evaluate the performance of programs generated by the Abelian compiler,
we studied a number of graph analytical applications: betweenness centrality
(bc), breadth-first search (bfs), connected components (cc), k-core decomposition
(kcore), pagerank (pr), single-source shortest path (sssp), and matrix comple-
tion using stochastic gradient descent (sgd). We specify the programs in Galois
C++: pull-style topology-driven algorithm for pr, push-and-pull-style topology-
driven algorithm for sgd, and push-style work-list-driven algorithms for the rest.
The Abelian compiler analyzes the program, restructures the operators, and
synthesizes precise communication. Unless otherwise noted, all optimizations
are applied in our evaluation, including eliminating work-lists. The programs
work with different partitioning policies. In our evaluation, we choose incoming
edge-cut for pr, cartesian vertex-cut for sgd, and outgoing edge-cut for all other
benchmarks. We have empirically found these policies to work well in practice;
an exhaustive search to find the best policy is outside the scope of this work.

Table1 shows the Table 1. Inputs and their key properties

input gl"aphS we used clueweb12 [25] | kron30 [17] | rmat28 [7] | amazon [13]
along with their prop- |v| 978M 1073M 268M 31M
erties. All the CPU |E| 42,574M 10,791M | 4,295M 82.5M
experiments were done EI/IVI |44 16 16 2.7

max Doyt | 7,447 3.2M 4M 44557
on the Texas Advanced max Di, | 75M 3.2M 0.3M 25366

Computing Center’s [2]
Stampede [28] KNL
Cluster. For GPU experiments, the Bridges [21] supercomputer at the Pitts-
burgh Supercomputing Center [1,29] was used. Table 2 shows the configuration
of these clusters used in our experiments. In all our experiments, we choose the
max-degree node as the source for bc, bfs, and sssp. For kcore, we solve for
k = 100. We present the mean execution time of 3 runs, excluding graph parti-
tioning time. We run pr and sgd for 100 and 50 iterations, respectively; all other
algorithms are run until convergence.

4.1 Comparison with the State-of-the-Art

We compare the with handwritten D-Galois programs for CPU-only systems [10]
and handwritten D-IrGL programs for GPU-only systems [10]. D-Galois and

258 G. Gill et al.

Table 3. Bridges: execu-
Table 2. Cluster configurations tion time (in seconds) on
16 GPUs for rmat28

Stampede (CPU) Bridges (GPU)

NIC Omni-path Omni-path D-IrGL| Abelian

Machine |Intel Xeon Phi KNL 4 NVIDIA Tesla K80s ¢ | 96 9.6

No. of hosts|32 16 bfs 1.1 1.2

Each host 272 threads 1 Tesla K80 cc 2.6 2.7

Memory 96 GB DDR4 128 @B DDR5 kcore| 1.5 1.5

Compiler |g++ 7.1 g++ 5.3 pr 32.9 30.5
sssp | 2.5 2.5

D-IrGL programs have explicit synchronization specified by the programmer; in
contrast, synchronization in programs produced by the Abelian compiler is intro-
duced automatically by the compiler. However, all these programs use Gluon [10],
a communication substrate that optimizes communication at runtime by exploit-
ing structural and temporal invariants in partitioning (Gluon uses LCI [9] for
message transport between hosts). In addition, D-Galois and Abelian use the
same Galois [20] computation operators on the CPU while D-IrGL and Abelian
use the same IrGL [22] computation kernels on the GPU. Therefore, differences
in performance between Abelian-generated code and D-Galois/D-IrGL code arise
mainly from differences in how synchronization code is inserted by the Abelian
compiler.

We also compare

X Table 4. Stampede: execution time (in seconds) (H: hosts)
Abelian-generated pro-

grams with dlStI‘lbl}ted— Gemini D-Galois Abelian
CPU programs written 8H |32H |sH |320 |sH |32H
in the Gemini frame- be | cluewebl2 | - — | OOM [430.4| OOM |437.6
work [33] (Gemini does kron30 | - — [413 27.0 [39.7 27.3
not have kcore and Sgd, bfs clueweb12 | OOM | 69.9 | 11.6 9.1 12.0 10.1
be in Gemini b kron30 5.1 7.1[5.1 4052 4.2
¢ m CImIL uses BIS = eweb12 | 39.3 | 38.8 OOM | 16.5 OOM | 18.3
while that in Abelian kron30 | 15.8 | 14.8 | 7.6 1677 40
uses sssp, so it is keore | clueweb12 | - — | OOM |290.4 | OOM | 289.1
omitted). Gemini has kron30 |- - |44 3.0 4.5 3.0
explicit communication pr | cluewebl2 | OOM | 257.9 | 395.1 | 248.0 | 402.1 | 277.4
oth kron30 245.1 | 232.4 | 278.1 |221.9]281.0 |2325
messages 1 the Pro- “yip Telueweb12 | OOM | 128.3 | OOM | 14.3 OOM | 15.8
gramming model, and kron30 14.0 14.99.4 8.2/9.3 8.2
it provides a third- sgd |amazon |- — | 1570.2 | 701.6 | 1570.2 | 696.2
party baseline for our
study.

Tables3 and 4 show the distributed-GPU and distributed-CPU results.
Abelian programs match the performance of D-Galois and D-IrGL programs;
the difference is not more than 12%. Gemini is 15% faster than Abelian for pr

Abelian: A Compiler for Graph Analytics 259

with kron30 on 8 hosts. In all other cases, Abelian matches or outperforms Gem-
ini. The geometric mean speedup of Abelian over Gemini on 32 KNL hosts is
2.4x. These results show that Abelian is able to compile a high-level, shared-
memory, single address space specification into efficient implementations that
either match or beat the state-of-the-art graph analytics platform. Although
the Abelian compiler produces code for heterogeneous devices, we do not report
numbers for distributed CPU+GPU execution because the 4 GPUs on a node
on Bridges outperform the CPU by a significant margin.

4.2 Impact of Communication Optimizations

We analyze the performance impact of the communication optimizations in
Abelian (Sect. 3.3) by comparing three levels of communication optimization.

1. Unoptimized (UO): the Gluon sync call is inserted for a field after an operator
if it could be updated in that operator. The bit-vector as well as the abstract
write and read locations are left unspecified, so all elements in the field are
synchronized. Existing compilers for heterogeneous systems like Falcon [30],
Dandelion [27], and Liquid Metal [3] do similar field-specific, coarse-grained
synchronization.

2. Fine-grained communication optimization (FG): the compiler instruments the
code to use a bit-vector that dynamically tracks updates to fields. The Gluon
sync call used is the same as in UO, but it only synchronizes the elements in
the field that have been updated using the bit-vector. This is similar to exist-
ing graph analytical frameworks [8,12,33] that synchronize only the updated
elements.

3. Fine-grained and on-demand communication optimization (FO): this (default
of Abelian compiler) uses on-demand communication along with fine-grained
optimization. It instruments invalidation flags to track fields that have been
updated and inserts Gluon sync calls before an operator for fields that could
be read in the operator, thereby precisely identifying both the abstract write
and read locations. This enables Gluon’s communication optimization that
exploits structural invariants in partitioning policies.

We compare these three communication optimization variants with hand-tuned
(HT) programs written in D-Galois and D-IrGL on distributed CPUs and dis-
tributed GPUs respectively. In these programs, the programmer (with global
control-flow knowledge) specified the precise communication using Gluon sync
calls.

Figures5 and 6 present the comparison results on 32 KNL hosts of Stam-
pede and 16 GPU devices of Bridges respectively. Each bar in the figures shows
the execution time (maximum across hosts). We measure the maximum compu-
tation time across hosts in each round and take their sum, which is the total
computation time (top). The rest of the execution time is non-overlapped com-
munication time (bottom). We also measure the total communication volume
across all rounds, shown in text on the bars.

260 G. Gill et al.
bc bfs @@ kcore pr sssp bc bfs cc kcore pr sssp
1500 - 20~
-| -
so- % 300- 50 I 200- 208 [| 300-Jf 30-0
1500 °
10-8 40-4 3 40-m ®
. 1000+ e @ B Q __ 150~ 15-
) @ | B ot 200+ 4]) 200- I 20-
2 2 30- 30-g 1000-2 30- 2 @ 10-@ o o
2y] 2 © 10-@ o o o
o 8 0 100-8 -2 g Sm 5 5
=3 s
£ ® 20 20 o 20 £ e = e e Booy &
i 500- 3 = 2 Fo038 R
100-2 e - 100-"REQ 10
500 2 B [| 5 [} 2%
] 29 <] 50~ 5-] a3 ol
10- 10 2 10- < | | B o008 ol
9 29 > o o 5] Smm N
B B g] <88 20 809 Q0 =99
o o5 Qe < 30 °g cSBo e 3 QD 85
0- ¥22 0- = o0- Ya 0- O8N - § o- 0- 8ww8 0- "9SS 0- N 0- ©6 - 0- N«
SRR SURAE N SRR i SO SRR
SPRE SRk SPR: SPRE SeRE S9R: SPRE SPRE SeRE SeRE SeRE SeRE
time M Computation = Non-overlapped Communication time M Computation = Non-overlapped Communication

Fig. 5. 32 KNL hosts on Stampede: clueweb12 (left) and kron30 (right). Different vari-
ants are: UnOpt (UO), Fine-Grained opt (FG), Fine-grained+On-demand opt (FO),
Hand-Tuned (HT)

bc bfs GG) kcore pr sssp
0l +H 10.0-mpm - cve hve ec
n 4I L 64 1500 -
) 40-
3000~ I
3- s 757 i . 2000~
o 20- 1 30- = 4 J
b = @ 2 I ml 8 s000-2 1000 8e
o B8 8 & 50-89 g 3 278 3 X
£ 88 o0 . ®c 20-8808 © o S m @mmm Sm3a
£ 5 < = © o808 e ®A@m 1000-= OO QO
e 3 B ® © dm 2000 ® = & 500- RS S
10- & <0 Sc 2- 0 = 1000-K® O @ = RN o= =
an @ @ 5 o (= =22 B~ o &
on - SHN .. =gg 25 - =T e 5X 3 T £
98 I88 I3 =e 93 L] i
Q] Er R = 0- 0- 0-
0- 0- 0- 0.0- ~v~ 0- 0- (] [oo
PR Py PR CvwOokE QVWOokE [eJOReN=
3PRr SPRt SReE 9PRr SRRt SPRkE LoT SEior SLuor

time W Computation = Non-overlapped Communication time [l Computation = Non-overlapped Communication

Fig. 6. 16 GPU devices on Bridges: rmat28 Fig. 7. 32 KNL hosts on Stampede:

partitionings for bc on clueweb12

The trends are clear in the figure. Each optimization reduces communication
volume and time, improving execution time further. FG significantly reduces
communication volume and time over UO, with the exception of pr. FG performs
atomic updates to the bit-vector, which could be overhead when the updates are
dense, like in pr. FO optimizes the communication volume and time further to
match the performance of HT. FO reduces communication volume by 23x over
UO, yielding a geometric mean execution time speedup of 3.4x. Fine-grained
and on-demand communication optimizations (FO) are thus essential to match
the performance of HT on both CPUs and GPUs.

Abelian compiler-generated programs can support different partitioning poli-
cies, and we study whether they can fully exploit Gluon’s partition-aware opti-
mizations like HT. Figure 7 presents the comparison results for bc on clueweb12
using different partitioning policies namely, cartesian vertex cut [5] (cve), hybrid
vertex-cut [8] (hvc), and outgoing edge cut (ec). This shows that FO matches
the performance of HT, although FG does not. This shows that the compiler

Abelian: A Compiler for Graph Analytics 261

can capture sufficient domain-specific knowledge to aid the Gluon runtime in
performing partition-aware optimizations.

5 Related Work

Distributed Graph Processing Systems: Many frameworks [8,10,12,15,18,31,33]
exist which provide a runtime to simplify writing distributed graph analytics
algorithms. Like Abelian, these systems use a vertex programming model and
bulk-synchronous parallel (BSP) execution. Abelian is the first compiler that
synthesizes the required communication. Our evaluation shows that the pro-
grams generated by the Abelian compiler that use the Gluon [10] runtime match
hand-tuned programs in the Gluon system and outperform those in the Gem-
ini [33] system.

Single-Host Heterogeneous Graph Processing Systems: There are several frame-
works for graph processing on a single GPU [22], multiple GPUs [4,23,32] and
multiple GPUs with a CPU [11]. All of these are restricted to a single physical
node that connects all devices unlike our system, and consequently, they can-
not handle graphs as large as the ones our system can. Abelian leverages the
throughput optimizations in the IrGL [22] compiler that are essential for perfor-
mance on power-law graphs. Unlike IrGL, which compiles an intermediate-level
program representation to CUDA, the Abelian compiler not only generates this
from a high-level C+4 program but also synthesizes synchronization code to
execute the compiled code on multiple devices in multiple hosts.

Compilers for Distributed or Heterogeneous Architectures: Liquid Metal [3] com-
piles the Lime language to heterogeneous CPUs, GPUs, and FPGAs. Dande-
lion [27] compiles high-level LINQ programs to distributed heterogeneous sys-
tems. Green-Marl [14] is a DSL that is compiled to Pregel. Brown et al. [6]
compile a data-parallel intermediate language DMLL to multicores, clusters,
and GPUs. Upadhyay et al. [30] compile a domain-specific language, Falcon, to
Giraph code for CPU clusters and MPI4+OpenCL code for GPU clusters, but
it does not do GPU-specific computation restructurings like nested parallelism
which Abelian compiler does using IrGL. In all these compilers, the granularity
of communication is an object or field, whereas Abelian identifies fine-grained
elements of a label-array and communicates them precisely using the Gluon run-
time. Moreover, none of the existing compilers use domain-specific analysis and
computation restructurings for graph analytical applications like Abelian.

6 Conclusions

Abelian is the first graph analytics compiler that can produce high-performance,
distributed, heterogeneous implementations from high-level, shared-memory, sin-
gle address space specification of graph algorithms. It splits operators and elim-
inates work-lists to make the programs bulk-synchronous. The fine-grained, on-
demand communication optimizations in Abelian yield a speedup of 3.4x over

262 G. Gill et al.

field-specific, coarse-grained communication code generated by existing compil-
ers. This enables the generated implementations to match the performance of
hand-tuned implementations for distributed CPUs and distributed GPUs in the
state-of-the-art Gluon system using the same computation engines on the same
hardware. The distributed-CPU implementations produced by Abelian also yield
a geometric mean speedup of 2.4x over programs in the distributed CPU-only
system Gemini on the same hardware. This shows that the Abelian compiler
can manage heterogeneity and distributed-memory successfully while generat-
ing high-performance code, even in comparison to homogeneous systems.

Acknowledgments. This research was supported by NSF grants 1337217, 1337281,
1406355, 1618425, 1725322 and by DARPA contracts FA8750-16-2-0004 and FA8650-
15-C-7563. This work used XSEDE grant ACI-1548562 through allocation TG-
CIE170005. We used the Bridges system, supported by NSF award number ACI-
1445606 at the Pittsburgh Supercomputing Center, and the Stampede system at the
Texas Advanced Computing Center at The University of Texas at Austin.

References

1. Pittsburgh Supercomputing Center (PSC) (2018). https://www.psc.edu/

2. Texas Advanced Computing Center (TACC), The University of Texas at Austin
(2018). https://www.tacc.utexas.edu/

3. Auerbach, J., et al.: A compiler and runtime for heterogeneous computing. In: DAC
(2012). https://doi.org/10.1145/2228360.2228411

4. Ben-Nun, T., Sutton, M., Pai, S., Pingali, K.: Groute: An asynchronous multi-
GPU programming model for irregular computations. In: PPoPP (2017). https://
doi.org/10.1145/3018743.3018756

5. Boman, E.G., Devine, K.D., Rajamanickam, S.: Scalable matrix computations on
large scale-free graphs using 2D graph partitioning. In: 2013 SC - International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC), pp. 1-12, November 2013. https://doi.org/10.1145/2503210.2503293

6. Brown, K.J., et al.: Have abstraction and eat performance, too: optimized het-
erogeneous computing with parallel patterns. In: CGO (2016). https://doi.org/10.
1145/2854038.2854042

7. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph
mining, pp. 442-446 (2004). https://doi.org/10.1137/1.9781611972740.43

8. Chen, R., Shi, J., Chen, Y., Chen, H.: PowerLyra: differentiated graph computation
and partitioning on skewed graphs. In: EuroSys (2015). https://doi.org/10.1145/
2741948.2741970

9. Dang, H.V., et al.: A lightweight communication runtime for distributed graph
analytics. In: IPDPS (2018)

10. Dathathri, R., et al.: Gluon: a communication optimizing framework for distributed
heterogeneous graph analytics. In: PLDI (2018)

11. Gharaibeh, A., Beltrao Costa, L., Santos-Neto, E., Ripeanu, M.: A yoke of oxen
and a thousand chickens for heavy lifting graph processing. In: PACT (2012)

12. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: dis-
tributed graph-parallel computation on natural graphs. In: OSDI (2012). http://
dl.acm.org/citation.cfm?id=2387880.2387883

https://www.psc.edu/
https://www.tacc.utexas.edu/
https://doi.org/10.1145/2228360.2228411
https://doi.org/10.1145/3018743.3018756
https://doi.org/10.1145/3018743.3018756
https://doi.org/10.1145/2503210.2503293
https://doi.org/10.1145/2854038.2854042
https://doi.org/10.1145/2854038.2854042
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1145/2741948.2741970
https://doi.org/10.1145/2741948.2741970
http://dl.acm.org/citation.cfm?id=2387880.2387883
http://dl.acm.org/citation.cfm?id=2387880.2387883

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Abelian: A Compiler for Graph Analytics 263

He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion
trends with one-class collaborative filtering. In: WWW (2016). https://doi.org/10.
1145/2872427.2883037

Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-Marl: a DSL for easy and
efficient graph analysis. In: ASPLOS (2012). https://doi.org/10.1145/2150976.
2151013

Jia, Z., Kwon, Y., Shipman, G., McCormick, P., Erez, M., Aiken, A.: A distributed
multi-GPU system for fast graph processing. In: Proceedings of VLDB Endowment,
November 2017. https://doi.org/10.14778/3157794.3157799

Lenharth, A., Nguyen, D., Pingali, K.: Parallel graph analytics. Commun. ACM
59(5), 78-87 (2016). https://doi.org/10.1145/2901919

Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kro-
necker graphs: an approach to modeling networks. J. Mach. Learn. Res. 11, 985—
1042 (2010). http://dl.acm.org/citation.cfm?id=1756006.1756039

Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: SIGMOD
(2010). https://doi.org/10.1145/1807167.1807184

Nasre, R., Burtscher, M., Pingali, K.: Data-driven versus topology-driven irregular
computations on GPUs. In: Proceedings of the 27th IEEE International Parallel
and Distributed Processing Symposium. IPDPS 2013. Springer, London (2013)
Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph ana-
lytics. In: SOSP (2013). https://doi.org/10.1145/2517349.2522739

Nystrom, N.A., Levine, M.J., Roskies, R.Z., Scott, J.R.: Bridges: a uniquely flexi-
ble HPC resource for new communities and data analytics. In: Proceedings of the
2015 XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyber-
infrastructure. XSEDE 2015, pp. 30:1-30:8. ACM, New York (2015). https://doi.
org/10.1145/2792745.2792775

Pai, S., Pingali, K.: A compiler for throughput optimization of graph algorithms
on GPUs. In: OOPSLA (2016)

Pan, Y., Wang, Y., Wu, Y., Yang, C., Owens, J.D.: Multi-GPU graph analytics.
In: IPDPS, May 2017. https://doi.org/10.1109/IPDPS.2017.117

Pingali, K., et al.: The TAO of parallelism in algorithms. In: Proceedings of ACM
SIGPLAN Conference on Programming Language Design and Implementation.
PLDI 2011, pp. 12-25 (2011). https://doi.org/10.1145/1993498.1993501

The Lemur Project: The cluewebl2 dataset (2013). http://lemurproject.org/
clueweb12/

Prountzos, D., Manevich, R., Pingali, K.: Synthesizing parallel graph programs
via automated planning. In: Programming Language Design and Implementation.
PLDI 2015 (2015)

Rossbach, C.J., Yu, Y., Currey, J., Martin, J.P., Fetterly, D.: Dandelion: a compiler
and runtime for heterogeneous systems. In: SOSP (2013). https://doi.org/10.1145/
2517349.2522715

Stanzione, D., et al.: Stampede 2: the evolution of an XSEDE supercomputer. In:
Proceedings of the Practice and Experience in Advanced Research Computing 2017
on Sustainability, Success and Impact, pp. 15:1-15:8. PEARC17. ACM, New York
(2017). https://doi.org/10.1145/3093338.3093385

Towns, J., et al.: XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16(5),
62-74 (2014)

Upadhyay, N., Patel, P., Cheramangalath, U., Srikant, Y.N.: Large scale graph
processing in a distributed environment. In: Heras, D.B., Bougé, L. (eds.) Euro-
Par 2017. LNCS, vol. 10659, pp. 465-477. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-75178-8_38

https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2150976.2151013
https://doi.org/10.1145/2150976.2151013
https://doi.org/10.14778/3157794.3157799
https://doi.org/10.1145/2901919
http://dl.acm.org/citation.cfm?id=1756006.1756039
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1145/2792745.2792775
https://doi.org/10.1145/2792745.2792775
https://doi.org/10.1109/IPDPS.2017.117
https://doi.org/10.1145/1993498.1993501
http://lemurproject.org/clueweb12/
http://lemurproject.org/clueweb12/
https://doi.org/10.1145/2517349.2522715
https://doi.org/10.1145/2517349.2522715
https://doi.org/10.1145/3093338.3093385
https://doi.org/10.1007/978-3-319-75178-8_38
https://doi.org/10.1007/978-3-319-75178-8_38

264

31.

