
 123

24th International Conference
on Parallel and Distributed Computing
Turin, Italy, August 27–31, 2018
Proceedings

Euro-Par 2018:
Parallel ProcessingLN

CS
 1

10
14

AR
Co

SS
Marco Aldinucci
Luca Padovani
Massimo Torquati (Eds.)

Lecture Notes in Computer Science 11014

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, City University of Hong Kong
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Marco Aldinucci • Luca Padovani
Massimo Torquati (Eds.)

Euro-Par 2018:
Parallel Processing
24th International Conference
on Parallel and Distributed Computing
Turin, Italy, August 27–31, 2018
Proceedings

123

Editors
Marco Aldinucci
Department of Computer Science
University of Torino
Torino
Italy

Luca Padovani
Department of Computer Science
University of Torino
Torino
Italy

Massimo Torquati
Department of Computer Science
University of Pisa
Pisa
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-96982-4 ISBN 978-3-319-96983-1 (eBook)
https://doi.org/10.1007/978-3-319-96983-1

Library of Congress Control Number: 2018949144

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG, part of Springer Nature 2018, corrected publication 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-8788-0829
http://orcid.org/0000-0001-9097-1297
http://orcid.org/0000-0001-6323-3459

Preface

This volume contains the papers presented at Euro-Par 2018, the 24th International
European Conference on Parallel and Distributed Computing, held during August
27–31, 2018, in Turin, Italy. The whole computer hardware industry has embraced
parallel computing. Today it is clear that in the long term, writing efficient, portable,
and correct parallel programs must be no more challenging than writing the same
programs for sequential computers. Euro-Par envisioned this challenge 24 years ago. It
gracefully evolved from pioneering efforts to the mainstream of parallel computing
maintaining its broad-spectrum coverage on parallel computing topics, from software
to hardware to their co-design. Its adaptability and capability to frame emerging topics
in an independent, consolidated structure is still the key to its success.

The main audience of Euro-Par comprises researchers in academia, public and
private laboratories, and industrial organizations. Euro-Par’s main objective is to be the
primary choice of such professionals for the presentation of new results in the field.

Previous Euro-Par conferences took place in Stockholm, Lyon, Passau,
Southampton, Toulouse, Munich, Manchester, Paderborn, Klagenfurt, Pisa, Lisbon,
Dresden, Rennes, Las Palmas, Delft, Ischia, Bordeaux, Rhodes, Aachen, Porto, Vienna,
Grenoble, and Santiago de Compostela. The 24th edition of Euro-Par was organized by
the Computer Science Department of the University of Turin. The topics were orga-
nized into 12 tracks, namely: Support Tools and Environments; Performance and
Power Modeling, Prediction, and Evaluation; Scheduling and Load Balancing;
High-Performance Architectures and Compilers; Parallel and Distributed Data Man-
agement and Analytics; Cluster and Cloud Computing; Distributed Systems and
Algorithms; Parallel and Distributed Programming, Interfaces, and Languages; Mul-
ticore and Manycore Methods and Tools; Theory and Algorithms for Parallel Com-
putation and Networking; Parallel Numerical Methods and Applications; and
Accelerator Computing for Advanced Applications. Overall, 194 papers were sub-
mitted from 39 countries. The number of submitted papers, the wide topic coverage and
the aim of obtaining high-quality reviews resulted in a difficult selection process
involving a large number of experts. The join effort of the members of the Scientific
Committee and of the 306 external reviewers resulted in 787 reviews: five papers
received three reviews, 173 received four reviews and 16 received five, that is, on
average, 4.06 reviews per paper. The accepted papers were chosen after lengthy dis-
cussions and finalized during the physical selection meeting, which took place on April
27, 2018 in Turin. All local chairs and three members of the Steering Committee
participated in the meeting. In the end, 57 papers were selected to be presented at the
conference and published in the proceedings, resulting in a 29.4% acceptance rate. The
following three papers were nominated as “distinguished” and presented in a plenary
session: “Resource-Efficient Execution of Conditional Parallel Real-Time Tasks,”
“VIoLET: A Large-Scale Virtual Environment for Internet of Things,” “Design Prin-
ciples for Sparse Matrix Multiplication on the GPU.”

Apart the presentation sessions of accepted papers, we were honored to host three
keynote talks given by esteemed colleagues, namely: “ALGORAND: A Better Dis-
tributed Ledger” by Silvio Micali, “Algorithmic Adaptations to Extreme Scale Com-
puting” by David E. Keyes, and “Datacenters for the Post-Moore Era” by Babak
Falsafi. The conference program was complemented by two days of workshops and
tutorials on specialized topics. Dora B. Heras and Gabriele Mencagli deserve recog-
nition for managing them efficiently and effectively. A selection of the papers presented
at the workshops will be published in separated proceedings volumes after the
conference.

With respect to previous editions of Euro-Par, the 2018 edition introduced two
novelties both aimed at improving the relevance and impact of the scientific works
presented at the conference. For the first time in the history of Euro-Par, authors of
accepted papers were encouraged to submit an artifact (e.g., source code, tools,
benchmarks, datasets, models) to assess the reproducibility of the experimental results
presented in the paper. Overall, 13 artifacts were submitted and all of them were
positively evaluated by a separate Artifact Evaluation Committee. Papers with an
associated artifact received a seal of approval in the proceedings and Springer kindly
agreed to permanently host all artifacts on their servers. Although the practice of
evaluating artifacts is becoming commonplace in other computer science conferences,
it should be mentioned that it poses substantial challenges in a conference like
Euro-Par, in which artifacts may require large and dedicated hardware infrastructures
and may involve the processing of gigabytes of data for long periods of time. The
resulting additional effort required of the organizers and the members of the Artifact
Evaluation Committee was largely compensated by the enthusiasm of the authors who
decided to submit an artifact. In the end, nearly one quarter of the papers had an
associated artifact. The second novelty experimented with in Euro-Par 2018 was a
session of chess-timer talks, in which the audience was encouraged to interact with the
speakers, and the session chair balanced solo presentation and discussions using a chess
timer. We got the idea of proposing chess-timer talks from the successful CurryOn
conference as an “unusual solution to making tech conferences a more interactive, more
fun, and better place for learning and discussions.”

The Euro-Par conference in Turin would not have been possible without the support
of many individuals and organizations. We owe special thanks to the authors of all the
submitted papers, the members of the topic committees, in particular, the global and
local chairs, as well as the reviewers for their contributions to the success of the
conference. We would also like to express our gratitude to the members of the
Organizing Committee and the local staff who helped us. We are indebted to the
members of the Euro-Par Steering Committee, especially Christian Lengauer, Luc
Bougé, and Fernando Silva, for their trust, constant guidance, and support. We are
grateful to the staff of Springer, particularly Anna Kramer, Alfred Hofmann, and
Graham Smith, for their support in the preparation of the proceedings and the man-
agement of artifacts. Finally, a number of institutional and industrial sponsors

VI Preface

contributed to the organization of the conference. Their names appear on the Euro-Par
2018 website.

It was a pleasure and an honor to organize and host Euro-Par 2018 in Turin.

June 2018 Marco Aldinucci
Luca Padovani

Massimo Torquati

Preface VII

Organization

Steering Committee

Full Members

Luc Bougé (Chair) ENS Rennes, France
Fernando Silva (Vice-Chair) University of Porto, Portugal
Dora B. Heras (Workshops

Chair)
CiTIUS, Santiago de Compostela, Spain

Emmanuel Jeannot LaBRI-Inria, Bordeaux, France
Christos Kaklamanis Computer Technology Institute, Patras, Greece
Paul Kelly Imperial College, London, UK
Thomas Ludwig University of Hamburg, Germany
Tomàs Margalef University Autonoma of Barcelona, Spain
Wolfgang Nagel Dresden University of Technology, Germany
Francisco Fernández Rivera CiTIUS, Santiago de Compostela, Spain
Rizos Sakellariou University of Manchester, UK
Henk Sips Delft University of Technology, The Netherlands
Domenico Talia University of Calabria, Italy
Jesper Larsson Träff TU Wien, Austria
Denis Trystram Grenoble Institute of Technology, France
Felix Wolf TU Darmstadt, Germany

Honorary Members

Christian Lengauer University of Passau, Germany
Ron Perrott Oxford e-Research Centre, UK
Karl Dieter Reinartz University of Erlangen-Nürnberg, Germany

Observers

Marco Aldinucci University of Turin, Italy
Ramin Yahyapour GWDG/University of Göttingen, Germany

Euro-Par 2018 Organization

Co-chairs

Marco Aldinucci University of Turin, Italy
Luca Padovani University of Turin, Italy
Massimo Torquati University of Pisa, Italy

Workshops

Dora B. Heras University of Santiago de Compostela, Spain
Gabriele Mencagli University of Pisa, Italy

Tutorials and Industry

Peter Kilpatrick Queen’s University Belfast, UK
Claudia Misale IBM T.J. Watson Research Center, USA

Publicity

Javier Garcia Blas Universidad Carlos III de Madrid, Spain
Dalvan Griebler Pontifical Catholic University of Rio Grande do Sul,

Brazil
Ivan Merelli CNR-ITB, Italy
Fabio Tordini University of Turin, Italy

Submission and Reviewing Process

Daniele D’Agostino CNR-IMATI, Italy
Massimo Torquati University of Pisa, Italy

Artifact Evaluation Process

Gabriele Mencagli University of Pisa, Italy
Luca Padovani University of Turin, Italy
Massimo Torquati University of Pisa, Italy

Web and Social Media

Claudio Mattutino University of Turin, Italy
Sergio Rabellino University of Turin, Italy

Logistics

Katia Lupo University of Turin, Italy
Claudio Mattutino University of Turin, Italy
Sergio Rabellino University of Turin, Italy

Program Committee

Topic 1: Support Tools and Environments

Global Chair
Siegfried Benkner Universität Wien, Austria

Local Chair
Massimo Coppola CNR-ISTI, Italy

X Organization

Chairs
Franz Franchetti Carnegie Mellon University, USA
Michael Gerndt Technische Universität München, Germany
Erwin Laure Royal Institute of Technology, Sweden
Nikos Parlavantzas INSA Rennes and IRISA, France

Topic 2: Performance and Power Modeling, Prediction and Evaluation

Global Chair
Leonel Sousa Universidade de Lisboa, Portugal

Local Chair
Daniele De Sensi University of Pisa, Italy

Chairs
Giorgis Georgakoudis Queen’s University Belfast, UK
Aleksandar Ilic Universidade de Lisboa, Portugal
Piotr Luszczek University of Tennessee, USA
Federico Silla Universitat Politecnica de Valencia, Spain
Guangming Tan Chinese Academy of Sciences, China
Pedro Trancoso Chalmers University of Technology, Sweden

Topic 3: Scheduling and Load Balancing

Global Chair
Anne Benoitć ENS Lyon, France

Local Chair
Enrico Bini University of Turin, Italy

Chairs
Maciej Drozdowski Poznan University of Technology, Poland
Lionel Eyraud-Dubois LaBRI-inria, Bordeaux, France
José Gracia HLRS, Stuttgart, Germany
Nan Guan Hong Kong Polytechnic University, Hong Kong,

SAR China
Sascha Hunold TU Wien, Austria
Krzysztof Rzadca University of Warsaw, Poland

Topic 4: High-Performance Architectures and Compilers

Global Chair
Florian Brandner Télécom ParisTech, Université Paris-Saclay, France

Local Chair
Fabio Luporini Imperial College London, UK

Organization XI

Chairs
Alexandra Jimborean Uppsala University, Sweden
Frank Hannig University of Erlangen-Nürnberg, Germany
Gihan Mudalige University of Warwick, UK

Topic 5: Parallel and Distributed Data Management and Analytics

Global Chair
K. Selçuk Candan Arizona State University, USA

Local Chair
Ruggero Pensa University of Turin, Italy

Chairs
Lei Chen Hong Kong University of Science and Technology,

SAR China
Gianmarco De Francisci

Morales
Qatar Computing Research Institute, Qatar

Ming Zhao Arizona State University, USA

Topic 6: Cluster and Cloud Computing

Global Chair
Ivona Brandić Vienna University of Technology, Austria

Local Chair
Domenico Talia Università della Calabria, Italy

Chairs
Toni Mastelic Vienna University of Technology, Austria
Raffaele Montella Università degli Studi di Napoli Parthenope, Italy
Anne-Cécile Orgerie CNRS, Rennes, France
Thomas Renner Technische Universität Berlin, Germany
Rafael Brundo Uriarte IMT School for Advanced Studies, Lucca, Italy

Topic 7: Distributed Systems and Algorithms

Global Chair
Sonia Ben-Mokhtar LIRIS, INSA de Lyon, France

Local Chair
Alberto Montresor University of Trento, Italy

Chairs
Christof Fetzer TU Dresden, Germany
Indranil Gupta University of Illinois, Urbana-Champaign, USA

XII Organization

Topic 8: Parallel and Distributed Programming, Interfaces, and Languages

Global Chair
J. Daniel García University Carlos III of Madrid, Spain

Local Chair
Patrizio Dazzi CNR-ISTI, Italy

Chairs
Bryce Adelstein-Lelbach NVIDIA, USA
Marcelo Pasin Université de Neuchâtel, Switzerland
Mitsuhisa Sato Riken and University of Tsukuba, Japan
Paolo Trunfio DIMES, University of Calabria, Italy
Chan-Hyun Youn KAIST, South Korea

Topic 9: Multicore and Manycore Methods and Tools

Global Chair
Christoph Kessler Linköping University, Sweden

Local Chair
Marco Danelutto University of Pisa, Italy

Chairs
Rudolf Eigenmann University of Delaware, USA
Arturo González Escribano Universidad de Valladolid, Spain
Kevin Hammond University of St. Andrews, UK
Jesper Larsson Träff TU Wien, Austria
Ana Lucia Varbanescu University of Amsterdam, The Netherlands

Topic 10: Theory and Algorithms for Parallel Computation and Networking

Global Chair
Christos Zaroliagis University of Patras, Greece

Local Chair
Tiziano De Matteis University of Pisa, Italy

Chairs
Leszek Gąsieniec University of Liverpool, UK
Ulrich Meyer Goethe-Universität Frankfurt am Main, Germany
Henning Meyerhenke Universität zu Köln, Germany

Organization XIII

Topic 11: Parallel Numerical Methods and Applications

Global Chair
Elisabeth Larsson Uppsala University, Sweden

Local Chair
Pasqua D’Ambra CNR-IAC, Naples, Italy

Chairs
Aneta Karaivanova Institute of Information and Communication

Technology (IICT-BAS), Bulgaria
Ángeles Martínez

Calomardo
University of Padova, Italy

Ulrike Meier Yang CASC-LLNL, USA

Topic 12: Accelerator Computing for Advanced Applications

Global Chair
Angeles Navarro Universidad de Málaga, Spain

Local Chair
Maurizio Drocco University of Turin, Italy

Chairs
Raphael de Camargo Federal University of ABC, Brazil
Jaejin Lee Seoul National University, South Korea
Jose Luis Nunez-Yanez University of Bristol, UK

Artifact Evaluation Committee

Javier Garcia Blas University Carlos III of Madrid, Spain
Massimo Coppola CNR-ISTI Pisa, Italy
Tiziano De Matteis University of Pisa, Italy
Daniele De Sensi University of Pisa, Italy
Manuel F. Dolz University Carlos III of Madrid, Spain
Maurizio Drocco University of Turin, Italy
Javier Fernandez Munoz University Carlos III of Madrid, Spain
Salvatore Filippone Cranfield University, UK
Dalvan Griebler Pontifical Catholic University of Rio Grande do Sul,

Brazil
Lu Li University of Edinburgh, UK
Fabrizio Marozzo DIMES, University of Calabria, Italy
Matteo Nardelli University of Rome Tor Vergata, Italy
Mauricio Pilla Federal University of Pelotas, Brazil
Paolo Viviani University of Turin, Italy

XIV Organization

Euro-Par 2018 Additional Reviewers

Aguilar, Xavier
Ahmed, Laeeq
Ahvar, Ehsan
Alguwaifli, Yasir
Amarís González, Marcos
Ancourt, Corinne
Angriman, Eugenio
Aral, Atakan
Areias, Miguel
Atalar, Aras
Atanassov, Emanouil
Aublin, Pierre-Louis
Aupy, Guillaume
Aurangzeb
Bacciu, Davide
Bachstein, Matthew
Bajic, Fani
Bajrovic, Enes
Balouek-Thomert, Daniel
Barker, Andrew
Baroli, Davide
Barwell, Adam
Basumallik, Ayon
Beaumont, Olivier
Behrens, Hans
Belcastro, Loris
Beltran, Vicenç
Benedict, Shajulin
Bergamaschi, Luca
Berlinska, Joanna
Bernaschi, Massimo
Bigot, Julien
Bolten, Matthias
Bourgoin, Mathias
Brandes, Thomas
Brown, Christopher
Brown, Dominic
Buesing, Henrik
Buttari, Alfredo
Cardellini, Valeria
Carlini, Emanuele
Caron, Eddy
Carpentieri, Bruno

Carretero, Jesus
Carribault, Patrick
Catena, Matteo
Cavalheiro, Gerson
Caíno-Lores, Silvina
Cecilia, José M.
Cesario, Eugenio
Chen, Yitao
Chester, Dean
Chester, Dean G.
Collange, Sylvain
Comito, Carmela
Corbera, Francisco
Coullon, Helene
Danelutto, Marco
Dao, Than Tuan
De Maio, Vincenzo
De Simone, Valentina
de Souza, Diego F.
Decouchant, Jérémie
Del Río Astorga, David
Denoyelle, Nicolas
Di Girolamo, Salvatore
Dickson, James
Do, Youngdong
Dobrev, Veselin
Dokulil, Jiri
Dolz, Manuel
Dreuning, Henk
Drocco, Maurizio
Du, He
Durastante, Fabio
Dutot, Pierre-François
Dutta, Hritam
Engblom, Stefan
Falcao, Gabriel
Faqeh, Rasha
Fernandez Fabeiro, Jorge
Fernandez, Javier
Fey, Dietmar
Fey, Florian
Filippone, Salvatore
Flores, Paulo

Folino, Francesco
Folino, Gianluigi
Forestiero, Agostino
Gadkari, Ashish
Gante, João
Garcia Blas, Javier
Gardner, David
Garg, Yash
Gaspar, Francisco
Gendron, Bernard
Geronimo, Guilherme
Gorlatch, Sergei
Gracia, José
Grahn, Håkan
Grelck, Clemens
Grubel, Patricia
Gu, Chuancai
Guermouche, Abdou
Guerreiro, João
Gurov, Todor
Guyon, David
Ha, Phuong
Herlihy, Maurice
Hiraishi, Tasuku
Hoefer, Martin
Hugo, Andra
Hückelheim, Jan
Ienco, Dino
Ivanovska, Sofiya
Janna, Carlo
Jeong, Chang-Sung
Jiang, Xu
Jo, Gangwon
Jung, Wookeun
Kallimanis, Nikolaos
Kang, Dong-Ki
Karlsson, Sven
Keller, Jörg
Kim, Heehoon
Kim, Hyngmo
Kim, Jungwook
Kim, Seong-Hwan
Kim, Woojoong

Organization XV

Kirk, Richard
Kontogiannis, Spyros
Koslovski, Guilherme
Kosta, Sokol
Krall, Andreas
Kritikos, Kyriakos
Kronbichler, Martin
Kukreja, Navjot
Kumar, Rakesh
Kumaraswamy, Madhura
Kunji, Khalid
Lambert, Thomas
Larsson, Elisabeth
Le Quoc, Do
Lee, Jinpil
Lee, Yongjun
Legrand, Arnaud
Li, Ruipeng
Li, Xueqi
Lin, Yuhan
Lirkov, Ivan
Liu, Jun
Liu, Sicong
Liu, Songran
Liu, Weifeng
Low, Tze Meng
Lujic, Ivan
Lulli, Alessandro
Madi-Wamba, Gilles
Maier, Tobias
Mao, Bo
Maouche, Mohamed
Marozzo, Fabrizio
Marques, Diogo
Martin, André
Martins, Paulo
Matsuda, Motohiko
Mazzia, Francesca
McKenney, Paul
Mehofer, Eduard
Mele, Valeria
Melot, Nicolas
Mendes, Rafael
Meng, Ke
Mijaković, Robert
Misale, Claudia

Morais, Mayuri
Mordacchini, Matteo
Mounié, Grégory
Nagarkar, Parth
Nakao, Masahiro
Netzer, Gilbert
Neves, Nuno
Nidito, Francesco
Oh, Pyeongseok
Ohshima, Satoshi
Oleksenko, Oleksii
Osborn, Sarah
Owen, Herbert
Owenson, Andrew
Padoin, Edson Luiz
Palkowski, Marek
Park, Sangdon
Pascual, Fanny
Penschuck, Manuel
Perarnau, Swann
Pereira, Fernando
Petri, Matthias
Pham, Linh Manh
Pllana, Sabri
Poccia, Silvestro
Poke, Marius
Ponce, Colin
Popov, Mihail
Popovici, Doru Thom
Prokopec, Aleksandar
Qiao, Bo
Qiu, Sheng
Raca, Valon
Rais, Issam
Raoofy, Amir
Rauchwerger, Lawrence
Rebonatto, M. Trindade
Reguly, Istvan
Rehn-Sonigo, Veronika
Reiche, Oliver
Reis, Valentin
Rezaei, Mohamad
Ricketson, Lee
Rivas-Gomez, Sergio
Romano, Diego
Ros, Alberto

Rupp, Karl
Sabne, Amit
Sadi, Fazle
Sakdhnagool, Putt
Sampathirao, Ajay Kumar
Sandrieser, Martin
Santana, Luis
Santander-Jiménez, Sergio
Santos, Danilo
Sarkar, Subhadeep
Sarkar, Susmit
Sato, Yukinori
Saveski, Martin
Schickedanz, Alexander
Schmitt, Christian
Schroder, Jacob
Schuchart, Joseph
Serafini, Marco
Serrano, Estefania
Shin, Dong-Jae
Shun, Julian
Sjogreen, Bjorn
Skowron, Piotr
Soliman, Amira
Spampinato, Daniele
Spataro, William
Spiga, Filippo
Stramondo, Giulio
Sun, Jinghao
Sun, Tianjiao
Sutra, Pierre
Tairum, Miguel
Tanase, Alexandru
Tang, Yue
Teabe, Boris
Terboven, Christian
Thamsen, Lauritz
Tomas, Andres
Tomov, Vladimir
Torres de La Sierra,

Yuri
Trach, Bohdan
Trinitis, Carsten
Trunfio, Paolo
Träff, Jesper Larsson
Tsai, Yaohung

XVI Organization

Tsigas, Philippas
Tsuji, Miwako
Ujaldon, Manuel
Utrera, Gladys
Vaddina, Kameswar
Vasiloudis, Theodore
Vaumourin, Gregory
Veiga, Luís
Veith, David
Venetis, Ioannis
Verbitskiy, Ilya
Verdoolaege, Sven
Vespa, Emanuele
Villegas, Alejandro
Vinci, Andrea

Viviani, Paolo
von Looz, Moritz
Voronin, Kirill
Wacrenier, Pierre-André
Wagner, Martin
Wallschläger, Marcel
Walulya, Ivan
Wang, Zhan
Weidendorfer, Josef
Wilhelm, Andreas
Wong, Michael
Wu, Meng-Ju
Xie, Zhen
Xu, Guanglin
Yang, Dai

Yang, Eunju
Yang, Qirui
Yao, Erlin
Yarkhan, Asim
Yasugi, Masahiro
Yeh, Tsung Tai
Zamani, Ali Reza
Zang, Dawei
Zhang, Fa
Zhang, Jiyuan
Zilic, Josip
Zlatev, Zahari
Zounon, Mawussi
Żuk, Paweł

Organization XVII

Euro-Par 2018 Invited Talks

ALGORAND: A Better Distributed Ledger

Silvio Micali

CSAIL, MIT, USA

A distributed ledger is a tamperproof sequence of data that can be read and augmented
by everyone. Distributed ledgers stand to revolutionize the way a democratic society
operates. They secure all kinds of traditional transactions – such as payments, asset
transfers, titling – in the exact order in which they occur; and enable totally new
transactions – such as cryptocurrencies and smart contracts. They can remove inter-
mediaries and usher in a new paradigm for trust. As currently implemented, however,
distributed ledgers cannot achieve their enormous potential. Algorand is an alternative,
democratic, and efficient distributed ledger. Unlike prior ledgers based on “proof of
work”, it dispenses with “miners”. Indeed, Algorand requires only a negligible amount
of computation. Moreover, its transaction history does not “fork” with overwhelming
probability: i.e., Algorand guarantees the finality of all transactions.

Algorithmic Adaptations to Extreme
Scale Computing

David E. Keyes

King Abdullah University, Saudi Arabia

Algorithmic adaptations to use next-generation computers close to their potential are
underway. Instead of squeezing out flops – the traditional goal of algorithmic opti-
mality, which once served as a reasonable proxy for all associated costs – algorithms
must now squeeze synchronizations, memory, and data transfers, while extra flops on
locally cached data represent only small costs in time and energy. After decades of
programming model stability with bulk synchronous processing, new programming
models and new algorithmic capabilities (to make forays into, e.g., data assimilation,
inverse problems, and uncertainty quantification) must be co-designed with the hard-
ware. We briefly recap the architectural constraints and application opportunities. We
then concentrate on two types of tasks each of occupies a large portion of all scientific
computing cycles: large dense symmetric/Hermitian linear systems (covariances,
Hamiltonians, Hessians, Schur complements) and large sparse Poisson/Helmholtz
systems (solids, fluids, electromagnetism, radiation diffusion, gravitation). We examine
progress in porting “exact” and hierarchically rank-reduced solvers for these tasks to
the hybrid distributed-shared programming environment, including the GPU and the
MIC architectures that make up the cores of the top scientific computers “on the floor”
and “on the books.”

Datacenters for the Post-Moore Era

Babak Falsafi

EPFL, Switzerland

Datacenters are growing at unprecedented speeds fueled by the demand on global IT
services, investments in massive data analytics and economies of scale. Worldwide
data by some accounts (e.g., IDC) grows at much higher rates than server capability
and capacity. Conventional silicon technologies laying the foundation for server
platforms, however, have dramatically slowed down in efficiency and density scaling in
recent years. The latter, now referred to as the post-Moore era, has given rise to a
plethora of emerging logic and memory technologies presenting exciting new chal-
lenges and abundant opportunities from algorithms to platforms for server designers. In
this talk, I will first motivate the post-Moore era for server architecture and present
avenues to pave the path forward for server design.

Euro-Par 2018 Topics Overview

Topic 1: Support Tools and Environments

Siegfried Benkner, Massimo Coppola, Franz Franchetti,
Michael Gerndt, Erwin Laure, and Nikos Parlavantzas

Despite an impressive body of research over the last decades, parallel and distributed
programming remains a complex task, a process that is prone to subtle software issues
that can affect both the correctness and the performance of an application. The amount
of implementation details and their hidden connections are getting harder and harder to
manage as multilevel parallel hierarchical and hybrid architectures become more and
more commonplace along the path to Exascale computing systems.

The Euro-Par Support Tools and Environments track focuses on tools, techniques
and environments that help tackling that complexity by addressing the many challenges
related to programmability, portability, correctness, reliability, scalability, efficiency,
performance and energy consumption.

The papers submitted and accepted for this track do well represent the community
that this topic brings together, gathering tool designers, developers, and users to share
their ideas, solutions, products, and concerns for a wide range of parallel platforms.
Key points of the evaluation were solid theoretical foundations and strong experimental
validations on production-level parallel and distributed systems, as well as the novelty
of program development tools and environments that tackle the daunting complexity of
current and future parallel systems.

The track received 14 submissions, which were thoroughly reviewed by the
members of the track program committee with the help of 27 external reviewers
delivering in total 55 distinct reviews. Out of all the submissions and after a careful and
detailed discussion among committee members, we finally decided to accept 5 papers,
resulting in a per-topic acceptance ratio of 36%.

We would like to thank all the authors who submitted papers for their contribution
to the success of this track, as well as all the external reviewers for their high-quality
reviews and their valuable feedback.

Topic 2: Performance and Power Modeling,
Prediction and Evaluation

Leonel Sousa, Daniele De Sensi, Giorgis Georgakoudis,
Aleksandar Ilic, Piotr Luszczek, Federico Silla, Guangming Tan,

and Pedro Trancoso

Power consumption is becoming a major factor to consider when designing hardware
and applications. Due to the tight correlation to performance, these two goals need to
be addressed together in a synergistic way. This topic covers different aspects of
performance and power consumption modeling, prediction and evaluation on different
types of computing architectures and for a wide variety of applications.

This year we received 24 submissions and each paper received 4 reviews, either
from the nine program committee members and/or from external reviewers. After
discussion, we accepted 6 papers (25% acceptance rate). The papers cover different
aspects of performance optimization, power and energy efficiency, addressing the
problem at different levels, from low-level optimizations to visualization tools and
considering different platforms, from mobile devices to large-scale HPC systems.

We would like to thank the authors for their submissions, the Euro-Par 2018
Organizing Committee for their help throughout all the process, and the PC members
and the reviewers for providing timely and detailed reviews, and for participating in the
discussion we carried on after the reviews were received.

Topic 3: Scheduling and Load Balancing

Anne Benoit, Enrico Bini, Maciej Drozdowski,
Lionel Eyraud-Dubois, José Gracia, Nan Guan, Sascha Hunold,

and Krzysztof Rzadca

New computing systems offer the opportunity to reduce the response times and the
energy consumption of the applications by exploiting the levels of parallelism.
Heterogeneity and complexity are the distinguishing characteristics of modern archi-
tectures. Thereby, the optimal exploitation of modern platforms is challenging.
Scheduling and load balancing techniques are key instruments to achieve higher per-
formance, lower energy consumption, reduced resource usage, and predictability of
applications.

This topic invites papers on all aspects related to scheduling and load balancing on
parallel and distributed machines, from theoretical foundations for modeling and
designing efficient and robust scheduling policies to experimental studies, applications
and practical tools and solutions. It applies to multi-/manycore processors, embedded
systems, servers, heterogeneous and accelerated systems, HPC clusters as well as
distributed systems such as clouds and global computing platforms.

A total of 23 full-length submissions were received in this track, each of which
received at least four reviews, from the eight chairs and/or from 21 additional experts.
Following the thorough discussion of the reviews, five submissions have been
accepted, including one that was nominated as distinguished paper.

The chair and local chair sincerely thank all the authors for their submissions, the
Euro-Par 2018 Organizing Committee for all their valuable help, and the reviewers for
their excellent work. They all have contributed to making this topic and Euro-Par an
excellent forum to discuss scheduling and load balancing challenges.

Topic 4: High Performance Architectures
and Compilers

Florian Brandner, Fabio Luporini, Alexandra Jimborean,
Frank Hannig, and Gihan Mudalige

This topic deals with architecture design, programming languages, and compilation for
parallel high-performance systems. The areas of interest range from microprocessors to
large-scale parallel machines (including multi-/many-core, possibly heterogeneous,
architectures); from general-purpose to specialized hardware platforms (e.g., graphic
coprocessors, low-power embedded systems); and from architecture design to compiler
technology and programming language design.

On the compilation side, topics of interest include programmer productivity issues,
concurrent and/or sequential language aspects, vectorization, program analysis, pro-
gram transformation, automatic discovery and/or management of parallelism at all
levels, autotuning and feedback directed compilation, and the interaction between the
compiler and the system at large. On the architecture side, the scope spans system
architectures, processor micro-architecture, memory hierarchy, multi-threading, archi-
tectural support for parallelism, and the impact of emerging hardware technologies.

This year the topic received 11 submissions, covering a wide range of topics
ranging from hardware designs over compilation techniques to programming models.
The five topic co-chairs solicited at least four experts in the respective fields to review
each paper. A lively online discussion followed the reviewing phase, during which the
various co-chairs frequently solicited additional input from the expert reviewers. Based
on the online discussions, 3 papers were proposed for acceptance, which were ulti-
mately confirmed during the final selection meeting held in Turin.

Topic 5: Parallel and Distributed Data
Management and Analytics

K. Selçuk Candan, Ruggero Pensa, Lei Chen,
Gianmarco De Francisci Morales, and Ming Zhao

Many areas of science, industry, and commerce are producing extreme-scale data that
must be processed – stored, managed, analyzed – in order to extract useful knowledge.
This topic seeks papers in all aspects of distributed and parallel data management and
data analysis. For example, HPC in situ data analytics, cloud and grid data-intensive
processing, parallel storage systems, IoT data management and analytics, and scalable
data processing workflows are all in the scope of this topic. Privacy and trust issues in
parallel and distributed data management and analytics systems are also aspects of
interest for this conference topic.

Seven full-length papers were submitted to this topic, and each paper received at
least four reviews, mostly performed by track chairs. After discussion with the
reviewers and track chairs, two papers were selected for publication, one related to the
minimization of network traffic for distributed joins, the second one to
privacy-preserving top-k query processing in distributed systems.

Topic 6: Cluster and Cloud Computing

Ivona Brandić, Domenico Talia, Toni Mastelic, Raffaele Montella,
Anne-Cécile Orgerie, Thomas Renner, and Rafael Brundo Uriarte

Cloud Computing evolved from Cluster Computing and Grid Computing as a new
parallel and scalable architecture. Cloud Computing is a paradigm and a technology
that today is largely used. Together with Grid and Cluster computing, Cloud Com-
puting is a reality with many providers around the world. The use of massive storage
and computing resources accessible remotely in a seamless way has become essential
for many applications in various areas, in all these cases Clusters, Grids and Clouds are
useful tools.

Beyond the scene, most of Cloud Computing solutions rely on federations of
large-scale clusters where well-known but still unsolved challenges related to perfor-
mance, reliability and energy efficiency of the infrastructures should be addressed by
research. Moreover, Cloud Computing emphasized the importance of fundamental
capabilities and services that are required to achieve the goal of user-friendly, security
and service guarantees. Our community should also investigate these aspects.

Finally, there are important trends as going from large centralized infrastructures to
smaller ones massively distributed at the edge of the network, and also to execute High
Performance Computing applications on Clouds. The first referred as “fog/edge”
computing, such a dawning paradigm is attracting growing interests as it brings
computing resources closer to end-users, tackling the network overhead issues that
prevent the use of the UC paradigm by latency-aware applications. The second still
needs a large research effort, to allow the use of compute and network intensive
applications without loss of performance on Clouds.

Topic 6 sought papers covering many aspects of Cluster and Cloud Computing
dealing with infrastructure layer challenges, such as performance/energy optimizations,
and security enhancements, as well as cloud-enabled applications, workflow manage-
ment and High Performance Computing on Clouds. This year, 24 papers have been
submitted to Topic 6. There were authors from several countries from all the conti-
nents. Four expert reviewers analyzed each submission. Overall, many specialists were
involved into the reviewing process and, despite the high quality of the submitted
papers, only 8 papers were accepted for publication. We would like to thank all the
authors for their submissions, the PC members and the reviewers for providing us with
constructive and informative reviews, and the Euro-Par 2018 Organizing committee for
all the help that allows us to smoothly take over the whole process.

Topic 7: Distributed Systems and Algorithms

Sonia Ben-Mokhtar, Alberto Montresor, Christof Fetzer,
and Indranil Gupta

Parallel computing is heavily dependent on and interacts with the developments and
challenges concerning distributed systems, such as load balancing, asynchrony, fail-
ures, malicious and selfish behavior, high latencies, network partitions, disconnected
operations and heterogeneity. This track of Euro-Par provides a forum for both theo-
retical and practical research, of interest to both academia and industry, on distributed
computing, distributed algorithms, distributed systems, distributed computing models,
distributed data structures, and parallel processing on distributed systems, in particular
in relation to efficient high performance computing.

This year the track received 10 submissions on various topics of the call and
accepted 3 papers. Each paper had a minimum of four reviews and was discussed
within the track PC meeting. A subset of papers was then proposed to the PC chairs for
final discussions and decisions.

The track chairs would like to warmly thank the track members Indranil Gupta
(University of Illinois Urbana-Champaign, USA) and Christof Fetzer (TU Dresden,
Germany) for their work as well as the 12 external reviewers that greatly helped in the
reviewing process.

Topic 8: Parallel and Distributed
Programming, Interfaces, and Languages

J. Daniel García, Patrizio Dazzi, Bryce Adelstein-Lelbach,
Marcelo Pasin, Mitsuhisa Sato, Paolo Trunfio, and Chan-Hyun Youn

Parallel and distributed applications requires adequate programming abstractions and
models, efficient design tools, parallelization techniques and practices. This topic was
open for submissions of new results and practical experience in this domain: Efficient
and effective parallel languages, interfaces, libraries and frameworks, as well as solid
practical and experimental validation.

The topic emphasizes research on high-performance, correct, portable, and scalable
parallel programs via adequate parallel and distributed programming model, interface
and language support. Contributions that assess programming abstractions, models and
methods for usability, performance prediction, scalability, self-adaptation, rapid pro-
totyping and fault-tolerance, as needed, for instance, in dynamic heterogeneous parallel
and distributed infrastructures, were welcome.

We received nineteen submissions on this topic that went through four independent
reviews. Those reviews where further discussed among the PC members. As a result
eight paper were accepted.

We would like to express our gratitude to all author for submitting their work. We
received very good submissions and the selection of accepted paper was quite hard. We
also would like to thank all the reviewers for their detailed reviews and their partici-
pation in discussions following the reviews. Finally we would like to also thank the
organizing and steering committees for all their help, support and hard work.

Topic 9: Multicore and Manycore Methods
and Tools

Christoph Kessler, Marco Danelutto, Rudolf Eigenmann,
Arturo González Escribano, Kevin Hammond, Jesper L. Träff,

and Ana L. Varbanescu

Modern homogeneous and heterogeneous multi-core and many-core architectures are
now part of the high-end, embedded, and mainstream computing scene and can offer
impressive performance for many applications. This architecture trend has been driven
by the need to reduce power consumption, increase processor utilization, and deal with
the memory-processor speed gap. However, the complexity of these new architectures
has created several programming challenges, and achieving performance on these
systems is often a difficult task. This topic seeks to explore productive programming of
multi- and many-core systems, as well as stand-alone systems with large numbers of
cores like GPUs and various types of accelerators. This can also include hybrid and
heterogeneous systems with different types of multi-core processors. It focuses on
novel research and solutions in the form of programming models, algorithms, lan-
guages, compilers, libraries, runtime and analysis tools to increase the programmability
of multi-core, many-core, and heterogeneous systems, in the context of
general-purpose, high-performance, and embedded parallel computing. It also covers
issues such as lock-free algorithms and data structures, transactional memory, static and
dynamic analysis and optimization techniques and tools, performance and power
trade-offs, scalability aspects, and hardware support for programming models and
runtime systems.

This year, 25 papers discussing some of these issues were submitted to this topic.
Each paper was reviewed by four reviewers. Eventually, 6 regular papers were selected.

The accepted papers discuss the following issues: load balancing for parallel graph
traversal algorithms on GPUs, energy-efficient stencil computations on clustered
many-core processors, optimizing the thread placement for overlapping MPI-3
non-blocking collective communication operations on many-core processors, a
lock-free cache-trie data structure, improving performance of multi-program workloads
by cache-criticality aware last-level cache partitioning, and NUMA optimizations for
algorithmic skeletons.

The topic chairs wish to thank all authors contributing their work to the topic, the
PC members and the additional reviewers for their highly useful comments, as well as
the Euro-Par Organizing Committee for creating a smooth process.

Topic 10: Theory and Algorithms for Parallel
Computation and Networking

Christos Zaroliagis, Tiziano De Matteis, Leszek Gąsieniec,
Ulrich Meyer, and Henning Meyerhenke

Parallel computing is everywhere, on smartphones, laptops; at online shopping sites,
universities, computing centres; behind the search engines. Efficiency and productivity
at these scales and contexts are only possible by scalable parallel algorithms using
efficient communication schemes, routing and networks. Theoretical tools enabling
scalability, modelling and understanding parallel algorithms, and data structures for
exploiting parallelism are more important than ever. Topic 10 solicits high quality,
original papers on the general topic of theory and algorithms for parallel computation
including communication and network algorithms.

Topic 10 received 9 submissions, all of which received 4 reviews. The papers and
their reviews were discussed extensively, and 3 submissions were eventually accepted.
We thank all authors for their valuable contributions, as well as the PC Committee
members and external reviewers for investing their time in reviewing the papers, for
providing constructive feedback and sharing their expertise, and for keeping the high
scientific level of the Euro-Par conference.

Topic 11: Parallel Numerical Methods
and Applications

Elisabeth Larsson, Pasqua D’Ambra, Aneta Karaivanova,
Ángeles Martínez Calomardo, and Ulrike Meier Yang

The need for high performance computing is driven by the need for predictive simu-
lations in science and engineering, as well as in areas such as finance, life sciences, and
humanities, where computational needs have more recently been increasing. This
requires the development of highly scalable numerical methods and algorithms that are
able to efficiently exploit modern, and in general heterogeneous, computer architec-
tures. Another need that is currently arising with the increasing size of computer
systems is fault tolerance, which puts additional demands on algorithms, run-time
systems, and tools such as MPI.

This conference topic aims at providing a forum for presenting and discussing
recent developments in parallel numerical algorithms and their implementation on
current parallel architectures, including many-core and hybrid architectures. We
encouraged submissions addressing algorithmic design, implementation details, per-
formance analysis, as well as integration of parallel numerical methods in large-scale
science and engineering applications.

The program committee for this topic consisted of five women with different
specializations in high-performance parallel computing for numerical applications. We
received 17 submissions on a broad variety of topics. Fourty-one additional experts
were involved in the review process. Each submission received at least four reviews.
After the paper selection meeting at the University of Turin, four high quality papers
were accepted for presentation at EuroPar 2018. The topics of the papers cover
application areas in plasma physics, quantum physics, seismic wave propagation, and
matrix factorizations. Algorithmic aspects of the Particle-in-cell method and Cholesky
factorization for dense matrices with compressed blocks are considered. Implementa-
tions are performed using task based parallel programming models as well as explicit
programming models using MPI+threads.

We thank all the authors for their contributions, the reviewers for their careful
reading of the papers, and the organizing committee members for their smooth oper-
ation of the whole process.

Topic 12: Accelerator Computing
for Advanced Applications

Angeles Navarro, Maurizio Drocco, Raphael de Camargo, Jaejin Lee,
and Jose Luis Nunez-Yanez

The need for high-performance computing is constantly growing in all kind of sce-
narios, from high-end scientific applications, to consumer electronics software. Hard-
ware manufactures are involved in a race to develop specialized hardware to cover
these critical demands.

Nowadays, hardware accelerators of various kinds offer a potential for achieving
massive performance in applications that can leverage their high degree of parallelism
and customization. Examples include graphics processors (GPUs), manycore copro-
cessors, as well as more customizable devices, such as FPGA-based systems, and
streaming data-flow architectures. The research challenge for this topic is to explore
new directions for actually realizing this potential. Significant advances in all areas
related to accelerators are considered with special focus on architectures, algorithms,
languages, compilers, libraries, runtime systems, coordination of accelerators and CPU,
debugging and profiling tools, as well as application-related contributions that provide
new insights into fundamental problems or solution approaches in this domain.

The program committee of this topic was formed by five members of different
backgrounds and specializations in the accelerators field, with the collaboration of
several other sub-reviewers. We received 11 contributions from researchers in many
different countries. After the review process and the general PC meeting, three
high-quality papers were selected for presentation in Euro-Par 2018 at Turin. They are
focused on important hot-topics: exploiting the GPUs potential towards advanced
hierarchical matrix computations in large-scale sparse applications, proposing runtime
systems for dynamically adapting the state on heterogeneous systems to enhance its
energy efficiency, or introducing stream processing frameworks that enable easily
programmable and high-performance computations on hybrid CPU/Xeon Phi systems.

The committee members want to thank all the authors that submitted their work to
this track, the reviewers for their timely and constructive comments, and the organi-
zation committee for the efforts to easy our task, and to provide a nice conference
environment in Turin for a high-quality discussion of research results in this emerging
topic.

Contents

Support Tools and Environments

Automatic Detection of Synchronization Errors in Codes that
Target the Open Community Runtime . 3

Jiri Dokulil and Jana Katreniakova

A Methodology for Performance Analysis of Applications
Using Multi-layer I/O . 16

Ronny Tschüter, Christian Herold, Bert Wesarg,
and Matthias Weber

Runtime Determinacy Race Detection for OpenMP Tasks 31
Hassan Salehe Matar and Didem Unat

Estimating the Impact of External Interference on
Application Performance . 46

Aamer Shah, Matthias Müller, and Felix Wolf

GT-Race: Graph Traversal Based Data Race Detection for Asynchronous
Many-Task Parallelism . 59

Lechen Yu and Vivek Sarkar

Performance and Power Modeling, Prediction and Evaluation

Reducing GPU Register File Energy . 77
Vishwesh Jatala, Jayvant Anantpur, and Amey Karkare

Taxonomist: Application Detection Through Rich Monitoring Data 92
Emre Ates, Ozan Tuncer, Ata Turk, Vitus J. Leung, Jim Brandt,
Manuel Egele, and Ayse K. Coskun

Diagnosing Highly-Parallel OpenMP Programs with Aggregated
Grain Graphs . 106

Nico Reissmann and Ananya Muddukrishna

Characterization of Smartphone Governor Strategies 120
Sarbartha Banerjee and Lizy Kurian John

HPC Benchmarking: Scaling Right and Looking Beyond the Average 135
Milan Radulovic, Kazi Asifuzzaman, Paul Carpenter,
Petar Radojković, and Eduard Ayguadé

Combined Vertical and Horizontal Autoscaling Through Model
Predictive Control . 147

Emilio Incerto, Mirco Tribastone, and Catia Trubiani

Scheduling and Load Balancing

Early Termination of Failed HPC Jobs Through Machine
and Deep Learning . 163

Michał Zasadziński, Victor Muntés-Mulero, Marc Solé,
David Carrera, and Thomas Ludwig

Peacock: Probe-Based Scheduling of Jobs by Rotating Between
Elastic Queues . 178

Mansour Khelghatdoust and Vincent Gramoli

Online Scheduling of Task Graphs on Hybrid Platforms 192
Louis-Claude Canon, Loris Marchal, Bertrand Simon,
and Frédéric Vivien

Interference-Aware Scheduling Using Geometric Constraints 205
Raphaël Bleuse, Konstantinos Dogeas, Giorgio Lucarelli,
Grégory Mounié, and Denis Trystram

Resource-Efficient Execution of Conditional Parallel Real-Time Tasks. 218
Sanjoy Baruah

High Performance Architectures and Compilers

Improving GPU Cache Hierarchy Performance with a Fetch
and Replacement Cache . 235

Francisco Candel, Salvador Petit, Alejandro Valero,
and Julio Sahuquillo

Abelian: A Compiler for Graph Analytics on Distributed,
Heterogeneous Platforms . 249

Gurbinder Gill, Roshan Dathathri, Loc Hoang, Andrew Lenharth,
and Keshav Pingali

Using Dynamic Compilation to Achieve Ninja Performance for CNN
Training on Many-Core Processors . 265

Ankush Mandal, Rajkishore Barik, and Vivek Sarkar

Parallel and Distributed Data Management and Analytics

Privacy-Preserving Top-k Query Processing in Distributed Systems. 281
Sakina Mahboubi, Reza Akbarinia, and Patrick Valduriez

XL Contents

Minimizing Network Traffic for Distributed Joins Using Lightweight
Locality-Aware Scheduling. 293

Long Cheng, John Murphy, Qingzhi Liu, Chunliang Hao,
and Georgios Theodoropoulos

Cluster and Cloud Computing

VIoLET: A Large-Scale Virtual Environment for Internet of Things 309
Shreyas Badiger, Shrey Baheti, and Yogesh Simmhan

Adaptive Bandwidth-Efficient Recovery Techniques in Erasure-Coded
Cloud Storage. 325

Rekha Nachiappan, Bahman Javadi, Rodrigo N. Calheiros,
and Kenan M. Matawie

IT Optimization for Datacenters Under Renewable Power Constraint 339
Stephane Caux, Paul Renaud-Goud, Gustavo Rostirolla,
and Patricia Stolf

GPU Provisioning: The 80� 20 Rule . 352
Eleni Kanellou, Nikolaos Chrysos, Stelios Mavridis, Yannis Sfakianakis,
and Angelos Bilas

ECSched: Efficient Container Scheduling on Heterogeneous Clusters. 365
Yang Hu, Huan Zhou, Cees de Laat, and Zhiming Zhao

Combinatorial Auction Algorithm Selection for Cloud Resource Allocation
Using Machine Learning . 378

Diana Gudu, Marcus Hardt, and Achim Streit

Cloud Federation Formation in Oligopolistic Markets 392
Yash Khandelwal, Karthik Ganti, Suresh Purini,
and Puduru V. Reddy

Improving Cloud Simulation Using the Monte-Carlo Method 404
Luke Bertot, Stéphane Genaud, and Julien Gossa

Distributed Systems and Algorithms

Nobody Cares if You Liked Star Wars: KNN Graph Construction
on the Cheap . 419

Anne-Marie Kermarrec, Olivier Ruas, and François Taïani

One-Sided Communications for More Efficient Parallel State Space
Exploration over RDMA Clusters . 432

Camille Coti, Sami Evangelista, and Laure Petrucci

Contents XLI

Robust Decentralized Mean Estimation with Limited Communication 447
Gábor Danner and Márk Jelasity

Parallel and Distributed Programming, Interfaces, and Languages

Snapshot-Based Synchronization: A Fast Replacement
for Hand-over-Hand Locking . 465

Eran Gilad, Trevor Brown, Mark Oskin, and Yoav Etsion

Measuring Multithreaded Message Matching Misery 480
Whit Schonbein, Matthew G. F. Dosanjh, Ryan E. Grant,
and Patrick G. Bridges

Global-Local View: Scalable Consistency for Concurrent Data Types 492
Deepthi Akkoorath, José Brandão, Annette Bieniusa,
and Carlos Baquero

OpenABL: A Domain-Specific Language for Parallel and Distributed
Agent-Based Simulations . 505

Biagio Cosenza, Nikita Popov, Ben Juurlink, Paul Richmond,
Mozhgan Kabiri Chimeh, Carmine Spagnuolo, Gennaro Cordasco,
and Vittorio Scarano

Bulk: A Modern C++ Interface for Bulk-Synchronous Parallel Programs 519
Jan-Willem Buurlage, Tom Bannink, and Rob H. Bisseling

SharP Unified Memory Allocator: An Intent-Based Memory
Allocator for Extreme-Scale Systems . 533

Ferrol Aderholdt, Manjunath Gorentla Venkata,
and Zachary W. Parchman

Multi-granularity Locking in Hierarchies with Synergistic Hierarchical
and Fine-Grained Locks . 546

K. Ganesh, Saurabh Kalikar, and Rupesh Nasre

Efficient Communication/Computation Overlap with MPI+OpenMP
Runtimes Collaboration . 560

Marc Sergent, Mario Dagrada, Patrick Carribault, Julien Jaeger,
Marc Pérache, and Guillaume Papauré

Multicore and Manycore Methods and Tools

Efficient Lock-Free Removing and Compaction for the Cache-Trie
Data Structure. 575

Aleksandar Prokopec

XLII Contents

NUMA Optimizations for Algorithmic Skeletons. 590
Paul Metzger, Murray Cole, and Christian Fensch

Improving System Turnaround Time with Intel CAT by Identifying LLC
Critical Applications . 603

Lucia Pons, Vicent Selfa, Julio Sahuquillo, Salvador Petit,
and Julio Pons

Dynamic Placement of Progress Thread for Overlapping MPI Non-blocking
Collectives on Manycore Processor . 616

Alexandre Denis, Julien Jaeger, Emmanuel Jeannot, Marc Pérache,
and Hugo Taboada

Efficient Load Balancing Techniques for Graph Traversal Applications
on GPUs . 628

Federico Busato and Nicola Bombieri

Energy Efficient Stencil Computations on the Low-Power Manycore
MPPA-256 Processor. 642

Emmanuel Podestá Jr., Bruno Marques do Nascimento,
and Márcio Castro

Theory and Algorithms for Parallel Computation and Networking

High-Quality Shared-Memory Graph Partitioning . 659
Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz

Design Principles for Sparse Matrix Multiplication on the GPU 672
Carl Yang, Aydın Buluç, and John D. Owens

Distributed Graph Clustering Using Modularity and Map Equation 688
Michael Hamann, Ben Strasser, Dorothea Wagner, and Tim Zeitz

Improved Distributed Algorithm for Graph Truss Decomposition 703
Venkatesan T. Chakaravarthy, Aashish Goyal, Prakash Murali,
Shivmaran S. Pandian, and Yogish Sabharwal

Parallel Numerical Methods and Applications

Exploiting Data Sparsity for Large-Scale Matrix Computations 721
Kadir Akbudak, Hatem Ltaief, Aleksandr Mikhalev, Ali Charara,
Aniello Esposito, and David Keyes

Hybrid Parallelization and Performance Optimization of the FLEUR Code:
New Possibilities for All-Electron Density Functional Theory 735

Uliana Alekseeva, Gregor Michalicek, Daniel Wortmann,
and Stefan Blügel

Contents XLIII

Efficient Strict-Binning Particle-in-Cell Algorithm for Multi-core
SIMD Processors . 749

Yann Barsamian, Arthur Charguéraud, Sever A. Hirstoaga,
and Michel Mehrenberger

Task-Based Programming on Emerging Parallel Architectures
for Finite-Differences Seismic Numerical Kernel . 764

Salli Moustafa, Wilfried Kirschenmann, Fabrice Dupros,
and Hideo Aochi

Accelerator Computing for Advanced Applications

CEML: a Coordinated Runtime System for Efficient Machine
Learning on Heterogeneous Computing Systems . 781

Jihoon Hyun, Jinsu Park, Kyu Yeun Kim, Seongdae Yu,
and Woongki Baek

Stream Processing on Hybrid CPU/Intel® Xeon Phi™ Systems 796
Paulo Ferrão, Hélder Marques, and Hervé Paulino

Tile Low-Rank GEMM Using Batched Operations on GPUs 811
Ali Charara, David Keyes, and Hatem Ltaief

Correction to: Early Termination of Failed HPC Jobs Through Machine
and Deep Learning . E1

Michał Zasadziński, Victor Muntés-Mulero, Marc Solé, David Carrera,
and Thomas Ludwig

Author Index . 827

XLIV Contents

Support Tools and Environments

Automatic Detection of Synchronization
Errors in Codes that Target the Open

Community Runtime

Jiri Dokulil1(B) and Jana Katreniakova2

1 Faculty of Computer Science, University of Vienna, Vienna, Austria
jiri.dokulil@univie.ac.at

2 Comenius University, Bratislava, Slovakia
katreniakova@dcs.fmph.uniba.sk

Abstract. The complexity of writing and debugging parallel programs
makes tools that can support this effort very important. In the case of
the Open Community Runtime, one major problem is ensuring that the
program manages runtime objects correctly. For example, when one task
uses an object and another task is responsible for deleting the object, the
tasks need to be synchronized to ensure that the object is only destroyed
once it is no longer being used. In this paper, we present a tool which
observes program execution and analyzes it in order to find cases where
the required synchronization is missing.

1 Introduction

Task-based runtime systems, including StarPU [1], HPX [7], UPC++ [15], or
PaRSEC [2] have received a lot of interest given the increased complexity, per-
formance variability, and heterogeneity of emerging architectures. The Open
Community Runtime (OCR, [9]) is a recent specification [10] for an event-driven
task-based runtime system developed within the US XStack targeting next gen-
eration extreme scale architectures. The basic idea of OCR is to use tasks to
decouple computation from compute units and data blocks to decouple appli-
cation data from specific memory. Synchronization is also abstracted by depen-
dences among tasks. Events can be used to build more complex dependence
patterns. The responsibility for work scheduling and data placement is moved
to the runtime. The application issues tasks to the runtime, along with their
dependences. The runtime examines this task graph (which should be a DAG)
and decides when and where to execute the tasks.

Writing parallel programs is a difficult task [8]. This is especially true when
writing programs directly at the level of a task-based runtime system like OCR.
When the work is split into tasks, which are scheduled and executed by the
runtime, the global execution-time context normally available as the stack trace
is lost. Debuggers are not able to map a running task to the place where it was
created, like they do with a function and the corresponding call site. This makes
debugging task-based applications tricky. Tools that can support the developers’
effort to write and debug such programs are therefore important.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 3–15, 2018.
https://doi.org/10.1007/978-3-319-96983-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_1&domain=pdf

4 J. Dokulil and J. Katreniakova

To support our research on OCR [3–5], we created a single-threaded imple-
mentation of OCR, called OCR-V1, which can be used to aid the development of
new OCR applications1. When an application is run with OCR-V1, the runtime
checks that the OCR API is used correctly by the application, for example by
testing that data blocks are not used after being released or destroyed. Many
problems can be discovered this way, but because OCR-V1 uses a determin-
istic serial task schedule, its ability to detect synchronization errors is limited.
Therefore, we have also extended OCR-V1 to collect execution traces, which can
be analyzed to find synchronization errors. An unmodified OCR application is
compiled and linked with the modified OCR-V1 runtime. When executed, the
application generates an execution trace, which is then analyzed by a new tool
that we developed to find errors. Due to the way synchronization is done in OCR,
it is sufficient to use the instrumented runtime and the unmodified application.

Based on the OCR specification, we have defined a set of rules that a correct
OCR application must follow. We detect errors by looking for violations of these
rules. The rules (and errors) share one basic principle. Some operations on OCR
objects (performed by the application via OCR API calls) need to happen in a
certain order. For example, any object must not be used before it is created and
it may not be used after it is destroyed. So, if one task accesses a data block
and another task destroys the data block, the application must ensure that the
access done by the first task happens before the delete operation in the second
task. Dependences among the tasks have to be set up in such a way that there is
causal relation (happens-before) among the operations. Our trace analyzer finds
and reports instances where the synchronization is missing.

Existing tools like Valgrind/Helgrind [12] may not be able to detect these
errors, as synchronization that is done internally by the runtime (for example,
to ensure atomicity of concurrent operations) may appear as sufficient on the
low level where Helgrind works. Naturally, we can only detect errors in the way
the program interacts with the OCR runtime system, not application errors. If
the desired algorithm is implemented incorrectly, but properly synchronized, no
errors will be detected.

Our main contributions are: (1) the error-checking OCR-V1 runtime, which
also generates execution traces of OCR programs; (2) definition of rules that a
correct OCR application has to observe when dealing with OCR runtime objects;
(3) trace analyzer, which finds violations of the rules in execution traces; (4)
during our work, we have identified one problem where the OCR specification
does not sufficiently specify how certain tasks should be synchronized.

The rest of the paper is organized as follows. First, related work is discussed
in Sect. 2. In Sect. 3, we briefly describe key OCR concepts and explain how OCR
programs are synchronized. Section 4 explains how we analyze OCR programs
and find problems in them. Section 5 provides concrete examples of programs
and the detected errors. The final section concludes the paper and discusses
future work.

1 OCR-V1 is available at: http://www.univie.ac.at/ocr-vx/.

http://www.univie.ac.at/ocr-vx/

Automatic Detection of Synchronization Errors 5

2 Related Work

There are existing tools that try to find errors in parallel programs. One type are
tools that observe execution of the parallel program and check for various error
conditions. Probably the best know example is Valgrind [12], which is mostly
used to look for incorrect use of memory, but it also includes two modules that
detect threading errors (Helgrind and DRD). Clang ThreadSanitizer performs
similar function. Intel Inspector is an example of a similar commercial tool.

There are also tools which use static code analysis. For example, there are
tools like FindBugs that analyze either source or bytecode of Java and try to
find concurrency problems [13].

Another option is too look at the way operations are ordered in threads.
The rr tool saves program execution and allows it to be deterministically
replayed. This solves at least two problems: concurrency problems are often
non-deterministic (two subsequent executions of the same program on the same
data may not encounter the same failure) and running the parallel program in
the debugger changes timing, potentially preventing the problem from occurring
at all. An alternative approach is taken by CHESS [11] and Maple [14], which
influence the execution of a multi-threaded program in order to systematically
explore possible thread schedules.

The architecture of our system is similar to the first category (e.g., Valgrind
and its modules), where the parallel execution of the program is analyzed and
the analyzer looks for known error “patterns”. One pattern that Helgind, DRD,
and ThreadSanitizer check are data races where access to a shared variable
from multiple threads is not properly synchronized – they check the presence of
the happens-before relation among the operations. Our solution uses a similar
approach, but as data in OCR is handled differently from plain C/C++ and data
races are generally not an issue, we focus on the correct use of OCR objects. But
the basic principle is the same: observe the behavior of the program and then
check that concurrent operations have been properly synchronized.

Our approach could be also applied to similar programming models. The key
requirement for such model is that synchronization is done on the task level
using dependences. Examples of such models are OpenCL (kernels correspond
to tasks), CUDA (with multiple streams and events), and StarPU. In TBB and
UPC++, where fine-grained synchronization (locks, atomic operations, . . .) can
be used in tasks or if there can be malicious data races caused by individual read
and write operations, Valgrind and ThreadSanitizer are better starting points.

It would also be possible to apply those fine-grained techniques to data
accesses made by OCR tasks. Although data in OCR is stored in data blocks
which are acquired and released as whole, there are two different pairs of access
modes that can be used. The first pair are the constant and exclusive-write
access modes, where the runtime is responsible for ensuring that all data access
is consistent (there are no data races). The second pair are read-only and read-
write access modes, which permit data races (both read-write and write-write).
We do not consider these. There is however ongoing work done at Georgia Tech,
attempting to also find such data races.

6 J. Dokulil and J. Katreniakova

3 OCR and Synchronization

In OCR, all work (all application code) should run inside tasks, which are sched-
uled by the runtime. Similarly, all application data is stored in data blocks, which
are relocatable blocks of data also managed by the runtime. The tasks are non-
blocking, which means that once a task starts, it is expected to run to completion
without waiting for any other work to be done. The only way tasks can synchro-
nize is using dependences with the help of events. The application defines what
the dependences are, but they are evaluated by the runtime, which figures out
when a task is ready to start.

3.1 Event Driven Synchronization

Events are used to synchronize tasks in OCR, hence the name used for tasks in
OCR – Event Driven Tasks (EDTs). Events and tasks in OCR can be connected
using dependences. Tasks and events have slots that can be used as sources
(post-slots) and destinations (pre-slots) of a dependence. A task has to wait for
all of its pre-slots to be satisfied before it can start. Slots can either be satisfied
directly using an OCR API call or they are satisfied automatically when they
are connected to a post-slot of an event and the event itself is satisfied.

There are different types of events that have different rules that determine
when the event is satisfied. The simplest one, the once event, gets satisfied as
soon as its single pre-slot is satisfied. In other words, it directly propagates the
satisfaction signal. We also say that the event has been triggered to distinguish
satisfaction of the event from satisfaction of its pre-slot. Another interesting
type of event is the latch event. It has two pre-slots and maintains an internal
counter. The counter is incremented when the first of the two slots gets satisfied
and decremented when the second slot gets satisfied. When the counter reaches
zero, the event itself is satisfied and forwards the satisfaction signal – satisfies all
pre-slots that are connected to its post-slot. Another important kind of events
are output events. These are not a specific type of event (they are in fact once
or latch events), but events used in a specific situation. For every task, there is
a matching output event, which is satisfied after the task finishes.

3.2 State of OCR Objects

We have already introduced three types of OCR objects: tasks, events, and data
blocks. All OCR objects carry some state. For example, a latch event needs
to store the value of its counter. A data block needs to know the size of the
corresponding buffer and it may also track which tasks have acquired it. However,
the actual data stored in a data block is not considered to belong to the state of
the data block object. The data plays a special role in the OCR specification and
cannot be modified by OCR API calls, but only directly by reading and writing
memory via a pointer. Note that dependences are generally not considered to be
OCR objects. Therefore, adding a dependence is considered to be a change of
state of the two connected objects (event and task/event).

Automatic Detection of Synchronization Errors 7

3.3 The happens-before Relation

Events and dependences are used to define the happens-before relation among
the operations performed inside tasks. If operation A happens-before operation
B, it means that they are synchronized in a way that ensures that operation B
sees the results of operation A. A simple example is when an output event of a
task is used as a source of a dependence connected to a second task. In that case,
the satisfaction of the event happens after the first task finishes and the second
task can only start after the event is satisfied. Therefore, all operations done by
the first task happen-before all operations done by the second task. The OCR
memory model guarantees that all changes made by the first task are visible in
the second task. This is true not only for changes to the application data (in
data blocks), but also to state changes of runtime objects. For example, a newly
created event is valid in the second task. Also, if the counter of a latch event is
incremented from 0 to 2 by the first task and the second task decrements it, it is
a valid operation which changes the value from 2 to 1. If the second task was not
synchronized after the first task, it could run in parallel and try to decrement
the counter while it is still zero, which is illegal.

There are only two types of operations that may change the state of OCR
objects. First, the OCR API calls made inside the tasks (e.g., ocrDbCreate cre-
ates a new data block). Second, the runtime may modify the state automatically.
For example, after a task finishes, the associated output event is satisfied. This
also causes tasks and events connected (via dependences) to this event’s post-
slot to be also satisfied. Additionally, the finished task and its output event are
automatically destroyed by the runtime. The only exception are data blocks,
whose data is modified by memory reads and writes done inside tasks. But the
state of the data block object itself (the size of the buffer, etc.) is still managed
purely by OCR API calls. Because we only focus on the state of the OCR objects
and not the application data and since all synchronization has to be done using
OCR objects (tasks, events, and dependences), we only need to observe OCR
API calls being made by the application and implicit operations done by the
runtime. Since the runtime processes all the OCR API calls, we only need to
instrument the runtime to collect the relevant data, not the application itself.

Consider the following example in OCR pseudo-code:

running tasks: t1

available tasks: t2

events: e1 , e2

t1 {

ocrAddDependence (NULL ,t2); //allow t2 to start

ocrAddDependence (e1 ,e2);//set up dependence e1 ->e2

}

t2 {

ocrEventSatisfy(e1); // satisfy event e1

}

Here, t2 has only one pre-slot, so when t1 sets up a dependence from a NULL
object to the pre-slot, it effectively satisfies, allowing t2 to start. Then, t1 goes

8 J. Dokulil and J. Katreniakova

on to set up a dependence between events e1 and e2. For correct execution,
the dependence should be set up before e1 is satisfied. Most of the time, the
runtime will manage to set up the dependence before t2 starts and satisfies
e1, resulting in correct execution. However, it’s also possible that after t2 is
allowed to start, t1 gets suspended. This could for example be due to the OS
scheduler suspending the thread. So, t2 starts and satisfies e1. There is not yet
a dependence connecting e1 and e2, therefore e2 is not satisfied and e1 gets
destroyed. Then, t1 resumes and tries to add a dependence from the destroyed
e1, resulting in an undefined behavior (e.g., a crash). There is a race condition
among the two operations on the event. The error may be very hard to reproduce,
especially if t2 performs other work before satisfying e1. Although OCR-V1
attempts to detect application errors, this error would never be detected, because
t1 would always finish before t2 can start due to the sequential task execution.

Using happens-before, we can clearly see the problem. To make sure that
the dependence is set up in time, we need ocrAddDependence(e1,e2) happens-
before ocrEventSatisfy(e1). This is not the case here, only these hold:
ocrAddDependence(NULL,t2) happens-before ocrAddDependence(e1,e2) and
ocrAddDependence(NULL,t2) happens-before ocrEventSatisfy(e1).

4 Automatic Checking of OCR Programs

Our approach for checking of OCR programs is based on a OCR-V1, a single-
threaded implementation of OCR. OCR-V1 was specifically designed to help
debugging by exposing errors through explicit checks (using the standard C
asserts). There are almost 100 checks like this in OCR-V1. Although they
are very useful, these checks are only one of two parts of our system, which is
complemented by the tracing functionality of OCR-V1 and the trace analyzer.