32.

33.

G. Gill et al.

Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: GraphX: a resilient distributed
graph system on spark. In: GRADES (2013)

Zhong, J., He, B.: Medusa: simplified graph processing on GPUs. IEEE TPDS
(2014). https://doi.org/10.1109/TPDS.2013.111

Zhu, X., Chen, W., Zheng, W., Ma, X.: Gemini: a computation-centric dis-
tributed graph processing system. In: OSDI (2016). http://dl.acm.org/citation.
c¢fm?id=3026877.3026901

https://doi.org/10.1109/TPDS.2013.111
http://dl.acm.org/citation.cfm?id=3026877.3026901
http://dl.acm.org/citation.cfm?id=3026877.3026901

®

Check for
updates

Using Dynamic Compilation to Achieve
Ninja Performance for CNN Training
on Many-Core Processors

Ankush Mandal'®®) | Rajkishore Barik?, and Vivek Sarkar!

1 Georgia Institute of Technology, Atlanta, GA 30332, USA
{ankush,vsarkar }@gatech.edu
2 Uber Technologies Inc., San Francisco, USA
rajbarik@uber.com

Abstract. Convolutional Neural Networks (CNNs) represent a class of
Deep Neural Networks that is growing in importance due to their state-
of-the-art performance in pattern recognition tasks in various domains,
including image recognition, speech recognition, and natural language
processing. However, CNNs are very time consuming to train due to the
computationally intensive nature of their convolution operations. Typ-
ically, a convolution operation is exposed as a library API that dupli-
cates and reorganizes input tensors under-the-hood in order to leverage
existing matrix-matrix multiplication (GEMM) BLAS routines. Unfor-
tunately, this widely-used approach suffers not only from memory expan-
sion but also from memory bandwidth limitations. Moreover, although
there has been a significant amount of past work on optimizing CNNs on
GPUs, those approaches are not directly applicable to many-core CPU
platforms such as Intel Xeon Phi.

In this paper, we show how a novel dynamic code generation approach
can be used to implement convolution on Intel Knights Landing systems
with AVX-512 support, so as to obtain order-of-magnitude performance
improvements compared to the GEMM-based approach. Moreover, our
approach gives robust performance across different convolution layers
of the state-of-the-art CNNs, such as AlexNet, GoogleNetV1, Overfeat,
and Vgga. The methods in this paper should be applicable to future
many-core CPU platforms with vector lengths of 512 bits or larger.

Keywords: Direct convolution - KNL + Dynamic code generation

1 Introduction

Concepts from the field of Machine Learning drive many aspects of modern soci-
ety, from social networks to recommendations on e-commerce, and are powering

Rajkishore Barik contributed to this work when he was at Intel Labs, Santa Clara
CA 95054, USA.
© Springer International Publishing AG, part of Springer Nature 2018

M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 265-278, 2018.
https://doi.org/10.1007/978-3-319-96983-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_19&domain=pdf

266 A. Mandal et al.

an increasing number of consumer products, including cameras, and self-driving
cars. In particular, Deep Learning (DL) has become one of the most critical
technologies, demonstrating equal or even better than human-level performance
for tasks in domains such as object recognition, board games, and speech recog-
nition. This became possible due to two reasons - (1) Deep Neural Networks
(DNNs) can learn features automatically from large datasets and represent com-
plex functions using multiple hidden layers, (2) recent advances in processor
technologies made it possible to satisfy the huge computational requirement
associated with DL.

Although different DNNs aim at different problems, one of the most critical
DL applications today is image recognition [11], and currently, Convolution Neu-
ral Network (CNN) is the state-of-the-art DNN for image recognition. A CNN
consists of multiple hidden layers, and among these layers, the core of a CNN is
the convolution layer. It is also the most computationally expensive layer [1] of
a CNN where it performs a large number of small convolutions. As an abundant
amount of data parallelism is available in the computation of convolution through
many images or mini-batch size and feature maps or channels, massively parallel
architectures such as GPUs, in particular, have been used for training and infer-
ence on CNNs. As a consequence, all existing CNN frameworks [2,5,10,12] have
GPU backends that implement convolution layers as libraries using cuDNN [4].
However, recent advancement in many-core CPUs, such as Intel Knights Land-
ing (KNL) [16] with 68-72 cores and AVX-512 support, have made it potentially
capable of delivering significantly high erformance (6TFLOPs for single preci-
sion). Still, many-core CPUs have not been explored much from the perspective
of optimizing CNNs due to several challenges — (a) low-end cores have high
penalties for branches and memory accesses, (b) although vectorization of regu-
lar apps is simple for AVX-512 on KNL, it is extremely difficult to extract peak
performance due to the cores being two issue-wide and at the same time having
two VPUs (it is practically impossible to saturate the issues only with vector
floating point instructions), (b) it is harder to hide memory latency because of
inherent latency oriented design, and (c) cache prefetching plays an important
role in performance but it can be challenging to get right. In order to overcome
these challenges and get near-peak performance, we require very high-quality
code generation.

A widely used approach to implementing convolutions in CNNs is to flatten
the corresponding input data (image2column or im2col operation [3]) and use
standard matrix multiplications (GEMM) on the flattened data. One of the main
reasons behind the popularity of this method is ample availability of optimized
libraries for GEMM operations. While it is easier to implement, this method has
severe drawbacks when aiming for high performance on CPUs. The image flat-
tening step is a data copy and redistribution operation which is purely memory
bandwidth bound. Even though the GEMM computation is highly optimized,
the flattening step acts as a bottleneck and creates a huge performance penalty.
On the other hand, the direct convolution method does not involve the im2col
operation.

Using Dynamic Compilation to Achieve Ninja Performance 267

Even though CNNs provide state-of-the-art accuracy, training CNNs requires
an enormous amount of time and can span several weeks. For example, it
requires 21 days to train GoogleNetV1 [17] with the ImageNet dataset on a
single Nvidia® K20 GPU [8]. Training on CNNs involves forward propagation
and back-propagation phases. Although our method is applicable for convolu-
tions in all phases, for the purpose of demonstration in this paper, we choose
convolution in back-propagation as a focused candidate problem. We believe
that it is a good candidate problem since it involves a more complex data reuse
pattern than forward propagation. Due to this complex data reuse over the data
it writes to, it is much harder to exploit data reuse in back-propagation, thereby
posing a more challenging optimization problem than the forward propagation
case.

In this work, we leverage the direct convolution approach to avoid the expen-
sive memory operations associated with an ¢m2col operation and to optimize the
convolution in back-propagation. Another critical aspect to consider, when trying
to optimize convolution in CNNs, is that the input parameters for convolution
vary significantly across layers of a CNN and also across different CNNs. Thus,
the parameter values are only known during runtime, making it hard to achieve
good performance through static compilation. In this work, we instead explore
runtime code specialization for optimizing CNNs on many-core CPUs with large
vector lengths.

Our main contributions in this work are:

— For optimizing convolutions in state-of-the-art CNNs, we propose a novel
dynamic code generation approach targeting high performance on Intel’s
Knights Landing architecture. Prior work has shown that it is a daunting
task to extract peak performance on Xeon Phi processors even for regular
matrix-matrix multiplication application [6]. Our research novelty lies in using
a low overhead dynamic code generator to achieve close to possible peak
performance for convolutions on Xeon Phi processors. This code generator
not only performs standard compiler optimizations including register alloca-
tion, loop unrolling, tiling, vectorization, latency hiding, software pipelining,
and software prefetching, but it also specializes generated code based on the
parameters of the convolution operation, which vary widely across layers and
networks.

— As another research contribution, our work debunks the claim that direct
convolution is not a good method when aiming for high performance [4].
Almost all existing approaches in CNNs use GEMM formulation for convolu-
tions, which has performance bottleneck due to a memory bandwidth bound
step. We show that the direct convolution method, with our runtime code
specialization, can achieve order-of-magnitude performance improvement by
avoiding such overhead.

— We provide a thorough performance analysis of our implementation of direct
convolution in back-propagation on KNL for several state-of-the-art CNNs.
We further compare our performance with other leading approaches on KNL,
such as Intel® MKL-DNN and ZNNPhi.

268 A. Mandal et al.

2 Background

As our work focuses on optimizing the costly convolution operation associated
with the convolution layers, we start with a brief description of it. During a
convolution operation, each output pixel is generated from the weighted sum of a
spatially connected neighborhood of inputs. Specifically, the operation adds each
element of the input image with elements from a defined region after multiplying
all the elements with specific weights from filter data.

Naive code of -
direct Executable ﬁ
convolution Parameter values
known at runtime

Create
descriptor of
optimization
factors from
parameter

Static compilation
i Manually apply and parallelization Pass descriptor to JITer i
optimizations using standard and it returns function
threading library pointer to object code
containing optimized
code sequence for
innermost loops
Optimized code Kernel with some
of direct outermost loops xecute code with
convolution _ + JITed function call
Abstract out few JITed function call using function
innermost loops in the innermost pointer returned by
to JiTer position using JITer
function pointer

Design Time Compile Time Execution Time

Fig. 1. Pipeline used in our approach

In case of CNNs, we usually perform convolution over a batch of images.
This is termed as batched convolution [4]. A batched convolution deals with
three four-dimensional tensors: I € RNCHW ag input image data, O € RNEFQ
as output data, and F' € RECES g5 filter data. The input data ranges over N
images in a mini-batch, C input image feature maps, H rows or image height,
W columns or image width. The filter data ranges over K output feature maps,
C input feature maps, R rows or filter height, and S columns or filter width.
A mathematical definition of the convolution operation can be found in [4] and
other references.

One interesting observation regarding the values of the parameters mentioned
above is that they vary significantly across different convolution layers of a CNN
and also across different CNNs. For example, in the case of GoogleNetV1 [17],
the input feature map or channel (C) ranges from 16 to 832. For the same CNN,
the image height (H) and width (W) vary from 224 to 7. Thus, even though
the parallelism in a convolution operation may appear to be straightforward,
efficient exploitation of this parallelism can be very challenging because of the
substantial variation in loop lengths based on the input data. Due to these widely
varying parameter values, it is almost impossible to propose a single optimized
solution for computing the convolution that gives excellent performance in every
scenario. We describe our approach to addressing this challenge in Sect. 3.

Using Dynamic Compilation to Achieve Ninja Performance 269

3 Overview of Our Approach

In this section, we present our novel code generation approach to optimize direct
convolution for parallel execution on KNL. As mentioned in Sects. 1 and 2, the
input parameters for the convolution operation in CNNs vary widely. Moreover,
the dynamic values of these parameters are only known at execution time. Fur-
ther, the computational pattern of the convolution kernel depends on the input
parameter values. For example, when the filter height (R) and width (S) are 5,
the density of arithmetic operations is almost 25 times for image tensors com-
pared to the scenario when R and S are 1. The apparent dependence of the
kernel runtime behavior on dynamic parameter values given at execution time
indicates that achieving good performance through static compilation is very
hard for our problem. So, as a more suitable alternative, we perform runtime
code specialization and adopt a Just-In-Time (JIT) compilation approach!. We
determine the optimization factors from the input parameter values at runtime
and provide our dynamic code generator with such factors to produce highly
optimized code for the kernel. We show in Sect. 6.2 that, from the performance
perspective, our JIT-based method is highly adaptable to a wide range of input
parameter values compared to other-state-of-the-art methods.

Figurel gives a high-level overview of our approach. First, we start with
manually applying standard compiler optimizations to the naive code. Then we
take the optimized code and abstract several innermost loops to the JITer. In the
static code segment, we refer to the output of the JITer as a function pointer.
During static compilation of the code, we leverage widely available threading
libraries such as OpenMP for parallelization of the outermost loops. Now, at run-
time, we create a descriptor of optimization factors from the parameter values.
We pass this descriptor to the JITer to produce optimized code for the abstracted
code at runtime. Then JITer creates an in-memory function and returns a pointer
to it. We use this function pointer in the static code segment to execute the JITer
generated code.

N: Number of images 1.#pragma omp for collapse(2)
2.for(img = 0; img < N; ++img) {

C: Input feature map 3. for(ifm = 0; ifm < C; ++ifm) {
4. for(ofm = 0; ofm < K; ++ofm) {

K: Output feature map 5- for(oj = 0; oj < P; ++oj) {
6. ij = oj * stride_h;

p: Outputimage height 7- for(oi = 0; oi < Q; ++oi) {
8. ii = oi * stride_w;

Q: Outputimage width ~ 9- for(kj = 0; kj < R; ++kj) {
10. for(ki = 0; ki < S; ++ki) {
11. grad_input(img, ifm, ij + kj, ii + ki) +=

R: Filter/Weight height
grad_output(img, ofm, oj, oi) *
s: Filter\Weight width weight (ofm, ifm, kj, ki);
YrYrrrro}

Fig. 2. Pseudo code of naive direct convolution for back-propagation

! For convenience, we will use “JIT” as a shorthand root in words such as “JITer”
and “JITed”.

270 A. Mandal et al.

4 Runtime Code Specialization

To start with, we show a “C” style pseudocode? of a straightforward, but naive,
implementation of the kernel in Fig.2. In this section, we discuss the runtime
specialization of this code and separation of code blocks between dynamic code
generation and static compilation.

During the design of our dynamic code generator, we exploit the fact that it
is targeted for domain-specific JIT code generation (that is, it targets CNN com-
putations). This enables us to design and implement a very low overhead JITer
compared to traditional dynamic compilers. At a high level, our JITer can avoid
all the steps of handling generic code in a traditional JITer, and directly proceed
to the assembly code generation phase because we have manually applied all the
high-level optimizations beforehand and know the exact computation sequence
inside the JITer. So, we hardcode the register allocation, loads/stores of data,
fused multiply-add computation, tiling, unrolling, and prefetching process inside
our code generator while the associated factors still depend on the descriptor we
pass to our JITer. For the conversion of the assembly code generated by our JITer
to machine code, we have extended the dynamic assembler from LIBXSMM [7]
which targeted matrix multiplication style applications. Section5 discusses the
optimizations that we consider for the implementation of our JITer on KNL
architecture and how the input parameter values influence the factors associ-
ated with these optimizations.

After applying the optimizations described in Sect.5 on the code in Fig. 2,
we determine the partitioning of the kernel between the code that is statically
compiled using standard compilers such as Intel® ICC and the code that we
generate at runtime. Figure 3 depicts that partition. The idea here is to keep the
overhead of JIT code generation as low as possible. We achieve this by leaving
low-level optimizations and parallelization to a static compiler and amortizing
the cost of JIT code generation over the outermost loops.

Figure3 also depicts the interface for our dynamic code generator. First,
we create a descriptor (bp_-desc) of optimization factors depending on the run-
time values of the input parameters. Then we pass the descriptor to our JITer
(bp-jit). The JITer generates optimized code using the descriptor and returns
a function pointer (conv_bp). We use this function pointer to execute the JITed
code inside the innermost loop that we statically compile (in this case, theos loop
in line 9). During the descriptor creation, we derive several crucial optimization
factors depending on the input parameter values, such as register blocking fac-
tor, cache blocking factor, which loops to unroll, and how much to prefetch in
each iteration. Additionally, we ensure that the JITed code fits in L1 instruc-
tion cache and that the data footprint of JITed code fits in L1 data cache. This
is important because the penalty for missing L1 caches are multiplied by the
number of outermost loops and effectively becomes quite high.

2 Array accesses appear within “()” instead of “[]” due to the use of macros e.g., A(i,
j, k, 1) denotes location A [i*dim2*dim3*dim4 + j*dim3*dim4 + k*dim4 + 1.

Using Dynamic Compilation to Achieve Ninja Performance 271

Statically Compiled

1.bp_desc = setup backward convolution descriptor using parameters
N,C,H,W,K,R,S,stride_h,stride_w,pad_h,pad_w;

.conv_bp = bp jit(bp_desc); //Generate optimized code at Runtime

. #pragma omp for collapse(2)

4\ for(img = 0; img < N; ++img) {

for(ifm = 0; ifm < C/B,; ++ifm) { //blocked by B; for vectorization

for(ofm = 0; ofm < K/B,; ++ofm) { //blocked by B, for cache blocking

for(oj = 0; oj < P; ++0j) {

ij = oj * stride_h;

for(oi = 0; oi < Q/By; ++oi) { //blocked by B, for register blocking
float *inp ptr = &(grad_input[img][ifm][ij][oi*Bg*stride w][0]);
const float *out ptr = &(grad_output[img][ofm][0j][0i*B,][0]);
const float *wt_ptr = &(weight[ofm][ifm][0][0][0][0]);

conv_ bp(input ptr, wt ptr, out ptr); //Use JITed function
14. for(kj = 0; kj < R; ++kj) {
15. for(ki = 0; ki < S; ++ki) {
JITed
Vector code block J
16. Pattern repeated B, times
17. Pattern repeated B, times

8.} }rr 3y} o}

Fig. 3. Partition between static compilation and dynamic code generation

5 Optimizations for KNL Many-Core Architecture

5.1 Key Features to Consider for Code Optimization

The processor under discussion is the second generation Intel Xeon Phi many-
core processor, codenamed Knights Landing (KNL). An architectural overview
of the KNL chip can be found in [16]. The KNL chip features up to 72 out-of-
order Silvermont Atom cores, each with 4 hardware-level hyper-threads. A key
feature of this processor’s microarchitecture is that each core includes two 512-bit
vector processing units (VPUs) for increased SIMD level parallelism, i.e., each
core can start the execution of two 16-wide single precision SIMD instructions
in the same clock cycle. Another important feature of KNL is that it supports
explicit instructions to prefetch data into L1 or L2 caches (via prefetcht0 and
prefetcht?2 instructions respectively).

5.2 Fine-Grain Parallelism and Related Optimizations

Data Layout - Needless to say, the large number of on-chip VPUs makes vec-
torization a critical optimization to consider for KNL. Keeping this in mind, we
design the data layouts for the tensors to favor vectorization on x86 systems.
From our domain knowledge, we find that the input feature map, C, and the
output feature map, K, are typically multiples of vector length on x86 architec-
tures. So, we block these dimensions by the vector length and bring the block-
ing factor to the innermost dimension to have contiguous SIMD access for the

272 A. Mandal et al.

tensors. The resulting data layouts are as follows: (a) Input : NCHW —
NCp, HWB;, Bf = VLEN, (b) Output : NKPQ — NKp_,PQBo, Bo =
VLEN, and (c) Filter or Weight: KCRS — Kp,Cp, RSBoBj.

Vectorization - Following the notations in Fig. 2, we block the ifm loop by a
factor of vector length (Bj) and bring that blocking factor loop to the inner-
most position, i.e., after k4 loop. Then we vectorize the loop and perform the
computation of the loop with a single fused multiply and add (fmadd) vector
instruction.

Is Vectorization All We Need? - Let’s consider where we are in the per-
formance landscape after vectorization. To get some insight, we present perfor-
mance for convolution layers from Overfeat [14] in Table1. As we can see, we
gain significant performance improvement over the naive code in Fig. 2 through
vectorization. However, the theoretical peak performance of KNL is 6 TFLOPs
and large HPC-style matrix-multiplication benchmarks (Top500 benchmark [13])
achieve roughly 4.5 TFLOPs on KNL for single precision. This means we are still
a large distance away from the peak performance. So, how can we do better?
The following describes other equally important optimizations for KNL which
improve the performance beyond vectorization, and we finally show in Sect.6
that we achieve an order-of-magnitude better performance and sometimes, even
close to peak performance (>4 TFLOPs).

Table 1. Performance gain from vectorization (Using 64 threads)

Convolution layer | Performance from naive Performance from
code (GFLOPs) vectorized code (GFLOPs)
Overfeat_CONV2 | 22.618 267.22
Overfeat_ CONV3 | 11.797 180.05
Overfeat_ CONV4 | 11.948 169.38
Overfeat_CONV5 | 11.959 174.09

Exploiting Instruction-Level Parallelism - KNL has 32 vector registers per
core. We use these registers for register blocking to increase both instruction-level
parallelism and register reuse. Our input tensor layout is NC'g, HW By, and we
vectorize along the By dimension. Therefore, a good candidate for register block-
ing would be the next innermost dimension, i.e., W dimension. Correspondingly,
we perform register blocking along o loop and bring the blocking factor(Bg)
loop inside k% loop.

Optimizing Vector Load and Stores - Vector loads and stores can be quite
expensive in number of cycles, even when their data resides in L1 cache. It
is therefore important to reduce the number of loads and stores as much as
possible, so as to reduce their overhead, as well as to reduce the number of stalls
in the instruction pipeline. One interesting observation regarding the input access

Using Dynamic Compilation to Achieve Ninja Performance 273

pattern is that we have significant reuse for input values over k¢ loop when the
stride is 1. We exploit this to gain register reuse for the input tensor. The strategy
is outlined in Fig. 4. Basically, we rotate the logical register indices from one k%
loop iteration to the next iteration. Thus we get significant reuse of physical
registers and effectively reduce the number of loads and stores on input tensor.
To hide load latencies, we use software pipelining to issue loads on the weight
tensor ahead of its usage. The strategy is depicted in Fig. 5.

logical physical values logical physical values

ro —> o —>a0 Iro 0 —>at6 |

i —— r1 —>- Ir1 rl _i-

Ir2 — 2 —>- SN Ir2 r2 —b-

Ir5 —> r15s —>/a15 | Ir15 s —>als |
ki =0 store load alé6 ki =1

Fig. 4. Register reuse for input tensor

weight . weight

register values register values

0 <— r0 -

Do Do

i« - computation il wi computation

r2 4—- using w0 r2 - using w1

o —lwa s e

issue 4 loads J’] Flow of

at beginning store w0 load w4 computation

Fig. 5. Software pipelining for loads on weight tensor

5.3 Thread-Level Parallelism and Optimizations

We use the standard OpenMP® threading library for multi-threading. To ensure
coarse granularity of work, we use the outermost loops, i.e., tmg and < fm loops to
exploit thread-level parallelism. We collapse the iteration space of these two loops
and issue a parallel for using the #pragma omp for collapse(2) directive.
As the work inside each 4fm iteration is similar, there is no problem of load
imbalance here.

Cache Blocking - We consider improving thread performance through blocking
for L1 Data cache. The output tensor layout is NKp, PQBo. If we do cache
blocking along Bp, we gain spatial locality for the output tensor. Furthermore,
since the input tensor does not depend on Bp, we ensure temporal locality for
the input tensor. So, we apply a cache blocking along the ofm loop by a factor
of Bp and bring the tiled loop inside the k% loop.

274 A. Mandal et al.

Software Prefetching - KNL supports explicit L1 and L2 cache prefetch
instructions (prefetcht0 and prefetcht?2 respectively). We use these instruc-
tions in our dynamic code generator to hide load latencies by bringing data
into cache before their actual usage, while also ensuring that the data are not
prefetched too early so as to be evicted before their usage. Our software prefetch
pipeline is presented in Fig. 6.

Pass pointer to M as Will execute
Executing function argument next

JITed Function JITed Function

Use prefetching
to bring L cache
lines starting
from pointer
passed as
argument

Time or execution of code

Fig. 6. Software prefetch pipeline to hide load latencies

6 Performance Evaluation

In this section, we evaluate the performance of a C-based implementation of our
method on a single-socket Intel® Xeon Phi 7250 processor which is equipped
with 68 cores and 16 GB MCDRAM. We used Turbo mode which set the proces-
sor frequency at 1.3 GHz. We also configured the processor with FLAT memory
mode and QUADRANT cluster mode. We keep all the data on MCDRAM using
numactl -membind=1. For multi-threading, we set the number of threads to 64
for all the experiments. We compiled our code with Intel® C+4 Compiler (ICC)
2017 with the “-02” flag.

For evaluating our approach, we chose four state-of-the-art CNNs, namely
Alexnet [11], Overfeat [14], Vgga [15], and GoogleNet_V1 [17]. We get 67 con-
volution layers in total from these CNNs. However, to improve readability, we
present performance results on 12 convolution layers from these CNNs. We tried
to include as diverse parameter values as possible. The parameter values of the
selected convolution layers are presented in Table 2.

6.1 Comparison with GEMM-Based Method

As we can see from Fig. 7, we get an order-of-magnitude performance improve-
ment over GEMM-based method implemented with Inte]l® MKL 2018. Moreover,
the figure also supports our hypothesis that the image flattening step (im2col)
required by the GEMM-based methods incurs significant overhead. We see that

Using Dynamic Compilation to Achieve Ninja Performance 275

Table 2. Parameter values for convolution layers

Layers W |H N |C K | R|S|Pad|Stride
Alexnet_CONV2 27 | 27 256 96 256 |5 |52 1
Alexnet_ CONV4 13 | 13 256|384 |384 |3 |31 1
Overfeat_CONV2 28 | 28 |256| 96 (256 |5 |50 1
Overfeat_CONV3 12 | 12 |256 256 [512 |3 |3 |1 1
Vgga CONV2 112 [112 |128 | 64 |128 |3 (3|1 1
Vgga_ CONV3 56 | 56 | 128128 [256 (3 |3 |1 1
Googlenetvl CONV4 28 | 28 [128(192 | 64 |1 1|0 1
Googlenetvl CONV17| 14 | 14 128 96 |208 |3 3|1 1
Googlenetvl CONV18| 14 | 14 |128 /480 | 16 |1 (1|0 1
Googlenetvl CONV25| 14 | 14 [128| 32 | 64 |5 |5|2 1
Googlenetvl CONV41| 7 7 11281160 (320 |3 3|1 1
Googlenetvl CONV49| 7 7 1128 48 |128 |5 5|2 1

the FLOPs measured for only the GEMM operation is much higher than the
effective FLOPs for the method. Hence, our work shows that direct convolution
method can achieve much higher performance over GEMM-based approach by
avoiding memory bandwidth bound %m2col operation. One thing to note here,
the GEMM operation does not reach very high FLOPs (i.e. >4 TFLOPs) due
to the irregular sizes of matrices.

6.2 Comparison with State-of-the-Art Libraries

To compare our method with other state-of-the-art methods, we present perfor-
mance comparison with Intel® MKL-DNN [9] and ZNNPhi [18]. Both of them
have optimized the convolution operation for KNL. Figure8 presents the per-
formance results. It shows that our method gives better performance for all the
convolution layers except for Alexnet_ CONV2 where MKL-DNN gives the best
performance. It proves the importance of our adaptable runtime code special-
ization which decides the optimization factors depending on the execution time
values of input parameters. We see that even MKL-DNN, a highly optimized
manually tuned library by experts, fails to capture specific scenarios and gives
quite poor performance, for example, Vgga_ CONV2 and Googlenetvl CONV18.
On the other hand, ZNNPhi generates several kernels with different values of
the optimization parameters. We only present the best performance achieved
among those kernels. In general, our method gives much better performance
than ZNNPhi except for convolution layers from Vgga where the performance
is similar. Another important advantage of our method is that we do not incur
the overhead of any benchmarking or auto-tuning step involving several kernels
to choose the best one.

276 A. Mandal et al.

Performance Comparison with GEMM-based Method

BGEMM-based Method ~ ®Only GEMM Operation ~ ®Our Method

Fig. 7. Comparison of the performance in GFLOPS of our Back-Propagation method
with the GEMM-based method implemented using Intel® MKL 2018. For complete-
ness, we also show the performance of only the GEMM calls.

Performance Comparison with State-of-the-art Libraries

BZNNPhi SMKL-DNN ®Qur Method

Fig. 8. Back-propagation: comparison with state-of-the-art libraries

6.3 Overhead of JIT Code Generation

Figure 9 shows an evaluation of the overhead of our dynamic code generation
using the following metric: code generation time as a percentage of the total
execution time for convolution over a mini-batch. In reality, the kernel is exe-
cuted over several iterations during the training step, while JIT code genera-
tion is required only once. Hence, in practice, the cost of JIT code generation is
amortized over multiple executions of the kernel with the same parameter values,
which in most cases is well over 1,000. Nevertheless, even for a single execution,
we see negligible overhead for many convolution layers, especially the ones with
high iteration space. In case of kernels with comparatively low iteration space,
such as Googlenetvl_CONV18 and Googlenetvl CONV25, we see a discernible

Using Dynamic Compilation to Achieve Ninja Performance 277

Overhead of JIT Code Generation

B0verhead as % of total execution time of a mini-batch

10
9 —
X8
o 7
36 .
E=
E 5
8 4 _ - -
3
2
1
0
o > o > o & > a ® o)
R I I
& & & & & & S S S S S
& & 5 57 8’ 8’ > o o o7 o o
A A & & K KO & o~ oS < S oS
3 3 ©) & & N & & &
v v o o ¥ & & & & &
& o o &) &
© & © «© & I

Fig. 9. Overhead of JIT code generation as a percentage of the total execution time of
a mini-batch

overhead (but still under 10%) because they have significantly small execution
times (9.6 ms for Googlenetvl CONV1S8). However, with amortization from the
number of iterations, this small overhead becomes negligible.

7 Conclusion

Convolution Neural Networks (CNN) are state-of-the-art Deep Neural Networks
for image recognition applications today. The core of these CNNs is the convo-
lution layer, which performs a large number of small convolutions with irregular
dimensions. CNN training requires massive computing power, and it turns out
that the convolution operation is the key performance enabler for CNNs. As a
primary contribution of this work, we propose a novel low overhead dynamic code
generation approach for runtime code specialization based on the input param-
eter values for convolution. We demonstrate that an efficient implementation of
direct convolution in back-propagation using our approach can achieve close to
peak performance in many cases on the Intel Knights Landing (KNL) proces-
sor. Furthermore, we debunk the claim that the direct convolution method is
not suitable for high performance. We show that the direct convolution method,
using our approach, can achieve a significant performance improvement over the
GEMM based method on KNL. Finally, we compare our performance results
with other cutting-edge approaches on KNL, such as MKL-DNN and ZNNPhi
for several convolution layers of state-of-the-art CNNs. The comparison supports
the robustness of our method on performance over a wide range of input param-
eter values. We have released our implementation at https://github.com/hfp/
libxsmm, which is currently used by high-level frameworks such as TensorFlow.

https://github.com/hfp/libxsmm
https://github.com/hfp/libxsmm

278 A. Mandal et al.
References
1. Awan, A.A. et al.: An in-depth performance characterization of CPU- and GPU-

11.

12.

13.
14.

15.

16.

17.

18.

based DNN training on modern architectures. In: Proceedings of the Machine
Learning on HPC Environments. MLHPC 2017, pp. 8:1-8:8 (2017)

Bergstra, J., et al.: Theano: a CPU and GPU math compiler in Python. In: Pro-
ceedings of 9th Python in Science Conference, pp. 1-7 (2010)

Chellapilla, K., Puri, S., Simard, P.: High performance convolutional neural net-
works for document processing. In: Tenth International Workshop on Frontiers in
Handwriting Recognition. Suvisoft (2006)

Chetlur, S., et al.: cuDNN: efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759 (2014)

Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a matlab-like environment for
machine learning. In: BigLearn, NIPS Workshop, No. EPFL-CONF-192376 (2011)
Heinecke, A., et al.: Design and implementation of the linpack benchmark for sin-
gle and multi-node systems based on intel® xeon phi coprocessor. In: Proceedings
of the 2013 IEEE 27th International Symposium on Parallel and Distributed Pro-
cessing. IPDPS 2013, pp. 126-137 (2013)

Heinecke, A., Pabst, H., Henry, G.: LIBXSMM: a high performance library for
small matrix multiplications. In: Poster and Extended Abstract Presented at SC
(2015)

Tandola, F.N.; et al.: FireCaffe: near-linear acceleration of deep neural network
training on compute clusters. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2592-2600 (2016)

Intel: MKL-DNN (2017). https://github.com/0lorg/mkl-dnn

. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:

Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675—
678 (2014)

Krizhevsky, A., et al.: Imagenet classification with deep convolutional neural net-
works. In: Advances in Neural Information Processing Systems, pp. 1097-1105
(2012)

Martin, A.; et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). tensorflow.org

Meur, H., et al.: Top500 list, June 2016. https://www.top500.org/

Sermanet, P., et al.: Overfeat: integrated recognition, localization and detection
using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

Sodani, A., et al.: Knights landing: second-generation intel xeon phi product. IEEE
Micro 36(2), 34-46 (2016)

Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1-9 (2015)
Zlateski, A., Seung, H.S.: ZNNPhi (2017). https://github.com/seung-lab/znnphi-
release

http://arxiv.org/abs/1410.0759
https://github.com/01org/mkl-dnn
https://www.tensorflow.org
https://www.top500.org/
http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1409.1556
https://github.com/seung-lab/znnphi-release
https://github.com/seung-lab/znnphi-release

Parallel and Distributed Data
Management and Analytics

®

Check for
updates

Privacy-Preserving Top-k Query
Processing in Distributed Systems

Sakina Mahboubi®™), Reza Akbarinia, and Patrick Valduriez

INRIA & LIRMM, University of Montpellier, Montpellier, France
sakina.mahboubi@inria.fr

Abstract. We consider a distributed system that stores user sensitive
data across multiple nodes. In this context, we address the problem of
privacy-preserving top-k query processing. We propose a novel system,
called SD-TOPK, that is able to evaluate top-k queries over encrypted
distributed data without needing to decrypt the data in the nodes where
they are stored. We implemented and evaluated our system over syn-
thetic and real databases. The results show excellent performance for
SD-TOPK compared to baseline approaches.

1 Introduction

We consider a distributed system where users can outsource their sensitive data
and issue top-k queries. A top-k query is an important kind of query that allows
the user to get the k data items that are most relevant to the query. The user
data are encrypted (for privacy reasons) and distributed (for performance rea-
sons) across multiple nodes. In this context, we address the problem of privacy-
preserving top-k query processing.

Privacy preserving top-k query processing is critical for many applications
that outsource sensitive data. For example, consider a university that outsources
the students database in a public cloud, in Infrastructure-as-a-Service (IaaS)
mode, with non-trusted nodes. The database is vertically partitioned (for per-
formance reasons) and encrypted. Then, an interesting top-k query over the
encrypted distributed data is the following: return the k students that have the
worst averages in some given courses.

There are different approaches for processing top-k queries over plaintext
(non encrypted) data. One of the best known approaches is TA [6] that works
on sorted lists of attribute values. However, there is no efficient solution capable
of evaluating efficiently top-k queries over encrypted data in distributed systems.

In this paper, we propose a system, called SD-TOPK (Secure Distributed
TOPK), that encrypts and stores user data in a distributed system, and is able
to evaluate top-k queries over the encrypted data. SD-TOPK comes with a novel
top-k query processing algorithm that finds a set of encrypted data that is proven
to contain the top-k data items. This is done without having to decrypt the data
in the nodes where they are stored. In addition, we propose a powerful filtering

© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 281-292, 2018.
https://doi.org/10.1007/978-3-319-96983-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_20&domain=pdf

282 S. Mahboubi et al.

algorithm that removes the false positives as much as possible without data
decryption.

We implemented and evaluated the performance of our system over synthetic
and real databases. The results show excellent performance for SD-TOPK com-
pared to TA-based approaches. They show the efficiency of our filtering algorithm
that eliminates almost all false positives in the distributed system, and reduces
significantly the communication cost between the distributed system and the
user.

The rest of this paper is organized as follows. Section 2 gives the problem defi-
nition. Section 3 describes SD-TOPK system. Section 4 presents the performance
evaluation results. Section 5 discusses related work, and Sect. 6 concludes.

2 Problem Definition

In this section, we define the problem which we address.

2.1 Top-k Queries

By a top-k query, the user specifies a number k, and the system should return
the & most relevant answers. The relevance degree of the answers to the query
is determined by a scoring function. A common method for efficient top-k query
processing is to run the algorithms over sorted lists (also called inverted lists)
[6]. Let us define them formally.

Let D be a set of n data items, then the sorted lists are m lists L1, Lo, ..., Ly,
such that each list L; contains every data item d € D in the form of a pair
(id(d), s;(d)) where id(d) is the identification of d and s;(d) is a value that
denotes the local score (attribute value) of d in L;. The data items in each list
L; are sorted in descending order of their local scores. For example, in a relational
table, each sorted list represents a sorted column of the table where the local
score of a data item is its attribute value in that column.

Let f be a scoring function given by the user in the top-k query. For each
data item d € D an owverall score, denoted by ov(d), is calculated by applying
the function f on the local scores of d. Formally, we have ov(d) = f(s1(d), s2
(d),..., sm(d)).

The result of a top-k query is the set of & elements that have the highest
overall scores among all elements of the database. In this work, we assume that
the scoring function is in the class of linear functions with positive coefficients
(denoted by LFPC'). Formally, a function f is LFPC if f = a1z + agxa + -+ +
amTm where each coefficient a; > 0 for 1 < ¢ < m. Many functions such as SUM,
COUNT, AVG and MAX are in the class of LFPC functions.

2.2 Distributed System and Adversary Model

We suppose that the sorted lists are stored in the nodes of a distributed system.
We make no specific assumption about the distributed system architecture which

Privacy-Preserving Top-k Query Processing in Distributed Systems 283

can be very general, e.g., a cluster of nodes. Formally, let P be the set of the
nodes in the distributed system. Each sorted list L; is kept in a node p € P. We
call p the owner of L;.

We consider the honest-but-curious adversary model for the nodes of the dis-
tributed system. In this model, the adversary is inquisitive to learn the sensitive
data without introducing any modification in the data or protocols. This model
is widely used in many preserving processing solutions [10].