4.1 OCR Application Tracing and Trace Analyzer

As we have already shown with the example in the previous section, there are
errors that cannot be detected by OCR-V1, since they only manifest when mul-
tiple tasks are executed concurrently. To cover these cases, we have extended
OCR-V1 to export the list of operations (OCR API calls and implicit operations)
performed by the OCR program. Only the operations relevant to synchroniza-
tion are exported. Furthermore, OCR-V1 exports a subset of the happens-before
graph that connects the operations. As the happens-before relation is transitive,
we don’t need to export the full graph, but only edges that are sufficient to con-
struct it by transitive closure. The trace is loaded by the trace analyzer, which
builds the full happens-before relation by performing a transitive closure. Then,
it iterates through all OCR objects and checks that they are used correctly (the
actual rules to check are described in Sect. 4.3). Rule violations are reported,
along with the relevant context, like the file name and the line number of the
location where the API call that violated the rule was made.

Automatic Detection of Synchronization Errors 9

4.2 The happens-before Graph

To make checking the rules easier, the graph exported from OCR-V1 is not
directly the graph of OCR API calls and happens-before relations among them.
We modify the graph by introducing additional nodes and edges. For every
operation performed by a task (cause node), there is also another node (effect)
where the changed mandated by the operation is applied to the affected object.
For example, when an OCR task invokes ocrEventSatisfy(e1), the effect is
the actual satisfaction of the event, which can be denoted as e1.satisfied().
The happens-before relation is also modified (extended) to ensure that the cause
happens-before the effect, but also that if there is a happens-before relation among
two causes, their effects also have this relation. This is achieved by back edges,
which are edges connecting the effect of a cause to the operation that comes right
after the cause. One cause can have multiple effects, for example connecting
two events by dependence (ocrAddDependence(e1,e2)) changes both events
(e1.connectPostSlot(e2) and e2.connectPreSlot(e1)). This format makes
it easier to check if an event e is being used properly, as it is enough to check
all actions applied to the event – e.*.

Furthermore, helper nodes (virtual operations) are added to objects. For
example, we add e.triggered() to each event, signifying the point in time where
the event is triggered. In the happens-before relation, this operation follows all
satisfactions of the event and precedes satisfaction of all pre-slots connected to
the event’s post-slot. Also, a x.destroyed() node added to all objects that are
automatically destroyed. This further simplifies checking of the rules.

Figure 1 shows an example of a graph of operations and their synchronization.
The visualized graph corresponds to the example in Sect. 3.3.

4.3 Error Detection Rules

A set of rules are applied to the graph by the trace analyzer, in order to
check for errors. We’ve already shown one example of such rule. For any
once event, any ocrAddDependence call must happens-before satisfaction of
the event. When viewed as by the effects of the operations, we require that
e.connectPostSlot(x) happens-before e.satisfy(). The full list of rules is as
follows:

1. Any use of an object must be (as per happens-before) between its creation
and its destruction.

2. All dependences that start with a post-slot of a once or latch event have to
be set up before the event is satisfied.

3. A once event can only be satisfied once.
4. ocrShutdown should be called from a task that comes after all other tasks.
5. Any valid (per happens-before) order of increments and decrements of a latch

event must be correct – it must start with an increment, only reach zero once,
and only reach zero at the end.

10 J. Dokulil and J. Katreniakova

t1

started()

…
satisfyPreSlot(t2,NULL)

addDependence(e1,e2)

ended()

destroyed()

t2

satisfied(NULL)

…

started()

satisfy(e1)

ended()

destroyed()

e1

…

connectPostSlot(e2)

satisfied()

triggered()

satisfy(e2)

destroyed()

e2

…

connectPreSlot(e1)

satisfied()

triggered()

destroyed()

Fig. 1. The trace of the example in Sect. 3.3. Operations performed on two tasks (t1
and t2) and two events (e1 and e2). The black arrows are normal happens-before edges,
the gray arrows are the back edges, which also contribute to happens-before. The red
dotted arrow is the missing happens-before that would ensure that the event is used
correctly. Note that happens-before is formed by transitive closure, so the shown arrows
are only a subset. But even if transitivity is applied, it would not add the missing arrow.
(Color figure online)

The first rule is probably the most important one, as it covers all types of
objects and different possible error scenarios. The last rule, which checks latch
events, is difficult to verify with a large number of increment and decrement
operations, as we need to check all permutations of the operations.

5 Examples

To demonstrate the functionality of our tool, we have tried it on several OCR
applications2. There are not many OCR applications and most of the exist-
ing ones have already been extensively debugged, so only very few errors were
detected. Our tools are more useful when used by the application developer while
the application is still being created, to identify problems as soon as possible.

5.1 Late Dependence Definition

The following code fragment is taken from an OCR tutorial. It is similar to
the example given in Sect. 3.3. Two tasks fill and print are created and the
output event of the fill task is used as a dependence for print, to make sure
that print runs after fill. However, the dependence is added too late, after
the print task is allowed to start. The task may run in parallel and destroy its
output event before the dependence can be set up.
2 https://xstack.exascale-tech.com/git/public?p=apps.git.

https://xstack.exascale-tech.com/git/public?p=apps.git

Automatic Detection of Synchronization Errors 11

// create templates , fill has 1 pre -slot , print has 2

ocrEdtTemplateCreate (&fillTML , fill , 0, 1);

ocrEdtTemplateCreate (&printTML , print , 0, 2);

// create startEVT - an event which launches the computation

ocrEventCreate (&startEVT , OCR_EVENT_ONCE_T);

// create one instance of fill and print each

ocrEdtCreate (&fillEDT , fillTML , 0, 0, 1, NULL , &fillEVT);

ocrEdtCreate (&printEDT , printTML , 0, 0, 2, NULL , NULL);

//set up startEVT as predecessor of both tasks

ocrAddDependence (startEVT , fillEDT , 0, DB_MODE_EW);

ocrAddDependence (startEVT , printEDT , 1, DB_MODE_CONST);

// trigger the computation

ocrEventSatisfy(startEVT , NULL_GUID);

//set up a dependence from the output of fill to print

ocrAddDependence (fillEVT , printEDT , 0, DB_DEFAULT_MODE);

The trace analyzer reports the following error message:

ERROR: ONC.EVT may be satisfied before all post-slot are added
Event 18:EVT.ONC-output-of(17:fill)

satisfied by 73 in epilogue of 17:fill
Missing happens-before from 52 in 10:mainEdt

invoked from ocr\apps\app_lab.cpp:75

The error message tells us that there is a problem with the event with ID 18.
The event is the output event of task 17, which is the fill task. The event is
satisfied by operation 73, which is one of the operations executed automatically
by the runtime after fill finished. In the main task (ID 10), the event is used
to perform operation 52, which is at the specified line in the source code. This
happens to be the last line of the example, where ocrAddDependence is called.

5.2 Conflicting Operations in Parallel Tasks

The following program was created specifically to demonstrate our tools. It shows
a scenario where multiple tasks contribute to the error. The code shows the whole
program, except for includes, function argument lists, and some unimportant
arguments in function calls. Besides the mainEdt task, which is the entry point
of any OCR program, there are three other tasks. Tasks task1 and task2 run
in parallel. The mainEdt task creates a data block (called data) and passes it to
both tasks. While task1 only accesses the data block, task2 destroys it. Task
task3 shuts down the runtime after task1 and task2 finish. A task graph for
this example is shown in Fig. 2. This figure is generated as a side-effect by the
trace analyzer tool (it generates a DOT file for GraphViz [6]).

void task1(/* arguments omitted for brevity */){

int i = *(int*)depv [0]. ptr; // access the data block

}

void task2(/* arguments omitted for brevity */) {

ocrDbDestroy(depv [0]. guid);//line 10 in the actual file

12 J. Dokulil and J. Katreniakova

}

void task3(/* arguments omitted for brevity */) {

ocrShutdown ();

}

void mainEdt(/* arguments omitted for brevity */) {

ocrGuid_t data ,tml1 ,tml2 ,tml3 ,edt1 ,edt2 ,edt3 ,evt1 ,evt2;

void* ptr;

ocrDbCreate (&data , &ptr , 8);

ocrEdtTemplateCreate (&tml1 , task1 , 0, 1);

ocrEdtTemplateCreate (&tml2 , task2 , 0, 1);

ocrEdtTemplateCreate (&tml3 , task3 , 0, 2);

ocrEdtCreate (&edt1 , tml1 , 0, 0, 1, 0, &evt1);

ocrEdtCreate (&edt2 , tml2 , 0, 0, 1, 0, &evt2);

ocrEdtCreate (&edt3 , tml3 , 0, 0, 2, 0, 0);

ocrAddDependence (evt1 , edt3 , 0, DB_MODE_NULL);

ocrAddDependence (evt2 , edt3 , 1, DB_MODE_NULL);

ocrAddDependence (data , edt1 , 0, DB_MODE_RW);

ocrAddDependence (data , edt2 , 0, DB_MODE_RW);

}

When the program is executed and analyzed, the following error is reported:

ERROR: operation may be after destruction
data block 13 destroyed by 78 in 19:task2

invoked from ocr\src\src\apps\app_lab.cpp:10
61: acquire in 17:task1 may be after destruction

The error message tells us that when the data block 13 (the data) is acquired
by task 17 (type task1), it may already have been destroyed by ocrDbDestroy
(line 10 of the actual source code), which is in task 19 (type task2).

Note that the identifiers of tasks and events are their actual IDs used by the
runtime, so when the program was running, the data variable in the main task
actually contained 13, edt1 contained 17, etc. However, the identifiers of the
operations, like 61 used for the acquire operation, are only internal identifiers
of OCR-V1 and cannot be accessed from the application code. As is often the

Fig. 2. Tasks and their dependences from the second example. The number is the ID
of the task, the text label is the name of the C function which implements the task.

Automatic Detection of Synchronization Errors 13

case when debugging programs based on logs, the developer therefore needs to
carefully interpret the output to figure out what the operation is. In the case of
78, it is clear from the reference to the source code. To identify operation 61,
one has to realize that the data block data is acquired by task1 automatically
before it starts, so there is no direct counterpart in the code.

5.3 SPMD Application – Synchronization Using Data Blocks

When we tested our tools on existing OCR applications, it reported a large
number of errors in one of them. The application is an SPMD (single program
multiple data) code which mimics the way MPI programs work3. There are
virtual processes which are assigned numerical ranks and they can exchange data
by send and receive calls using the rank numbers. Internally, the communication
is handled by writing an identifier of the sent data into a so called channel data
block, which is then read by the recipient. As part of the exchange, the sender
creates an event which is satisfied by the recipient when the data is received.
The tool reported that the event is being used but there is no guarantee that
it’s not used before it is created. There is no happens-before relation between the
code that performs the send and the code that handles the received data.

This is not an error inside our tool. The relation really does not exist. The
problem is that if two tasks acquire the same data block in exclusive write mode,
no happens-before is established among them. However, looking from the outside,
it seems it should not be detected as an error. The sender creates the event and
then stores it in the channel data block. If the recipient initiates the receive
operation (and acquires the channel data block) before the channel is updated
by the sender, it does not see the event (it is not there yet), so it does not satisfy
it. If the recipient acquires the channel data block after it has been modified, it
means that the event has already been created and it can be satisfied. Because
both sides acquire the data block in exclusive write mode, the recipient has to
see one of the two consistent states.

On the other hand, it is conceivable to implement OCR so that the recipient
sees the modified data block but the event is not yet valid. The specification [10]
either needs to be updated to require the relation to be established in such cases
or developers need to be very careful and avoid such scenarios.

5.4 Performance

As OCR-V1 was designed with safety and not performance in mind, the extra
overhead introduced by exporting the graph is noticeable but not a game
changer. On a machine equipped with dual core (4 threads) Intel i7-7500U CPU,
a highly tuned native OCR seismic simulation code, which executes 768517 tasks,
takes 105 s to complete with OCR-V1. The graph data size is around 3.5 GB.
Without the graph export, it takes 22 s, almost 5x faster. However, on the same

3 https://xstack.exascale-tech.com/git/public?p=apps.git;a=tree;f=apps/libs/src/
spmd.

https://xstack.exascale-tech.com/git/public?p=apps.git;a=tree;f=apps/libs/src/spmd
https://xstack.exascale-tech.com/git/public?p=apps.git;a=tree;f=apps/libs/src/spmd

14 J. Dokulil and J. Katreniakova

machine, a shared-memory OCR implementation takes 2.4 s, improving the per-
formance by another 9x, to a total speedup of around 44x. So, even though the
graph export slows the execution down, it is still manageable for an application
with hundreds of thousands of tasks.

The trace analyzer needs to explore the transitive closure of the exported
happens-before subset. We store the closure as a dense adjacency matrix, which
results in significant memory usage. The matrix is dense, because the existing
OCR applications are often iterative algorithms and a task in iteration i is likely
to be synchronized with all tasks from previous and subsequent iterations. The
complexity of searching all permutations of n operations on a latch event is n!.
For most other rules, the execution should be roughly n2 for n operations.

The example from the first paragraph of this section cannot be analyzed in
a reasonable amount of time. If we reduce it to just one thousand tasks (this
version takes a quarter of a second to finish in OCR-V1), it produces around
48k operations and 77k edges. These can be analyzed in 10 s. However, if we
double the number of tasks, the time goes up to over 40 s, following the predicted
quadratic time complexity. This makes searching large graphs impractical.

In applications with some regular structure, it is possible to take a small work-
load and use that to check for errors. For example, the seismic simulation only
has three different kinds of iterations (first, last, and all iterations in between)
and in each iterations, there are 3 kinds of tasks (top, bottom, in between), so
even a small run with 49 tasks in total is sufficient to test all these cases. As
we are detecting all potential synchronization errors, increasing the number of
tasks will not increase the chance of finding an error, as the process is not at
all probabilistic. However, not all applications have a regular structure like this
and it may not always be possible to test all cases with such a small sample.

6 Conclusion and Future Work

We have created a tool which can automatically detect synchronization errors in
OCR applications, in cases where OCR objects are being used by the application
without proper synchronization. While no automatic tool may detect all errors
in such applications, any programmer aid is important for the difficult task of
writing such programs.

In the future plan to use more sophisticated graph processing techniques to
reduce overall memory footprint and processing time. We would also like to be
able to efficiently handle common cases of very large latch events, without having
to search all permutations.

Acknowledgment. The work was supported in part by the Austrian Science Fund
(FWF) project P 29783 (Dynamic Runtime System for Future Parallel Architectures)
and by VEGA 1/0684/16.

Automatic Detection of Synchronization Errors 15

References

1. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures. In: Sips,
H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03869-3 80

2. Bosilca, G., et al.: PaRSEC: exploiting heterogeneity to enhance scalability. IEEE
Comput. Sci. Eng. 15(6), 36–45 (2013)

3. Dokulil, J., Sandrieser, M., Benkner, S.: Implementing the open community run-
time for shared-memory and distributed-memory systems. In: 2016 24th Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing
(PDP), pp. 364–368, February 2016

4. Dokulil, J., Benkner, S.: OCR extensions - local identifiers, labeled GUIDs, file IO,
and data block partitioning. CoRR abs/1509.03161 (2015). http://arxiv.org/abs/
1509.03161

5. Dokulil, J., Sandrieser, M., Benkner, S.: OCR-Vx - an alternative implementation
of the open community runtime. In: International Workshop on Runtime Systems
for Extreme Scale Programming Models and Architectures, in conjunction with
SC15, Austin, Texas (2015)

6. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz—
open source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD
2001. LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45848-4 57

7. Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: HPX - a task based
programming model in a global address space. In: The 8th International Conference
on Partitioned Global Address Space Programming Models (PGAS) (2014)

8. Lee, E.A.: The problem with threads. Computer 39(5), 33–42 (2006). https://doi.
org/10.1109/MC.2006.180

9. Mattson, T.G., et al.: The open community runtime: a runtime system for extreme
scale computing. In: 2016 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–7 (2016)

10. Mattson, T., Cledat, R. (eds.): The Open Community Runtime Interface, April
2016. https://xstack.exascale-tech.com/git/public?p=ocr.git;a=blob;f=ocr/spec/
ocr-1.1.0.pdf

11. Musuvathi, M.: Systematic concurrency testing using CHESS. In: Proceedings of
the 6th Workshop on Parallel and Distributed Systems: Testing, Analysis, and
Debugging, PADTAD 2008, p. 10:1. ACM, New York (2008)

12. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: SIGPLAN Notices, vol. 42, no. 6, pp. 89–100 (2007)

13. Rutar, N., Almazan, C.B., Foster, J.S.: A comparison of bug finding tools for Java.
In: 15th International Symposium on Software Reliability Engineering, pp. 245–
256, November 2004

14. Yu, J., Narayanasamy, S., Pereira, C., Pokam, G.: Maple: a coverage-driven testing
tool for multithreaded programs. In: SIGPLAN Notices, vol. 47, no. 10, pp. 485–502
(2012)

15. Zheng, Y., Kamil, A., Driscoll, M.B., Shan, H., Yelick, K.: UPC++: a PGAS
extension for C++. In: 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, pp. 1105–1114, May 2014

https://doi.org/10.1007/978-3-642-03869-3_80
http://arxiv.org/abs/1509.03161
http://arxiv.org/abs/1509.03161
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1109/MC.2006.180
https://doi.org/10.1109/MC.2006.180
https://xstack.exascale-tech.com/git/public?p=ocr.git;a=blob;f=ocr/spec/ocr-1.1.0.pdf
https://xstack.exascale-tech.com/git/public?p=ocr.git;a=blob;f=ocr/spec/ocr-1.1.0.pdf

A Methodology for Performance Analysis
of Applications Using Multi-layer I/O

Ronny Tschüter(B), Christian Herold, Bert Wesarg, and Matthias Weber

Center for Information Services and High
Performance Computing, Technische Universität

Dresden, Dresden, Germany
ronny.tschueter@tu-dresden.de

Abstract. Efficient usage of file systems poses a major challenge for
highly scalable parallel applications. The performance of even the most
sophisticated I/O subsystems lags behind the compute capabilities of
current processors. To improve the utilization of I/O subsystems, sev-
eral libraries, such as HDF5, facilitate the implementation of parallel
I/O operations. These libraries abstract from low-level I/O interfaces
(for instance, Posix I/O) and may internally interact with additional
I/O libraries. While improving usability, I/O libraries also add com-
plexity and impede the analysis and optimization of application I/O
performance. In this work, we present a methodology to investigate
application I/O behavior in detail. In contrast to current methods, our
approach explicitly captures interactions between multiple I/O libraries.
This allows to identify inefficiencies at individual layers of the I/O stack
as well as to detect possible conflicts in the interplay between layers.
We implement our methodology in an established performance monitor-
ing infrastructure and demonstrate its effectiveness with an I/O analysis
study of a cloud model simulation code. In summary, this work pro-
vides the foundation for application I/O tuning by exposing inefficiency
patterns in the usage of I/O routines.

Keywords: I/O · Performance analysis · Monitoring
Instrumentation

1 Introduction

Modern HPC systems provide powerful storage hardware equipped with high
bandwidth interconnects and parallel file systems. Nevertheless, input and out-
put (I/O) operations still present a major limitation factor for the performance
of scientific applications. Current research topics, such as big data and machine
learning, further increase the trend of processing large data volumes.

Highly-scalable applications transfer data in parallel to cope with large data
volumes and efficiently utilize available I/O resources. A wide range of I/O
libraries, such as HDF5 [24], NetCDF [26], and MPI I/O [18, Chap. 13] sup-
port developers in implementing parallel I/O operations by abstracting from
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 16–30, 2018.
https://doi.org/10.1007/978-3-319-96983-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_2&domain=pdf

A Methodology for Performance Analysis 17

Application

NetCDF

HDF5

MPI I/O

Posix I/O

File System

Storage Hardware

Fig. 1. Software layers of an application using three I/O interfaces concurrently.

low-level I/O interfaces. Often, these libraries provide features for storing meta-
data to describe the data format and units along with specific data values. This
further increases the data volume in addition to the actual raw data.

Hiding the complexity of implementing low-level parallel I/O operations is
a major benefit of I/O libraries. Yet, using I/O libraries does not necessar-
ily guarantee efficient I/O resource utilization [10]. Improved usability gained
by abstraction also implies a more challenging I/O performance analysis. This
is especially true for applications using multiple I/O interfaces concurrently.
Figure 1 shows an example application that uses multiple I/O libraries indepen-
dently. The application itself calls NetCDF, MPI I/O, and Posix I/O functions
directly. The NetCDF library issues HDF5 function calls. HDF5 in turn contains
MPI I/O and Posix I/O in its software stack. Complex interactions between I/O
libraries and user code impact each other. It is essential to gather information
from all involved I/O layers to evaluate the effectiveness of resulting I/O opera-
tions. This allows detailed understanding of the actual I/O behavior and enables
the identification of underlying root causes of I/O problems. For example, I/O
operations are propagated through the I/O software stack. An open call at the
top level will also cause open operations in lower levels. Hence, each layer of the
I/O software stack maintains own file descriptors to manage I/O resources. In
case of writing data, each I/O layer may rearrange operations or add additional
meta-information to the actual raw data. Thus, to correctly assign and evaluate
specific operations, we need to capture information at each individual I/O layer.

Monitoring of multi-level I/O operations poses two challenges: (a) recording
I/O operations arising from multiple I/O libraries and (b) recording of inter-
actions between individual I/O libraries. This work addresses both challenges.
Thereby, we support users in investigating and improving the I/O performance
of parallel applications. Our contributions are:

– An approach to record information about I/O resources used by applications
as well as performance relevant data of I/O operations including the interac-
tions of multiple I/O libraries.

18 R. Tschüter et al.

– Tracking the mount information of I/O resources in order to determine their
generic scope and recording this information for enhanced analyses.

– Implementation of the approach in an established monitoring infrastructure.
– A detailed I/O analysis study of a real-world application to demonstrate the

applicability of our approach.

2 Related Work

Several techniques exist for monitoring I/O activities. In principle these
approaches can be distinguished by: (a) the data acquisition scope (system or
application) (b) the recorded data format (statistics or event log) and (c) the
ability for monitoring relations between individual I/O layers.

Statistics on System-Level: The tools iotop [15], iostat [14], blktrace [5], and
sar [20] monitor system performance with special focus on I/O resource usage.
These tools collect statistics and report measurement values per device, parti-
tion, or network filesystem as well as a global view of the whole system.

Statistics on Application-Level: Arm MAP [4], Darshan [8], and TAU [22] moni-
tor individual applications. Among other runtime events, like function entry and
exit, they can record information about I/O operations. With respect to I/O,
Arm MAP focuses on Posix I/O and captures Lustre [16] counters, whereas
Darshan and TAU record Posix I/O and MPI I/O activities. HPCToolkit [1]
intercepts selected I/O operations and records their number of bytes read or
written to mark I/O intensive application phases. In contrast to our work, all of
the previously mentioned tools collect statistics.

Event Logs on Application-Level: VampirTrace [19] records I/O activities and
writes the collected information to event logs. However, it only records calls to
I/O functions of the standard C library and is no longer supported. Its successor
Score-P [11] does not support I/O recording yet. ScalaIOTrace [28] generates
compressed event logs of MPI I/O and Posix I/O function calls. None of the
mentioned tools explicitly correlates individual layers of the I/O software stack.

Visualization: Vampir [2] visualizes event logs generated by VampirTrace and
Score-P in timeline and statistical charts. Event logs retain temporal information
of each individual event. This enables detection of performance problems with
changing characteristics over application runtime. The Virtual Institute for I/O
(VI4IO) [27] is a collaboration platform for research groups in the field of HPC
I/O. It provides an overview about I/O middleware, benchmarks, and tools.

3 Methodology

This section describes our approach for analyzing applications using multiple
I/O libraries. We cover both I/O resources (e.g., files and file descriptors) as well
as I/O activities (e.g., reading and writing). Therefore, we distinguish between
definitions and events. Definitions provide detailed information about I/O
resources, whereas events represent I/O activities during application runtime.

A Methodology for Performance Analysis 19

3.1 Definitions

Definitions describe resources of I/O operations. Posix I/O operations do not
directly work on input/output resources, but use file descriptors as an abstract
handle. This allows multiple processes/threads to access the same file indepen-
dently. Consequently, our definitions, Fig. 2, distinguish between I/O resources
and file descriptors. The following paragraphs introduce each definition in detail.

Fig. 2. Overview of definitions to reflect I/O resources and their relationships.

Definitions of I/O Resources: According to the “Everything is a file” phi-
losophy Unix and its derivatives treat a wide range of I/O resources as a file,
e.g., files, directories, and sockets. This is reflected by the polymorph IoFile def-
inition that provides a common namespace for objects used by I/O operations.
Currently, definitions for files (IoRegularFile) and directories (IoDirectory)
are available within this namespace. However, it is possible to add further defi-
nitions to this namespace.

IoRegularFile and IoDirectory definitions store the name of a file or directory.
HPC machines mount several file systems concurrently. Thus, name or path alone
do not represent unique identifiers for I/O resources. In principle, two categories
of file systems can be distinguished: (a) local file systems available only on a
single compute node (b) global file systems shared via network on the whole
machine. Figure 3 depicts an example. The illustrated compute nodes nodea and
nodeb use two different file systems—a shared network file system fsglobal and
a local scratch file system fs local. The file filex in fsglobal is accessible on the
whole machine. In contrast filey represents two distinct physical files, because
they reside in separate file systems fs local. Therefore, the scope attribute marks
the physical scope with regard to the system topology.

The IoFileProperty definition attaches user-defined attributes (e.g., mount
point information or Lustre strip policy) to an IoFile definition.

20 R. Tschüter et al.

Fig. 3. A file’s scope depends on its storage position (global or local file system).

Definitions of I/O Handles: IoParadigm describes an available I/O library.
The identification attribute categorizes an IoParadigm (e.g., “MPI I/O”),
while the name distinguishes specific implementations (e.g., “OMPIO” [9] or
“ROMIO” [23]). The class attribute specifies whether the I/O paradigm is
serial or parallel. Only parallel I/O paradigms enable collective I/O operations
within a group of multiple processes/threads. The flags attribute allows to set
further boolean characteristics for the I/O paradigm (e.g., mark if the paradigm
either directly accesses the operating system or maps its functionality to other
I/O paradigms such as HDF5 or NetCDF). In addition, IoParadigm provides an
extensible mechanism to specify further properties such as version information.

An IoHandle definition reflects a file descriptor based on a prior I/O resource
definition specified by the file attribute. The parent attribute of an IoHandle
models hierarchical relations between I/O handles. This mechanism enables cor-
relation of operations between individual layers of the I/O software stack. If the
paradigm supports collective I/O operations, the group attribute specifies the
set of participating processes/threads.

The IoPreCreatedHandleState definition marks a handle that is stan-
dardly created (e.g., stdin, stdout, stderr) or inherited from a parent pro-
cess/thread. The definition holds the access mode (e.g., read or write) and status
flags of this default I/O handle.

3.2 Events

Events represent I/O activities at application runtime. In this work, we focus
on events required for performance analysis. Therefore, we assume that I/O
operations finish successfully, otherwise performance analysis is not reason-
able. However, our approach is not limited to performance analysis and we
plan to support the handling of unsuccessful I/O operations (see Sect. 7). We
distinguish events into meta data (e.g., open/create, close) and data trans-
fer (e.g., read/write) operations. All events store an accurate timestamp and

A Methodology for Performance Analysis 21

information about the issuing process/thread. Additional information depend on
the specific event type.

Meta Data Operations: Events of this category indicate the creation and
the destruction of file descriptors. The IoCreateHandle event marks the cre-
ation of a new handle (e.g., after opening a file). The mode attribute determines
the access mode to the file descriptor (e.g., read-only, write-only, or read-write).
According to the Posix I/O API, IoCreateHandle stores optional creationFlags
(e.g., create if the file does not exist) and statusFlags (e.g., open file in append
mode). An IoDestroyHandle marks the end of an active I/O handle’s lifetime.
Thus, a pair of consecutive IoCreateHandle and IoDestroyHandle events defines
the time in which the handle is active and can be used by other events. The
IoDuplicateHandle event represents the duplication of an existing file descrip-
tor. This event references the original file descriptor (oldHandle) as well as the
newly created one (newHandle). The IoDuplicateHandle activates the newHandle
and the oldHandle remains active. In our event design, the new handle does not
inherit the status flags. Instead, the statusFlags attribute explicitly records
this information. This option releases analysis tools from the need of tracking
the inheritance. Figure 4 illustrates the life cycle of tracked I/O handles.

Fig. 4. Events create and destroy I/O handles at runtime. Commands to duplicate
handles build a special case: the original handle remains in active state, the newly
created handle changes from inactive to active state.

The following events track the status of active I/O handles. The IoSeek event
records changes of the position within a file. The event stores the offset requested
by the user (offsetRequest), the position to which the offset should be applied
(whence), e.g., absolute from the start or end, relative to the current position,
and the resulting offset relative to the beginning of the file (offsetResult). An
IoChangeStatusFlags event tracks changes to the status flags of an active
handle. The statusFlags attribute holds the updated status.

The IoDeleteFile event marks the deletion of an I/O resource. Similar to
deletion functions, such as unlink, rename, or remove, this event operates on
I/O resources instead of I/O handles. In addition to the affected file, this record
stores the paradigm that issued the deletion.

Data Transfer Operations: Events of this category record data transfer opera-
tions. One complete transfer operation might be split into basic events. Further,
we distinguish between blocking and non-blocking operations. For example, a
blocking Posix I/O read operation consists of two events—one for its start and

22 R. Tschüter et al.

Fig. 5. Sequence of generated events for different I/O operation types.

one for its completion. Consequently, both events need an identifier to relate all
parts composing an I/O operation. Therefore, these events contain a matchingId
attribute, identifying an I/O operation in-flight. The attribute is valid for a pro-
cess including all its threads. The IoOperationBegin event lists the affected
handle, the operation mode (e.g., reading or writing), and operationFlags
providing additional semantic information. In particular, the operationFlags
attribute defines two distinct characteristics of an operation: (a) collective or
non-collective, and (b) blocking or non-blocking. The bytesRequest attribute
reflects the user defined maximum number of transferred bytes. An IoOpera-
tionComplete event marks the end of a data transfer operation. It references
the affected handle. The bytesResult attribute stores the actual number of
transferred bytes. Corresponding IoOperationComplete-IoOperationBegin event
time stamps define the transfer operation duration. Figure 5a shows the event
sequence generated by blocking I/O data transfer operations. The “blocking” bit
in the operationFlags of the IoOperationBegin event is set accordingly. The
semantic of blocking operations ensures that a pair of matching IoOperationBe-
gin and IoOperationComplete events occurs within the event stream of the same
thread. In contrast, Fig. 5b illustrates the event sequence of a non-blocking I/O
data transfer operation (e.g., aio write). Typical for non-blocking operations is
the decoupling of issuing and completing operation, i.e., started on one thread
but completed on another thread of the same process. Non-blocking data trans-
fer operations also start with IoOperationBegin events. In case of a successful
initiation an IoOperationIssued event follows. IoOperationBegin and its corre-
sponding IoOperationIssued event must occur on the same thread. Users can test
active non-blocking operations to ensure their completion. IoOperationTest
events represent unsuccessful tests (I/O operation not finished yet), IoOpera-
tionComplete events indicate finished operations. The IoOperationCancelled
event represents the successful cancellation of a non-blocking operation. Any
thread of the same process can test, cancel, or complete a non-blocking I/O
operation in-flight.

A Methodology for Performance Analysis 23

Collective I/O operations are executed by all processes/threads of the respec-
tive I/O handle. The “collective” bit in the operationFlags attribute of the
IoOperationBegin event marks the special semantic of such operations.

4 Implementation

In the previous Sect. 3, we presented our approach for recording I/O operation
information, whereas we focus on the implementation details in this section.
We implement our design in OTF2 (Open Trace Format Version 2) [12]. Many
analysis tools, such as Vampir and Scalasca [13], process OTF2 event traces.
The OTF2 library provides an API for reading and writing event traces. It
already supports events for function entry and exit, parallelization constructs,
and communication. In this work, we extend OTF2 with definitions and events
implementing the I/O operations presented in Sect. 3. OTF2 maintains a list of
parallelization paradigms (e.g., MPI, OpenMP, Pthreads) as a C-enumeration
in its application programming interface1. Adding support for new paralleliza-
tion paradigms would require to extend this enumeration as well. However, this
could result in inconsistencies due to unknown enumeration members, when older
OTF2 versions read event logs written by a newer OTF2 version. Considering
the wide range of available I/O interfaces, we conclude that this approach is
unsuitable. Therefore, we abstain from providing a fixed list of supported I/O
paradigms in our implementation. Instead, we implement the IoParadigm def-
inition record using a self-describing mechanism. For the sake of convenience,
the OTF2 library maintains a list of known I/O paradigms in its documenta-
tion2. Users are encouraged to follow these suggestions when generating their
own event logs.

Besides OTF2, we require a software component that monitors the applica-
tion behavior at runtime. For this purpose, we select the Score-P measurement
infrastructure and add components for intercepting calls to specific I/O libraries.
In order to intercept calls to MPI, we utilize the existing MPI profiling inter-
face (PMPI) [18, Sect. 14.2]. For all remaining I/O interfaces we use a generic
interception method [6]. Each time an application issues an I/O function, we
intercept this call. The control flow passes to the Score-P measurement system
which has access to all function parameters and can record performance rele-
vant data. Then, the measurement system calls the original function. After the
original function returns, the control flow passes back to the application and the
program execution continues.

We strive to support a flexible list of I/O paradigms in Score-P. There-
fore, Score-P must handle the interactions of I/O paradigms in a generic way.
Especially, the mapping of I/O operations to an a priori known lower-level
I/O paradigm requires a paradigm agnostic implementation. We achieve this by
implementing a shared per-thread I/O management stack. Individual paradigms
1 https://silc.zih.tu-dresden.de/otf2-2.1.1/OTF2 GeneralDefinitions 8h.html#

aa14d0751354081d258913145a80e79a9.
2 https://silc.zih.tu-dresden.de/otf2-2.1.1/group io.html.

https://silc.zih.tu-dresden.de/otf2-2.1.1/OTF2__GeneralDefinitions_8h.html#aa14d0751354081d258913145a80e79a9
https://silc.zih.tu-dresden.de/otf2-2.1.1/OTF2__GeneralDefinitions_8h.html#aa14d0751354081d258913145a80e79a9
https://silc.zih.tu-dresden.de/otf2-2.1.1/group__io.html

24 R. Tschüter et al.

can communicate via this stack. The following describes this approach using
the example case of MPI I/O implemented on-top of ISO-C. If the MPI I/O
component from Score-P intercepts a call to MPI File open, it creates a new
IoHandle (handle1) and pushes it to the I/O management stack. Then, the
PMPI File open function is called via the MPI profiling interface. The MPI
implementation may than call fopen, which is subsequently intercepted by
Score-P as well. The ISO-C component inspects the top element of the I/O
management stack to determine whether a potential higher-level I/O paradigm
is active. If a handle is available on the stack (handle1 in this example), this han-
dle is used as parent for the newly created IoHandle (handle2). After leaving
fopen and MPI File open, the top element from the I/O management stack is
removed for each involved paradigm. In summary, whether lower-level paradigms
will create new IoHandles is unknown a priori. Therefore, each I/O component
must push and pop its current active handle onto the I/O management stack.
This ensures proper references to controlling higher-level I/O paradigms in indi-
vidual handles. As a result, all occurring IoHandles create a root-directed tree.

5 Case Study

We evaluate our methodology and implementation in an analysis of the Met
Office NERC Cloud model (MONC) simulator. Our study checks MONC for
I/O performance penalties and exposes insights of operations using multiple
I/O layers. MONC, a Fortran+MPI code, utilizes NetCDF to write results to
disk. The cloud simulator has two kinds of processes: (a) simulation processes
for computing the cloud model and (b) I/O server processes for storing results to
disk. Users can individually set the number of I/O server processes. At runtime,
the I/O servers keep simulation results in main memory. After N simulation
steps or at program termination, the I/O servers flush the results to disk [7].

We record the I/O behavior of MONC using our Score-P prototype. Score-P
instruments the source code and intercepts library calls to Posix I/O, MPI I/O,
and NetCDF. We conduct our experiments on ARCHER [3]. This Cray XC30
system consists of 4920 compute nodes, each containing two 12-core E5-2697 v2
(Ivy Bridge) processors running at 2.7 GHz. Our experiments use a 4.4 PB Lus-
tre file system (stripe count 1, stripe size 1 GiB) to store simulation results and
collected event logs. We run MONC on 112 processes, distributed over 8 nodes.
Each node hosts one I/O server process with a pool of 10 additional threads. The
remaining 104 simulation processes compute the cloud model. In our experiment
setup, MONC simulates 100 timesteps. At the end of the application run, the
I/O server processes write the data to disk via calls to NetCDF. Using our app-
roach, we can inspect internal function invocations of MPI I/O and Posix I/O.
In order to avoid interference with the I/O behavior of the observed application,
we keep all collected performance data in main memory during application run-
time. After the application has finished, event logs are written to disk. In our
experiments the recording of performance data caused an increase in application
runtime of about six percent. We visualize the resulting event logs using the tool

A Methodology for Performance Analysis 25

Fig. 6. Function and I/O statistics of the MONC experiment run.

Vampir. Since version 9.4 Vampir features new displays with special focus on
the visualization of I/O behavior of applications. The paper “Visualization of
Multi-layer I/O Performance in Vampir” [17] presents a detailed description of
these sophisticated visualization techniques using I/O related performance data.

Figure 6a depicts the overall exclusive time spent in particular function
groups. The event log contains 7 groups, while most of the time is spent in
application code (about 50%). Furthermore, the simulator spends more time in
MPI communication routines than in I/O operations. Although this first analysis
suggests that MONC does not exhibit poor I/O performance it is worth taking
a closer look at I/O operations.

To investigate I/O performance in detail, Fig. 6 depicts three I/O sum-
mary charts for NetCDF (Fig. 6b), MPI I/O (Fig. 6c), and Posix I/O (Fig. 6d),
respectively. All three layers utilize the same RCE dump 329.nc file. The num-
ber of accesses to this file increases while traversing the NetCDF, MPI I/O, and
Posix I/O layer. This statistic reflects how each library abstracts functionality in
order to hide complex operations. Furthermore, the figure shows that Posix I/O
also utilizes additional files. In further analyses we will identify the origin of
these file accesses.

Figure 7 depicts the I/O timeline (top) and the process summary (bottom)
for Thread 7 of Rank 0. The I/O timeline displays the performed type of I/O
operations (Read (orange), Write (yellow), Open (blue), Close (green)) on the
x-axis and the accessed files as well as associated handles on the y-axis. If an
I/O library (e.g., NetCDF) utilizes another I/O library, the individual handles
of each library are attached to each other, as represented in a tree-like hierarchy
to the left of the upper chart. The top chart in Fig. 7 depicts all handles used to
access the NetCDF file RCE dump 329.nc. Thereby, NetCDF internally utilizes
MPI I/O (see handle MPI-IO #0) which in turn performs Posix I/O operations
(see POSIX I/O #20) on RCE dump 329.nc. This view also shows that MPI I/O
opens (blue bars) maps-files from the /proc filesystem through the ISO-C API.
Each I/O server process reads (red boxes) its maps-file before transferring sim-
ulation data to the NetCDF file.

26 R. Tschüter et al.

Fig. 7. The I/O timeline (top) shows individual I/O operations of Thread 7 from Rank
0 on specific files. The process summary (bottom) depicts the call stack. (Color figure
online)

Fig. 8. Call stack comparison of two different I/O server processes. (Color figure online)

A Methodology for Performance Analysis 27

Fig. 9. Number of syscalls in MPI I/O mapped to the system tree topology.

The bottom chart in Fig. 7 depicts the process timeline for Thread 7 of Rank
0 and provides details about the calling context of I/O operations in this time
slice. For example, the execution of nc put vara double (bottom chart, level 7)
creates an I/O write event of the NetCDF #0 handle (top chart). This operation
in turn calls MPI File Write at all (bottom chart, level 8) which generates the
I/O write event of the MPI-IO #0 handle (top chart). Level 9 in the bottom chart
shows internal details of this collective MPI I/O routine. It depicts the fgets call
to access the maps-file (/proc/43867/maps). write calls to store the final data
which correspond to the write events of the POSIX I/O #20 handle (top chart).
Interestingly, NetCDF executes MPI communication operations (bottom chart,
level 8, red bars) within the nc put vara double routine. In this time slice,
these operations are small compared to the MPI File Write at all routine and
do not impede performance. However, in a different scenario, these functions
may lead to a communication bottleneck or undesirable wait states.

So far we investigated only one I/O server process. In the next analysis we
will compare different I/O server processes. Figure 8 shows the process timelines
of I/O server Rank 0/Thread 7 (top) and Rank 14/Thread 2 (bottom). Both
servers call identical functions with similar durations until call level 9. On this
level, both servers perform ISO-C I/O operations (brown bars) at the beginning
of MPI File Write at all. Then, one server process (top) executes write func-
tions. It seems that only one I/O server process accesses the RCE dump 329.nc
file through the collective I/O operation. The collective operation appears to syn-
chronizes all processes (causing waiting time) except process Rank 0/Thread 7,
that performs the actual I/O operations. Figure 9 depicts the number of syscalls
within MPI I/O routines aggregated per compute node. Node nid01713 per-
forms the most syscalls within MPI. This confirms, that only one I/O server
transfers data to the RCE dump 329.nc file. Reasons could be the (small) data
size or missing support for parallel accesses in the current implementation. For
MONC, our analysis suggests optimization potential by switching from collective
operations to individual accesses per I/O server process.

6 Conclusions

This work presents a methodology for recording calls to I/O libraries on multiple
layers of the software stack. In contrast to current approaches, our methodology

28 R. Tschüter et al.

explicitly correlates operations between multiple I/O libraries. This enhanced
level of detail in the recorded performance data is essential for understanding the
overall I/O behavior of applications. Consequently, users can now identify root
causes of I/O bottlenecks inside a complex I/O stack. We prove the applicability
of our approach in an analysis study of the Met Office/NERC Cloud Model
(MONC) code.

7 Future Work

In this work, we show that our approach records valuable information about the
I/O behavior of applications. With an intuitive presentation of this information,
we support application developers in optimizing I/O-intensive applications. Cur-
rently, we are working on integrating our approach into the Score-P open-source
measurement infrastructure and OTF2 trace format. Consequently, it will be
available in one of the next official Score-P releases. Meanwhile, we provide a
prototype implementation [25].

Automatic analysis as a complementary technique to visualization directly
guides users to performance bottlenecks. Tools like Scalasca or Casita [21] apply
detection mechanisms to identify inefficiency patterns in MPI message transfers
or computation offloading to accelerator devices. Similar analysis techniques can
be applied to our I/O performance data recordings.

This work focuses on performance analysis of file I/O operations. However,
it can be easily extended to monitor I/O operations on sockets. This use case
would only require new definitions for representing sockets as an I/O resource
(besides files and directories). Furthermore, we plan to add information about
failed operations to the current records. This would extend their usability from
performance analysis to debugging and correctness checking applications.

Data Availability Statement and Acknowledgments. This research was under-
taken as part of the NEXTGenIO project, which is funded through the European
Union’s Horizon 2020 Research and Innovation programme under Grant Agreement
no. 671951. The datasets and code generated during and/or analysed during the cur-
rent study are available in the figshare repository: https://doi.org/10.6084/m9.figshare.
6384164 [25].

References

1. Adhianto, L., et al.: HPCTOOLKIT: tools for performance analysis of optimized
parallel programs. In: Concurrency and Computation: Practice and Experience
(2010). https://doi.org/10.1002/cpe.1553

2. Knüpfer, A., et al.: The vampir performance analysis tool-set. In: Resch, M., Keller,
R., Himmler, V., Krammer, B., Schulz, A. (eds.) Tools for High Performance Com-
puting. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68564-7 9

3. Archer Hardware Specification, February 2018. https://www.archer.ac.uk/about-
archer/hardware

https://doi.org/10.6084/m9.figshare.6384164
https://doi.org/10.6084/m9.figshare.6384164
https://doi.org/10.1002/cpe.1553
https://doi.org/10.1007/978-3-540-68564-7_9
https://www.archer.ac.uk/about-archer/hardware
https://www.archer.ac.uk/about-archer/hardware

A Methodology for Performance Analysis 29

4. Arm MAP - Low-Overhead Profiling to Optimize C, C++, Fortran and F90
Codes, February 2018. https://www.arm.com/products/development-tools/hpc-
tools/cross-platform/forge/map

5. blktrace(8) - Linux man page, February 2018. https://linux.die.net/man/8/
blktrace

6. Brendel, R., Wesarg, B., Tschüter, R., Weber, M., Ilsche, T., Oeste, S.: Generic
library interception for improved performance measurement and insight. In: Pro-
ceedings of the 6th Workshop on Extreme Scale Programming Tools, ESPT 2017,
November 2017

7. Brown, N., et al.: A highly scalable met office NERC cloud model. In: Proceedings
of the 3rd International Conference on Exascale Applications and Software, EASC
2015, pp. 132–137 (2015)

8. Carns, P., et al.: Understanding and improving computational science storage
access through continuous characterization. Trans. Storage 7(3), 8:1–8:26 (2011).
https://doi.org/10.1145/2027066.2027068

9. Chaarawi, M., Gabriel, E., Keller, R., Graham, R.L., Bosilca, G., Dongarra, J.J.:
OMPIO: a modular software architecture for MPI I/O. In: Cotronis, Y., Danalis,
A., Nikolopoulos, D.S., Dongarra, J. (eds.) EuroMPI 2011. LNCS, vol. 6960, pp.
81–89. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24449-0 11

10. Cyrille Rossant: Should you use HDF5? February 2018. http://cyrille.rossant.net/
should-you-use-hdf5/

11. Dieter An Mey and others: Score-P: A Unified Performance Measurement System
for Petascale Applications. In: Competence in High Performance Computing (2012)

12. Eschweiler, D., et al.: Open trace format 2 - the next generation of scalable trace
formats and support libraries. In: Proceedings of the 14th Biennial ParCo Confer-
ence on Applications, Tools and Techniques on the Road to Exascale Computing.
Advances in Parallel Computing, vol. 22, pp. 481–490 (2012)

13. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The
scalasca performance toolset architecture. Concurr. Comput.: Pract. Exp. 22(6),
702–719 (2010). https://doi.org/10.1002/cpe.v22:6

14. iostat, February 2018. https://github.com/sysstat/sysstat
15. iotop, February 2018. http://guichaz.free.fr/iotop/
16. Lustre, February 2018. http://lustre.org/
17. Mix, H., Herold, C., Weber, M.: Visualization of multi-layer I/O performance in

vampir. In: 2018 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), May 2018

18. MPI Forum: MPI: A Message-Passing Interface Standard, Version 3.1, 14 June
2015. https://www.mpi-forum.org/docs/mpi-3.1/. Accessed May 2018

19. Müller, M., et al.: Developing scalable applications with Vampir, VampirServer and
VampirTrace. In: Parallel Computing: Architectures, Algorithms and Applications.
Advances in Parallel Computing, January 2007

20. sar(1) - Linux man page, February 2018. https://linux.die.net/man/1/sar
21. Schmitt, F., Stolle, J., Dietrich, R.: CASITA: a tool for identifying critical optimiza-

tion targets in distributed heterogeneous applications. In: 43rd International Con-
ference on Parallel Processing Workshops, pp. 186–195, September 2014. https://
doi.org/10.1109/ICPPW.2014.35

22. Shende, S., Malony, A.D., Spear, W., Schuchardt, K.: Characterizing I/O perfor-
mance using the TAU performance system. In: PARCO, pp. 647–655 (2011)

https://www.arm.com/products/development-tools/hpc-tools/cross-platform/forge/map
https://www.arm.com/products/development-tools/hpc-tools/cross-platform/forge/map
https://linux.die.net/man/8/blktrace
https://linux.die.net/man/8/blktrace
https://doi.org/10.1145/2027066.2027068
https://doi.org/10.1007/978-3-642-24449-0_11
http://cyrille.rossant.net/should-you-use-hdf5/
http://cyrille.rossant.net/should-you-use-hdf5/
https://doi.org/10.1002/cpe.v22:6
https://github.com/sysstat/sysstat
http://guichaz.free.fr/iotop/
http://lustre.org/
https://www.mpi-forum.org/docs/mpi-3.1/
https://linux.die.net/man/1/sar
https://doi.org/10.1109/ICPPW.2014.35
https://doi.org/10.1109/ICPPW.2014.35

30 R. Tschüter et al.

23. Thakur, R., Gropp, W., Lusk, E.: On implementing MPI-IO portably and with
high performance. In: Proceedings of the 6th Workshop on I/O in Parallel and
Distributed Systems, IOPADS 1999, pp. 23–32 (1999). https://doi.org/10.1145/
301816.301826

24. The HDF Group: Hierarchical Data Format, version 5, February 1997–2018.
http://www.hdfgroup.org/HDF5/

25. Tschueter, R., Herold, C., Wesarg, B., Weber, M.: Score-P measurement system
code and event logs for Euro-Par 2018 paper: a methodology for performance
analysis of applications using multi-layer I/O. figshare. Fileset (2018). https://doi.
org/10.6084/m9.figshare.6384164

26. Unidata: Network Common Data Form (NetCDF) [software] (2018). https://doi.
org/10.5065/D6H70CW6,https://doi.org/10.5065/D6H70CW6

27. Virtual Institute for I/O, February 2018. https://www.vi4io.org/start
28. Vijayakumar, K., Mueller, F., Ma, X., Roth, P.C.: Scalable I/O tracing and anal-

ysis. In: Proceedings of the 4th Petascale Data Storage Workshop, PDSW 2009
(2009). https://doi.org/10.1145/1713072.1713080

https://doi.org/10.1145/301816.301826
https://doi.org/10.1145/301816.301826
http://www.hdfgroup.org/HDF5/
https://doi.org/10.6084/m9.figshare.6384164
https://doi.org/10.6084/m9.figshare.6384164
https://doi.org/10.5065/D6H70CW6,
https://doi.org/10.5065/D6H70CW6,
https://doi.org/10.5065/D6H70CW6
https://www.vi4io.org/start
https://doi.org/10.1145/1713072.1713080

Runtime Determinacy Race Detection
for OpenMP Tasks

Hassan Salehe Matar(B) and Didem Unat

Koç University, Istanbul, Turkey
{hmatar,dunat}@ku.edu.tr

Abstract. One potential problem when writing parallel programs with
OpenMP is to introduce determinacy races where for a given input,
the program may unexpectedly produce different final outputs at dif-
ferent runs. Such startling behavior can result from incorrect ordering
of OpenMP tasks. We present a method to detect determinacy races
in OpenMP tasks at runtime. Based on OpenMP program semantics,
our proposed solution models an OpenMP program as a collection of
tasks with inferred dependencies among them where a task is implic-
itly created with a parallel region construct or explicitly created with
a task construct. We define happens-before relation among tasks based
on such dependencies for determining an execution order when detect-
ing determinacy races. Based on this formalization, we developed a tool,
TaskSanitizer, which detects and reports concurrent memory accesses
whose tasks do not have common dependencies. Finally, TaskSanitizer
works at runtime, has been able to find bugs in micro-benchmarks and
it is reasonably efficient to be utilized in a working environment.

1 Introduction

OpenMP 3.0 introduced shared memory task execution model [1] in which pro-
grammers specify computations in units called tasks, which can be executed by
concurrent threads. In OpenMP 4.0 [2], a programmer can specify execution
order between tasks through in and out data dependencies, where a succeeding
task waits for the completion of the preceding task’s execution. Even though
programmers have more flexibility to express various types of parallelism with
the new tasking attributes, these new features can introduce subtle bugs if the
operational semantics and scheduling policy of the OpenMP runtime are not rea-
soned about. One of such concurrency bugs is a determinacy race which occurs
when concurrently executing entities access the same memory location without
specified ordering between them and at least one access is a write to that mem-
ory location [8,16,21,22]. As a result, a program with determinacy races may
produce different final output results at different runs on the same input [18].
Determinacy races are possible if the programmer does not specify necessary
dependency between concurrent tasks which access the same memory locations.
Since there is no specific order defined by the programmer, the scheduler is free
to execute the tasks in any order or concurrently.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 31–45, 2018.
https://doi.org/10.1007/978-3-319-96983-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_3&domain=pdf

32 H. S. Matar and D. Unat

The existing state-of-the-art runtime race detection tools for OpenMP such
as Archer [3] – and general race detectors [11] – check for proper locking in
programs which protects shared memory objects but can fail to detect determi-
nacy races which stem from improper ordering of executions. Protecting memory
accesses with critical sections or other explicit locking is not sufficient to avoid
determinacy races. Rather, proper ordering of the executing entities is essential
to avoid undesirable nondeterminism in OpenMP programs for correctness.

We present an algorithm to detect determinacy races in OpenMP programs
by utilizing the concept of OpenMP tasks and their dependencies. Unlike the
state-of-the-art race detection tools [3] that rely on happens-before model at
thread level, we apply happens-before model at task level, which provides the
advantage of reducing randomness due to scheduling. We implement our algo-
rithm as an open source tool based on compile-time instrumentation through
LLVM [15] compiler pass to instrument shared memory accesses in the pro-
gram. The tool uses the OpenMP Performance Tools API (OMPT) [7] to moni-
tor OpenMP-related events such as task creation, scheduling, and execution. In
summary, the main contributions of this paper are:

– A formal definition of the determinacy races and a technique for detecting
such races in OpenMP tasks. To our knowledge, no prior work has been done
for detecting determinacy races in OpenMP tasks with mixed structures of
critical and non-critical sections.

– Determinacy race detection tool for OpenMP called TaskSanitizer [20].
– Evaluation of our method using micro-benchmark applications and compari-

son of results against a race detection tool for OpenMP programs.

2 Background in OpenMP Tasks

Explicit tasks in OpenMP can be created with the construct omp task, which
is readily available since OpenMP 3.0 [1]. For each task, OpenMP creates a
work block which includes a sequence of program statements and the data envi-
ronment. This block is set aside to be executed by a thread until the runtime
schedules it. Starting with OpenMP 4.0 [2], it is possible to specify execution
order among explicit tasks using the depend clause, where a programmer spec-
ifies input and output data dependencies between tasks. A collection of tasks
through dependencies forms an implicit task dependency graph in which a task
is not runnable until all its dependencies are satisfied. The runnable tasks can
then be scheduled by the OpenMP runtime. If two or more tasks are simulta-
neously runnable at a given point in time, they can execute in any order or
concurrently.

Every part of an OpenMP program executes in a task assigned to one or more
threads. For example, implicit tasks can be generated at parallel regions with the
OpenMP parallel construct and each implicit task is executed to completion by
one thread in the thread group of the parallel region [1]. Figure 1 shows a simple
OpenMP program, where a default implicit task is created as part of the main
program. This task then creates two implicit tasks through the parallel region

Runtime Determinacy Race Detection for OpenMP Tasks 33

at line 3. One of these tasks executes the single region at line 4, which creates
two explicit tasks t and u at lines 6 and 10, respectively. Both of these tasks
have critical sections, in which they set different values to a shared variable i.
This example has a determinacy race which is explained in detail in Sect. 3.

Fig. 1. OpenMP example illustrates explicit and implicit tasks and their logical flow
dependency between tasks. The code example has a determinacy race.

3 Determinacy Race Detection

In this section, we first define determinacy races and present motivation on
detecting them with the help of an OpenMP example. Then, we formally define
a task with its operations and we devise happens-before (HB) relations between
these operations for capturing partial ordering among them. Finally we use the
defined HB relations to present our algorithm for detecting determinacy races.

3.1 Definition and Motivating Example

Determinacy race occurs between two tasks if the following two conditions are
satisfied: (i) there is no ordering between these tasks enforced by task depen-
dency, and (ii) both tasks access a common shared memory location and at least
one access is a write. If simultaneously runnable tasks modify the same memory
locations, different scheduling (i.e; order of execution) of these tasks may result
in nondeterministic final values on these memory locations.

Many runtime race detection algorithms [9,23,24] do not take the notion of
dependency into account. They monitor proper synchronization of threads on
memory accesses to detect races. In this work, we monitor the proper ordering
of tasks and critical sections to ensure that different possible ordering of critical
sections in these tasks always generate a single, deterministic final program state.
This helps the programmer to notice if nondeterminisim was not intentional.

34 H. S. Matar and D. Unat

We have provided a simple OpenMP program in Fig. 1, where there is no
specified dependency between tasks t and u. As a result, their critical sections
can execute in any order and thus the final result for i can either be 1 or 2
despite the fact that accesses to the shared variable are protected by a common
lock. Unless the developer intends the program to behave as such, only one
deterministic result is expected. The same issue arises if one of the tasks reads
the value of i in a critical region and the other task writes to i. It is worth noting
that in a typical program these two tasks might have been created in separate
function calls, thus the critical sections may be well far apart from each other
and can be easily overlooked.

3.2 Formalizing Task Operations

In order to establish HB relations and set up rules between tasks for detecting
determinacy races, we first define relevant task operations:

– create(t,u): task t creates task u.
– wait(t,u): task t awaits termination of task u at taskwait or at a barrier.
– read(t,mem): task t reads value from shared memory location mem.
– write(t,mem,v): task t writes value v to shared memory location mem.
– out(t,u,x): signifies dependency from task t to task u through storage

location x. Task t is the predecessor and u is the dependent task.
– in(u,t,x): signifies dependency from task t to task u through storage loca-

tion x. Task u becomes runnable once t completes its execution.

Having defined task operations, we elaborate on shared memory accesses and
associate them to segments of a task, rather than the task itself. We define a task
as an enclosed sequence of unique tasksegments and synchronization operations
executed together, as shown in Fig. 2. A tasksegment is a sequence of consecu-
tive shared memory accesses between two synchronization operations in a task.
Therefore, a synchronization operation in a task ends the current tasksegment
and a new tasksegment starts at the next shared memory access operation in the
task after the synchronization operation. We define synchronization operations
as operations which trigger execution among tasks and are create, wait, out,
and in. For example, Fig. 3 shows three tasks (a parent and two child tasks) but
contains four tasksegments. In other words, in our formal task operations we dif-
ferentiate the code bodies (e.g. tasksegment s1 and tasksegment s4) that result
from imperfectly nested tasks. Since this is necessary to establish HB relations,
we revise the shared memory access operations as follows:

– read(t,s,mem) shared memory access that appears in tasksegment s where
task t reads a value from shared memory location mem.

– write(t,s,mem,v) shared memory access that appears in tasksegment s

where task t writes value v to shared memory location mem.

Runtime Determinacy Race Detection for OpenMP Tasks 35

Fig. 2. Defining a task as a sequence of tasksegments (taskseg) and synchronizations

3.3 Happens-Before Relations Between Task Operations

For partial ordering of operations in an OpenMP program, we use happens-before
(HB) ordering of events [14] by employing dependency among synchronization
operations. Happens-before relation is a transitive-closure relation. For given
three operations a, b, and c if there is an HB relation from a to b and from b
to c, then there is an HB relation from a to c. We will infer this relation while
categorizing HB relations between tasks operations. We use symbol ≺ to refer
to an HB relation in general and use <π to refer to an inferred HB relation due
to transitive-closure property.

a ≺ b ∧ b ≺ c → a <π c

We identify four types of HB edges among operations between tasks. These
are (i) an HB relation among memory operations performed within a taskseg-
ment; (ii) between a task and its child task through create; (iii) relation between
out and in dependency operations; and (iv) relation at wait operation. We then
use these HB relations to infer HB relations among tasksegments in tasks.

1. HB by program order: This is the basic type of HB relation where pro-
gram operations within a tasksegment are ordered according to their execution
sequence. Similarly, tasksegments within a task are ordered by program order.

2. HB relation by task dependency: If tasks t and u have a commonly
specified data dependency such that u has an input dependency from t, then
all tasksegments – as well as their enclosing memory operations – in t happen-
before all tasksegments in u.

out(t, u, x) ≺ in(u, t, x)
∀taskseg(t,a)∀taskseg(u,b)taskseg(t,a) <π taskseg(u,b)

3. HB relation between a task and its child task: tasksegments of a task
which execute before creating a child task happens-before the tasksegments exe-
cuted in the created child task. For two tasks t and u :

create(t, u)

∀taskseg(t,a)taskseg(t,a) <π create(t, u) → ∀taskseg(u,b)taskseg(t,a) <π taskseg(u,b)

4. HB relation at taskwait and barrier synchronizations: The last oper-
ation of a child task happens before the taskwait or implicit barrier synchro-
nization operation of the parent task. Therefore, all tasksegments of such task

36 H. S. Matar and D. Unat

have HB relation with subsequent tasksegments of the parent task after the wait
operation is completed.

wait(t, u)

∀taskseg(t,a)wait(t, u) <π taskseg(t,a) → ∀taskseg(u,b)taskseg(u,b) <π taskseg(t,a)

Fig. 3. Example with four categories of HB relation among operations of tasks

We use example Fig. 3 to illustrate the four categories of HB relations. The
memory operations at lines 11 and 12 belong to the same tasksegment s3 and
thus are ordered by program order. Moreover, there is an HB relation between
memory operations at lines 4 and 7 because their corresponding tasksegments
have an HB relation through task creation synchronization operation as task t

executing the single region creates an explicit task u at line 5. Moreover, all oper-
ations in tasksegment s2 happen-before all operations in tasksegment s3 because
of specified dependency between tasks u and v. Finally, memory operations in
tasksegments s3 and s4 happen before the print statement in tasksegment s4
because of the wait synchronization operation at line 14. Without taskwait, we
would not be able to establish an HB relation between s4 with s2 or s3.

3.4 Determinacy Race Detection Algorithm

Algorithm 1 provides pseudo-code for determinacy race detection between any
two memory operations (α and β) in an OpenMP program. Between lines 4
and 9, it retrieves information of the operations: their task identifiers (IDs),
tasksegment IDs as well as the memory addresses they accessed. Then at line
10, the algorithm checks if the operations access the same memory location

Runtime Determinacy Race Detection for OpenMP Tasks 37

and belong to two different tasks and tasksegments. At line 11, it checks if the
corresponding tasksegments do not have an HB relation as inferred using the
four HB types from Sect. 3.3. If there is no HB, then it reports a determinacy
race bug if one operation is a write and the other a read at lines 12 and 13. In
the case that they both are write actions, it reports a determinacy race if they
are not commutative (lines 14–16).

Algorithm 1. Detecting determinacy race between two shared memory opera-
tions
1: procedure checkDeterminacyRace(α, β)
2: Input: α � a shared memory operation
3: Input: β � another shared memory operation
4: t ← getTaskID(α)
5: u ← getTaskID(β)
6: seg1 ← getTasksegmentID(α)
7: seg2 ← getTasksegmentID(β)
8: mem1 ← getMemoryAddress(α)
9: mem2 ← getMemoryAddress(β)

10: if mem1 = mem2 and t �= u and seg1 �= seg2 then � on different tasks
11: if not HappensBefore(seg1, seg2) then � check if no HB
12: if isWrite(α) �= isWrite(β) then � one write, one read
13: reportBug(α, β)
14: else if isWrite(α) and isWrite(β) then � both write
15: if not isCommutative(α, β) then � check commutativity
16: reportBug(α, β)
17: end if
18: end if
19: end if
20: end if
21: end procedure

Detecting Commutative Operations: Shared memory accesses can result in
falsely detected determinacy races if these accesses involve in commutative arith-
metic operations between same-lock critical sections. Two concurrent arithmetic
operations on a shared memory location are commutative if their order of execu-
tion does not alter the final value produced. For example, if var += temp1 and
var -= temp2 are in two different same-lock critical sections, then re-ordering
them does not affect the final value of var. Thus in line 16 of Algorithm1, we
use the formalization of commutativity operation detection proposed in [18] to
identify such memory actions and do not report determinacy races on them.

4 Implementation

As shown in Fig. 4, we implement our method as a tool that has three main
parts (i) instrumentation; (ii) inferring happens-before relation between program
operations; and (iii) determinacy race detection at runtime.

38 H. S. Matar and D. Unat

Fig. 4. Showing implementations of TaskSanitizer: architecture and tool flow

1. Instrumentation: We instrument an OpenMP program source code at
compile-time through LLVM/Clang infrastructure [15]. The instrumentation
injects our determinacy race detection runtime callbacks, which implement
Algorithm 1, in step 2©. We customize the shared memory instrumentation
module of ThreadSanitizer [24] to identify shared memory operations and
associated source code line numbers and functions for traceability in case
of determinacy races. Moreover, we identify and store program statements
which are in critical sections. These are later used by our algorithm to detect
commutative operations on potential determinacy races where our tool does
not report them if the ordering of those critical sections does not alter the
final output.

2. Constructing HB relations: To capture HB ordering between tasks and
operations, we implemented a module that uses the OMPT interface [7] in
step 3© of Fig. 4 to register callbacks which capture synchronization opera-
tions. First, we locate the implicit tasks as well as explicit tasks defined using
the tasking clause for specifying the ordering of program events. Second,
task dependencies through depend clause as well as custom synchronization
idioms such as locks and barriers are located to reason about the happens-
before ordering. Finally, we use these operations to infer HB relations between
task operations. Moreover, we assign a unique identification to each task and
tasksegment at creation, during program execution. This has three advantages
(a) Unique ID differentiates different instances of the same task code block or
tasksegment executed at different times. (b) A task may run to completion by
a single thread or its parts may be scheduled to different threads. Similarly
two concurrent tasks may be executed by the same thread. Our approach is
transparent from threads, hence regardless which thread(s) execute a task, a
unique ID preserves its dependencies with other tasks and avoids false deter-
minacy race alarms. (c) Each tasksegment has the same set of HB meta-data,
as opposed to each memory operation, thus unique ID of the tasksegment is
used to retrieve HB metadata for each of its memory operations.

3. Runtime determinacy race detection: As shown in Fig. 4, we link the
library we implemented at step 3© to produce the instrumented executable
binary, which executes at step 4©. At step 5© relevant program events are
captured at runtime and detection is performed and a bug report is generated
in step 6©. The tool reports a pair of line numbers where a common shared
memory location was accessed by concurrent tasks. This pair is helpful for

Runtime Determinacy Race Detection for OpenMP Tasks 39

the developer to revisit the source code and eliminate determinacy races. This
module also implements the technique proposed in [18] to check if operations
with determinacy races are commutative as they execute in critical sections
of the same lock given that their execution order does not affect final output
of the program to reduce false positives.

5 Results

We evaluate our tool on nine micro-benchmarks on three categories: (a) the
number and nature of determinacy races reported as well as no determinacy races
reported in correct programs, (b) detection comparison with Archer [3], (c) the
runtime overhead with respect to input size. We first provide a brief summary of
the applications before discussing evaluation results. The first five applications
are custom implementations with races, accessible through TaskSanitizer1.

– RacyBackgroundExample: implements the example in Fig. 1. There are
two tasks each containing a critical section associated with the same lock.
One task sets 1 to shared variable i while the other sets 2 without enforced
dependency thus exhibiting a determinacy race as these operations do not
commute even though they are in critical sections.

– RacyBanking: We mimic the motivating banking example in [18]. An initial
task sets the account balance to 1000. Then three concurrent tasks access
the account balance without specified dependency among them, thus causing
three determinacy races and the updates on the account do not commute.

– RacyFibonacci: This program computes Fibonacci of a given number n
using memoization technique of caching intermediate results in a shared
integer array. A task for n creates two concurrent child tasks to compute
Fibonacci of n-1 and n-2, respectively, and each stores its result in the mem-
oization array. The task then sums the results from the array after a syn-
chronization barrier with the child tasks. There are determinacy races in
this example on five program locations between two concurrent sibling tasks
as they access the memoization array without inferred dependency between
them.

– RacyMapReduce: constructs histogram of words from a text file. It splits
the input text into four chunks. Then each chunk is processed by map tasks.
The partial results are merged into a final histogram by reduce tasks which are
concurrent to each other, exhibiting four determinacy races while inserting
new words into the final histogram and updating word counts.