2.3 Problem Statement

The problem we attack in this paper is top-k query processing over encrypted
data in distributed systems.

Let D be a database composed of n data items. We want to encrypt the data
items contained in D, and store the encrypted data items in a distributed system.
Then, our goal is to develop a distributed algorithm A that given any top-k query
¢ (including a scoring function f) returns the k data items that have the highest
overall scores with regard to f. This should be done without decrypting the data
items in the nodes of the distributed system, while minimizing the response time
and the communication cost of the query execution.

3 SD-TOPK System

In this section, we present our system, called SD-TOPK, that encrypts and
outsources the user data in a distributed system, and is capable to efficiently
evaluate top-k queries over the distributed encrypted data.

The rest of this section is organized as follows. We first describe the architec-
ture of our outsourcing system. Then, we present our method for encrypting the
data items and storing them in the distributed system. Afterwards, we propose
our algorithm for processing top-k queries over the encrypted data.

3.1 System Architecture

The architecture of our outsourcing system has two main components:

— Trusted client. It is responsible for encrypting the user data, decrypting
the results and controlling the user accesses. The security keys used for data
encryption/decryption are managed by this part of the system. When a query
is issued by a user, the trusted client checks the access rights of the user. If
the user does not have the required rights to see the query results, then her
demand is rejected. Otherwise, the query is transformed to a query that can
be executed over the encrypted data. Note that the trusted client compo-
nent should be installed in a trusted location, e.g., the machine(s) of the
person/organization that outsources the data.

284 S. Mahboubi et al.

— Remote service. It is installed in the nodes of the distributed system, and is
responsible for storing the encrypted data, executing the queries provided by
the trusted client, and returning the results. This component does not keep
any security key, thus cannot decrypt the encrypted data in the distributed
system.

3.2 Data Encryption and Outsourcing

Before outsourcing a database, SD-TOPK creates sorted lists for all important
attributes, i.e., those that may be used in the top-k queries. Then, each sorted
list is partitioned into buckets. There are several methods for partitioning a
sorted list, for example dividing the attribute domain of the list to almost equal
intervals or creating buckets with equal sizes. In the current implementation of
our system, we use the latter method, i.e., we create buckets with almost the
same size where the bucket size is configurable by the system administrator.

Let b1,ba,...,b; be the created buckets for a sorted list L;. Each bucket
b; has a lower bound, denoted by min(b;), and an upper bound, denoted by
max(b;). A data item d is in the bucket b;, if and only if its local score (attribute
value) in the list L; is between the lower and upper bounds of the bucket, i.e.,
min(b;) < s;(d) < max(b;).

We use two types of encryption schemes (methods) for encrypting the data
item ids and the local scores of the sorted lists: deterministic and probabilis-
tic. With the deterministic scheme, for two equal inputs, the same ciphertexts
(encrypted values) are generated. We use this scheme to encrypt the ID of the
data items. This allows us to have the same encrypted ID for each data item in
all sorted lists.

The probabilistic scheme is used to encrypt the local scores (attribute values)
of data items. With the probabilistic encryption, for the same plaintexts different
ciphertexts are generated, but the decryption function returns the same plaintext
for them. Thus, for example if two data items have the same local scores in a
sorted list, their encrypted scores may be different. The probabilistic encryption
is the strongest type of encryption.

After encrypting the data IDs and local scores of each list L;, the trusted
client puts them in their bucket (chosen based on the local score). Then, the
trusted client sends the buckets of each sorted list to one node in the distributed
system. The buckets are stored in the nodes according to their lower bound
order. However, there is no order for the data items inside each bucket, i.e., the
place of the data items inside each bucket is chosen randomly. This prevents the
nodes to know the order of data items inside the buckets.

3.3 Top-k Query Processing Algorithm

The main idea behind top-k query processing in SD-TOPK is to use the bucket
boundaries and a new technique to decide when to stop reading the encrypted
data from the lists.

Privacy-Preserving Top-k Query Processing in Distributed Systems 285

For each top-k query, one of the nodes of the distributed system performs
the coordination between the nodes to execute the query. We call this node as
coordinator. The coordinator may be the node that initially receives the user’s
query or be randomly chosen among the system nodes.

Let us describe our top-k query processing algorithm. Given a top-k query
with a number k£ and a scoring function f that is linear with positive coefficients,
i.e., it is in the form of f = a1x1 +aszs+ - - -+ amxy,. SD-TOPK chooses a node
as coordinator, and then the following steps are performed to answer the query:

1. The coordinator broadcasts the query in parallel to the nodes, and asks each
node to return the buckets that contain the & first data items in its list. Each
node returns the encrypted identifier of the first k data items, as well as the
lower bound of their including buckets.

2. For each returned data item d, the coordinator calculates its minimum overall
score defined as follows: 0Vmin(d) = f(vi(d),v2(d), ..., vm(d)) where v;(d) is
the lower bound of the bucket that contains d in the list L;. If d has not been
returned to the coordinator by the owner of a list L; then v;(d) = 0.

3. The coordinator sorts the received data items according to their minimum
overall score, and chooses the data item d’ that has the k** minimum overall
score denoted by §. Then, it uses the minimum overall score of d’ to calculate
a threshold 6 as follows: # = ﬁ where aq,...,a,, are the coefficients in
the scoring function. -

4. The coordinator broadcasts 6 in parallel to the nodes. Each node returns to
the coordinator the buckets that have upper bounds greater than or equal to
0.

5. Let Y be the set of all data items that are sent to the coordinator by at least
one node. We call Y the set of candidate items. The coordinator sends the
encrypted id of all data items contained in Y to the nodes, and they return
the encrypted score of each data item contained in Y.

6. Finally, the coordinator returns to the trusted client the candidate items and
their encrypted local scores.

When the trusted client receives the candidate items, it decrypts them using the
secret keys. Then, it calculates for each candidate d its overall score, extracts
the k£ data items that have the highest overall scores, and returns them to the
user.

The following theorem shows that the output of the above algorithm contains
the encrypted top-k data items.

Theorem 1. Given a top-k query with a scoring function f that is linear with
positive coefficients. Then, the output of the top-k algorithm of SD-TOPK con-
tains the encrypted top-k results.

Proof. Let the scoring function be f = aijxy + aszs + -+ + apmTm. Let Y
be the output of the algorithm, i.e., the set of candidate items. To prove the
theorem, it is sufficient to show that each data item d that has not been sent
to the coordinator in the 4th step of the algorithm, has an overall score less

286 S. Mahboubi et al.

than or equal to the overall score of at least k£ data items in Y. Let 6 be the
threshold value that is sent to the nodes in the 4th step of the algorithm. For
each list L;, let s; be the local score of d in the list L;. The overall score of d
is computed as ov(d) = a181 + -+ + @mSm. Since d has not been sent to the
coordinator, from the 4th step of the algorithm we know that s; < 8. Thus, we
have ov(d) < a1 X 0 + -+ + a,, x 0 = Y.I" a; x 0. From the 3rd step of the
algorithm, we know that 6 = Em%. Thus, we have ov(d) < 6. In other words,

i=1 "

the overall score of d is less than the minimum overall score of the data item d’
that is the k" data item found in the 3rd step of the algorithm. Therefor, the
overall score of d is less than at least k£ data items found by the top-k algorithm
of SD-TOPK, so d cannot be among the top-k results. O

In the set Y returned by the above algorithm, in addition to the top-k results
there may be false positives. Below, we propose a filtering algorithm to eliminate
most of them in the distributed system, without decrypting the data items.

Given the set of candidate data items Y, the filtering algorithm executed by
the coordinator proceeds as follows:

1. Calculate the minimum overall score of all candidate data items, sort them
according to their minimum overall score, and take the k** minimum overall
score denoted by ds.

2. Calculate the mazimum overall score of all candidate data items, and elimi-
nate those with maximum overall score less than < do. The maximum overall
score of a data item d is computed as follows: 0vpee(d) = f(v1(d),v2(d)
s -os U (d)) where v;(d) is the upper bound of the bucket that contains d in
the list L;. If d has not been returned to the coordinator by the node that
keeps L; then v;(d) is equal to the lower bound of the last bucket received
from that node.

The above algorithm eliminates almost all false positives (see the experimen-
tal results on filtering rate in Sect. 4), and by doing that it improves significantly
the response time of the queries because the eliminated false positives do not
need to be communicated to the trusted client and should not be decrypted.

To strengthen the security of our system, we obfuscate the bucket boundaries
as follows. We choose two random numbers a and c¢. These numbers are kept
secret in the trusted client. Before sending the encrypted database to the nodes
of the distributed system, the trusted client multiplies the lower (and upper)
bounds of buckets by a secret number a, and then adds the secret number ¢ to
the result. These obfuscated bucket boundaries are sent to the nodes together
with the encrypted IDs and scores.

4 Performance Evaluation

In this section, we first describe the experimental setup, and then report the
results of our experiments.

Privacy-Preserving Top-k Query Processing in Distributed Systems 287

4.1 Setup

We implemented SD-TOPK and performed experiments on real and synthetic
datasets. As in some previous work on privacy (e.g., [10]), we use the Gowalla
database, which is a location-based social networking dataset collected from users
locations. The database contains 6 million tuples where each tuple represents
user number, time, user geographic position, etc. In our experiments, we are
interested in the attribute time, which is the second value in each tuple. As
in [10], we decomposed this attribute into 6 attributes (year, month, day, hour,
minute, second), and then created a database with the values of those attributes.
In addition to the real dataset, we have also generated random datasets using
uniform and Gaussian distributions.

We compared SD-TOPK with two algorithms based on the TA algorithm
[6]: Remote-TA and Block-TA. In Remote-TA, the trusted client retrieves the
encrypted data from the sorted lists of the distributed system one by one using
sorted access, and for each retrieved data d, it retrieves the encrypted local
scores of d from the other lists, decrypts the read local scores, computes the
TA threshold, and checks if it can stop or not (as in TA). Block-TA is like
Remote-TA, except that the encrypted data items are read block by block. For
the TA-based algorithms, we sort the encrypted data items in each list based on
their initial order (i.e., their order in plaintext).

In the experiments, the number of nodes is equal to the number of lists, i.e.,
each node stores one of the lists. The coordinator of SD-TOPK is one of the
nodes of the system (randomly chosen).

We study the effect of several parameters: (1) n: the number of data items in
the database; (2) m: the number of lists; (3) k: the number of required top items;
(4) bsize: the number of data items in the buckets (or blocks) in SD-TOPK and
Block-TA. The default value for n is 2M items. Unless otherwise specified, m is 5,
k is 50, and bsize is 10. The default database is the synthetic uniform database,
and the latency of the messages is around 50 ms.

To evaluate the performance of SD-TOPK, we measured the following met-
rics:

— Response time: includes top-k query processing time, communication time,
filtering time, and the result post-processing time (e.g., decryption).

— Filtering rate: the number of false positives eliminated by the filtering algo-
rithm in the distributed system.

— Communication cost: we measure two metrics: (1) the number of mes-
sages communicated between the nodes to answer a top-k query; (2) the total
number of bytes communicated to answer a top-k query.

4.2 Effect of Database Size

In this section, we compare the response time of SD-TOPK, Remote-TA and
Block-TA, while varying the number of data items, i.e., n.

288 S. Mahboubi et al.
1x107 i
SD-TOPK —&—
6 Block TA —4—-
1x10 Remote TA -4~
100000 N
2
z 1000 . s
3 1000 fa-abss e P
g -
Z 100 b a ot
o~
10
! poaaA A&
0.1
678910 15 20 100
n (x1000)

Fig.1. Response time vs. number of
database tuples

Response time (s)

SD—TOPK —A—

20 30 40 50 60 70 80 90 100 110

Fig. 3. Response time vs. k

1x10°
1x108
1x107
1x10°

100000

Communicated data size (byte)

10000

T DO T
Block TA —-4--
Remote TA -~~~ -

1000

6 7 8910 15 20
n (x1000)

100

Fig. 5. Size of communicated data (in
bytes) vs. number of database tuples

7
1x10 SD-TOPK 2
6 Block TA —4A—- 1]
1x10 Remote TA 4~
100000 . “]
= &
) N
QE, 10000 A s E
5 = e
3 1000 N P]
2 e
Z 100 o 1
10 k.
1 M/‘A’_‘A’_‘A 1
0.1
1 2 3 4 5 6

m (list)

Fig. 2. Response time vs. number of

lists
8
Ix107 P SD-TOPK —2&— '
U Block TA —4A—-
1x10 Remote TA -4~
1x10°
3 A
S 100000 - A
7 A ADDD A
10000 T
g AAM'&/<—AV_A
5 1000
=
g 100
z
10
1
0.1
678910 15 20 100

n (x1000)

Fig. 4. Number of communicated mes-
sages vs. number of database tuples

8
ED—TOPK e
7
6
z
s 5
£ A—MA———A/A/A
9 4
E]
2
z 3
~
2
1
0
5 10 20 50 100 250 500 1000
Bucket size

Fig. 6. Response time vs. bucket size

Privacy-Preserving Top-k Query Processing in Distributed Systems 289

Figure 1 shows how response time evolves, with increasing n, while the other
parameters are set as default values described in Sect. 4. Note that the results are
shown in logarithmic scale. The response time of all approaches increases with
increasing the database size. SD-TOPK is the best; its response time is at least
two orders of magnitude better than the other algorithms. This high difference
between SD-TOPK and TA-based algorithms is mainly due to the high number
of encrypted data items that should be decrypted by TA-based algorithms in
trusted client, and also the messages needed for communicating them. Block-TA
performs better than Remote-TA, because of reading the lists in blocks, thus it
needs less number of messages.

4.3 Effect of the Number of Lists

Figure 2 shows the response time of SD-TOPK and TA-based algorithms when
varying m (i.e., the number of attributes in the scoring function), and the other
parameters set as default values. We observe that the response time of SD-TOPK
increases slightly comparing to Remote-TA and Block-TA when the number of
lists increases. The reason is that when we increase the number of lists, more
data (sent by the nodes) should be processed by the coordinator for finding the
candidate items.

4.4 Effect of k

Figure 3 shows the response times of SD-TOPK with increasing k, and the other
parameters set as default values. We observe that with increasing k the response
time increases slightly. The reason is that when k increases, SD-TOPK needs
to get more data items from the list owner nodes in each step. In addition,
increasing k augments the number of data items that the trusted client needs to
decrypt (because at least k data items are decrypted by the trusted client).

4.5 Effect of Bucket Size

Figure 6 reports the response time of SD-TOPK when varying the size of buckets,
and the other parameters set as default values. We observe that the response time
increases slightly when the bucket size increases. The reason is that increasing the
bucket size increases the number of data items to be considered in the different
steps of SD-TOP algorithm. It also increases the number of false positives to be
removed by the filtering algorithm.

4.6 Communication Cost

We measure the communication cost of SD-TOPK, Remote-TA and Block-TA
in terms of the total number of messages exchanged between the different nodes
of the distributed system and the size of the exchanged data.

Figure 4 shows the number of communicated messages while increasing the
number of tuples and fixing the other parameters to the default values. We

290 S. Mahboubi et al.

observe that SD-TOPK needs to exchange a small number of messages comparing
to the others approaches. The reason is that SD-TOPK runs in only some rounds
of communication, and does not depend on the database size. But for the TA-
based algorithms, the number of messages depends on the position where they
stop in the lists, and that position depends on the database size.

Figure 5 illustrates the size of the communicated data in bytes, while increas-
ing the number of tuples in the database and setting the other parameters to the
default values. We note that the size of the communicated data increases with
the database size. The amount of data transferred by SD-TOPK is less than that
of Remote-TA and Block-TA. The reason is that SD-TOPK uses the obfuscated
bucket boundaries to check the top-k data items and these boundaries have a
size less than the encrypted scores used by other algorithms.

4.7 Filtering Rate

We study the efficiency of the filtering algorithm of SD-TOPK by using different
datasets. The results are shown in Table 1. The results show that the filtering
algorithm is very efficient over all the tested datasets. However, there is a lit-
tle difference in the filtering rates because of the local score distributions. For
example, in the Gaussian distribution, the local scores of many data items are
very close to each other, thus the filtering rate decreases in this dataset.

Table 1. False positive elimination by the filtering algorithm of SD-TOPK over dif-
ferent databases

Uniform dataset | Real dataset | Gaussian dataset
Filtering rate | 100% 99.995% 99.991%

5 Related Work

In the literature, there has been some research work to process keyword queries
over encrypted data, e.g., [2,13]. For example [2,13] propose matching techniques
to search words in encrypted documents. However, the proposed techniques can-
not be used to answer top-k queries. There have been also some solutions pro-
posed for secure kNN similarity search, e.g., [3-5,11,15]. The problem is to find
k points in the search space that are the nearest to a given point. This problem
should not be confused with the top-k problem in which the given scoring func-
tion plays an important role, such that on the same database and with the same
k, if the user changes the scoring function, then the output may change. Thus,
the proposed solutions proposed for KNN cannot deal with the top-k problem.
The bucketization technique (i.e., creating buckets) has been used in the lit-
erature for answering range queries over encrypted data, e.g., [7,8]. For example,
in [8], Hore et al. use this technique, and propose optimal solutions for distribut-
ing the encrypted data in the buckets in order to guarantee a good performance

Privacy-Preserving Top-k Query Processing in Distributed Systems 291

for range queries. In [9], Kim et al. propose an approach for preserving the pri-
vacy of data access patterns during top-k query processing. In [14], Vaidya et al.
propose a privacy preserving method for top-k selection from the data shared
by individuals in a distributed system. Their objective is to avoid disclosing the
data of each node to other nodes. Thus their assumption about the nodes is
different from ours, because they can trust the node that stores the data (this
is why the data are not crypted), but in our system we trust no node of the
distributed system.

CryptDB [12] is a system designed for processing SQL like queries over
encrypted data. It is capable to execute several types of queries, e.g., exact-
match, join and range queries. However, top-k queries are not supported by
CryptDB.

The Three Phase Uniform Threshold (TPUT) [1] is an efficient algorithm to
answer top-k queries in distributed systems. Like our SD-TOPK algorithm, it is
done in few round-trips between the nodes of the distributed system. However,
TPUT can be used only with the queries in which the scoring function is SUM,
whereas our algorithm can be used for a large range of scoring functions. In
addition, our algorithm finds top-k results over encrypted data, while TPUT
can be used only over plaintext data.

In [16], the authors propose an approach for top-k query processing over
encrypted data. The proposed approach assumes the existence of two non-
colluding nodes s; and s in two different clouds. One of the nodes, say so,
has the decryption keys, and the other one, say s, stores the data. Top-k query
processing proceeds by using the TA algorithm and accessing the encrypted data
in s1, such that after reading each data in s1, its encrypted local scores are sent
to the node sy (using a special protocol) where they are decrypted and com-
pared with the TA threshold. Our assumptions about the distributed system
are different. In our solution, we do not need to trust any node, and during the
top-k query processing, we do not decrypt the encrypted data in the nodes of the
system. In addition, the solution in [16] needs a lot of communications between
cloud nodes (i.e., at least two messages for each sorted /random access, which is
even more than the TA-based algorithms compared with SD-TOPK).

6 Conclusion

In this paper, we proposed SD-TOPK, an efficient system that encrypts and out-
sources user data in a distributed system, and is able to evaluate top-k queries
over encrypted data, without decrypting them in the nodes of the system. We
evaluated the performance of our solution over synthetic and real databases.
The results show excellent response time and communication cost for SD-TOPK.
They show that the response time of SD-TOPK can be several order of mag-
nitude better than that of the TA-based algorithms. This is mainly due to its
optimized top-k query processing and filtering algorithms. The results also show
a significant gain in communication cost of SD-TOPK compared to the other
algorithms. They also show the efficiency of the filtering algorithm that elimi-
nates almost all false positives in the distributed system.

292 S. Mahboubi et al.

Acknowledgement. The research leading to these results has received funding from
the European Union’s Horizon 2020 - The EU Framework Programme for Research
and Innovation 2014-2020, under grant agreement No. 732051.

References

1. Cao, P., Wang, Z.: Efficient top-k query calculation in distributed networks. In:
Proceedings of ACM PODC, pp. 206-215 (2004)

2. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442-455. Springer, Heidelberg (2005). https://doi.org/10.
1007/11496137_30

3. Choi, S., Ghinita, G., Lim, H.-S., Bertino, E.: Secure kNN query processing in
untrusted cloud environments. IEEE TKDE 26(11), 2818-2831 (2014)

4. Ding, X., Liu, P.,; Jin, H.: Privacy-preserving multi-keyword top-k similarity search
over encrypted data. IEEE TDSC 99, 1-14 (2017)

5. Elmehdwi, Y., Samanthula, B.K., Jiang, W.: Secure k-nearest neighbor query over
encrypted data in outsourced environments. In: Proceedings of IEEE ICDE, pp.
664675 (2014)

6. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
J. Comput. Syst. Sci. 66(4), 614-656 (2003)

7. Hore, B., Mehrotra, S., Canim, M., Kantarcioglu, M.: Secure multidimensional
range queries over outsourced data. J. VLDB 21(3), 333-358 (2012)

8. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
In: VLDB, pp. 720-731 (2004)

9. Kim, H.-I., Kim, H.-J., Chang, J.-W.: A privacy-preserving top-k query process-
ing algorithm in the cloud computing. In: Banares, J.A., Tserpes, K., Altmann,
J. (eds.) GECON 2016. LNCS, vol. 10382, pp. 277-292. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61920-0-20

10. Li, R., Liu, A.X., Wang, A.L., Bruhadeshwar, B.: Fast range query processing
with strong privacy protection for cloud computing. In: PVLDB, vol. 7, no. 14, pp.
1953-1964 (2014)

11. Liao, X., Li, J.: Privacy-preserving and secure top-k query in two-tier wireless
sensor network. In: Global Communications Conference (GLOBECOM), pp. 335—
341 (2012)

12. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: process-
ing queries on an encrypted database. Commun. ACM 55(9), 103-111 (2012)

13. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE S&P, pp. 44-55 (2000)

14. Vaidya, J., Clifton, C.: Privacy-preserving top-k queries. In: 21st International
Conference on Data Engineering. ICDE 2005, pp. 545-546 (2005)

15. Wong, W.K., Cheung, D.W.-L., Kao, B., Mamoulis, N.: Secure kNN computation
on encrypted databases. In: ACM SIGMOD, pp. 139-152 (2009)

16. Zhu, H., Meng, X., Kollios, G.: Top-k query processing on encrypted databases
with strong security guarantees. arXiv:1510.05175v2 (2016)

https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/978-3-319-61920-0_20
http://arxiv.org/abs/1510.05175v2

®

Check for
updates

Minimizing Network Traffic
for Distributed Joins Using Lightweight
Locality-Aware Scheduling

Long Cheng!2(®) John Murphy!, Qingzhi Liu?, Chunliang Hao?,
and Georgios Theodoropoulos*

! PEL, University College Dublin, Dublin, Ireland
long.cheng@ucd.ie
2 Eindhoven University of Technology, Eindhoven, The Netherlands
3 Institute of Software, CAS, Beijing, China
4 Southern University of Science and Technology, Shenzhen, China

Abstract. Large computing systems such as data centers are becom-
ing the mainstream infrastructures for big data processing. As one of
the key data operators in such scenarios, distributed joins is still chal-
lenging current techniques since it always incurs a significant cost on
network communication. Various advanced approaches have been pro-
posed to improve the performance, however, most of them just focus
on data skew handling, and algorithms designed specifically for commu-
nication reduction have received less attention. Moreover, although the
state-of-the-art technique can minimize network traffic, it provides fine-
grained optimal schedules for all individual join keys, which could result
in obvious overhead. In this paper, we propose a new approach called
LAS (Lightweight Locality-Aware Scheduling), which targets reducing
network communication for large distributed joins in an efficient and
effective manner. We present the detailed design and implementation
of LAS, and conduct an experimental evaluation using large data joins.
Our results show that LAS can effectively reduce scheduling overhead
and achieve comparable performance on network reduction compared to
the state-of-the-art.

1 Introduction

To cope with the growing Big Data from various domains, large systems such
as data centers have been built across the globe to support high-performance
data processing. As one of the core tasks in such scenarios, efficient execution
of distributed data operators such as joins is still challenging current techniques
and systems. The main reason is that these operators are always expensive,
in terms of both network resource consumption and network communication
time. In fact, in recent years, the performance of CPUs has grown much faster
than network bandwidth and, as such, the network becomes a performance bot-
tleneck to computation [1,2]. Therefore, effective strategies on the execution of
© Springer International Publishing AG, part of Springer Nature 2018

M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 293-305, 2018.
https://doi.org/10.1007/978-3-319-96983-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_21&domain=pdf

294 L. Cheng et al.

distributed data operators, which can reduce data communication time, becomes
increasingly desirable.

In this work, we focus on one of the most challenging operators — distributed
joins, which is used to facilitate combination of two relations based on a common
key. More specifically, we focus on reducing its network traffic. The main reason is
that any communication reduction in a distributed join will be directly translated
to faster execution, for both low-end and high-end platforms [3]. Moreover, data
systems would also benefit from our design in terms of energy consumption, since
data centers could consume obvious energy on communication links, switching
and aggregation elements.

A typical distributed join implementation contains a data redistribution pro-
cess, which always incurs large amounts of data transferring over networks [4].
Various advanced join approaches have shown that they can effectively reduce
network communication [4,5]. However, they mainly focus on data skew han-
dling, i.e., communication reduction is only considered as a byproduct of their
designs. In comparison, the state-of-the-art track approach [3] is designed specifi-
cally for minimizing network traffic. It provides a fine-grain granularity optimum
on data locality for all input tuples, and thus minimal data communication can
always be achieved. Moreover, the experiments have shown that the method
can significant speed up conventional join approaches. However, the scheduling
process of track is relatively complex, which would make the scheduling itself
costly and thus bring in obvious overhead for the final joins, especially when the
number of keys is large (details see Sect. 2).

To reduce network traffic for distributed joins in an efficient and effective
manner, in this paper, we present a novel algorithm called LAS (Lightweight
Locality-Aware Scheduling). We provide the detailed design and implementation
of LAS in a distributed computing environment and conduct a performance eval-
uation using maximal 100 GB data over up to 128 computing cores (32 nodes).
We summarize the contributions of this work as following:

— We introduce the state-of-the-art scheduling approach for distributed joins
and analyze its possible performance issues in the presence of big datasets.

— We propose LAS, for minimizing network traffic in distributed joins, by incor-
porating efficient and effective strategies on data locality exploration.

— Our experimental results demonstrate that LAS is obviously lightweight and
can achieve comparable performance on network reduction compared to the
state-of-the-art. Moreover, join implementations based on LAS can signifi-
cantly outperform the conventional approaches for large datasets.

The rest of this paper is organized as follows: In Sect. 2, we introduce some
current distributed join approaches and analyze their possible performance
issues. We describe our new method and its implementation in Sect.3, and
present the experimental evaluation in Sect.4. We report on related work in
Sect. 5 while we conclude the paper in Sect. 6.

Minimizing Network Traffic for Distributed Joins Using LAS 295

2 Background

In this section, we briefly introduce two basic join approaches and two advanced
techniques. Moreover, we also discuss about their possible performance issues in
terms of network communication.

2.1 Basic Approaches

The redistribution-based and duplication-based joins are the two conventional
distributed join methods. In the former approach, tuples on each node are firstly
partitioned into distinct sets. Then, each set is transferred to a remote node for
final local joins [4]. As the partitioning is usually based on the hash values of join
keys, we refer the method to Hash in the following. An example of the scheme
between two relations R and S is shown in Fig. 1(a). There, tuples are in the
form of (k,v) pairs, where k is join key and v is payload. Assuming each hash
value is calculated based on the modulus of 5, then all the tuples with key 3 will
be transferred to node 3. If we quantify the cost of network traffic by the number
of tuples transferred to remote nodes, then the cost of Hash is 13. Similarly, as
shown in Fig. 1(b), for a duplication-based case, all the 4 tuples in the small
relation R is duplicated to all the remote nodes, and thus its cost is 16.

From a scheduling perspective, the two approaches have not used any related
techniques: the destination node(s) of a tuple only depends on the hash value
of its join key or the size of the relation it belongs to. These kinds of straight-
forward processing make the two methods far from optimal in terms of network
communication, because transferring all input tuples or broadcasting a relation
over networks is always expensive. Additionally, as a well known issue, the per-
formance of Hash will dramatically decrease in the presence of significant data
skew [4]. We will focus on Hash in the following, as the approach is widely used in
various data applications. In contrast, the duplication-based method is relatively
seldom adopted, except for small-large joins [4].

2.2 Skew Handling Methods

To improve the performance of the conventional approaches, various advanced
techniques have been proposed, and one of them is PRPD (partial redistribution
& partial duplication) [5]. Its main idea is to distinguish skew and non-skew
tuples and handle them in different ways: non-skew tuples are processed by Hash
while the skew ones are based on duplication. As shown in Fig. 2(a), assume the
tuples with key 3 are the skew ones, then the two tuples (3,10) and (3, 11) of R at
node 2 will be broadcast, and the tuples (5,13) and (8, 12) will be redistributed.
Then, the network cost of PRPD is 10, which is smaller than Hash. Moreover,
it should be noticed that all the skew tuples in S are kept locally rather than
being redistributed, and thus the data skew problem in Hash is well addressed.

In terms of data locality scheduling, PRPD only needs to identify the skew
keys of input tuples. This process would be simple and can be done in a quick
way, such as sampling, while the cost of which is always negligible for join time [5].

296 L. Cheng et al.

node0 nodel node2 node3 noded node0 nodel node2 node3 noded
s 3.1) %%; (3,5) s (3.1) g;% (3,5)
D6 9) D 9)
5,13 3,10 5,13 3,10
R (5:13) 3,113 R (5:13) 3,113
8.12 8.12
(a) redistribution-based (Hash) (b) duplication-based
Fig. 1. Two basic data movement approaches in a distributed join.
node0 nodel mnode2 node3 noded node0 nodel node2 node3 mnoded
S (3,1) %?& 3 S (3,1) §§ (3:2)
’ 34 ((3;3) ’ 34 (%;8)
? % E e A
5,13 3,10 Fotd 3,10
R (5:13) 53.1. R S st
B2
(a) prpd-based (b) track-based

Fig. 2. Two advanced data movement approaches in a distributed join.

Because of the efficiency of PRPD, the method has been widely used and studied
in various large data systems. However, if we look at the details of PRPD in
Fig.2(a), we can find that PRPD is not optimal in communication reduction
in two perspectives: (1) part of data transferring is actually unnecessary. For
example, the tuples (5,13) and (8,12) do not make any contributions to the
join, i.e., their join results are actually empty, but they are scheduled to be
transferred; and (2) some nodes may receive some tuples that they do not really
need. For instance, S does not have any tuples on node 0 and 3, but the two
tuples (3,10) and (3,11) are scheduled to be duplicated to the two nodes.

2.3 The State-of-the-art

Compared to PRPD, the t¢rack approach [3] (referred to Track) is able to mini-
mize network traffic for a distributed join, which can be considered as the state-
of-the-art. The method is based on the complete knowledge of occurrence fre-
quency of each key on each node. As illustrated in Fig.2(b), based on a global
statistic, Track knows that none of the five nodes has tuples with keys 5 or 8
in S, thus the tuples with these two keys in R, i.e., (5,13) and (8,12}, will be
scheduled to keep locally (and be ignored in later join execution). Moreover, for
the case with key 3, Track only broadcasts the two tuples (3,10) and (3,11) to
the nodes with matching keys in S, i.e., node 1 and 4. This process is called as
select broadcast, which is different from PRPD that broadcasting to all the nodes
(i.e., full broadcast). After that, Track uses a very smart way, i.e., migration, to
further explore the possibilities on reducing communication traffic. For example,

Minimizing Network Traffic for Distributed Joins Using LAS 297

Track will check whether the cost is decreased, when moving (3,1) from node
1 to node 2 with removing the duplication of (3,10) and (3,11) from node 2
to node 1. In this case, the traffic is indeed decreased, and consequently the
schedule plan will be updated. Following this processing, the final network cost
of Track is 3, which is much smaller than the above approaches.

Track is actually an approach which has extensively used the philosophy of
moving small data chunks instead of large data chunks in a distributed environ-
ment to minimize network traffic. More specifically, it employs of a fine-grained
multi-phase scheduling algorithm to explore data locality in a superlative way,
i.e., per distinct key'. In fact, the global statistic of each key is done in a way
which is very similar to a distributed join over all unique keys. This could be
costly, when the number of unique keys is large. Moreover, different from a sim-
ple join, to record the frequency and location of each distinct key, the pre-join
has to aggregate all the keys in the form of (key, (list[N_r], list[N_s]), the com-
puting of which could be expensive. In addition to that, the scheduling using
select broadcast and migration (SBM) has to be performed on all the aggregated
(list[N_r], list[N_s]), which would be also time costly if the number of nodes is
large. All of these could result in obvious overhead for the join execution of
Track. In comparison, as we will show later that LAS is significantly lightweight
and can achieve comparable performance to Track on network reduction.

3 Owur Approach

In this section, we present LAS and its implementation in detail. Additionally,
we also discuss about its advantages by the comparison with current techniques.

3.1 The LAS Method

Based on the analysis of the approaches described above, we can see that there is
actually a trade-off between communication reduction and scheduling overhead.
Namely, scheduling leading to less network traffic could have a heavier overhead
in data locality exploration, and vice versa. To reduce network traffic as much
as we can and also in a quick manner for big data joins, we have one core design
principle for LAS: fine granularity optimal scheduling such as Track should only
be applied to a small number of keys which can greatly reduce network traffic,
rather than all the distinct keys.

Following the above principle, we can use a hybrid way to explore data local-
ity for input tuples, i.e., applying Track on the skew tuples and Hash on the
rest ones. The main motivation is that the number of skewed tuples could be
huge, but the number of their unique keys is normally small, and thus they can
be scheduled in a quick way. Moreover, although the number of non-skew keys
is large, Hash can always handle them quickly. This means that such a hybrid

! Note that here per distinct key means that even though a key in R and a key in S
have the same value, they will be distinguished, i.e., each of them is identified by a
tag like R or S. Later, we will use the term per join key to remove this distinction.

298 L. Cheng et al.

scheduling will be very lightweight. However, since the communication reduction
ability of Hash is weak, the network traffic brought by the hybrid scheduling
could be still high. Taking the case in Fig. 2(b) for example, the non-skew tuples
(5,13) and (8,12) will be transferred, which is actually not necessary.

To improve the above problem, we use a relatively fine-grained method for
the non-skew data from the idea of Track: exploring data locality in a per-key
level. The main difference is that we perform our scheduling based on per join key
rather than per distinct key. Namely, when we count the key appearing frequency,
akey in R and a key in S will be treated as a same key, if they have the same value
(i.e., matching). For the detailed scheduling, we do not distinguish keys from R
and S, thus we do not need to perform any SBM operations. Instead, for each
join key, we just set its destination to a node, which contains the most number of
tuples having the key. We call this processing as a locality-aware operation (LA).
Obviously, LA can greatly simplify the statistic and data locality exploration
operations on each node, compared to Track. In general, the proposed LAS can
be divided into the following three main phases from a global point of view:

— phase 1: on the basis of identified skew keys, group all input tuples of R and
S into two parts, the skew ones (R',S’) and non-skew ones (R, S").

— phase 2: minimize the network traffic for (R’, S”) use Track [3], i.e., exploring
data locality for each distinct key using select broadcast and migration.

— phase 3: minimize the network traffic for (R”,S”) by exploring data locality
for each join key with a locality-aware way.

Based on LAS, the non-skew tuples (5,13) and (8,12) in Fig.2(b) will not
be transferred. The reason is that node 1 has the most number tuples with key
5 and node 2 with 8, and thus the destination nodes of the two tuples will be
assigned to node 1 and node 2 respectively. In this case, the network cost of LAS
is 3, which is much smaller than Hash and PRPD.

3.2 Comparison with Current Approaches

From a scheduling granularity viewpoint, we summarize the differences of the
four techniques Hash, PRPD, Track and LAS, in Table1. It can be seen that
LAS is based on per-key level scheduling, thus it will be more powerful than Hash
and PRPD on communication reduction. More specifically, LAS has inherited
the advantages from Track so that it can avoid any redundant duplication for
skew data, compared to PRPD. Moreover, for non-skew tuples, LAS also has
tried to explore data locality, instead of just simply redistributing them.
Compared to Track, LAS does not distinguish keys with a same value in R
and S for the non-skew inputs. The used LA operation is much simpler than
SBM, and thus LAS will be more lightweight than Track, especially when the
number of unique keys is large. We have an additional skew quantification process
in LAS. Nevertheless, as we have described in Sect. 2.2, the cost (of sampling)
will be very small. Moreover, although we have used a relatively coarse way to
schedule the non-skew tuples, our approach is still based on per-key, and thus

Minimizing Network Traffic for Distributed Joins Using LAS 299

Table 1. A general comparison of different approaches

Data/Alg. Hash PRPD [5] Track [3] LAS
Skew Chunk, FR|Per join key, FB|Per distinct key, SBM | Per distinct key, SBM
Non-skew |Chunk, FR|Chunk, FR Per distinct key, SBM | Per join key, LA

FR: full redistribut., FB: full broadcast, SBM: select broadcast & migration, LA: locality-aware

Algorithm 1. Implementation of LAS, parallel processing on each node i

Input: R;, S;, skew //aggregation on key
Output: schedule plan L;(key, src, des) 14: for j «— 0..(n — 1), st € dk_r(j) do
15: put (|st.k|, (st.k, j, st.v)) in dk_aggr
step 1: key statistics 16: end for
1: initialize dk and jk in Array[Map[int,int]](n) 17: for j—0..(n—1), st € jkr(j) do
2: for key € R;,S; do //record frequency 18: put (st.k, (4, st.v)) in jk_aggr
3: h — hash(|key|) 19: end for
4: if k.ey € skew then X 20: for entry € dk_aggr do //apply Track
g . increase freq of key in dk(h) by 1 21 apply SBM on entry.v
: else o 22: for tr € entry.v do
7 increase freq of |key| in jk(h) by 1 23: put (tr.1, tr.2, SBM(¢r.1)) in L;
8: end if 24: end for
9: end f"or . 25: end for
10: for j < 0..(n — 1) do //send to node j 26: for entry € jk_aggr do //apply LA
11: SeFld dk(7), k() to dkr(i), jkr(i) at 97. get pair P with max. pair.v in entry.v
node j 28: for pair € entry.v do
12: end for 29: put (entry.k, pair.k, P.k) in L;
30: end for
step 2: locality exploration 31: end for
13: initialize dk_aggr in Map[int,List[Triple]]
and jk-aggr in Map[int,List[Pair]] 32: collect each L;

network traffic can still be effectively reduced. In fact, as we will show in our
later evaluation, LAS can achieve comparable performance on communication
reduction to Track, and much better than other methods.