– RacyPointerChasing: traverses a singly-linked list and creates an explicit
task for each node to insert a number to the node for the purpose of forming
an arithmetic sequence in the linked-list. In this program, two random nodes
in the list mistakenly contain common memory address for storing their terms
which breaks the arithmetic sequence. As a result, their corresponding tasks
concurrently write values to the memory, causing a determinacy race.

1 https://github.com/hassansalehe/TaskSanitizer/tree/master/src/benchmarks.

https://github.com/hassansalehe/TaskSanitizer/tree/master/src/benchmarks

40 H. S. Matar and D. Unat

– sectionslock1-orig-no: As part of the DataRaceBench micro-benchmark
suite [17], this program creates two parallel sections, which have critical sec-
tions in which one section increases a shared variable by 1 and other section
increases it by 2. There are no determinacy races because these operations in
critical sections commute and our tool does not report a bug.

– taskdep1-orig-no: As part of DataRaceBench, the program creates two
explicit tasks with the first task setting 1 to a shared variable and the suc-
ceeding sibling task setting 2. These tasks have specified dependency between
them and thus no determinacy races.

– taskdep3-orig-no: As part of DataRaceBench, this program creates two
explicit tasks. The first task has dependency with each of the other sibling
tasks which are concurrent to each other. Since the concurrent tasks only read
from a shared variable, there is no determinacy race.

– taskdependmissing-orig-yes: As part of DataRaceBench, this program
creates two concurrent explicit tasks which have no dependency in between.
They modify a shared variable and thus constitute a determinacy race.

Table 1. Comparing detection results of TaskSanitizer against Archer

Application Input
size

Number
of tasks

Known
races

TaskSanitizer Archer

Races found Races found

RacyBackgroundExample - 6 1 1 0

RacyBanking - 11 3 3 2

RacyFibonacci 5 137 8 8 11

RacyMapReduce - 17 4 4 1

RacyPointerChasing 14 34 1 1 0

sectionslock1-orig-no - 2 0 0 0

taskdep1-orig-no - 6 0 0 0

taskdep3-orig-no - 8 0 0 0

taskdependmissing-orig-yes - 6 1 1 0 or 1

5.1 Precision Evaluation of TaskSanitizer

Table 1 lists the reported bugs by our tool, TaskSanitizer and number of determi-
nacy races known in advance for micro-benchmarks. In RacyBackgroundEx-
ample two concurrent tasks execute two critical sections which each sets differ-
ent value to a shared memory location. This exhibits a determinacy race since the
tasks do not have HB relation and their memory operations do not commute in
critical sections. Our tool does not check for commutativity in remaining buggy
programs as their operations happen outside critical sections. Even though tasks
with critical sections in sectionslock1-orig-no do have dependency, there is no
determinacy race reported because increment operation in these sections com-
mute. Finally, our tool does not report false positives in the remaining programs.

Runtime Determinacy Race Detection for OpenMP Tasks 41

5.2 Comparing Detection with Archer

We compare our determinacy race detection results with data race detection
results of Archer [3], which is an efficient tool based on ThreadSanitizer for
detecting data races. Data race detection in Archer differs from determinacy race
detection in our approach on two essences: (i) It relies on thread-level concur-
rency and thus it fails to detect races in concurrent tasks scheduled to execute by
the same thread. (ii) It aims at detecting violations of locking critical sections
which have shared memory accesses whereas our method focuses on different
ordering of events leading to determinacy races.

As shown on Table 1, Archer failed to detect races in RacyBackgroundEx-
ample and RacyPointerChasing despite multiple runs. Archer fails to detect
the race in RacyBackgroundExample because memory operations are pro-
tected by a common lock. However, our tool detects determinacy races because
the locks do not enforce deterministic ordering and thus the program can produce
different results at different runs.

Archer does not detect a race in taskdependmissing-orig-yes and other
buggy programs when concurrent tasks in the program are scheduled to exe-
cute with one thread. Therefore, Archer detects the race only if two tasks are
executed by different threads whereas our tool detects the determinacy race in
the program at all runs. This is because Archer depends on program threads
to infer concurrency whereas our approach abstracts away threads and detects
determinacy races at task level. Moreover, the number of races it reported on
the remaining buggy programs varied from zero to the expected depending on
scheduling of concurrent tasks to different threads. However it detected two races
in RacyBanking and did not produce false alarms in correct programs.

5.3 Overhead Evaluation

Even though the focus of this work is the method for detecting determinacy
races, we also measured the slowdown of determinacy race detection in the
micro-benchmark applications which accept varying input sizes, namely Racy-
Fibonacci and RacyPointerChasing as shown in Fig. 5. By increasing input

20 70 120
1

1.05

1.1

number (n)

Sl
ow

do
w
n

RacyFibonacci

100 200 300

1.15

1.2

1.25

number of nodes

Sl
ow

do
w
n

RacyPointerChasing

Fig. 5. Slowdown of determinacy race detection in programs as input size increases

42 H. S. Matar and D. Unat

size, we calculated execution times of the application without determinacy race
detection as well as with detection. We calculated slowdown by dividing detec-
tion time by execution time without detection. The determinacy race detection
slowdown from this experimental setting ranges from 1.0 to 1.26X, but we plan
to evaluate with larger applications in our future work.

6 Related Work

Archer is an efficient tool for detecting data races in OpenMP programs between
concurrent threads [3]. Through LLVM, it uses static analysis polyhedral tech-
niques to ignore sequential code and instrument concurrent portion of the pro-
gram. Then it uses runtime analysis to detect races in those parts by employing
ThreadSanitizer [24] race detector in the background. In contrast, we detect
determinacy races where ordering between concurrent components is missing.
Archer may fail to detect such cases and it also misses concurrent tasks exe-
cuted by the same thread. By building the happen-before relations on tasks
rather than threads, we can catch these situations.

Determinacy race detection in [25] targets task-based programming models
with async, finish and future constructs. There are works on detecting deter-
minacy races in a very strict two-dimensional pipeline parallel program struc-
tures which restrict task dependency to at most two [6,27]. Other works target
determinacy races [8,16,21,22] for structured parallelism programming models
like X10 and Habanero. Most work targets data race detection [9,12,19,23,24]
which manifest as a result of improper synchronization in programs.

DFinspec [18] proposes a technique for detecting output nondeterminism for
Atomic Dataflow (ADF) [10] programs due to missing or improper ordering
among tasks. It assumes that all concurrent portions of the program execute in
atomic tasks. Unlike ADF, in OpenMP tasks are not atomic, thus the proposed
solution in DFinspec would not work on OpenMP programs. The Starsscheck
tool [5] identifies inconsistencies in pragma annotations for programs written in
Starss programs [13]. The tool verifies that the programmer correctly annotates
the application by checking the input and output dependencies of tasks. By
assuming that a task accesses shared memory through only input dependencies,
it fails to detect concurrent tasks accessing shared memory locations that are
not specified through input dependencies.

A closely related work [8] proposes an algorithm for detecting determinacy
races for Cilk programs [4] in which a spawned thread may execute concurrently
with parent or sibling threads. These threads may need proper synchronization
for shared memory accesses. We target OpenMP tasks where a task becomes
runnable when all its dependencies are satisfied. Vechev et. al [26] uses a static
sequential analysis to verify determinism for task-based parallel programs by
leveraging numerical abstractions. They locate code sections that can execute
concurrently and check for dependent memory accesses between those sections.

Runtime Determinacy Race Detection for OpenMP Tasks 43

7 Conclusion

We propose a method to detect determinacy races in OpenMP tasks where
unintended missing dependency between tasks can result in nondeterministic
execution. We define happens-before relation among tasks based on their depen-
dencies for determining an execution order when detecting determinacy races
and implement our algorithm as a tool on top of ThreadSanitizer. We evalu-
ated our solution with a set of small applications in terms of bug detection and
overhead. The tool successfully finds bugs in benchmarks and its efficiency is
reasonable.

Acknowledgments. This work has been funded under the Affordable Safe & Secure
Mobility Evolution (ASSUME) project for smart mobility.

Data Availability Statement and Acknowledgments: The datasets and code
generated during and/or analysed during the current study are available in the Figshare
repository: https://doi.org/10.6084/m9.figshare.6392252

References

1. Openmp 3.0 api. www.openmp.org/wp-content/uploads/spec30.pdf
2. Openmp 4.0. http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
3. Atzeni, S., et al.: ARCHER: effectively spotting data races in large OpenMP appli-

cations. In: 2016 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), pp. 53–62, May 2016

4. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. SIGPLAN Not. 30(8), 207–216
(1995)

5. Carpenter, P.M., Ramirez, A., Ayguade, E.: Starsscheck: a tool to find errors in
task-based parallel programs. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.)
Euro-Par 2010. LNCS, vol. 6271, pp. 2–13. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15277-1 2

6. Dimitrov, D., Vechev, M., Sarkar, V.: Race detection in two dimensions. In: Pro-
ceedings of the 27th ACM Symposium on Parallelism in Algorithms and Architec-
tures, SPAA 2015, pp. 101–110. ACM, New York (2015)

7. Eichenberger, A.E., et al.: OMPT: an OpenMP tools application programming
interface for performance analysis. In: Rendell, A.P., Chapman, B.M., Müller, M.S.
(eds.) IWOMP 2013. LNCS, vol. 8122, pp. 171–185. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40698-0 13

8. Feng, M., Leiserson, C.E.: Efficient detection of determinacy races in cilk programs.
Theory Comput. Syst. 32(3), 301–326 (1999)

9. Flanagan, C., Freund, S.N.: FastTrack: efficient and precise dynamic race detection.
In: Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2009, pp. 121–133. ACM, New York (2009)

10. Gajinov, V., Stipic, S., Unsal, O., Harris, T., Ayguade, E., Cristal, A.: Integrating
dataflow abstractions into the shared memory model. In: 2012 IEEE 24th Interna-
tional Symposium on Computer Architecture and High Performance Computing
(SBAC-PAD), pp. 243–251, October 2012

https://doi.org/10.6084/m9.figshare.6392252
www.openmp.org/wp-content/uploads/spec30.pdf
http://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://doi.org/10.1007/978-3-642-15277-1_2
https://doi.org/10.1007/978-3-642-15277-1_2
https://doi.org/10.1007/978-3-642-40698-0_13

44 H. S. Matar and D. Unat

11. Hong, S., Kim, M.: A survey of race bug detection techniques for multithreaded
programmes. Softw. Test. Verif. Reliab. 25(3), 191–217 (2015)

12. Kuru, I., Matar, H.S., Cristal, A., Kestor, G., Unsal, O.: PaRV: parallelizing run-
time detection and prevention of concurrency errors. In: Qadeer, S., Tasiran, S.
(eds.) RV 2012. LNCS, vol. 7687, pp. 42–47. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-35632-2 6

13. Labarta, J.: StarSs: a programming model for the multicore era. In: PRACE Work-
shop “New Languages & Future Technology Prototypes” at the Leibniz Supercom-
puting Centre in Garching (Germany) (2010)

14. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

15. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO 2004), Palo Alto, California, March
2004

16. Lee, I.T.A., Schardl, T.B.: Efficiently detecting races in cilk programs that use
reducer hyperobjects. In: Proceedings of the 27th ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA 2015, pp. 111–122. ACM, New York (2015)

17. Liao, C., Lin, P.H., Asplund, J., Schordan, M., Karlin, I.: DataRaceBench: a bench-
mark suite for systematic evaluation of data race detection tools. In: Proceedings
of the International Conference for HPC, Networking, Storage and Analysis, SC
2017, pp. 11:1–11:14. ACM, New York (2017)

18. Matar, H.S., Mutlu, E., Tasiran, S., Unat, D.: Output nondeterminism detection for
programming models combining dataflow with shared memory. Parallel Comput.
71, 42–57 (2018)

19. Matar, H.S., Tasiran, S., Unat, D.: EmbedSanitizer: runtime race detection tool
for 32-bit embedded ARM. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol.
10548, pp. 380–389. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67531-2 24

20. Matar, H.S., Unat, D.: Source code and user guide for euro-par 2018 paper: runtime
determinacy race detection for OpenMP tasks. Figshare (2018). https://doi.org/
10.6084/m9.figshare.6392252

21. Raman, R., Zhao, J., Sarkar, V., Vechev, M., Yahav, E.: Efficient data race detec-
tion for async-finish parallelism. In: Barringer, H., et al. (eds.) RV 2010. LNCS,
vol. 6418, pp. 368–383. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-16612-9 28

22. Raman, R., Zhao, J., Sarkar, V., Vechev, M., Yahav, E.: Scalable and precise
dynamic datarace detection for structured parallelism. In: Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2012, pp. 531–542. ACM, New York (2012)

23. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a
dynamic data race detector for multi-threaded programs. In: Proceedings of the
16th ACM Symposium on Operating Systems Principles, SOSP 1997, pp. 27–37.
ACM, New York (1997)

24. Serebryany, K., Iskhodzhanov, T.: ThreadSanitizer: data race detection in practice.
In: Proceedings of the Workshop on Binary Instrumentation and Applications,
WBIA 2009, pp. 62–71. ACM, New York (2009)

25. Surendran, R., Sarkar, V.: Dynamic determinacy race detection for task parallelism
with futures. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp.
368–385. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9 23

https://doi.org/10.1007/978-3-642-35632-2_6
https://doi.org/10.1007/978-3-642-35632-2_6
https://doi.org/10.1007/978-3-319-67531-2_24
https://doi.org/10.1007/978-3-319-67531-2_24
https://doi.org/10.6084/m9.figshare.6392252
https://doi.org/10.6084/m9.figshare.6392252
https://doi.org/10.1007/978-3-642-16612-9_28
https://doi.org/10.1007/978-3-642-16612-9_28
https://doi.org/10.1007/978-3-319-46982-9_23

Runtime Determinacy Race Detection for OpenMP Tasks 45

26. Vechev, M., Yahav, E., Raman, R., Sarkar, V.: Automatic verification of deter-
minism for structured parallel programs. In: Cousot, R., Martel, M. (eds.) SAS
2010. LNCS, vol. 6337, pp. 455–471. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15769-1 28

27. Xu, Y., Lee, I.T.A., Agrawal, K.: Efficient parallel determinacy race detection for
two-dimensional dags. In: Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP 2018, pp. 368–380.
ACM, New York (2018)

https://doi.org/10.1007/978-3-642-15769-1_28
https://doi.org/10.1007/978-3-642-15769-1_28

Estimating the Impact of External
Interference on Application Performance

Aamer Shah1, Matthias Müller1, and Felix Wolf2(B)

1 IT Center, RWTH Aachen University, Aachen, Germany
{shah,mueller}@itc.rwth-aachen.de

2 Laboratory for Parallel Programming, TU Darmstadt, Darmstadt, Germany
wolf@cs.tu-darmstadt.de

Abstract. The wall-clock execution time of applications on HPC clus-
ters is commonly subject to run-to-run variation, often caused by exter-
nal interference from concurrently running jobs. Because of the irregu-
larity of this interference from the perspective of the affected job, perfor-
mance analysts do not consider it an intrinsic part of application execu-
tion, which is why they wish to factor it out when measuring execution
time. However, if chances are high enough that at least one interference
event strikes while the job is running, merely repeating runs several times
and picking the fastest run does not guarantee a measurement free of
external influence. In this paper, we present a novel approach to estimate
the impact of sporadic and high-impact interference on bulk-synchronous
MPI applications. An evaluation with several realistic benchmarks shows
that the impact of interference can be estimated already based on a single
run.

1 Introduction

On many HPC systems, the execution time of applications varies considerably
between runs, which makes performance measurements hard to reproduce and
challenges their validity. Possible sources of variation include operating system
jitter, different process-to-node mappings, or contention on shared resources.
While modern operating systems reduced their noise footprint [16], contention
on heavily loaded centralized file systems and communication interconnects, such
as torus and dragonfly networks, are still contributing to performance varia-
tion [3,21]. Because such external interference occurs randomly, benchmarking
has become complicated.

Usually, performance analysts prefer measurements that are as close as pos-
sible to an application’s intrinsic behavior, that is, without external influence
beyond their control. To achieve this on a system with strong performance inter-
ference among jobs, one could take multiple measurements and pick the run with
the shortest execution time or the average or median if a certain degree of inter-
ference is considered natural. No matter how, this strategy is both expensive
and unreliable because neither may the minimum be free of interference nor the

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 46–58, 2018.
https://doi.org/10.1007/978-3-319-96983-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_4&domain=pdf

Estimating the Impact of External Interference 47

average or median representative. After all, the system load also changes along
macroscopic time scales (e.g., daytime or season).

To help performance analysts decide how much they can “trust” their bench-
marking results and whether they need to repeat measurements, we present a
novel approach to estimate the impact of external interference on the execu-
tion time of a common class of MPI applications. As a distinctive feature, our
method can deliver such an estimate with negligible overhead based on a single
run. Moreover, it is agnostic to the source of interference. Instead, it exploits the
properties of bulk-synchronous MPI applications that perform frequent global
all-to-all operations. Such applications not only make up a significant portion of
HPC workload (almost two-thirds of unique benchmarks in the SPEC MPI suite
fall in this category), they are also most sensitive to external interference [1,7,10].

The remainder of the paper is structured as follows. While Sect. 2 provides
the details of our approach, Sect. 3 demonstrates the accuracy of our estimates
in a series of experiments. After presenting related work in Sect. 4, we review
our results in Sect. 5.

2 Approach

Most HPC applications are iterative in nature. After a brief initialization, they
go through different phases that are repeated over and over. Similar phases have
similar execution times unless a phase instance is struck by external interference.
The stronger the impact, the greater the elongation of the execution time.

Figure 1a shows a trace snippet of a typical HPC application. The application
performs several iterations, whose execution times are, however, not uniform.
The execution-time histogram in Fig. 1 illustrates two sources of variation – one
intrinsic and one extrinsic. Intrinsic variation arises from programmatic differ-
ences because, for example, some iterations may calculate some extra physics
every once in a while or store checkpoints. The example shows two classes of
iterations, A and B, distinguished by their programmatic characteristics and
visible as two peaks in Fig. 1b. The variation that remains after separating these
two classes, as shown in Fig. 1c and 1d, is extrinsic and the result of noise such
as interference from other jobs that happen to run at the same time.

The key idea of our approach is to divide the execution of a program into
segments and classify them according to their intrinsic characteristics. In a noise-
free environment, segments within each class are then expected to consume the
same amount of time. Conversely, variations that occur within each class are
likely caused by noise. Because execution time is subject to such noise, we have
found hardware and software counters that reflect computation, communication,
and file I/O features to be suitable metrics for our programmatic classification
of execution segments.

To identify segments, we take advantage of the bulk-synchronous nature of
many HPC applications, specifically we exploit periodic (blocking) all-to-all com-
munication. Although this practically restricts our method to such applications,
we claim that we can still cover major portions of today’s HPC workloads. After

48 A. Shah et al.

Iteration 1

Class A

Iteration 2

Class B

Iteration 3

Class B

Iteration 4

Class A

Iteration 5

Class B

Iteration 6

Class A

(a) An example application trace

0

50

100

150

200

Time

It
er
at
io
n
co
un

t

(b) Combined histogram

0

50

100

150

200

Time

It
er
at
io
n
co
un

t

(c) Class A histogram

0

50

100

150

200

Time

(d) Class B histogram

Fig. 1. Application iterations and their histograms.

all, this is not an uncommon feature. For example, almost two-thirds of unique
benchmarks in the SPEC MPI suite fall into this category. At the same time,
applications with frequent all-to-all communication suffer more than others from
external interference because every delay of a process will likely induce waiting
time in all others.

We use global all-to-all communication operations as a boundary between
execution segments. These might not exactly match programmatically specified
iterations, but are expected to divide the execution into repeatedly executed
pieces. For example, an all-to-all operation will likely appear at least once in
every iteration of the core loop. Furthermore, such all-to-all operations consti-
tute global synchronization points among processes. Although the MPI standard
does not explicitly require it, the nature of all-to-all operations implies it. This
makes the execution segments between them independent with respect to the
propagation of wait states that occur in response to external interference. A
wait state whose root cause lies within a segment will not propagate across a
global synchronization point [4]. For applications using non-blocking collectives,
the wait operation of the collective call could be used as a boundary indica-
tor, while for non-bulk-synchronous applications recurring MPI calls may serve
this purpose. However, in both cases, adjacent execution segments may not be
fully independent, with wait states and interference-induced delays potentially
propagating across segment boundaries. We therefore concentrate on blocking
collectives in this study and consider the remaining cases as future work.

Profiling Methodology. To classify segments, we count computation, com-
munication, and file I/O operations or volumes per segment and process using
LWM2 [18], a low-overhead profiler, which leverages the PMPI interface to find
segment boundaries and collect metrics related to MPI. The specific metrics we
capture are discussed further below. At the end of each all-to-all collective call,
the profiler stores information pertaining to the completed segment in memory.

Estimating the Impact of External Interference 49

To reduce storage requirements, the values for each metric are quantized into 256
unique bins. When the number of unique values exceeds the number of bins, the
two bins with the least distance between them are merged. Instead of actual val-
ues, a segment profile stores the indices of the corresponding bins. Whenever bins
are merged, the indices in the segment profiles are updated accordingly. After
the program has ended, we merge per-process bins into 512 unique program-wide
bins. To keep computation diversity among segments manageable, a segment is
always represented by the median of the computation feature metric across pro-
cesses. For communication and file I/O, such aggregation is only performed if
the diversity among segments exceeds a threshold.

Grouping Segments Based on Computation Features. To classify seg-
ments, we first compare them in terms of the amount of computation they are
supposed to complete. To measure the amount of work, we count the number
of floating-point instructions using hardware counters. When the floating-point
counter is not available, as on some generations of modern processors, we use the
total number of completed instructions as a proxy. To shield them from noise, we
only count them outside communication or I/O operations. While the captured
values are still perturbed by OS jitter, we have found floating-point operations
to be most stable. The total instruction count shows still less than 1% variability.

We establish similarity among segments by clustering them based on the
above instruction counts as features. As the duration of segments in an appli-
cation can vary widely, the possible range of feature values can be quite large.
Furthermore, OS jitter and inaccuracies introduced when reading and storing
hardware counters [6] cause variation among hardware-counter values from sim-
ilar segments. Therefore, the most appropriate clustering algorithm for our task
needs to handle a large range of values, and at the same time be tolerant to
variations inside a cluster.

Common clustering algorithms such as k-means require the number of clus-
ters to be known a priori. If such information is not available, such algorithms
are executed for a range of cluster counts and an internal cluster criterion, such
as the Calinski and Harabasz (CH) criterion, is applied to identify the most
appropriate number of clusters. Even for a particular number of clusters, these
clustering algorithms require several iterations to find the optimum centroids.
These factors result in algorithms that, overall, are complex to implement and
can take a significant amount of time for large numbers of data points.

Clustering with Relative Distance. Density-based algorithms such as
DBScan seem to present an alternative. They can identify the appropriate num-
ber of clusters in a single pass. Such algorithms use a distance threshold to split
the data points into clusters. However, relying on a fixed distance for a large
range of values results in either merging distinct clusters with lower values if the
threshold is too large, or splitting a single cluster with a modest range of higher
values into multiple clusters if the threshold is too small.

To overcome these difficulties, we designed a simple clustering algorithm that
can identify clusters in one-dimensional data even with a large value range in

50 A. Shah et al.

a single pass. The algorithm requires the data type to have a total order and
a threshold for the maximum relative distance between any two data points in
a cluster. We define the relative distance between two points as their distance
divided by the smaller of the distances of the two points from the origin. As
the algorithm relies on relative distance, it can identify clusters with a modest
degree of internal variance both at the lower and higher end of the value range.
Our algorithm first sorts all the values in ascending order and then assigns the
smallest element to the first cluster. After that, it iterates through the remaining
sequence and, at each step, picks the value at position i from the sorted list that
was assigned to a cluster in the previous step and determines the relative distance
to the next value at i + 1. If the relative distance is less than the threshold, the
value at i + 1 is placed in the same cluster as the value at i. Otherwise, a new
cluster is created for the value at i + 1.

Using SPEC MPI benchmarks, we compared our new algorithm with k-
means and an expectation-maximization (EM) algorithm that assumes the data
to exhibit a mixed Gaussian distribution. Specifically, we analyzed the mean
normalized standard deviation of the created clusters and the percentage of
segments that ended up in clusters of less than five elements, which is the min-
imum size below which clusters are not considered for interference estimation.
K-means identified tightly fitting clusters but left a larger portion of segments
unclustered (up to 8%). EM, on the other hand, clustered almost all segments,
but created clusters of high internal variance. We tried our new algorithm with
several relative-distance thresholds, including 0.2, 0.1, and 0.05. With a relative-
distance threshold of 0.1, the threshold we use in the remainder of this study,
our customized algorithm identified clusters with slightly higher variance than
k-means, but left only half the number of segments unclustered.

Grouping Segments Based on Communication and File I/O Features.
As communication and I/O features of a segment we consider the number and
accumulated volume of communication and I/O operations, including the num-
ber of point-to-point send/receive calls broken down by their blocking seman-
tics, the number of collective calls broken down by their number of senders vs.
recipients, and the number of bytes sent or received through them. Similarly, as
file-I/O features we capture the number of open/close operations, the number
of read/write operations and the accumulated number of bytes read or written.
Since there is no clear relationship between these metrics and the execution time
of a segment, we consider the corresponding values as nominal data. For exam-
ple, a segment may run longer than another segment, although its number of
sends is smaller. At the same time, these metrics are fairly stable and usually
not subject to any jitter. Thus, we consider all segments that share the same
unique combination of communication and file I/O metrics a separate group.

Estimating Interference. We estimate the impact of interference based on the
segment profile of a single run. First, we cluster the segments according to their
computation features, as described earlier. After that we split each cluster into

Estimating the Impact of External Interference 51

groups according to the communication and file-I/O features of its elements.
The segments in each of the resulting groups are assumed to exhibit similar
behavioral characteristics and consume about the same intrinsic execution time.

Any segment in a group that has a significantly higher execution time is
considered to be affected by interference. More precisely, we classify a segment as
interfered if its execution time is four MAD greater than the median of the group,
with MAD (Median Absolute Deviation) being MAD = median(|Xi−median(X)|).
Median and MAD are known for their robustness to variability. The threshold of
four MAD greater than median gives a confidence interval of more than 99.5%.
The impact of interference on a segment is estimated as the portion of execution
time of the segment in excess of the threshold. Adding the interference impact
computed for all segments yields the interference impact for the entire program
and is provided as a percentage of the (interfered) execution time.

Separating Instantaneous Interference from Continuous Interference.
Execution time variation can arise from either high-frequency but usually low-
impact interference such as certain types of OS jitter or from low-frequency
but often high-impact interference such as sudden I/O contention. We call the
former kind continuous interference, and the latter kind instantaneous interfer-
ence. Continuous interference affects almost all segments of a profile, and as a
result also affects the median in a group. In contrast, instantaneous interference
only affects selected segments, and the median remains largely unaffected. While
both kinds of interference prolong execution time, instantaneous interference is
more likely to create undesirable artifacts in performance measurements a perfor-
mance analyst may wish to remove. In contrast, continuous interference is often
seen as an unavoidable evil one has to live with on a given system. Our app-
roach only reports instantaneous interference. The median displacement caused
by continuous interference ensures that it leaves no imprint on our estimates.

Tool Workflow. LWM2 profiles the target application during execution, cap-
turing the required metrics separately for each segment. At the end of the exe-
cution, LWM2 writes a segmented profile to disk. Later, the profile is subjected
to automatic interference estimation in Matlab. First, we classify the segments
into different groups based on their features. Later, we estimate the impact of
interference first for each segment group, and then aggregate the results for the
whole application.

3 Evaluation

To evaluate our approach, we use the following benchmarks: (i) those seven
codes from the SPEC MPI 2007 suite V2.0 that are bulk-synchronous accord-
ing to our definition and that have a large data set available; (ii) Sweep3D, a
time-independent 3D neutron transport simulation; and (iii) HACC, an appli-
cation that simulates the formation of collision-less fluids and whose regular

52 A. Shah et al.

checkpointing behavior makes it a popular I/O benchmark. We test our method
both in a controlled environment with artificially injected interference, and on a
production system with real interference.

Experimental Setup. Because of its low OS jitter, we chose JUQUEEN, an
IBM BlueGene/Q system, as our controlled environment. Each of its 28,672
compute nodes consist of a 16 core IBM PowerPC R©A2 processor and 16 GB
of memory. JUQUEEN has a 5D Torus communication interconnect and mini-
mizes network interference by making node boards with 512 cores the smallest
allocation unit. Since its GPFS file system is shared, JUQUEEN cannot be con-
sidered controlled for I/O intensive workloads though, which, however, among
our benchmarks only affects HACC. For our tests under production conditions,
we use Hazel Hen, a Cray XC40 system with 7712 compute nodes, each of them
featuring two 12-core Intel Haswell E5-2680v3 processors and 128 GB of memory.
Applications running on Hazel Hen are known to experience significant run-to-
run variation, majorly due to cache misses in the Aries chip under heavy network
load from multiple applications [9].

Evaluation Methodology. With the exception of the file system, our con-
trolled environment is without any significant natural interference. This is why
the runtime of a job is usually close to its intrinsic execution time, providing us
with a ground truth for interference-free execution. To test our method, we inject
artificial interference into application runs using a tool called intM (interference
Modeler), which we have developed for this purpose. intM sits as an interposition
wrapper between an application and the runtime, and mimics network and file
I/O interference by introducing delays in function calls. intM supports interfer-
ence injection in MPI communication and I/O functions, as well as in POSIX
I/O. The interference added to the regular execution time follows a Gaussian
distribution, with configurable mean and standard deviation. The probability of
when an interference event strikes a communication or file I/O operation is also
configurable.

Specifically, we inject gradually increasing interference into multiple runs of
a benchmark. Figure 2 shows such runs for the SPEC MPI benchmark tera tf as
an example. We compare the estimated with the measured impact of interference
on each run. Measured interference is the execution-time difference between a
run and the fastest run in percent of the (interfered) runtime. Estimated inter-
ference is calculated individually for each run as percentage of its runtime using
our approach without considering any other run. To clean the measured interfer-
ence from effects of continuous interference and other influences that are largely
constant across the entire duration of a run but may vary between runs, such as
different process-to-node mappings, we reduce the measured interference by the
amount of time the medians are displaced. We observe the median displacement
during clustering, and attribute it to continuous interference.

We categorize the impact of interference into the classes low, medium, and
high, as shown in Fig. 2. A low-interference run is perturbed to a negligible degree

Estimating the Impact of External Interference 53

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

Medium

Low

High

Runs

In
te

rf
er

en
ce

[%
]

Measured Estimated

Fig. 2. Multiple runs of tera tf on JUQUEEN, with measured and estimated interfer-
ence classified as low, medium, or high. Runs are sorted by execution time in descending
order.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Medium

Low

High

(11.25, 0.5)

Interference [%]

P
ro

ba
bi

lit
y

(a) Logistic function

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Medium

Low

High

Runs

P
ro

ba
bi

lit
y

Measured Estimated

(b) Highly interfered run probabilities

Fig. 3. Logistic function and the highly interfered run probabilities, when the function
is applied on the tera tf runs.

and can be used for performance analysis, whereas a high-interference run is
heavily perturbed and should be discarded. The medium category is between
these extremes: It might be worthwhile to invest in a new performance mea-
surement, while, at the same time, the run can be used to gauge performance
at large. Using the analogy of a traffic light, low means green light for perfor-
mance analysis, medium means yellow light, and high red light. We have set
the threshold for low interference to below 7.5%, for high interference to above
15%, and classify everything in-between as medium. While such categorization is
useful to distinguish runs in practice, accuracy evaluation via hard classification
into these three categories can run into pitfalls. For example, even if the dif-
ference between measured and estimated interference of a run is small, the two
interference values can still fall into different classes, as it happened for runs 12
and 13 in Fig. 2. An alternative way of aggregating our results is calculating the
percentage-point difference between measured and estimated interference. The

54 A. Shah et al.

downside of this approach is that for highly interfered runs, the percentage-point
difference is not that critical as long as both agree on the judgment that the run
is highly interfered. Runs 1 and 2 in the figure are such cases.

Based on the intuition that the impact of interference is a measure of a run’s
suitability for performance analysis, we use a logistic function as a soft classifier
to convert the magnitude of interference into the probability of a run being
highly interfered. Using soft classification, the probability that a run previously
categorized as low is actually highly interfered should be close to zero, while for
runs categorized as high it should be near one. Similarly, at the mid-point of
the medium category, the probability should be exactly 0.5. Figure 3a shows a
logistic function that we have designed for this purpose, while Fig. 3b shows the
corresponding probabilities for the tera tf runs.

Formally, a logistic function is an“S” shaped function that maps values from
(−∞,∞) onto (0, L). It is defined as f(x) = L

1+ exp−k(x−x0) , where k is the
steepness, x0 is the inflection point, and L is the maximum. As explained before,
we define the inflection point, x0, to be 11.25, the mid-point of the medium
class. Similarly, setting the maximum value, L, to 1, and steepness, k to 0.35,
the probabilities at interference magnitudes of 7.5%, 11.25%, and 15% are 0.21,
0.5, and 0.79, respectively.

Using this logistic function, we derive probabilities for measured and esti-
mated interference for each run of a benchmark. The difference between the
two probabilities is the inaccuracy of interference prediction, and its compli-
ment is the accuracy. We determine the accuracy of our approach for all the
runs of each benchmark and draw the results as boxplots (Fig. 4). As the logistic
function in Fig. 3a shows, an accuracy of less than 0.5 means a significant devi-
ation between measured and estimated interferences. To also give a more direct
impression of the results, we complement probability differences with boxplots
of the percentage-point difference between measured and estimated interference.

Results. On JUQUEEN, our controlled environment, each benchmark was exe-
cuted at least 15 times with a gradually increasing amount of artificial interfer-
ence injected. Figure 2 shows the series for tera tf as an example. The inter-
ference was adjusted in such a way that multiple runs were produced for each
interference class. We executed each benchmark on 256 nodes, with 4 processes
running on each node. Figure 4a presents on the left how accurately we pre-
dict the interference probabilities and on the right the percentage-point differ-
ence between measured and estimated interference. Except for GAPgeofem, the
median accuracy for all the benchmarks on JUQUEEN is above 0.9. Similarly,
for most benchmarks, the minimum accuracy is above 0.8. This shows that in
most cases estimated and measured interference leads to the same conclusion.
That the accuracy of our predictions for certain runs of GAPgeofem was low can
be attributed to its high collective-call rate of around 300 Hz. At such a high
frequency, large numbers of small execution segments are created, easily leading
to measurement artifacts that disturb our analysis.

Estimating the Impact of External Interference 55

tera
tf

GAPgeof
em
lam

mps
lesli

e pop
MILC

zeusmp

Sweep3D
HACC

0

0.2

0.4

0.6

0.8

1
P

re
di

ct
io

n
ac

cu
ra

cy

tera
tf

GAPgeof
em
lam

mps
lesli

e pop
MILC

zeusmp

Sweep3D
HACC

0

5

10

15

P
er

ce
nt

ag
e

po
in

t
di

ffe
re

nc
e

(a) JUQUEEN

tera
tf

GAPgeof
em
lam

mps
lesli

e pop
MILC

zeusmp

Sweep3D
HACC

0

0.2

0.4

0.6

0.8

1

P
re

di
ct

io
n

ac
cu

ra
cy

tera
tf

GAPgeof
em
lam

mps
lesli

e pop
MILC

zeusmp

Sweep3D
HACC

0

5

10

15

P
er

ce
nt

ag
e

po
in

t
di

ffe
re

nc
e

(b) Hazel Hen

Fig. 4. Prediction accuracy as difference of soft classification probability (left) and
percentage-point difference (right) between measured and estimated interference.

Because of its low run-to-run variation, we also used JUQUEEN to evaluate
the overhead of our profiler. Using the same set of benchmarks, we executed
each benchmark on 128 nodes, with 4 processes running on each node. For each
benchmark, we executed two series of experiments, one instrumented and one
uninstrumented. To avoid bias caused by daytime differences, we interleaved
the execution of the two series, alternating between the instrumented and the
uninstrumented version. Each series consisted of nine experiments. Measured by
comparing execution time medians of the two series of experiments, the max-
imum dilation of execution time induced by our profiler was around 4%, but
stayed below 1% for the majority of benchmarks.

On Hazel Hen, our production environment, we executed the benchmarks
using 16 nodes, with 24 processes on each node. Each benchmark was executed
12 times. Due to the relative small scale of the runs and the sporadic nature of
interference, many benchmarks were affected by interference to a smaller degree.
Nonetheless, highly interfered runs were encountered and were accurately clas-
sified. On the left, Fig. 4b shows the prediction accuracy of benchmark runs,
complemented by the percentage-point difference between measured and esti-
mated interference on the right. The figures show that, except for GAPgeofem,
the impact of interference was estimated with a high degree of accuracy. GAP-
geofem shows again low accuracy, which may again be attributable to its high
collective-call frequency. Since the call frequency is measurable, we believe that

56 A. Shah et al.

it would be generally possible to warn the user of possible inaccuracies in such
rare cases. Finding an appropriate threshold, however, is left to future work.

4 Related Work

Performance interference from operating system jitter has been the subject of
several studies [2,5,11,17,20]. However, recent work has shown that modern
operating systems managed to reduce their noise footprint [16]. Our approach
therefore focuses on interferences from other jobs that cause contention on shared
resources such as the network or the file system. Moreover, we base our estimates
of interference on software and hardware counters that are insensitive to oper-
ating system jitter.

At the same time, network and file I/O interference became the focus of more
recent studies: Jokanovic et al. attributed loss in network throughput on slim
fat trees to inter-application contention [12]. Bhatele et al. observed significant
performance variation on Hopper due to neighbor jobs [3]. Yang et al. evalu-
ated different job placement strategies on dragonfly networks to reduce inter-
application interference [21]. Similarly, several studies identified variability in
applications I/O performance and listed simultaneous file access as one of the
possible reasons [14,15,19]. Furthermore, Kuo et. al. investigated how file access
patterns influence the degree of I/O contention [13]. All these studies show that
simultaneous access to shared resources is a major source of interference, which
our method now allows users of HPC systems to quantify.

Mondragon et al. applied extreme value theory to create interference models
that predict the execution times of bulk-synchronous applications under interfer-
ence from OS noise, asynchronous checkpointing, and in situ analytics [16]. Our
approach estimates the amount of low-frequency but high-impact interference
such applications suffer in actual runs with the goal of obtaining performance
data with low degrees of interference.

To identify similarity among execution phases of an application for the pur-
pose of performance analysis, Gonzalez et. al. used the density-based cluster-
ing algorithm DBScan [8]. To estimate interference impact, we designed a 1D-
clustering algorithm based on relative distance.

5 Conclusion

We have demonstrated that we can estimate the impact of interference with high
accuracy based on a single run. Our tool chain now provides a warning light to
performance analysts that tells them when they need to rerun their experiments
because the data they have just collected was subject to interference. It can
be integrated with other performance-analysis tools using the PnMPI interface.
In the future, we plan to create composite performance profiles free of perfor-
mance artifacts from multiple interfered measurements. This will allow judging
the intrinsic performance of applications in environments where interference is
random but due to its frequency unavoidable, making performance measure-
ments (e.g., of different code versions) easier to compare.

Estimating the Impact of External Interference 57

Acknowledgment. This work has been supported by the German Research Founda-
tion (DFG) through the Program Performance Engineering for Scientific Software and
the ExtraPeak project, by the German Federal Ministry of Education and Research
(BMBF) under Grant No. 01IH16008D, and by the US Department of Energy under
Grant No. DE-SC0015524. Additional funding was provided through the Hessian
LOEWE initiative within the Software-Factory 4.0 project. Finally, we would like to
express our gratitude to Jülich Supercomputing Centre and High Performance Com-
puting Center Stuttgart for giving us access to their supercomputers JUQUEEN and
Hazel Hen, respectively.

References

1. Agarwal, S., Garg, R., Vishnoi, N.K.: The impact of noise on the scaling of collec-
tives: a theoretical approach. In: Bader, D.A., Parashar, M., Sridhar, V., Prasanna,
V.K. (eds.) HiPC 2005. LNCS, vol. 3769, pp. 280–289. Springer, Heidelberg (2005).
https://doi.org/10.1007/11602569 31

2. Beckman, P., Iskra, K., Yoshii, K., Coghlan, S., Nataraj, A.: Benchmarking the
effects of operating system interference on extreme-scale parallel machines. Cluster
Computing 11(1), 3–16 (2008)

3. Bhatele, A., Mohror, K., Langer, S.H., Isaacs, K.E.: There goes the neighborhood:
performance degradation due to nearby jobs. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (SC 2013). IEEE Computer Society, November
2013

4. Böhme, D., Geimer, M., Wolf, F., Arnold, L.: Identifying the root causes of wait
states in large-scale parallel applications. In: Proceedings of the 39th International
Conference on Parallel Processing (ICPP), San Diego, CA, USA, pp. 90–100. IEEE
Computer Society, September 2010. https://doi.org/10.1109/ICPP.2010.18

5. De, P., Kothari, R., Mann, V.: Identifying sources of operating system jitter
through fine-grained kernel instrumentation. In: Proceedings of the IEEE Inter-
national Conference on Cluster Computing (CLUSTER), pp. 331–340, September
2007

6. Dongarra, J., London, K., Moore, S., Mucci, P., Terpstra, D., You, H., Zhou, M.:
Experiences and lessons learned with a portable interface to hardware performance
counters. In: Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS), pp. 1–6, April 2003

7. Garg, R., De, P.: Impact of noise on scaling of collectives: an empirical evaluation.
In: Robert, Y., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.) HiPC 2006.
LNCS, vol. 4297, pp. 460–471. Springer, Heidelberg (2006). https://doi.org/10.
1007/11945918 45

8. Gonzalez, J., Gimenez, J., Labarta, J.: Automatic detection of parallel applications
computation phases. In: Proceedings of IEEE International Symposium on Parallel
Distributed Processing (IPDPS), pp. 1–11, May 2009

9. HLRS: Communication on Cray XC40 Aries network, May 2017.
wickie.hlrs.de/platforms/index.php/Communication on Cray XC40 Aries network

10. Hoefler, T., Schneider, T., Lumsdaine, A.: The impact of network noise at large-
scale communication performance. In: Proceedings of the IEEE International Par-
allel and Distributed Processing Symposium (IPDPS), pp. 1–8, May 2009

https://doi.org/10.1007/11602569_31
https://doi.org/10.1109/ICPP.2010.18
https://doi.org/10.1007/11945918_45
https://doi.org/10.1007/11945918_45
https://wickie.hlrs.de/platforms/index.php/CommunicationonCrayXC40Ariesnetwork

58 A. Shah et al.

11. Hoefler, T., Schneider, T., Lumsdaine, A.: Characterizing the influence of system
noise on large-scale applications by simulation. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (SC 2010), pp. 1–11. IEEE Computer Society,
Washington, DC, USA (2010)

12. Jokanovic, A., Rodriguez, G., Sancho, J.C., Labarta, J.: Impact of inter-application
contention in current and future HPC systems. In: Proceedings of the IEEE Sym-
posium on High Performance Interconnects, pp. 15–24, August 2010

13. Kuo, C.S., Shah, A., Nomura, A., Matsouka, S., Wolf, F.: How file access pat-
terns influence interference among cluster applications. In: Proceedings of the IEEE
International Conference on Cluster Computing (CLUSTER), pp. 1–8 (2014)

14. Lang, S., Carns, P., Latham, R., Ross, R., Harms, K., Allcock, W.: I/O performance
challenges at leadership scale. In: Proceedings of the ACM/IEEE Conference on
Supercomputing (SC 2009), pp. 40:1–40:12. ACM, New York (2009)

15. Lofstead, J., Zheng, F., Liu, Q., Klasky, S., Oldfield, R., Kordenbrock, T., Schwan,
K., Wolf, M.: Managing variability in the IO performance of petascale storage
systems. In: Proceedings of the ACM/IEEE Conference on Supercomputing (SC
2010), pp. 1–12. IEEE Computer Society, Washington, DC, USA (2010)

16. Mondragon, O.H., Bridges, P.G., Levy, S., Ferreira, K.B., Widener, P.: Understand-
ing performance interference in next-generation HPC systems. In: Proceedings of
the ACM/IEEE Conference on Supercomputing (SC 2016), pp. 384–395, November
2016

17. Petrini, F., Kerbyson, D., Pakin, S.: The case of the missing supercomputer per-
formance: achieving optimal performance on the 8,192 processors of ASCI Q. In:
Proceedings of the ACM/IEEE Conference on Supercomputing (SC 2003) (2003)

18. Shah, A., Wolf, F., Zhumatiy, S., Voevodin, V.: Capturing inter-application inter-
ference on clusters. In: Proceedings of IEEE International Conference on Cluster
Computing (CLUSTER), pp. 1–5, September 2013

19. Shan, H., Shalf, J.: Using IOR to analyze the I/O performance for HPC platforms.
In: Cray User Group Conference (2007)

20. Tsafrir, D., Etsion, Y., Feitelson, D.G., Kirkpatrick, S.: System noise, OS clock
ticks, and fine-grained parallel applications. In: Proceedings of the 19th annual
International Conference on Supercomputing (ICS 2005), pp. 303–312. ACM, New
York (2005)

21. Yang, X., Jenkins, J., Mubarak, M., Ross, R.B., Lan, Z.: Watch out for the bully!
job interference study on dragonfly network. In: Proceedings of the ACM/IEEE
Conference on Supercomputing (SC 2016), pp. 750–760, November 2016

GT-Race: Graph Traversal Based Data
Race Detection for Asynchronous

Many-Task Parallelism

Lechen Yu and Vivek Sarkar(B)

College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
{lechen.yu,vsarkar}@gatech.edu

Abstract. Asynchronous Many-Task (AMT) parallelism is growing in
popularity because of its promise to support future platforms with new
heterogeneity and resiliency requirements. It supports the construction
of parallel programs with fine-grained tasks, thereby enabling portability
across a wide range of platforms. However, applications written for AMT
parallelism still remain vulnerable to data races, and existing data race
detection tools are unsuitable for AMT programs because they either
incur intractably large overheads or are limited to restricted task struc-
tures such as fork-join parallelism.

In this paper, we propose GT-Race, a new graph-traversal based data
race detector for AMT parallelism. It leverages the computation graph
data structure, which encodes the general happens-before structures in
AMT programs. After introducing a baseline algorithm for data race
detection, we propose key optimizations to reduce its time and space
complexity, including the epoch adjacency list to compress the compu-
tation graph representation, the reachability cache combined with depth
filtering to reduce the number of unnecessary traversals, and bounded
race detection to limit the range of data that is monitored. The impact
of these optimizations is demonstrated for nine benchmark programs
written for the Open Community Runtime (OCR), an open source AMT
runtime that supports point-to-point synchronization and disjoint data
blocks.

Keywords: Debugging and correctness tools · Data race detection
Asynchronous many-task parallelism

1 Introduction

With the ever-increasing complexity of modern computing architectures (e.g.,
large numbers of heterogeneous processing units, multi-level hierarchical memo-
ries, and high-bandwidth interconnect networks), applications on these machines
must leverage the architectural complexity to perform efficiently. Although
widely used high-performance parallel runtimes (e.g., PThreads, MPI, and
OpenMP) provide comprehensive low-level interfaces to help programmers
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 59–73, 2018.
https://doi.org/10.1007/978-3-319-96983-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_5&domain=pdf

60 L. Yu and V. Sarkar

leverage the underlying architecture, the programmers have to tune the appli-
cation to select the best granularity manually. In addition, manually tuned
applications are not performance-portable. In order to mitigate these two prob-
lems, Asynchronous Many-Task (AMT) runtimes [1] (e.g., Cilk [2], Habanero-C
(HC) [3], Realm [4] and Open Community Runtime (OCR) [5]) become a new
trend in HPC area. AMT runtimes hide low-level details of architecture from
programmers. When writing a parallel program executing on top of AMT run-
times (we refer to it as AMT program in this paper), programmers only need
to split the program logic into tasks, a hardware agnostic abstraction of code
snippets that can execute independently on any process unit, and specify the
dependences among tasks. AMT programs can achieve higher performance with
less programming and tuning efforts, compared to MPI implementations [4].

Although AMT parallelism alleviates the difficulty of writing efficient and
portable parallel programs, AMT programs are still prone to data races, a noto-
rious error in parallel programs. A data race occurs when a parallel program
issues two unordered memory accesses to the same location, such that at least
one of the accesses is a write.

There has been a lot of past work on detecting data race automatically at
runtime [6–11]. But all of them suffer from at least one of the following four
limitations:

– Incurring a space overhead that is proportional to the square of the number
of dynamic tasks.

– Leveraging a locking scheme to detect data races, which introduces false pos-
itives for parallel programs that use synchronization primitives other than
locks.

– Forcing the parallel program to execute in sequential order, which wastes the
available hardware parallelism.

– Detecting data races based on restricted parallel structures.

Currently, there does not exist any data race detection algorithm with tractable
overhead that can support the general AMT parallelism.

In this paper, we propose GT-Race, a new graph-traversal based data race
detector for AMT parallelism. It leverages the computation graph data struc-
ture [12], which encodes the general happens-before structures in AMT pro-
grams. After introducing a baseline algorithm for data race detection, we propose
key optimizations to reduce its time and space complexity, including the epoch
adjacency list to compress the computation graph representation, the reacha-
bility cache combined with depth filtering to reduce the number of unnecessary
traversals, and bounded race detection to limit the range of data that is moni-
tored. The impact of these optimizations is demonstrated for nine benchmark
programs written for the Open Community Runtime (OCR), an open source
AMT runtime that supports point-to-point synchronization and disjoint data
blocks.

The rest of this paper is organized as follows: In Sect. 2 we discuss a case
study to show how an AMT program can encounter data races. Based on the
clarified notion of data race, we illustrate the graph traversal based race detection

GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 61

algorithm and several optimizations. We discuss the implementation of GT-Race
in Sect. 3. We evaluate the performance of GT-Race in Sect. 4. Section 5 sum-
marizes some related works about data race detection, and finally in Sect. 6 we
briefly conclude with some possible directions for future works.

2 GT-Race

In this section, we introduce GT-Race, an on-the-fly dynamic data race detector
for AMT programs. First, we illustrate the architecture of GT-Race, and then
we present several optimizations applied by GT-Race, which reduce the space
overhead and improve the efficiency of data race detection.

2.1 Computation Graph and Data Races

The constructs in an AMT program can be divided into three classes according
to their semantics:

– spawn constructs: They submit a new task to the underlying AMT runtime.
The new task may execute in parallel with the caller.

– synchronization constructs: They specify dependences among tasks that can
impact task scheduling in the AMT runtime. A task will be ready for execu-
tion after all its specified dependences are satisfied [13].

– computation constructs: All other constructs not related to task management
belong to this class.

In a computation graph for a dynamic AMT program execution, each node
denotes a step [12], an arbitrary sequential computation belonging to a task,
which ends with a spawn construct or a synchronization construct, and each
edge denotes an ordering constraint among the involved tasks. For any two steps
in the computation graph, the happens-before relation holds if and only if there
exists a directed path between the two steps. When two unrelated steps issue
memory accesses to the same shared variable, and at least one step writes to
that variable, the two memory accesses create a data race. Figure 1 shows how
data races can occur in an AMT program. Figure 1a is a buggy implementation
of parallel summation, and Fig. 1b is the corresponding computation graph. To
fix the program, we need to link t3 to t4 by a join edge to guarantee that t4 will
observe t3’s result.

2.2 Overview

Figure 2 shows GT-Race’s architecture. It comprises three components: computa-
tion graph, shadow memory, and data race checker. The computation graph and
shadow memory update dynamically according to the AMT program’s runtime
behaviors. These two components record happens-before relations and historical
memory accesses respectively. Our implementation of shadow memory is similar

62 L. Yu and V. Sarkar

(a) A problematic implementation of par-
allel summation containing a data race

(b) Corresponding computation graph for
the AMT program in Figure 1a

Fig. 1. Case study

to [14]. In order not to miss potential data races, the shadow memory records
the latest write and all reads after the write for each shared memory location.
The key module of GT-Race is the data race checker, which leverages the data
in the computation graph and shadow memory to analyze the order of memory
accesses. For each read (write) to a shared variable, the data race checker carries
out a graph traversal on the computation graph to verify the read is causally
ordered after the concurrent write(concurrent write and all concurrent reads).
If the graph traversal fails to find any paths between the concurrent memory
accesses, GT-Race will output the associated debug information of the conflict-
ing memory accesses and the computation graph to help programmers figure out
the cause of the detected race.

2.3 Epoch Adjacency List: A Compressed Representation
for Computation Graph

Since the computation graph is a sparse graph, a straightforward way to store it is
by using an adjacency list. Due to the large number of steps a task may contain,
it is not memory efficient to allocate a list for each step. Further, explicitly
storing all steps and edges may also slow down the graph traversal because of
the redundant continue edges.

GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 63

Since all steps in the same task execute sequentially, we can determine their
execution order in constant time by numbering steps belonging to the same task
(we refer to these numbers as epochs). Inspired by this idea, we propose the
epoch adjacency list, a compressed storage for computation graphs. In an epoch
adjacency list, each task occupies an edge list that records incoming spawn and
join edges. For each edge in the edge list, the associated cell marks its source
step using the source task ID and epoch.

2.4 Optimization: Reachability Cache

Fig. 2. GT-Race architecture

The original graph traversal algo-
rithm is a breadth-first search that
loops through the computation graph
to find out directed paths between
the two memory accesses. It is inef-
ficient due to failing to utilize the
locality in the AMT program. For
two tasks that both access a shared
variable, it is highly possible they
have other common variables so that
the race checker will check their
causal ordering multiple times during
the program execution.

In order to reuse the results of previous graph traversal, we store them in a
reachability cache and look up the cache during graph traversal to avoid redun-
dant explorations. This can be implemented by adding cache lookup and cache
update operations to the graph traversal algorithm. If there exists a record in the
cache, the graph traversal terminates immediately. Otherwise, the graph traver-
sal proceeds to check the next enqueued step. This optimized graph traversal
algorithm is shown in Algorithm1.

2.5 Optimization: Depth Filtering

Since the time overhead of graph traversal is dominated by the number of nodes
and edges it accessed, traversing a large computation graph in a brute-force man-
ner is always time-consuming. Every time after accessing a task, the algorithm
will loop through all incoming edges and enqueue connected dependent tasks to
avoid omitting any potential path to the expected destination, which leads to
the inefficiency of graph traversal. In order to mitigate the time overhead, we
introduce a guidance depth to help prune irrelevant tasks when looping through
incoming edges. For any task t, its depth is defined by these two formulas:

– depth(t0) = 0, where t0 is the entry point of the whole program.
– depth(t) = Max(depth(ti)) + 1, where ti is a dependent task of t.

64 L. Yu and V. Sarkar

Data: Computation Graph CG, Reachability Cache cache, Operation
op1, op2

Result: If op1 happens before op2, return true, otherwise return false
1 // Bounded Race Detection
2 if !isBoundedMemory(op2.getMemoryAddress()) then
3 return true

4 end
5 dst ← CG.getStep(op1), src ← CG.getStep(op2), queue ← ∅
6 queue.push back(src)
7 while !queue.empty() do
8 curr ← queue.next(), queue.findNext()
9 if curr.task = dst.task ∧ curr.epoch ≥ dst.epoch then

10 cache.update(src, dst)
11 return true

12 end
13 // Reachability Cache
14 if cache.reachable(curr, dst) then
15 cache.update(src, dst)
16 return true

17 end
18 for prev in curr.incomingEdges do
19 if !queue.contain(prev) then
20 // Depth Filtering
21 if prev.depth >= dst.depth then
22 queue.push back(prev)
23 end
24 end
25 end
26 end
27 return false

Algorithm 1. Revised Graph Traversal
The calculation of depth executes along with the computation graph con-

struction and it does not increase the time complexity. According to the defini-
tion, we can deduce Theorem 1 (Depth-Reachability Theorem) and apply it to
filter tasks.

First we introduce Lemma 1 and prove its correctness. Then we derive The-
orem 1 on the basis of Lemma 1. For simplicity, we assume that all tasks in an
AMT program are indivisible, so that each node in the corresponding computa-
tion graph represents a single task. It is straightforward to extend the theorem
to the step level.

Lemma 1. For two tasks a, b, if these exists a directed edge in the computation
graph from a to b (we denote the edge as a → b), then depth(a) < depth(b).

Proof. We need to consider two cases:

GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 65

– Suppose b is the entry point of the program, then b has no preceding tasks,
which is contrary to the assumption of Lemma 1.

– Suppose b is not the entry point of the program. Then depth(b) =
Max(depth(ti)) + 1, for all predecessors, ti of b (with edges ti → b). So
depth(b) ≥ depth(a) + 1. Hence, the lemma statement is true.

Theorem 1 (Depth-Reachability Theorem). For two tasks ti, tj, if
depth(ti) ≥ depth(tj), then there exists no directed path from ti to tj in the
computation graph.

Proof. We prove Theorem 1 by contradiction. Suppose there exists two tasks a, b
such that depth(a) ≥ depth(b) and there is a path a → t1 → t2 . . . tn → b in the
computation graph. By Lemma 1, we know depth(a) < depth(t1), depth(t1) <
depth(t2) . . . depth(tn) < depth(b). So depth(a) < depth(b), which contradicts
the assumption. Theorem 1 is thus proved by contradiction.

2.6 Optimization: Bounded Race Detection

Apart from the graph traversal, the majority of time and space overhead comes
from the shadow memory. Since GT-Race allows the AMT program to execute in
parallel, all threads have to access shadow memory with proper synchronizations
when they try to record a memory access or get previous memory accesses. These
synchronizations are indispensable for the correctness, but they slow down GT-
Race’s execution.

For better performance and higher accuracy, in GT-Race, we bound the range
of data race detection by programmers’ knowledge. Since programmers have a
full understanding of the AMT program, they are eligible to point out error-
prone shared variables. We add an additional option for GT-Race which allows
programmers to mark these variables before launching GT-Race. GT-Race will
only record memory accesses and carry out data race detection for marked shared
variables and ignore the accesses to other variables.

Line 2 in Algorithm 1 shows how bounded race detection works after cap-
turing a memory access. Before starting a graph traversal, the algorithm first
checks the desired address of the memory access to see whether it falls in the
range of marked variables. If the memory access is to an outside memory location,
the algorithm returns true immediately since programmers assume the accessed
memory location will not be involved in any data race. The memory address
check in line 2 avoids needless graph traversal during the program execution,
which is beneficial for efficiency.

3 Implementation

We have developed a prototype implementation of GT-Race (see Fig. 3 for the
architecture), based on the algorithm in Sect. 2. GT-Race works as a back-end

66 L. Yu and V. Sarkar

tool of Intel Pin1, a dynamic instrumentation framework that monitors the pro-
gram execution and inserts callbacks for certain operations such as construct
calls and memory accesses. These callbacks record parameters of operations at
runtime and pass them to GT-Race. GT-Race will call corresponding modules
to analyze the collected data.

Fig. 3. Prototype architecture

The prototype is designed for
Open Community Runtime (OCR)
[5], an open-source AMT runtime
that supports point-to-point synchro-
nizations. An OCR program con-
sists of three basic objects: (a) Event
Driven Task (EDT) (b) data block
(c) event.

An EDT is the basic execution
unit that performs its computation
asynchronously. It may have depen-
dences on other EDTs and events.
Once all its dependences are satisfied, an EDT can run non-preemptively with-
out being interrupted by other EDTs. A data block is a chunk of consecutive
memory managed by the OCR runtime automatically. It is the only way to
share data among EDTs and may have various access modes (e.g. read-only,
read-write, exclusive write, constant). Although data blocks in read-only and
constant modes are supposed to be data race free, it is still possible to introduce
data races for these blocks since the OCR runtime will not prevent EDTs from
issuing write operations to these data blocks. In order not to miss any data race,
we take all data blocks into consideration when detecting data races. However, it
is also possible to constrain GT-Race so that it only performs data race detection
for a specified subset of data blocks. Event is a synchronization object used to
coordinate the activity of EDTs. The semantics is similar to that of a semaphore
or latch. An EDT linking to an event, e, through its outgoing edges must wait
for the termination of all EDTs linking through e’s incoming edges.

As shown in Fig. 3, the inserted callbacks hide the internal details of OCR
objects from GT-Race. They instead record operations on OCR objects as gen-
eral happens-before relations and memory accesses that GT-Race can handle.
Callbacks tackling API calls are injected into the OCR runtime. They treat both
EDTs and events as tasks (an event can be viewed as a no-op task created solely
for the purpose of synchronization) and dependences as directed edges among
corresponding tasks. Callbacks for memory operations are weaved into the OCR
application. When the application executes memory operations on data blocks,
associated callbacks will convert them into equivalent memory read/write oper-
ations on shared memory locations. The separation of data collection and data
race detection avoids unnecessary modifications to GT-Race when applying it
to a new AMT runtime.

1 https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-
tool.

https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 67

4 Performance Evaluation

4.1 Environment and Benchmarks

To evaluate the performance of GT-Race, we carried out several experiments
using the OCR benchmarks. All experiments were conducted on an Intel work-
station with a 24-core Intel Xeon E5-2667 processor and 125 GB of memory,
running 64-bit Ubuntu 15.04. We performed experiments on nine OCR bench-
marks from the OCR app repository2. These benchmarks are either scientific
computing programs or mini-apps derived from real-world applications. All nine
OCR benchmarks were compiled using GCC 4.9.2 with -O3 optimization level,
and executed on top of a customized OCR v1.1 runtime with 24 threads. No
data races were detected in these benchmarks used for performance evaluation,
but we separately tested our tool for correctness with synthetically introduced
data races. Note that the performance of our algorithm is not impacted by the
absence or presence of data races.

Though we compare the technical aspects of our approach with related work
in Sect. 5, we did not find any implementation of related work that could be
used to obtain useful performance comparisons with GT-Race. For example,
direct use of the vector clock approach is not practical for AMT parallelism
because it would require that each task have its own entry in every vector clock.

4.2 Space Overhead of GT-Race

Table 1 contains dynamic statistics for each benchmark, when executed with a
standard input from the OCR repository. Furthermore, the “Memory Usage of
CG” columns show the space overhead of the computation graph with different
storage strategies. We see that the memory space used by the optimized epoch
adjacency list is only 29.20%–37.85% of that used by the unoptimized adjacency
list representation. The improvement in memory usage is due to the implicit
storage of steps and continue edges in the epoch adjacency list. UTS generates
the largest computation graph, which spawns more than 400,000 tasks with
millions of dependences at runtime. The corresponding computation graph is
around 32 MB, which demonstrates the memory efficiency of epoch adjacency
list.

4.3 Performance of GT-Race

Summary of Results. Table 2 lists the uninstrumented execution time and
overhead of data race detection for each benchmark. All timing measurements
are the geometric mean of 10 runs. We use separate columns in Table 2 to analyze
the performance and the effectiveness of different optimizations in GT-Race. All
listed slowdowns are relative to the uninstrumented running times in the “Base
Time” column.

2 https://xstack.exascale-tech.com/git/public/apps.git.

https://xstack.exascale-tech.com/git/public/apps.git

68 L. Yu and V. Sarkar

Table 1. Dynamic benchmark statistics. The first four columns contain the benchmark
name, along with the numbers of tasks, events, and dependences created when execut-
ing the benchmark on a standard input in the OCR repository. The next two columns
give the computation graph size in bytes for the unoptimized case, and the optimized
case using epoch adjacency lists. The last column shows the ratio of the optimized size
to the unoptimized size.

Benchmark Tasks Events Dependences Memory usage of CG (bytes)

Original Epoch adjacency
list

Ratio

Cholesky 222 605 1,101 81,504 30,848 37.85%

FFT 9 9 38 2,560 896 35.00%

Fibonacci 364,179 242,785 1,213,925 82,546,936 29,134,224 35.29%

QuickSort 3,937 7,871 19,678 1,385,360 503,776 36.36%

SmithWaterman 6,401 19,683 51,521 3,511,192 1,241,680 35.36%

UTS 302,014 111,116 1,692,399 104,689,464 33,688,464 32.18%

RSBench 30,033 50 766,540 43,648,232 12,745,968 29.20%

XSBench 36,835 52 898,874 51,222,232 14,972,176 29.23%

LCS 9,817 24,578 74,505 4,997,760 1,742,400 34.86%

Performance of Computation Graph Construction. The “CG” column
reports the overhead of GT-Race when only constructing the computation graph.
The geometric mean overhead is 1.11× which is not significant. Since we utilize
a lock-free data structure to store the computation graph in GT-Race, it reduces
overhead due to unnecessary synchronizations and can also handle a large com-
putation graph efficiently.

Performance of Shadow Memory. The “CG + SM” column shows the over-
head of GT-Race when tracking shadow memory but performing no graph traver-
sals for data race detection. Although the geometric mean overhead is 4.95×,
RSBench has an overhead greater than 10×. Since each instance of shadow mem-
ory has to synchronize concurrent accesses from multiple threads to maintain a
consistent historical record, GT-Race sacrifices some performance for correct-
ness. But the slowdown is acceptable compared to existing work.

Performance of Data Race Detection. The last two “Slowdown” columns
compare the effectiveness of optimizations for graph traversal. With the help of
the reachability cache, GT-Race completed every benchmark’s test in 4 min and
incurred 7.77× slowdown on cache usage. We also list the statistics on the cache
usage in Table 3. The cache miss ratio is less than 2% for all benchmarks except
Fibonacci and UTS. Besides, reachability cache also helps reduce the number
of accessed steps during graph traversal. For all benchmarks except RSBench
and XSBench, the average (arithmetic mean)3 number of accessed steps is much
smaller compared to the size of computation graph.
3 We use geometric mean for ratios, and arithmetic mean for absolute counts such as

accessed steps.

GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 69

Depth filtering further reduces the slowdown of data race detection. For UTS
and RSBench, it reduces the slowdown from 10.22× to 5.50× and 83.19× to
80.86×. For other benchmarks, the improvement is not substantial. Although
FFT sees an increased overhead, the slowdown is close to the version without
depth filtering. The reason for the performance for depth filtering in FFT is that
its computation graph is not large and reachability cache already improves the
performance of graph traversal, which causes the overhead of calculating depths
to overshadow the performance gain.

Table 2. Benchmark results. Columns 4–6 contain slowdowns relative to the base time.

Benchmark Base time
(sec)

Slowdown

CG CG + SM Race detection
(cache only)

Race detection
(cache + depth filtering)

Cholesky 1.66 1.01 1.86 1.88 1.83

FFT 1.58 1.00 2.94 3.08 3.01

Fibonacci 5.54 1.05 1.22 1.31 1.29

QuickSort 1.46 1.02 7.58 7.62 7.73

SmithWaterman 1.59 1.05 8.39 8.89 8.43

UTS 6.29 1.45 3.88 10.22 5.50

RSBench 2.07 1.25 28.10 34.68 34.22

XSBench 2.68 1.20 7.03 83.19 80.86

LCS 1.62 1.03 5.50 6.81 6.71

Geometric mean 1.11 4.95 7.77 7.12

Performance of Bounded Race Detection. We performed another exper-
iment on RSBench and XSBench (the two benchmarks with the largest over-
heads) to evaluate the impact of bounded race detection. During the experiment,
GT-Race only monitored memory accesses and executed data race detection for
a subset of data blocks whose size is smaller than a predefined threshold. For

Fig. 4. Bounded race detection result

Table 3. Cache usage

Benchmark Cache

miss

Cache hit Arith. mean

steps

Cholesky 550 224,510 4

FFT 6 262,144 6

Fibonacci 653,329 849,746 4

Quicksort 19,431 283,366 4

SmithWaterman 25,281 1,452,800 5

UTS 549,166 2,629,321 48

RSBench 30,029 14,876,544 1,743

XSBench 73,632 3,128,693 3,204

LCS 20,480 2,329,707 144

70 L. Yu and V. Sarkar

each threshold, GT-Race tested 10 runs for each benchmark. We utilize this
experiment to roughly evaluate the impact of the number of monitored data
blocks on the slowdown of data race detection.