3.3 Parallel Implementation

LAS schedules each key independently, therefore it can be implemented in par-
allel in a distributed computing environment. The parallel implementation of
LAS on each node i is given in Algorithm 1. We assume that we have obtained
the skew keys. Then, the inputs of LAS are the two relations and the skew, and
the output is a schedule plan including the source node and destination node(s)
of each key. In the local statistic process, we count the appearing frequency of
keys in skew and non-skew tuples in a separate way (lines 2-9). The recorded
information is in the form of (key, freq) pairs, and each pair is collected by a
specified bucket, based on the hash value of the key. We have to distinguish the
keys with the same value but from different relations for the skew data (i.e., per
distinct key). For simplicity, we have added a negative sign to each key from S,
when we read the relation (assume all the input keys are positive integers). In
this condition, when we count the appearing number for the non-skew keys, we
just simply used their absolute values (lines 6-7). After that, similar to a hash

300 L. Cheng et al.

redistribution, each bucket is pushed to the assigned remote node for further
processing (lines 10-12).

Based on the received pairs from each node, the detailed scheduling of LAS
is presented in lines 13—-31 of Algorithm 1. All the keys are firstly aggregated, so
that we can get the frequency information of each key on each node. Then, we
perform the SBM operations over the skew data (lines 20-25). For each key in the
non-skew part, we simply scan the aggregated entries and search the node with
the maximal value on freq. Then, the found node will be added into schedule
plan as the destination node for the key (lines 26-31). All the scheduling process
will be ended when the destination(s) of each key from each node is assigned.
For the latter join executions, input tuples will be partitioned based on their
destination nodes and then transferred to remote nodes for local joins.

4 Experimental Evaluation

4.1 Experiment Setup

We evaluate our approach over a cluster located at SUSTech in Shenzhen City
in China. We use 4 CPU cores running at 2.80 GHz for each computing node
with 64 GB of RAM. The nodes are connected by Infiniband, and the operating
system is Linux kernel version 2.6.32-431.

We compare LAS with the widely used Hash and the state-of-the-art Track,
and have implemented the three methods using the programming language
X10 [6], with version 2.3, compiling to C++ with gce version 4.4.7. The evalu-
ation is implemented on joins between two relations R and S. We fix the car-
dinality of R to 64 million and S to 1 billion records. Following a general way,
we set the data format to (key, payload) pairs, where each key is an integer. We
assume that R and S meet the foreign key relationship, and thus we only add
skew to S, following the Zipf distribution. As listed in Table 2, besides a uniform
distributed dataset, we have generated another three sets with different degrees
of skew, by varying the Zipf factor from 0.8 to 1.1. It should be noted that joins
with such characteristics and workloads are common in data warehouses [4].

Table 2. Details of test datasets and meanings of used parameters

Data set |Skew |# unique |Topl|Topl0|Data set|Skew # unique |Topl |ToplO
DS1 0 250,000,000/0.0% 0.0% |DS3 1 46,947,2954.7% |13.8%
DS2 0.8 136,137,48310.3% |1.1% |DS4 1.1 119,966,276 10.7% | 28.7%
X: the number of selected top skew keys, Y: the size of the payload for each tuple

In all our experiments, we set the system parameter X10_NPLACES to the
number of cores. This lets us be able to focus on analyzing the performance
of our approach in distributed computing environments rather than computing

Minimizing Network Traffic for Distributed Joins Using LAS 301

L Hash B8 Track FFH LAS

Hash B&X Track (FFH LAS

=)
=]
T
1=}
S

©
S
@
S

o
S
=)
<3

I
S

Data Locality (%)
N
5}

Schedule Time (s)

)
S
N
S

=)
o

3 2
Dataset Dataset

Fig. 3. Data locality and scheduling time by varying data skew over 64 cores (16 nodes).

U7 Hash BRX Track (EEH LAS 0772} Hash B8 Track HHFH LAS

=)
S
T
=3
<3
T

-3

S
o
S

o

S
I
S

I
S

Schedule Time (s)
8 8

Data Locality (%)

N
S
=)

o
o

32 64
Number of Cores Number of Cores

Fig. 4. Data locality and scheduling time by varying number of cores over skew=1.

with multiple thread parallelism (as each place in X10 can be considered as a
logical node). To capture the precise characteristics of LAS, we manually set the
first top X keys as skewed keys and do not take the actually skew quantification
time into account in our results. As a default, we set X to 4000, and we use 64
cores (16 nodes) and the data set DS3.

4.2 Experimental Results

We measure the efficiency and effectiveness based on three metrics: data local-
ity, scheduling time and join runtime. The first metric indicates the volume of
network traffic, a high data locality indicates a light traffic load on a network.

Vary Data Skew. We run our tests using 64 cores (16 nodes) over the four
different datasets. Figure3 shows the results of data locality and scheduling
time of each algorithm. There, LAS and Track achieve much higher data locality
than Hash in all the cases, demonstrating the effectiveness of the two approaches
on reducing data communication. Specifically, their data locality is around 92%
when the data is uniform distributed. This means the per-key level strategies can
effectively explore data locality for non-skew tuples, and Hash or current skew
handling techniques such as PRPD [5] have not considered such an optimization.
Moreover, we can observe that the data locality of LAS is generally lower than
Track. However, their results are still in a comparable range. In fact, as shown in
our later results in Fig. 5, this kind of data locality difference can be decreased
by increasing X in LAS. For scheduling time, it can be seen that LAS is always

302 L. Cheng et al.

more lightweight than Track. Moreover, their scheduling time decreases with the
increasing of data skew, the reason is that the number of unique keys decreases.

Vary Number of Nodes. We also test the three approaches over the system
by varying the number of cores from 16 (4 nodes) to 128 over the default dataset.
As shown in Fig. 4, the data locality of LAS and Track are always much higher
than Hash. Although Track transfers less data than LAS, their difference is
decreasing with increasing the number of cores. The possible reason is that the
distribution of keys becomes sparse, and part of skew keys could become not so
skew, and thus the LA operation in LAS starts to perform similarly to the SBM
in Track. For scheduling time, both the LAS and Track decrease with increasing
the number of cores, showing the good scalability of the two algorithms.

Vary Number of Skew Keys. LAS treats skew and non-skew keys in different
ways. To show the impacts of the selected skew keys in our implementations, we
vary the value of X from 1000 to 50000 over the four datasets and present the
results in Fig. 5. There, the data locality for DS1 keeps consistence, due to the
dataset is uniform distributed. For the skew cases, the data locality is increasing
with increasing the number of selected top skew keys. This is because the SBM
operation used for skew keys can provide a more fine-grained control on reducing
network traffic than the LA. In this experiment, we find that the scheduling time
over each data set has only slight changes (in 1s) with increasing X. The reason
is that the number of selected keys is still much smaller compared to the whole
unique keys. This also means that we can actually set X to 50 K rather than
4K as a default at least, to keep the data locality differences between LAS and
Track smaller in the results presented in Figs.3 and 4. For example, the data
locality of LAS can be increased from 55% to 68% for DS3 by changing X from
4K to 50K, without any increase on the scheduling time.

o
S
T
N
=3
15}
T

S @
S S
T T
@
S
T

Data Locality (%)
3
T
Runtime (s)
g
T

50

N
S
T

—=—DS1—e— DS2 —A— DS3 —v—DS4

1 1 1 1 0

o

0 10 20 30 40 50 0 20 40 60 80 100
First Top Keys (k) Size of Payload (Byte)
Fig. 5. Data locality with different X. Fig. 6. Join comparison with different Y.

Join Performance. We finally compare the join performance of the three
approaches by varying the size of payload Y for all tuples, from 10 Bytes to 100
Bytes. This means that the maximal dataset in size is around 100 GB. For local
join execution, we select the commonly used hash joins, i.e., hash table building
and probing [4]. For each join, we only count the number of matches rather than

Minimizing Network Traffic for Distributed Joins Using LAS 303

materializing the output. Additionally, to avoid the network congestion in data
transferring, we use a simple and efficient round-robin communication pattern in
the joins [4]. The results are shown in Fig. 6. There, joins using LAS and Track
perform better than Hash. However, we notice that when the dataset is small
(e.g., Y = 10), the runtime difference between Hash and LAS (and Track) is
only 20s. Considering the scheduling time of LAS is 12s and Track is 29s, we
believe Hash could be the best choice for joins, when the number of keys is huge
but the whole dataset in size is small. With the increase of Y, the advantages of
LAS and Track become obviously, indicating that these two approaches would
be more suitable for large datasets (in size). Moreover, we can see that LAS
can always achieve similar performance with Track, and their difference is only
15s when the data reaches 100 GB. Since LAS is around 17s faster than Track
on scheduling for the case, we believe that LAS would be a better solution for
moderate size datasets (e.g., 100 GB or smaller). It should be noticed that, in
real cases, a system optimizer will be able to get the possible cost of scheduling
and network communication for each approach, and consequently to choose the
best plan for executions. Nevertheless, detailed discussion on how to compute
and compare the cost is outside the scope of this paper.

Brief Summary. In general, LAS has applied per-key strategies on communi-
cation reduction, thus it always transfers much less data over networks than
Hash. Compared to the state-of-the-art Track, LAS has adopted a relatively
coarse-grained operation (i.e., LA) to large number of non-skew keys, and thus
its scheduling is more lightweight, especially when the number of unique keys is
large. From above results, we can see the LAS can always achieve comparable
performance to Track, in terms of data locality and join runtime. In such sce-
narios, we believe that LAS can be considered as a new and efficient solution for
distributed joins in large-scale distributed scenarios.

5 Related Work

Research towards optimizing main-memory joins has already achieved signifi-
cant performance speedups through optimizations over modern processors. Nev-
ertheless, as applications grow, join performance would be limited by the avail-
able computing cores or system memory [4]. The two conventional Hash and
duplication-based methods offer the potential scalability on processing big data.
However, they are far from network-optimal, because transferring all input tuples
or broadcasting a single relation would incur a heavy time-cost. Moreover, Hash
could meet serious load balancing issues when input data is skew.

As data skew is quite common in data applications, various advanced algo-
rithms have been proposed to against join skew [4,5]. The main idea of these
approaches is keeping large number of skew tuples locally instead of transfer-
ring them over networks. This leads to obvious network traffic reduction in
their join executions. However, all these methods focus on skew handling rather
than reducing network traffic, and thus they are still not optimal. For exam-
ple, although the work [4] proposes a fetch on demand method to process skew

304 L. Cheng et al.

tuples, similar to PRPD [5], it has not explored data locality issues for non-skew
data yet. In comparison, LAS provides a more fine-grained scheduling for all
input tuples, and thus it can perform better on communication reduction.

To maximize data-locality, different data partitioning techniques have been
proposed to avoid remote join operations for queries [7]. More generally, var-
ious advanced data placement and replication strategies have been proposed
for data center storage systems to reduce the network overhead for particular
workloads [8,9]. Different from them, we focus on exploring data locality using
online scheduling rather than pre-processing. On the other hand, although the
state-of-the-art Track [3] is able to minimize network traffic, it applies complex
schedules to all join keys, which could lead to heavy overhead in the presence
of big data. In comparison, LAS has used a simpler but effective way to han-
dle input data, and thus LAS is more lightweight. More important, as we have
shown in our experiments, LAS can reduce the network traffic significantly, and
also can achieve comparable performance to Track.

Recent work has tried to optimize network time for distributed joins [10].
However, the optimization problem is NP-complete, making the technique can
not be applied to per-key [3]. Although an efficient heuristic has been proposed
for the optimization [11], its scheduling still performs based on data chunks (i.e.,
partitions) rather than individual keys. In contrast, LAS uses linear scheduling
applied to each join key and thus it is more powerful on communication reduc-
tion. On the other hand, LAS can be used in conjunction with these techniques
to optimize network communication time at a more fine-grained granularity.

6 Conclusions

In this paper, we focus on effective and efficient scheduling techniques to reduce
network traffic for distributed joins. We have discussed the possible performance
issues of current approaches and proposed the LAS algorithm on that basis. We
have described the detailed design and implementation of LAS, and experimen-
tally shown that LAS is lightweight and can achieve comparable performance on
communication reduction, compared to the state-of-the-art. Moreover, we have
also shown that LAS can obviously outperform the conventional approaches such
as Hash in both communication reduction and join runtime. Our future work
mainly lies in extending the proposed scheduling approach in more complex
environments such as mobile and cloud computing systems [12,13].

Acknowledgments. Part of this work was supported by the European Union’s Hori-
zon 2020 research and innovation programme under the Marie Sklodowska-Curie grant
agreement No 799066. The computations were performed on the Inspur TS10K Cluster
at the High Performance Computing Center in SUSTech.

Minimizing Network Traffic for Distributed Joins Using LAS 305

References

10.

11.

12.

13.

Greenberg, A., et al.: VL2: a scalable and flexible data center network. Commun.
ACM 54(3), 95-104 (2011)

Cheng, L., Wang, Y., Pei, Y., Epema, D.: A coflow-based co-optimization frame-
work for high-performance data analytics. In: ICPP, pp. 392-401 (2017)
Polychroniou, O., Sen, R., Ross, K.A.: Track join: distributed joins with minimal
network traffic. In: SIGMOD, pp. 1483-1494 (2014)

Cheng, L., Kotoulas, S., Ward, T.E., Theodoropoulos, G.: Improving the robust-
ness and performance of parallel joins over distributed systems. J. Parallel Distrib.
Comput. 109, 310-323 (2017)

Xu, Y., Kostamaa, P., Zhou, X., Chen, L.: Handling data skew in parallel joins in
shared-nothing systems. In: SIGMOD, pp. 1043-1052 (2008)

Charles, P., et al.: X10: an object-oriented approach to non-uniform cluster com-
puting. ACM SIGPLAN Not. 40(10), 519-538 (2005)

Zamanian, E., Binnig, C., Salama, A.: Locality-aware partitioning in parallel
database systems. In: SIGMOD, pp. 17-30 (2015)

Yang, Z., et al.: AutoTiering: automatic data placement manager in multi-tier
all-flash datacenter. In: IPCCC, pp. 1-8 (2017)

Yang, Z., Wang, J., Evans, D., Mi, N.: AutoReplica: automatic data replica man-
ager in distributed caching and data processing systems. In: IPCCC, pp. 1-6 (2016)
Rodiger, W., Muhlbauer, T., Unterbrunner, P., Reiser, A., Kemper, A., Neumann,
T.: Locality-sensitive operators for parallel main-memory database clusters. In:
ICDE, pp. 592-603 (2014)

Cheng, L., Li, T.: Efficient data redistribution to speedup big data analytics in
large systems. In: HiPC, pp. 91-100 (2016)

Mao, Y., Wang, J., Sheng, B.: Mobile message board: location-based message dis-
semination in wireless ad-hoc networks. In: ICNC, pp. 1-5 (2016)

Wang, J., Yao, Y., Mao, Y., Sheng, B., Mi, N.: Fresh: fair and efficient slot config-
uration and scheduling for hadoop clusters. In: CLOUD, pp. 761-768 (2014)

Cluster and Cloud Computing

®

Check for
updates

VIoLET: A Large-Scale Virtual
Environment for Internet of Things

Shreyas Badiger, Shrey Baheti, and Yogesh Simmhan®™)

Indian Institute of Science, Bangalore, India
{shreyasb, shreybaheti,simmhan}@IISc.ac.in

Abstract. IoT deployments have been growing manifold, encompass-
ing sensors, networks, edge, fog and cloud resources. Despite the intense
interest from researchers and practitioners, most do not have access to
large-scale IoT testbeds for validation. Simulation environments that
allow analytical modeling are a poor substitute for evaluating software
platforms or application workloads in realistic computing environments.
Here, we propose VIoLET, a virtual environment for defining and launch-
ing large-scale IoT deployments within cloud VMs. It offers a declarative
model to specify container-based compute resources that match the per-
formance of the native edge, fog and cloud devices using Docker. These
can be inter-connected by complex topologies on which private/public
networks, and bandwidth and latency rules are enforced. Users can con-
figure synthetic sensors for data generation on these devices as well. We
validate VIoLET for deployments with >400 devices and >1500 device-
cores, and show that the virtual IoT environment closely matches the
expected compute and network performance at modest costs. This fills
an important gap between IoT simulators and real deployments.

1 Introduction

Internet of Things (IoT) is expanding rapidly as diverse domains deploy sen-
sors, communication, and gateway infrastructure to support applications such
as smart cities, personalized health, and autonomous vehicles. IoT is also accel-
erating the need for, and the use of edge, fog and cloud resources, in a coordi-
nated manner. The need comes from the availability of large volumes of data
streams that need to be analyzed closer to the edge to conserve bandwidth (e.g.,
video surveillance), or of fast data streams that need to be processed with low
latency [16]. Edge gateway devices such as Raspberry Pi and Smart Phones have
non-trivial resource capabilities, and can run a full Linux stack on 64-bit ARM
processors. Fog devices such as NVidia’s TX1 and Dell’s Edge Gateways have
power-efficient Atom processors or GPUs to support the needs of several edge
devices [3,19]. At the same time, edge and even accelerated fog devices may
not have the elastic and seemingly infinite on-demand resource capacity that is
available in the cloud, and necessary for processing by certain IoT applications.

Besides production deployments of IoT, there is also active research at the
intersection of IoT, and edge, fog and cloud computing that is investigating appli-
cation scheduling, resiliency, big data platforms, and so on [8,9]. However, a key

© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 309-324, 2018.
https://doi.org/10.1007/978-3-319-96983-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_22&domain=pdf

310 S. Badiger et al.

gap that exists is the ability to validate these research outcomes on real or real-
istic IoT environments. Research IoT testbeds may have just 10’s of devices, and
simulation environments make too many idealized assumptions and do not allow
actual applications to be deployed. Manually launching and configuring contain-
ers is time consuming and error-prone. Even planning of production deployment
of 10T, edge and fog resources are based on analytical models or simulations,
which may not hold in practice [11,14,18].

What is lacking is a virtualized IoT environment that offers the comput-
ing and network ecosystem of a real deployment without the need to purchase,
configure and deploy the edge, fog and networking devices. Here, we propose
VIoLET, a Large-scale Virtual Environment for Internet of Things. VIOLET
offers several essential features that make it valuable for researchers and plan-
ners. It is a virtualized environment that uses containers to offer comparable
compute resources as edge, fog and cloud, and can run real applications. It
allows the easy definition of diverse network topologies, and imposes bandwidth
and latency limits between containers. VIOLET also allows the definition of vir-
tual sensors that generate data with various distributions within the containers.
It runs on top of cloud VMs or commodity clusters, allowing it to scale to hun-
dreds or thousands of devices, provided cumulative compute capacity is avail-
able on the host machines. All of these help setup and validate an environment
that mimics the behavior of city-scale IoT deployments in a fast, reproducible
and cost-effective manner. VIoLET v1.0 is available for download from https://
github.com/dream-lab/VIoLET.

The rest of this paper is organized as follows. We motivate various require-
ments for VIOLET in Sect. 2, describe its architecture design that meets these
requirements and its implementation in Sect. 3, present results on deploying and
scaling VIoLET for different IoT topologies in Sect. 4, compare it with related
literature and tools in Sect.5, and finally present our conclusions and future
work in Sect. 6.

2 Design Requirements

Here, we present high-level requirements for a Virtual Environment (VE) like
VIoLET, based on the needs of researchers and developers of applications, plat-
forms and runtime environments for IoT, edge, and fog resources.

Compute Environment. The VE should provide the ability to configure com-
puting resources that capture the performance behavior of heterogeneous IoT
resources, such as edge devices, gateways, fog and even cloud resources. Key
resource capabilities to be controlled include CPU rating, memory and storage
capacity, and network. Further, a compute environment that can host platforms
and run applications should be provided within these resources. Virtual Machines
(VM) have traditionally offered such capabilities, but are too heavy-weight for
the often light-weight and plentiful IoT devices. Containers are much more light-
weight and offer similar capabilities. One downside is the inability to change the

https://github.com/dream-lab/VIoLET
https://github.com/dream-lab/VIoLET

VIoLET: A Large-Scale Virtual Environment for Internet of Things 311

underlying Operating System (OS) as it is coupled with the Linux kernel of the
host machine. However, we expect most IoT devices to run a flavor of Linux.

Networking. Communication is central to IoT, and the networking layer is sen-
sitive to various deployment limitations on the field. Wired, wireless and cellular
networks are common, each with different bandwidth and latency characteristics.
There is also a distinction between local and wide area networks, and public and
private networks — the latter can limit the visibility of devices to each other.
These affect the platforms and applications in the computing environment, and
can decide who can connect to whom and if an indirection service is required.
The VE needs to capture such diverse network topologies and behavior.

Sensing and Data Streams. Sensors (and actuators) form the third vital
component of IoT. These are often connected to the edge computing devices
by physical links, ad hoc wireless networks, or even on-board the device. These
form the source of the distributed, fast data streams that are intrinsic to IoT
deployments. The VE should provide the ability to simulate the generation of
sensor event streams with various sampling rates and distributions at the com-
pute devices for consumption by hosted applications.

Application Environment. IoT devices often ship with standard platforms
and software pre-loaded so that potentially hundreds of devices do not have to
be reconfigured across the wide area network. The VE should allow platforms
and application environments to be pre-configured as part of the deployment,
and the setup to be ready-to-use. Users should not be forced to individually
configure each compute resources, though they should have the ability to do so
if required.

Scalable. IoT deployments can be large in the number of devices and sensors —
ranging in the 1000’s — and with complex network topologies. A VE should be
able to scale to such large deployments with minimal resource and human over-
heads. At the same time, these devices offer real computing environments that
require underlying compute capacities to be available on the host machine(s).
Hence, we require the VE to weakly scale, as long as the underlying infrastructure
provides adequate cumulative compute and network capacity for all the devices.
The use of elastic cloud resources as the host can enable this.

Reproducible. Simulators offer accurate reproducibility but limit the realism,
or the ability to run real applications. Physical deployments are hard to get
access to and may suffer from transient variability that affects reproducibility. A
VE should offer a balance between running within a realistic deployment while
being reproducible at a later point in time. This also allows easy sharing of
deployment recipes for accurate comparisons.

Cost Effective. Clouds are able to offer a lower cost per compute unit due
to economies of scale at data centers. But IoT devices while being commodity
devices are costlier to purchase, deploy and manage. Having VEs offer compara-
ble resource performance as the IoT deployment but for cheaper compute costs
is essential. They should also make efficient use of the pay-as-you-go resources.

312 S. Badiger et al.

: Cloud Data Center
Admin VM | -Partiion N\w topclo%ﬁﬁraﬁh "
allocation

-Estimate VM count,
5 Deployment -Start VMs, docker daemons
Manager -Start containers from imag'e
-Create private, public overlay network

-Start sensor services
-Return device, VM and sensor map to user

i~ Overlay Network

Container Host VM

Container Host VM

(a) Architecture Design

1 1- 1
2- “edge_device_types" 2+ “sensor_types": { "private_networks” 2+ “admin_vn"

3 "Pi2s’ 3~ “sensor”: [“PVT-1" 3 "VIOLET admin”: {

4 “coremark”: "8910" 4~ 4 "public_DNS": "ec2-12-234-678-9.
5 5 type” s “"key_path": "/home/centos/violet
6~ "Pi3s": { 6 id": "true 6 “"user": "centos"

7 “coremark”: "13717" 7 timesta 7

8 8 sample

9 B dist_ra 9~ “container_host_VM": {

10~ “fog_device_types" 10~ “rate_param:

1- X1 1 "lower_limit 1

12 “coremark”: "26371" 12 "upper_limit 12+ 12

13 3 13 B 13 13 “user™: “centos'

14~ "s1* 14 "dist_value": "normal®, 14 14 "coremark”: "371384

15 “coremark”: "76223" 15~ "value_para (15 15 ,

16 16 “"mean": " 16~ 16+ "M2": {

17 17 "variance": "1" 17 17 “public_DI

18 18 18 18 “key_path": "/home/centos/violet.pen"
19 19 1 19 "user": "centos”,
20~ 20 20 “coremark”: "371384"

22 22 “container_0S™: "shrey67/centos_syste 22+ "M3": {

23 23 “devices” 23 “public_DNS": “172.32.16.3",

24 24+ "Edge” 24 “key_path": “/home/centos/violet.pen”,
25 25~ “Edgel.1" 25 “user": “"centos",

"Pi3s”, "coremark”: "371384"

“device_type"

Fig. 1. VIoLET architecture and deployment documents

Further, they should be deployable on-demand on elastic resources and release
those resources after the experiments and validations are done.

Ease of Design and Deployment. Users should be able to configure large
ToT deployments with ease, and have them deploy automatically and rapidly. It
should be possible to mimic realistic real-world topologies or generate synthetic
ones for testing purposes.

3 Architecture

We give the high-level overview architecture of VIoLET first, and then discuss
individual components and design decisions subsequently. Figure la shows the
high-level architecture of our framework. Users provide their IoT VE as JSON
deployment documents (Fig.1b) that declaratively capture their requirements.
A devices.json document lists the devices, their types (e.g., Raspberry Pi
3B, NVidia TX1) and their CPU performance. Another, sensors. json docu-
ment list the virtual sensors and their configurations available. Lastly, the actual
deployment document, deployment. json lists the number of devices of various
types, the network topology of the device inter-connects, including bandwidths

VIoLET: A Large-Scale Virtual Environment for Internet of Things 313

and latencies, and optionally the virtual sensors and applications available on
each device.

VIoLET takes these documents and determines the number of cloud VMs of
a specified type that are required to host containers with resources equivalent to
the device types. It also decides the mapping from devices to VMs while meeting
the compute capacity, and network bandwidth and latency needs of the topology,
relative to what is made available by the host VMs.

Then, containers are configured and launched for each device using Docker,
and the containers are inter-connected through an overlay network. This allows
different private and public networks to be created in the VE. Further, Traffic
Control (TC) and Network Address Translation (NAT) rules are set in each
container to ensure that the requested network topology, bandwidth and latency
limits are enforced.

Virtual sensors, if specified, are then started on each device and their streams
available on a local network port in the container. Application environments or
startup scripts if specified are also configured or launched. After this, the user
is provided with a mapping from the logical device names in their deployment
document to the physical device IPs of the matching container, and the VMs
on which the containers are placed on. Users can access these devices using
the Docker exec command. Further, the port numbers at which various logical
sensors streams are available on each device is also reported back to the user.
Together, these give access to the deployed runtime environment to the user.

3.1 Compute Resources

Containers are emerging as a light-weight alternative to VMs for multi-tenancy
within a single host. They use Linux kernel’s cgroups feature to offer benefits
of custom software environment (beyond the OS kernel) and resource allocation
and isolation, while having trivial overheads compared to hypervisors. They
are well-suited for fine-grained resource partitioning and software sand-boxing
among trusted applications.

Computing devices in VIOLET are modeled as containers and managed using
the Docker automation framework. There are two parts to this: the resource allo-
cation and the software configuration. Docker allows containers to have resource
constraints to be specified*. We use this to limit a container’s capacity to match
the CPU and Memory available on the native device. We use CPU benchmarks
on the native device and the host machine to decide this allocation. The com-
monly used CoreMark? is currently supported for an integer-based workload,
while Whetstone® has been attempted for floating-point operations. One sub-
tlety is that while we use the multi-core benchmark rating of the device for the
CPU scaling, this may map to fewer (faster) cores of the host machine.

! Docker Resource Constraints, docs.docker.com/config/containers/resource_constrai
nts.

2y, Embedded Microprocessor Benchmark Consortium (EEMBC), coremark.org.

3 Whetstone Benchmark History and Results, roylongbottom.org.uk/whetstone.htm.

https://docs.docker.com/config/containers/resource_constraints/
https://docs.docker.com/config/containers/resource_constraints/
http://coremark.org
http://www.roylongbottom.org.uk/whetstone.htm

314 S. Badiger et al.

0 = eg Edge 1.1 2
S k£ OEdge1.2 o
Cloud 1 Cloud 2 8 E eoe2]
100Mbps, 100ms 0 el S
=98 0 Edge 2.1
40Mbps, 100ms 8 ; 0 Edge 2.2 2 Default
a g Docker
Fog1l Fog 2 mﬂ Bridge NW
(=0 .]
S
100Mbps, 0:5ms 75Mbps, 2ms S 2 el e2
T a Cloud 1
/ = el
S S €0 g el
Edge 1.1 <—> Edge 1.2 Edge 2.1 <—> Edge 2.2 g2

(a) Sample Topology Description (b) Bridges in Overlay to Achieve Topology

Fig. 2. Network topology and Docker overlay network

A container’s software environment is defined by the user as an image script
(Dockerfile) that specify details like applications, startup services, and envi-
ronment variables, and allow modular extensibility from other images. Public
Docker repositories have existing images for common IoT platforms and applica-
tions (e.g., Eclipse Californium CoAP, Microsoft IoT Edge, RabbitMQ, Spark).
VIoLET provides a base image that includes its framework configuration and
allow users to extend their device images from this base with custom software
configuration. This is similar to specifying a VM image, except that the users
are limited to the host device’s Linux kernel OS*. Hence, defining a compute
device in VIoLET requires associating a device type for resources, and a device
image for the software environment.

3.2 Network Topology

Users define the network topology for the devices based on three aspects: the
public network or a private network the device is part of; the visibility of devices
to each other as enforced by firewalls; and the bandwidth and latency between
pairs of devices. IoT networks are usually composed of numerous private net-
works that interface with each other and the public Internet through gateways.
We allow users to define logical private networks and assign devices to them.
These exist in their own subnet. Each private network has a gateway device
defined, and all traffic to the public network from other devices is routed through
it. All gateway devices are part of one or more public networks, along with other
devices that are on those public networks.

For simplicity, all devices in a private network by default can access each
other, and have a common latency and bandwidth specified between pairs of
devices by the user; and similarly for all devices connected to a public network.
By default, devices on different public networks can reach each other. However,

4 Docker recently introduced support for Windows and Linux containers hosted on
Windows Server using the Hyper-V hypervisor. But this is more heavy-weight than
Linux containers, and not used by us currently.

VIoLET: A Large-Scale Virtual Environment for Internet of Things 315

users can override this visibility between any pair of devices, and this is direc-
tional, i.e., D1 — D2 need not imply D1 « D2.

We implement the bandwidth and latency between devices using Traffic Con-
trol (T'C) rules offered by Linux’s iproute?2 utility, and the network service that
we start on each container using systemd®. Here, every unique bandwidth and
latency requirement gets mapped to a unique virtual Ethernet port, and the
rules and enforced on it. This Ethernet port is also connected to the bridge cor-
responding to the (private or public) network that the device belongs to. The
bridges physically group devices that are on the same network, and also logically
assign a shared bandwidth and latency to them. All devices on public networks
are also connected to a common docker-0 bridge for the VM they are present
on, and which allows all to all communication by default. Restricting the routing
of traffic in a private network to/from the public network only through its gate-
way device is enacted through ip commands and Network Address Translation
(NAT) rules. These rules redirect packets from the Ethernet port connected to
the private network, to the Ethernet port connected to the public network.

Docker makes it easy to define connectivity rules and IP addressing of con-
tainers present in a single host machine using custom bridges defined on the
Docker daemon running on the host. However, devices in VIoOLET can be placed
on disparate VMs and still be part of the same private network. Such com-
munication between multiple Docker daemons requires custom Docker overlay
networks. We create a standalone Docker Swarm pool which gives us the flexi-
bility to set network and system parameters®. For this, the host machines must
be able to access a shared key-value store that maintains the overlay networking
information. In VIoLET, we use the Consul discovery service as our key-value
store that is hosted in a separate container on an admin VM.

E.g., Fig. 2 shows a sample network topology, and the Ethernet ports and
bridges to enact this in VIoOLET. Here, the edge devices E1.1, E1.2 form a pri-
vate network PVT-1 with the fog device F1 as a gateway, and likewise E2.1, E2.2
and F2 form another private network, PVT-2. Each device can have sensors
enabled to simulate data streams with different distributions. The bandwidth
and latency within these private networks is uniform: 100 Mbps/0.5 ms for PVT-
1, and 75 Mbps/1 ms for PVT-2. F1 and F2 fog devices go on to form a public net-
work PUB-1 along with the cloud device, C1, with 40 Mbps/100 ms. Similarly, the
two cloud devices form another public network PUB-2, with 100 Mbps/100 ms.
All these devices are on a single VM, and the public devices are also connected
to the docker-0 bridge for that VM. While the edge devices are connected to a
single overlay network, the fog and cloud devices can be connected to multiple
overlay networks, based on bandwidth and latency requirements.

As can be seen, configuring the required network topology is complex and
time consuming — if done manually for each IoT deployment. Having a sim-

5 Traffic Control in Linux, tldp.org/HOWTO/Traffic-Control-HOWTO.
5 Multi-host networking with standalone swarms, docs.docker.com/network/over
lay-standalone.swarm.

https://www.tldp.org/HOWTO/Traffic-Control-HOWTO/index.html
https://docs.docker.com/network/overlay-standalone.swarm/
https://docs.docker.com/network/overlay-standalone.swarm/

316 S. Badiger et al.

ple declarative document that captures the common network patterns in IoT
deployments helps automate this.

3.3 Sensors and Virtual Observation Streams

Edge devices are frequently used to acquire IoT sensor data over hardware inter-
faces like serial, UART or 12C, and then make them available for applications to
process and/or transfer. Experiments and validation of IoT deployments require
access to such large-scale sensor data. To enable this, we allow users to define
virtual sensors that are collocated with devices. These virtual sensors simulate
the generation of sensed events and make them available at a local network port,
which acts as a proxy for a hardware interface to the sensor. Applications can
connect to this port, read observations and process them as required.

We support various configuration parameters for these sensors. The values for
the sensor measurements themselves may be provided either as a text file with
real data collected from the field, or as the properties of a statistical distribution,
such as uniform random, Gaussian, and Poisson from which we sample and return
synthetic values. In addition, the rate at which these values change or the events
are generated is also specified by the user. Here too we can specify real relative
timestamp or a distribution.

We implement each sensor as a Python script that is launched as part of the
container startup. The script starts a Flask application server that listens on
a local port. It takes the sensor’s parameters, and internally starts generating
observations corresponding to that. When a client connects to this port and
requests a measurement, the service returns the current reading. For simplicity,
this is reported as a CSV string consisting of a user-defined logical sensor 1D,
the observation timestamp and a sensed value, but can be easily modified.

3.4 Resource Mapping and Deployment

The admin VM runs a service that receives the user’s deployment document as a
REST request and enacts the deployment on cloud VMs in that data center. The
default resource hosts are Amazon EC2 VMs but this can easily be extended to
resources on other cloud providers or even a private cluster. All AWS EC2 VM
instances belong to a same Virtual Private Cloud (VPC) and the same subnet.
On receipt of the deployment request, VIoOLET builds a graph of the network
topology that is used to deploy the devices onto host resources. Here, the vertices
of the graph are the devices and are labeled with the device’s CPU requirement,
given in the CPU benchmark metrics, e.g., iterations/sec for CoreMark, and
MWIPS for Whetstone. An edge exists if a source device can connect to a sink
device, and this is labeled by the bandwidth and latency for that network link.
E.g., a private network where all devices can see each other will form a clique.
We then make a gross estimate of the number of underlying resources we
require. This is done by adding the vertex weights, dividing by the benchmark
metric for the host (cloud VM) and rounding it up. This is the least number of
identical host resources, say n, needed to meet the compute needs of all devices.

VIoLET: A Large-Scale Virtual Environment for Internet of Things 317

Table 1. Device perf., device counts and host VM counts used in deployments

Deployment— D105 D408

Device Cores | CMark | Count | Y CMark (k) | Count | > CMark (k)
Pi 2B 4 8,910 | 50 445 200 1,782

Pi 3B 4 13,717 | 50 685 200 2,743
NVidia TX1 4 26,371 4 105 7 184
Softiron 8 76,223 | 1 76 1 76

Total 1,311 4,786
md.10XL (host) |40 |371,384| 4 1,485 13 4,827

Then, we partition the graph across these n hosts using gpmetis such that
the vertex weights are balanced across hosts and the sum of edge cuts between
hosts, based on device bandwidths, is minimized. This tries to collocate devices
with high bandwidth inter-connects on the same host. We then check if the sum
of the bandwidth edge cuts between devices in each pair of hosts is less than
the available bandwidth capacity between them, and if the sum of benchmark
metrics of all devices in a host is smaller than its capacity. If not, we increment
n by 1 and repeat the partitioning, and so on.

This greedy approach provides the least number of host resources and the
mapping that will meet the CPU and bandwidth capacities of the deployment.
For now, we do not optimize for memory capacity and latency, but these can be
extended based on standard multi-parameter optimization techniques.

4 FEvaluation

We evaluate VIoLET for two different IoT deployment configurations: D105
with 105 edge and fog devices, and D408 with 408 edge and fog devices. The
configuration of each of the devices, their CoreMark CPU performance and the
deployment counts are shown in Table 1, along with the number of AWS VMs
required to support them. CoreMark v1.0 is run with multi-threading enabled.

We use two generations of Raspberry Pis as edge devices — Pi 2B with 4 x
900 MHz ARM32 cores and Pi 3B with 4x1.2 GHz ARM64 cores, and 1 GB RAM
each. In addition, we have two fog resources — a Softiron 3000 (SI) with AMD
A1100 CPU with 8 x 2GHz ARMG64 cores and 16 GB RAM, and an NVidia
TX1 device with 4 x 1.7GHz ARM64 cores and 4 GB RAM (its GPU is not
exposed). We use Amazon AWS m4.10XL VMs that have 40 x 2.4 GH z Intel
Xeon E5-2676 cores, 160 GB RAM and 10 Gbps network bandwidth as the host.
Each costs US$2.00/hour in the US-East (Ohio) data center. As we see, the D105
deployment with 424 ARM cores requires 3 of these VMs with 120 Xeon cores,
and D408 with 1,636 ARM cores requires 13 of these VMs with 390 Xeon cores.
These deployments cost about US$6 /hour and US$26/hour, respectively — these
are cheaper than a single Raspberry Pi device, on an hourly basis.

318 S. Badiger et al.

Table 2. Configuration of private and public networks in D105, and deviation%
between observed and expected bandwidth and latency per network.

Network | Expected Obs. BW Dev.% | Obs. Lat. Dev.%
BW (Mbps) | Lat. (ms) | Median | Mean | Median | Mean
PVT-1 5 25 11.0 11.0 0.6 0.5
PVT-2 5 75 13.8 13.8 0.0 0.0
PVT-3 |25 1 4.8 4.8 15.0 15.5
pPVT-4 |25 25 4.0 3.7 1.0 1.1
PVT-5 |25 50 1.6 1.4 0.0 0.0
PUB-1 25 75 -3.6 -3.6 0.0 0.0
PUB-2 |25 75 —3.6 —3.6 0.0 0.0
PUB-3 |25 75 -3.6 -3.5 0.0 0.0
PUB-4 |25 75 -3.6 -3.6 0.0 0.0

Table 3. Configuration of private and public networks in D408, and deviation%
between observed and expected bandwidth and latency per network.