We list the data in Fig. 4. For both RSBench and XSBench, the slowdown
is small when GT-Race carried out data race detection with a low threshold.
At a certain point, the slowdown increases significantly then stays constant for
a long period. This scenario is because the workload of data race detection is
irregular on different data blocks and the slowdown is dominated by a few shared
variables that are frequently accessed. These results show that input from the
programmer, or perhaps a smart debugger, on which data blocks to monitor can
have a significant impact on the overhead of data race detection.

5 Related Work

Since GT-Race is a graph traversal based dynamic data race detector, we relate
our work to the state-of-art studies in the following areas.

Dynamic Data Race Detection for Multithreaded Programs: Most
dynamic data race detectors are based on vector clock or lockset. FastTrack [6]
is the state-of-art vector clock based race detector. It applies a concise repre-
sentation of vector clock to compress the timestamps of concurrent operations.
Although FastTrack reduces the time overhead of vector clock comparison and
the space overhead of shadow memory, the size of each vector clock is still pro-
portional to the number of threads. Furthermore, FastTrack can only report data
races in the executed thread interleaving.

Eraser [7] is a lockset based lightweight race detector which finds out data
races by the locking discipline. It incurs less runtime overhead to the program
and can predict data races in other possible interleavings, but it may generate a
large amount of false positive. Some work [8] combine lockset with vector clock
to achieve both high accuracy and low overhead. They use lockset to replace
the expensive vector clock when the program issues lock operations, and report
data races when both vector clock and lockset do not prove the correctness of a
memory access. These hybrid race detectors can achieve a good trade-off between
accuracy and performance.

Because the above-mentioned race detectors are designed for general mul-
tithreaded programs, They either cannot handle synchronization constructs in
AMT parallelism, or incur unacceptable time and space overhead due to the
neglect of structural properties in AMT programs.

Dynamic Data Race Detection for AMT Programs: Some data race
detectors are only targeting specific AMT runtimes and utilize the structural
properties of the computation graph to verify AMT programs efficiently. SP-
bags [9] and ALL-SETS [15] utilize the serial-parallel (SP) structure of Cilk
programs to detect data races in amortized bound time and constant space.
ESP-bags [16] is an extension to SP-bags that supports finish construct in async-
finish AMT runtimes. The determinacy race detector in [10] leverages dynamic

GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 71

task reachability graph to handle async-finish AMT runtimes with futures. How-
ever, all these approaches require the program to execute in depth-first order,
which wastes the available hardware parallelism in the underlying platform.
PTRacer [11] is a parallel on-the-fly data race detector for async-finish AMT
runtimes that support locks. It combines SPD3 and ALL-SETS to detect data
races with constant memory space. PTRacer also adds a symbolic diagnosis
phase after the dynamic analysis to predict hidden races at schedule sensitive
branches of the not-taken paths. But PTRacer does not provide any support to
point-to-point synchronization constructs.

Reachability Query for DAGs: GT-Race can be abstracted as conduct-
ing reachability queries on the computation graph to verify the causal order-
ing between concurrent memory accesses. Although reachability query has been
comprehensively studied over decades, existing work is not suitable for GT-Race.
According to the survey presented by [17], state-of-art reachability query algo-
rithms [18–20] compute a label for every node when preprocessing the graph,
and return the reachability between any two nodes by comparing assigned
labels. These algorithms can answer reachability queries efficiently, but they
require an expensive labeling process in advance, which is too time-consuming
for large graphs. In addition, the space overhead of each label is proportional,
or even square to the number of nodes, which will deplete available memory
space quickly. The unacceptable time and space overhead of the labeling process
restrict the usage of reachability query algorithms in GT-Race.

6 Conclusion and Future Work

In this paper, we propose GT-Race, a new graph-traversal based data race detec-
tor for AMT parallelism. It leverages the computation graph data structure,
which encodes the general happens-before structures in AMT programs. GT-
Race executes a graph-traversal based data race detection algorithm for each pair
of concurrent memory accesses. After one execution, GT-Race can report data
races in all possible thread interleavings for the same input. In order to reduce
the time and space complexity for race detection, we also apply a few optimiza-
tions in GT-Race, such as epoch adjacency list to compress the representation
of computation graph, reachability cache and depth filtering to avoid unneces-
sary explorations, and bounded race detection to reduce the range of monitored
memory space. Based on our race detection techniques, we have implemented a
prototype of GT-Race for OCR. The evaluation on a set of open source OCR
benchmarks shows that our tool handles all OCR constructs and incurs accept-
able time and space overhead to the program execution.

GT-Race addresses the challenges of data race detection for AMT programs
mentioned in Sect. 1 as follows (a) The space complexity of the computation
graph is linearly proportional to the number of tasks and dependences, which
makes GT-Race scalable to AMT programs (b) GT-Race detects data races by
using the happens-before relations among tasks, which incurs no false positives
(c) When detecting data races, GT-Race doesn’t require the AMT program to

72 L. Yu and V. Sarkar

execute in sequential order. GT-Race works in parallel, thereby fully utilizing
hardware parallelism for debugging executions as well (d) Since the computation
graph is a general representation of happens-before relations, GT-Race can be
applied to other AMT runtimes beyond OCR.

For future research, we plan to combine some static analysis techniques with
GT-Race to filter out race-free shared variables during dynamic data race detec-
tion. We also plan to further improve the efficiency of graph traversal by learning
the structural properties in the computation graph more comprehensively.

References

1. Pebay, P., Bennett, J.C., et al.: Towards asynchronous many-task in situ data anal-
ysis using legion. In: 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops. IEEE, pp. 1033–1037 (2016)

2. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: an efficient multithreaded runtime system. J. Parallel Distrib. Comput.
37(1), 55–69 (1996)

3. Chatterjee, S., Tasirlar, S., et al.: Integrating asynchronous task parallelism with
MPI. In: 2013 IEEE 27th International Symposium on Parallel & Distributed Pro-
cessing (IPDPS), pp. 712–725. IEEE (2013)

4. Treichler, S., Bauer, M., Aiken, A.: Realm: an event-based low-level runtime for
distributed memory architectures. In: Proceedings of the 23rd International Con-
ference on Parallel Architectures and Compilation, pp. 263–276. ACM (2014)

5. Mattson, T.G., Cledat, R., et al.: The open community runtime: a runtime system
for extreme scale computing. In: 2016 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1–7. IEEE (2016)

6. Stenzel, O.: The Physics of Thin Film Optical Spectra. SSSS, vol. 44, pp. 163–180.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-21602-7 8

7. Savage, S., Burrows, M., et al.: Eraser: a dynamic data race detector for multi-
threaded programs. ACM Trans. Comput. Syst. (TOCS) 15(4), 391–411 (1997)

8. O’Callahan, R., Choi, J.D.: Hybrid dynamic data race detection. In: ACM Sigplan
Notices, vol. 38, pp. 167–178. ACM (2003)

9. Feng, M., Leiserson, C.E.: Efficient detection of determinacy races in cilk programs.
Theory Comput. Syst. 32(3), 301–326 (1999)

10. Surendran, R., Sarkar, V.: Dynamic determinacy race detection for task parallelism
with futures. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp.
368–385. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9 23

11. Yoga, A., Nagarakatte, S., Gupta, A.: Parallel data race detection for task parallel
programs with locks. In: Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, pp. 833–845. ACM
(2016)

12. Sarkar, V.: Comp 322: fundamentals of parallel programming module 1: paral-
lelism (2017). https://wiki.rice.edu/confluence/download/attachments/4435861/
module1.pdf?version=5&modificationDate=1519055242728&api=v2

13. Tasirlar, S., Sarkar, V.: Data-driven tasks and their implementation. In: Proceed-
ings of the 2011 International Conference on Parallel Processing, ICPP 2011, pp.
652–661, Washington, DC, USA. IEEE Computer Society (2011)

https://doi.org/10.1007/978-3-319-21602-7_8
https://doi.org/10.1007/978-3-319-46982-9_23
https://wiki.rice.edu/confluence/download/attachments/4435861/module1.pdf?version=5&modificationDate=1519055242728&api=v2
https://wiki.rice.edu/confluence/download/attachments/4435861/module1.pdf?version=5&modificationDate=1519055242728&api=v2

GT-Race: Graph Traversal Based Data Race Detection for AMT Parallelism 73

14. Nethercote, N., Seward, J.: How to shadow every byte of memory used by a pro-
gram. In: Proceedings of the 3rd International Conference on Virtual Execution
Environments, pp. 65–74. ACM (2007)

15. Cheng, G.I., Feng, M., Leiserson, C.E., Randall, K.H., Stark, A.F.: Detecting data
races in Cilk programs that use locks. In: Proceedings of the Tenth Annual ACM
Symposium on Parallel Algorithms and Architectures, pp. 298–309. ACM (1998)

16. Raman, R., Zhao, J., et al.: Efficient data race detection for async-finish parallelism.
Form. Methods Syst. Des. 41(3), 321–347 (2012)

17. Wei, H., Yu, J.X., Lu, C., Jin, R.: Reachability querying: an independent permu-
tation labeling approach. Proceed. VLDB Endow. 7(12), 1192–1202 (2014)

18. Wang, H., He, H., Yang, J., Yu, P.S., Yu, J.X.: Dual labeling: answering graph
reachability queries in constant time. In: 2006 Proceedings of the 22nd Interna-
tional Conference on Data Engineering, p. 75, ICDE 2006. IEEE (2006)

19. Cheng, J., Huang, S., et al.: TF-label: a topological-folding labeling scheme for
reachability querying in a large graph. In: Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, pp. 193–204. ACM (2013)

20. Trißl, S., Leser, U.: Fast and practical indexing and querying of very large graphs.
In: Proceedings of the 2007 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 845–856. ACM (2007)

Performance and Power Modeling,
Prediction and Evaluation

Reducing GPU Register File Energy

Vishwesh Jatala1(B) , Jayvant Anantpur2(B) , and Amey Karkare1(B)

1 Indian Institute of Technology Kanpur, Kanpur, India
{vjatala,karkare}@cse.iitk.ac.in

2 Mentor Graphics India Pvt. Ltd., Bangalore, India
jayvant.anantpur@gmail.com

Abstract. Graphics Processing Units (GPUs) maintain a large register
file to increase the thread level parallelism (TLP). To increase the TLP
further, recent GPUs have increased the number of on-chip registers in
every generation. However, with the increase in the register file size, the
leakage power increases. Also, with the technology advances, the leakage
power component has increased and has become an important consid-
eration for the manufacturing process. The leakage power of a register
file can be reduced by turning infrequently used registers into low power
(drowsy or off) state after accessing them. A major challenge in doing
so is the lack of runtime register access information.

To address this, we propose a system called GReEneR. It employs
a compiler analysis that determines the power state of the registers, i.e.,
which registers can be switched off or placed in drowsy state at each pro-
gram point and encodes this information in program instructions. Fur-
ther, it uses a runtime optimization that increases the accuracy of power
state of registers. We implemented the proposed ideas using GPGPU-
Sim simulator and evaluated them on 21 kernels from several bench-
marks suites. We observe that when compared to the baseline without
any power optimizations, GReEneR shows an average reduction of reg-
ister leakage energy by 69.04% with a negligible number of simulation
cycles overhead (0.53%).

Keywords: Register file · Power · Energy · Performance

1 Introduction

Graphics Processing Unit (GPU) achieves high throughput by utilizing thread
level parallelism (TLP). Typically, GPUs maintain a large register file in each
streaming multiprocessor (SM) to improve the TLP. GPUs allow a large number
of resident threads [2] in each SM, and the resident threads can store their
thread context in the register file, which facilitates faster context switching of
the threads. The threads that are launched in each SM are grouped into sets of 32

Vishwesh Jatala is supported by Tata Consultancy Services (TCS) Research Schol-
arship Program. Amey Karkare acknowledges the travel fund received from TCS.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 77–91, 2018.
https://doi.org/10.1007/978-3-319-96983-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_6&domain=pdf
http://orcid.org/0000-0002-3105-922X
http://orcid.org/0000-0003-3353-0625
http://orcid.org/0000-0002-3664-6490

78 V. Jatala et al.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 1500

 3000

 4500

 6000

 7500

 9000

 10500

 12000

 13500

 15000

 16500

 18000

 19500

 21000

 22500

 24000

 25500

 27000

 28500

 30000

R
eg

is
te

r
N

um
be

r

Simulation Cycle

Each data point shows the access of a register (Y-axis) during a cycle (X-axis).

Fig. 1. Register access pattern for MUM [5]

threads (called warps), and they execute the instructions in a single instruction,
multiple threaded (SIMT) manner. To keep improving the TLP of the GPUs,
GPU architects increase the maximum number of resident threads and register
file sizes in every generation.

Earlier studies [12,17] show that register files in GPUs consume around 15%
of the total power. With the technology advances, the leakage power component
has increased and has become an important consideration for the manufacturing
process [16]. Moreover, registers in a GPU continue to dissipate leakage power
throughout the entire execution of its warp even when they are not accessed by
the warp.

1.1 Motivation

To understand the severity of leakage power dissipation by register file, consider
Fig. 1 which shows the access patterns of some registers of warp 0 during the
execution of MUM application (The experimental methodology has been dis-
cussed in Sect. 4). We use the access patterns of the registers of a single warp as
a representative since all the warps of a kernel typically show similar behavior
during execution [4]. We make the following observations:

– Register 10 is accessed very infrequently—it is accessed for only 7 cycles
during the complete execution (life time) of the warp (29614 cycles).

– Register 1 is the most frequently accessed register during the warp execution.
However, it is accessed for only 330 cycles (∼1.11%) during the life time of
the warp.

This shows that registers are accessed for a very short duration during the warp
life time. However, they continue to dissipate leakage power for the entire life
time of the warp. Figure 2 shows that the behavior is not specific to MUM, but
is seen across a wide range of applications. The figure shows the percentage of
simulation cycles spent in register accesses (averaged over all the registers in all

Reducing GPU Register File Energy 79

0.0%
0.2%
0.4%
0.6%
0.8%
1.0%
1.2%
1.4%
1.6%

BP BFS1
BFS2

BS LM
D

LIB
LPS

M
C1

M
C2

M
R1

M
R2

M
UM

NN1
NN2

NN3
NN4

PF SP SGEM
M

SPM
V

VA

S
im

ul
at

io
n

C
yc

le
s

Fig. 2. Percentage of simulation cycles spent by a register (average of all the registers)

the warps) for several applications. We observe that registers on an average spend
<2% of the simulation cycles during the warp execution while leaking power
during the entire execution. This behavior is expected since GPU allows large
number of resident warps in each SM and these warps get executed according to
a pre-defined scheduling policy. If a warp gets scheduled less frequently, then its
registers leak power for a longer duration.

One solution [3] to reduce the leakage power of the registers is by putting
the registers into drowsy or SLEEP1 state immediately after the registers of an
instruction are accessed. However, this can have run-time overhead whenever
there are frequent wake up signals to the sleeping register. Consider Fig. 1 again:

– Putting register 10 to SLEEP state immediately after its accesses saves signif-
icant power due to the gaps of several thousands of cycles between consecutive
accesses.

– In contrast, register 1 is accessed very frequently. If it is put to SLEEP after
every access, it will have a high overhead of wake up signals.

– The access pattern of register 7 changes during the warp execution. It is
accessed frequently for some duration (for example, between cycles 10500–
11250), and not accessed frequently for other duration (between cycles 3000–
7500). To optimize energy as well as run-time, the register needs to be kept
ON whenever it is frequently accessed, and put to SLEEP otherwise.

– The last access to register 8 is at cycle 1602. The register can be turned OFF
after its last access to save more power.

In summary, the knowledge of registers’ access patterns helps improve energy
efficiency without impacting the run-time adversely. Our proposed solution
GReEneR statically estimates the run-time usage patterns of registers to
reduce GPU register file leakage power.

1 Drowsy [3,9] and SLEEP [14,18,19] states refer to the same low power data preserv-
ing states. In this paper, we use the term SLEEP. Also, the techniques [14,18] to
reduce leakage power using low power states address the subthreshold leakage power.
Hence, in this paper the savings on leakage energy refer to savings on subthreshold
leakage energy.

80 V. Jatala et al.

1.2 Contributions

GReEneR uses a compile-time analysis to determine the power state of the reg-
isters (OFF, SLEEP, or ON) for each instruction by estimating the register usage
information. Further, it transforms an input assembly language by encoding the
power state information at each instruction to make it energy efficient. The static
analysis makes safe approximations while computing power state of the regis-
ters, therefore, the choice of the state can be suboptimal at run-time. Hence, to
improve the accuracy and energy efficiency, it provides a run-time optimization
that dynamically corrects the power state of registers of each instruction. We
make the following contributions:

1. We introduce a new instruction format that supports the power states for
the instruction registers (Sect. 3.2). We propose a compile-time analysis that
determines the power state of the registers at each program point and trans-
forms an input assembly language into a power optimized assembly language
(Sects. 3.1 and 3.2).

2. We propose a run-time optimization to reduce the penalty of suboptimal (but
safe) choices made by static analysis (Sect. 3.3).

3. We implemented the proposed compile-time and run-time optimizations using
GPGPU-Sim simulator [10]. We integrated GPUWattch [17] with CACT-P
[18] version to enable power saving mechanism (Sect. 4).

4. We evaluated our implementation on wide range of kernels from different
benchmark suites: CUDASDK [8], GPGPU-SIM [5], Parboil [1], and Rodinia
[7]. We observe a reduction in the register leakage energy by an average of
69.04% and maximum of 87.95% (Sect. 4) when compared to the baseline
approach, which does not have any power optimizations.

In the paper, Sect. 2 briefs the background required for GReEneR, while the
system itself is described in Sect. 3. Section 4 gives the experimental evaluation.
Section 5 describes related work, and Sect. 6 concludes the paper.

2 Background

GPUs consist of a set of streaming multiprocessors (SMs). Each SM contains a
large number of execution units such as ALUs, SPs, SFUs, and Load/Store units.
GPUs achieve high throughput because they can hide long memory execution
latencies with massive thread level parallelism. Each SM has a large register file,
which allows the resident threads to maintain their contexts, and hence can have
faster context switching.

NVIDIA provides a programming language CUDA [8] to parallelize appli-
cations on GPU. A program written in CUDA is translated to an intermediate
representation (PTX), which is finally translated to an executable code. NVIDIA
provides tools such as cuobjdump to disassemble the executable into SASS assem-
bly language. GPGPU-Sim converts SASS code to PTXPlus code for simulation.

GPUWattch [17] framework uses the simulation statistics of GPGPU-Sim to
measure the power of each component in the GPUs. The framework is built on
McPAT [19], which internally uses CACTI [6]. McPAT models the register files

Reducing GPU Register File Energy 81

as memory arrays to measure the register power. GReEneR inserts power state
information of registers in the PTXPlus code to enable reduction in the leakage
power of the register files.

3 GReEneR

To understand the working of GReEneR, we need to understand the different
access patterns of a register and their effect on the wake up penalty incurred. Let
W (threshold) denotes the minimum number of program instructions that are
required to offset the wake-up penalty incurred when a register state is switched
from OFF or SLEEP state to ON state. Consider a program that accesses some
register R in a statement S during execution. The future accesses of R in this
execution govern its power state. The following scenarios exist:

1. The next access (either read or write) to R is by an instruction S′ and there
are no more than W instructions between S and S′. In this case, since the
two accesses to R are very close, it should be kept ON to avoid any wake-up
penalty associated with SLEEP or OFF state.

2. The next access to R is a read access by an instruction S′ and there are more
than W instructions between S and S′. In this case, since the value stored in
R is used by S′, we can not switch R to OFF state as it will cause the loss of
its value. However, we can put R in SLEEP state.

3. The next access to R is a write access by an instruction S′ and there are more
than W instructions between S and S′. In this case, since the value stored in
R is being overwritten by S′, we can put R in OFF state.

4. There is no further access to R in the program. In this case also, R can be
safely turned OFF.

We now describe the compiler analysis used by GReEneR to capture these
scenarios.

3.1 Compiler Analysis

To compute power state of registers at each instruction, we perform compiler
analysis at the instruction level. Determining the power state of each register
requires knowing the life time of registers as well as the distance between the
consecutive accesses to the registers. We use the following notations.

– IN(S) denotes the program point before the instruction S. OUT(S) denotes
the program point after the instruction S.

– SUCC(S) denotes the set of successors of the instruction S. An instruction I
is said to be successor of S if the control may transfer to I after executing
the instruction S.

– isLive(π,R) is true if there is some path from program point π to Exit that
contains a use of R not preceded by its definition.

– Dist(π,R) denotes the distance in terms of number of instructions from pro-
gram point π till the next access to R. Dist(π,R) is set to ∞ when it exceeds
the threshold W .

82 V. Jatala et al.

Fig. 3. Data flow equations. Note that
INC(x) is a saturating increment operator.

Table 1. Computing power state of a
register R at a program point π

isLive(π, R) SleepOff(π, R) Power(π, R)

True True SLEEP

True False ON

False True OFF

False False ON

– SleepOff(π,R) is true if the register R can be put into SLEEP or OFF state
at π.

– Power(π,R) denotes the power state of the register R at program point π.

The liveness information of each register, isLive(π,R), can be computed
using traditional liveness analysis [15]. The data flow equations to compute the
Dist(IN(S), R) and Dist(OUT(S), R) are given in Fig. 3. Since our analysis aims
to reduce the power consumption, we compute Dist(OUT(S), R) as the maximum
value of Dist(IN(SS), R) over the successors SS of S. A register R can potentially
be put into SLEEP or OFF state at a program point π if it is not accessed within
the distance window W on some path, i.e., SleepOff(π,R) = (Dist(π,R) == ∞).

The power state of each register at each program point can be computed
according to Table 1. Note that in GPUs, all the 32 threads of a warp execute the
same instruction in SIMT manner, hence power state computed by the analysis
is applicable to 32 registers corresponding to the 32 threads of a warp.

3.2 Encoding Power States

The power state (Power State) of a register can be one of the three states:
OFF, SLEEP, or ON. Thus, it requires two bits to represent Power State of
one register. Since the power state can change after every instruction at run-time,
we need to encode the Power State of the operand registers of an instruction in
the instruction itself.

PTXPlus instructions [10] can support up to 4 source and 4 destination reg-
isters. Encoding Power State of all the registers will require 16 bits. We observed
that in our benchmarks, most instructions use only up to 2 source registers and 1
destination register. Therefore, to reduce the number of bits required to encode
Power State in each instruction, we encode information only for 2 source registers
and 1 destination register. For instructions having more registers, Power State
of the remaining registers is assumed to be SLEEP to enable power saving. The
modified instructions format is:

<Opcode> <Options> <Operand List> <Power State List >

where Power(OUT(S), R) is Power State encoded for a register R for an instruc-
tion S.

Reducing GPU Register File Energy 83

Fig. 4. A Snippet of the program and its CFG for SP benchmark [8]

Example 1. Figure 4(a) shows a snippet of power optimized PTXPlus code,
which is generated for SP benchmark using a threshold value (W) 7. The con-
trol flow graph (CFG) corresponding to the snippet is shown in Fig. 4(b). Note
that the CFG is shown with respect to traditional basic block level to show it
in compact. In Fig. 4(a), explicit branch addresses have been replaced by block
labels for ease of understanding. ��

At run-time, power state of the source registers are set after the register
contents have been read, i.e., in the read operands phase in the GPU pipeline,
and the power state of the destination registers are set after the register contents
have been written, i.e., in the write back stage of the pipeline.

3.3 Run-Time Optimization

Recall that the compiler analysis described in Sect. 3.1 computes
Dist(OUT(S), R) as the maximum distance value over all successors when
OUT(S) is a branch point. This decision increases the chances of power sav-
ings, but it can be suboptimal at run-time as shown by the following example.

Example 2. Consider the CFG in Fig. 5(a) for a hypothetical benchmark.
Assume the threshold value of 7 for GReEneR. Instruction S0 defines a register
r0. The next access to r0 occurs along two paths: the path along S10 has a use
at a distance of 2, and the other (along S1) has a use in S9 at a distance of
∞ (>7). GReEneR computes Dist(OUT(S0), r0) as ∞, the maximum of the

84 V. Jatala et al.

Fig. 5. Example for run-time optimization

distances along the successors. Further, the state Power(OUT(S0), r0) is com-
puted as SLEEP. When the program executes the path along S1, power is saved.
However, if the program executes the path along S10, then the register needs an
immediate wake up, causing an overhead. ��

GReEneR’s compile-time decision can be corrected at run-time by looking
at near future accesses of a register in the pipeline. The hardware is modified
to check in the pipeline if any decoded instruction from the same warp accesses
a register whose power state is being changed to SLEEP or OFF. If so, then
the register power is kept ON. This avoids the wake up latencies for instruc-
tions that access the same register within a short duration, thereby avoiding the
performance penalty.

Example 3. Figure 5(b) shows a possible execution sequence of a program whose
CFG is shown in Fig. 5(a). The instruction S0 writes to register r0. After writing
the register value in write back stage (WB), the register needs to be put into
SLEEP state. Assume that the program takes the path along S10 and decodes
the instruction S11 before the write back stage of S0. Our run-time optimization
detects the future access to r0 by S11, and keeps the register in ON state instead
of putting it into SLEEP state to avoid additional wake up latencies. On the
other hand, if the program takes the path along S1, then the instruction present
in the S9 would appear much later in the pipeline (after WB stage of S0). The
register r0 will be set to SLEEP state. ��

4 Experimental Analysis

Implementing GReEneR requires to modify the GPU pipeline. We imple-
mented the proposed hardware changes and compiler optimizations in GPGPU-
Sim V3.x [10]. The details of the modified GPU architecture and the corre-
sponding overheads (negligible) are discussed in [11] and ignored for brevity. The
GPGPU-Sim configuration used for the experiments is shown in Table 2. We also
evaluated GReEneR on various other GPU configurations, whose results are
reported in our technical report [11]. We measured the power consumption of
register file using GPUWattch [17].

Reducing GPU Register File Energy 85

Table 2. GPGPU-Sim configuration

Resource Configuration

Architecture NVIDIA Tesla K20x
Number of SMs 14
Shader core clock 732MHz
Technology node 22 nm
Register file size per SM 256KB
Number of register banks 32
Max number of TBs per SM 16
Max number of Threads per SM 2048
Warp scheduling LRR
Number of schedulers per SM 4

Note that GPUWattch inter-
nally uses CACTI [6], which
does not support leakage power
saving mechanism. Therefore,
we modified GPUWattch to use
CACTI-P version [18], which
supports the leakage power sav-
ing mechanism. CACTI-P uses
minimum data retention voltage
to enable the SRAM cells to
enter into SLEEP state without
losing their data. We chose SRAMvccmin to be the default value (provided by
CACTI-P depending on the technology node, 22 nm in this case). To put SRAM
cells in OFF state, we configured SRAMvccmin to 0 V. After running several
experiments, we chose the threshold value (W) as 3, which achieves lowest energy
for maximum number of kernels. We used the latency to change a register state
from SLEEP to ON to be 1 cycle, and the latency to change a register state
from OFF to ON to be 2 cycles. We report these latency and energy overheads
in our results and also include these overheads throughout our results. We eval-
uated GReEneR on 21 kernels from the benchmark suites CUDA-SDK [8],
GPGPU-SIM [5], Parboil [1], and Rodinia [7] as shown in Table 3.

Table 3. Benchmarks used for evaluation

We use Baseline to denote the default GPGPU-Sim implementation that
does not use any leakage power saving mechanisms. Sleep-Reg denotes the app-
roach that optimizes the baseline approach by (1) turning OFF the unallocated
registers and (2) turning the allocated registers into SLEEP state immediately
after the registers are accessed [3].

Comparing Register Leakage Power: Figure 6 shows the effectiveness of
GReEneR and Sleep-Reg by measuring the reduction in leakage power with
respect to Baseline. From the figure, we observe that GReEneR shows an
average (Geometric Mean denoted as G.Mean) reduction of leakage power by
69.21% when compared to the Baseline. It shows the GReEneR is effective
in turning the instruction registers into lower power state, such as SLEEP or
OFF state depending on the behavior of the registers. The Baseline does not

86 V. Jatala et al.

20%

30%

40%

50%

60%

70%

80%

90%

B
P

B
FS

1

B
FS

2

B
S

LIB

LM
D

LP
S

M
C

1

M
C

2

M
R

1

M
R

2

M
U

M

N
N

1

N
N

2

N
N

3

N
N

4

P
F

S
G

E
M

M
S

P

S
P

M
V

V
A

G
.M

ean

R
ed

uc
tio

n
in

 L
ea

ka
ge

 P
ow

er Sleep-Reg GREENER

Fig. 6. Comparing register leakage power

-6%

-3%

0%

3%

6%

9%

12%

B
P

B
FS

1

B
FS

2

B
S

LIB

LM
D

LP
S

M
C

1

M
C

2

M
R

1

M
R

2

M
U

M

N
N

1

N
N

2

N
N

3

N
N

4

P
F

S
G

E
M

M
S

P

S
P

M
V

V
A

G
.M

ean

R
ed

uc
tio

n
in

 S
im

ul
at

io
n

C
yc

le
s

Sleep-Reg GREENER

Fig. 7. Comparing performance in terms of simulation cycles

provide any mechanism to save the leakage power, as a result, the registers
of a warp continue to consume leakage power throughout the warp execution.
Figure 6 also shows that Sleep-Reg approach reduces the register leakage power
by 60.23% when compared to Baseline, however, GReEneR is more power
efficient than Sleep-Reg. It is because Sleep-Reg approach reduces the leakage
power by turning the instruction registers into SLEEP state immediately after
the instruction operands are accessed, without considering the access pattern of
the registers. If a register needs an immediate access, then keeping the register
into SLEEP instead of ON state requires additional latency cycles to wake up
the register, and during these additional cycles, the registers consume power.

Performance Overhead Using Simulation Cycles: Figure 7 shows the per-
formance overheads of GReEneR and Sleep-Reg approaches in terms of the
number of simulation cycles with respect to Baseline. On an average, the applica-
tions show a negligible performance overhead of 0.53% with respect to Baseline.
A slowdown is expected because GReEneR turns the registers into SLEEP or
OFF states to enable power savings, and these registers are turned back to ON
state (woken up) when they need to be accessed. This wake up process takes
few additional latency cycles which leads to increase in the number of simula-
tion cycles. Interestingly, some applications (BP, LPS, MC2, MR1, NN2, SP,
and VA) show improvement in their performance. This occurs due to the change
in the issuing order of the instructions. The warps that require their registers
to be woken up can not be issued in its current cycle, instead other resident
warps that are ready can be issued. This change in the issue order leads to

Reducing GPU Register File Energy 87

20%

30%

40%

50%

60%

70%

80%

90%

B
P

B
FS

1

B
FS

2

B
S

LIB

LM
D

LP
S

M
C

1

M
C

2

M
R

1

M
R

2

M
U

M

N
N

1

N
N

2

N
N

3

N
N

4

P
F

S
G

E
M

M
S

P

S
P

M
V

V
A

G
.M

ean

R
ed

uc
tio

n
in

 L
ea

ka
ge

 E
ne

rg
y

Sleep-Reg GREENER

Fig. 8. Comparing register leakage energy

20%

30%

40%

50%

60%

70%

80%

90%

BP BFS1
BFS2

BS LIB
LM

D
LPS

M
C1

M
C2

M
R1

M
R2

M
UM

NN1
NN2

NN3
NN4

PF SGEM
M

SP SPM
V

VA G.M
ean

R
ed

uc
tio

n
in

 L
ea

ka
ge

 E
ne

rg
y

Sleep-Reg Comp-OPT GREENER

Fig. 9. Comparing effectiveness of individual optimizations

change in the memory access patterns, which in turns changes L1 and L2 cache
misses etc. For instance, in case of BP, LPS, MC2, and NN1 applications, we
observe an improvement in the performance due to less number of pipeline stall
cycles with GReEneR when compared to Baseline. Figure 7 also shows that
Sleep-Reg has an average performance degradation of 1.48% when compared to
the Baseline approach. This degradation is more when compared to GReEneR
because Sleep-Reg turns all the instruction registers into SLEEP state after the
instruction operands are accessed, irrespective of their usage pattern.

Comparing Register Leakage Energy: Figure 8 compares the total energy
savings of GReEneR and Sleep-Reg w.r.t. Baseline. The results show that
GReEneR achieves an average reduction of register leakage energy by 69.04%
and 23.29% when compared to Baseline and Sleep-Reg respectively. From Figs. 6
and 7, we see that GReEneR shows more leakage power saving, also has neg-
ligible performance overhead with respect to the Baseline, hence we achieve a
significant reduction in leakage energy.

Effectiveness of Optimizations: We show the effectiveness of the proposed
optimizations in Fig. 9. We observe that the compiler optimization (discussed
in Sect. 3.1, and denoted as Comp-OPT) saves more energy (average 69.09%)
when compared to Sleep-Reg (59.65%). This shows that turning the registers
into low power states (SLEEP or OFF state) with the knowledge of register
access pattern is more effective than turning the registers into SLEEP state
after accessing them.

88 V. Jatala et al.

Table 4. Overheads of sleep transistors

Parameter Overhead

Area 0.00875 mm2

SLEEP to ON latency 0.0197 ns (<1 cycle)

OFF to ON latency 0.0551 ns (<1 cycle)

Energy for SLEEP to ON and vice versa 0.0633 nJ

Energy for OFF to ON and vice versa 0.198 nJ

The run-time optimization (discussed in Sect. 3.3) is evaluated by combining
it with Comp-OPT, and we denote them as GReEneR in the figure. From the
results, we observe that, for most of the applications, GReEneR show minor
improvements when compared to Comp-OPT respectively. This is because the
run-time optimization helps only in correcting power state of a register by turn-
ing to ON state when it detects the future access to the register at run-time.
However, if the register is not found to be accessed in the near future at run-time,
it does not modify and retains the power state as directed by the Comp-OPT.
For some applications (e.g. NN3), GReEneR is less efficient when compared to
Comp-OPT. It occurs when a register that is determined to be accessed in the
near future does not get accessed due to reasons such as scheduling order, score-
board stalls, or the unavailability of the corresponding execution unit. Note that
the effectiveness of run-time optimization depends on the application behavior
at the branch divergence points.

Analyzing Hardware Overheads: To support leakage power saving,
CACTI-P [18] introduces additional sleep transistors into the SRAM structures.
These transistors enable us to put the registers into low power states (SLEEP
or OFF) after accessing the operands. For the configuration used in our exper-
iments, Table 4 shows the additional area, latency, and energy associated with
the additional sleep transistors circuitry. Note that in our experiments, we con-
servatively consider the latency overhead to change the power state from OFF to
ON state to be 2 cycles. We also evaluated GReEneR by varying the wake up
latency cycle overhead (the results are reported in [11]). We observed that even
with varying the wake up latency, the applications show significant reduction in
the leakage energy when compared to Baseline.

5 Related Work

Leakage power has become a major source of power dissipation in CMOS tech-
nology. Reducing the leakage power has been well studied in the context of CPUs
when compared to GPUs. Though GReEneR is only for saving leakage power
consumption of GPU register files, we describe briefly the techniques to save
leakage power in the context of both CPUs as well as GPUs. A comprehensive

Reducing GPU Register File Energy 89

list of architectural techniques to reduce leakage power of CPUs are described
in [14]. A survey of methods to reduce GPU power is presented in [20].

CPU Leakage Power Saving Techniques: Powell et al. [22] proposed a state
destroying technique, Gated-Vdd, to minimize the leakage power of SRAM cells
by gating supply voltage. Several methods [13,23] leverage Gated-Vdd technique
to reduce the leakage power of cache memory by turning off the inactive cache
lines. However, these techniques cannot preserve the state of the cache lines. To
maintain the state, Flautner et al. [9] proposed an architectural technique that
reduces the leakage power by putting the cache lines into a drowsy state. Other
approaches [21] exploit this by using cache access patterns to put cache lines
in the drowsy state. As expected, the leakage power savings in this (drowsy)
approach are less when compared to Gated-Vdd approach.

GPU Leakage Power Saving Techniques: Warped register file [3] leverages
this drowsy approach to reduce leakage power of register files by putting the
registers into the drowsy state immediately after accessing them. However, it
does not take into account the register access pattern while turning the registers
into low power states. Their approach is closest to GReEneR and has been
quantitatively compared in our results. Register file virtualization [12] reduces
the register leakage power by reallocating unused registers to another warp.
Pilot register file [4] partitions the register file into fast and slow register files,
and it allocates the registers into these parts depending on the frequency of the
register usage. The partition of the registers is done statically. Therefore, if a
register is accessed more frequently for some duration, and less frequently for
other duration, then allocating the register to either of the partitions can make
it less energy efficient. GReEneR changes power state during the execution, so
it does not have this drawback.

6 Conclusions and Future Work

This paper focuses on reducing the leakage power of the register file in GPUs. We
discuss various opportunities to save leakage power of the registers by analyzing
the access patterns of the registers. We propose a system called GReEneR that
employs compiler analysis to determine the power state of each register at each
program point. To improve the effectiveness further, we introduce a run-time
optimization that dynamically corrects the power states determined by the static
analysis. On evaluating GReEneR using several applications, we observed that
the knowledge of register access patterns and the compiler optimizations help
in improving the energy efficiency of register file with a negligible number of
simulation cycles overhead.

In future, we plan to explore several hardware and software strategies to
reduce the register leakage energy further. For instance, we can study the effect
of various register allocation mechanisms, scheduling polices and propose algo-
rithms that minimize leakage energy by leveraging GReEneR.

The register leakage power constitutes a part of the total leakage power.
Similarly, other resources in the GPU such as shared memory, cache, and DRAM,

90 V. Jatala et al.

dissipate leakage power during a kernel execution. In future, we plan to work on
reducing the power consumption of the other GPU resources by analyzing the
application behavior and the resource access patterns.

References

1. Parboil Benchmarks. http://impact.crhc.illinois.edu/Parboil/parboil.aspx
2. Kepler Architecture (2014). http://www.nvidia.com/object/nvidia-kepler.html
3. Abdel-Majeed, M., Annavaram, M.: Warped register file: a power efficient register

file for GPGPUs. In: HPCA (2013). https://doi.org/10.1109/HPCA.2013.6522337
4. Abdel-Majeed, M., Shafaei, A., Jeon, H., Pedram, M., Annavaram, M.: Pilot reg-

ister file: energy efficient partitioned register file for GPUs. In: HPCA (2017).
https://doi.org/10.1109/HPCA.2017.47

5. Bakhoda, A., Yuan, G., Fung, W., Wong, H., Aamodt, T.: Analyzing CUDA work-
loads using a detailed GPU simulator. In: ISPASS (2009). https://doi.org/10.1109/
ISPASS.2009.4919648

6. CACTI. http://www.hpl.hp.com/research/cacti
7. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: IISWC

(2009). https://doi.org/10.1109/IISWC.2009.5306797
8. CUDA-SDK (2014). http://docs.nvidia.com/cuda/cuda-samples
9. Flautner, K., Kim, N.S., Martin, S., Blaauw, D., Mudge, T.: Drowsy caches: simple

techniques for reducing leakage power. SIGARCH Comput. Archit. News 30(2)
(2002). https://doi.org/10.1145/545214.545232

10. GPGPU-Sim Simulator (2014). http://www.gpgpu-sim.org
11. Jatala, V., Anantpur, J., Karkare, A.: GREENER: a tool for improving energy

efficiency of register files. CoRR abs/1709.04697 (2017)
12. Jeon, H., Ravi, G.S., Kim, N.S., Annavaram, M.: GPU register file virtualization.

In: MICRO (2015). https://doi.org/10.1145/2830772.2830784
13. Kaxiras, S., Hu, Z., Martonosi, M.: Cache decay: exploiting generational behavior

to reduce cache leakage power. In: ISCA (2001). https://doi.org/10.1145/379240.
379268

14. Kaxiras, S., Martonosi, M.: Computer Architecture Techniques for Power-
Efficiency, 1st edn. Morgan and Claypool Publishers (2008)

15. Khedker, U., Sanyal, A., Karkare, B.: Data Flow Analysis: Theory and Practice,
1st edn. CRC Press Inc., Boca Raton (2009)

16. Kim, N.S., et al.: Leakage current: Moore’s law meets static power. Computer
36(12) (2003). https://doi.org/10.1109/MC.2003.1250885

17. Leng, J., et al.: GPUWattch: enabling energy optimizations in GPGPUs. In: ISCA
(2013). https://doi.org/10.1145/2485922.2485964

18. Li, S., Chen, K., Ahn, J.H., Brockman, J.B., Jouppi, N.P.: CACTI-P: architecture-
level modeling for sram-based structures with advanced leakage reduction tech-
niques. In: ICCAD (2011). https://doi.org/10.1109/ICCAD.2011.6105405

19. Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen, D.M., Jouppi, N.P.:
The McPAT Framework for multicore and manycore architectures: simultaneously
modeling power, area, and timing. TACO 10(1) (2013). https://doi.org/10.1145/
2445572.2445577

20. Mittal, S., Vetter, J.S.: A survey of methods for analyzing and improving GPU
energy efficiency. ACM Comput. Surv. 47(2) (2014). https://doi.org/10.1145/
2636342

http://impact.crhc.illinois.edu/Parboil/parboil.aspx
http://www.nvidia.com/object/nvidia-kepler.html
https://doi.org/10.1109/HPCA.2013.6522337
https://doi.org/10.1109/HPCA.2017.47
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISPASS.2009.4919648
http://www.hpl.hp.com/research/cacti
https://doi.org/10.1109/IISWC.2009.5306797
http://docs.nvidia.com/cuda/cuda-samples
https://doi.org/10.1145/545214.545232
http://www.gpgpu-sim.org
https://doi.org/10.1145/2830772.2830784
https://doi.org/10.1145/379240.379268
https://doi.org/10.1145/379240.379268
https://doi.org/10.1109/MC.2003.1250885
https://doi.org/10.1145/2485922.2485964
https://doi.org/10.1109/ICCAD.2011.6105405
https://doi.org/10.1145/2445572.2445577
https://doi.org/10.1145/2445572.2445577
https://doi.org/10.1145/2636342
https://doi.org/10.1145/2636342

Reducing GPU Register File Energy 91

21. Petit, S., Sahuquillo, J., Such, J.M., Kaeli, D.: Exploiting temporal locality in
drowsy cache policies. In: CF (2005). https://doi.org/10.1145/1062261.1062321

22. Powell, M., Yang, S.H., Falsafi, B., Roy, K., Vijaykumar, T.N.: Gated-Vdd: a circuit
technique to reduce leakage in deep-submicron cache memories. In: ISLPED (2000).
https://doi.org/10.1145/344166.344526

23. Zhang, M., Asanović, K.: Fine-grain CAM-tag cache resizing using miss tags. In:
ISLPED (2002). https://doi.org/10.1145/566408.566444

https://doi.org/10.1145/1062261.1062321
https://doi.org/10.1145/344166.344526
https://doi.org/10.1145/566408.566444

Taxonomist: Application Detection
Through Rich Monitoring Data

Emre Ates1(B) , Ozan Tuncer1, Ata Turk1,
Vitus J. Leung2, Jim Brandt2,

Manuel Egele1, and Ayse K. Coskun1

1 Boston University, Boston, MA 02215, USA
{ates,otuncer,ataturk,megele,acoskun}@bu.edu

2 Sandia National Laboratories,
Albuquerque, NM 87185, USA
{vjleung,brandt}@sandia.gov

Abstract. Modern supercomputers are shared among thousands of
users running a variety of applications. Knowing which applications
are running in the system can bring substantial benefits: knowledge of
applications that intensively use shared resources can aid scheduling;
unwanted applications such as cryptocurrency mining or password crack-
ing can be blocked; system architects can make design decisions based
on system usage. However, identifying applications on supercomputers is
challenging because applications are executed using esoteric scripts along
with binaries that are compiled and named by users.

This paper introduces a novel technique to identify applications run-
ning on supercomputers. Our technique, Taxonomist, is based on the
empirical evidence that applications have different and characteristic
resource utilization patterns. Taxonomist uses machine learning to clas-
sify known applications and also detect unknown applications. We test
our technique with a variety of benchmarks and cryptocurrency miners,
and also with applications that users of a production supercomputer ran
during a 6 month period. We show that our technique achieves nearly
perfect classification for this challenging data set.

Keywords: Supercomputing · HPC · Application detection
Monitoring · Security · Cryptocurrency

1 Introduction

Resource utilization and efficiency of supercomputers are top concerns for both
system operators and users. It is typical to use figures of merit such as occupation
of compute nodes or total CPU usage to assess utilization and efficiency; however,
these metrics do not measure if the compute capacity is used meaningfully.

In fact, fraud, waste, and abuse of resources have been major concerns in
high performance computing (HPC) [1]. Wasted resources in supercomputing

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 92–105, 2018.
https://doi.org/10.1007/978-3-319-96983-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_7&domain=pdf
http://orcid.org/0000-0002-2292-2626

Taxonomist: Application Detection Through Rich Monitoring Data 93

stem from a variety of sources such as application hangs due to software and
hardware faults, contention in shared resources (such as high speed networks,
shared parallel file systems or memory), and fraudulent use (e.g., bitcoin min-
ing, password cracking). Bitcoin mining in supercomputing environments has
recently been gaining media attention [20,23]. Knowing which applications are
running on the system is a strong aid in addressing fraud, waste, and abuse
problems.

Knowledge of applications running on the system can also be used for
various system-level optimizations. Bhatele et al. have shown that network-
intensive applications can slow down other applications significantly [7]. Sim-
ilarly, Auweter et al. presented a scheduling method that leverages application-
specific energy consumption models to reduce overall power consumption [5].
Knowing the most common applications and their characteristics is also useful
to system architects who make design decisions, or to the supercomputer procur-
ers who can make better funding and procurement decisions based on knowledge
of typical application requirements.

Typically, supercomputer operators and system management software run-
ning on these large computers have no knowledge of which applications are exe-
cuting in the supercomputer at a given time. A supercomputer is shared by many
users and runs hundreds to thousands of applications concurrently per day [19].
These applications are compiled by users using different compiler settings, which
result in vastly different executables even if compiled from the same source. It
has been shown that static analysis of the binaries is not enough to detect the
same application compiled with different compilers or flags [13]. Furthermore,
users tend to use non-descriptive names for the binaries and scripts used in their
job submission (e.g., submit128.sh, a.out, app runner.sh). Therefore, naive
methods for detecting applications such as looking at the names of the processes
and scripts are not useful.

To address these challenges, we present Taxonomist, an automated tech-
nique for identifying applications running in supercomputers. To identify appli-
cations, Taxonomist leverages monitoring data that is periodically collected
at runtime from a supercomputer’s compute nodes. Monitoring data includes
detailed resource usage information (e.g., CPU utilization, network events, etc.),
and is typically used for application tuning [2], gaining information on system
usage to aid procurement [12], or for anomaly detection [26]. Each application
has (often non-obvious) resource utilization patterns that can be observed in
the monitored data. Taxonomist uses machine learning techniques to learn these
patterns in the data. Taxonomist can then identify known applications, even
when they are running with new input configurations, and also new (unknown)
applications. Specifically, our contributions in this paper are as follows:

– We present Taxonomist: a novel technique that uses machine learning to
identify known and unknown applications running in a supercomputer based
on readily available system monitoring data (Sect. 4). Taxonomist is able to
detect applications that are new to the system, as well as previously unseen
input configurations of known applications.

94 E. Ates et al.

– We demonstrate the effectiveness of Taxonomist on a production supercom-
puter using over 50,000 production HPC application runs collected over
6 months of cluster usage, a wide selection of benchmarks, and cryptocur-
rency miners (Sect. 5). We report greater than 95% F-score with this data set
(Sect. 6).

2 Related Work

Several prior approaches have explored identifying applications. Peisert has iden-
tified application detection as a problem in supercomputers [21]. He focused on
using MPI calls through Integrated Performance Monitoring (IPM) [24] to iden-
tify application communication patterns. Further work by Whalen et al. refined
the method to classify applications based on their communication graphs [28],
and DeMasi et al. used system utilization data collected by IPM to identify
applications [11]. These works are based on IPM, which is a tool that monitors
the MPI calls in HPC applications. IPM needs to be linked with the applications
and introduces up to 5% performance overhead [11].

Combs et al. have studied the applicability of using power signatures to
identify applications [8]. As Combs et al. observed, power traces from different
servers are not consistently comparable, so such a method is not scalable for
large-scale systems. Our evaluation confirms that using only power signatures is
insufficient to identify a diverse set of applications in large-scale systems.

Monitoring data has traditionally been used for analyses other than applica-
tion detection. One of the earlier examples of data analysis in supercomputers
was presented by Florez et al., who monitored system calls and library function
calls for anomaly detection in applications [14]. Similarly, Tuncer et al. used
monitoring data to detect node-level anomalies [26]. Agelastos et al. leveraged
monitoring data for troubleshooting and application optimization in a 1200-node
supercomputer [3].

In contrast to related work, Taxonomist uses a monitoring system with neg-
ligible overhead [2] that is capable of monitoring every application regardless of
MPI use, and does not need to be linked with the applications. Taxonomist can
be trained with a selection of applications of interest, and can reliably distinguish
these applications from the remaining applications. Our method can also detect
unknown applications it has not been trained with, which is very important for
practical real-world scenarios.

Another line of work aims at blocking unwanted applications. One way to
block cryptocurrency mining in supercomputers is to prevent miners from get-
ting the most recent blockchain additions using firewalls [22]. However, many
unwanted applications such as password crackers do not need to be connected to
the Internet. Furthermore, firewalls may result in packet losses, and it has been
shown that even very small packet loss is unacceptable for scientific computing
because of the high bandwidth requirements [10]. Another approach to prevent
waste might be to whitelist only applications compiled by the system adminis-
trators. However, availability is considered to be an important aspect of HPC

Taxonomist: Application Detection Through Rich Monitoring Data 95

Fig. 1. Two example metrics from /proc/vmstat for 11 applications with two different
input configurations, where each application is running on 4 nodes. These two metrics
can be used to distinguish among some applications, but cannot be used to reliably
detect each of the 11 applications.

Fig. 2. Clustering of 11 different applications, where each application is running on 4
nodes with two different input configurations. We manually assign different colors to
represent different applications. (Color figure online)

systems, and limiting the users to use only specific applications would harm the
user experience and limit the flexibility and usability of the systems. Therefore,
knowledge of the applications running on the system can be a very important
aid in blocking unwanted applications.

3 Motivation

Taxonomist uses monitoring data to identify applications. Modern monitoring
systems are able to continuously collect hundreds of metrics per second from
every compute node in an HPC system [2]. It is infeasible to manually inspect
this data and identify applications relying on rules of thumb and expert knowl-
edge; therefore, we design an automated approach to systematically discover the
differences between the applications.

Figure 1 shows two example metrics for a set of 11 applications we run
on a supercomputer (see Sect. 5 for details on experimental setup). The x-
axis shows the median of nr inactive anon, which represents the number of

96 E. Ates et al.

Fig. 3. Overview of Taxonomist.

anonymous memory pages that are inactive, and the y-axis shows the mean of
nr slab unreclaimable, which is the number of pages in the slab memory that
cannot be reclaimed. As seen in the figure, applications have different resource
usage characteristics. However, these two metrics are not sufficient to distinguish
between all applications. It is rather challenging to determine the best metrics to
distinguish among a large set of applications using intuition or simple methods.

Figure 2 demonstrates clustering of the same 11 applications using all
721 metrics we collect (see Sect. 4.1 for details of the metrics). To con-
struct this figure, we extract statistical features such as percentiles and stan-
dard deviation from the collected data (see Sect. 4.2), and cluster the statis-
tics corresponding to the compute nodes. For clustering, we use Ward’s
method and standardized Euclidean distance (our implementation uses Python
scipy.cluster.hierarchy.linkage). The results indicate that nodes running
the same application are close to each other in the feature space, but the clus-
tering is not perfect (e.g., miniMD is clustered incorrectly).

Manually finding which metrics are important to distinguish each applica-
tion among hundreds of monitored metrics requires extensive knowledge on the
metrics and applications. With supervised learning, the most relevant features
can be automatically selected, and applications can be reliably identified. Thus,
Taxonomist uses supervised learning techniques.

4 Taxonomist: A Technique for Identifying Applications

Taxonomist, outlined in Fig. 3, is a technique for identifying applications in large-
scale systems using monitoring data collected from the machine. The monitoring
data is collected from every compute node in a timeseries format. We then gen-
erate statistical features that reduce our storage and computation overhead,
while enabling us to retain meaningful information in the timeseries. Finally,
we train a classifier for each application to separate that application from the
rest of the applications using labeled historical data. At runtime, Taxonomist
analyzes monitoring data and labels each node’s application according to the
predictions from the classifiers. We also mark applications as unknown, based on
the confidence of each classifier.

Taxonomist: Application Detection Through Rich Monitoring Data 97

4.1 Monitoring

The first step of our technique is data collection. Typically some form of moni-
toring is in place in supercomputers. These systems collect numeric information
about the usage of the network, memory, CPUs and other subsystems.

We monitor individual nodes and consider data from all nodes that are run-
ning a specific application separately. This enables us to recognize a known
application that possibly runs on a different number of nodes than the number
of nodes in that application’s training runs.

4.2 Statistical Feature Extraction

After collecting monitoring data, Taxonomist removes a segment (40 s in our
implementation) from each end of the timeseries to account for the transient
initialization and finalization phases from the applications. We have observed 40
seconds to be sufficient for all applications in this study; however, this duration is
application dependent. We also remove any constant metrics and convert metrics
that represent counter values to their deltas.

We generate statistics from the timeseries data gathered from the compute
nodes. The statistics used are the minimum, maximum, mean, standard devi-
ation, skew, kurtosis and the 5th, 25th, 50th, 75th and 95th percentiles. Each
metric’s timeseries is distilled into these 11 features. These statistics have been
shown to be useful in analyzing timeseries from supercomputers [26,27]. They are
also easy to calculate, reduce storage requirements, and enable us to compare
applications that have different durations. We scale each feature to the [0, 1]
range according to the values observed in the training set. The same scaling
factors are used at runtime.

4.3 Classification

To distinguish a set of given applications, we train a machine learning model
using a training set of these labeled applications. Taxonomist labels each run
with the corresponding application or it can also label new runs as unknown.

For each classifier, we use a one-versus-rest version of that classifier: i.e., for
each application in the training set, we train a separate classifier that differen-
tiates the application. This approach makes it easy to add a new application to
the ensemble of classifiers and to get information about the nature of each appli-
cation. This approach also enables us to train for only applications of interest,
and we do not have to re-train every classifier when a new application is added.

For evaluation purposes, we compare the following classification algorithms:
random forests, forests of extremely randomized trees (ExtraTrees), decision
trees and the support vector machine classifier (SVC) with linear and radial
basis function kernels. In practice, the best performing one for our data is the
random forest (Sect. 6).

From every classifier, we obtain confidence values on whether a new observa-
tion belongs to one of the existing training classes. For example, the confidence
threshold for the random forest is the percentage of trees in the forest that

98 E. Ates et al.

agree with the final classification. If none of the confidence values are above a
predetermined confidence threshold, we mark this new observation as unknown.

Confidence Threshold Selection. A very high threshold would result in
conservatively labeling new inputs of known applications as unknown, while too
low values would result in unknown applications being labeled as a similar known
application. To select the confidence threshold we first remove each application
from the training set and perform testing with examples of that application in
the training set while changing the confidence threshold. Then, we remove one
input of each application and perform the same test. We select the threshold
that results in the highest average F-score for both scenarios.

Hyperparameter Selection. Most classifiers have hyperparameters that
describe the configuration of the algorithm. We find the best hyperparameters
by splitting the training set into 5 cross validation folds. With 4/5 of the train-
ing data we train classifiers with different hyperparameters, and pick the best
performing one using 1/5 of the training set. We choose the important hyperpa-
rameters for each classifier and over a certain range we train all combinations of
hyperparameters, i.e., grid search. We find the best hyperparameter separately
for each application’s classifier. Note that we never use any test data during
training or hyperparameter selection.

4.4 Operation of Taxonomist

During normal operation, Taxonomist uses the monitoring data to label each
node of each application after a job finishes. These labels can be used to raise
alarms in the case of cryptocurrency mining and to generate system usage reports
or other summaries. They can also be used in further research and development
on application-specific system optimizations. Furthermore, identifying fraud,
waste, and abuse after application completion is still valuable.

As Taxonomist relies on machine learning, it requires a labeled training data
set as input. This data set can be collected by a collaboration of users, operations
staff, and analysts. After the applications of interest are determined, data can
be collected by running them with different input configurations. This training
is a one-time effort unless the applications of interest change.

In our current implementation, the application needs to finish before we
identify it; however, Taxonomist can be modified to work with only the first few
minutes of application data. The strategy proposed by Thebe et al. [25], which
executes applications for a short time before the main run is scheduled, can be
used with Taxonomist.

5 Experimental Methodology

We run our experiments on a production supercomputer, using the Lightweight
Distributed Metric System (LDMS) [2] already in place. We evaluate our system
with 11 benchmarks, 5 different unwanted applications, and also with 6 months
of typical supercomputer usage.

Taxonomist: Application Detection Through Rich Monitoring Data 99

Table 1. Applications used.

Application # of inputs # of ranks Description

BT [6] 3 169 Block tri-diagonal solver

CG [6] 3 128 Conjugate gradient

FT [6] 3 128 Fourier transform

LU [6] 3 192 Gauss-Seidel solver

MG [6] 3 128 Multi-grid on meshes

Representative

applications

SP [6] 3 169 Scalar penta-diagonal solver

miniAMR [15] 4 192/1536 Adaptive mesh refinement

miniMD [15] 4 192/1536 Molecular dynamics

CoMD [15] 3 192 Molecular dynamics

miniGhost [15] 4 192/1536 Structured PDE solver

Kripke [17] 4 192/1536 SN transport

minerd 10 2/4 CPU cryptocurrency miner

BFGminer 2 2/4 Cryptocurrency miner

Unwanted

applicationsa
xenon 2 96/192 Zcash competition [29] winner

davidjaenson 1 2/4 Zcash competitor

tromp 1 2/4 Zcash competitor

John the Ripper 194 96/192 Password cracker
aminerd: www.github.com/pooler/cpuminer, BFGminer: www.github.com/luke-jr/bfgminer,

xenon: www.github.com/xenoncat/equihash-xenon, davidjaenson: www.github.com/

davidjaenson/equihash, tromp: www.github.com/tromp/equihash, John the Ripper: www.

openwall.com/john

5.1 Platform

We run all of our experiments on Volta, a Cray XC30m supercomputer located at
Sandia National Laboratories. Volta is composed of 13 fully-connected routers,
with 4 nodes each, leading to a total of 52 compute nodes. The operating system
used is SLES 11 (SUSE Linux Enterprise Server) with kernel version 3.0.101.
Each node has 64 GB of memory and two Intel Xeon E5–2695 v2 CPUs with 12
2-way hyper-threaded cores.

LDMS is a scalable monitoring system deployed on Volta. We use the memory
metrics collected from /proc/meminfo and /proc/vmstat, CPU usage informa-
tion from /proc/stat, and network usage information from Cray network inter-
face card (NIC) counters. 721 metrics from every node every second in total.

5.2 Applications

Representative Applications. We pick a collection of 11 benchmarks and
proxy applications, described in the upper section of Table 1. We choose these
applications to be representative of characteristic HPC workloads. All represen-
tative applications use MPI, and are compiled with the Cray compilers. For each
application, we use 3 different input configurations, and we run the applications
on 4 nodes. We also run miniAMR, miniMD, miniGhost and Kripke on 32 nodes
with an additional input. We run each application on the maximum number of
hardware threads available that the application can utilize.

www.github.com/pooler/cpuminer
www.github.com/luke-jr/bfgminer
www.github.com/xenoncat/equihash-xenon
www.github.com/davidjaenson/equihash
www.github.com/davidjaenson/equihash
www.github.com/tromp/equihash
www.openwall.com/john
www.openwall.com/john

100 E. Ates et al.

Unwanted Applications. These are applications that are usually not allowed
on supercomputers such as cryptocurrency miners and password crackers. The
tromp, davidjaenson, and xenon miners are from an open source miner compe-
tition [29]; BFGminer and minerd are popular miners for mining with CPUs.
Xenon is single-threaded, so we execute 48 copies per node. Other cryptocur-
rency miners are multi-threaded, so we execute them one copy per node, using
48 threads. John the Ripper is a popular password cracking application which
supports MPI; we execute it one rank per hardware thread. The inputs for John
the Ripper are various password formats; and for the cryptocurrency miners, the
inputs are the different types of cryptocurrencies. Due to ethical considerations,
we ran all of the unwanted applications in benchmark mode to ensure that none
of the cryptocurrency mined was connected to the main blockchains.

Typical Volta Usage. This data includes unlabeled applications run by 28
unique Volta users, consisting of 58,366 jobs, from August 2016 until January
2017. Our controlled experiments are removed from these runs.

5.3 Baseline Technique

Combs et al. [8] have proposed a technique (referred to as Combs) for application
detection using power data instead of performance monitoring data. Combs uses
a similar feature extraction approach, but in contrast to our method, it extracts
serial correlation, non-linearity, self-similarity, chaos, and trend from the time-
series, as well as skew, kurtosis, serial correlation and non-linearity from the
timeseries with the trend component removed. Furthermore, Combs et al. nor-
malized maximum and median with the minimum for each timeseries to generate
two additional features. Their method uses a random forest classifier and does
not have a method for labeling unknown applications, so we do not implement
any thresholding for Combs’ method.

6 Evaluation

We evaluate the capability of Taxonomist in detecting applications with a variety
of workloads and scenarios. First, we examine the classification performance in
identifying known applications with new input configurations. Then, we evaluate
the performance in labeling unknown applications.

For all tests, we first perform 5-fold cross validation, where we split the whole
data into five sets with equal distributions of applications with the original data
set. We then train five different Taxonomist instances using four of the sets.
For testing, we use the fifth set that was removed from training data. For the
normalization and hyperparameter selection steps, Taxonomist performs another
5-fold cross-validation on the training set.

For the results, we report the F-Score, which is a widely used measure of
classifier performance. For binary classification, F-Score is defined as the har-
monic mean of precision and recall. Precision is the ratio of true positives to

Taxonomist: Application Detection Through Rich Monitoring Data 101

(a) F-scores for classifiers, vertical dashed
line indicates the chosen confidence thresh-
old.

(b) F-scores for classifiers at the chosen
confidence threshold, 0.75. Error bars in-
dicate the 95% confidence interval.

Fig. 4. F-scores with one input configuration removed from training. In most cases,
the applications are correctly identified in spite of the unknown input configuration.

the number of all positive predictions, and recall is the ratio of true positives
to the number of all actual positives in the data set. F-Score ranges between 1
(best) and 0 (worst). All of our results are multi-class; therefore we calculate
the average precision and recall for each class, and take the harmonic mean to
calculate the overall F-score.

Table 2. Five-fold cross validation
results with the full data set.

Classifier Precision Recall F-score

RandomForest 1.000 1.000 1.000
ExtraTrees 1.000 1.000 1.000
DecisionTree 0.998 0.998 0.998
LinearSVC 0.999 0.999 0.999
SVC 0.994 0.994 0.994
Combs 0.932 0.931 0.931

Full Data Set. Table 2 shows the 5-fold
cross validation results on the 11 repre-
sentative applications. All of the results
except the baseline technique (Combs)
have an F-Score of over 0.99. However,
this scenario where the training data con-
tains all applications and all input con-
figurations is unrealistic. SVM with the
linear kernel (LinearSVC) performs better than the rbf kernel (SVC). This is
likely due to the large data set with many features and datapoints, and this
behavior is consistent with the literature [16].

Detecting Applications with Unknown Input Configurations. Appli-
cations’ resource usage is affected by their input configurations. To evaluate
Taxonomist’s robustness against input configurations that are not in the train-
ing set, we remove one of the input sets from the training set. For the test set, we
keep the cross validation folds the same. Figure 4 shows that the classification is
successful unless the confidence threshold is over 0.9, in which case the unknown
input configurations are marked as unknown applications.

102 E. Ates et al.

Fig. 5. F-scores with one application removed from the training set. With the correct
confidence threshold choice, the unknown application can be correctly identified.

Detecting Unknown Applications. Figure 5 shows classification results with
one application removed from the training set. If the removed application is
labeled as unknown, we mark it as a correct prediction. In the majority of the
cases, the unknown application is correctly identified as such. The lowest F-
Scores are for the BT and SP applications, which are both partial differential
equation solvers and they have been shown to have similar behavior [18]. Hence,
the classifiers tend to mispredict SP and BT.

The confidence threshold that gives the maximum value for the average F-
scores of the unknown input and unknown application cases is 0.75, and Random
Forest is the classifier that gives the best average F-score.

Unwanted Applications and Typical Volta Usage. We show Taxonomist’s
ability to identify unknown applications from different domains by testing with
unwanted applications such as bitcoin miners, shown in Fig. 6a, and with 6
months of Volta usage data, shown in Fig. 6b. In both of these tests, we train
Taxonomist with the 11 representative applications, and consider the unknown
label to be correct. Random Forest, Extra Trees and SVC have an almost per-
fect F-score for identifying any of these applications as unknown. Combs is not
shown, because it is unable to identify unknown applications.

Feature Importance. In order to present the importance of different statisti-
cal features and metrics, we train a decision tree for each application, using all of
the data from the 11 applications. To compare feature importances, we use Gini
reduction, which is used to measure the reduction of heterogeneity in the data.
A feature that can divide the data set well has a high Gini reduction, which
means the resulting divided data sets are more homogeneous. We use the imple-
mentation in Python scikit-learn library (sklearn.DecisionTreeClassifi-
er.feature importances).

Taxonomist: Application Detection Through Rich Monitoring Data 103

Fig. 6. The classifiers can correctly identify unknown applications, whether they are
HPC applications or bitcoin miners and password crackers.

Fig. 7. The importance of different metrics and statistics. Box-plots are constructed
using the different decision trees for each application. The box shows the quartiles
while the whiskers show the rest of the distribution except outliers, which are points
away from the low and high quartiles by more than 1.5 × IQR.

In the decision trees corresponding to our 11 applications, we calculate the
total Gini reduction of features extracted using the 11 statistics (Sect. 4.2), and
report it in Fig. 7a. The box-plots are constructed using the data from the deci-
sion trees, and the individual importance values from the trees are summed up.
Figure 7b shows the most important metric from each decision tree. The impor-
tant metric and subsystem1 are highly application specific.

1 metric-set-nic: Cray network counters [9], vmstat: /proc/vmstat, meminfo: /proc/
meminfo, procstat: /proc/stat, AR stands for AR-NIC-RSPMON-PARB-EVENT-
CNTR.

104 E. Ates et al.

7 Conclusion

We have presented Taxonomist, a technique for classifying applications in super-
computers with the help of readily available monitoring data. The technique
builds classifiers from historical data, and detects new applications while being
robust to new input configurations of applications. We have evaluated Tax-
onomist using a comprehensive data set including controlled experiments and
real-world workloads and demonstrated F-scores of over 95%.

Data Availability Statement and Acknowledgment. The datasets gen-
erated during and/or analyzed during the current study are available in the
Figshare repository: https://doi.org/10.6084/m9.figshare.6384248 [4].

This work has been partially funded by Sandia National Laboratories. Sandia
National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under Contract DE-NA0003525.