Network | Expected Obs. BW Dev.% | Obs. Lat. Dev.%
BW (Mbps) | Lat. (ms) | Median | Mean | Median | Mean
PVT-1 |100 5 —2.6 —24 6.0 5.2
PVT-2 75 5 —-1.1 —-1.3 3.0 4.9
PVT-3 75 25 —4.1 —4.0 0.6 1.0
PVT-4 50 5 0.0 0.1 4.0 4.9
PVT-5 50 25 -1.8 —-2.0 0.6 0.8
PVT-6 25 25 —-1.8 —-2.0 0.6 0.8
PVT-7 25 5 2.8 3.2 0.6 0.8
PVT-8 25 50 4.8 5.0 0.6 0.8
PUB-1 25 75 —-3.6 —3.6 0.0 0.0
PUB-2 25 100 —-7.0 —=7.0 0.0 0.0

4.1 Results for D105 and D408

The network topology for these two deployments is generated synthetically. D105
is defined with 5 private networks and 4 public networks, while D408 has 8
private networks and 2 public networks. A fog device serves as the gateway in
each private network, and we randomly place an equal number of edge devices
in each private network. Their respective network configurations are given in
Tables 2 and 3. Each network has a fixed bandwidth and latency configuration,
and this ranges from 5-100 Mbps bandwidth, and 1-100 ms latency, as specified.
All devices in the public networks can see each other. Edge devices in the private
network can access the public network, routed through their gateway, but devices

VIoLET: A Large-Scale Virtual Environment for Internet of Things 319

15 m 15 20 CoreMark 10 reMark
\ / [R | =
‘ | ‘BN
I | | 101 | | | \
‘ o \ ‘ L
10 10 | ! /b6 y 23.2
| Aem . & ;
| \‘ L ‘ |
Q | IR . [-
: ; - L
2 I 2 5/ —8 2 S g . | W
5 A & | g § 07 =pgs B[
& A= & g | g g) ||
/ N \ , | 4 ==
[—ha) \ /| -30 N/ Ll
G N | - SR / il
0o 1 |
e [&3
=5 Latency ~>Bandwidth >0 Pi2BPI3B TXL SI 10 fatency 1 Bandwidth Pi2BPI3B TX1 SI
(a) D105 Deployment (b) D408 Deployment

Fig. 3. Violin plot of deviation¥% for network latency, bandwidth and CoreMark CPU.

in the public network cannot access the devices in the private network. It takes
about 8 mins and 24 mins to launch these two topologies on VIoLET.

Once deployed, we run four baseline benchmarks to validate them. The first
does fping between 2n pairs of devices in each private and public network,
where n is the number of devices in the network, and measures the observed
latency on the defined links. Next, we sample a subset of 4 links in each private
and public network and run iperf on them to measure the observed bandwidth.
Since iperf is costlier than fping, we limit ourselves to fewer samples. Third,
we run traceroute to verify if the gateway device configured for each device
matches the gateway of the private network, as a sanity check. These network
sanity checks take ~ 3mins per network for D105, and run in parallel for all
networks. Lastly, we run multi-core CoreMark concurrently on all devices.

Figures 3a and b show a violin plot of the deviation% of the observed network
latency, bandwidth, and CoreMark performance from the expected metrics for
the two deployments, where deviation% = (Obsergiiggjf ccted) ¢ The median
value is noted in purple text. We see that the median latency and bandwidth
deviation% are within 5% for both the D105 and D408 deployments, with
latency of 0.4% and 1.6%, and bandwidth of 4.8% and —0.8%, respectively. This
is within the margin of error for even real-world networks. The entire distribution
in all these cases does not vary by more than 15%, showing a relatively tight
grouping given the number of devices and VMs. We analyze these further for
diverse network configurations in the next section.

We run the CoreMark CPU benchmark on all the devices concurrently and
report the violin plot for the deviation% for each of the 4 device types. The
median CoreMark value for each device is included in the violin, except for the
SI fog where we report values from all the trials since there is just one such
device in each deployment. We see that for the two Pis and TX1 — the three
slowest devices — the median CoreMark deviation% is within £2.5% for D105,
and the most deviation is +10% for Pi2B. These indicate that the observed
performance is marginally higher than expected, and there is little negative

320 S. Badiger et al.

45 Latencies (ms) +1 x5 -A-25 50 75 -o-100
30
D\°40 u\°
€35 s 20
: g 3
®30 8 <10 2
3 e 8 %
S=F s 0 & X X %
g2 8 5 o % A
2 3-10] & il
T15 @ 'r% - ° 9
& 10 @’ i
[} 0 c
25 g §—3O S
0 (] ° o o -40 *o'n & o
0 25 50 75 100 0 25 50 75 100
Latency (ms) Bandwidth (Mbps)
(a) Latency (b) Bandwidth, at different Latencies. Bot-

tom row shows ideal bandwidth for latency.

Fig. 4. Variation of deviation% for different latency and bandwidth configurations.

deviation for these three devices. However, we see that the single SI fog device,
which is the largest device, has a median deviation% of —42.1% from 40 trials of
CoreMark that were run on it. The distribution is also wide, ranging from —45%
to +21%. This indicates that the concurrent multi-threaded CoreMark runs on
10’s of containers on the same VM is causing the largest device container to
have variable performance. In fact, the sum of the observed CoreMarks for all
the deployed devices in D105 is 1, 319k, which is close to the sum of the expected
CoreMark from the devices of 1,311k. So the small over-performance of many
small devices is causing the under-performance of the large device. D408 shows a
different behavior, with Pi3B showing higher positive deviations, with a median
of 23.2%, while the other devices show a smaller positive deviation of 2.6-6%.
ST however does show a wider distribution of the deviation% as before.

Besides these baseline network and CPU metrics, we also run two types
of application workloads. One of them starts either an MQTT publisher or a
subscriber on each device, and each connects to an FEclipse Mosquitto MQTT
broker on its gateway. A publisher samples observations from a local sensor and
publishes it to a unique topic at its gateway broker while a subscriber subscribes
to it. This tests the network and process behavior for the common pub-sub
pattern seen in IoT. While results are not plotted due to lack of space, we
observe that the median end-to-end latency for each message is &~ 50 ms, which
loosely corresponds to the two network hops required from the publisher to the
broker, and broker to subscriber.

Another workload that we evaluate is with the ECHO dataflow platform for
edge and cloud [15]. Here, we incrementally launch 100 Extract-Transform-Load
dataflows using the Apache NiF'i engine on distributed devices and observe the
latency time for deployment and the end to end latency for the dataflows. This
is yet another use-case for VIOLET to help evaluate the efficacy of such edge,
fog and cloud orchestration platforms and schedulers.

VIoLET: A Large-Scale Virtual Environment for Internet of Things 321

4.2 Analysis of Network Behavior

Being able to accurately model network behavior is essential for IoT VEs. Here,
we perform more detailed experiments that evaluate the impact of specific band-
width and latency values on the deviation%. Specifically, we try out 19 different
network configurations of the D105 deployment while varying the pair of band-
width and latency values on these networks. These together form 143 different
networks. In Fig.4b, we plot the deviation% of the mean bandwidth, as the
bandwidth increases for different latency values, while in Fig.4a, we plot the
deviation% of the mean latency, as latency increases.

It is clear from Fig.4a that the latency deviation is sensitive to the absolute
latency value. For small latency values of 1ms, the deviation% ranges between
15-40%, and this drops to 2.6-8% for 5 ms. The deviation% exponentially reduces
for latencies higher than that, with latencies over 50 ms having just 0.1% devia-
tion. The latency between VMs is measured at 0.4 ms, while between containers
on the same VM is 0.06 ms. Hence, achieving a latency better these is not pos-
sible, and the achieved latency depends on the placement of containers on the
same or different VMs. Since our network partitioning currently is based on
bandwidth and compute capacity, and not latency limits, it is possible that two
devices requiring low latency are on different VMs. As a result, the deviation%
increases. Here, we see that the latency deviation is independent of the band-
width of the network link.

We observe that the deviation in bandwidth is a function of both latency
and bandwidth. In fact, it is also a function of the TCP window size, which by
default is set to 262, 144 bytes in the containers. The Bandwidth Delay Product
(BDP) is defined as the product of the bandwidth and latency. For efficient use
of the network link, the TCP window size should be greater than this BDP, i.e.,
Window > Bandwidth x Latency. In other words, given a fixed latency and
TCP window size, the Peak Bandwidth = %&i"c‘;’

Figure 4b shows the bandwidth deviation% on the Y axis for different laten-
cies, as the bandwidth increases on the X axis. It also shows the maximum pos-
sible bandwidth for a given latency (based on the window size) along the bottom
X axis. We observe that for low latencies of 1-25 ms, the bandwidth deviation%
is low and falls between —5.1-18% for all bandwidths from 5-100 Mbps. This is
because with the default window size, even a latency of 25 ms supports a band-
width of 83 Mbps, and lower latencies support an even higher peak bandwidth.
The positive deviation% is also high for low bandwidth values and lower for high
bandwidth values — even small changes in absolute bandwidth causes a larger
change in the relative deviation% when the bandwidth is low.

We also see that as the latency increases, the negative deviation% increases
as the bandwidth increases. In particular, as we cross the peak bandwidth value
on the X axis, the deviation% becomes more negative. E.g., at 75 ms, the peak
bandwidth supported is only 28 Mbps, and we see the bandwidth deviation% for
this latency worsen from —3.6% to —11.9% when the bandwidth configuration
increases from 25 Mbps to 75 Mbps. This is as expected, and indicates that the
users of the container need to tune the TCP window size in the container to
enforce bandwidths more accurately.

322 S. Badiger et al.

5 Related Work

The growing interest in IoT and edge/fog computing has given rise to several
sitmulation environments. iFogSim [11] extends the prior work on CloudSim [5]
to simulate the behavior of applications over fog devices, sensors and actuators
that are connected by a network topology. Users define the compute, network and
energy profiles of fog devices, and the properties and distributions of tuples from
sensors. DAG-based applications with tasks consuming compute capacity and
bandwidth can be defined by the user, and its execution over the fog network is
simulated using an extensible resource manager. The goal is to evaluate different
scheduling strategies synthetically. We similarly let devices, network and sensors
to be defined, but actually instantiate the first two — only the sensor stream is
simulated. This allows users to evaluate real applications and schedulers.

Edgecloudsim [18] offers similar capabilities, but also introduces mobility
models for the edge into the mix. They simulate network characteristics like
transmission delay for LAN and WAN, and also task failures due to mobility
for a single use-case. IOTSim, despite its name, simulates the execution of Map
Reduce and stream processing tasks on top of a cloud data center, and uses
CloudSim as the base simulation engine. While IoT motivates the synthetic
application workloads for their big data platform simulation, they do not actually
simulate an IoT deployment.

In the commercial space, city-scale simulators for IoT deployments in smart
cities are available [14]. These mimic the behavior of not just devices, sensors,
actuators and the network, but also application services like MQTT broker and
CoAP services that may be hosted. These offer a comprehensive simulation envi-
ronment for city-planners to perform what-if analysis on the models. We go a
step further and allow realistic devices and networks to be virtualized on elas-
tic cloud VMs, and applications themselves to be executed, without physically
deploying the field devices. Simulators are popular in other domains as well, such
as cloud, network and SDN simulators [5,12,13].

There have been container-based solutions that are closer to our approach,
and allow large-scale customized environments to be launched and applications
to be run on them. Ceesay et al. [6], deploy container-based environments for Big
Data platforms and workloads to test different benchmarks, ease deployment and
reduce reporting costs. Others have also used such container-based approaches
to inject faults into the containers, and evaluate the behavior of platforms and
applications running on them [7].

Other have proposed IoT data stream and application workloads for evalu-
ating big data platforms, particularly stream processing ones. Here, the sensor
data is simulated at large-scales while maintaining realistic distributions [1,10].
These can be used in place of the synthetic sensor streams that we provide. Our
prior work has proposed stream and stream processing application workloads for
IoT domains [17]. These can potentially use VIoOLET for evaluating execution
on edge and fog, besides just cloud resources.

Google’s Kubernetes [4] is a multi-node orchestration platform for container
life-cycle management. It schedules containers across nodes to balance the load,

VIoLET: A Large-Scale Virtual Environment for Internet of Things 323

but is not aware of network topologies that are overlaid on the containers. VIo-
LET uses a simple graph-partitioning approach for placement of containers on
VMs to balance the CPU capacity, as measure by CoreMark, and ensure that the
required device bandwidths stay within bandwidth available between the hosts.

6 Conclusions and Future Work

In this paper, we have proposed the design requirements for a Virtual IoT Envi-
ronment, and presented VIoOLET to meet these needs. VIOLET allows users to
declaratively create virtual edge, fog and cloud devices as containers that are con-
nected through user-defined network topologies, and can run real IoT platforms
and applications. This offers first-hand knowledge of the performance, scalabil-
ity and metrics for the user’s applications or scheduling algorithms, similar to a
real IoT deployment, and at large-scales. It is as simple to deploy and run as a
simulation environment, balancing ease and flexibility, with realism and repro-
ducibility on-demand. It is also affordable, costing just US$26/hour to simulate
over 400 devices on Amazon AWS Cloud. VIoOLET serves as an essential tool for
IoT researchers to validate their outcomes, and for IoT managers to virtually
test various software stacks and network deployment models.

There are several extensions possible to this initial version of VIoOLET. One
of our limitations is that only devices for which container environments can be
launched by Docker are feasible. While any device container that runs a standard
Linux kernel using cgroups (or even a Windows device”) can be run, this limits
the use of edge micro-controllers like Arduino, or wireless IoT motes that run
real-time OS. Also, leveraging Docker’s support for GPUs in future will help
users make use of accelerators present in devices like NVidia TX1®. There is also
the opportunity to pack containers more efficiently to reduce the cloud costs [2],
including over-packing when devices will not be pushed to their full utilization.

Our network configurations focus on the visibility of public and private net-
works, and the bandwidth and latency of the links. However, it does not yet
handle more fine-grained transport characteristics such as collision and packet
loss that are present in wireless networks. Introducing variability in bandwidth,
latency, link failures, and even CPU dynamism is part of future work. More rig-
orous evaluation using city-scale models and IoT applications are also planned
using large private clusters to evaluate VIoLET’s weak scaling.

Acknowledgments. This work is supported by research grants from VMWare,
MHRD, IUSSTF and Cargill, and by cloud credits from Amazon AWS and Microsoft
Azure. We also thank other DREAM:Lab members, Aakash Khochare and Abhilash
Sharma, for design discussions and assistance with experiments. We also thank the
reviewers of Euro-Par for their detailed comments that has helped us improve the
quality of this paper.

" Docker for Windows, https://docs.docker.com/docker-for-windows,/.
8 GPU-enabled Docker Containers, https://github.com/NVIDIA /nvidia-docker.

https://docs.docker.com/docker-for-windows/
https://github.com/NVIDIA/nvidia-docker

324

S. Badiger et al.

References

1.

~

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Arlitt, M., Marwah, M., Bellala, G., Shah, A., Healey, J., Vandiver, B.: loTAbench:
an internet of things analytics benchmark. In: International Conference on Perfor-
mance Engineering (ICPE) (2015)

Awada, U., Barker, A.: Improving resource efficiency of container-instance clusters
on clouds. In: Cluster, Cloud and Grid Computing (CCGRID) (2017)

Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: ACM Workshop on Mobile Cloud Computing (MCC) (2012)

. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, omega, and

kubernetes. ACM Queue 14(1), 10 (2016)

Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.:
CloudSim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms. Softw.: Pract. Exp. (SPE)
41(1), 23-50 (2011)

Ceesay, S., Barker, D., Varghese, D., et al.: Plug and play bench: simplifying big
data benchmarking using containers. In: IEEE International Conference on Big
Data (BigData) (2017)

Dabrowa, J.: Distributed system fault injection testing with Docker. In: JDD (2016)
Dastjerdi, A.V., Gupta, H., Calheiros, R.N., Ghosh, S.K., Buyya, R.: Internet of
things: principles and paradigms. In: Fog Computing Principles, Architectures, and
Applications. Morgan Kaufmann (2016)

Ghosh, R., Simmhan, Y.: Distributed scheduling of event analytics across edge and
cloud. ACM Trans. Cyber Phys. Syst. (TCPS) (2018, to Appear)

Gu, L., Zhou, M., Zhang, Z., Shan, M.C., Zhou, A., Winslett, M.: Chronos: an
elastic parallel framework for stream benchmark generation and simulation. In:
IEEE International Conference on Data Engineering (ICDE) (2015)

Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for
modeling and simulation of resource management techniques in the internet of
things, edge and fog computing environments. Softw.: Pract. Exp. 47(9), 1275—
1296 (2017)

Henderson, T.R., Roy, S., Floyd, S., Riley, G.F.: Ns-3 project goals. In: Workshop
on Ns-2: The IP Network Simulator (2006)

Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for
software-defined networks. In: Workshop on Hot Topics in Networks (2010)
Leland, J.: Deploy scalable smart city architectures confidently with network sim-
ulation. Technical report, insight tech (2017)

Ravindra, P., Khochare, A., Reddy, S.P., Sharma, S., Varshney, P., Simmhan, Y.:
Echo: an adaptive orchestration platform for hybrid dataflows across cloud and
edge. In: International Conference on Service-Oriented Computing (ICSOC) (2017)
Satyanarayanan, M., et al.: Edge analytics in the internet of things. IEEE Pervasive
Comput. 14(2), 24-31 (2015)

Shukla, A., Chaturvedi, S., Simmhan, Y.: RIoTBench: a real-time IoT bench-
mark for distributed stream processing platforms. Concurr. Comput.: Pract. Exp.
29(21), 1-22 (2017)

Sonmez, C., Ozgovde, A., Ersoy, C.: EdgeCloudSim: an environment for perfor-
mance evaluation of edge computing systems. In: Fog and Mobile Edge Computing
(FMEC) (2017)

Varshney, P., Simmhan, Y.: Demystifying fog computing: characterizing architec-
tures, applications and abstractions. In: IEEE International Conference on Fog and
Edge Computing (ICFEC) (2017)

®

Check for
updates

Adaptive Bandwidth-Efficient Recovery
Techniques in Erasure-Coded Cloud
Storage

Rekha Nachiappan®™), Bahman Javadi, Rodrigo N. Calheiros,
and Kenan M. Matawie

School of Computing, Engineering and Mathematics, Western Sydney University,
Sydney, Australia
{30045376,B.Javadi,R.Calheiros,K.Matawie}@westernsydney.edu.au

Abstract. In order to handle the dramatic growth of digital data, cloud
storage systems demand novel techniques to improve data reliability.
Replication and erasure codes are the most important data reliability
techniques employed in cloud storage systems, but individually they
have their own challenges. In this paper, we propose a hybrid tech-
nique employing proactive replication of data blocks in erasure-coded
storage systems. The technique employs a set of erasure coding-agnostic
bandwidth-efficient data recovery techniques that reduce the bandwidth
used for recovery without compromising data reliability. Experiments
show that our approach improves repair bandwidth efficiency and reduces
network traffic in cloud storage systems with limited storage overhead
compared to available recovery approaches.

1 Introduction

A recent trend in cloud storage systems is the adoption of erasure codes, as
it provides excellent reliability with less storage overhead than replication [1].
For example, Facebook and Microsoft Azure replaced replication with erasure
coding in parts of their data, resulting in significant cost savings in terms of
storage overhead [2]. However, failure rates in large-scale cloud storage systems
are high as such systems are composed of large number of hardware and soft-
ware components. Repairing a single data block stored using Reed-Solomon(n,k)
code requires k data blocks to be transferred over the network, while repairing a
single data block in replication involves the transfer of one data block [3]. Hence,
repair network traffic is increased by k times in Reed-Solomon(n,k) code com-
pared to replication. The network traffic incurred by such data movement has
also the extra drawback of increasing energy consumption significantly, resulting
in extra costs for cloud service providers. Moreover, growing network traffic is
regulated by network throttling, which affects read performance. All the above
facts prevent cloud storage systems to adopt erasure codes in large scale.
Hardware failures (disk failures, machine failures, and latent sector errors)
and temporary machine failures are the most common failures that affect dura-
bility and availability of data in cloud storage [2]. In order to avoid permanent

© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 325-338, 2018.
https://doi.org/10.1007/978-3-319-96983-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_23&domain=pdf

326 R. Nachiappan et al.

data loss due to hardware failures, contents in failed nodes or disks have to be
restored in another hardware devices, a process that is known as data recovery.
Data stored in a machine that experiences temporary outage will cause tempo-
rary data loss. Temporary data loss in e