References

1. ASCR cybersecurity for scientific computing integrity. DOE Workshop Report
(2015)

2. Agelastos, A., et al.: The lightweight distributed metric service: a scalable infras-
tructure for continuous monitoring of large scale computing systems and applica-
tions. In: International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pp. 154–165 (2014)

3. Agelastos, A., et al.: Toward rapid understanding of production HPC applications
and systems. In: IEEE International Conference on Cluster Computing, pp. 464–
473 (2015)

4. Ates, E., et al.: Artifact for taxonomist: application detection through rich moni-
toring data (2018). https://doi.org/10.6084/m9.figshare.6384248

5. Auweter, A., et al.: A case study of energy aware scheduling on SuperMUC. In:
Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2014. LNCS, vol. 8488, pp.
394–409. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07518-1 25

6. Bailey, D., et al.: The NAS parallel benchmarks. Int. J. Supercomput. Appl. 5(3),
63–73 (1991)

7. Bhatele, A., Mohror, K., Langer, S.H., Isaacs, K.E.: There goes the neighborhood:
performance degradation due to nearby jobs. In: SC 2013, pp. 41:1–41:12. ACM,
New York (2013)

8. Combs, J., et al.: Power signatures of high-performance computing workloads. In:
Proceedings of the 2nd International Workshop on Energy Efficient Supercomput-
ing, E2SC 2014, pp. 70–78. IEEE Press, Piscataway (2014)

9. Cray: Aries hardware counters (s-0045-20). Technical report (2015). http://docs.
cray.com/books/S-0045-20/S-0045-20.pdf

10. Dart, E., Rotman, L., Tierney, B., Hester, M., Zurawski, J.: The science DMZ: a
network design pattern for data-intensive science. In: SC 2013, pp. 1–10 (2013)

https://doi.org/10.6084/m9.figshare.6384248
https://doi.org/10.6084/m9.figshare.6384248
https://doi.org/10.1007/978-3-319-07518-1_25
http://docs.cray.com/books/S-0045-20/S-0045-20.pdf
http://docs.cray.com/books/S-0045-20/S-0045-20.pdf

Taxonomist: Application Detection Through Rich Monitoring Data 105

11. DeMasi, O., Samak, T., Bailey, D.H.: Identifying HPC codes via performance logs
and machine learning. In: Proceedings of the First Workshop on Changing Land-
scapes in HPC Security, pp. 23–30. ACM, New York (2013)

12. Dongarra, J., et al.: The international exascale software project roadmap. Int. J.
High Perform. Comput. Appl. 25(1), 3–60 (2011)

13. Egele, M., Woo, M., Chapman, P., Brumley, D.: Blanket execution: dynamic sim-
ilarity testing for program binaries and components. In: 23rd USENIX Security
Symposium, pp. 303–317. USENIX Association, San Diego (2014)

14. Florez, G., Liu, Z., Bridges, S.M., Skjellum, A., Vaughn, R.B.: Lightweight moni-
toring of MPI programs in real time: research articles. Concurr. Comput.: Pract.
Exp. 17(13), 1547–1578 (2005)

15. Heroux, M.A., et al.: Improving performance via mini-applications. Technical
report SAND2009-5574, Sandia National Laboratories (2009)

16. Hsu, C.W., Chang, C.C., Lin, C.J., et al.: A practical guide to support vec-
tor classification. Technical report (2003). https://www.csie.ntu.edu.tw/∼cjlin/
papers/guide/guide.pdf

17. Kunen, A., Bailey, T., Brown, P.: KRIPKE-a massively parallel transport mini-
app. Technical report, Lawrence Livermore National Laboratory, Livermore (2015)

18. Ma, C., et al.: An approach for matching communication patterns in parallel appli-
cations. In: IEEE International Symposium on Parallel Distributed Processing, pp.
1–12 (2009)

19. NERSC: Number of NERSC users and projects through the years (2016). www.
nersc.gov/about/nersc-usage-and-user-demographics/number-of-nersc-users-and-
projects-through-the-years/

20. Office of Inspector General: Semiannual report to congress (2014). https://www.
nsf.gov/pubs/2014/oig14002/oig14002.pdf

21. Peisert, S.: Fingerprinting communication and computation on HPC machines.
Technical report, Lawrence Berkeley National Laboratory (2010). https://doi.org/
10.2172/983323

22. RedLock CSI Team: Lessons from the cryptojacking attack at Tesla. Technical
report (2018). https://blog.redlock.io/cryptojacking-tesla

23. Rosenberg, E.: Nuclear scientists logged on to one of Russias most secure computers
to mine bitcoin. The Washington Post (2018)

24. Skinner, D., Wright, N., Fuerlinger, K., Yelick, K., Snavely, A.: Integrated perfor-
mance monitoring IPM (2009). http://ipm-hpc.sourceforge.net/

25. Thebe, O., Bunde, D.P., Leung, V.J.: Scheduling restartable jobs with short test
runs. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2009. LNCS, vol.
5798, pp. 116–137. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04633-9 7

26. Tuncer, O., et al.: Diagnosing performance variations in HPC applications using
machine learning. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC
2017. LNCS, vol. 10266, pp. 355–373. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58667-0 19

27. Wang, X., Smith, K., Hyndman, R.: Characteristic-based clustering for time series
data. Data Min. Knowl. Disc. 13(3), 335–364 (2006)

28. Whalen, S., Peisert, S., Bishop, M.: Multiclass classification of distributed memory
parallel computations. Pattern Recogn. Lett. 34(3), 322–329 (2013)

29. Zcash Electric Coin Company: Zcash open source miner challenge (2016).
www.zcashminers.org

https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
www.nersc.gov/about/nersc-usage-and-user-demographics/number-of-nersc-users-and-projects-through-the-years/
www.nersc.gov/about/nersc-usage-and-user-demographics/number-of-nersc-users-and-projects-through-the-years/
www.nersc.gov/about/nersc-usage-and-user-demographics/number-of-nersc-users-and-projects-through-the-years/
https://www.nsf.gov/pubs/2014/oig14002/oig14002.pdf
https://www.nsf.gov/pubs/2014/oig14002/oig14002.pdf
https://doi.org/10.2172/983323
https://doi.org/10.2172/983323
https://blog.redlock.io/cryptojacking-tesla
http://ipm-hpc.sourceforge.net/
https://doi.org/10.1007/978-3-642-04633-9_7
https://doi.org/10.1007/978-3-642-04633-9_7
https://doi.org/10.1007/978-3-319-58667-0_19
https://doi.org/10.1007/978-3-319-58667-0_19
https://zcashminers.org/

Diagnosing Highly-Parallel OpenMP
Programs with Aggregated Grain Graphs

Nico Reissmann and Ananya Muddukrishna(B)

Norwegian University of Science and Technology, Trondheim, Norway
{nico.reissmann,ananya.muddukrishna}@ntnu.no

Abstract. Grain graphs simplify OpenMP performance analysis by
visualizing performance problems from a fork-join perspective that is
familiar to programmers. However, when programmers decide to expose
a high amount of parallelism by creating thousands of task and paral-
lel for-loop chunk instances, the resulting grain graph becomes large and
tedious to understand. We present an aggregation method that hierarchi-
cally groups related nodes together to reduce grain graphs of any size to
one single node. This aggregated graph is then navigated by progressively
uncovering groups and following visual clues that guide programmers
towards problems while hiding non-problematic regions. Our approach
enhances productivity by enabling programmers to understand problems
in highly-parallel OpenMP programs with less effort than before.

1 Introduction

The grain graph [1] is a recent visualization method that simplifies OpenMP
performance analysis by highlighting problems from a fork-join perspective. Task
and parallel for-loop chunk instances are collectively termed grains in the grain
graph method. Grains that suffer performance problems such as work inflation,
inadequate parallelism, and low parallelization benefit are pinpointed on the
grain graph along with precise links to the problematic source code. This enables
programmers to perform optimizations productively without relying on experts
or trial-and-error tuning.

Programmers optimize OpenMP programs for large machines with hundreds
of cores by exposing a high amount of parallelism during execution. This is
achieved by adjusting special program inputs called cutoffs and chunk sizes such
that a large number of fine-grained tasks and for-loop chunks are created. Scala-
bility problems invariably occur when the runtime system is unable to efficiently
handle the parallelism exposed [2–4]. These problems are pinpointed on the grain
graph using metrics that isolate low parallelization benefit, work inflation, and
poor memory hierarchy utilization to specific grains.

However, the large grain graphs resulting from highly-parallel OpenMP exe-
cution make problem diagnosis tedious (Fig. 1). Programmers have to zoom and
pan to different sections while remembering characteristics of visited sections.
Problems that are spread out become difficult to locate. Non-problematic grains
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 106–119, 2018.
https://doi.org/10.1007/978-3-319-96983-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_8&domain=pdf

Diagnosing Highly-Parallel OpenMP Programs 107

that are shown dimmed to increase focus on problems combine at lower zoom
levels and become pronounced. Programmers can perceive the dimming effect
and spot problematic grains only when zoomed into higher levels. A powerful
workstation with a large screen and copious amount of memory is required to
render large grain graphs responsively. In light of these demands, programmers
prefer to pore over text summaries and tabular formats of large graphs and
reserve the visual approach only for small graphs.

Fig. 1. The grain graph of the task-recursive sort program from the Barcelona
OpenMP Task Suite (BOTS) for a high-parallelism input (n = 20971520,
cutoffs = {65536, 8192, 128}) is dense with 11059 grains. Inset (blue box) zooms into
a section at magnification 40X. (Color figure online)

This paper contributes with a new aggregation method that makes visual
analysis of large grain graphs practical. The aggregation method (Sect. 3) groups
related nodes by matching recurrent patterns in the grain graph, ultimately
resulting in an aggregated graph with a single group node. Programmers navi-
gate the aggregated graph by progressively opening and closing groups. Groups
with problems are highlighted and non-problematic sections are removed from
sight for distraction-free diagnosis. Navigation is further sped up through new
group-based metrics that enable programmers to traverse the critical path and
compare groups for structural similarity. Using highly-parallel executions of stan-
dard OpenMP programs, we demonstrate (Sects. 3 and 4) that aggregated grain
graphs enhance the state-of-the-art in OpenMP problem diagnosis.

2 Background on Grain Graphs

The grain graph [1] is a visualization for OpenMP that connects performance
problems to the fork-join program structure at the resolution of grains – task
and parallel for-loop chunk instances created during execution. This simplifies
problem diagnosis as programmers can readily identify with the fork-join pro-
gram structure. In contrast, existing visualizations based on timeliness and call
graphs complicate diagnosis by connecting performance problems to scheduling
events that are unfamiliar and unpredictable to programmers [1,5]. Experts who
understand scheduling internals nevertheless find it tiring to follow timelines and
call graphs that depict recursive task-based execution – a popular style of using
OpenMP.

108 N. Reissmann and A. Muddukrishna

2.1 Structure

The grain graph is a directed acyclic graph whose nodes denote grains and run-
time system operations, and edges denote control-flow. Parent and child grains
are shown in close proximity on the graph using logical-time placement [5,6] to
maintain familiarity with the fork-join perspective (Fig. 2a1). The grain graph
is laid out using the Sugiyama layout [7,8]. This layout places nodes in lay-
ers, removes cycles, and prevents edge crossings. These features are essential to
depict fork-join progression in an uncluttered manner.

Fig. 2. Grain graph of the task-based Sort program from BOTS for small input
(n = 512, cutoffs = {256, 64, 16}). (a) Structural view (b) problem view highlighting
low parallel benefit in red (c) after two fork-join pattern reductions of the highlighted
subgraph (d–g) linear pattern reductions leading to a single group node (h) after nor-
malization (i) reduction pseudocode (Color figure online)

2.2 Diagnosing Problems

Grains are annotated with unique schedule-independent identifiers, links to
source code locations, as well as performance metrics measured during profil-
ing and derived post profiling. Profiled metrics include execution time, cache
miss ratio, memory latency, and timestamps of control-flow events such as grain
creation and synchronization. These metrics are used to compute derived met-
rics such as critical path, work deviation, instantaneous parallelism, memory
hierarchy utilization, scatter, load balance, and parallel benefit.

Parallel benefit is a custom metric used in several discussions of this paper.
It is computed by dividing a grain’s execution time by its parallelization cost
1 Readers should print in color as they are crucial to appreciate grains graphs.

Diagnosing Highly-Parallel OpenMP Programs 109

including creation time. This metric aids inlining and cutoff decisions as grains
with low parallel benefit should be executed sequentially to reduce overhead.

Commonly sought out metrics are encoded visually for quick identification
on the graph (Fig. 2a). The length of a grain is set proportional to its execution
time. Grain colors denote source code locations by default. Edges are colored by
type and highlighted red if they are on the critical path.

Grains with metric values that cross programmer-defined thresholds are
inferred as problematic. The thresholds have sensible values by default. Prob-
lematic grains are highlighted with a color that encodes problem severity in a
separate view while non-problematic grains are dimmed (Fig. 2b). Additionally,
problems are summarized in a separate text file and highlighted in a tabular
form of the grain graph shown on a separate visualization widget.

Grain graphs have multiple conceptual views with colors encoding a sin-
gle problem or property per view. Programmers shift between these views to
understand properties or tackle problems. Problematic grains are highlighted
and non-problematic grains are dimmed, and clicking on a grain opens a separate
window that shows the grain’s properties and performance metrics. Figure 2a–b
show the programmer cycling between the low parallel benefit problem view and
the structural view where no problems are highlighted.

3 Grain Graph Aggregation Method

Our aggregation method for grain graphs conceptually consists of four phases:

1. Reduction matches and replaces subgraph patterns with group nodes to
construct an aggregation tree. This tree captures the graph structure and
serves as a basis for further processing. After aggregation is complete, the
tree is converted back to an aggregated grain graph with problematic grains
exposed and non-problematic grains hidden.

2. Normalization transforms the aggregation tree into a canonical form, sim-
plifying further processing.

3. Propagation propagates grain metrics at the leaves of the tree to upper
levels in a sensible manner.

4. Separation transforms the aggregation tree to separate problematic nodes.
This enables grouping and hiding of non-problematic grains in the resulting
aggregated graph.

The algorithmic complexity of all four phases is linear in the number of
graph nodes plus edges. The rest of this section explains the phases in detail and
discusses the navigation of the resulting aggregated graph at the end.

3.1 Reduction

The reduction phase matches a fork-join and linear pattern, and replaces them
with group nodes to construct an aggregation tree. The fork-join pattern consists

110 N. Reissmann and A. Muddukrishna

of a single fork node connected to child grains or groups, which in turn are
connected to a join node (Fig. 2c). The linear pattern has two nodes, either a
grain or a group node, that are connected to each other (Fig. 2d). Both patterns
are repeatedly matched, and replaced by a single group node until the entire
grain graph is reduced to a single node (Fig. 2d–g).

The pseudocode of the reduction algorithm is shown in (Fig. 2i). The key
steps in the pseudocode are explained next:

– Line 6 matches the linear pattern (Fig. 2d–g). It uses the helper function
is graingroup to detect whether a node and its successor is a grain or a
group, and reduces the pattern to a linear group node. Reduction continues
with the newly-created group node.

– Line 9 matches a grain or group node with a fork node as successor.
The matched fork node is recursively aggregated to a fork-join group node
(Fig. 2c). The resulting linear pattern is then reduced to a linear group node.
Reduction continues with the linear group node.

– Line 13 matches a fork node (Fig. 2a) and recursively aggregates all successors
of the fork node. The resulting fork-join pattern is then reduced to a fork-join
group node. Reduction continues with the fork-join group node.

The grain graph is reduced greedily by the reduction algorithm. It always
continues with the newly-created group node after a pattern match and never
traverses past a join node. This ensures that the innermost fork-join in a nesting
is reduced first.

The aggregation tree consisting of group and grain nodes explicitly captures
the grain graph’s nesting and fork-join structure. The leaves of the tree are
grains and its intermediate nodes are the newly-created group nodes. Linear
group nodes have the two matched nodes from the pattern as children, whereas
fork-join group nodes have the children of the matched fork node as children.

The reduction algorithm is applicable to grain graphs where parents synchro-
nize with all their children before completion. This essential property ensures
that fork-join patterns are properly nested, permitting their reduction in a hier-
archy of group nodes. While this property holds for well-behaved OpenMP 3.X
programs, the taskgroup construct in OpenMP 4.0 violates this property. The
construct permits parents to synchronize with their children and descendants in
one step. This impedes reduction unless the grain graph is restructured so that
all descendants are placed as immediate children of the root parent.

3.2 Normalization

Normalization transforms the aggregation tree into a canonical form by flatten-
ing nested linear group nodes. In the reduction phase, linear group nodes are
always created for a pair of grain or group nodes, even if more nodes are chained
together. This constructs nested linear subtrees where linear group nodes are the
children of other linear group nodes as exemplified in Fig. 2d–g. Normalization
flattens these subtrees to a single linear group node with all non-linear group
nodes from the subtree as its children (Fig. 2h). In practice, this phase can be
incorporated into the previous phase to speedup aggregation.

Diagnosing Highly-Parallel OpenMP Programs 111

3.3 Propagation

This phase propagates leaf node metrics to the enclosing groups all the way up to
the root node. It traverses the aggregation tree in post-order and attributes group
nodes with metrics sensibly-derived from their children. For example, the work
metric of a group node is the sum of the execution times of its children, while
the schedule-independent identifiers of children are concatenated with the group
node’s depth to derive a schedule-independent identifier.

Metrics are attributed such that problems propagate to the root group. If
a child is problematic, then its parent is marked as problematic as well. The
minimum of the memory hierarchy utilization, parallel benefit, and instantaneous
parallelism as well as the maximum of the load balance, work deviation, and
scatter metrics of children are attributed to the parent group. Programmers can
refine existing propagation metrics and define new ones. Given this ability, the
range of values and other summary statistics of a group can be easily captured
(for example, as string attributes). One useful custom metric that programmers
could define is the percentage of time spent by a group on the critical path.

3.4 Separation

The separation phase groups non-problematic nodes to separate them from prob-
lematic nodes. This enables programmers to focus on problems and reduces graph
viewer load. For example, consider a fork-join group that encloses a thousand
grains among which only a single grain is problematic. An unseparated graph
would require all grains to be rendered, while a separated graph requires only
the rendering of one problematic grain and a non-problematic group node.

Fig. 3. Separation of problematic from non-problematic nodes. (a–b) Fork-join node
separation. (c–d) Linear node separation. (e) Local (blue) and global (red) critical
paths (Color figure online)

Separation traverses the aggregation tree in post-order and separates sub-
trees rooted at fork-join and linear nodes. In a fork-join separation, all non-
problematic children of a fork-join node are grouped under a newly-created

112 N. Reissmann and A. Muddukrishna

group node (Fig. 3a–b), while in a linear node separation, all consecutive non-
problematic children of a linear group node are grouped under a new linear group
node (Fig. 3c–d). After the separation phase, the aggregation tree is converted
back to a grain graph where non-problematic subgraphs are hidden.

3.5 Navigation

The navigation of an aggregated graph starts at the root and continues by pro-
gressively opening/closing group nodes to understand graph structure and prob-
lems (Fig. 4). In contrast to the navigation in unaggregated graphs, the cognitive
load on programmers and the graph viewer’s resources are reduced as only a sub-
set of the grains are laid out. Navigation is sped up using several optimizations:

Fig. 4. Navigating the aggregated grain graph of NQueens program from BOTS for
high-parallelism input (n = 14, cutoff = 4). The graph has 21492 grains and 3073 group
nodes. Grains with low parallel benefit are highlighted as problems. (a–d) Drilling down
to sibling groups at a depth of 3 from the root group. (a) Root group. (b) At depth
1. (c) At depth 2. (d) At depth 3. (e) Drilling down along the critical path to sibling
groups at the lowest depth.

1. Groups can be opened to show all grains including those inside subgroups
(full collapse), or drilled down to a specific group or depth level (Fig. 4).

2. Group nodes are drawn as rounded rectangles with no filling to differentiate
them from grains. Group metrics are shown in a separate property window,
similar to grains. Opened groups grow as large as required to envelop members
whereas closed group nodes have a constant size. The borders of problematic
closed groups are colored red to draw programmer attention, while the bor-
ders of non-problematic groups are colored green for quick identification. Our
choices of group colors and sizes allow programmers already familiar with
grain graphs to smoothly transit to the aggregation feature.

Diagnosing Highly-Parallel OpenMP Programs 113

3. Once a group’s structure is known, other similarly structured groups can be
navigated confidently or skipped if problem-free. For example, twelve groups
in Fig. 4d have the same structure. Group similarity is computed on-demand
using a Weisfeiler-Lehman graph kernel [9].

4. Groups on the global critical path (gcb) are inspected first since they are
good optimization candidates (Fig. 4e). The local critical path of groups not
on the gcb can be computed on-demand and used for prioritized inspection
(Fig. 3e). If off-gcb grains are optimized to reduce the total amount of work,
the resulting slack can be used to execute grains on the gcb.

4 Prototype Implementation

The grain graph visualization is implemented in a prototype [10] that produces
grain graphs in GRAPHML by processing profiling data from OMPT exten-
sions [11] or the MIR runtime system [4,12,13]. We extended the prototype
to produce aggregated graphs upon programmer request [14]. The aggregation
method was implemented in C++, leveraging support for nested groups [15] in
GRAPHML and using the igraph [16] library for basic graph processing.

We used the graph viewer yEd [17] to visualize aggregated grain graphs since
it has sufficiently mature support for GRAPHML files with nested aggregations.
For example, it has features to interactively open and close groups, and jump to
groups at any hierarchy level. Its property editor dialog shows the annotations of
group nodes. Switching between problem views was achieved by cycling through
tabs that highlighted different problems.

External programs parameterized by group identifiers were used to compute
local critical path and similarity. These programs do not update the visualization
and programmers are required to manually load their output into yEd. Similarity
was computed using a third-party implementation [18] of the Weisfeiler-Lehman
graph kernel.

We recognize that interactions with aggregated graphs in yED have quite
some room for improvement. Our plan is to incorporate improvements in a ded-
icated grain graph viewer as yEd is closed-source. The dedicated viewer will
also enable programmers to define custom metrics derived from basic grain and
group metrics in a GUI. This improves over the prototype where programmers
customize metrics by editing source-code in convenient locations.

5 Evaluation

We tested our prototype on C/C++ benchmarks from SPEC OMP 2012 (SPEC-
OMP12), Barcelona OpenMP Task Suite v2.1.2 (BOTS) and Parsec v3.0 (Par-
sec). The benchmarks were compiled with MIR-linked GCC v4.4.7 and profiled
on a 48-core machine with 64 GB memory and four AMD Opteron 6172 pro-
cessors running at 2.1 GHz with frequency scaling disabled. We provided input
values that exposed abundant, fine-grained parallelism to standard OpenMP
programs to obtain large grain graphs (Table 1).

114 N. Reissmann and A. Muddukrishna

5.1 Visible Node Count

We use the metric visible node count (θ) to judge the ability of our aggregation
method to reduce programmer effort in navigating and diagnosing problems.
θ is defined as the minimum number of visible nodes in a grain graph while
diagnosing a problematic grain. If it is small, the cognitive load on programmers
and the resource requirements of viewers are reduced.

The visible node count for a problematic grain in an aggregated graph is the
number of nodes exposed by opening groups in the path leading to the grain. In
contrast, the visible node count in an unaggregated graph is equal to the number
of nodes in the entire graph irrespective of the position of the problematic grain,
assuming programmers do not pan and zoom to the vicinity of the problematic
grain manually.

Table 1 shows the maximum θ for two cases. The first is a conservative case
(θmax

c) that assumes all grains in the graph are problematic, while the second
(θmax

pb) considers graphs with low parallel benefit. For both cases, the reduction
in maximum θ compared to the total size of the graph, i.e., the maximum θ for
the unaggregated graph, is reported as Savings.

Table 1. Benefit of aggregation for standard OpenMP benchmarks.

Benchmark Input #Nodes #Grains θmax
c Savings

(%)

Low parallel benefit

#Prbl.

Grains

θmax
pb Savings

(%)

Strassena 8192, 128, 2000 176480 137258 60 99.97 157 49 99.97

Bodytrackb B261, 4, 261, 4000, 5, 3, 48, 0 126615 69061 5767 95.45 24627 5757 95.45

Floorplana 15, 7 117960 82490 149 99.87 31125 148 99.87

376.kdtreec 200000, 10, 2 32808 16400 58 99.82 2055 57 99.83

NQueensa 14, 4 24565 21492 70 99.71 10540 66 99.73

359.botssparc 64, 64 24161 23905 1154 95.22 2 9 99.96

358.botsalgnc prot.200.aa 20505 20101 406 98.02 7 17 99.92

Sorta 20971520, 65536, 8192, 128 20293 11509 55 99.73 288 51 99.75

FFTa 16777216, 8192, 2 9240 4592 53 99.43 414 49 99.47

367.imagickc See caption of Fig. 5 3935 3801 405 89.71 649 182 95.37

Blackscholesb 4M 2205 1201 112 94.92 400 112 94.92

Freqmineb kosarak 990k.dat, 790 2111 2017 389 81.57 66 30 98.58
aBOTS
bParsec
cSPEC-OMP12

For the conservative case, we see a large reduction in θ. The biggest saving
is 99.97% for the Strassen benchmark and the smallest saving is 81.57% for
Freqmine, with an average saving of 95.98%. This shows that aggregation can
significantly reduce θ for any problematic grain in our evaluation setup.

For the second case, we see a further reduction in θ since non-problematic
grains are grouped during the separation phase (Sect. 3). Benchmarks Freqmine,
367.imagick, 358.botsalgn, 359.botsspar, show large savings from aggregation
since they contain a small number of problematic grains. On the other hand,

Diagnosing Highly-Parallel OpenMP Programs 115

Bodytrack and Floorplan show barely any improvement over the conservative
case due to a higher concentration of problematic grains that are clustered as
siblings. Problematic siblings are ignored during separation by design.

5.2 Reducing Distractions

We further illustrate the benefit of aggregation using the 367.imagick benchmark
from SPEC-OMP12 for an input that SPEC programmers noticed as poorly
scaling. The unaggregated grain graph shows a chain of nine dense for-loops
(Fig. 5a). The sixth loop contains several chunks that suffer from low parallel
benefit since several instances of the parallelization-throttling macro omp throttle
are missing in the source. Diagnosing these problematic chunks requires pro-
grammers to sweep attentively across the graph ignoring the abundance of non-
problematic grains and the frequent non-responsive rendering of the graph. The
aggregated graph enables programmers to diagnose problematic chunks group
by group (Fig. 5b), keeping only those groups with problematic chunks open,
while uninteresting loops and non-problematic chunks are hidden from sight.
This results in a more responsive graph viewer since fewer nodes need to be
rendered.

Fig. 5. Diagnosing problems with grains of 367.imagick from SPEC-OMP12 for input
-shear 31 -resize 1280 x 960 -negate -edge 14 -implode 1.2 -flop -convolve

1,2,1,4,3,4,1,2,1 -edge 100 ref/input/input1.tga. (a) Sweeping across the
entire unaggregated graph with 3801 grains to spot problems. (b) Aggregated
grain graph enables programmers to diagnose problematic grains group-wise.
Non-problematic grains are separated to promote focus (inset).

116 N. Reissmann and A. Muddukrishna

5.3 Similarity Across Runs

Grain graphs produced from two independent executions of a given program can
be different in shape due to unpredictable inlining decisions taken by the run-
time system or if the program adapts its behavior sensitive to available execution
resources. Understanding such changes can provide vital clues for problem diag-
nosis. However, detecting the dissimilar sections by manually inspecting a pair
of large grain graphs is extremely tiring and akin to finding matches between
fingerprints using a magnifying lens.

Similarity is a powerful metric that not just helps to skip over structurally
similar groups within the same graph (as demonstrated in Sect. 3.5), but can
also compare groups across runs to detect structural differences. Programmers
can gradually open two graphs side-by-side and compute the similarity met-
ric for visible groups using their schedule-independent identifiers. Those groups

(a)

(b)

L1

M1,N1,O1 P1,Q1 R1

L2

M2,N2,O2 P2,Q2 R2

Fig. 6. Finding dissimilar sections in grain graphs from two independent executions of
the non-deterministic Floorplan program from BOTS for input cell-file = input.5,

cutoff = 5. (a) Graph produced from execution on 4 cores has 7974 grains. (b) Graph
produced from execution on 48 cores has 3190 grains. The similarity metric allows
programmers to understand without inspection that groups L1-2, M1-2, N1-2, and O1-
2 have the same structure but P1-2, Q1-2, and R1-2 do not. Groups R1-2 are opened
to show the dissimilarity. R2 encloses fewer subgroups than R1.

Diagnosing Highly-Parallel OpenMP Programs 117

that have the same identifier but different similarity metrics are the sections
that have changed between the graphs. We demonstrate this for the Floor-
plan program from BOTS in Fig. 6. Floorplan is a search-based program whose
pruning behavior changes non-deterministically when more cores are allotted for
execution.

6 Related Work

Aggregation is a standard approach to scale visualizations with increasing
data [19,20]. Sensible dimensions for aggregation include the program struc-
ture (e.g. tasks), middleware stack (worker threads), physical processing com-
ponents (processors), and the visualization (node-links). However, aggregation
can remove vital diagnosis data when applied aggressively across several dimen-
sions. Isaacs et al. [19] recognize the balance between aggregation aggressiveness
and information preservation as an important challenge. Our method strives to
maintain this balance by reducing the size of the rendered graph and focusing
it on problematic sections, while keeping the expected fork-join perspective.

For space reasons, we restrict the discussion to abstraction-centric, logical-
time aggregated visualizations similar to grain graphs, and refer readers for other
visualizations to recent surveys [19,20] and a visualization explorer [21].

The dominant aggregation scheme in visualizations is statistical rather than
visual, i.e., metrics of selected elements in the main visualization are aggregated
statistically and reported separately, typically as a property table [22–27]. The
cognitive load of the main visualization is only reduced by zooming out to focus
on large elements, while support for visual aggregation at the same zoom level is
absent. Consequently, such visualizations suffer similar navigation and diagnosis
difficulties as large unaggregated grain graphs.

The aggregation method for task graphs in DAGViz [28] resembles our work.
It presents programmers with a single aggregated node that can be interactively
opened to reveal subgraphs as well as a dedicated viewer. However, our approach
is tailored to grain graphs and is unique in tracing the critical path and identify-
ing the similarity of subgraphs. Unaggregated grain graphs are more effective in
pinpointing problems than unaggregated DAGViz graphs due to more derived
metrics. The expansion of DAGViz graphs results also in the rendering of more
nodes as they show a fork-node per grain. Grain graphs avoid this thanks to
fork-node reductions that produce a fork-node per set of siblings. DAGViz com-
bats the scaling problem by using an elegant aggregation method that reduces
subgraphs that executed wholly on a single worker-thread into a single, non-
collapsible node.

ThreadScope [29] visualizes the logical-time structure of task-parallel pro-
grams. Its memory operations nodes can be grouped to improve clarity, but it
is unclear whether programmers can interact with groups to uncover members.

The causality graph [30] visualization permits programmers to manually
select and repeatedly aggregate nodes into supernodes, while special care must
be taken to avoid graph cycles on their creation. Supernode metrics include

118 N. Reissmann and A. Muddukrishna

the local critical path and metrics computed using user-defined combinators.
The causality graph presents an unaggregated graph by default, while we
present a fully aggregated graph and use sensible aggregation metrics to guide
programmers.

7 Conclusion

This paper contributes an aggregation method for grain graphs that enables
programmers to easily understand problems in highly-parallel OpenMP pro-
grams. Our method groups nodes arranged in recurring patterns to produce
an aggregated graph that programmers can navigate by progressively opening
and closing groups. Problematic groups are highlighted and non-problematic
sections are cleared from sight, enabling focus without compromising the fork-
join perspective expected by programmers. Using standard OpenMP programs
as examples, we demonstrate a significant reduction of visible nodes through-
out problem diagnosis. For future work, we plan to implement a dedicated grain
graph viewer that smoothly and precisely guides programmers towards OpenMP
problems and hints at solutions.

Acknowledgment. The paper was funded by the TULIPP project (grant num-
ber 688403) and the READEX project (grant number 671657) from the EU Hori-
zon 2020 Research and Innovation programme. The authors thank NTNU colleagues
Peder Voldnes Langdal, Magnus Själander, Jan Christian Meyer, and Magnus Jahre
for constructive comments and KTH Royal Institute of Technology for providing test
machinery.

References

1. Muddukrishna, A., et al.: Grain graphs: OpenMP performance analysis made easy.
In: PPoPP (2016)

2. Olivier, S.L., et al.: Characterizing and mitigating work time inflation in task
parallel programs. In: SC (2012)

3. Yoo, R.M., et al.: Locality-aware task management for unstructured parallelism: a
quantitative limit study. In: SPAA (2013)

4. Muddukrishna, A., et al.: Locality-aware task scheduling and data distribution for
OpenMP programs on NUMA systems and manycore processors. Sci. Program.
2015 (2015). https://doi.org/10.1155/2015/981759. Article no. 5

5. Isaacs, K.E., et al.: Combing the communication hairball: visualizing large-scale
parallel execution traces using logical time. In: InfoVis (2014)

6. Cuny, J.E., et al.: Logical time in visualizations produced by parallel programs. In:
IEEE Conference on Visualization (1992)

7. Sugiyama, K., et al.: Methods for visual understanding of hierarchical system struc-
tures. SMC 11, 109–125 (1981)

8. Eiglsperger, M., et al.: An efficient implementation of Sugiyama’s algorithm for
layered graph drawing. In: International Symposium on Graph Drawing (2004)

9. Shervashidze, N., et al.: Weisfeiler-Lehman graph kernels. JMLR 12, 2539–2561
(2011)

https://doi.org/10.1155/2015/981759

Diagnosing Highly-Parallel OpenMP Programs 119

10. Muddukrishna, A., et al.: anamud/grain-graphs: Grain Graphs v1.0.0 (2017).
https://doi.org/10.5281/zenodo.439355

11. Langdal, P.V., Jahre, M., Muddukrishna, A.: Extending OMPT to support grain
graphs. In: de Supinski, B.R., Olivier, S.L., Terboven, C., Chapman, B.M., Müller,
M.S. (eds.) IWOMP 2017. LNCS, vol. 10468, pp. 141–155. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-65578-9 10

12. Muddukrishna, A., et al.: anamud/mir-dev: MIR v1.0.0 (2017). https://doi.org/
10.5281/zenodo.439351

13. Muddukrishna, A., et al.: Characterizing task-based OpenMP programs. PLoS
ONE 10(4), e0123545 (2015). https://doi.org/10.1371/journal.pone.0123545

14. Reissmann, N.: phate/ggraph: VPA17 (2017). https://doi.org/10.5281/zenodo.
836838

15. Brandes, U., et al.: GRAPHML primer (2017). http://graphml.graphdrawing.org/
primer/graphml-primer.html. Accessed 27 July 2017

16. Csardi, G., et al.: The igraph software package for complex network research. Inter-
Journal 1695, 1–9 (2006)

17. yWorks GmBh: yEd Graph Editor (2015). http://www.yworks.com/en/products
yed about.html. Accessed 10 Apr 2015

18. Sugiyama, M., et al.: GraphKernels: R and python packages for graph comparison.
Bioinformatics 34, 530–532 (2017)

19. Isaacs, K.E., et al.: State of the art of performance visualization. In: EuroVis (2014)
20. Von Landesberger, T., et al.: Visual analysis of large graphs: state-of-the-art and

future research challenges. In: Computer Graphics Forum (2011)
21. Katherine I.: Performance visualization: living digital library of state of the art

of performance visualization (2017). http://cgi.cs.arizona.edu/∼kisaacs/STAR/.
Accessed 31 July 2017

22. Brinkmann, S., Gracia, J., Niethammer, C.: Task debugging with TEMANEJO.
In: Cheptsov, A., Brinkmann, S., Gracia, J., Resch, M., Nagel, W. (eds.) Tools
for High Performance Computing 2012, pp. 13–21. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-37349-7 2

23. Barcelona Supercomputing Center: OmpSs task dependency graph (2013). http://
pm.bsc.es/ompss-docs/user-guide/run-programs-plugin-instrument-tdg.html.
Accessed 10 Apr 2015

24. Subotic, V., et al.: Programmability and portability for exascale: top down pro-
gramming methodology and tools with StarSs. J. Comput. Sci. 4, 450–456 (2013)

25. Blochinger, W., et al.: Visualizing structural properties of irregular parallel com-
putations. In: VISSOFT (2005)

26. Haugen, B., et al.: Visualizing execution traces with task dependencies. In: VPA
(2015)

27. Drebes, A., Bréjon, J.-B., Pop, A., Heydemann, K., Cohen, A.: Language-centric
performance analysis of OpenMP programs with aftermath. In: Maruyama, N., de
Supinski, B.R., Wahib, M. (eds.) IWOMP 2016. LNCS, vol. 9903, pp. 237–250.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45550-1 17

28. Huynh, A., et al.: DAGViz: a DAG visualization tool for analyzing task-parallel
program traces. In: VPA (2015)

29. Wheeler, K.B.: Visualizing massively multithreaded applications with Thread-
Scope. Concurr. Comput.: Pract. Exp. 22, 45–67 (2010)

30. Zernik, D., et al.: Using visualization tools to understand concurrency. IEEE Softw.
9, 87–92 (1992)

https://doi.org/10.5281/zenodo.439355
https://doi.org/10.1007/978-3-319-65578-9_10
https://doi.org/10.5281/zenodo.439351
https://doi.org/10.5281/zenodo.439351
https://doi.org/10.1371/journal.pone.0123545
https://doi.org/10.5281/zenodo.836838
https://doi.org/10.5281/zenodo.836838
http://graphml.graphdrawing.org/primer/graphml-primer.html
http://graphml.graphdrawing.org/primer/graphml-primer.html
http://www.yworks.com/en/products_yed_about.html
http://www.yworks.com/en/products_yed_about.html
http://cgi.cs.arizona.edu/~kisaacs/STAR/
https://doi.org/10.1007/978-3-642-37349-7_2
http://pm.bsc.es/ompss-docs/user-guide/run-programs-plugin-instrument-tdg.html
http://pm.bsc.es/ompss-docs/user-guide/run-programs-plugin-instrument-tdg.html
https://doi.org/10.1007/978-3-319-45550-1_17

Characterization of Smartphone Governor
Strategies

Sarbartha Banerjee(&) and Lizy Kurian John

University of Texas at Austin, Austin, TX 78705, USA
{sarbartha,ljohn}@utexas.edu

Abstract. The voltage and frequency of the various components of a smart-
phone processor such as CPU cores, graphics, multimedia and display units can
be independently controlled by their own dynamic voltage and frequency
(DVFS) governors to fit the requirement of the workload. The dynamic change
of the voltage and frequency performed by governors is targeted either towards
achieving the optimal performance with the minimum energy consumption or
choosing a mode which requires minimum supervision of workload and minimal
change of DVFS modes (since changes in modes are accompanied by overheads
of switching).
This paper explores the behaviour of different governors run on a wide variety

of workloads and enlists the best strategy for different scenarios exemplifying
the need for workload characterization. We also analyze the performance and
power efficiency of workloads in a system having a common power source and
study their behavior when multiple such blocks are operating together pushing
the power source to its limit. Our results show that choosing the correct CPU
governor alone is not sufficient but tuning the DVFS of different resources is
necessary to achieve the best performance with minimum energy expenditure.
We observe that the powersave governor does not always give the best energy
efficiency. It was found to be sub-optimal for CPU intensive workloads due to
increased execution time. Moreover, the race-to-idle strategy was found to be
optimal for workloads in which one component is utilized for majority of the
time. These results demonstrate the necessity for characterizing workloads and
tuning the DVFS while distributing the power between the various components
based on the workload’s characteristics.

Keywords: SoC � Governor � Power budget � Race-to-idle � Pace-to-idle

1 Introduction

Getting desirable performance with optimum energy efficiency have become the major
design criteria for modern smartphones. This is primarily because battery technology
development has been much slower than processor development, with the form factor
of the phones limiting the battery capacity and the stringent thermal limit of the device.
To address this issue, all modern smartphones have multiple DVFS (Dynamic Voltage
Frequency Scaling) modes to run different components in the most efficient mode. In
typical DVFS, the frequency and the voltage of the processor is modified based on the
component utilization. Tuning the frequency of the essential component not only saves

© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 120–134, 2018.
https://doi.org/10.1007/978-3-319-96983-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_9&domain=pdf

power but also increases performance in certain scenarios. In smartphones, sometimes a
single power source is shared among various components. There is a peak power limit
of the power source in addition to thermal constraints. These constraints led to the
development of new governor strategies which are not only focused on increasing
performance but also tackling the workload in the most energy efficient way.

The availability of DVFS in different components and a high number of DVFS
modes within a component makes the optimal choice very difficult. Moreover, pro-
viding the user with a satisfactory performance for prolonged period with high energy
and thermal efficiency has become a new paradigm.

One simple heuristic for power management using DVFS is to run the job on the
target system at the maximum possible frequency (maximum performance mode) and
then throttle down to minimum or deep-sleep state as quickly as possible. This method
is termed as race-to-idle. This method is simple, reduces latency and saves energy in
certain use cases. The energy saving comes from the fact that the processing unit is
active for the minimum amount of time and leakage power is saved in inactive modes.
But, its validity and usefulness is yet to be conclusively established for smartphones as
workloads tend to use different resources intermittently sometimes using multiple
processing units at the same time. More complex methods can optimally switch the
processor frequently to the optimum DVFS mode based on the workload performance
requirement by polling the resource usage and trying to finish it in the most energy
efficient manner. This is termed as pace-to-idle. But in such cases, some energy is
wasted monitoring the workload continuously. Moreover, mapping a workload
dynamically into heterogeneous clusters of multicore processors and various acceler-
ators like the GPU cannot be done without efficient workload behavior characterization.

Furthermore, there are situations when the smartphone is running on low battery.
Normally, the frequency of all the blocks are toned down to consume less energy. But
the increasing leakage current raises the question if it really increases the energy
efficiency when we need to run an application on the system at lower frequency?

Thus, understanding the workload behavior is essential while choosing the gov-
ernor. At least if one can classify the workload and figure out the functional units
needed, it will greatly help in choosing an appropriate governor for each resource.
Also, most of the governors are designed for the CPU. But global decision of the
various DVFS modes in an energy constrained system based on the workload improves
the power efficiency and less temperature rise of the smartphone system-on-chip (SoC).

Our study encompasses the analysis of various categories of governors for different
kind of workloads to explain the optimal strategy in a mobile platform. The race-to-idle
strategy has been shown to be effective for servers where the quality of service and
latency of the requests are important. But for mobile devices, an acceptable quality of
service is desirable within the bounds of power limit of the source must be provided
while respecting the thermal limits making it an optimization problem.

Some power-hungry governors are good for performance while some relaxed
governors might be power saving. With the availability of multiple DVFS modes, finite
DVFS switching time and workload detection, researchers are coming up with
improved governors that predict the pattern of the workload and choose the appropriate
DVFS point. The analysis shown in the paper is a start point for any governor designer
to make reasonable decisions for a governor.

Characterization of Smartphone Governor Strategies 121

The rest of the paper is organized in the following format: Sect. 2 provides
background about the DVFS modes, the governors and their characteristics. Section 3
elaborates on the experimental setup. Section 4 explains the workloads and bench-
marks used. Section 5 shows results of our experiments. Section 6 explains the
benchmark characteristics and their behavior with different governors. Section 7 pro-
vides our observations from the experiments conducted and conclusion in Sect. 8.

2 Background

The smartphone system on a chip (SoC) comprises of multi-core CPUs, a GPU and
multimedia units running on a separate DVFS point while sharing the same current
source. With the demand for new aggressive power saving techniques, designers have
added more voltage-frequency (VF) points to individual units and added governors for
independent control of different units. Power can be saved if one enables the desired
unit at the appropriate frequency. But switching the DVFS modes consumes energy
and has non-zero latency. Too much switching is also not desirable. In addition, every
unit can also be separately put in the different idle power modes like clock gating,
retention or deep sleep. All these low power modes have different wake up latency and
leakage current consumed.

2.1 Governors

In this section, we will first give a brief overview of the types of CPU governors present
in the Linux kernel of an android smartphone today and then go over some of the
common governors and frequency scaling points of other units in the SoC.

Performance Governor. This governor is a constant frequency governor which keeps
the system in highest possible voltage and frequency irrespective of the workload. This
is highly power hungry and the core latches itself to maximum frequency. Worth noting
is that this governor works best when a series of compute intensive job is run in the
system. Moreover, it also keeps the bus to DDR at its peak frequency. It doesn’t waste
extra time and power in DVFS switching. But keeping the processor in this frequency
can cause thermal throttling and unnecessarily running it near the peak current of the
supply. But once the processor run queue is empty, it goes back to the sleep state. It is
considered as a ‘race’ governor which finishes the job as quickly and goes to idle.

Interactive and Ondemand Governor. The ondemand governor [2] switches the
system in highest possible voltage and frequency whenever a job is scheduled and
immediately ramps down to lower frequency when the resource utilization fades. The
interactive governor find the optimal frequency based on the load average of the
system. If the load average is more than a pre-specified value, it switches to higher
frequencies. Similarly, if the load average is low, the ondemand ramps down imme-
diately while the interactive waits for a certain hysteresis time. This works well when
we have a sequence of compute intensive jobs interspersed with long delays. The
immediate return to low frequency ensures that it spends minimum time in the highest
DVFS mode. However, if the idle time between jobs is very low, this governor hops

122 S. Banerjee and L. K. John

between frequencies repeatedly. The Interactive governor adds a hysteresis timer on top
of the ondemand governor to filter some of the switching. This governor can be
considered as a pace’ governor which will adapt the frequency based on the workload
requirement.

Powersave Governor. Powersave governor is designed to save energy by running the
CPU at the lowest possible operating frequency. This gives slow response but reduces
average power in many situations and is often used when battery is low or during
thermal throttling. It also gives good performance when the application is using another
component of the SoC like the GPU with minimal CPU utilization but might falter in
certain cases as the overall energy consumption may exceed others due to significantly
higher runtime. It also fails to attain desirable QoS and provide poor user experience.

GPU Governors. Most of the chips have GPU as a proprietary unit, so the governors
supported are specific to the hardware used in the experiment. Since our test setup had a
Qualcomm Snapdragon processor, we will list down a couple of GPU governors.

Most of the fancy governors are largely pacing governors whose performance lie
between the performance and the powersave governors. Msm-adreno-tz is one such
governor which works like the interactive governor and tunes based on the GPUbusy
data stating GPU utilization. It also has performance and powersave governors which
are like the CPU counterparts working of GPU frequencies.

The optimization of the GPU governors can improve energy efficiency of the
overall system as it is a high-power resource. Thus, the above options do tell us that
battery power saving is not only limited to the CPUs but in every units of the SoC.
Similar changes can be done to the DDR frequency and multimedia components.

2.2 DVFS Points

Owing to the need to save power and to provide flexibility to choose the appropriate
mode to perform a task, hardware designers provide several DVFS points for different
resources. Our testing platform is a Dragonboard 410c [14] platform consisting of a
Qualcomm Snapdragon 410 processor having Quad-core ARM A53 processor with all
four cores running at the same voltage & frequency. The cores can be independently
put into low power mode but they cannot be run at different frequency. This Snap-
dragon processor supports the following eight different frequency points each having a
different voltage.

Apart from that the DDR memory also has different frequencies of 533, 400 or
200 MHz. Either it can be scaled independently or in tandem with the CPU frequency.
Similarly, the GPU has its own independent DVFS modes but shares the same power
rail as the CPU and others.

• 1209 MHz
• 1152 MHz
• 1094 MHz
• 998 MHz

• 800 MHz
• 533 MHz
• 400 MHz
• 200 MHz

Characterization of Smartphone Governor Strategies 123

Choosing wrong DVFS points for individual components may prevent providing
enough budget to the crucial component adversely affect performance. For instance, if
there are a lot of I/O operation or if a multimedia application is running, keeping the
CPU in performance mode will allocate a larger power budget from the current source
to the CPU and the multimedia unit will simply perform poorer due to lack of power
budget for this unit. In our test setup, we have observed a similar scenario by running
Geekbench 3 by keeping the CPU at different frequencies. It is observed that the
memory intensive tests that perform occasional computation perform poorly when the
CPU is in its highest frequency as simple computations can be performed in lower
frequency with same latency but without reaching the power limit of the device.
Moreover, there can be thermal throttling forcing all units to tone down its activity. It is
unique in smartphones as a lot of blocks share a single power source. Not only does it
show poor performance but also consumes higher leakage and clock tree power when
the processor fails to shut down when it is not required. Thus, choosing the correct
DVFS point for each resource is essential for efficient power budget distribution for
maximizing performance of the highest used resource.

2.3 Quality of Service

A governor should not only work towards energy efficiency but also provide user
acceptable performance. The performance need not be the best but needs to comply to
some standard. Researchers have collected user surveys to determine the level of user
satisfaction for mobile devices. We compiled QoS data from prior research [7–10] and
enlist them in the result section. Furthermore, we specify that the benchmark scores
should be within 95% of the maximum possible score attained by the device.

3 Experimental Setup

We used Dragonboard 410c [14] for the analysis of energy consumption across various
workloads and benchmarks. It contains a Qualcomm Snapdragon 410 consisting of
Quad-core ARM Cortex A53 processors running Android 5.1.1. There are shunt reg-
isters provided on board [15] to check the incoming current to the processor. The
reason of choice for this processor is its prevalence in value-tier market and the fact that
it has a shared power source. Below are some of the specifications of this processor are
listed in Table 1.

Table 1. Snapdragon 410c specification

CPU 4 x ARM Cortex A53 1.2 GHz
CPU arch 64 bit ARM V8 architecture
GPU Qualcomm Adreno 306 400 MHz
DSP Qualcomm Hexagon DSP
Memory 1 GB LPDDR3 533 MHz

124 S. Banerjee and L. K. John

The points across the shunt resistor (R77) on the board are tapped and a INA219 current
sensor is connected to measure the current. The output of the current sensor is sampled
using a microcontroller to get the data. A block diagram of the setup is shown in Fig. 1.

Some of the parameters of the hardware are tuned during the study of governor
behavior. It includes CPU governor, Governor tuning, DDR frequency, GPU fre-
quency, Thermal throttler, Hotplugging setting. All the parameters are tuned for every
run and then the workload is run in the system. The android debug bridge [14]
(ADB) is used for the measurements and various comparisons are performed.

4 Applications and Benchmarks

A brief analysis of some of the experiments performed are described in this section.
The results in term of scores and the normalized energy consumed in reported in
Table 2. Linaro workload Automation suite [16] is used to run a host of applications
explained in the Table 2 and standard benchmarks which includes the following:

Fig. 1. Block diagram of the experimental setup

Table 2. A description of the applications

Applaunch Launches either the calculator, browser or google Maps application when no other
application is running in the system

Multi_applaunch Launches calculator, browser and maps application in a sequence on top of one another

Video Playing a 720p video file in the native android video player
Audio Plays an audio file in the native android audio player

Maps Open google maps and perform a navigation task
Adobereader Scrolls, zooms and searches a word after opening a pdf file
Facebook Performs a series of tasks after logging in a facebook account including scrolling

through the wall, like a friend’s photo, post a status and comment on an existing post

Iozone Performs a series of IO performance tasks

• Antutu
• Geekbench
• BBench
• Nenamark

• Ebizzy
• Dhrystone
• Linpack
• Memcpy

Characterization of Smartphone Governor Strategies 125

5 Results

First, we provide a distinction between race-to-idle and pace-to-idle governor strate-
gies. The performance and powersave governors keep the CPU frequency at the max
and the min operating point. This accounts for the least governor software overhead
and no time wasted on voltage and frequency modulation. However, they cannot adapt
to phase changes. Performance governor is a race-to-idle governor. On the other hand,
the pace-to-idle strategies like the interactive and ondemand frequently changes DVFS
points based on CPU utilization. These works better in the application workloads which
interleaves different resources. A view of the number of switching is shown in Table 3.
Antutu shows frequency toggles in performance mode because of thermal throttling
pointing out the drawback of race-to-idle strategy in mobile devices. Interactive filters
out some modulation using hysteresis as compared to ondemand governor and per-
forms better in terms of performance and energy efficiency in most applications.
Moreover, the performance must meet minimum standards which we compile from
prior research and is enlisted in Table 4.

Some of these are benchmarks like the Antutu, Geekbench, Dhrystone and
Nenamark whose scores are directly reported in Table 5 when run with different
governors. Antutu and Dhrystone primarily stresses the CPU. The interactive governor
gives similar performance as performance governor but consumes more power because

Table 3. DVFS mode switching of different governors

Benchmarks Performance
governor

Interactive
governor

Ondemand
governor

Powersave
governor

Antutu 18 842 3809 0
Applaunch 0 1897 7463 0
Audio 0 43 112 0
Dhrystone 0 8 12 0
Geekbench 0 229 887 0
Homescreen 0 44 51 0
Linpack 0 31 83 0
Memcpy 0 10 12 0
Nenamark 0 1178 8383 0

Table 4. Quality of service of different user actions

Behavior Quality Application

Webpage load time 4 s BBench, firefox
Online video loading time 2–10 s Stream, Youtube
Facebook comment post 3 s Facebook
Interactive tasks 100 ms Applaunch, Adobereader
Video playback 30 fps–60 fps Video/Game rendering
PDF rendering 1–10 s Adobereader

126 S. Banerjee and L. K. John

it unnecessarily toggles the frequency. Nenamark is a graphics benchmark running
OpenGL-ES 2.0. The powersave governor gives best frame rate as the GPU governor is
tweaked to performance and bus frequency is changed while the CPU is in powersave
mode. This shows that changing the DVFS modes for the critical component not only
increases performance but also consumes less power. Applaunch of both single and
multiple application works best when the CPU is in performance mode as the QoS is
for the quickest application load time. Moreover, there is not much difference in
response time whenever we are launching light application like the calculator. The
effect is more pronounced when heavier or multiple applications are launched. Table 5
shows the performance of different applications and benchmarks. The values are
marked in green for the acceptable QoS and red for unacceptable ones.

6 Benchmark and Application Classification

A host of benchmarks and user workloads were run with different governors. The
workloads are classified in this section into the following categories:

6.1 CPU Intensive Workloads

These are the workloads that are compute intensive and works best when the processors
are at peak frequency. Race-to-idle scheme gives better performance and is often
energy efficient as well by reducing the number of DVFS switches and also keeping the
SoC active for the minimum amount of time. The pace-to-idle governors on the other
hand, suffer from too many unnecessary DVFS modulations. Interactive and ondemand
governor works good if the workload is continuously CPU demanding and behaves like
performance in Dhrystone [1]. This can be viewed in the minimal number of DVFS
modulations in Table 3. Figure 2 shows the average current of CPU intensive

Table 5. Performance comparison among different CPU governors and green ones have
acceptable QoS.

Workload metric Governors
performance interactive ondemand powersave

Antutu Score 19246 19038 19027 12201
Dhrystone DMIPS 4053 4053 4052 2679
Applaunch
calculator Launch time (s) 0.71 0.74 0.79 0.89
Applaunch
Browser Launch time (s) 1.007 1.02 1.07 1.46

BBench Runtime(s) 190.9 184.17 187.2 246.24
Adobereader Runtime(s) 77.14 79.14 79.95 103.61
ebizzy Total records/sec 2017 2011 1757 472
Nenamark Frames per second 35.6 35.2 34.9 37.4

Memcpy Bandwidth (in
MB/s) 3114 3060 2970 588

Characterization of Smartphone Governor Strategies 127

benchmarks. Applaunch of calculator (simple application) and firefox works fastest in
performance governor. Antutu benchmark shows that the performance has the highest
power efficiency while meeting QoS. Powersave consumes the least power as its
frequency is clipped to the lowest operating mode but it gives drastically poor per-
formance. Thus, if we can categorize a phase of a workload as compute intensive, we
can move to performance mode until the phase completes to get the maximum per-
formance and minimal DVFS switching overhead.

6.2 Intermittent CPU Workloads with I/O Operation

Some of the workload we tested like the BBench which loads saved webpages by I/O
operation and scrolls through the webpages which is CPU intensive works best in
pace-to-idle type of governors. Since the CPU is only used intermittently, interactive
governor is the most efficient as it lowers the frequency of the CPU while doing I/O
operation. The lowering of CPU frequency also provides more power budget to the I/O
unit and it can provide better response. Figure 3 shows that BBench is a heavy
benchmark and consumes good amount of current throughout its execution. Facebook,
Adobereader also are I/O intensive and saves CPU power during user interactions.
Geekbench also has a lot of memory operations where interactive aces out. Perfor-
mance governor scores better in the CPU intensive workloads of the Geekbench suite.

Fig. 2. Power comparison of CPU intensive benchmarks of different governors.

Fig. 3. Power comparison of user interactive applications of different governors.

128 S. Banerjee and L. K. John

We went in deeper into the Geekbench 3 workload and compared the race-to-idle
(performance) and pace-to-idle(interactive) strategies closely. The performance gov-
ernor aced in the compute intensive integer and floating point benchmarks. But due to
constrained power budget, it performs poorly in most of the memory benchmarks.
Since it clocked the CPU continuously at the highest frequency, it failed to provide
enough power to the memory bus degrading performance. On the other hand, the
interactive governor clocked the CPU at minimum operating point for simple opera-
tions and redirected the entire power to the memory bus giving better bandwidth as
shown in Fig. 4(a).

6.3 Application Requiring Other Blocks in the SoC

There are other applications like playing a video which requires the multimedia unit to
be active. The CPU can stay in the powersave mode while providing power budget to
the DDR and the multimedia unit to perform. Moreover, playing games require the
GPU to be in higher performance mode to render better user experience.

Fig. 4. (a) Geekbench 3 memory perf comparison between performance and interactive
governor (b) Geekbench 3 score comparison of different types of workloads.

Fig. 5. Power comparison of governors running applications using other resource

Characterization of Smartphone Governor Strategies 129

In Fig. 5, the GPU is in performance mode in the Nenamark benchmark and the
powersave not only consumes least power but also provides the highest fps as more
power budget is allocated to the accelerator. Thus, application-wise characterization is
useful to provide better power efficiency. Running in powersave ensures that the device
remains cooler for a longer period which is the normal usage pattern of video and audio
playback applications.

7 Observations

After running various types of workloads on all the different kinds of governors, it is
seen that choosing the correct governor in a battery-operated system-on-a-chip is a
multi-variable problem where one should consider the balance of activities in the
various units. Governors should also minimize thermal throttling hardware to attain
best efficiency and performance in addition to better chip life.

As mentioned in the introduction that a race-to-idle scheme works well for servers
because more importance is given on the performance, this scheme is thought to be a
poor fit for battery-operated devices. But our observation states that in compute
intensive workloads, the race-to-idle scheme performs better not only in performance
but also it gives better energy efficiency in some cases. In multicore devices, normally
there is provision of switching off each core into several idle low power states. So, if a
governor finishes the pending work in the minimum time and goes to idle, it will save
operating power. This strategy will work even better with technology shrinking as the
leakage current becomes comparable with the dynamic current. With more
application-specific units are put in the SoC, having a global governor controlling the
DVFS modes of every component based on workload characterization will be the
desired solution as we observe by classifying the workload and showing that CPU
powersave coupled with resource race-to-idle works better in scenarios which use
accelerators. The race-to-idle scheme also makes sharing of power source easier as the
units are active for the minimum amount of time. Last but not the least is the fact that
race-to-idle schemes give better performance most of the time.

The pace-to-idle strategy also performs well in multiple scenarios where multiple
resources are used together or in a sequential manner. For instance, the BBench
workload loads a set of heavy webpages from the memory making it a memory
intensive workload followed by the execution of contents in the webpages, which is
compute-intensive. In these scenarios, the pace-to-idle strategies work best as all the
units like the memory-bus and the CPUs are appropriately scaled whenever it is nee-
ded. It also performs better in applications like Facebook which requires user inter-
action where the CPU frequency can be opportunistically modulated to reduce power
and temperature of the device. It also helps in thermal distribution as the cores get
heated up when it is constantly at higher frequency reducing reliability and perfor-
mance by engaging the thermal throttler. We tested the Adobereader applications in
which we opened a document, scrolled through it and adjusted the zooming. Since
there were enough idle times between these operations, interactive was the most effi-
cient. The responsiveness of the interactive governor was like the performance

130 S. Banerjee and L. K. John

governor but it performed poorly while searching a word in the file ending up con-
suming more power. But mere scrolling through the text would have been more effi-
cient in the interactive governor.

Moreover, for video playback or a GPU-intensive game, the multimedia or GPU is
used and changing the CPU governor doesn’t make any difference in performance. But
changing the governor of the corresponding block improves both performance and
energy efficiency. Based on the above trends, we conclude that characterization of
workload would help design a high performing energy efficient governor.

8 Related Work

There has been considerable amount of research performed to enhance the native
interactive(default) governor of the system. The related works are grouped into the
following categories:

8.1 Race-to-Idle vs Pace-to-Idle Schemes

Some works suggested pace-to-idle strategy is the better strategy [3] due to the
intermittent CPU usage pattern of the workloads and waiting for I/O interrupts. With
the constrained system power/thermal budget, it is not feasible to make all resources
available simultaneously. But on the other hand, transistors are shrinking in size and
leakage is comparable to the dynamic current. The reduction in resource active time by
race-to-idle schemes are making it attractive. Moreover, Race-to-idle schemes give
better performance. Coupled with all these benefits, the race-to-idle is becoming
popular. Albers and Antoniadis [4] have proposed that the race-to-idle strategies pro-
vide better energy efficiency provided the system has multi-level and deep sleep states
which is common in smartphones. It causes the minimum DVFS transitions causing
less halts and power wastage. While Hoffman [3] claims that pace-to-idle betters than
race-to-idle in smartphones due to the intermittent use of a specific resource diluting the
effectiveness and energy efficiency of the resource. But workload characterization can
help improve the effectiveness of the resource by deploying race-to-idle strategy for the
required resource making it fully available when necessary thereby improving energy
efficiency.

8.2 Governor Design Based on Runtime Phase Behavior and QoS
Deadline

Isci et al. and others [5, 22] has used runtime phase behavior to perform dynamic
DVFS management of a device. The phase behavior was identified from the branch
predictor. On the other hand, some of the DVFS governors were designed keeping in
mind the idea of meeting a quality-of-service(QoS) deadline while running the pro-
cessor at the optimum frequency to achieve the highest energy efficiency [19, 20].
These policies explore the search space to figure out the most energy efficient DVFS
mode. Though these works [6, 11] are promising but their applicability is restricted to
limited applications like web browsing and video playback. Moreover, it doesn’t

Characterization of Smartphone Governor Strategies 131

consider system-wide power budget. A single power source can be shared among
multiple resources like multi-core CPUs, GPUs and other accelerators. Redirecting the
power to the most useful resource is important when the current consumed is near the
limit of the source.

8.3 Power Sharing Among Different Resources

Paul et al. and others [18, 21] has evaluated the need of cooperative boosting between
CPUs and GPUs in a AMD APU processor. This is critical in smartphones when
multiple resources are sharing a power source or when the device is thermally limited.
However, this work is focused on desktop CPUs. A smartphone CPU like the one used
in this work has more resources sharing a current source and the QoS metrics are quite
different. We evaluated the different smartphone governors on similar lines with higher
granularity in the type of resource.

8.4 Reducing DVFS Switch Time

Another line of radically different effort is put to reduce the DVFS switch time. The
pace-to-idle can be made even more aggressive in the switching time is reduced. New
PLLs and voltage regulators have better response time to quickly switch the modes with
minimum current spikes which improves the overall energy efficiency. Several
researchers have proposed elegantmethods [12, 13] to reduce the switch time. But still the
DVFS switching time is of the order of several micro-seconds as it involves changing the
voltage. Workload characterization and identification of phases based on usage pattern
can reduce the number of DVFS mode changes and will increase efficiency but the
algorithms can be made more aggressive when the DVFS switching time reduces.

9 Conclusion

In this paper, we studied various governor strategies and their impact on performance
and energy consumption while running various workloads for a smartphone. We con-
clude that a good governor must wisely choose the DVFS mode of not only the CPU, but
also the various non-CPU components when the workload demands varied utilization of
multiple blocks sharing a current source. System wide governors tuning the DVFS
modes of different units of SoC will provide efficient utilization of the available current.
Since, smartphone applications mostly use a specific component of the SoC, charac-
terization of workloads to boost the frequency of the corresponding component to the
required level gives better performance with increased energy efficiency. Analyzing
phase behavior and usage pattern of the program can further help in selection of the
optimum DVFS mode. It was observed that turning on the powersave mode does not
necessarily save battery in many scenarios. The powersave governor led to increased
energy consumption for CPU intensive workloads because of higher run time causing
more leakage energy consumption. Hence, characterization of a workload and wise
current distribution to the critical components is imperative in designing a governor
giving it desirable performance but also yields high energy and thermal efficiency.

132 S. Banerjee and L. K. John

Acknowledgement. This work was partially supported by National Science Foundation
(NSF) under grant numbers 1725743 and 1745813. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect
the views of NSF or other sponsors.

References

1. Weicker, R.P.: Dhrystone: a synthetic systems programming benchmark. Commun. ACM 27
(10), 1013–1030 (1984)

2. Pallipadi, V., Starikovskiy, A.: The ondemand governor. In: Proceedings of the Linux
Symposium, vol. 2, pp. 215–230 (2006)

3. Hoffmann, H.: Racing and pacing to idle: an evaluation of heuristics for energy-aware
resource allocation. In: Proceedings of the Workshop on Power-Aware Computing and
Systems, p. 13. ACM (2013)

4. Albers, S., Antoniadis, A.: Race to idle: new algorithms for speed scaling with a sleep state.
ACM Trans. Algorithms (TALG) 10(2), 9 (2014)

5. Isci, C., Contreras, G., Martonosi, M.: Live, runtime phase monitoring and prediction on real
systems with application to dynamic power management. In: Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society (2006)

6. Rao, K., Wang, J., Yalamanchili, S., Wardi, Y., Handong, Y.: Application-specific
performance-aware energy optimization on android mobile devices. In: 2017 IEEE
International Symposium on High Performance Computer Architecture (HPCA), pp. 169–
180 (2017)

7. Halpern, M., Zhu, Y., Reddi, V.J.: Mobile CPU’s rise to power: quantifying the impact of
generational mobile cpu design trends on performance, energy, and user satisfaction. In:
2016 IEEE International Symposium on High Performance Computer Architecture (HPCA).
IEEE (2016)

8. Shneiderman, B.: Designing the User Interface. Addison-Wesley, Boston (1992)
9. Zhu, Y., Halpern, M., Reddi, V.J.: Event-based scheduling for energy-efficient QoS (eQoS)

in mobile web applications. In: 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA). IEEE (2015)

10. https://blog.kissmetrics.com/speed-is-a-killer/
11. Zhu, Y., Reddi, V.J.: Optimizing general-purpose cpus for energy-efficient mobile web

computing. ACM Trans. Comput. Syst. 35, 1 (2017)
12. Eyerman, S., Eeckhout, L.: Fine-grained DVFS using on-chip regulators. ACM Trans.

Archit. Code Optim. (TACO) 8(1), 1 (2011)
13. Kim, W., Gupta, M.S., Wei, G.Y., Brooks, D.: System level analysis of fast, per-core DVFS

using on-chip switching regulators. In: 2008 IEEE 14th International Symposium on High
Performance Computer Architecture, HPCA 2008, pp. 123–134. IEEE (2008)

14. Dragonboard 410c. https://developer.qualcomm.com/hardware/dragonboard-410c
15. Measuring power consumption for Dragonboard 410c. https://developer.qualcomm.com/

download/db410c/power-measurement-appnote.pdf
16. Linaro workload automation. https://media.readthedocs.org/pdf/workload-automation/latest/

workload-automation.pdf
17. Android debug bridge. https://developer.android.com/studio/command-line/adb.html
18. Paul, I., et al.: Cooperative boosting: needy versus greedy power management. In:

ACM SIGARCH Computer Architecture News, vol. 41, no. 3. ACM (2013)

Characterization of Smartphone Governor Strategies 133

https://blog.kissmetrics.com/speed-is-a-killer/
https://developer.qualcomm.com/hardware/dragonboard-410c
https://developer.qualcomm.com/download/db410c/power-measurement-appnote.pdf
https://developer.qualcomm.com/download/db410c/power-measurement-appnote.pdf
https://media.readthedocs.org/pdf/workload-automation/latest/workload-automation.pdf
https://media.readthedocs.org/pdf/workload-automation/latest/workload-automation.pdf
https://developer.android.com/studio/command-line/adb.html

19. Shingari, D., et al.: DORA: optimizing smartphone energy efficiency and web browser
performance under interference. In: 2018 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE (2018)

20. Gaudette, B., Wu, C.J., Vrudhula, S.: Improving smartphone user experience by balancing
performance and energy with probabilistic QoS guarantee. In: 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA). IEEE (2016)

21. Kim, Y., John, L., Paul, I., Manne, S., Schulte, M.: Performance boosting under reliability
and power constraints. In: International Conference on Computer Aided Design (ICCAD),
November 2013

22. Bircher, W.L., John, L.: Predictive power management for multi-core processors. In:
Varbanescu, A.L., Molnos, A., van Nieuwpoort, R. (eds.) ISCA 2010. LNCS, vol. 6161,
pp. 243–255. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24322-6_21

134 S. Banerjee and L. K. John

http://dx.doi.org/10.1007/978-3-642-24322-6_21

HPC Benchmarking: Scaling Right
and Looking Beyond the Average

Milan Radulovic1,2(B), Kazi Asifuzzaman1,2, Paul Carpenter1,
Petar Radojković1, and Eduard Ayguadé1,2

1 Barcelona Supercomputing Center (BSC), Barcelona, Spain
{milan.radulovic,kazi.asifuzzaman,paul.carpenter,

petar.radojkovic}@bsc.es
2 Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

eduard@ac.upc.edu

Abstract. Designing a balanced HPC system requires an understanding
of the dominant performance bottlenecks. There is as yet no well estab-
lished methodology for a unified evaluation of HPC systems and work-
loads that quantifies the main performance bottlenecks. In this paper, we
execute seven production HPC applications on a production HPC plat-
form, and analyse the key performance bottlenecks: FLOPS performance
and memory bandwidth congestion, and the implications on scaling out.
We show that the results depend significantly on the number of execu-
tion processes and granularity of measurements. We therefore advocate
for guidance in the application suites, on selecting the representative
scale of the experiments. Also, we propose that the FLOPS performance
and memory bandwidth should be represented in terms of the propor-
tions of time with low, moderate and severe utilization. We show that
this gives much more precise and actionable evidence than the average.

Keywords: HPC applications · Bottlenecks · FLOPS
Memory bandwidth · Scaling-out

1 Introduction

Deploying an HPC infrastructure is a substantial investment in time and money,
so it is extremely important to make the right procurement decision. Unfortu-
nately, evaluating HPC systems and workloads and quantifying their bottlenecks
is hard. There are currently three main approaches. The approach taken by
TOP500 and Green500 is to evaluate systems using a prominent HPC bench-
mark, such as High-Performance Linpack (HPL) [20] or High Performance Con-
jugate Gradients (HPCG) [5]. Another approach is to measure the sustained
performance of the various components in the system using specialized kernel
benchmarks, such as HPC Challenge [13]. By design, kernel benchmarks quan-
tify only the sustainable performance of individual system components, so they
lack the capability to determine how a real-world production HPC application
will behave on the same platform.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 135–146, 2018.
https://doi.org/10.1007/978-3-319-96983-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_10&domain=pdf

136 M. Radulovic et al.

The final approach, which is the one taken in this paper, is to mimic pro-
duction use by running a set of real HPC applications from diverse scientific
fields [23]. We execute seven production HPC applications, together with HPL
and HPCG, on a production x86 platform, and we reach two main conclusions.
Firstly, we find that HPC application performance and CPU/memory system
bottlenecks are strongly dependent on the number of application processes.
This is typically overlooked in benchmark suites, which seldom define how many
processes should be used. We argue that it is essential that HPC application
suites specify narrow ranges on the number of processes, so that the results are
representative of real world application use, or that they at least provide some
guidelines. Secondly, we find that average values of bytes/FLOP, bytes/s
and FLOPs/s can be highly misleading. Our results show that the applica-
tions under study have low average FLOPs/s utilization and moderate pressure
on the memory bandwidth. However, we identified several applications, such
as ALYA and GENE, with a moderate average memory bandwidth that spend
more than 50% of their computation time in phases where the memory band-
width bottleneck is severe. We therefore recommend that rather than thinking in
terms of average figures, one measures the percentage of time that the utilization
of memory bandwidth or FLOPs/s is low (below 40% of sustainable maximum),
moderate (40% to 80%) and severe (above 80%). These three figures give a much
more precise picture of the application behavior than the average.

In summary, given the substantial investment of time and money to deploy an
HPC system, it is important to carefully evaluate HPC architectures. Compared
with benchmarks or kernels, system evaluation with HPC application suites can
give a more complete picture of the HPC system behavior. However, our results
show that it is very important that HPC application suites specify narrow ranges
for the number of processes that are representative of real-life application behav-
ior, or at least provide some guidelines so users themselves could determine
these ranges for their target platforms. In addition, reporting key application
measurements using the average values may conceal bursty behavior, and give
a misleading impression of how performance would be affected by changes in
the platform’s memory bandwidth. We suggest to avoid average figures when
evaluating performance or bottlenecks, and instead measure the percentage of
time that these figures are low, moderate and severe, with respect to their sus-
tained peak, which gives a more precise picture of the application’s or system’s
behavior.

We hope our study will stimulate awareness and dialogue on the subject
among the community, and lead to improved standards of evaluating and report-
ing performance results in HPC.

2 Experimental Environment

In this section, we explain the experimental platform, workloads, methodology
and tools we used in our analysis.

HPC Benchmarking: Scaling Right and Looking Beyond the Average 137

2.1 Experimental Platform

The experiments are executed on the MareNostrum 3 supercomputer [3], the
third version of one of the six Tier-0 (largest) HPC systems in Europe [21]. It
comprises dual-socket Intel Sandy Bridge-EP E5-2670 nodes. Each socket com-
prises eight cores operating at 3.0 GHz. As in most HPC systems, hyperthreading
is disabled. The processors connect to main memory through four channels, each
with a single DDR3-1600 DIMM. Regular MareNostrum compute nodes include
32 GB of DRAM memory, i.e., 2 GB per core. The nodes are connected with an
InfiniBand FDR-10 (40 Gb/s) interconnect, as a non-blocking two-level fat-tree
topology.

2.2 Workloads

High-Performance Linpack
For a long time, the High-Performance Linpack (HPL) [20] benchmark has been
the de facto metric for ranking HPC systems. It measures the sustained floating-
point rate (GFLOPs/s) for solving a dense system of linear equations using
double-precision floating-point arithmetic. The linear system is randomly gen-
erated, with a user-specified size, so the user can scale the problem to achieve
the best performance on a given system. HPL stresses only the system’s float-
ing point performance, without stressing other important contributors to overall
performance, such as the memory subsystem. The most prominent evaluation
of HPC systems constitutes the TOP500 list [24], which has been criticized for
assessing system performance using only HPL [12]. The community has pointed
out the weaknesses of HPL and advocated for a way to evaluate HPC systems
that is better correlated with the needs of production HPC applications [6].

High-Performance Conjugate Gradients
High Performance Conjugate Gradients (HPCG) [5], has been released as a com-
plement to the FLOPs-bound HPL. It is based on an iterative sparse-matrix con-
jugate gradient kernel with double-precision floating-point values. While HPL
can exploit data locality and thus cope with relatively low memory bandwidth,
HPCG performance is largely proportional to the available memory bandwidth.
HPCG is a good representative of HPC applications governed by differential
equations, which tend to have much stronger needs for high memory bandwidth
and low latency, and tend to access data using irregular patterns.

HPC Applications
Evaluating HPC systems using benchmarks that target specific performance
metrics is not enough to determine the performance of a real-world application.
It is therefore essential to execute production applications on an HPC system to
better understand the bottlenecks and constraints experienced by a production
HPC application. There are efforts in making suites of HPC applications that
could be used in benchmarking purposes, such as NSF [17], NCAR [15] and
NERSC Trinity benchmarks [16] in USA, and EuroBen [8], ARCHER [25] and
Unified European Application Benchmark Suite (UEABS) [18] in Europe.

138 M. Radulovic et al.

Table 1. Scientific HPC applications used in the study

Name Area Selected no. of processes

ALYA Computational mechanics 16–1024

BQCDa Particle physics 64–1024

CP2K Computational chemistry 128–1024

GADGET Astronomy and cosmology 512–1024

GENE Plasma physics 128–1024

NEMO Ocean modeling 512–1024

QEb Computational chemistry 16–256
aQuantum Chromo-Dynamics (QCD) is a set of five kernels.
We study Kernel A, also called Berlin Quantum Chromo-
Dynamics (BQCD), which is commonly used in QCD simulations.
bQE stands for Quantum Espresso application. QE does not scale
on more than 256 processes.

In our evaluation, we used a set of UEABS applications. UEABS represents
a set of production applications and datasets, from various scientific domains,
designed for benchmarking the European HPC systems, included in the Part-
nership for Advanced Computing in Europe (PRACE) [21], for procurement and
comparison purposes. Parallelized using the Message Passing Interface (MPI),
these applications are regularly executed on hundreds to thousands of cores. We
study 7 of 12 applications from UEABS [18], listed in Table 1.1

Tools and Methodology
The applications come with input datasets and a recommended range of CPU
cores for the experiments. We use the Test Case A datasets, which are deemed
suitable for Tier-1 systems up to about 1,000 cores [18]. In all experiments, we
execute one application process per CPU core. The number of processes starts
from 16 (a single MareNostrum node) and it increases by powers of two until
1,024 processes. Some of the applications have memory capacity requirements
that exceed the available node memory, which limits the lowest number of pro-
cesses in the experiments, e.g., BQCD cannot be executed with fewer than 64 pro-
cesses (four nodes). The presented analysis keeps constant the input dataset and
varies the number of application processes, which refers to a strong scaling case.2

1 We could not finalize the installations of Code Saturne and GPAW. The errors have
been reported to the application developers. The remaining three applications had
problems once the measurement infrastructure was included.

2 The alternative would be a weak scaling analysis, in which the problem size scales
with the number of nodes. Unlike HPL and HPCG, for which the problem size
is defined by the user and the input data is generated algorithmically, application
benchmark suites include specific input problem data. We are not aware of a pro-
duction application benchmark suite that has problems suitable for weak scaling
analysis. Although some of the UEABS benchmarks are distributed with two input
datasets, small and large, they are not comparable so are insufficient for weak scaling
analysis [26].

HPC Benchmarking: Scaling Right and Looking Beyond the Average 139

The application’s computation bursts were instrumented with Limpio [19]
and Extrae [4]. We used core performance counters [10] to measure FLOPS
performance (scalar and vector FLOPS counters) and uncore performance coun-
ters [9] to measure memory bandwidth (read and write CAS commands coun-
ters).

We analyze the application behavior at two levels of granularity. First, we
plot mean FLOPs and memory bandwidth utilization using end-to-end measure-
ments and averaging the values of all application processes. Second, we analyze
the fine-granularity measurements done at the computational burst level. For
each computational burst, we measure the FLOPs, bandwidth utilization and
the burst execution time. Afterwards, we analyze the cumulative distribution
function of the measurements.3 As we show in this paper, these two levels of the
analysis can, and often do, actually lead to different conclusions.

3 Results

In this section, we analyze the stress of the production HPC applications on the
CPU and memory resources, and pay special attention to understand how this
stress may change during execution and as the application scales.

3.1 Floating-Point Performance Analysis

Figure 1a plots the average FLOPs/s utilization for different numbers of appli-
cation processes. The results show that the average FLOPs/s utilization of pro-
duction HPC applications is fairly low: for most applications it is below 30%,
and in the best case it reaches only 51% (CP2K-128 experiment). Figure 1b sum-
marizes the distribution of measurements done at computational burst level. We
divide the computational burst measurements into five clusters: 0–20%, 20–40%,
40–60%, 60–80% and 80–100% of sustained FLOPs/s, and then plot the portion
of execution time represented by each cluster. For example, in the BQCD-64
experiment, 72% of the time the FLOPs/s utilization is between 0 and 20%,
while for the remaining 28% of the time it is between 20% and 40%.

Our results show that detailed measurements are indeed needed, and that
plotting only average values may hide important information. The most obvious
case would be the QE-16 experiment. Although the average FLOP utilization
is only 24% (Fig. 1a), the application actually puts extremely high pressure on
CPU FLOPs for around 18% of its computation time (Fig. 1b).

We also analyze changes in the application behavior when executing them
using different numbers of processes. Both, average and per-burst measurements
indicate significant changes in the application behavior as the applications scale-
out4.
3 The cumulative distribution function, y = F (x), in this case presents the fraction of

samples y that are less or equal to a certain value x.
4 We remind the reader that we used the official input datasets, and followed the

recommendations about the range of CPU processes that should be used in the
experiments (see Sect. 2.2).

140 M. Radulovic et al.

HPCG-1024

NEMO-1024

BQCD-1024
QE-256

GENE-1024

ALYA-1024

CP2K-1024

GADGET-1024

HPL-1024
0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
of

m
ax

.
su

st
ai

na
bl

e
FL

O
Ps

(D
G

EM
M

)
0.1 4

17 24
10

2

51

3

81

0.1 0.6

23 26
10 3

33

3

69
Lowest number of processes
Highest number of processes

HPCG-16

NEMO-512

BQCD-64
QE-16

GENE-128

ALYA-16

CP2K-128

GADGET-512
HPL-16

(a) Average FLOPS utilization

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
of

ex
ec

ut
io

n
tim

e

100 100
72 80

100 100

18

100

28

26

24

39

18 27

60

100 99

55
75

100 100

45

100

24

45

19

17

24
31 49

0-20% 20-40% 40-60% 60-80% 80-100% of the max. sus. FLOPs

HPCG-1024

HPCG-16

NEMO-512

BQCD-64
QE-16

GENE-128

ALYA-16

CP2K-128

GADGET-512

HPL-16

NEMO-1024

BQCD-1024
QE-256

GENE-1024

ALYA-1024

CP2K-1024

GADGET-1024

HPL-1024

(b) FLOPS utilization on burst granularity

Fig. 1. Production HPC applications show fairly low FLOPS utilization, both on lowest
and highest number of processes.

This opens a very important question: Which application behavior is the
correct/representative one, i.e. which number should we report?

3.2 Memory Bandwidth Analysis

Memory bandwidth has become increasingly important in recent years. Keeping
the memory bandwidth balanced with the CPU’s compute capabilities, within
affordable costs and power constraints, has become a key technological challenge.
The increasing awareness of this challenge also resulted in the introduction of
the HPCG benchmark, as an alternative to HPL. The industry also responded to
the growing need for more memory bandwidth, and high-bandwidth 3D-stacked
DRAM products are hitting the market. Their manufacturers promise significant
performance boosts over standard DDRx DIMMs, although some independent
studies doubt whether and to what extent high-bandwidth memory will benefit
HPC applications [22].

Memory bandwidth collision can indeed have the strong negative perfor-
mance impact. When a workload uses more than 40% of maximum sustainable
bandwidth, concurrent memory accesses start to collide, which increases memory
latency causing performance penalties. Using more than 80% of maximum sus-
tainable bandwidth causes severe collisions among concurrent memory requests;
thus memory latency increases exponentially and memory bandwidth becomes
a serious performance bottleneck [11].

HPC Benchmarking: Scaling Right and Looking Beyond the Average 141

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
of

m
ax

.
su

st
ai

na
bl

e
bw

(S
TR

EA
M

)

98
86 82 74

63
47

38 37
26

83 84

61 62 54

4

31 34
25

Lowest number of processes
Highest number of processes

HPCG-1024

NEMO-1024

BQCD-1024
QE-256

GENE-1024

ALYA-1024

CP2K-1024

GADGET-1024

HPL-1024

HPCG-16

NEMO-512

BQCD-64
QE-16

GENE-128

ALYA-16

CP2K-128

GADGET-512
HPL-16

(a) Average memory bandwidth utilization

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
of

ex
ec

ut
io

n
tim

e

14
40

27
49

14

36

25
91

30 19

38

64
97

56
82

22

72
55

13
29

95

61 59
32

10 11

18 21

47

17

17 15

36

57
83

12

74
51 58

12

0-20% 20-40% 40-60% 60-80% 80-100% of the max. sus. bw

HPCG-1024

HPCG-16

NEMO-512

BQCD-64
QE-16

GENE-128

ALYA-16

CP2K-128

GADGET-512

HPL-16

NEMO-1024

BQCD-1024
QE-256

GENE-1024

ALYA-1024

CP2K-1024

GADGET-1024

HPL-1024

(b) Memory bandwidth utilization on burst granularity

Fig. 2. Contrary to FLOPS, memory bandwidth utilization of production HPC appli-
cations is substantial.

Figure 2 plots the memory bandwidth usage of UEABS applications. The
memory bandwidth values are plotted relative to the maximum sustained mem-
ory bandwidth measured by the STREAM benchmark. Again, we plot the results
at two levels of granularity: Fig. 2a plots average utilization over computation
time and for different numbers of application processes, while Fig. 2b shows fine-
granularity measurements at the computational burst level. The applications
under study show higher utilization of memory bandwidth, than FLOPs perfor-
mance, even for the average values.

Next we analyze the computational bursts measurements, presented in
Fig. 2b. The chart shows moderate to high memory bandwidth utilization. All
the applications under study have segments in which memory bandwidth uti-
lization exceeds 40%, and all but two of them, CP2K and GADGET, spend a
significant portion of time with bandwidth utilization above 60% or even 80%.

The computational burst measurements reveal some interesting scenarios,
which are more apparent in Fig. 3. In this figure, the x-axis is the average mem-
ory bandwidth utilization, as in Fig. 2a. The y-axis is the proportion of time for
which the memory bandwidth utilization is severe; i.e. more than 80% of the sus-
tainable maximum, which corresponds to the darkest shade parts of the bars in
Fig. 2b. Figure 3 shows that considering the average memory bandwidth on the
x-axis, ALYA-16 and CP2K-128 may seem to be bandwidth insensitive, as their
average bandwidths are around 50% and 40% of the sustained bandwidth. How-
ever, detailed in-time measurements show that they spent significantly different
proportions of the time with severe memory bandwidth utilization: CP2K-128

142 M. Radulovic et al.

spends only about 4% of its computation time, but ALYA-16 spends 55% of
its computation time, which presents a serious performance penalty. We find a
similar situation with BQCD-1024, GENE-128 and QE-1024. These applications
all have average memory bandwidth of around 60% of the sustained maximum.
Even so, QE-256 spends only 12% of its computation time with severe mem-
ory bandwidth utilization (more than 80% of maximum sustained). In contrast,
BQCD-1024 and GENE-128 spend 58% and 72% of their computation time,
respectively, with severe memory bandwidth utilization.

This is another confirmation that detailed measurements are needed, and that
plotting only the average values may be misleading. Applications under study
that spend significant amount of their computation time using more than 80% of
the sustained bandwidth have a severe performance bottleneck. In these phases of
their computation time, the applications would benefit out of increased available
memory bandwidth in the system. In our case, ALYA-16, but not CP2K-128, is
likely to benefit from higher bandwidth memories. It would reduce the bottle-
neck and increase the application performance. However, reporting only average
values of memory bandwidth cannot point out the necessary details.

Our suggestion would be that memory bandwidth utilization should be
defined at least with three numbers—as the percentage of execution time that
applications use 0–40%, 40–80% and 80–100% of the maximum sustained band-
width. This would correspond the portion of the execution time in which the
application experiences negligible, moderate and severe performance penalties
due to collision on concurrent memory requests.

3.3 Discussion

Our analysis emphasizes that HPC application behavior is tightly coupled with
the number of application processes. There are two main reasons for this. First,
application scaling-out increases the inter-process communication time. To illus-
trate this, in Fig. 4 we plot the portion of overall execution time that applications
under study spend in inter-process communication.

0% 20% 40% 60% 80%
Average memory bandwidth utilization

0%

20%

40%

60%

80%

100%

Po
rti

on
of

ex
ec

ut
io

n
tim

e
sp

en
ta

bo
ve

80
%

of
th

e
m

ax
.s

us
ta

in
ab

le
bw

.

HPCG (16, 1024)
NEMO (512, 1024)
BQCD (64, 1024)
QE (16, 1024)
GENE (128, 1024)
ALYA (16, 1024)
CP2K (128, 1024)
GADGET (512, 1024)
HPL (16, 1024)

100%

Fig. 3. Average memory bandwidth can mislead and hide potential bottlenecks.
BQCD-1024, GENE-128 and QE-256 have similar average memory bandwidths, how-
ever BQCD-1024 and GENE-128 spend significantly more time utilizing more than
80% of max. sustainable bandwidth, which is a serious bottleneck.

HPC Benchmarking: Scaling Right and Looking Beyond the Average 143

16 32 64 128 256 512 1024
Number of execution processes

0%
20%
40%
60%
80%

100%

C
om

m
.p

er
ce

nt
ag

e
in

to
ta

lt
im

e

ALYA
BQCD

CP2K
GADGET

GENE
NEMO

QE

Fig. 4. Portion of total execution time spent in the inter-process communication for
UEABS applications, strong scaling.

Even for the low number of application processes, the communication is non-
negligible, and as the number of processes increases, it becomes the dominant
part of the overall execution time. The higher the portion of time that is spent in
communication, the lower the average utilization of FLOPs and memory band-
width (as detected in Figs. 1a and 2a). Also, in general, the higher the number
of processes, the smaller the portion of the input data handled by each process,
which changes the effectiveness of cache memory and the overall process behavior
(as detected in Figs. 1b and 2b).

HPC application behavior may be known by the application developers, but
it is often overlooked in all HPC application suites for benchmarking purposes.
State-of-the-art HPC application suites do not strictly define the number of
processes to use in experiments. For example, UEABS recommends running the
applications with corresponding input datasets on up to approximately 1,000
processes, but the minimum number of processes is not specified. Similarly, other
HPC application suites either provide loose recommendations about the number
of processes [15–17,25] or do not discuss this issue at all [8]. However, it is not
surprising that HPC application suites overlooked the problem that application
behavior is tightly-coupled with number of application processes. After all, this
problem does not exist for single-threaded benchmarks, and it was not detected
for HPC benchmarks that put high stress to a single resource, such as HPCG,
HPL or HPCC suite.

The essence of benchmarking is to provide representative use cases for char-
acterization and valid comparison of different systems. If the application suite
does not provide it, then the results are misleading. Our results show that it is
very important that HPC application suites specify narrow ranges for the num-
ber of processes that are representative of real-life application behavior, or at
least provide some guidelines so users themselves could determine these ranges
for their target platforms.

144 M. Radulovic et al.

4 Related Work

There are not many studies that analyse benchmarking methodologies and how
to represent evaluation results of HPC systems and applications. Bailey [1] pro-
vides common guidelines for reporting benchmark results in technical comput-
ing, following his similar summary of misleading claims for reporting results in
system evaluation [2]. He points out the possibilities of misleading conclusions
and potential biases from using projections and extrapolations, tuning levels,
evaluating non-representative segments of the workloads, etc. Nevertheless, he
presents several rules and advocates the community to pay attention and avoid
the biased results.

Hoefler and Belli [7] attempt to define ground rules and guidelines for the
interpretation of HPC benchmarking. The authors propose statistical analysis
and reporting techniques in order to improve the quality of reporting research
results in HPC and ensure interpretability and reproducibility. In their study,
they identify several frequent problems and propose rules to avoid them. Their
analysis covers methods for reporting the results of speed-up, usage of various
means, summarizing ratios, confidence intervals, normalization, usage of various
chart techniques, and others.

Sayeed et al. [23] advocate the use of real applications for benchmarking in
HPC, and that small benchmarks cannot predict the behavior of the real HPC
applications. They discuss important questions, challenges, tools and metrics in
evaluating performance using HPC applications. Afterwards, they evaluate the
performance of four application benchmarks on three different parallel archi-
tectures, and measure the runtime, inter-process communication overhead, I/O
characteristics and memory footprint. This way, they show the importance of
reporting various metrics, in order to have a better representation of application
and system performance. Since they measure these metrics on several numbers
of execution processes, the results differ from one execution to another. It is
clear from their results that on different numbers of execution processes, differ-
ent platforms perform better or worse, which can significantly bias the analysis
on certain scale of the experiments.

Marjanović et al. [14] explore the impact of input data-set for three repre-
sentative benchmarks: HPL, HPCG and High-performance Geometric Multigrid
(HPGMG). They perform an analysis on six distinct HPC platforms at the
node level, and perform scale-out analysis on one of the platforms. Their results
show that exploring multiple problem sizes gives a more complete picture of the
underlying system performance, than a single number representing the best per-
formance, which is the usual way of reporting the results. They advocate for the
community to discuss and propose a method for aggregating these values into a
representative result of the system performance.

In our study, we focus on two important aspects of benchmarking with HPC
applications: the importance of defining the representative scale of the exper-
iments and measurement granularity in quantifying performance bottlenecks,
which are often overlooked by the community. To our knowledge, this is the first
study that analyses the importance of a deterministic range for the number of

HPC Benchmarking: Scaling Right and Looking Beyond the Average 145

execution processes. We also suggest a simple way to show several values for por-
tions of time spent in different utilizations of certain metric. It does not require
additional executions or special evaluation infrastructure, yet it gives much bet-
ter representation of application behavior and clearer focus on its bottlenecks.

5 Conclusions

A clear understanding of HPC system performance factors and bottlenecks is
essential for designing an HPC infrastructure with the best features and a rea-
sonable cost. Such a perception can only be achieved by closely analysing existing
HPC systems and execution of their workloads.

When executing production HPC applications, our findings show that HPC
application performance metrics strongly depend on the number of execution
processes. We argue that it is essential that HPC application suites specify nar-
row ranges on the number of processes, for the results to be representative of
a real-world application use. Also, we find that average measurements of per-
formance metrics and bottlenecks can be highly misleading. Instead, we suggest
that performance measurements should be defined as the percentage of execution
time in which applications use certain portions of maximum sustained values.

Overall, we believe this study offers new guidelines for accurately measuring
key performance factors and their impact on overall HPC performance.

Acknowledgements. This work was supported by the Spanish Ministry of Science
and Technology (project TIN2015-65316-P), Generalitat de Catalunya (contracts 2014-
SGR-1051 and 2014-SGR-1272), Severo Ochoa Programme (SEV-2015-0493) of the
Spanish Government; and the European Union’s Horizon 2020 research and innovation
programme under ExaNoDe project (grant agreement No 671578).

References

1. Bailey, D.H.: Misleading performance claims in parallel computations. In: 2009 46th
ACM/IEEE Design Automation Conference, pp. 528–533, July 2009. https://doi.
org/10.1145/1629911.1630049

2. Bailey, D.H.: Twelve ways to fool the masses when giving performance results on
parallel computers. In: Supercomputing Review, pp. 54–55, August 1991

3. Barcelona Supercomputing Center: MareNostrum III System Architecture (2013).
http://www.bsc.es/marenostrum-support-services/mn3

4. Barcelona Supercomputing Center: Extrae User guide manual for version 3.1.0,
May 2015

5. Dongarra, J., Heroux, M., Luszczek, P.: The HPCG Benchmark (2016). http://
www.hpcg-benchmark.org

6. Heroux, M., Dongarra, J.: Toward a New Metric for Ranking High Performance
Computing Systems. Technical report SAND2013-4744, UTK EECS and Sandia
National Labs, June 2013

7. Hoefler, T., Belli, R.: Scientific benchmarking of parallel computing systems: twelve
ways to tell the masses when reporting performance results. In: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 73:1–73:12, November 2015

https://doi.org/10.1145/1629911.1630049
https://doi.org/10.1145/1629911.1630049
http://www.bsc.es/marenostrum-support-services/mn3
http://www.hpcg-benchmark.org
http://www.hpcg-benchmark.org

146 M. Radulovic et al.

8. Home page of the EuroBen Benchmark. http://www.euroben.nl
9. Intel Corporation: Intel R©Xeon R©Processor E5–2600 Product Family Uncore Per-

formance Monitoring Guide. Technical report, March 2012
10. Intel Corporation: Intel R©64 and IA-32 Architectures Software Developer’s Manual.

Technical report, July 2017
11. Jacob, B.L.: The memory system: you can’t avoid it, you can’t ignore it, you can’t

fake it. Synth. Lect. Comput. Archit. 4(1), 1–77 (2009)
12. Kramer, W.T.: Top500 versus sustained performance: the top problems with the

Top500 list - and what to do about them. In: Proceedings of the 21st International
Conference on Parallel Architectures and Compilation Techniques, pp. 223–230,
September 2012

13. Luszczek, P.R., et al.: The HPC Challenge (HPCC) Benchmark Suite. In: Proceed-
ings of the ACM/IEEE Conference on Supercomputing (2006)

14. Marjanović, V., Gracia, J., Glass, C.W.: HPC benchmarking: problem size mat-
ters. In: Proceedings of the 7th International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computing Systems, pp. 1–10,
November 2016

15. National Center for Atmospheric Research: CISL High Performance Comput-
ing Benchmarks. http://www2.cisl.ucar.edu/resources/computational-systems/
cisl-high-performance-computing-benchmarks

16. National Energy Research Scientific Computing Center: NERSC-8 / Trin-
ity Benchmarks. http://www.nersc.gov/users/computational-systems/cori/nersc-
8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks

17. National Science Foundation: Benchmarking Information Referenced in the NSF
11–511 High Performance Computing System Acquisition: Towards a Petascale
Computing Environment for Science and Engineering. https://www.nsf.gov/pubs/
2006/nsf0605/nsf0605.pdf

18. Partnership for Advanced Computing in Europe (PRACE): Unified european appli-
cations benchmark suite (2013). www.prace-ri.eu/ueabs/

19. Pavlovic, M., Radulovic, M., Ramirez, A., Radojković, P.: Limpio: LIghtweight
MPI instrumentatiOn. In: Proceedings of the 23rd IEEE International Conference
on Program Comprehension, pp. 303–306 (2015)

20. Petitet, A., Whaley, R.C., Dongarra, J., Cleary, A.: HPL - A Portable Imple-
mentation of the High-Performance Linpack Benchmark for Distributed-Memory
Computers, September 2008. http://www.netlib.org/benchmark/hpl/

21. PRACE Research Infrastructure. www.prace-ri.eu
22. Radulovic, M., et al.: Another trip to the wall: how much will stacked DRAM

benefit HPC? In: Proceedings of the International Symposium on Memory Systems,
pp. 31–36 (2015)

23. Sayeed, M., Bae, H., Zheng, Y., Armstrong, B., Eigenmann, R., Saied, F.: Measur-
ing high-performance computing with real applications. Comput. Sci. Eng. 10(4),
60–70 (2008). https://doi.org/10.1109/MCSE.2008.98

24. TOP500 List, November 2014. http://www.top500.org/
25. Turner, A.: UK National HPC Benchmarks. Technical report, UK National Super-

computing Service ARCHER (2016). http://www.archer.ac.uk/documentation/
white-papers/benchmarks/UK National HPC Benchmarks.pdf

26. Zivanovic, D., et al.: Main memory in HPC: do we need more or could we live with
less? ACM Trans. Archit. Code Optim. 14(1), 3:1–3:26 (2017)

http://www.euroben.nl
http://www2.cisl.ucar.edu/resources/computational-systems/cisl-high-performance-computing-benchmarks
http://www2.cisl.ucar.edu/resources/computational-systems/cisl-high-performance-computing-benchmarks
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
http://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks
https://www.nsf.gov/pubs/2006/nsf0605/nsf0605.pdf
https://www.nsf.gov/pubs/2006/nsf0605/nsf0605.pdf
www.prace-ri.eu/ueabs/
http://www.netlib.org/benchmark/hpl/
www.prace-ri.eu
https://doi.org/10.1109/MCSE.2008.98
http://www.top500.org/
http://www.archer.ac.uk/documentation/white-papers/benchmarks/UK_National_HPC_Benchmarks.pdf
http://www.archer.ac.uk/documentation/white-papers/benchmarks/UK_National_HPC_Benchmarks.pdf

Combined Vertical and Horizontal
Autoscaling Through Model Predictive

Control

Emilio Incerto1(B), Mirco Tribastone1, and Catia Trubiani2

1 IMT School for Advanced Studies, Piazza San Francesco 19, Lucca, Italy
{emilio.incerto,mirco.tribastone}@imtlucca.it

2 Gran Sasso Science Institute, Viale Francesco Crispi 7, L’Aquila, Italy
catia.trubiani@gssi.it

Abstract. Meeting performance targets of co-located distributed appli-
cations in virtualized environments is a challenging goal. In this context,
vertical and horizontal scaling are promising techniques; the former varies
the resource sharing on each individual machine, whereas the latter deals
with choosing the number of virtual machines employed. State-of-the-art
approaches mainly apply vertical and horizontal scaling in an isolated
fashion, in particular assuming a fixed and symmetric load balancing
across replicas. Unfortunately this may result unsatisfactory when repli-
cas execute in environments with different computational resources.

To overcome this limitation, we propose a novel combined runtime
technique to determine the resource sharing quota and the horizon-
tal load balancing policy in order to fulfill performance goals such as
response time and throughput of co-located applications. Starting from
a performance model as a multi-class queuing network, we formulate a
model-predictive control problem which can be efficiently solved by lin-
ear programming. A validation performed on a shared virtualized envi-
ronment hosting two real applications shows that only a combined ver-
tical and horizontal load balancing adaptation can efficiently achieve
desired performance targets in the presence of heterogeneous computa-
tional resources.

Keywords: Performance · Queuing networks · Control
Resource sharing · Load balancing

1 Introduction

Performance adaptation of co-located distributed applications consists in sat-
isfying quality-of-service agreements expressed as response-time or throughput
requirements for multiple applications that share common resources. It is con-
sidered a challenging activity [12]. Indeed, current resource schedulers blindly
operate in a performance unaware fashion, both at the level of the hypervisor of
virtual machines (VMs) or of the operating system [19,20]. As a consequence, the
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 147–159, 2018.
https://doi.org/10.1007/978-3-319-96983-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_11&domain=pdf

148 E. Incerto et al.

expected performance isolation, i.e., the behavior of one VM should not nega-
tively impact performance of other running VMs (e.g., [11]), must be guaranteed
by the computing platform providers [1,17,18].

Here we focus on CPU-intensive applications running on a virtualized envi-
ronment. To effectively allocate resources at runtime and in an adaptive manner,
vertical and horizontal scaling are promising techniques; the former varies the
resource shares on each individual machine, whereas the latter deals with choos-
ing the number of virtual machines employed [23]. Unfortunately, state-of-the-art
approaches mainly apply vertical and horizontal scaling in an isolated fashion.
According to a recent survey on this topic [23], among the 87 surveyed approaches
only two have explored optimization techniques to search for combined vertical
and horizontal scaling [8,9]. However, in both cases horizontal scaling assumes
a fixed symmetric load balancing toward all the horizontal replicas. This may
not be appropriate when machines have different hardware characteristics (i.e.,
due to uncertain runtime disruptive events such as software ageing or hardware
degradation), since a symmetric load distribution may worsen performance.

To overcome this limitation, we propose a novel technique combining hori-
zontal and vertical scaling that can efficiently determine the load distribution
policy to continuously fulfill performance goals of distributed co-located appli-
cations (Sect. 2). We consider a model-based approach using queuing networks
(QNs) [3]. In particular, we employ multi-class QNs, where each class represents
an application with its own demand on the CPU and specific performance tar-
gets. Our analysis is based on a compact, approximate representation of QNs
based on ordinary differential equations (ODEs) [5,16]. This avoids the state
space explosion problem arising from the exact transient analysis of the Markov
chain underlying the QN, thus enabling an effective runtime adaptation.

We formulate the question of finding a combined horizontal and vertical scal-
ing strategy as a Model Predictive Control (MPC) problem [10]. MPC performs
runtime optimization which uses the ODE model to predict the future evolution
of the system given the currently measured state; the output is an allocation of
the resource-sharing quotas on each machine and the routing probabilities across
replicas that steer the model toward the reference set points for each application.

The use of MPC with an ODE model to control performance-related indices
of a distributed application has been studied in [13], but for queuing models with
a single class of users only. In this paper we present two significant extensions:

1. A multi-class model that enables an accurate representation of the capped
allocation paradigm [4]. This is a CPU-sharing mechanism available in most
modern off-the-shelf hypervisors (e.g., [2,22]), which defines the maximum
share that a VM can receive from the CPU.

2. The specification of latency-based response-time requirements, enriching [13],
which was limited to queue-length and throughput requirements only.

A positively surprising side effect of our new multi-class MPC formulation is
the reduced computational cost, since the whole control problem is now encoded
as a linear programming problem (LP, see e.g., [6]) as opposed to the mixed-
integer program of the single class formulation of [13]. This is due to the fact

Combined Vertical and Horizontal Autoscaling 149

that in [13] the control was acting on an integer variable representing the number
of CPUs in each machine, whereas here we control a continuous variable that
represents the CPU share allocated to each application.

We conducted the evaluation of the proposed approach on a real shared virtu-
alized environment hosting two load-balanced applications (Sect. 3) by showing
that only a combined vertical and horizontal load balancing adaptation can effi-
ciently achieve desired performance targets when heterogeneous computational
resources are considered.

2 Combined Vertical and Horizontal Autoscaling

A Running Example: Figure 1

Fig. 1. Sample QN model.

shows a QN model of a pro-
totypal system on which to
perform combined autoscaling.
There are two processing nodes
represented by the queuing sta-
tions N1 and N2. Each node
serves two application classes;
each class may have different ser-
vice demands and performance
requirements. The demands are
expressed as exponential distri-
butions; for instance, 1/μ1,2 is
the average service time of class-2 application on node 1. Node N0 represents
a dispatcher that submits user’s requests (the jobs circulating in the QN) to
either computational node. Horizontal scaling is achieved by choosing the rout-
ing probability with which the dispatcher selects the actual processing node.
For example, setting p0,1,1 = p0,2,1 = p0,1,2 = p0,2,2 = 0.5 induces a symmetric
load balancing policy according to which requests are evenly distributed across
all the processing nodes. Vertical scaling is achieved by choosing the CPU quo-
tas assigned to the applications in each machine. For example, fixing α1,2 = 0.3
assigns a share of 30% of computational resources to class-2 jobs. The parameter
s1 indicates the total number of CPU cores available in node 1. We note that
the shares need not to sum up to one at a node—in which case the computation
resources are not fully utilized. The adaptation knobs, i.e., the values that can
be changed at runtime are indicated in red. In the following we formally define
all the different components of the proposed approach.

Multi Class Parametric QN: Formally, let us consider a set of stations S
and a set of service classes C. A Multi-class parametric QN is described by a
set of parameters, denoted by P , as follows:

– si ∈ P is the concurrency level of station i, with i ∈ S;
– μi,c ∈ P is the service rate of station i for the jobs of service class c, with

i ∈ S, c ∈ C;

150 E. Incerto et al.

– pi,j,c ∈ P is the routing probability, i.e., the probability that a request of class
c from station i goes to j, with i, j ∈ S and c ∈ C;

– αi,c is the processing share assigned to jobs of class c at station i such that∑
c∈C αi,c ≤ 1 and αi,c ≥ 0, with i ∈ S, c ∈ C.

Finally, to formally justify the ODE approximation, the service rates μi,c are
assumed to be exponentially distributed. However, using [15] our framework can
be extended to the nonexponential case with phase-type distributions [3].

Moreover in order to formally define the adaptation, we denote by V ⊆ P
the subset of adaptation knobs. For each parameter that is fixed, i.e., p ∈ P −V ,
p̂ is its given value. Finally we denote by xi,c(0), i ∈ S the initial condition, i.e.,
the initial number of jobs of class c assigned to station i.

ODE Model: The ODE model is systematically derived from the parametric
QN and it gives estimate of the average queue lengths xi,c(t) as a function of
time. The evolution of the multi-class QN under a cap share resource allocation
policy is described by the following ODE system:

dxi,c(t)
dt

= −μi,c(t)min{xi,c(t), αi,c(t)si(t)}

+
∑

j∈S

pj,i,c(t)μj,c(t)min{xj,c(t), αj,csj(t)} (1)

with initial condition xi,c(0), for all i ∈ S, c ∈ C.
Here the term Ti,c(t) = μi,c(t)min{xi,c(t), αi,c(t)si(t)} represents the over-

all nonlinear instantaneous average throughput of station i for jobs of class c:
when the queue length xi,c(t) in station i is less than the reserved fraction of
servers αi,c(t)si(t), then the xi,c(t) jobs are served in parallel; otherwise some
of the jobs are enqueued and only αi,c(t)si(t) of them are processed at once.
The throughputs may be weighted by the class-dependent routing probabilities
pj,i,c(t), because a station may receive only a fraction of the jobs elsewhere.
Using the instantaneous average queue length xi,c(t) and the throughput Ti,c(t),
we define Ri,c(t) = xi,c(t)/Ti,c(t) as the instantaneous average response time for
jobs of class c at station i; this is the time spent by the last job of class c while
competing for service at station i.

Basically, assuming a cap share resource allocation policy is equivalent to
assuming that si,c = αi,c(t)si(t) is the fraction of the original physical station
capacity si(t) assigned to the service class c, scaled by the sharing factor αi,c,
such that

∑
c∈C αi,c(t)si(t) ≤ si(t). In Sect. 3 we validate this ODE model by

comparing prediction results against real measurements taken from a multi-class
system hosted in a shared virtualized environment.

LP Performance Adaptation Formulation: In [13] we showed how employ-
ing MPC for performance runtime adaptation of single class queuing network
could be reduced to the solution of a mixed-integer program (MIP). This formu-
lation relies on a linear time-varying system with auxiliary, “virtual” adaptation

Combined Vertical and Horizontal Autoscaling 151

knobs which will be then related to the original ones. Here we extend this formu-
lation for controlling the multi-class QN under the cap allocation sharing. The
linear time-varying system that we consider is defined as:

dxi,c(t)
dt

= γi,c(t) +
∑

j∈S

(−γj,c(t) + ζj,i,c(t)), i ∈ S, c ∈ C (2)

where γi,c(t) represents the virtual throughput of station i of class c and ζj,i,c(t)
is a virtual routing probability (which will be related to pj,i,c).

We show how (2), augmented with appropriate constraints, can be used
for building an LP problem suitable for controlling systems whose performance
dynamics can be described by the discrete time version of (1).

Discrete Time Model: In order to employ MPC, we rely on a time discretization
of the ODE model with a finite step size Δt. MPC finds the optimal values of the
adaptation knobs over a time horizon of H steps. Simple algebraic manipulations
of (2) yield a formulation that reads:

xi,c(k + 1) = xi,c(k) + γi,c(k) +
∑

j∈S

(−γj,c(k) + ζj,i,c(k)), i ∈ S, c ∈ C. (3)

Unfolding (3) over H time steps allows us to embed the dynamics of the model
as a discrete set of constraints in the optimization problem:

xi,c(1) = xi,c(0) + γi,c(0) +
∑

j∈S

(−γj,c(0) + ζj,i,c(0))

xi,c(2) = xi,c(1) + γi,c(1) +
∑

j∈S

(−γj,c(1) + ζj,i,c(1))

. . .

xi,c(H) = xi,c(H − 1) + γi,c(H − 1) +
∑

j∈S

(−γj,c(H − 1) + ζj,i,c(H − 1))

for all i ∈ S, c ∈ C.

Virtual Knobs Constraints: In order to relate the virtual adaptation knobs, i.e.,
γi,c(k), ζi,j,c(k), to the original ones, i.e., αi,c(k), pj,i,c(k), respectively, we add
specific constraints to the optimization problem. Hereafter we focus only on
establishing a formal correspondence between the γi,c(k) and the actual shares
since the equivalence between the virtual routing probabilities and the actual
ones is analogous to what discussed in [13].

The term −γi,c(k) represents the throughput of station i for service of class
c at discrete time step k, i.e., μi,c(k)min{xi,c(k), αi,c(k)si(k)}. Since the shares
can be chosen as close to 0 as desired, this consistency is given by adding the
following constraints to the optimization problem:

−γi,c(k) ≥ 0, −γi,c(k) ≤ μi,csiΔt (4)

−γi,c(k) ≤ μi,cxi,c(k)Δt, −
∑

c∈C

γi,c(k)
μi,c

≤ siΔt (5)

152 E. Incerto et al.

with i ∈ S, c ∈ C. In (4),(5) we consider a time invariant service rate μi,c(k) =
μi,c for each station i of service class c and a time invariant parallelism level
si(k) = si. Indeed differently from [13] in the new LP control formulation the
number of cores assigned to each machine is statically determined and only the
share parameters are used to control the runtime performance of the system.
However we remark that this formulation can be easily extended to those cases
in which the number of virtual machines need to be computed at runtime (i.e.,
by considering a time variant si).

Objective Function: We define the objective function of the optimization prob-
lem. We consider R performance metrics to be optimized. For each time step
k = 0, 1, . . . , H − 1, in the vector m(k) =

(
m1(k), . . . , mR(k)

)
each component

mr(k) represents the variable associated with the r-th performance metric, with
1 ≤ r ≤ R. We specify the values that this can take according to the type of
instantaneous average index to optimize: throughput, queue length, or response
time. For all k we set:

mr(k) =

⎧
⎨

⎩

−γi,c(k)
Δt

if the r-th metric is the class-c throughput at station i,

xi,c(k) if the r-th metric is the class-c queue length at station i.

For the encoding of response time, the treatment is different because we need to
handle the nonlinear expression Ri,c(k) = xi,c(k)

Ti,c(k)
= xi,c(k)Δt

−γi,c(k)
. We linearize this

problem as follows. We let βi,c denote the desired response time requirement for
class c in station i at time step k. Then, the idea is to minimize the quantity
|xi,c(k)Δt + βi,c(k)γi,c(k)|. In order to do so, we consider auxiliary variables
x̃i,c(k) and let mr(k) = x̃i,c(k) if the r-th metric is the class-c response time at
station i. Then, we can observe that by adding the following constraints to the
LP problem

x̃i,c(k) ≥ 0 (6)
x̃i,c(k) ≥ xi,c(k)Δt + βi,cγi,c(k) (7)

−x̃i,c(k) ≤ xi,c(k)Δt + βi,cγi,c(k) (8)

minimizing x̃i,c(k) results in finding the value for the adaptation knobs such that
the response time at time k for station i and class c is as close as possible to the
desired value βi,c(k).

Thus, overall we can collect the set points in vectors o(k) = (o1(k),
. . . , oR(k)). Each component of this vector, or(k), is equal to the desired set
point if the r-th requirement is throughput or a queue length, or 0 if the r-th
requirement is a response time.

Our goal is to minimize the error between the performance indices and their
reference values, i.e., e(k) = m(k) − o(k), across all time steps in the horizon
k = 0, 1, . . . ,H −1. Thus, overall the LP formulation can be specified as follows:

minimize{γi,c(k),ζi,j,c(k),x̃i,c(k)}

H−1∑

k=0

e(k)T e(k) (9)

Combined Vertical and Horizontal Autoscaling 153

Fig. 2. Experiment system architecture.

subject to constraints Eqs. (3), (4), (6), (7), (8)

ζi,j,c(k) ≥ γi,c(k) if pi,j,c ∈ V
∑

j∈S

ζi,j,c(k) = γi,c(k)(|S| − 1),

ζi,j,c(k) = γi,c(k)(1 − p̂i,j,c) if pi,j,c ∈ P − V (10)

for all k = 0, . . . , H − 1, i ∈ S, c ∈ C, where with (10) we set the values for all
the parameters of the QN that are fixed.

Following [13], it is possible to define a nonlinear MPC formulation built on
a discrete-time representation of the model (1). With the following result, we
can recover the shares and routing probabilities for the original nonlinear model
from the LP formulation above.

Theorem 1. Denoting by S = {α∗
i,c(k), p∗

i,j,c(k)} an optimal solution to the
nonlinear MPC formulation built on (1) based on [13], there exists an MPC
problem based on an LP formulation with dynamics (3) such that its optimal
solution S ′ = {γ′

i,c(k), x′
i,c(k), ζ ′

i,j,c(k)} satisfies:

α∗
i,c(k) =

γ′
i,c(k)
siΔt

, p∗
i,j,c(k) =

γ′
i,c(k) − ζ ′

i,j,c(k)
γ′

i,c(k)

for all k = 0, . . . , H − 1.

3 Numerical Evaluation

In this section we evaluate the effectiveness of the proposed adaptation approach
on a real multi class load-balanced system. The code needed for setting up the
experimental infrastructure is publicly available at https://goo.gl/6bNR23.

https://goo.gl/6bNR23

154 E. Incerto et al.

System Description and Implementation: For running our evaluation we
relied on an in-house developed web application, namely HAT (Heavy Task Pro-
cessing application), specifically designed for resembling the behavior of CPU-
intensive systems [7,21]. We conducted our study on a single Virtual Private
Server (VPS) equipped with 32 cores and 6 GB of memory. As a vertically
scalable virtualized environment we used the OpenVz hypervisor [22], while the
horizontal scaling has been enabled through a load balancer implemented in
NodeJS. In order to validate our control approach in a resource contention sce-
nario, we ran two instances of the same load balanced HAT deployment, each
consisting of two OpenVz virtual machines.

Figure 2 depicts the architecture of the considered system. There are two
classes of applications and two processing nodes. We emulated a distributed sce-
nario by partitioning the available CPU cores into two Logical Machines LM
with 6 cores each. The remaining cores are used for running the monitoring
infrastructure and the controller. Component Ci,j is the instance of the com-
putational service for class j running on logical machine LMi; LBj is the dis-
patcher for class j; CTRL is the runtime controller. Component Wj represents
the workload generator which injects requests of class-j service into the system.
With these settings, LBj dispatches user requests for class j to processing node
i with routing probability pi,j , while the resource share of class j executing at
node i is αi,j . These values are adapted at runtime by the CTRL component,
in a MAPE-K [14] fashion, through operating system signals (see Fig. 2) and the
OpenVz interface.

CTRL ran the LP optimizations using the academic version of CPLEX tool.
We implemented each Wj as a multi-process Python based workload generator
running independent concurrent users that iteratively issue requests, waiting an
exponentially distributed delay (i.e., the think time given by 1/μ0,i ≥ 0) between
successive requests. Components Ci,j and LBj have been implemented as multi-
threaded NodeJs servers using the NAPA library.

Model Parametrization and Validation: We modeled the system under
study with a multi-class QN as depicted in Fig. 1. The QN processing node N0

represents the W1 and W2 workload generators, while nodes N1 and N2 model
the logical machines LM1 and LM2.

For model validation, we set think times 1/μ0,1 = 1/μ0,2 = 1 s, and pop-
ulation levels X1 = X2 = 200 users (i.e., we assumed a closed workload).
We assigned s1 = s2 = 2 cores to each processing node and service rates
μi,j = 20.5 s−1 for i, j = 1, 2. These rates were estimated by measuring the
maximum throughput on the actual hardware platform. Finally we deployed the
system in its symmetric configuration, i.e., pi,j = 0.5 for i, j = 1, 2. To exercise
the system under different conditions we considered 10 different resource share
allocations.

Table 1 reports the validation results in terms of the measured and predicted
throughputs for class-j application, denoted by Tmj and Tpj , respectively, as
well as their relative percentage errors Erj . For each resource share assignment,
the throughputs were measured by averaging 10 independent executions, each

Combined Vertical and Horizontal Autoscaling 155

Table 1. Model validation results. The errors Er1 and Er2 between the measured and
predicted throughputs for class 1 and class 2, respectively, are measured as absolute
relative percentage errors.

α1,1, α2,1 0.15 0.30 0.40 0.50 0.60 0.65 0.70 0.75 0.80 0.85

α1,2, α2,2 0.85 0.70 0.60 0.50 0.40 0.35 0.30 0.25 0.20 0.15

Tm1 10.85 22.47 29.85 40.85 45.90 50.10 54.57 57.73 62.50 65.06

Tp1 12.00 24.00 32.00 39.99 48.00 52.00 56.00 60.00 63.99 67.97

Er1 10.53 6.78 7.21 2.12 4.56 3.80 2.61 3.93 2.39 4.48

Tm2 65.94 53.40 44.54 40.80 30.67 26.83 22.90 18.72 14.79 10.84

Tp2 67.97 56.00 48.00 39.99 32.00 28.00 24.00 20.00 16.00 12.00

Er2 3.08 4.87 7.75 2.00 4.34 4.34 4.79 6.82 8.18 10.62

lasting 2 min. The results show that the model can predict the trends of the real
system adequately. We consider the errors acceptable, since a simple determin-
istic model omits many low-level interactions between the operating system and
the virtualization environment.

Adaptation Evaluation: We evaluate the effectiveness of our approach by
showing that the combined vertical and horizontal load balancing adaptation
can efficiently meet performance targets when either of the two techniques alone
cannot. We focus on a scenario of hardware degradation. Starting from a sym-
metric set-up where the service rates of nodes Ci,j are identical and equal to
20.5 (as in the validation set-up), we inject a degradation event where the service
rate at node LM1 becomes 3 times smaller.

For both the symmetric and the degraded case, the objective of the adap-
tation was to maintain the following set points: instantaneous average response
time of the class-1 application equal to 2 s; and class-2 instantaneous average
throughput equal to 50 requests per second.

We controlled the performance of the system under a workload of X1 =
X2 = 200 concurrent users with a think rate μ0,1 = μ0,2 = 1 s−1. According
to the system description (see Fig. 2), we assigned s1 = s2 = 6 to each logical
machine. For the vertical scaling control we fixed the symmetric distribution
pi,j = 0.5, with i, j = 1, 2, while the controller could change all resource shares
αi,j in an isolated fashion. When the combined control approach is applied also
the routing probabilities are changed at runtime.

We evaluated both the control approaches, i.e., vertical and combined, in two
separated sessions, i.e., symmetric and degraded, each of which was 20-minutes
long. We fixed an ODE sampling interval Δt = 0.1 s, an activation loop rate
= 0.1 s, and control horizon H = 10.

Figure 3a and 3b report the class-1 instantaneous average response time dis-
tributions in the symmetric set-up (i.e., no degradation) when vertical scaling
only and the combined approaches are applied, respectively. In this case both the
control approaches are able to fulfill the requirements. This is due to the fact that

156 E. Incerto et al.

0.5 1 1.5 2 2.5 3
Time(s)

0

500

1000

1500

2000

2500

3000

3500

#O
cc

ur
en

ce
s

Response Time Distribution
Mean Value
Requirement

(a) Vertical scaling only

0.5 1 1.5 2 2.5 3
Time(s)

0

500

1000

1500

2000

2500

3000

3500

#O
cc

ur
en

ce
s

Response Time Distribution
Mean Value
Requirement

(b) Combined vertical & horizontal scaling

0 2 4 6 8 10 12
Time(s)

0

1000

2000

3000

4000

5000

#O
cc

ur
en

ce
s

Response Time Distribution
Mean Value
Requirement

(c) Vertical scaling only

0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time(s)

0

1000

2000

3000

4000

5000

#O
cc

ur
en

ce
s

Response Time Distribution
Mean Value
Requirement

(d) Combined vertical & horizontal scaling

Fig. 3. Class-1 instantaneous average response time distribution without degradation
(a-b) and with degradation (c-d).

the performance target is locally achievable on each logical machine by varying
the allocation shares only. Under degradation, the advantage of the combined
control (i.e., vertical plus dynamic load distribution policy) becomes evident.
Indeed, Fig. 3c depicts the class-1 response time distribution when the vertical
scaling is applied under the degradation scenario. Since the joint requirements
for class-1 and class-2 are no longer satisfiable locally, all the users sent to LM2

will still experience the intended response time, while the ones sent to LM1 will
be served by a saturated system characterized by poor performance. Figure 3d,
instead, depicts the class-1 response time distribution when the combined verti-
cal and horizontal load balancing autoscaling is applied. In this case the routing
probabilities of both classes are properly adjusted, steering the system toward
the requirements fulfillment regardless of the differences in the service rates.
We remark how, under the same scenario, applying a state-of-the-art horizontal
scaling technique (i.e., [8,9]) would lead to a system with a larger number of
provisioned virtual machines, thus incurring higher costs and adaptation delays.

Regarding class-2 throughput adaptation, when the system works in the sym-
metric case both the control approaches are able to fulfill the requirements (see
Fig. 4a and 4b). With degradation, only the combined approach is able to steer
the system toward the desired set points (see Fig. 4c and 4d).

Table 2 reports the average values for the control signals used during each
adaptation trace. We can observe that during the degradation case LM1 is satu-
rated since α1,1 + α1,2 � 1. In this case the only way to satisfy the requirements

Combined Vertical and Horizontal Autoscaling 157

0 200 400 600 800 1000 1200
Time(s)

25

30

35

40

45

50

55
R

eq
/s

Average Throughput
Requirement

(a) Vertical scaling only

0 200 400 600 800 1000 1200
Time(s)

25

30

35

40

45

50

55

R
eq

/s

Average Throughput
Requirement

(b) Combined vertical & horizontal scaling

0 200 400 600 800 1000 1200
Time(s)

25

30

35

40

45

50

55

R
eq

/s

Average Throughput
Requirement

(c) Vertical scaling only

0 200 400 600 800 1000 1200
Time(s)

25

30

35

40

45

50

55

R
eq

/s

Average Throughput
Requirement

(d) Combined vertical & horizontal scaling

Fig. 4. Class-2 instantaneous average throughput without degradation (a-b) and with
degradation (c-d).

Table 2. Optimal control signals.

Scenario Ctrl type α1,1 α2,1 α1,2 α2,2 p1,1 p2,1 p1,2 p2,2

No degradation Vertical 0.26 0.26 0.25 0.27 0.50 0.50 0.50 0.50

Combined 0.25 0.28 0.29 0.25 0.50 0.50 0.62 0.38

Degradation Vertical 0.46 0.13 0.53 0.28 0.50 0.50 0.50 0.50

Combined 0.46 0.37 0.32 0.38 0.27 0.73 0.24 0.76

of both classes is to operate at the load distribution level redirecting the major-
ity of the user requests on the faster machine LM2 while properly varying the
CPU shares, i.e., in a combined vertical and horizontal autoscaling fashion.

4 Conclusion

In this paper we have presented an efficient approach for the performance adap-
tation of distributed co-located applications using fluid multi class queuing net-
work (QN) and model predictive control (MPC). The main novelties lay in the
combined usage of vertical and horizontal load balancing autoscaling techniques
and the extension of the fluid model presented in [13] for modeling multiclass
distributed systems under a capped resources allocation scheduler. At each time
step during system evolution a linear programming problem is solved for comput-
ing the adaptation knobs (i.e., routing probability and allocation shares) suitable

158 E. Incerto et al.

to steer the system to throughput or response time set points. As future work
we aim to extend our adaptation problem formulation to explicitly model the
response time distribution instead of its instantaneous average only. Moreover,
we also plan to: (i) study the scalability of the approach while varying the sys-
tem size, e.g., increasing the number of VMs; (ii) extend our method to include
resource contention policies for network, memory, and I/O; (iii) consider more
expressive resource schedulers and system performance interactions such as the
completely fair scheduler [20] and layered queuing networks [24].

Acknowledgement. Mirco Tribastone is partially funded by a DFG Mercator Fel-
lowship (SPP 1593, DAPS2 Project).

References

1. Adam, O., Lee, Y.C., Zomaya, A.Y.: Ctrlcloud: performance-aware adaptive con-
trol for shared resources in clouds. In: International Symposium on Cluster, Cloud
and Grid Computing (CCGRID), pp. 110–119 (2017)

2. Barham, P., et al.: Xen and the art of virtualization. ACM SIGOPS Oper. Syst.
Rev. 37, 164–177 (2003)

3. Bolch, G., Greiner, S., De Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applica-
tions. Wiley, Hoboken (2006)

4. Bolker, E., Ding, Y.: On the performance impact of fair share scheduling. In:
International CMG Conference, pp. 71–82 (2000)

5. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of
collective system behaviour: a tutorial. Perform. Eval. 70, 317–349 (2013)

6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

7. Corp., I.: Linpack. https://software.intel.com/en-us/articles/intel-math-kernel-
library-linpack-download

8. Dutta, S., Gera, S., Verma, A., Viswanathan, B.: Smartscale: automatic application
scaling in enterprise clouds. In: International Conference on Cloud Computing
(CLOUD), pp. 221–228 (2012)

9. Gandhi, A., Dube, P., Karve, A., Kochut, A., Zhang, L.: Modeling the impact
of workload on cloud resource scaling. In: International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), pp. 310–317 (2014)

10. Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control: theory and
practice–a survey. Automatica 25, 335–348 (1989)

11. Gupta, D., Cherkasova, L., Gardner, R., Vahdat, A.: Enforcing performance iso-
lation across virtual machines in Xen. In: van Steen, M., Henning, M. (eds.) Mid-
dleware 2006. LNCS, vol. 4290, pp. 342–362. Springer, Heidelberg (2006). https://
doi.org/10.1007/11925071 18

12. Huang, D., He, B., Miao, C.: A survey of resource management in multi-tier web
applications. IEEE Commun. Surv. Tutor. 16, 1574–1590 (2014)

13. Incerto, E., Tribastone, M., Trubiani, C.: Software performance self-adaptation
through efficient model predictive control. In: International Conference on Auto-
mated Software Engineering (ASE), pp. 485–496 (2017)

14. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36,
41–50 (2003)

https://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download
https://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download
https://doi.org/10.1007/11925071_18
https://doi.org/10.1007/11925071_18

Combined Vertical and Horizontal Autoscaling 159

15. Kowal, M., Tschaikowski, M., Tribastone, M., Schaefer, I.: Scaling size and parame-
ter spaces in variability-aware software performance models. In: International Con-
ference on Automated Software Engineering (ASE), pp. 407–417 (2015)

16. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure Markov
processes. J. Appl. Prob. 7, 49–58 (1970)

17. Lakew, E.B., Klein, C., Hernandez-Rodriguez, F., Elmroth, E.: Performance-based
service differentiation in clouds. In: International Symposium on Cluster, Cloud
and Grid Computing (CCGRID), pp. 505–514 (2015)

18. Lakew, E.B., Papadopoulos, A.V., Maggio, M., Klein, C., Elmroth, E.: KPI-
agnostic control for fine-grained vertical elasticity. In: International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), pp. 589–598 (2017)

19. Li, L., Franks, G.: Performance modeling of systems using fair share scheduling
with layered queueing networks. In: International Symposium on Modeling, Anal-
ysis & Simulation of Computer and Telecommunication Systems (MASCOTS), pp.
1–10 (2009)

20. Molnar, I.: This is the CFS scheduler (1999). https://www.kernel.org/doc/
Documentation/scheduler/sched-design-CFS.txt

21. NASA: Nas parallel benchmarks. http://www.nas.nasa.gov/Resources/Software/
npb.html

22. Parallels: OpenVz user guide (2016). https://docs.openvz.org/openvz users guide.
webhelp/

23. Qu, C., Calheiros, R.N., Buyya, R.: Auto-scaling web applications in clouds: a
taxonomy and survey. ACM Computing Surveys 9(4), 34 p (2017)

24. Tribastone, M.: A fluid model for layered queueing networks. IEEE Trans. Softw.
Eng. 39, 744–756 (2013)

https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-design-CFS.txt
http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.nas.nasa.gov/Resources/Software/npb.html
https://docs.openvz.org/openvz_users_guide.webhelp/
https://docs.openvz.org/openvz_users_guide.webhelp/

Scheduling and Load Balancing

Early Termination of Failed HPC Jobs
Through Machine and Deep Learning

Micha�l Zasadziński1(B), Victor Muntés-Mulero1, Marc Solé1, David Carrera2,
and Thomas Ludwig3

1 CA Technologies, Barcelona, Spain
{michal.zasadzinski,victor.muntes,marc.solesimo}@ca.com

2 Universitat Politecnica de Catalunya, Barcelona, Spain
dcarrera@ac.upc.edu

3 Deutsches Klimarechenzentrum GmbH, Hamburg, Germany
ludwig@dkrz.de

Abstract. Failed jobs in a supercomputer cause not only waste in CPU
time or energy consumption but also decrease work efficiency of users.
Mining data collected during the operation of data centers helps to find
patterns explaining failures and can be used to predict them. Automating
system reactions, e.g., early termination of jobs, when software failures
are predicted does not only increase availability and reduce operating
cost, but it also frees administrators’ and users’ time. In this paper,
we explore a unique dataset containing the topology, operation metrics,
and job scheduler history from the petascale Mistral supercomputer. We
extract the most relevant system features deciding on the final state of
a job through decision trees. Then, we successfully train a neural net
to predict job evolution based on power time series of nodes. Finally,
we evaluate the effect on CPU time saving for static and dynamic job
termination policies.

Keywords: HPC · Slurm · Failure prediction · Failure prevention
Deep learning · Data center

1 Introduction

Data centers are a core element in most IT systems, hosting cloud applications,
enabling HPC or performing intensive Big Data analytics. Although the opti-
mal architecture of a data center may be different for each of these applications,
general maintenance problems remain the same. Failures in hardware and infras-
tructure can both cause software failures or may be the result of such software
failures. Software errors are the most common cause of failures [4]. Also, many
jobs produce large network and storage system loads which degrade the system
performance [3].

The original version of this chapter was revised: For detailed information please see
correction chapter. The correction to this chapter is available at https://doi.org/10.
1007/978-3-319-96983-1 58

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 163–177, 2018.
https://doi.org/10.1007/978-3-319-96983-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_12&domain=pdf
https://doi.org/10.1007/978-3-319-96983-1_58
https://doi.org/10.1007/978-3-319-96983-1_58

164 M. Zasadziński et al.

Data presenting the state of a system is usually so complex that administra-
tors might not take the best decision to recover a system efficiently. Moreover, in
many cloud-oriented services, system monitoring information is limited to hard-
ware metrics, and do not include user application logs. Thus, it is even more
challenging to predict job failures and take proper action. Evaluating jobs in
run-time augments administrative metrics and increases the confidence of taken
decisions. Therefore, jobs which are likely to fail or decrease the performance of
a system can be terminated in advance, saving resources, computing and human
time, and lowering operational costs. According to the dataset used in this paper,
completed jobs in the petascale Mistral1 supercomputer consume about 45 mil-
lion CPU hours per month and they are 91.3% of all submitted jobs. Predicting
the final job state at the time of job submission and during run-time allows
for forcing job termination before a failure occurs, enabling savings. However,
deciding when it is necessary to terminate a job is a nontrivial task.

In this paper, we analyze the impact of both static and dynamic job ter-
mination policies using different data center metrics. We propose new job state
prediction algorithms based on Decision Trees (DT) and Convolutional Neural
Networks (CNN). We use data extracted from the Mistral supercomputer that
includes system metrics, job scheduler history, and system topology information.
We augment datasets during the exploration to show how knowledge coming
from job scheduler, monitoring system, and topology and structure, can increase
prediction capabilities and uncover new patterns. We discriminate among job
submission features these that explain the termination status of jobs based on
job traces. We use power series of nodes to build a model used for failure pre-
diction at run-time. For this task, we use machine learning (ML) and a CNN.
The trained CNN achieves 85% of precision in the classification of failed jobs by
power series. The CNN predicts failures for more than 40% of failed jobs in the
20th percentile of their duration.

The remainder of this paper is divided into six sections. Work related to
failure prediction and prevention in HPC is discussed in Sect. 2. In Sect. 3, we
provide description of Mistral supercomputer (42nd most powerful computer in
November 2017 (See footnote 1)) and data exported from this environment.
Section 4 presents extraction of important features and their discovery by means
of DTs that are created using these data. Then, in Sect. 5, we describe the
training and use of a CNN for job state prediction. At the end of Sect. 5, we show
savings applying different policies for early job termination. We discuss results,
the usefulness of the proposed policies and include plans for future research in
Sect. 6.

2 Related Work

Authors in [18] describe the role of software in failures occurring in data centers.
Software problems in an OS, middleware, application, or the wrong configura-
tion, e.g., underestimated resources cause the majority of job failures in HPC
1 https://www.top500.org/system/178567.

https://www.top500.org/system/178567

Early Termination of Failed HPC Jobs Through Machine and Deep Learning 165

workload [1,22]. The authors of [5] discover the correlation between failures,
and different characteristics of supercomputer operations, such as node usage,
last state of a job, and hardware metrics. This research explores state sequences
from the perspective of a node. The authors perform job-oriented analysis only
to point users with a high failure rate. Analysis of logs and the rate of failed
jobs allows detecting slow-downs and targeted failures [4]. Recently, the authors
in [10] characterized workload in an HPC environment with the primary goals to
find patterns across different applications and disciplines. Latest work presented
in [9] analyzes failures of the Oak Ridge supercomputer. The authors describe
hardware reliability, correlate failure types, and investigate failure trends in the
time and spatial distribution. However, leveraging user history for prediction of
failed jobs and learning application workload patterns is not a primary focus
area in the prior publications. Also, there are not many publications addressing
the separate analysis of jobs and job steps.

There is many research on ML in data center maintenance for either pre-
diction or classification problems [6,7,17,20]. For instance, research in [8] uses
dynamic association rules to predict failures in the Blue Gene. The authors
of [15] focus on predicting failures in computing nodes, and as a reaction, redi-
recting a job to another set of nodes. Another possible action is checkpointing,
and the authors of [2] investigate the optimal policy to reduce trade-off between
checkpoints frequency and MTBF. The authors in [13] use power and tempera-
ture metrics to predict errors in GPU clusters via neural network (NN) model.
Recently, decision trees are implemented for failure prediction in HPC domain
[12]. The proposed algorithm identifies the causes of failures, performing better
comparing to other SoA techniques.

Despite the popularity and progress in ML algorithms and software, the area
of prediction of the final HPC job states through accurate modeling of power
series seems to be unexplored. The focus of most of the work is put on predicting
failures per hardware unit, rather than learning workload patterns of failed jobs.
The complexity of IT systems and their dynamic structure are one of the main
obstacles to create accurate models. The authors in [21] propose power model-
ing techniques via Petri networks, to estimate power consumption. Also, work
presented in [19] reports research on power profiling in HPC environments. The
authors discuss application network architecture, performance, and scalability
in the dimension of power consumption, and they propose a system for accurate
power monitoring. However, in our work, we aim to use as little information as
possible – power metrics representing the load of nodes.

3 Mistral Supercomputer Dataset

DKRZ Mistral supercomputer contains 3336 computing nodes, about 90 special
nodes dedicated to other activities, and a separate 54 PiB Lustre file system.
Applications for climate science generate the production workload. Slurm2 main-
tains node reservations, resource allocation, and accounting.
2 https://slurm.schedmd.com/.

https://slurm.schedmd.com/

166 M. Zasadziński et al.

3.1 Job Scheduler History

Through analysis of historical data from the scheduler, we investigate which
features are important, thus deciding on a final job state. This goal motivates
our strategy, which is oriented to jobs rather than nodes. We use states from the
scheduler to determine an output of a job. In the dataset, each job finishes with
one of the following states, defined by Slurm documentation.

– Cancelled – A user or administrator cancelled a job. The job may or may
not have been initiated. In the following analysis, we take into account only
cancelled jobs longer than 0 s.

– Completed – Job has terminated all processes on all nodes with an exit code
of zero.

– Failed – Job terminated with non-zero exit code or another failure condition.
According to Mistral, another failure condition includes failures caused by any
external factor to an allocated node, e.g., failures of Lustre FS, IB.

– Node fail – Job terminated due to a failure of one or more allocated nodes.
This state includes only hardware related problems of a computational node.

– Timeout – Job terminated upon reaching its time limit.

Each job consists of one or more steps. A job submission script defines the
execution order of steps; also the order can be read from Slurm history. The
order can be sequential, parallel, or mixed, see example script in Listing 1.1.

Listing 1.1. Example Slurm batch script. Two steps run sequentially on 80 nodes.

#SBATCH −−nodes 80
#SBATCH −−tasks−per−node 10
F i r s t s tep
srun −−nodes 80 −−ta sk s 10 mkdir /home/$USER/$SLURM JOBID
Second step
srun app . mpi in . csv out . csv

Most steps in Mistral dataset are executed sequentially. In the Slurm
database, there are 76 columns. They contain information about jobs: (1) job
configuration specified by a user, and (2) statistics known at the end of a job.
We give more details about these data in Subsect. 3.3. In this paper, we consider
all above job states. For steps, the dataset includes: Completed, Failed and
Cancelled.

3.2 Time Series Data Analysis

Mistral metrics are acquired every 60 s into an Open Time Series Database
(OTSDB) instance that is installed on the top of HBase cluster. For this research,
the data from the cluster are exported using the HBase ExportSnapshot tool.
Then, we import a snapshot with the size of 0.5 TB from a regular continuous
period of 10 months of system executions to our analysis environment contain-
ing 8 machines with 120 physical cores, 672 GB of RAM. We use Apache Spark
for data processing. For training of a CNN, we need job scheduler data merged
with power metrics. We merge Slurm steps with data from OTSDB representing
power metrics of nodes used by a step during its run-time. That merged steps

Early Termination of Failed HPC Jobs Through Machine and Deep Learning 167

should contain at least two power measurements. In the worst case, for steps
shorter than 120 s, it is possible to merge only one timestamp with node power
metrics. So, in the evaluation, we consider a subset of steps longer than 120 s.
Discarding short jobs, we do not lose a lot of data: about 1.2M of all steps from
the set run for more than 60 s and 1.1M more than 120 s.

3.3 Dataset Split

We show how different knowledge sources: software – job scheduler, hardware
– monitoring system, and platform – topology and structure, impact prediction
and classification accuracy. Also, we detect which part of the data increases the
prediction capabilities of a model when the only used information is the one
known at the time of a job submission; and which part of the data improves
classification capabilities, when we use statistics of finished jobs. Datasets are
divided into the following sets - named with a capital letter for later reference:

– Slurm job configuration data: information of either jobs or steps, which is
known at the time of submission e.g., reserved time, allocated nodes, required
CPU frequency, start time. [we call it dataset C in the experiments]

– Slurm user data: columns with information about prior user allocations.
Also, this dataset contains aggregated user data. The set includes factors of
jobs terminated with each of 5 possible states to a number of all submissions in
different windows. We aggregate the data by user and windows with different
sizes: last N submissions (N = 1, 100, 1k, 10k). [dataset U]

– Slurm job summary data: information is known at the end of a job,
e.g., duration, disk read/write (R/W) – the sum of local storage and Lustre
operations done by a job, virtual memory (VM) size, other hardware usage.

[dataset S]
– Power metrics of nodes (OTSDB data): power metrics of computing

nodes (blades). [dataset P]
– Data center topology: topology and localization of nodes. [dataset T]
– Hardware profiles of nodes: types of nodes, number and types of CPUs,

amount of RAM. [dataset H]

4 Failed Job Analysis

According to the data from the job scheduler, more than 1.3M jobs, and more
than 270k different job names are submitted in the 10-month period that is
represented by the dataset extracted from the Mistral production environment.
These submissions, which are mainly executed in batch mode (98.8%), result in
over 4.8M steps. For detailed statistics, see Mistral technical report [23]. One
of the observations from the statistics is coherent with usual state of the art
reports - failed steps are usually more complex [22]. These statistics represent a
convincing motivation for generating savings with the early termination of jobs
that are predicted to fail. An average failed job consumes many more CPU hours
than completed one and it also decreases resources availability.

168 M. Zasadziński et al.

4.1 Most Meaningful Features for Prediction of Job States

Extraction of Features. We generate DTs [14] to reveal job and step features
explaining a job state. These ML models learn if-then-else rules, for either clas-
sification or regression task. An advantage of using a DT is the fact that it is a
white-box model so that a human can easily understand a trained tree. We use
all the features from each dataset for generation of a DT. To decide the opti-
mal size of DTs, we consider (1) over-fitting and (2) readability of a model to a
human. Firstly, we split our set into three sets using random stratified sampling.
We create the training set containing 70% of jobs (samples), the validation set
that has 10% of jobs (samples), and the test set with 20% of jobs. During the
training, we measure accuracy on the validation set, while increasing depth of
a tree. We set 100 as the minimum number of instances each node’s child must
have after a split. Trees with depth 5 obtain satisfactory performance. For larger
DTs, the accuracy increase is low (0.03%), and the increase of the number of
nodes is high. For instance, a tree with depth 9 has 275 nodes, and it is 84 nodes
more than a DT with depth 8. Thus, we choose the optimal depth of the DT to
be 5, which has 63 nodes. To check if models are not over-fitting, we evaluate
random forests (RF) for each dataset. RF create DTs and train them with dif-
ferent training sets that are subsets of the main training set. Then, results from
each DT are combined. Created RFs improve neither classification nor prediction
quality when compared to the above DTs.

The test evaluations shows the fitness of generated models of either classifi-
cation (having all information about a finished job), or prediction (having only
information at the time of submission). We present the results of evaluations in
Tables 1 and 2, including only features with importance over 3%.

Table 1. Decision trees – evaluation of different combinations of data sets - jobs

Data set Important features Job state Completed Failed Cancelled Timeout Node fail

Configuration (C) Time limit (74%)

Daytime (24%)

Precision 0.91 0.0 0.0 0.0 0.0

Recall 1.0 0.0 0.0 0.0 0.0

F1-score 0.96 0.0 0.0 0.0 0.0

Configuration +

user’s history (C +

U)

Previous job state for a

user (96%)

Number of allocated

nodes (3%)

Precision 0.97 0.75 0.52 0.68 0.0

Recall 0.98 0.70 0.44 0.30 0.0

F1-score 0.98 0.72 0.48 0.42 0.0

Statistics +

configuration +

user’s history (S + C

+ U)

Previous job state (87%)

Duration (9%)

Number of allocated

nodes (4%)

Precision 0.97 0.77 0.63 0.81 0.0

Recall 0.99 0.74 0.36 0.35 0.0

F1-score 0.98 0.75 0.46 0.49 0.0

Duration> 120 s

statistics,

configuration, user’s

history (S + C + U)

Previous job state (85%)

Duration (8%)

Number of allocated

nodes (6%)

Precision 0.97 0.81 0.62 0.80 0.0

Recall 0.99 0.74 0.31 0.33 0.0

F1-score 0.98 0.77 0.41 0.47 0.0

Jobs. The above results show that the size of resource reservation is a principal
factor determining the final state of a job. Also, the results expose that final

Early Termination of Failed HPC Jobs Through Machine and Deep Learning 169

Table 2. Decision trees – evaluation of different combinations of data sets - steps

Data set Important features Job state Completed Failed Cancelled

Configuration (C) Number of allocated nodes (98%) Precision 0.95 0.50 0

Recall 0.99 0.07 0

F1-score 0.97 0.12 0

Configuration, statistics

(C + S)

Number of allocated nodes (47%)

Average disk W (40%)

Duration (4%)

Precision 0.98 0.83 0.58

Recall 0.99 0.76 0.04

F1-score 0.99 0.79 0.79

Duration> 120 s

configuration, statistics

(C + S)

Average disk W (47%)

Number of allocated nodes (36%)

Average CPU frequency (9%);

Duration (4%)

Precision 0.95 0.59 0.89

Recall 0.98 0.23 0.83

F1-score 0.97 0.33 0.86

Configuration, topology,

hardware information

(C + T + H)

Number of allocated nodes (79%)

Number of nodes 36C 64GB RAM

(15%)

Number of nodes 36C 128GB

RAM (3%)

Precision 0.97 0.75 0.49

Recall 0.98 0.41 0.01

F1-score 0.98 0.53 0.01

Configuration,

statistics, topology,

hardware information,

power statistics (C + S

+ T + H + P)

Number of allocated nodes (46%)

Average disk W (41%); Average

disk R (5%)

Average VM size (4%)

Precision 0.98 0.85 0.52

Recall 0.99 0.75 0.10

F1-score 0.98 0.80 0.17

Duration> 120 s, (C +

S + T + H + P)

Average disk W (49%)

Number of allocated nodes (35%)

Average CPU frequency (10%)

Precision 0.94 0.93 0.81

Recall 0.99 0.79 0.13

F1-score 0.97 0.85 0.22

states are highly correlated with a user’s history. In general, this correlation is
weaker for longer jobs.

Steps. Generated DTs reveal that the sum of disk RW is often higher for com-
pleted jobs than failed ones. Since the mean duration of failed steps is much
higher than completed ones [23], higher storage usage can be explained by less
active nodes in failed steps. We can state a hypothesis, that some nodes in failed
steps stay in idle state, see Sect. 4.2. The evaluation shows the high importance of
a number of allocated nodes with 36 cores. An investment done in DKRZ explains
this phenomenon. The dataset includes the period when Broadwell nodes started
their service in the production environment. That time, users were translating
their software and scripts to the recently installed hardware. It is the primary
cause of many job failures.

Conclusions. The evaluation of DT classification tasks shows that a DT model
is unable to learn and recognize cancelled, node failed, or timeout jobs based
only on configuration data. These data are the only information known to the
scheduler after a job is submitted. The f1-score is 0 for all of the mentioned
states. Augmenting this set with past user’s submissions improves recall of failed
jobs to 72% and lifts precision of predicting cancellations to 52% and timeouts
to 68%. This result shows a strong correlation inside a sequence of final job
states. Adding to the training dataset metrics which are known after a job is
finished increases the precision of a classifier. The recall does not change for any
of the states. Regarding steps, precision and recall are lower than those for job

170 M. Zasadziński et al.

submissions. It is a reasonable result considering that steps have a lower number
of features available for these evaluations. The number of allocated nodes is an
important feature to predict the final state of a job even when used with hardware
metrics features. Other important features are knowledge on past submissions
and their states. According to the hardware statistics, average disk W is a highly
important feature in the classification task of final job states, while general power
statistics are features with low importance.

(a) Failed (b) Completed

Fig. 1. Plots presenting power series of 198 nodes running in parallel a job from the
same, user, project, and application. Two jobs were run in different points of time.
First one is failed, the next one is completed.

4.2 Node-Power Analysis

We want to investigate the power statistics of failed jobs in comparison with
completed ones, to detect idle states. Each computing blade is controlled and
monitored by an isolated blade management controller which delivers power
metrics. A controller is an external unit, and acquiring measurements does not
infer with the workload of a blade. Power metrics of these blades perfectly depict
their CPU load. Although in Subsect. 4.1 we evaluate the usefulness of power
statistics in prediction, we might also evaluate whether these series can improve
job state prediction during the run-time. We correlate power series of nodes
allocated for a step with this step’s final state and types of nodes. We analyze
power statistics for steps longer than 1000 s, grouped by hardware profile to
extract average values of power metrics in the last 300 s of the duration of a job.
This value is at least 10% lower than for completed ones, when considering all
hardware groups, and failed steps. The most probable explanation can be the
fact that once a software failure occurs some of the nodes go to an idle state.
For instance, Fig. 1 presents power series of 1-step jobs, both executed with the
same configuration by the same user. This scenario represents a typical case
where one node is in an idle state, and the rest are executing some workload. On

Early Termination of Failed HPC Jobs Through Machine and Deep Learning 171

the contrary, power series of nodes executing a completed step do not show any
node in an idle state. This phenomenon appears in other cases in the dataset
and suggests that using power metrics would be relevant for classification of
a job state. Moreover, this observation matches with the expert knowledge at
DKRZ. In words of one of its system engineers: “We check the idle state of a
node during a problematic job, looking at InfiniBand traffic of nodes. If it is low,
a job is likely to fail”.

5 Prevention of Failures

Prior data exploration and evaluation of DTs show that power metrics and DTs
can be used for prediction of final job state. Predictions contain probabilities
for each step state. During prediction, we classify a step as failed, when the
probability of failure is higher than a defined threshold and all other probabilities
associated with other classes. Therefore, we propose two types of policies to
be taken: a static and dynamic one. A static policy uses predictions based
on a step configuration data, topology, and hardware information (C + T + H)
through DTs. A dynamic policy uses predictions during run-time which are
produced by a convolutional neural network (CNN), introduced in Sect. 5.1. The
inputs to this model are power metrics, which are analyzed in Sect. 4.2. While
using a dynamic policy, a job is killed when it is classified as failed for the first
time – the earliest prediction over the given threshold.

The use of different types of models, one as a white-box and the other as
a black-box has several advantages over, for instance, one complex NN model
trained with both static and dynamic data. Firstly, the use of DTs enables to
easily explain phenomena observed in a data center to system administrators.
Since a model can evolve by repeating the training, changes in trends and user
behavior occurred in a data center are observed as results of the comparison
of models. Also, a failure prevention system gains performance during the run-
time because of splitting evaluation to offline (time of submission only) and
online (evaluation of a job during its runtime) one.

5.1 Convolutional Neural Networks

CNNs are a type of deep neural network following a design of biological vision
systems [11]. They are widely used for image classification, natural language
processing, and recommendation systems, and they have also been successfully
used for time series classification and prediction. We propose to use a CNN for
classification and prediction of multivariate time series, which are the power
metrics of nodes (overall energy consumption of a computing blade) used in a
step. Therefore, CNN learns “how a multivariate time series of nodes execut-
ing a step look like”. A major advantage of using CNNs over neural nets with
fully connected (dense) layers only, is that they need much fewer neurons and
parameters to solve a particular classification or prediction problem.

172 M. Zasadziński et al.

In Fig. 3, we present the best CNN model trained for this task. We create the
final model after a few iterations, through dropping layers from more complex
models which over-fit during the training and do not increase the accuracy. The
model presented in Fig. 3 comprises a few types of layers. Each convolutional
layer comprises filters with size 3× 3, and during the training, each filter learns
weights. This layer is used to extract specific features, in this case from 2D
matrices. Another important layer type used is a drop-out, which regularizes
weights and through dropping neurons and connections, prevent overfitting [16].
A max pooling layer and dense layer are used to aggregate extracted features
and classify them into defined classes and give probabilities. The input data are
2D matrices of size M = 512 (number of nodes)×T = 120 (length of time series).
For steps with matrices which shape is less than M × T , we pad a sample with
zeros - which are ignored by CNN during the training. For these matrices which
are larger than that size, we downsample a matrix by averaging power metrics.
The value for T is chosen so that it is large enough to represent the complete
series of most of the steps (only 1.3% of steps are longer than 120 min) and at
the same time it is small enough for the NN training to be practical. The dataset
with steps is split randomly (the same split as in Sect. 4) into three sets: training
(70% of the data), validation (10%), and test (20%) respectively.

The CNN is trained using tensorflow3 and keras4 libraries by means of 2x
GPU GeForce 1080 Ti. Also, after a few trails and examining a shape of the
loss curve, the learning rate is set to 0.001, and we choose a stochastic gradient
descent optimizer. The final model, which contains 32261 parameters to train,
is trained in 67 epochs with approximately 1 h per epoch. We stop training after
lack of significant improvement in the loss curve, and when the model does not
improve more than 1% in 5 epochs. We show results of the trained CNN in
Table 3.

Table 3. CNN test results - classification. Data set: steps – power metrics, dura-
tion > 120 s

Completed Failed Cancelled

Precision 0.93 0.85 0.79

Recall 0.98 0.66 0.15

F1-score 0.96 0.74 0.25

test set 168875 28605 4457

5.2 Evaluation – Static and Dynamic Job-Killing Policies

The primary goal of the evaluation is to explore possible savings and losses
depending on the aggressiveness of job-killing policy. We measure the aggres-
3 https://www.tensorflow.org/.
4 https://keras.io/.

https://www.tensorflow.org/
https://keras.io/

Early Termination of Failed HPC Jobs Through Machine and Deep Learning 173

siveness of a policy as the threshold of class prediction probability. For instance,
a threshold of 60% means that a job is classified as failed when the probability
of predicting failed is higher than 60%. An aggressive policy is the one with a
low threshold, and the less aggressive one is the one with a high threshold, e.g.,
greater than 90%. We evaluate the trained CNN model and DT to predict the
final states of steps. We use a test set which contains jobs with total CPU time
of 84.7M h. CNN predicts a final job state and outputs probabilities for each
timestamp during the run of a job. We evaluate proposed policies by depicting
lost and gained CPU time, expressed in hours. Lost CPU time stands for the
resources consumed by a step that is labeled as completed, but it is killed (false
positive). Saved CPU time represents resources that would be used until a step
ends but are saved due to a decision of early step termination. Approximate
performance of CNN evaluation is 5000 samples/s which is considered sufficient
for these experiments.

Table 4. Summary of the dynamic policy evaluation over a test set containing 11M
CPU hours of failed jobs

Dynamic policy metric CPU h Probability threshold

Maximum savings achievable 7.9M From 0 to 0.42

Maximum loss (false positive) 4.1M 0.52

Global maximum (savings - loss) 4.0M From 0 to 0.42

Local maximum of (savings - loss)
with the highest value of threshold

0.7M 0.82

Considering the dynamic policy, the maximum value of true positives is
0.9, and for false positives, the maximum value is 0.45. Both metrics decrease
smoothly when the threshold grows. Figure 2 shows true and false positive rates
depending on the probability threshold for failure prediction with the CNN. On
the other hand, the static policy is characterized by the maximum value of the
true positive rate of 0.47 and a small value of 0.02 for the false positive rate.
The static policy is more accurate in predictions comparing to the dynamic one,
but the maximum number of predicted steps to fail are almost two times lower.

Wastes. When it comes to the CPU time, the static policy allows for maximum
savings of 0.8M CPU h, and the dynamic one of 8M CPU h. In Table 4, we
present a summary of the evaluation of the dynamic policy taking into account
CPU hours of jobs. Note, that the earlier we kill a failed job, the bigger savings
are. On the other hand, the confidence of prediction increases with time a job
is running as we gather more data. Regarding this trade-offs, there is a global
maximum of losses for threshold 0.52. For instance, applying a dynamic policy
with a threshold of 0.82 (local maximum with the highest threshold value) to
the test dataset saves 1.6M CPU h with 0.9M CPU h lost and the total profit
of 0.7M CPU h. For instance, a less aggressive policy would be the application

174 M. Zasadziński et al.

of a threshold equal to 0.96. In this case, we save 210k CPU h, and we lose 24k
CPU h, with the total profit of 190k CPU h. In contrast, executing static policy
allows for maximum savings of 870k CPU h by killing 13k failed jobs with a side
effect of killing 3.8k completed ones. Also, the application of the static policy,
which is more conservative, does not cause a loss in CPU time, because it reacts
after job submission.

Figure 4 presents the distribution of job time at which the dynamic policy
will react and terminate a job. We can see that most of the jobs are killed during
the first 30% of their total execution time (the time they take if they are not
killed earlier). Then, for the remaining steps, prediction abilities increase after
60th percentile of their duration. Figure 4 shows that the dynamic policy can
predict failures early.

Users and system administrators may use policies with different aggressive-
ness levels. For instance, a user might choose a very aggressive policy, both static
and dynamic with a very low threshold, when the project budget is highly lim-
ited. On the other hand, a less aggressive policy, e.g., a dynamic policy with a
high threshold, above 0.9, can be appropriate for long jobs, where user time is
the most expensive factor to consider. Also, such a policy can maximize savings
comparing to use of a static policy. A static policy used by system administrators
can help eliminating problematic jobs, which may be causing the overload of a
system. However, use of dynamic policy can cause dissatisfaction of users, since
this policy can unexpectedly terminate their jobs without a known reason.

Also, supervised learning through interaction with a user can help improving
the proposed policies. Firstly, users should receive a notification when their jobs
are repeatedly killed after re-submissions. A user or a system administrator could
label such a problematic job. This action provides a model with additional infor-
mation for incremental improvement. Also, system administrators can decide to
perform supervised learning, to set up the optimal aggressiveness of the policy
(threshold).

Fig. 2. Plot presents the evaluation of CNN model for different values of prediction
probability threshold. The lower is the threshold, the more aggressive is the job termi-
nating policy, greater savings, but we kill more good jobs as a consequence of inaccurate
predictions. Total CPU Hours of failed jobs in a set: 11M

Early Termination of Failed HPC Jobs Through Machine and Deep Learning 175

Fig. 3. Graph presenting a trained CNN with
layers type and shape of the data

Fig. 4. Cumulative plot present-
ing the time when the probability
of failure exceeds defined threshold
0.82. Number of samples N = 7300

6 Conclusions and Future Work

In this paper, we analyzed a dataset containing metrics, topology and job sched-
uler data for the Mistral supercomputer. We showed important features in a
classification and prediction task of a job state. The number of allocated nodes,
the state of a previous job submitted by a user, average storage writes are the
most important ones. DTs detect specific node types as an important feature
due to migration process from the old to the new computing nodes. DTs perform
well as a classifier, with a recall nearly 80% and a precision of 93% for failed
steps. As a predictor, DTs can point failed steps, using configuration and allo-
cated hardware data exclusively, with a recall of 41% and a precision of 75%. In
the case of CNNs, these scores increase to 66% and 85% respectively. This paper
shows that one of the biggest influence on the next state of a job in a super-
computer like Mistral lies in the diversity and spatial distribution of allocated
nodes, place of a job in a user sequence and number of disk operations.

We evaluated dynamic and static job-killing policies, pointing out possible
savings related to the aggressiveness of both policies. For instance, using medium-
aggressive approach, we can kill more than 28% of failed jobs. Through CNN
predictions, the proposed dynamic policy kills 40% of jobs in the first 20% of
their duration. These effects can be improved by utilizing feedback from users
and system administrators and adjusting weights of CNN by supervised learning.

As future work, we would like to improve prediction capabilities of the created
solution and focus on Lustre FS. Firstly, we can achieve more accurate analysis
of final job states by adding OS logs to the analyzed dataset. Also, this would
help to build prediction algorithm of final job states, which is not limited by
Slurm job state but uses the utility of a job. For instance, the utility can be
measured by analyzing users’ actions after a job finishes, e.g., a user copied
output data, re-run the same code with different parameters, changed the code.
Therefore, this approach can differentiate jobs with a non-zero return code from

176 M. Zasadziński et al.

these which were run unnecessary and these which can provide any utility to a
user, e.g., development progress, part of results. Then, we can consider a more
complex model which takes into account step sequence for a job. Also, we would
like to consider additional input information such as real-time metrics from the
data center, e.g., Lustre I/O, overall system load and IB traffic. Finally, we would
like to focus more on the deep learning algorithms for prediction of failures and
Root Cause Analysis.

Acknowledgments. This research is supported by the BigStorage project (ref.
642963) funded by Marie Sk�lodowska-Curie ITN for Early Stage Researchers, and it is
a part of a doctorate at UPC.

References

1. Barroso, L.A., Clidaras, J., Hölzle, U.: The datacenter as a computer: an intro-
duction to the design of warehouse-scale machines. Synth. Lect. Comput. Archit.
8(3), 1–154 (2013)

2. Bautista-Gomez, L., Gainaru, A., Perarnau, S., et al.: Reducing waste in extreme
scale systems through introspective analysis. In: 2016 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 212–221 (2016)

3. Casas, M., Bronevetsky, G.: Prediction of the impact of network switch utilization
on application performance via active measurement. Parallel Comput. 67(Suppl.
C), 38–56 (2017)

4. Clark, A.D., Tellez, L.M., Besse, S., et al.: Dynamic prediction and estimation of
intentional failures in HPCs. In: International Conference on Advances in Social
Networks Analysis and Mining, pp. 1244–1250 (2016)

5. El-Sayed, N., Schroeder, B.: Reading between the lines of failure logs: understand-
ing how HPC systems fail. In: 43rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pp. 1–12 (2013)

6. Fu, S., Xu, C.Z.: Exploring event correlation for failure prediction in coalitions
of clusters. In: Proceedings of the Conference on Supercomputing, pp. 41:1–41:12
(2007)

7. Gao, J.: Machine learning applications for data center optimization. Google White
Paper (2014). https://research.google.com/pubs/archive/42542.pdf

8. Gu, J., Zheng, Z., Lan, Z., et al.: Dynamic meta-learning for failure prediction
in large-scale systems: a case study. In: 37th International Conference on Parallel
Processing (2008)

9. Gupta, S., Patel, T., Engelmann, C., et al.: Failures in large scale systems: long-
term measurement, analysis, and implications. In: SC 2017, pp. 1–12 (2017)

10. Jones, M.D., White, J.P., Innus, M., et al.: Workload analysis of blue waters. CoRR
abs/1703.00924 (2017). http://arxiv.org/abs/1703.00924

11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015)

12. Nakka, N., Agrawal, A., Choudhary, A.: Predicting node failure in high perfor-
mance computing systems from failure and usage logs. In: 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and PhD Forum,
pp. 1557–1566, May 2011

https://research.google.com/pubs/archive/42542.pdf
http://arxiv.org/abs/1703.00924

Early Termination of Failed HPC Jobs Through Machine and Deep Learning 177

13. Nie, B., Xue, J., Gupta, S., et al.: Characterizing temperature, power, and soft-
error behaviors in data center systems: insights, challenges, and opportunities. In:
IEEE 25th MASCOTS, pp. 22–31 (2017)

14. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology.
IEEE Trans. Syst. Man Cybern. Syst. 21(3), 660–674 (1991)

15. Ŝırbu, A., Babaoglu, O.: Towards operator-less data centers through data-driven,
predictive, proactive autonomics. J. Cluster Comput. 19(2), 865–878 (2016)

16. Srivastava, N., Hinton, G.E., Krizhevsky, A., et al.: Dropout: a simple way to
prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958
(2014)

17. Tuncer, O., et al.: Diagnosing performance variations in HPC applications using
machine learning. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC
2017. LNCS, vol. 10266, pp. 355–373. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58667-0 19

18. Vishwanath, K.V., Nagappan, N.: Characterizing cloud computing hardware reli-
ability. In: Proceedings of the 1st ACM Symposium on Cloud Computing, pp.
193–204. ACM (2010)

19. Wallace, S., Zhou, Z., Vishwanath, V., et al.: Application power profiling on IBM
Blue Gene/Q. Parallel Comput. 57, 73–86 (2016)

20. Xie, B., Huang, Y., Chase, J.S., et al.: Predicting output performance of a petascale
supercomputer. In: Proceedings of the 26th International Symposium on High-
Performance Parallel and Distributed Computing, pp. 181–192 (2017)

21. Yu, L., Zhou, Z., Wallace, S., et al.: Quantitative modeling of power performance
tradeoffs on extreme scale systems. J. Parallel Distrib. Comput. 84(Suppl. C), 1–14
(2015)

22. Yuan, Y., Wu, Y., Wang, Q., et al.: Job failures in high performance computing
systems: a large-scale empirical study. Comput. Math. Appl. 63(2), 365–377 (2012)

23. Zasadziński, M., Muntés-Mulero, V., Sóle, M., Ludwig, T.: Mistral supercomputer
job history analysis (2018). https://arxiv.org/abs/1801.07624

https://doi.org/10.1007/978-3-319-58667-0_19
https://doi.org/10.1007/978-3-319-58667-0_19
https://arxiv.org/abs/1801.07624

Peacock: Probe-Based Scheduling of Jobs
by Rotating Between Elastic Queues

Mansour Khelghatdoust(B) and Vincent Gramoli(B)

The University of Sydney, Data61/CSIRO, Sydney, Australia
{mansour.khelghatdoust,vincent.gramoli}@sydney.edu.au

Abstract. In this paper, we propose Peacock, a new distributed probe-
based scheduler which handles heterogeneous workloads in data analytics
frameworks with low latency. Peacock mitigates the Head-of-Line block-
ing problem, i.e., shorter tasks are enqueued behind the longer tasks,
better than the state-of-the-art. To this end, we introduce a novel probe
rotation technique. Workers form a ring overlay network and rotate
probes using elastic queues. It is augmented by a novel probe reordering
algorithm executed in workers. We evaluate the performance of Peacock
against two state-of-the-art probe-based solutions through both trace-
driven simulation and distributed experiment in Spark under various
loads and cluster sizes. Our large-scale performance results indicate that
Peacock outperforms the state-of-the-art in all cluster sizes and loads.
Our distributed experiments confirm our simulation results.

Keywords: Scheduling · Distributed system · Load balancing
Big data

1 Introduction

Data analytics frameworks increase the level of parallelism by breaking jobs
into a large number of short tasks operating on different partitions of data to
achieve low latency. Centralized techniques schedule jobs optimally by having
near-perfect visibility of workers. However, with the growth of cluster sizes and
workloads, scheduling time becomes too long to reach this optimality. To solve
this problem, probe-based distributed techniques have been proposed [3–5] to
reduce the scheduling time by tolerating a suboptimal result. These solutions
typically sample two workers per probe and place the probe into the queue of the
least loaded worker. Additionally, they are augmented with amelioration tech-
niques such as re-sampling, work stealing or queue reordering to likely improve
the initial placement of probes. However, the existing algorithms are not able to
improve scheduling decisions continuously and deterministically to mitigate the
Head-of-Line blocking, i.e., placing shorter tasks behind longer tasks in queues,
efficiently. Moreover, the overall completion time of a job is equal to the finish
time of its last task. Due to the distributed and stateless nature of probe-based
schedulers, the existing solutions are not able to reduce the variance of tasks
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 178–191, 2018.
https://doi.org/10.1007/978-3-319-96983-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_13&domain=pdf

Peacock: Probe-Based Scheduling of Jobs 179

completion time of each job that are scheduled on various workers to reduce job
completion time.

We propose Peacock, a fully distributed probe-based scheduler, which
replaces the probe sampling and the unbounded or fixed-length worker-end
queues with a deterministic probe rotation and elastic queues. This leads to bet-
ter scheduling decisions while preserving fast scheduling of jobs. This probe rota-
tion approach finds an underloaded worker better than probe sampling because
probes traverse a higher number of workers. Workers are organized into a ring
and send probes to their neighbors at fixed intervals. A probe rotation lets a
loaded worker delegates the execution of a probe to its successor on the ring.
Elastic queues regulate the motion of probes between workers and lets a worker
dynamically adjust its queue size to balance load between workers. By decreasing
the queue size, workers are forced to move some of their probes and increase the
queue size to avoid unnecessary motion of probes. More interestingly, a probe
in its journey, from when it is submitted to the scheduler until it runs on any
arbitrary worker, moves between workers, stays in some worker and then con-
tinue rotating until eventually executing on a worker. Furthermore, Peacock is
augmented with a probes reordering to handle the Head-of-Line blocking more
effectively. The probes of one job are annotated with an identical threshold time
equals to the cluster average load at the time of scheduling. This threshold deter-
mines a soft maximum waiting time for probes that are scattered independently
between workers to reduce the variance of job completion time.

We evaluate Peacock through both simulation and distributed experiments.
We use trace from Google [2]. We compare Peacock against Sparrow [3] and
Eagle [4], two state-of-the-art probe-based schedulers. The results show Pea-
cock outperforms Eagle and Sparrow in various cluster sizes and under differ-
ent loads. We evaluate the sensitivity of Peacock to probe rotation and probe
reordering. Section 2 describes Peacock in details. Section 3 explains the evalu-
ation methodology. Section 4 describes simulation and implementation results.
Section 5 discusses related work. Section 6 concludes the paper.

2 The Peacock Scheduler

Peacock comprises a large number of workers and a few schedulers. Workers
shape a ring overlay network in that each worker connects to its successor and
additionally stores descriptors to a few successors for fault tolerance purpose.
Each scheduler connects to all workers. Schedulers manage the life cycle of each
job without the need for expensive algorithms. Jobs are represented as a directed
acyclic graph (DAG), with tasks as vertices and data flow between tasks as edges.
This DAG is divided into stages and actually Peacock considers each stage as
a job and hence a DAG consists of a number of dependent jobs. Similar to
other approaches [4,5,7,11], Peacock needs to know the estimated task runtime
of incoming jobs which is measured by methods explained elsewhere [11,18].
Jobs can be scheduled by any of the schedulers, however, all tasks of a job are
scheduled by the same scheduler. When a scheduler has received a job, it submits

180 M. Khelghatdoust and V. Gramoli

probe messages to a set of random workers equals to the number of tasks. Each
worker has a queue. According to the Fig. 1, once a worker has received the
probe, (a) if the worker is idle (1.1), it requests the corresponding task of the
probe from the scheduler (1.2) and the scheduler sends back the corresponding
task data (source code) (1.3) and then the worker executes the task (1.4), (b)
if the worker is executing a task and its queue consists of a number of waiting
probes like (2.1) and (3.1), the worker may enqueue the probe for the future
execution or rotation (2.2), or (c) the worker may either rotate the incoming
probe instantly or enqueue the probe and rotate other existing waiting probes
(3.2).

2.1 Probe Rotation

Fig. 1. Different scenarios workers han-
dle probes.

There are three important design ques-
tions that should be answered:

(i) How should probes move between
workers?

(ii) When should each worker rotate
probes?

(iii) Which probes should each worker
choose to rotate?

Ring Overlay Network. The challeng-
ing design decision is how probes move
between workers. The easiest solution is
that workers maintain a complete list of
workers and send probe to a sampled
worker. However, it undermines the scal-
ability and burdens some workers while
some others might remain mostly idle.
The efficient approach should be sym-
metric, balance load between workers and
maximize resource utilization. To this
end, Peacock exploits a ring overlay net-
work as depicted in Fig. 1. We discuss
whether exploiting a ring overlay network
adversely impacts the scalability of Pea-
cock. Peer-to-Peer overlay networks are
extensively used to implement routing and lookup services [19]. In this respect,
applying a ring overlay network with 1 in-out degree (i.e., 1 for in-degree and 1
for out-degree) in which lookup time grows linearly with the increment of ring
size ruins scalability. However, there is no routing or lookup service in Peacock.
It only rotates probes through a ring and typically probes are able to execute
on any arbitrary worker node. Schedulers submit probes to sampled workers
and probes are either rotated or stores at workers. Therefore, we can conclude

Peacock: Probe-Based Scheduling of Jobs 181

that exploiting a ring overlay network does not undermine the scalability of the
algorithm.

The Significance of Elastic Queues. Workers should decide when and which
probes to rotate. Each worker utilizes one elastic queue, i.e., the size is adjusted
dynamically and hence is resilient. This elasticity is crucial for queues because it
enables workers to rotate probes between themselves in order to distribute the
probes uniformly. If queues are too short, the resources get under-utilized due
to the existence of idle resources between allocations. If the queues are too long,
then the load among workers gets imbalanced and job completion gets delayed.
Determining a static queue size might lead to an excessive number of probe
rotations when the cluster is heavily loaded and an inefficient reduction in the
number of probe rotations when the cluster is lightly loaded. Peacock bounds
queues using a pair (<size, average load>) which is called shared state. The size
is calculated as the average number of current probes on cluster. The average
load is calculated as the average estimation execution time of current probes on
workers. This pair is adjusted dynamically to make queues resilient.

Shared State. Shared state is a pair of information that consists of the queue
size and the average load of cluster (<queue size, average load>) and is changing
from time to time since the cluster has dynamic workload. Workers require to
get the most recent shared state. However, it is challenging to update the shared
state of workers continuously in a decentralized manner. Peacock is designed
in such a way that workers and schedulers are not strictly required to have an
identical shared state all the time and hence workers may have different values
of shared state at times. Now, we describe how the shared state is calculated and
through what ways workers can get the latest value of shared state. Each sched-
uler calculates the shared state continuously based on the messages it receives.
These messages are when a scheduler receives a job arrival event, receives a task
finish event or receives an update message from other schedulers. For example,
suppose the current aggregation load of cluster is <1500, 25000> (the number
of probes, aggregation load) and a task finished event is received for a task with
20 s estimated execution time. The scheduler updates the aggregation value to
<1499, 24980> and sends asynchronously the message <−, 1, 20> to the other
schedulers. Upon receiving this message, the other schedulers update their aggre-
gation value. Similarly, receiving a new job with 10 tasks and 15s estimated
execution time changes the aggregation value to <1510, 25150>, with update
message <+, 10, 150> to the other schedulers. As an alternative solution, sched-
ulers can manage shared state through coordination services such as ZooKeeper.
It eliminates direct communication between schedulers. Each scheduler calcu-
lates the value of shared state through dividing aggregation value by the number
of workers. Peacock does not impose extra messages to update the shared state
of workers. The latest shared state is piggybacked by messages that workers and
schedulers exchange for scheduling purposes. Figure 1 shows workers get shared
state through three ways.

182 M. Khelghatdoust and V. Gramoli

(i) When schedulers submit a probe message to workers
(ii) When schedulers send task data as a response of getting task by worker
(iii) When workers rotate probes to their neighbors.

Rotation Intervals. In ring, workers rotate probes to their successor. Pea-
cock rotates probes periodically in rounds. Once a probe has been chosen to be
rotated, it is marked for rotation until the next round. In the next round, work-
ers send all the marked probes in one message to their neighbors. Such design
reduces the number of messages that workers exchange. Most jobs consist of a
large number of probes and it is common that in each round more than one probe
of the same job are marked by the same worker to rotate. Peacock leverages this
observation to remove the redundant information of such subset of probes to
reduce the size of messages. To reduce the number of messages, workers send
rotation message to their neighbor only if either there is/are probe(s) marked
for rotation or when the shared state is updated from the last round. The inter-
val between rounds is configurable from milliseconds to few seconds and it does
not impact the job completion time since one probe is marked for rotation. This
avoids having to wait in a long queue.

2.2 Probes Reordering

It is crucial to reduce the variance of probes queuing time of one job since job
completion time is affected by the last executed task of the job. It is challenging
since probes of a job are distributed on different workers. However, the addi-
tion of the probes to queues in FIFO order (i.e., in the order in which they are
arrived) does not decrease the queuing time variance in the presence of heteroge-
neous jobs and workloads. Probe reordering is a solution to this problem [4,11].
Reordering algorithms should ideally be starvation-free, i.e., no probe should
starve due to existence of infinite sequence of probes with higher priority. To
this end, we propose a novel probe reordering algorithm. It performs collabora-
tively along with probe rotation algorithm to mitigate the Head-of-Line blocking.
Since probes rotate between workers, the algorithm cannot rely on FIFO order-
ing of queues. Assume a scheduler submits probe p1 to worker n1 at time t1 and
probe p2 to worker n2 at time t2. Then, n1 rotates p1 and reaches n2 at time t3.
The problem is that p1 is placed after p2 in the queue of n2 while it has been
scheduled earlier. To overcome this problem, schedulers label job arrival time on
probe messages so that workers place incoming probes into queues w.r.t the job
arrival time. Then, schedulers attach task runtime estimation to probe messages.
Once a worker has received a probe, it orders probes by giving priority to the
probe with the shortest estimated runtime. While it reduces the Head-of-Line
blocking, it may ends in starvation of long probes. To avoid this issue, schedulers
attach a threshold value to all the probes of a job at arrival time. The value
is the summation of the current time and the average execution time extracted
from the current shared state. For example, if one job arrives at t1 and the shared
state value is 10 s threshold, the value is t1+ 10 for all probes of that job. This

Peacock: Probe-Based Scheduling of Jobs 183

threshold acts as a soft upper-bound to reduce tail latency and hence to reduce
job completion time. It avoids starvation since probes do not allow other probes
to bypass them after exceeding the threshold time and hence they eventually
move to the head of queue and execute on worker.

We now present the algorithm. Workers receive a probe either because their
predecessor rotates it along the ring or because the probe is submitted by a
scheduler. Algorithm 1 depicts the procedure of enqueuing a probe and Table 1
explains the associated notations. Peacock maintains a sorted queue of waiting
probes. Once a new probe has arrived, it is treated as the lowest priority among
all waiting probes (Line 2) and tries to improve its place in the queue by passing
other probes. It starts comparing its arrival time with the lowest existing probe
(Line 4). If the new probe has been scheduled later than the existing probe,
bypassing is not allowed unless it reduces head-of-line blocking without leading
to starvation of the comparing probe. Bypassing the new probe can mitigate
the Head-of-Line blocking if the execution time of the new probe is less than
the existing probe. Such bypassing should not lead to the starvation of the
passed probe which is checked through threshold. If the threshold of the existing
probe has not exceeded in advance or will not exceed due to bypassing, then
the new probe can bypass the existing probe. Otherwise, it is either simply
enqueued or rotated to the neighbor worker on the ring (Lines 4–10). If the
new probe has been scheduled earlier, it cannot bypass if the existing probe has
less execution time. The new probe does not exceed the threshold if it does not
bypass (Lines 11–16). Then, the new probe waits in the queue if it does not
violate the starvation conditions, otherwise it is marked to be rotated in the
next coming round (Lines 25–31). Once the process of enqueuing the probe has
finished, Peacock checks the shared state of the worker and may rotate one or
more probes if needed (Lines 21–23).

Table 1. List of notations

Symbol Description Symbol Description

φ Queue size ω Max threshold waiting probes

τ Current time μ Max threshold waiting time for p

λ Job arrival time θ runtime estimation of probe p

α Total runtime of waiting probes β Arrival time probe p

γ Waiting time estimation probe p δ Relict runtime of running task

3 Evaluation Methodology

Comparison. We compare Peacock against Sparrow [3] and Eagle [4], two
probe-based schedulers which use probe sampling. We evaluate the sensitivity
of Peacock to probe rotation and probe reordering. We use both simulation for
large clusters of 10k, 15k, and 20k workers and real implementation for 100
workers.

184 M. Khelghatdoust and V. Gramoli

Environment. We implemented an event-driven simulator and also all three
algorithms within it to fairly compare them for large scale cluster sizes. In addi-
tion, we implemented Peacock as an independent component using Java and also
a plug-in for Spark [1] written in Scala. We used Sparrow and Eagle source codes
for the distributed experiments.

Workload. We utilize traces of Google [2,17]. Invalid jobs are removed from
the Google traces and Table 2 gives the specification of the pruned traces. To
generate average cluster workloads, job arrival time follows a Poisson process
with a mean job inter-arrival time that is calculated based on expected average
workload percentage, mean jobs execution time, and mean number of tasks per
job. Since jobs are heterogeneous, the workload and expected average percentage
vary over time. We consider 20%, 50%, and 80% as light and 100%, 200%, and
300% as heavy cluster workloads.

Table 2. Workloads general properties

Workloads Jobs count Tasks count Avg task duration

Google 504882 17800843 68

Parameters. The estimated task runtime is computed as the average of job task
durations. Each worker runs one task at a time, which is analogous to having
multi-slot workers, each is served by a separate queue. The results are the average
of a number of runs. Error bars are ignored due to stable results of different
runs. We set rotation interval to 1s and network delay to 5ms for simulation
experiments. Eagle relies on several static parameters. For fair comparison, we
use the values used in the paper [4] even though any algorithm relying on static
values may not be appropriate under dynamic workloads.

Performance Metrics. We measure the average job completion times, cumu-
lative distribution function of job completion times, and the fraction of jobs that
each algorithm completes in less time comparatively, to appraise how efficiently
Peacock mitigates the Head-of-Line blocking.

4 Experimental Results

We deploy our algorithm within an event-driven simulator and a real distributed
experiment to evaluate Peacock in different loads and cluster sizes.

Peacock: Probe-Based Scheduling of Jobs 185

Algorithm 1. Enqueue Probe submitted by scheduler or rotated by predecessor
1: procedure enqueueProbe(p)
2: γp ← δ + α
3: for q in reversed waitingProbes do
4: if λp ≥ λq then
5: if θp ≤ θq AND λq + μq + θp ≤ τ then
6: γp = γp - θq
7: else
8: placeOrRotate(p); decided = true; break;
9: end if

10: else
11: if θq ≤ θp AND τ + γp ≤ λp + μp then
12: placeOrRotate(p); decided = true; break;
13: else
14: γp = γp - θq
15: end if
16: end if
17: end for
18: if Not decided then
19: waitingProbes.add(P, 0); α = α + θp
20: end if
21: while waitingProbes.size() ≥ φ OR α ≥ ω do
22: q = waitingProbes.removeLast();α = α - θq; rotatingProbes.add(q)
23: end while
24: end procedure
25: procedure placeOrRotate(p)
26: if τ + γp ≤ λp + μp OR λp + μp ≤ τ then
27: waitingProbes.add(P); α = α + θp
28: else
29: rotatingProbes.add(p)
30: end if
31: end procedure

Comparing Peacock Against Sparrow. Figure 2 shows that Peacock
achieves better average jobs completion times than Sparrow under all loads and
with all cluster sizes. Peacock outperforms the alternatives under heavy loads.
The reason is that Head-of-Line blocking is reduced (i) locally in each worker by
our reordering and (ii) collaboratively between workers by balancing the distri-
bution of probes through both probe rotation and reordering. In light loads, the
improvement is mostly due to probe rotation and rarely due to the reordering.
Furthermore, Sparrow only uses batch sampling that does not handle workload
heterogeneity. Figure 3 shows that Peacock, unlike Sparrow, is job-aware in the
sense that it reduces the variance of task completion times for each job. Beside
probes rotation and reordering, the way that Peacock assigns threshold value
for jobs appears effective. Figure 4 shows that Peacock significantly outperforms
Sparrow when comparing jobs individually. Under a 20% load, Sparrow shows
better percentage than other loads because two samplings in Sparrow get empty

186 M. Khelghatdoust and V. Gramoli

slots faster than one sampling of Peacock even though probe rotation helps Pea-
cock outperform Sparrow under other loads. We now provide some more detailed
information. Figure 2 shows Peacock executes jobs in average between 13% to
77% faster than Sparrow in all settings. Figure 3(b) shows in 50% load, Spar-
row only completes 2.2% jobs in less than 100 seconds while Peacock completes
21.6% jobs at the same time. In Fig. 3(a) and under the 300% load, Sparrow
executes 0.3% jobs less than 100 seconds while it is 31.8% for Peacock. Figure 4
shows that Peacock executes between 66% to 91% of jobs faster than Sparrow.

(a) Google-Heavy (b) Google-Light

Fig. 2. Average job completion times for heavy and light load scenarios.

(a) Google-300% (b) Google-50%

Fig. 3. Cumulative distribution function of jobs completion times. 10000 workers.

Comparing Peacock Against Eagle. Eagle is a hybrid probe-based sampling
scheduler which divides jobs statically into two sets of long and short jobs. A cen-
tralized node schedules long jobs and a set of independent schedulers using batch
sampling to schedule short jobs. The cluster is divided into two partitions, one is
dedicated to short jobs and the other is shared for all jobs. Eagle mitigates Head-
of-Line blocking using re-sampling technique and a static threshold-based queue
reordering. Figure 2 shows that Peacock outperforms Eagle in average jobs com-
pletion times in all loads. It is because the continuous and deterministic probe

Peacock: Probe-Based Scheduling of Jobs 187

(a) Google-Light (b) Google-Heavy

Fig. 4. Fraction of jobs with shorter completion time.

rotations through elastic queues along with the workload-aware probe reorder-
ing in Peacock outperforms a randomized re-sampling along with a static probe
reordering through unbounded queues in Eagle. In Fig. 3, we see that Peacock
executes jobs in lower latency than Eagle. Figures 2 shows, Peacock completes
execution of jobs in average 16% to 73% faster than Eagle. Figure 4 shows Pea-
cock executes between 54% to 82% of jobs faster than Eagle. Interestingly, we
see that under 20% load, the percentage of jobs have identical completion time
in both Eagle and Peacock. Figure 3 shows that Peacock executes however a high
percentage of jobs with lower latency than Eagle.

Fig. 5. Avg number of rotations per probe

How Much Is the Number
of Probe Rotations per Task
Influenced by Cluster Sizes
and Loads? We investigate the
average number of probe rota-
tions per task for Google trace.
We observe by increasing the
cluster size that the number of
rotations decreases. For exam-
ple, for 80% load, the number
of rotations for 10K, 15K, and
20K nodes are 901, 656, and 513

respectively. Also, for higher loads, at 300%, the number of rotations are 1791,
1140, and 692 for 10K, 15K, and 20K, respectively. The larger the cluster size,
the lower the number of redundant rotations. It indicates that probe rotation
does not hurt the scalability and hence Peacock can be deployed on large scale
clusters. In addition, by increasing the load, there is a reduction in the number
of rotations for all 3 cluster sizes. The heavier loads trigger a higher number of
rotations than lighter loads. For 10K the number of rotations are 17, 299, 689,
901, 1523, and 1791 for 20%, 50%, 80%, 100%, 200% and 300% loads respectively
(Fig. 5).

Sensitivity to Probe Rotation. We analyze the effectiveness of probe rota-
tion on the performance of Peacock. Figures 6(a) and (b) reveal that the per-

188 M. Khelghatdoust and V. Gramoli

formance of Peacock stems from probe rotation technique on all loads. From
Fig. 6(a), we see the average job completion time is negatively increased between
70% to 95% in all loads in comparison with complete Peacock version because
probe rotation mitigates Head-of-Line blocking. Specifically, in light loads, probe
rotation balances load between workers which result in increasing the cluster
utilization and greatly reducing the formation of long-length queues. In heavy
loads, due to the existence of long-length queues, Besides balancing the load
between workers through probe reordering, Peacock uses probe rotation to mit-
igate Head-of-Line blocking. Figure 6(b) shows that 70% and 90% percentiles in
the high loads perform better than the same percentiles for the light loads. It
indicates that under high load probe reordering and probe rotation collabora-
tively mitigates Head-of-Line blocking while under light load the performance of
probes rotation is crucial as there is no long queues to apply probes reordering.

Sensitivity to Probe Reordering. Probe reordering is more influential when
the cluster is under a high load since workers have long queues when they are
at high load. Thanks to the novel starvation-free reordering algorithm in which
it allows jobs to bypass longer jobs. The result in Fig. 6(c) approves this fact
wherein average job completion time for Peacock without reordering component
is close to the original Peacock for 20% load while by increasing load, we observe
an increasing difference in average job completion time (the biggest difference is
81% for loads 200% and 300%). From Fig. 6(d) we can conclude that reordering
causes most of jobs to be executed faster. It shows an improvement of 90% in 70%
percentile for loads 100%, 200%, and 300% while load 50% with 76% and 74%
improvements has the best percentiles in 90% and 99%. As expected there is no
significant difference for load 20% as there is no waiting probes in queues most
of the time. It is obvious that the elimination of this component significantly
increases the chance of having Head-of-Line blocking.

Implementation Results. We implement Peacock as an independent compo-
nent using Java and a plug-in for Spark [1] written in Scala. We run experiments
on 110 nodes consisting of 100 workers and 10 schedulers. To keep it traceable,
we sample 3200 jobs of Google trace and we convert task durations from seconds
to milliseconds. We implement a Spark job called sleep task. The current thread
sleeps for a duration equals to task duration to simulate the execution time that
each task needs. The method for varying the load is the same as the simulation
experiments described in Sect. 3. We run real implementations of Sparrow and
Eagle with the same specifications to compare Peacock against them. Figure 7(a)
presents average job completion time at both light and heavy loads. The result
shows that Peacock significantly outperforms both the algorithms in all loads.
Peacock outperforms Sparrow with an at most 80% improvement under the 80%
load and at least a 69% improvement under the 20% load scenario. Moreover,
compared to Eagle, the maximum improvement reaches 81% when the load is
50% and the least enhancement is 57% for the load 300%. Figure 7(b) shows the
fraction of jobs that each algorithm runs in less time. Again we can see that
Peacock runs higher percentage of jobs faster than both Sparrow and Eagle.

Peacock: Probe-Based Scheduling of Jobs 189

(a) w/o rotating AJCT (b) w/o rotating Percentiles

(c) w/o reordering AJCT (d) w/o reordering Percentiles

Fig. 6. Peacock versus w/o probes rotation or probes reordering. Google trace.

(a) Avg Job completion time (b) % of shorter completed jobs

Fig. 7. Distributed experiments for heavy and light workloads.

5 Related Work

Original schedulers are usually designed in a centralized manner [9,12–16] and
are a computationally expensive optimization problem. Such algorithms may
increase scheduling times and lead to scalability problems. Distributed and
hybrid schedulers are proposed to resolve the problem. Sparrow [3] is a dis-
tributed scheduler using batch sampling and late binding techniques to be scal-
able and offer low latency. However, it faces challenges in highly loaded clusters
due to the lack of Head-of-Line blocking mitigation. Hawk [5] and Eagle [4] are
hybrid schedulers that augment Sparrow to mitigate Head-of-Line blocking. A
centralized scheduler schedules long jobs and distributed schedulers handles short

190 M. Khelghatdoust and V. Gramoli

jobs. Both divide jobs statically into long and short categories, splits workers into
two partitions statically, and allocate one partition to short jobs and another to
both types of jobs. To mitigate the Head-of-Line blocking in Hawk, idle workers
steal short tasks that get stuck behind long jobs. Instead, Eagle shares infor-
mation among workers called Succinct State Sharing, in which the distributed
schedulers are informed of the locations where long jobs are executing. Eagle also
proposes a Shortest Remaining Processing Time reordering technique to prevent
starvation. Unfortunately, Eagle relies strongly on static parameters which lim-
its its practicality and does not perform well under light loads. In Mercury [8],
jobs are divided into two sets, either served centrally with best effort or sched-
uled by distributed schedulers. It uses a load shedding technique to re-balance
load on workers. Mercury does no cope with the Head-of-Line blocking and faces
scalability issues when there are a large number of guaranteed jobs waiting to
be scheduled. Apollo [11] relies on shared states. Jobs are homogeneous and
scheduled with the same policy. A centralized manager maintains a shared state
updated by connecting with nodes. Unlike Apollo, Peacock imposes a tiny global
information not relying on central coordination.

6 Conclusion

We presented Peacock, a new distributed probe-based scheduler for large scale
clusters. Peacock mitigates the Head-of-Line blocking by combining probe rota-
tion through the elastic queues with a novel probe reordering. Peacock organizes
workers into a ring overlay network and regulates probes to move between work-
ers through the elastic queues of workers to handle workload fluctuations. We
showed that Peacock outperforms state-of-the-art probe-based schedulers in var-
ious workloads through simulation and realistic distributed experiments.

References

1. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing. In: NSDI (2012)

2. GoogleTraceWebsite. Google cluster data. https://code.google.com/p/
googleclusterdata/

3. Ousterhout, K., et al.: Sparrow: distributed, low latency scheduling. In: SOSP
(2013)

4. Delgado, P., Didona, D., Dinu, F., Zwaenepoel, W.: Job-aware scheduling in eagle:
divide and stick to your probes. In: SOCC, October 2016

5. Delgado, P., et al.: Hawk: hybrid datacenter scheduling. In: USENIX Annual Tech-
nical Conference (2015)

6. Tumanov, A., et al.: TetriSched: global rescheduling with adaptive plan-ahead in
dynamic heterogeneous clusters. In: EuroSys (2016)

7. Rasley, J., et al.: Efficient queue management for cluster scheduling. In: Proceed-
ings of the Eleventh European Conference on Computer Systems. ACM (2016)

8. Karanasos, K., et al.: Mercury: hybrid centralized and distributed scheduling in
large shared clusters. In: USENIX Annual Technical Conference (2015)

https://code.google.com/p/googleclusterdata/
https://code.google.com/p/googleclusterdata/

Peacock: Probe-Based Scheduling of Jobs 191

9. Isard, M., et al.: Quincy: fair scheduling for distributed computing clusters. In:
SOSP (2009)

10. Hindman, B., et al.: Mesos: a platform for fine-grained resource sharing in the data
center. In: NSDI, vol. 11, no 2011 (2011)

11. Boutin, E., et al.: Apollo: scalable and coordinated scheduling for cloud-scale com-
puting. In: OSDI, vol. 14 (2014)

12. Ferguson, A.D., et al.: Jockey: guaranteed job latency in data parallel clusters. In:
EuroSys (2012)

13. Zaharia, M., et al.: Delay scheduling: a simple technique for achieving locality and
fairness in cluster scheduling. In: EuroSys (2010)

14. Curino, C., et al.: Reservation-based scheduling: if you’re late don’t blame us!. In:
Proceedings of the ACM Symposium on Cloud Computing. ACM (2014)

15. Goder, A., Spiridonov, A., Wang, Y.: Bistro: scheduling data-parallel jobs against
live production systems. In: USENIX ATC (2015)

16. Verma, A., et al.: Large-scale cluster management at Google with Borg. In: Pro-
ceedings of the Tenth European Conference on Computer Systems. ACM (2015)

17. Reiss, C., et al.: Heterogeneity and dynamicity of clouds at scale: Google trace
analysis. In: SOCC (2012)

18. Zhou, J., et al.: SCOPE: parallel databases meet MapReduce. Int. J. Very Large
Data Bases 21(5), 611–636 (2012)

19. Stoica, I., et al.: Chord: a scalable peer-to-peer lookup service for internet appli-
cations. ACM SIGCOMM Comput. Commun. Rev. 31(4), 149–160 (2001)

20. Chen, Y., et al.: The case for evaluating MapReduce performance using workload
suites. In: MASCOTS (2011)

Online Scheduling of Task
Graphs on Hybrid Platforms

Louis-Claude Canon1,2, Loris Marchal2,
Bertrand Simon2(B), and Frédéric Vivien2

1 FEMTO-ST Institute – Université de Bourgogne Franche-Comté,
16 route de Gray, 25 030 Besançon, France

louis-claude.canon@univ-fcomte.fr
2 Univ Lyon, CNRS, ENS de Lyon, Inria, Université Claude-Bernard Lyon 1,

LIP UMR5668, 69342 Lyon Cedex 07, France
{loris.marchal,bertrand.simon}@ens-lyon.fr, frederic.vivien@inria.fr

Abstract. Modern computing platforms commonly include accelera-
tors. We target the problem of scheduling applications modeled as task
graphs on hybrid platforms made of two types of resources, such as CPUs
and GPUs. We consider that task graphs are uncovered dynamically, and
that the scheduler has information only on the available tasks, i.e., tasks
whose predecessors have all been completed. Each task can be processed
by either a CPU or a GPU, and the corresponding processing times are
known. Our study extends a previous 4

√
m/k-competitive online algo-

rithm [2], where m is the number of CPUs and k the number of GPUs
(m ≥ k). We prove that no online algorithm can have a competitive
ratio smaller than

√
m/k. We also study how adding flexibility on task

processing, such as task migration or spoliation, or increasing the knowl-
edge of the scheduler by providing it with information on the task graph,
influences the lower bound. We provide a (2

√
m/k+1)-competitive algo-

rithm as well as a tunable combination of a system-oriented heuristic and
a competitive algorithm; this combination performs well in practice and
has a competitive ratio in Θ(

√
m/k). Finally, simulations on different

sets of task graphs illustrate how the instance properties impact the per-
formance of the studied algorithms and show that our proposed tunable
algorithm performs the best among the online algorithms in almost all
cases and has even performance close to an offline algorithm.

Keywords: Scheduling · Heterogeneous computing · Task graphs
Online algorithms

1 Introduction

Modern computing platforms increasingly use specialized hardware accelerators,
such as GPUs or Xeon Phis: 102 of the supercomputers in the TOP500 list
include such accelerators, while several of them include several accelerator types
[24]. The increasing complexity of such computing platforms makes it hard to
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 192–204, 2018.
https://doi.org/10.1007/978-3-319-96983-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_14&domain=pdf

Online Scheduling of Task Graphs on Hybrid Platforms 193

predict the exact execution time of computational tasks or of data movement.
Thus, dynamic runtime schedulers are often preferred to static ones, as they are
able to adapt to variable running times and to cope with inaccurate predictions.
Indeed, with the widespread heterogeneity of computing platforms, many scien-
tific applications now rely on runtime schedulers such as OmpSs [22], XKaapi [7],
or StarPU [4]. Most of these frameworks model an application as a Directed
Acyclic Graph (DAG) of tasks, where nodes represent tasks and edges represent
dependences between tasks. While task graphs have been widely studied in the
theoretical scheduling literature [14], most of the existing studies concentrate on
static scheduling in the offline context: both the graph and the running times of
the tasks are known beforehand.

We believe that there is a crucial need for online schedulers, that is, of
scheduling algorithms that rely neither on the structure of the graph nor on
the knowledge of tasks’ running times. First, not all graphs are fully available
at the beginning of the computation: sometimes the graph itself depends on the
data being processed, different inputs may result in different task graphs. This
is especially the case when the behavior of an iterative application depends on
the accuracy of the output. Second, in most existing runtimes, even if the graph
does not depend on the input data, it is not fully submitted at the beginning of
the computation; instead, tasks are dynamically uncovered during the computa-
tion. Third, even if part of the graph is available, schedulers (such as StarPU [4])
usually avoid traversing large parts of the graph each time they take a decision
in order to strongly limit the time needed to take decisions. Finally, tasks’ pro-
cessing times are not always known beforehand, and the occasionally available
predictions may not be very accurate, as two successive executions of the same
task may result in slightly different timings.

There has recently been an effort of the scheduling community to fill the
gap between the assumptions used in theoretical studies and the informa-
tion available to the underlying schedulers of runtime systems (see details in
Sect. 2). Schedulers for independent tasks on hybrid platforms have first been
proposed [5,8,11]. Some of them have been adapted for task graphs: [20] extends
the algorithm of [5] to the (offline) scheduling of task graphs, while [2] adapts
an online scheduler for independent tasks on hybrid platforms [17] to obtain a
competitive online scheduler for task graphs.

In the present paper, we concentrate on the online scheduling of task graphs
on a hybrid platform composed of 2 types of processors that we call CPU and
GPU for convenience. There are m CPUs and k GPUs, where m ≥ k ≥ 1.
Note that we do not make any assumptions on the CPUs and GPUs (i.e., on
the processing times of each task), so that these results may be symmetrically
applied to the converse case with more GPUs. The objective is to schedule a
DAG G of tasks, so as to minimize the total completion time, or makespan.
Each task can be assigned either to a single CPU or to a single GPU. We adopt
the notations of [2]: the processing time of task Ti on a CPU is noted by pi and
on a GPU by pi.

194 L.-C. Canon et al.

We consider the following online problem. At the beginning, the algorithm is
aware of all the input tasks of the graph, and can schedule each one on either a
CPU or on a GPU. A task is released and becomes available to the scheduler only
when all its predecessors are terminated. At any given point in the computation,
the scheduler is totally unaware of tasks that have not yet been released, but it
knows the processing times pi and pi of all available tasks: we assume that tasks
correspond to well-known kernels whose processing times have been acquired
through extensive benchmarking; this happens in particular in linear algebra
applications. We do not take into account the time needed for moving data and
assume that there is no delay between the release of a task and the start of its
processing.

The closer related work considering the very same problem is [2], which pro-
vides a 4

√
m/k-competitive algorithm for this problem. We recall that an online

algorithm is x-competitive if the makespan returned by this algorithm on any
instance is at most x times larger than the optimal makespan (which can be
computed by an offline algorithm). The present paper brings the following con-
tributions:

– We prove that the competitive ratio of any online algorithm is lower-bounded
by

√
m/k. We study how the knowledge of the task graph and the flexibility

of the tasks may influence the lower bound; we especially prove that knowing
the bottom-level of any task (i.e., the critical path length from this task to the
end of the graph) or having preemptive tasks does not help much, whereas
the knowledge of the number of descendants allows to reduce the lower bound
to 1

2 (m/k)1/4 (Sect. 3).
– We propose a (2

√
m/k +1)-competitive algorithm, by refining both the algo-

rithm and the analysis of [2] (Sect. 4.1).
– We propose a simple heuristic (Sect. 4.2) based on the system-oriented heuris-

tic EFT, which is both a competitive algorithm and performs well in practice,
as we show with a comprehensive simulation set (Sect. 5).

2 Related Work

We briefly position our contributions in comparison to the existing work, starting
with the offline case where the whole scheduling problem (both task dependences
and running times) is known beforehand.

Offline Algorithms. Several schedulers for independent tasks on hybrid plat-
forms have been proposed. Bleuse et al. [8] designed a polynomial but expensive(
4
3 + 1

3k

)
-approximation. Low complexity algorithms, which are closer to our

work, have been studied in [5,11] and achieve approximation ratios respectively
equal to 2 and 2 +

√
2. For tasks with precedence constraints, Kedad-Sidhoum

et al. [18] provided a tight 6-approximation algorithm based on linear program-
ming. In a different setting, Raravi et al. [21] also consider the same platform
composed of two types of processors, on which the objective is to schedule a set

Online Scheduling of Task Graphs on Hybrid Platforms 195

of chains of tasks, with each task having a release date and a deadline. They
design an algorithm that schedules the tasks of each chain on the same proces-
sor, under some assumptions such as the existence of a valid schedule on slightly
slower processors.

Online Algorithms. When tasks with precedences are released over time, Gra-
ham’s List Scheduling algorithm [16] is 2-competitive on homogeneous processors
(note that this is also the best offline approximation for this problem). On our
model with two sets of processors, Imreh [17] and Chen et al. [13] proposed an
algorithm to schedule independent tasks with a competitive ratio smaller than 4.
Based on this work, Amaris et al. [2] exhibited an online algorithm for precedence
constraints, achieving a competitive ratio of 4

√
m/k.

Runtime Strategies. Actual runtime schedulers usually rely on low-complexity
scheduling policies to limit the time needed to allocate tasks. For instance,
StarPU [4] builds a performance model of tasks that enables to predict their
processing times. When a new task is submitted, it is allocated to the resource
that will complete it the soonest (when using the dm policy, previously called
heft-tm in [3]), which corresponds to the classical Earliest Finish Time (EFT)
scheduling policy [19]. Other strategies have been proposed that take into
account communication times, or precomputed task priorities, depending on the
descendants of each task. We include similar information in the design of the
lower bounds on competitive ratios (Sect. 3).

3 Lower Bound on Competitive Algorithms

In this section, we provide a lower bound on the competitive ratio of any online
algorithm, as outlined in the following theorem. We also study how adding flexi-
bility to task processing or giving some knowledge of the graph to the scheduler
impacts this lower bound.

Theorem 1. No online algorithm has a competitive ratio smaller than
√

m/k.

Proof. We prove this result here only when τ =
√

m/k is an integer. The proof
for the general case can be found in the corresponding research report [10].
Consider an online algorithm A. We fix an integer n, which will later be made
as large as we want for the competitive ratio to get closer to τ . We use an
adversary proof: an adversary dynamically builds the graph depending on the
current schedule produced by A. This results in a graph composed of nm tasks
denoted by T j

i , with j = 1, . . . , nτ and i = 1, . . . , kτ . Each task has a CPU
processing time of τ and a GPU processing time of 1.

The procedure consists of nτ phases. During the jth phase, kτ tasks are
released (tasks T j

i for i = 1, . . . , kτ), without dependences between these tasks.
The adversary selects the task that A completes the latest, breaking ties arbitrar-
ily. Let T j

∗ be this task. The kτ tasks of the next phase are then made successors
of T j

∗ . See Fig. 1a for an illustration of the resulting graph.

196 L.-C. Canon et al.

Fig. 1. Illustration of the graph and the buckets for τ = 2, k = 2, n = 3.

We now show how to build an efficient (offline) schedule S of the resulting
graph. A bucket is defined as a set of processors, a starting time and a duration
time. We use buckets to book some processors for an amount of time, and sched-
ule a set of tasks in a given bucket. We consider n + 1 buckets, as illustrated in
Fig. 1b. Each bucket Bi for i = 1, . . . , n contains all m CPUs, has a duration of
τ , and starts at time iτ . Note that m tasks fit into each of these buckets. The
last bucket, B, contains one GPU, starts at time 0 and lasts for a time nτ . S
schedules the nτ tasks T j

∗ successively on a single GPU, which fit into bucket
B. In parallel, S schedules the remaining tasks on CPU. More precisely, it puts
in bucket B� tasks T j

i such that (� − 1)τ < j ≤ �τ , except for tasks T j
∗ . They all

fit into the bucket as there are less than τ × kτ ≤ m such tasks. Moreover, task
T �τ

∗ completes at time �τ . Therefore, every task T j
i with (� − 1)τ < j ≤ �τ can

be started at time �τ , and thus can be scheduled into bucket B�. Therefore, S
achieves a makespan equal to (n + 1)τ .

Now, we consider algorithm A, and we show that the makespan obtained is
at least nτ2. At each phase, the adversary reveals the next phase only when all
the tasks of the current phase are completed. If one task of the phase is scheduled
on CPU, it takes a time τ . Otherwise, all kτ tasks are scheduled on GPU, and
the last one completes at time at least kτ/k = τ . Therefore, A completes each
phase in time at least τ . As there are nτ phases, the whole graph cannot be
scheduled in time smaller than nτ2. The competitive ratio of A is then at least:

nτ2

(n + 1)τ
−→

n→∞ τ.

��
It seems from the above proof that the main difficulty for this problem arises

from choosing on which type of resource (CPU or GPU) a given task should be
processed, and not to come up with the final schedule. This is indeed proven in
the following lemma, which states that given an allocation of the tasks to the
two types of resources, scheduling them among the m + k resources can be done
with constant competitive ratio (for the proof, please refer to [10]).

Lemma 1. If each task can be processed on a single type of resource, then any
online list scheduling algorithm is (3 − 1

m)-competitive, and no online algorithm
has a smaller competitive ratio.

Online Scheduling of Task Graphs on Hybrid Platforms 197

Table 1. Lower bounds for various combinations of flexibility in task processing and
knowledge given to the scheduler (BL stands for bottom-level).

Flexibility Knowledge Lower bound Special cases

None or spoliation None or BL
√

m/k if BL and k = 1: 1
2

√
m/k

BL + descendants 1
2
(m/k)1/4

Migration None or BL 1
2

√
m/k if BL and k = 1: 1

4

√
m/k

BL + descendants 1
4
(m/k)1/4

The proof of Theorem 1 heavily relies on the fact that an online algorithm has no
information on the successors of each task. In practice, it is sometimes possible
to get some information on the task graph, for example by pre-computing some
information offline before submitting the tasks. For instance, offline schedulers
usually rank available tasks with priorities based on the dependences. On homo-
geneous platforms, the bottom-level of a task is commonly used, and is defined
as the maximum length of a path from this task to an exit node, where nodes
of the graphs are weighted with the processing time of the corresponding tasks.
In the heterogeneous case, the priority scheme used in the standard HEFT algo-
rithm [25] is to set the weight of each node as the average processing time of the
corresponding task on all resources.

Knowing the bottom-level does not change the lower-bound of Theorem1:
it is possible to transform the above proof using an adversary that submits
tasks with identical bottom-levels in each phase (see details in the correspond-
ing research report [10]). When there is exactly one GPU, the lower bound is
decreased to 1

2

√
m/k. An interesting component of this proof is that all the tasks

are equivalent (same CPU and GPU computing times) so other heterogeneous
variants of the bottom-level result in the same lower bounds.

When the online scheduler is given the knowledge of the number of descen-
dants of each submitted task in addition to their bottom-level, the lower bound
of Theorem 1 is reduced to 1

2 (m/k)1/4 when m/k is large enough, so no constant-
factor competitive algorithm exists. Note that all the tasks are equivalent in this
proof. The lower bound is thus also valid if the knowledge of the CPU and
GPU computing times of all the descendants is given to the scheduler and only
the pattern of precedence relations remains unknown. Note that, however, no
algorithm has been proposed that reaches this bound.

Another interesting question is whether adding flexibility on how tasks are
processed changes this bound. Allowing task spoliation (where tasks can be
canceled and restarted on any resource, as done in [5]) does not help, and allowing
task migration (where tasks can be preempted and resumed on any resource)
only halves the bounds. Table 1 summarizes the lower bounds obtained for all
combination of knowledge given to the scheduler and flexibility on the task
processing (for proofs, please refer to [10]).

198 L.-C. Canon et al.

4 Competitive Algorithms

4.1 The Quick Allocation (QA) Algorithm

Amaris et al. [2] designed an online algorithm named ER-LS, which is proved
to be 4

√
m/k-competitive. The results of Sect. 3 show that this ratio can only

be improved by a constant factor, as no online algorithm can be better than√
m/k-competitive. ER-LS applies the following processing to each available

task Ti:

1. (a) If Ti can be completed on a GPU before time pi, then assign it to GPUs.
(b) Else, if pi/pi ≤ √

m/k, then assign Ti to CPUs, else assign it to GPUs.
2. Schedule Ti as soon as possible on the allocated type of resource.

The main objective of Step 1a is to avoid allocating the first tasks on a slow
resource, which intuitively is desirable only on small graphs. Such a technique
enables a similar online algorithm to be constant-factor competitive for indepen-
dent tasks, see [13]. However, it actually increases the competitive factor with
precedence constraints. We propose to simplify the allocation phase by suppress-
ing Step 1a. The resulting algorithm QA (which stands for Quick Allocation) is
then defined by Steps 1b and 2. Along with a rigorous analysis, this simplifica-
tion allows us to reach a competitive ratio smaller than 2

√
m/k + 1, which is

almost tight, as outlined in the following theorems. The complete proofs of the
following results are available in [10].

Theorem 2. QA is
(
2
√

m/k + 1 − (mk)−1/2
)

– competitive.

Proof Sketch. Consider a graph G and the schedule S obtained by QA, of
makespan Cmax . Let Wc (resp. Wg) be the sum of the processing times of the
tasks scheduled on CPU (resp. GPU) by S, and CP be the computing time of a
critical path of G, given the allocation of S. We first prove that:

Cmax ≤ Wc

m
+

Wg

k
+

(
1 − 1

m

)
CP .

Now, focusing first on the workload in the optimal solution, and then on the
length of the critical path in the optimal solution, we can show the following
inequalities and conclude:

Wc

m
+

Wg

k
≤

(
1 +

√
m

k

)
OPT and CP ≤

√
m

k
OPT.

��
Theorem 3. The competitive ratio of QA is at least

(
2
√

m/k + 1 − 1
k

)
.

Proof Sketch. Let ε be a small processing time. Consider the graph composed of
the three groups of tasks below. The online instance will reveal the tasks in the
same order. The only dependence is from task ε to task d.

Online Scheduling of Task Graphs on Hybrid Platforms 199

Fig. 2. Schedule obtained by QA (left) and the optimal one (right).

Group A. k(k − 1) tasks with pi = ∞ and pi = 1/k.
Group B. mk tasks with pi = (1 + ε)/k and pi = 1/

√
mk.

Group C. Task ε, with pε = ∞ and pε = ε, and task d, with pd =
√

m/k
and pd = 1 + ε.

As depicted in Fig. 2, QA will schedule groups A and B and Task ε on GPU,
then task d on CPU, for a total makespan equal to 2

√
m/k + 1 − 1

k + ε. The
optimal solution schedules only group B on CPU, for a total makespan equal to
1 + 2ε, hence the result. ��

The proofs of these two results give some intuition on why choosing a ratio
equal to

√
m/k is the best choice in Step 1b. With a smaller ratio (closer to 1),

more tasks would be allocated to GPU. This would allow tasks on the critical
path to be processed faster. However, the GPUs, which can be seen as a rare
resource (since m ≥ k), may be wasted on tasks that are not accelerated enough.
For instance, if the GPU computing time of the tasks of group B in the proof
of Theorem 3 were larger, such an algorithm would perform worse than QA. On
the opposite, with a larger ratio (closer to m/k), the GPU would not be wasted
on such tasks and the loads would be divided more equally on both types of
resources. But computing the critical path, such as task d in the example graph,
could be more expensive because such a task would be inefficiently executed on
CPUs. Intuitively, the geometric mean between these two bounds (1 and m/k)
is then the best solution.

4.2 A Competitive Algorithm that Performs Well in Practice

Although the QA algorithm has the best known competitive ratio, the greedy
strategy EFT (see Sect. 2) actually leads to better schedules on most realistic
instances because it balances the load among the resources. However, its perfor-
mance can be 2 + (m − 1)/k times worse than the optimal solution (see [10] for
a proof of this result).

We propose a new tunable algorithm, named MixEFT that benefits both
from the performance of EFT on most instances, and from the robustness of
QA on the hardest graphs. The idea is to improve EFT by switching to a
guaranteed algorithm if EFT does not perform well enough. The algorithm is
composed of two phases. In the first phase, it is equal to EFT except that it also

200 L.-C. Canon et al.

simulates the schedule that QA would have produced on the same instance. If
the makespan obtained by EFT is more than λ times larger than the makespan
obtained by the simulated QA (for a fixed positive parameter λ), we switch to
the second phase, and MixEFT from this point behaves as QA. A small λ leads
to a smaller competitive ratio, but may degrade the performance of MixEFT
in practice.

The competitive ratio of this algorithm is in O(λ
√

m/k). Indeed, the first
phase cannot lead to a schedule more than λ times worse than QA, and the
second phase has the competitive ratio of QA. Therefore, the algorithm is (λ +
1)(2

√
m/k+1)-competitive (see [10] for more details). Note that this competitive

ratio is not tight. The worst performance observed so far is max(λ, 2
√

m/k +1).

5 Simulations

We now provide simulations to illustrate the performance of both competitive
algorithms and simple heuristic strategies on various task graphs.

5.1 Baseline Heuristics

In addition to the four online algorithms discussed above (ER-LS from [2],
QA, EFT, and MixEFT, implemented with λ = 2 unless otherwise specified),
we consider two simple strategies that follow the same scheme as QA, with a
different allocation criteria: Quickest allocates each task to the resource type
on which its computing time is smaller; Ratio allocates a task on GPUs if and
only if its GPU computing time is at least m/k times smaller than its CPU
computing time. Intuitively, Quickest should perform well on graphs on which
the critical path is preponderant as it minimizes the execution time of each task.
On the opposite, Ratio should perform well on graphs with a high parallelism
throughout the execution, as it will execute more tasks concurrently on the
CPUs. We also used the offline HEFT algorithm [25], which is known to perform
well in practice, as a baseline to compare all online strategies.

5.2 Experimental Setup

We used three types of instances: realistic DAGs corresponding to a linear alge-
bra application, namely the Cholesky factorization, random DAGs used in the
literature, and ad hoc instances designed to be difficult for this problem and
specifically for QA.

Cholesky factorization is a linear algebra application whose parallel imple-
mentation usually uses a blocked algorithm on a tiled matrix for performance
issues. We consider matrix sizes ranging from 2 × 2 tiles to 15 × 15 tiles, which
leads to DAGs with 4 to 680 tasks. Tasks correspond to four linear algebra ker-
nels: GEMM, SYRK, TRSM, and POTRF. Their respective processing times on
a CPU are set to 170ms, 95 ms, 88 ms, and 33 ms, and on a GPU to 5.95 ms,
3.65 ms, 8.11 ms, and 15.6 ms, which corresponds to measures [1,6] made using
the Chameleon software [12].

Online Scheduling of Task Graphs on Hybrid Platforms 201

The random instances come from the STG set [23], which is often used in
the literature to compare the performance of scheduling strategies. We report
here the simulations made with 180 graphs of 300 nodes each. We consider that
the cost generated by the STG random generator is the processing time of the
corresponding task on a GPU. Based on the previous measures for linear algebra
kernels, we assume that the average speedup between CPU and GPU is around
15 with a large variance. Thus, to obtain the processing time of a task on CPU,
we multiply its cost on GPU by a random value with expected value 15 and
standard deviation 15. For that, we use a gamma distribution because it has
been advocated for modeling job runtimes [15], it is positive and it is possible to
specify its expected value and standard deviation by adjusting its parameters.

Finally, specific random instances have been designed to test the limitations
of QA. These ad hoc instances consist of a chain of tasks together with a set of
independent tasks, such that all cores are expected to finish simultaneously if a
GPU is dedicated to the chain and all independent tasks are load-balanced on
the other cores. The expected processing time of each task on a GPU is 1 (with a
standard deviation of 0.1). Each instance is parameterized by a number μ, which
represents the expected processing time on a CPU, and varies from (m/k)−1/4

to (m/k)5/4 (the standard deviation of the CPU processing times is equal to
10% of μ). For a given expected CPU cost μ, the number of tasks in the chain
is equal to 	 n

m/μ+k
, where n = 300 is the total number of tasks. Therefore, the
larger μ, the longer the chain.

We have performed simulations for various platform sizes, whose results are
available in [10]. As expected from the theoretical analysis, the behaviors of the
heuristics mainly depend on the value m/k. For the sake of brevity, we only
report here the results obtained for m = 20 CPUs and k = 2 GPUs, as it is
representative of the results for relatively large values of m/k. The code and
scripts used for the simulations and the data analysis are available online [9].

5.3 Results

Figure 3 depicts the performance of the six online scheduling algorithms. Except
when varying its parameter (Fig. 3(d)), MixEFT performs exactly as EFT (and
is thus omitted for better readability). On Cholesky DAGs (Fig. 3(a)), EFT (and
thus MixEFT) is always the best strategy. The only difference between QA and
ER-LS concerns the first tasks (as we removed Step 1a in QA), which explains
why their behaviour is similar for large graphs. QA, ER-LS, and Ratio all put
POTRF tasks on the CPU, which leads to performance loss when the graph is
small because its parallelism is limited and the GPUs are often idle. However, it
is acceptable for larger graphs in which many tasks may be executed in parallel
on the GPUs. On the contrary, Quickest puts all tasks on the GPUs. This is
efficient for small graphs with low parallelism but it becomes worse than Ratio
for large graphs.

Figure 3(b) shows similar trends on the random graphs from STG set: EFT
(and thus MixEFT) gives the best results, followed by QA and ER-LS.

202 L.-C. Canon et al.

1.0

1.5

2.0

2.5

10 100

Number of tasks
(a) Cholesky DAGs

1.0

1.5

2.0

2.5

EFT QA ER-LS RatioQuickest

Algorithm
(b) DAGs from STG

1

3

5

7

9

1 10

Expected CPU cost μ
(c) Ad hoc instances

1

3

5

7

9

QA 0.8 1 1.2 1.4 EFT

MixEFT parameter λ
(d) Ad hoc instances

R
at
io

to
H
E
F
T

Algorithm EFT QA ER-LS Ratio Quickest MixEFT

Fig. 3. Ratios of the makespan over HEFT for EFT, QA, ER-LS, Ratio, Quickest,
and MixEFT with m = 20 CPUs and k = 2 GPUs. Except in Figure (d), MixEFT
is not shown because it performs exactly as EFT. In Figure (d), ER-LS, Ratio, and
Quickest are discarded.

Figure 3(c) first shows that EFT (and MixEFT) is almost always the best
online heuristic for these ad hoc graphs. For extreme values of the expected
CPU processing time μ (significantly smaller than 1 or larger than m/k), all four
other heuristics are equivalent and perform well. Otherwise, when μ is slightly
larger than 1, the instance contains many independent tasks and Quickest is
almost m/k worst than HEFT because scheduling independent tasks on GPUs
is not efficient. Symmetrically, when μ is slightly smaller than m/k, the instance
contains a large critical path and Ratio shows poor performance, because it
schedules the critical path on CPUs. QA and ER-LS take the best of these two

Online Scheduling of Task Graphs on Hybrid Platforms 203

strategies, and have a worst performance
√

m/k ≈ 3 times larger than HEFT,
when μ is close to

√
m/k.

Figure 3(d) shows that MixEFT behaves like QA when its λ parameter is
smaller than 1, and rapidly changes to mimic EFT when the parameter increases
and exceeds 1. Note that in all studied instances, EFT was never far from HEFT
and that there is no practical gain of using MixEFT rather than EFT. The main
advantage of MixEFT lies in its competitive ratio whereas EFT can lead to very
large makespans on specific instances.

6 Conclusion

In this paper, we have focused on the problem of scheduling task graphs on hybrid
platforms made of two types of processors, such as CPUs and GPUs. We have
studied the online case, when only the tasks whose predecessors are all completed
are known to the scheduler, and the graph is thus gradually discovered. We
proved that no scheduling algorithm can have a competitive ratio smaller than√

m/k, and studied how this ratio varies when more knowledge on the graph is
given to the scheduler and/or tasks may be migrated between processors. We
have proposed a (2

√
m/k+1)-competitive algorithm as well as a mixed strategy,

which is both Θ(
√

m/k)-competitive and performs as well as the best heuristics
in practice. This is demonstrated through an extensive set of simulations. Our
future work includes taking into account communication times when moving
data from/to the GPUs, and coping with inaccurate processing time estimates.

Data Availability Statement and Acknowledgments. The datasets generated
during and/or analyzed during the current study are available in the Figshare reposi-
tory: https://doi.org/10.6084/m9.figshare.6353456.

This work was supported by the SOLHAR project (ANR-13-MONU-0007) which
is operated by the French National Research Agency (ANR).

References

1. Agullo, E., Beaumont, O., Eyraud-Dubois, L., Kumar, S.: Are static schedules so
bad? A case study on Cholesky factorization. In: IPDPS. IEEE (2016)

2. Amaris, M., Lucarelli, G., Mommessin, C., Trystram, D.: Generic algorithms for
scheduling applications on hybrid multi-core machines. In: Rivera, F.F., Pena, T.F.,
Cabaleiro, J.C. (eds.) Euro-Par 2017. LNCS, vol. 10417, pp. 220–231. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-64203-1 16

3. Augonnet, C., Clet-Ortega, J., Thibault, S., Namyst, R.: Data-aware task schedul-
ing on multi-accelerator based platforms. In: ICPADS, pp. 291–298, December
2010

4. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put. Pract. Exp. 23(2), 187–198 (2011)

5. Beaumont, O., Eyraud-Dubois, L., Kumar, S.: Approximation proofs of a fast and
efficient list scheduling algorithm for task-based runtime systems on multicores and
GPUs. In: IEEE IPDPS, pp. 768–777 (2017)

https://doi.org/10.6084/m9.figshare.6353456
https://doi.org/10.1007/978-3-319-64203-1_16

204 L.-C. Canon et al.

6. Beaumont, O., Cojean, T., Eyraud-Dubois, L., Guermouche, A., Kumar, S.:
Scheduling of linear algebra kernels on multiple heterogeneous resources. In: HiPC
(2016)

7. Bleuse, R., Gautier, T., Lima, J.V.F., Mounié, G., Trystram, D.: Scheduling data
flow program in XKaapi: a new affinity based algorithm for heterogeneous archi-
tectures. In: Silva, F., Dutra, I., Santos Costa, V. (eds.) Euro-Par 2014. LNCS,
vol. 8632, pp. 560–571. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09873-9 47

8. Bleuse, R., Kedad-Sidhoum, S., Monna, F., Mounié, G., Trystram, D.: Scheduling
independent tasks on multi-cores with GPU accelerators. Concurr. Comput.: Pract.
Exp. 27(6), 1625–1638 (2015)

9. Canon, L.C., Marchal, L., Simon, B., Vivien, F.: Code for simulating online schedul-
ing of task graphs on hybrid platforms, figshare, code (2018). https://doi.org/10.
6084/m9.figshare.6353456

10. Canon, L.C., Marchal, L., Simon, B., Vivien, F.: Online scheduling of sequential
task graphs on hybrid platforms. Research report 9150, INRIA, February 2018

11. Canon, L.-C., Marchal, L., Vivien, F.: Low-cost approximation algorithms for
scheduling independent tasks on hybrid platforms. In: Rivera, F.F., Pena, T.F.,
Cabaleiro, J.C. (eds.) Euro-Par 2017. LNCS, vol. 10417, pp. 232–244. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-64203-1 17

12. Chameleon, a dense linear algebra software for heterogeneous architectures.
https://project.inria.fr/chameleon

13. Chen, L., Ye, D., Zhang, G.: Online scheduling of mixed CPU-GPU jobs. Int. J.
Found. Comput. Sci. 25(06), 745–761 (2014)

14. Drozdowski, M.: Scheduling parallel tasks – algorithms and complexity. In: Leung,
J. (ed.) Handbook of Scheduling. Chapman and Hall/CRC, Boca Raton (2004)

15. Feitelson, D.: Workload Modeling for Computer Systems Performance Evaluation,
pp. 1–601. Cambridge University Press, Cambridge (2014). Book Draft, Version
1.0.1

16. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17(2), 416–429 (1969)

17. Imreh, C.: Scheduling problems on two sets of identical machines. Computing
70(4), 277–294 (2003)

18. Kedad-Sidhoum, S., Monna, F., Trystram, D.: Scheduling tasks with precedence
constraints on hybrid multi-core machines. In: IEEE IPDPS Workshops, pp. 27–33
(2015)

19. Leung, J.Y.: Handbook of Scheduling: Algorithms, Models, and Performance Anal-
ysis. CRC Press, Boca Raton (2004)

20. Beaumont, O., Eyraud-Dubois, L., Kumar, S.: Fast approximation algorithms
for task-based runtime systems. Concurr. Comput.: Pract. Exper. https://
onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4502. Online version of record before
inclusion in an issue

21. Raravi, G., Andersson, B., Nélis, V., Bletsas, K.: Task assignment algorithms for
two-type heterogeneous multiprocessors. Real-Time Syst. 50(1), 87–141 (2014)

22. Sainz, F., Mateo, S., Beltran, V., Bosque, J.L., Martorell, X., Ayguadé, E.: Lever-
aging OmpSs to exploit hardware accelerators. In: SBAC-PAD, pp. 112–119 (2014)

23. Tobita, T., Kasahara, H.: A standard task graph set for fair evaluation of multi-
processor scheduling algorithms. J. Sched. 5(5), 379–394 (2002)

24. TOP500 Supercomputer Site. http://www.top500.org. List of November 2017
25. Topcuoglu, H., Hariri, S., Wu, M.: Performance-effective and low-complexity task

scheduling for heterogeneous computing. IEEE TPDS 13(3), 260–274 (2002)

https://doi.org/10.1007/978-3-319-09873-9_47
https://doi.org/10.1007/978-3-319-09873-9_47
https://doi.org/10.6084/m9.figshare.6353456
https://doi.org/10.6084/m9.figshare.6353456
https://doi.org/10.1007/978-3-319-64203-1_17
https://project.inria.fr/chameleon
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4502
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4502
http://www.top500.org

Interference-Aware Scheduling Using
Geometric Constraints

Raphaël Bleuse1,2 , Konstantinos Dogeas1, Giorgio Lucarelli1(B) ,
Grégory Mounié1 , and Denis Trystram1

1 Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, Grenoble, France
{konstantinos.dogeas,giorgio.lucarelli,gregory.mounie,

denis.trystram}@imag.fr
2 FSTC/CSC, University of Luxembourg, Luxembourg City, Luxembourg

raphael.bleuse@uni.lu

Abstract. The large scale parallel and distributed platforms produce
a continuously increasing amount of data which have to be stored,
exchanged and used by various jobs allocated on different nodes of the
platform. The management of this huge communication demand is cru-
cial for the performance of the system. Meanwhile, we have to deal with
more interferences as the trend is to use a single all-purpose intercon-
nection network. In this paper, we consider two different types of com-
munications: the flows induced by data exchanges during computations
and the flows related to Input/Output operations. We propose a general
model for interference-aware scheduling, where explicit communications
are replaced by external topological constraints. Specifically, we limit
the interferences of both communication types by adding geometric con-
straints on the allocation of jobs into machines. The proposed constraints
reduce implicitly the data movements by restricting the set of possible
allocations for each job. We present this methodology on the case study
of simple network topologies, namely the line and the ring. We propose
theoretical lower and upper bounds under different assumptions with
respect to the platform and jobs characteristics. The obtained results
illustrate well the difficulty of the problem even on simple topologies.

1 Introduction

In High Performance Computing, the demand for computational power is
steadily increasing [16]. To meet up with the challenge of greater performance the
architecture of supercomputers also grows in complexity at the whole machine
scale. This complexity arises from various factors: (i) the size of the machines
(supercomputers now integrates millions of cores); (ii) the heterogeneity of the
resources (various architectures of computing nodes, nodes dedicated to I/O);
(iii) the interconnection topology. The evolution in the interconnection networks
faces two main challenges: first, the community is proposing new topologies [12];
and second, the interconnection network is now unique within the machine (the

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 205–217, 2018.
https://doi.org/10.1007/978-3-319-96983-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_15&domain=pdf
http://orcid.org/0000-0002-6728-2132
http://orcid.org/0000-0001-7368-355X
http://orcid.org/0000-0002-6757-7432
http://orcid.org/0000-0002-2623-6922

206 R. Bleuse et al.

network is shared for various mixed data flows). Sharing such a single multi-
purpose interconnection network creates complex interactions (e.g., network con-
tention) between running applications, which have a strong impact on their per-
formance [1,5], and limits the understanding of the system by the users [3]. As
the volume of processed data increases, so does the impact of the network.

In this work, we introduce a generic framework for interference-aware schedul-
ing. More precisely, we identify two main types of interleaved flows: the flows
induced by data exchanges for computations and the flows related to I/O. Rather
than explicitly taking into account these network flows, we address the issue
of harmful interactions by constraining the shape of the allocations. Such an
approach aims at taking into account the structure of the new platforms in a
qualitative way that is more likely to scale properly. The scheduling problem is
then defined as an optimization problem with the platform (nodes and topology)
and the jobs’ description as input. The objective is to minimize the maximum
completion time while enforcing constraints on the allocations.

2 Problem Setting

In this work, we model a platform as a set V of m nodes divided in two groups:
a set VC of mC nodes dedicated to computations, and a set VI/Oof mI/O nodes
that are entry points to a high performance file system. As a consequence, we
have m = mC + mI/O. We assume that the I/O nodes are exclusively used for
communications with the file system and hence, there is no overlap between
computing and I/O nodes, i.e., VI/O ∩ VC = ∅. Moreover, a computing or an
I/O node is exclusively allocated to a job for its lifespan, i.e., any node cannot
be used at the same time by more than one job.

The nodes can communicate using an interconnection network with a given
topology, while the localization of every node within the topology is known. In
this direction, we study here the instantiation of this framework with unidimen-
sional topologies, namely the line (Fig. 1(a)) and the ring (Fig. 1(b)). Studying
topologies of one dimension is a first step towards the more complicated state-
of-the-art platforms, while these basic topologies provide lower bounds for the
later ones. The line may indeed be seen as a degenerate tree. Fat-tree topolo-
gies are a common interconnect, and are for example used in the Curie and
Oakforest-PACS platforms. On the other hand, the torus topologies, such as the
one of Blue Waters and Titan (3D torus) or the K computer (6D torus), may be
studied from the ring with classical embedding techniques.

Batch schedulers are a critical part of the software stack managing HPC
platforms: their goal is to efficiently allocate resources (nodes from V in our case)
to the jobs submitted by the users of the platform. The jobs are queued in a set
J . The total number of jobs is n. Each job j requires qj computing nodes and
one I/O node. We distinguish two cases with respect to I/O requirements: in the
pinned model each job asks for a specific I/O node, while in the unpinned model
the jobs just need any arbitrary I/O node. The number of allocated computing
nodes is fixed, i.e., the job is rigid [6]. We denote by V(j) the set of nodes

Interference-Aware Scheduling Using Geometric Constraints 207

1 2 3 4 5 6 7

(a) Line topology.

1

2

3

4

5

6

7

8

(b) Ring topology.

Fig. 1. Example of platforms with unidimensional topologies. The nodes are numbered
using the natural order. White nodes represent computing nodes, and black nodes
represent I/O nodes.

allocated to the job j. If needed, we use VC(j) and VI/O(j) to distinguish among
the computing and the I/O nodes assigned in j, respectively. Each job j requires
a certain time pj to be processed, and it is independent of every other job. Once
a job starts being executed, it runs until completion, i.e., it is not preemptive.

As stated above, the goal of this paper is not to finely model the full context
of execution. Instead, we propose to model the platform in such a way that
the network interactions are implicitly taken into account. In this direction, we
augment the scheduling problem with geometric constraints on the allocations
of the jobs in the resources based on the platform topology and the application
requirements. Before presenting these constraints, we need to precisely define
the network flows we target. We distinguish two types of flows, directly deriving
from the fact that we are dealing with two kinds of nodes:

computational communications which are induced by data exchanges dur-
ing computations. Such communications occur between two computing nodes
allocated to the same application.

I/O communications which are induced by data exchanges between comput-
ing and I/O nodes. Such communications occur when computing nodes read
input data, checkpoint the state of the application, or save output results.

In order to avoid computational communication interactions, we consider the
following constraint.

Definition 1 (Contiguity [2,14]). An allocation is said to be contiguous if and
only if the nodes of the allocation form a contiguous range with respect to the
nodes’ ordering.

Note that the contiguity constraint relies on the nodes’ ordering. For topologies
such as lines or rings this ordering is natural (see Fig. 1).

The contiguity constraint is well suited to take into account the computa-
tional communications, but not the I/O communications. Indeed, the former
type of communications may occur between any pair of computing nodes within
an allocation: we usually describe this pattern as all-to-all communication. On

208 R. Bleuse et al.

the other hand, I/O communications generate traffic towards few identified nodes
in an all-to-one or one-to-all pattern. Hence, we propose the locality constraint,
whose goal is to limit the impact of the I/O flows to the periphery of the job
allocations. We must emphasize that the locality constraint proposed here is not
related to the locality constraint described in [14].

Definition 2 (Locality). A given allocation for a job j is said to be local iff
it is contiguous, and the I/O node VI/O(j) is adjacent to computing nodes from
VC(j), with respect to the underlying topology.

In this paper, we are interested in minimizing the maximum completion time
among all jobs (i.e., the makespan of the schedule) while enforcing the contiguity
and the locality constraints. Specifically, we aim at developing algorithms with
performance guarantees by adding geometric constraints on the allocations of
jobs into nodes.

3 Related Work

Most actual implementations of schedulers allocate resources greedily without
any topological constraint in the allocation of the computing nodes. However,
this naive solution has a bad impact on performances [5]. Constraining the
allocations to enhance performance is however not a new idea. For example,
Lucarelli et al. studied the impact of enforcing contiguity or locality in backfill-
ing scheduling [14] (for fat trees). They showed that enforcing these constraints
can be done at a small cost, and has minimum negative impact on usual metrics
such as makespan, flow-time, or stretch.

Tackling the interactions arising from the context of execution, or, more
specifically, network contention, can be done either by preventing these inter-
actions from happening or by mitigating them. Still, the approaches discussed
above require some knowledge about the application communication patterns
(either compute or I/O communications). We review briefly related work in the
prevention/mitigation of interactions before discussing monitoring techniques.

Interactions Prevention. Some steps have been taken towards integrating more
knowledge about the communication patterns of applications into batch sched-
ulers. For instance, Georgiou et al. studied the integration of TreeMatch into
SLURM [9]. Given the communication matrix of an application, the scheduler
minimizes the load of the network links by smartly mapping the application’s
processes on the resources. This approach however does not consider the tem-
porality of communications. Targeting the mesh/torus topologies, the works of
Tuncer et al. [18] and Pascual et al. [15] are noteworthy. Another way to prevent
interactions is to force the scheduler to use only certain allocation shapes with
good properties: this strategy has been implemented in the Blue Waters sched-
uler [5]. The administrators of Blue Waters let the scheduler pick a shape among
460 precomputed cuboids. Yet, the works proposed above only target compute
communications. HPC applications usually rely on highly tuned libraries such

Interference-Aware Scheduling Using Geometric Constraints 209

as MPI-IO, parallel netCDF or HDF5 to perform their I/O. Tessier et al. pro-
pose to integrate topology awareness into these libraries [17]. They show that
performing data aggregation while considering the topology allow to diminish
the bandwidth required to perform I/O.

Interactions Mitigation. Given a set of applications, Gainaru et al. propose to
schedule I/O flows of concurrent applications [7]. Their work aim at mitigating
I/O congestion once applications have been allocated computation resources. To
achieve such a goal, their algorithm relies on past I/O patterns of the applications
to either maximize the global system utilization, or minimize the maximum
slowdown induced by sharing bandwidth.

Application/Platform Instrumentation. A lot of effort have been put into devel-
oping tools to better understand the behavior of HPC applications. Character-
izing I/O patterns is key as it allows the developers to identify performance bot-
tlenecks, and allows the system administrator to better configure the platforms.
A complementary path is to predict I/O performances during execution [4].
Such instrumentation efforts allow for a better use of the scarce communication
resources. However, as they are application-centric, they fail to capture inter-
application interactions. Monitoring of the platform is a way of getting insight
on the inter-application interactions. We will not address this problem here.

4 Pinned I/O

In this section, we study the problem with respect to the pinned I/O model,
according to which each job requests a specific I/O node. Such a model is repre-
sentative of HPC platforms where the parallel file system is organized in stripes.
For example, this is the case with the configuration of the Lustre file system in
Blue Waters, where each I/O node is responsible for an address range (i.e., a
stripe). Then, the jobs will request the I/O node corresponding to their data.

4.1 Complexity

We start by proving that the studied problem is NP-complete even in the special
case where all jobs require unit processing time to be executed, while the platform
contains only three I/O nodes.

Theorem 1. The problem of scheduling in the pinned model with respect to con-
tiguity and locality constraints is strongly NP-complete even in line topologies,
with mI/O = 3 and pj = 1 for each job j ∈ J .

Proof. The problem clearly belongs to NP. We give a reduction from a special
case of the Numerical 3-Dimensional Matching (N3DM) problem [8]. An
instance of the classical N3DM problem consists of three disjoint sets W , X and
Y , each containing M positive integers, and a bound B ∈ Z

+. The objective is to
decide whether W ∪X∪Y can be partitioned into M disjoint sets A1, A2, . . . , AM

210 R. Bleuse et al.

such that each Ai contains exactly one element from each of W , X, and Y and∑
a∈Ai

a = B, for 1 ≤ i ≤ M .
Consider now SN3DM be the special case of N3DM in which all integers that

belong to the set X are at least B
2 . It is not hard to see that SN3DM is also

strongly NP-complete. Indeed, it suffices to transform an instance of N3DM to
an instance of SN3DM by setting W ′ = W , Y ′ = Y , X ′ = {x + B : ∀x ∈ X} and
B′ = 2B. Then, any solution for N3DM corresponds to a solution for SN3DM,
and vice versa.

We propose now a transformation from SN3DM to our problem as follows:

– mC = B, mI/O = 3;
– the topology is a line starting with an I/O node, followed by B

2 comput-
ing nodes, an I/O node, B

2 computing nodes, and finishing with a third
I/O node;

– for each a ∈ W ∪ X ∪ Y , we create a job j with qj = a, and pj = 1. All jobs
derived from sets W , X, and Y target the first, second, and third I/O node,
respectively.

With respect to the ordering of the line topology, we refer to the computing
nodes as 1, 2, . . . ,mC and to the I/O nodes as 1, 2, . . . ,mI/O.

We will prove that a solution to SN3DM exists if and only if there is a
schedule that satisfies all constraints and has a makespan at most M .

Assume that there is a solution for SN3DM. Then for each set Ai, 1 ≤ i ≤ M ,
we schedule the three jobs j1 ∈ W , j2 ∈ X and j3 ∈ Y corresponding to
this set at time interval (i − 1, i]. Specifically, j1 will use the computing nodes
1, . . . , qj1 , j2 the computing nodes qj1 + 1, . . . , qj1 + qj2 and j3 the computing
nodes qj1 + qj2 + 1, . . . , mC. Note that each of these three jobs is adjacent to
the targeted I/O node. Indeed, the j1 and j3 are adjacent to the leftmost and
the rightmost I/O node, respectively, while j2 is always adjacent to the middle
I/O node, since qj2 ≥ B

2 . The makespan of the created schedule is equal to M .
Assume now that there exists a schedule of makespan at most M . As the

total work is M · B, no computing node is idle during the time interval (0,M].
Hence, the partition is directly derived by assigning jobs that start at time i− 1
to Ai, 1 ≤ i ≤ M . 	

4.2 Approximation Algorithm

In this section, we first propose a constant-factor approximation algorithm for
line topologies and then we argue that it can be used even for ring topologies.
The main idea of our algorithm is to first determine an allocation of each job to a
specific set of computing nodes. We are interested in allocations that are simulta-
neously contiguous and local, while each job j requires a specific I/O node. As a
consequence, there exist at most qj +1 = O(mC) valid allocations for each job j
(see Fig. 2). Given an allocation of all jobs to computing nodes, our problem
coincides with the well-studied Dynamic Storage Allocation (DSA) prob-
lem [10]. Then, we use a known approximation algorithm for the latter problem.

Interference-Aware Scheduling Using Geometric Constraints 211

Fig. 2. Potential allocations for a job j requesting the middle I/O node with qj = 3.

In order to decide the allocation of computing nodes we use an integer linear
program. Let Aj be the set of all potential allocations for each job j, where
|Aj | ≤ qj + 1. Each allocation a ∈ Aj contains exactly qj computing nodes as
well as the required I/O node. Note that, an allocation may include more I/O
nodes that will not be used during the execution of j neither by j nor by the
other jobs due to the locality constraint. For example, in Fig. 2 the two rightmost
allocations also cover the third I/O node in order to be able to include qj = 3
computing nodes. For each job j ∈ J and allocation a ∈ Aj , we introduce a
binary indicator variable xj,a which is equal to one if j is executed according to
the allocation a, and zero otherwise. Moreover, for each node i ∈ V we introduce
a non-negative variable Li which corresponds to the total load of jobs whose
assigned allocation includes i. Finally, let Λ be the maximum load among all
nodes. Then, we propose the following integer linear program which searches for
the allocations that minimize the total load.

minimize Λ (ILP)

Λ ≥ Li ∀i ∈ V (1)

Li ≥
∑

j∈J

∑

a∈Aj

∑

i∈a

xj,apj ∀i ∈ V (2)

∑

a∈Aj

xj,a = 1 ∀j ∈ J (3)

xj,a ∈ {0, 1} ∀j ∈ J , a ∈ Aj (4)

Constraints (2) compute the total load for each node, while Constraints (3)
ensure that each job is assigned an allocation. By relaxing the integrity Con-
straints (4), we can solve the corresponding linear program in polynomial time.
Note that there are O(mn) variables and O(m + n) constraints. Moreover, an
optimal solution to the above integer linear program is a lower bound to the
makespan of an optimal solution for our problem, since it optimizes the maxi-
mum load without handling intersections of jobs in time, that is the scheduling
phase.

Let Λ̃, L̃i and x̃j,a denote the values of the variables in an optimal solution of
the relaxed linear program. Then, the solution of this linear program is rounded
to an integral feasible solution whose variables are denoted by Λ̄, L̄i and x̄j,a.
Specifically, we round the indicator variables independently for each job j ∈ J

212 R. Bleuse et al.

as follows: consider all possible allocations for the job j ordered with respect to
the processors’ ordering. The allocation chosen for j is the one with the smallest
index k such that

∑k
a=1 x̃j,a ≥ 1

2 . Then, we set x̄j,k = 1 and x̄j,a = 0 for all
a �= k. Figure 3 gives an example of this rounding procedure.

i� i∗ ir

x̃j,1 = 0.1
x̃j,2 = 0.2

x̃j,3 = 0.2
x̃j,4 = 0.3

x̃j,5 = 0.2

0.1
0.3

0.5

0.8
1

0.9
0.7

0.5

0.2

Fig. 3. Rounding procedure for the variables that correspond to job j: x̄j,3 = 1 and
x̄j,1 = x̄j,2 = x̄j,4 = x̄j,5 = 0.

The following lemma provides an upper bound to the integral solution Λ̄
obtained after the rounding procedure.

Lemma 1. Λ̄ ≤ 2Λ̃.

Proof. Consider a job j and let kj be the index of the allocation of j in the
rounded solution, i.e., x̄j,kj

= 1. Moreover, let V(j) be the set of nodes (both
computing and I/O) that are included in this allocation. We will first prove the
following statement:

∑

a∈Aj : i∈a

x̃j,a ≥ 1
2

for every i ∈ kj

For example, in Fig. 3 we have that kj = 3 and for each i ∈ {3, . . . , 7} the sum
of the fractional variables that correspond to j and include i is at least 0.5. In
order to prove the statement, let kj = {i�, . . . , ir} be the set of nodes of the
allocation kj as these are ordered in the natural way. Recall that VI/O(j) ∈ kj

is the I/O node required by j and assume that VI/O(j) coincides with i∗, where
i� ≤ i∗ ≤ ir. By the definition of kj , the statement is true for i = i�. Moreover,
the statement holds for each node i ∈ {i�, . . . , i∗} since

∑

a∈Aj : i∈a

x̃j,a ≥
∑

a∈Aj : i�∈a

x̃j,a ≥ 1
2

Interference-Aware Scheduling Using Geometric Constraints 213

It remains to prove it for i ∈ {i∗ + 1, . . . , ir}. We focus first on ir. Observe that
by the definition of kj it holds that

∑kj−1
a=1 x̃j,a < 1

2 . Then, we have that

∑

a∈Aj : ir∈a

x̃j,a =
∑

a∈Aj

x̃j,a −
kj−1∑

a=1

x̃j,a > 1 − 1
2

=
1
2

Finally, the statement holds for each node i ∈ {i∗ + 1, . . . , ir} since

∑

a∈Aj : i∈a

x̃j,a ≥
∑

a∈Aj : ir∈a

x̃j,a ≥ 1
2

In order to finalize the proof of the lemma, consider the load L̄i of a node i
in the rounded solution. We have that

L̄i =
∑

j∈J
pj · 1{if i∈kj} =

∑

j∈J
pj

∑

a∈Aj : i∈a

x̄j,a ≤
∑

j∈J
pj2

∑

a∈Aj : i∈a

x̃j,a

where the last inequality holds by the proven statement and since by Con-
straint (3) we have that

∑
a∈Aj : i∈a x̄j,a ≤ 1. Hence,

L̄i ≤ 2
∑

j∈J
pj

∑

a∈Aj : i∈a

x̃j,a = 2
∑

j∈J
pj

∑

a∈Aj

∑

i∈a

x̃j,a = 2
∑

j∈J

∑

a∈Aj

∑

i∈a

x̃j,apj = 2L̃i

The lemma follows by considering the node of maximum load in the rounded
solution, i.e., Λ̄ = maxi{L̄i} ≤ 2maxi{L̃i} = 2Λ̃. 	

As mentioned before, given the allocations of all jobs, our problem coincides
with the DSA problem [10]. An instance of the DSA problem consists of a set
of n triples. Each triple (�j , rj , sj) corresponds to a rectangle parallel to x-axis
of size (rj − �j) × sj . Specifically, �j and rj are the projections of its leftmost
and rightmost points, respectively, in the x-axis while sj is its size projected in
the y-axis. In other words, the position of the rectangle is fixed with respect to
x-axis, but it can be shifted in any position in y-axis. The objective is to pack
all rectangles without intersections in a strip of minimum height.

In our scheduling context, each job corresponds to a rectangle whose �j and
rj values are defined by a given allocation as the leftmost and the rightmost
computing nodes respectively, while pj = sj . Moreover, the makespan coincides
with the height of the strip.

Gergov [10] presented a greedy 3-approximation algorithm for the DSA prob-
lem. The important property of this algorithm is that it uses as lower bound the
maximum load over all x-coordinates, which allows as to use it in our analysis.
The following theorem describes this property in scheduling terms.

Theorem 2 [10]. There is an algorithm which computes a feasible schedule
whose makespan is at most three times the maximum load of every node.

214 R. Bleuse et al.

Algorithm 1.
1 Solve the relaxed version of (ILP)
2 for each job j ∈ J do

3 Find the smallest index k such that
∑k

a=1 x̃j,a ≥ 1
2

4 Set x̄j,k = 1 and x̄j,a = 0 for all a �= k

5 Create a feasible schedule by applying the algorithm proposed in Theorem 2
using the allocations determined by the x̄j,a variables

Due to the equivalence of our problem with DSA, we can apply the algorithm
mentioned in Theorem 2 and get a final solution to our problem. A high-level
description of the above described procedure is given in Algorithm1.

Theorem 3. Algorithm1 achieves an approximation ratio of 6 for the line topol-
ogy in the pinned I/O model.

Proof. Consider a schedule created by Algorithm 1 and let Cmax be the makespan
of this schedule. Due to the allocation phase, we know that the maximum load
over all nodes is equal to Λ̄. Then, by Theorem 2 and Lemma 1, we have that
Cmax ≤ 3Λ̄ ≤ 6Λ̃. Hence, the theorem follows by the fact that the optimal
solution to (ILP) is a lower bound to the optimal solution for our problem. 	

We observe that Gergov’s algorithm remains a 3-approximation even in the
case of rings. Moreover, the allocation procedure based on the rounding of (ILP)
can be also applied for rings; we just need to define an ordering of the possible
allocations of each job. Thus, by considering an clockwise ordering, we can apply
Algorithm 1 and get the following theorem.

Theorem 4. Algorithm1 achieves an approximation ratio of 6 for the ring
topology in the pinned I/O model.

5 Unpinned I/O

In this section, we study the unpinned I/O model according to which each job
requires any arbitrary I/O node.

5.1 Complexity

We start by proving that the studied problem is NP-complete even in the spe-
cial case where all jobs require unit processing time to be executed, while the
platform contains only three I/O nodes. The proof is similar with the proof
of Theorem 1 with the difference that the reduction is done by the classical 3-
Partition problem [8]. For this reason, it is omitted.

Theorem 5. The problem of scheduling in the unpinned model with respect to
contiguity and locality constraints is strongly NP-complete even in line topolo-
gies, with mI/O = 3 and pj = 1 for each job j ∈ J .

Interference-Aware Scheduling Using Geometric Constraints 215

5.2 An Approximation Algorithm for Equidistant I/O Nodes

In this section, we consider both line and ring topologies and we propose an
approximation algorithm in the case where the I/O nodes are uniformly dis-
tributed. In other words, the I/O nodes are equidistant from each other. We
denote by δ the distance separating two consecutive I/O nodes. Note that, given
any instance, in line topologies δ can be either � mC

mI/O or � mC

mI/O � while the first
value is always the case in ring topologies.

We need some additional notation. We call a job small if it requires fewer
computing nodes than the distance between two consecutive I/O nodes, i.e.,
qCj < δ. In a similar way, we call a job big if qCj ≥ δ. Let J≤δ and J≥δ be the sets
of small and big jobs, respectively. Our algorithm handles these sets separately.

A small job cannot be adjacent to more than one I/O nodes in any feasible
schedule. Moreover, an I/O node along with δ consecutive computing nodes
adjacent to it can be considered as a processing unit that can execute a small
job. Based on this, we partition the set VC into �mC

δ groups of consecutive
computing units, each one of size at least δ. Assume that these groups as well as
the I/O nodes are numbered from left to right and we consider the i-th such group
and the i-th I/O node to compose a processing unit. Note that, by the definition
of δ, mI/O can be either �mC

δ or �mC

δ +1. In the second case, which can happen
only in line topologies, the last I/O node is not used. Then, we can transform
our problem for small jobs to an instance of the classical P || Cmax problem with
�mC

δ machines [11]. Specifically, each machine corresponds to one processing
unit, while each small job has a processing time as in the initial instance and
requires only one processing unit. Then, we solve the created instance of P ||
Cmax by using any known approximation algorithm for it. The following lemma,
whose proof is omitted, summarizes the above procedure. The additional 2-factor
in the line case is due to parity issues.

Lemma 2. Any ρ1-approximation algorithm for the P || Cmax scheduling prob-
lem, can be used to obtain a 2ρ1-approximation algorithm to schedule small jobs
in a line and a ρ1-approximation algorithm to schedule small jobs in a ring.

Due to the contiguity constraint, the big jobs are structurally guaranteed
to be adjacent to at least one I/O node, i.e., we can then ignore the existence
of I/O nodes when scheduling big jobs. Hence, the objective is to pack the big
jobs and our problem reduces to the strip-packing problem [13]. The following
lemma, whose proof is omitted, summarizes the above reduction. The additional
2-factor in the ring case is due to the degeneration of the ring to a line.

Lemma 3. Any ρ2-approximation algorithm for the strip-packing problem, can
be used to obtain a ρ2-approximation algorithm to schedule big jobs in a line and
a 2ρ2-approximation algorithm to schedule big jobs in a ring.

By combining Lemmas 2 and 3 the following theorem follows.

216 R. Bleuse et al.

Theorem 6. For the unpinned model, there is a (2ρ1 +ρ2)-approximation algo-
rithm for line topologies and a (ρ1+2ρ2)-approximation algorithm for ring topolo-
gies, where ρ1 and ρ2 are the approximation ratios for the P || Cmax and the
strip-packing problems, respectively.

Note that a PTAS exists for both P || Cmax and strip-packing problems [11,
13], leading for (3 + ε)-approximation algorithms for line and ring topologies.

6 Conclusions

We studied the makespan minimization problem on line and ring topologies,
when the allocations are constrained to be both contiguous and local. We proved
that both the pinned and unpinned models are NP-complete and we presented
constant-factor approximation algorithms for them. The proposed algorithms
can be also applied in different settings (the proofs will be developed in an
extended version of this work). For example, in the case where the I/O nodes
can be shared by more than one jobs, then the 6-approximation algorithm of
Sect. 4.2 can be simply adapted by excluding the requested I/O node from the
allocation of the job in the definition of the indicator variables of (ILP). Note
that due to the locality constraint an I/O node cannot be shared by more than
two jobs. Another example is the case where each job requires more than one
I/O nodes. However, this assumption in conjunction with the locality constraint
could lead to several unused nodes, limiting its interest.

As future steps, one could implement the proposed algorithms, and study
their performances through simulation. From a theoretical point of view, the
tightness results show the limits of the two-phase approach in Sect. 4.2. The
approximation ratios might be improved by scheduling the problem in a single
phase. Finally, the study of more enhanced topologies, like two-dimensional ones,
is a very interesting direction. In this case, contiguity could be replaced by more
general constraints implying the convexity of the shape of the allocations.

References

1. Bhatele, A., Mohror, K., Langer, S.H., Isaacs, K.E.: There goes the neighborhood:
performance degradation due to nearby jobs. In: SC, pp. 41:1–41:12. ACM, Novem-
ber 2013

2. B�l ↪adek, I., Drozdowski, M., Guinand, F., Schepler, X.: On contiguous and non-
contiguous parallel task scheduling. J. Sched. 18(5), 487–495 (2015)

3. Chen, N.-C., Poon, S.S., Ramakrishnan, L., Aragon, C.R.: Considering time in
designing large-scale systems for scientific computing. In: CSCW, pp. 1533–1545.
ACM, February 2016

4. Dorier, M., Ibrahim, S., Antoniu, G., Ross, R.B.: Using formal grammars to predict
I/O behaviors in HPC: the Omnisc’IO approach. IEEE Trans. Parallel Distrib.
Syst. 27(8), 2435–2449 (2016)

5. Enos, J., et al.: Topology-aware job scheduling strategies for torus networks. In:
Cray User Group, May 2014

Interference-Aware Scheduling Using Geometric Constraints 217

6. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory
and practice in parallel job scheduling. In: Feitelson, D.G., Rudolph, L. (eds.)
JSSPP 1997. LNCS, vol. 1291, pp. 1–34. Springer, Heidelberg (1997). https://doi.
org/10.1007/3-540-63574-2 14

7. Gainaru, A., Aupy, G., Benoit, A., Cappello, F., Robert, Y., Snir, M.: Scheduling
the I/O of HPC applications under congestion. In: IPDPS, pp. 1013–1022. IEEE,
May 2015

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

9. Georgiou, Y., Jeannot, E., Mercier, G. Villiermet, A.: Topology-aware resource
management for HPC applications. In: ICDCN, pp. 17:1–17:10. ACM (2017)

10. Gergov, J.: Algorithms for compile-time memory optimization. In: SODA, pp. 907–
908. ACM/SIAM, January 1999

11. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems: theoretical and practical results. J. ACM 34(1), 144–162 (1987)

12. Kathareios, G., Minkenberg, C., Prisacari, B., Rodŕıguez, G., Hoefler, T.: Cost-
effective diameter-two topologies: analysis and evaluation. In: SC, pp. 36:1–36:11.
ACM, November 2015

13. Kenyon, C., Rémila, E.: Approximate strip packing. In: FOCS, pp. 31–36 (1996)
14. Lucarelli, G., Mendonça, F.M., Trystram, D., Wagner, F.: Contiguity and locality

in backfilling scheduling. In: CCGRID, pp. 586–595. IEEE Computer Society, May
2015

15. Pascual, J.A., Miguel-Alonso, J., Antonio, L.J.: Application-aware metrics for par-
tition selection in cube-shaped topologies. Parallel Comput. 40(5), 129–139 (2014)

16. Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: TOP500 list, June 2018
17. Tessier, F., Malakar, P., Vishwanath, V., Jeannot, E., Isaila, F.: Topology-

aware data aggregation for intensive I/O on large-scale supercomputers. In:
COMHPC@SC, pp. 73–81. IEEE, November 2016

18. Tuncer, O., Leung, V.J., Coskun, A.K.: PaCMap: topology mapping of unstruc-
tured communication patterns onto non-contiguous allocations. In: ICS, pp. 37–46.
ACM, June 2015

https://doi.org/10.1007/3-540-63574-2_14
https://doi.org/10.1007/3-540-63574-2_14

Resource-Efficient Execution
of Conditional Parallel Real-Time Tasks

Sanjoy Baruah(B)

Washington University in St. Louis, St. Louis, MO, USA
baruah@wustl.edu

Abstract. Under the federated paradigm of multiprocessor scheduling,
a set of processors is reserved for the exclusive use of each task. We
consider the federated scheduling of parallel real-time tasks containing
conditional (if-then-else) constructs, in which different executions of the
task may result in workloads of substantially different magnitude and
different character (e.g., degree of parallelism and critical path length).
If the task is hard-real-time, then processors must be reserved for it under
worst-case assumptions. However, it may be the case that most invoca-
tions of the task will have computational demand far below the worst-
case characterization, and could have been scheduled correctly upon far
fewer processors than had been assigned to it based upon the worst-
case characterization of its run-time behavior. Provided we could safely
determine during run-time if the worst-case characterization is likely to
be realized during some execution and all the processors are therefore
going to be needed, for the rest of the time the unneeded processors
could be idled in low-energy “sleep” mode, or used for executing non-
real time work in the background. In this paper we propose an algorithm
for scheduling parallel conditional tasks that permits us to do so.

1 Introduction

This research is motivated by two trends in real-time computing: (i) the increas-
ing use of multiprocessor and multicore platforms, and (ii) the increasingly com-
plex control-flow that is to be found in real-time programs.

Modeling Parallelism. The models used in scheduling theory for represent-
ing real-time workloads that are implemented upon multicore platforms should
be capable of exposing the parallelism that may exist within these workloads.
Earlier models [1,2] that were developed in order to represent uniprocessor imple-
mentations of real-time systems, are not particularly suitable for this purpose;
hence the sporadic DAG task model [3] was proposed as an appropriate can-
didate. A task in this model is specified as a 3-tuple (G,D, T), where G is a
directed acyclic graph (DAG), and D and T are positive integers representing
the relative deadline and period parameters of the sporadic DAG task respec-
tively. The task repeatedly releases dag-jobs, each of which is a collection of
(sequential) jobs. Successive dag-jobs are released a duration of at least T time

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 218–231, 2018.
https://doi.org/10.1007/978-3-319-96983-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_16&domain=pdf

Resource-efficient execution of conditional parallel real-time tasks 219

units apart. The DAG G is specified as G = (V,E), where V is a set of vertices
and E a set of directed edges between these vertices. Each v ∈ V represents
the execution of a sequential piece of code (a “job”), and is characterized by a
worst-case execution time (WCET). The edges represent dependencies between
the jobs: if (v1, v2) ∈ E then job v1 must complete execution before job v2 can
begin execution. (Job v1 is called a predecessor job of v2, and job v2 is called a
successor job of v1.) Jobs that are not predecessors or successors of each other,
either directly or transitively, may execute simultaneously upon different proces-
sors. A release of a dag-job of the task at time-instant t means that all |V | jobs
v ∈ V are released at time-instant t. If a dag-job is released at time-instant t
then all |V | jobs that were released at t must complete execution by time-instant
t + D.

In this paper we restrict attention to constrained-deadline sporadic DAG
tasks: these are sporadic DAG tasks satisfying the additional property that
D ≤ T (and hence the duration of time during which successive dag-jobs are
to be scheduled do not overlap). We focus upon the scheduling of a single such
constrained-deadline sporadic DAG task upon a dedicated platform comprising
a specified number m of identical processors (i.e., we restrict our attention to
either systems comprising just a single task, or to multi-task systems scheduled
under the federated paradigm of multiprocessor scheduling [4,5]). This problem
is equivalent to the widely-studied problem of makespan-minimization for prece-
dence constrained tasks: we seek to determine whether a single dag-job of the
task can be scheduled to have a makespan1 no larger than D upon the pro-
vided number of processors. We will discuss proposed solutions to this problem
in Sect. 3.

Modeling Conditional Branching. As stated above, the sporadic DAG tasks
model assumes that each release of a dag-job of the task causes the release
of jobs corresponding to each and every vertex in V . It is thus successful in
modeling intra-task parallelism: the workload generated by an individual task
may comprise multiple jobs that are allowed to execute in parallel upon dif-
ferent processors. However, as we become more ambitious regarding the kinds
of functionalities we attempt to implement in our real-time systems, these sys-
tems incorporate more complex control-flow than simply the straight-line code
that characterized earlier systems. The presence of control structures such as
conditional—if-then-else—constructs within the code that is being modeled by
the task may mean that different activations of the task (i.e., different dag-
jobs) cause different parts of the code to be executed. Assuming that jobs cor-
responding to all the vertices in V will execute during each such activation is
pessimistic; there is a need to be able to model the fact that different dag-jobs of
the same task may cause different collections of jobs to be executed. The condi-
tional sporadic DAG tasks model [6,7] therefore further generalized the sporadic
DAG tasks model by allowing for the representation of conditional execution
of parts of a DAG. We will describe this model in detail in Sect. 2; for now, we
1 The makespan of a schedule is the duration of it: the difference between the instants

at which the first job begins execution and the last job completes.

220 S. Baruah

Fig. 1. Part of an example conditional DAG task. The diamond represents the start of
a conditional (if-then-else) construct; the oval, the corresponding end. Each rectangle
represents a sequential piece of code, and is labelled with its worst-case execution time
(WCET).

illustrate its salient features via the example in Fig. 1. In this figure, the diamond-
shaped vertex and the oval vertex respectively denote the beginning and end of
an if-then-else construct. A conditional expression gets evaluated when flow
of control reaches the diamond-shaped vertex: different executions of the task
may result in the expression evaluating differently. Either the branch denoted
“Branch A” or the one denoted “Branch B” is taken depending on whether this
expression evaluates to true or false. Branch A leads to a single piece of sequen-
tial code of WCET 100, while Branch B leads to one hundred pieces of sequential
code, each of WCET 10, that may execute in parallel.

The Problem Considered. We consider the scheduling of hard-real-time tasks:
tasks for which it is imperative that they always meet their deadlines. For such
tasks, computing resources must be provisioned under worst-case assumptions;
for our conditional real-time tasks, this means that processors must be reserved
for the task that enable it to meet its deadline regardless of which conditional
expressions evaluate to true and which to false. The determination of how many
processors should be assigned to a (regular, i.e., not conditional) DAG task in
order to ensure that it always meets its deadlines is usually based upon com-
puting the cumulative WCET of all the nodes in the DAG (this quantity is
called the work parameter of the DAG) and the maximum cumulative WCET
of any sequence of precedence-constrained nodes (called the span of the DAG).
Algorithms are known for computing work and span of a regular DAG in time

Resource-efficient execution of conditional parallel real-time tasks 221

linear in the representation of the DAG. Techniques for computing work and
span have been developed for conditional DAGs as well [6,7]. However, it may
be the case that work and span for a conditional DAG as computed in this man-
ner correspond to mutually exclusive branches in the conditional code. (E.g., in
the example task segment of Fig. 1 span corresponds to the Branch A and is
equal to 100, while work corresponds to Branch B and equals 1000. Clearly this
worst-case work and this worst-case span cannot both occur during any indi-
vidual execution of the task.) Assigning processors to the conditional task on
the basis of such work and span parameters results in over-provisioning of com-
puting resources to this task, and consequent resource under-utilization during
run-time. Due to algorithm complexity considerations (see, e.g., [5] for a dis-
cussion), such under-utilization seems unavoidable in general. However, suppose
that it is determined by extensive experimental profiling of the run-time behav-
ior of this task that Branch A is taken the vast majority of the time. It may
then be possible to carefully design a run-time scheduling strategy that reduces
some of this inefficiency. Specifically, one could provision processors to the condi-
tional task assuming the most conservative characterization (the work and span
parameters as determined by the algorithms of [6,7]), but keeping some of the
provisioned resource in “reserve”, perhaps by placing some processors in sleep
mode or having them execute background (non real-time) work, with the option
of switching them to work upon executing the task if we are able to determine,
during run-time, that the task’s run-time behavior is in fact not likely to app-
roach its most conservative estimates. In this paper, we derive an algorithm that
adopts this approach to enhance run-time efficiency while continuing to ensure
that deadlines are always met.

Organization. We describe the conditional sporadic DAG task model in Sect. 2,
and briefly review some prior results on the scheduling of DAG tasks in Sect. 3.
In Sect. 4 we describe, and prove the correctness of, our proposed approach for
resource-efficient scheduling of hard-real-time sporadic DAG tasks. We conclude
in Sect. 5 by placing this work within a larger context of research on the design
and implementation of complex parallelizable real-time code upon multiproces-
sor platforms.

c2

s2 t2

t1s1

G′
2 = (V ′

2 , E
′
2)

G′
1 = (V ′

1 , E
′
1)

c1

Fig. 2. A canonical conditional construct with branching factor 2. Vertices s1 and t1
(vertices s2 and t2, resp.) are the sole source vertex and sink vertex of G′

1 (G′
2, resp.).

222 S. Baruah

2 Conditional Sporadic DAG tasks [6,7]

Like a regular sporadic DAG task, each conditional sporadic DAG task τ is speci-
fied as a 3-tuple (G,D, T), where G = (V,E) is a DAG, and D and T are positive
integers denoting (as with regular DAG tasks) the relative deadline and period
parameters of the task. We require that G have a single source vertex and a sin-
gle sink vertex (of course any DAG with multiple sources and/or multiple sinks
is easily transformed in polynomial time to an equivalent conditional DAG sat-
isfying this requirement, by perhaps adding an additional dummy source and/or
an additional dummy sink). Conditional vertices are special vertices in V that
are defined in pairs. Let (c1, c2) be such a pair in the DAG G = (V,E)—see
Fig. 2. Informally speaking, vertex c1 can be thought of as representing a point
in the code where a conditional expression is evaluated and, depending upon the
outcome of this evaluation, control will subsequently flow along exactly one of
several different possible paths in the code. It is required that all these different
paths meet again at a common point in the code, represented by the vertex c2.
More formally,

1. There are multiple outgoing edges from c1 in E. Suppose that there are exactly
k outgoing edges from c1 to the vertices s1, s2, . . . , sk, for some k > 1. We
call k the branching factor of this conditional. (The branching factor for an
“if-then-else” condition is 2.) Then there are exactly k incoming edges into
c2 in E, from the vertices t1, t2, . . . , tk,

2. For each � ∈ {1, 2, . . . , k}, let V ′
� ⊆ V and E′

� ⊆ E denote all the vertices and
edges on paths reachable from s� that do not include vertex c2. By definition,
s� is the sole source vertex of the DAG G′

�
def= (V ′

� , E′
�). It must hold that t�

is the sole sink vertex of G′
�.

3. It must hold that V ′
� ∩V ′

j = ∅ for all �, j, � �= j. Additionally, with the exception
of (c1, s�) there should be no edges in E into vertices in V ′

� from vertices not
in V ′

� , for each � ∈ {1, 2, . . . , k}. I.e., E ∩ ((V \ V ′
�) × V ′

�) = {(c1, s�)} should
hold for all �.

Edges (v1, v2) between pairs of vertices neither of which are conditional ver-
tices represent precedence constraints exactly as in traditional sporadic DAG
tasks, while edges involving conditional vertices represent conditional execution
of code. More specifically, let (c1, c2) denote a defined pair of conditional vertices
(recall that conditional vertices are always defined in pairs). The semantics of
conditional DAG task execution mandate that

– After the job c1 completes execution, exactly one of its successor jobs becomes
eligible to execute; it is not known beforehand which successor job may exe-
cute.

– Job c2 begins to execute upon the completion of exactly one of its predecessor
jobs.

It is important to note that the conditional expressions may evaluate differently
during different executions of a conditional DAG task. Let J denote all possible

Resource-efficient execution of conditional parallel real-time tasks 223

complete collections of jobs that comprise a single dag-job of the task, along with
the precedence constraints amongst these jobs that are imposed by the edges of
the DAG. Thus each J ∈ J denotes a collection of precedence-constrained jobs
obtained by completely executing through the DAG once, taking into account
the conditional branches within it. There may in general be exponentially many
different flows through a graph: consider for example the following skeleton of
code (here each (Ci) represents a boolean condition that may evaluate to either
true or false, and each {Sij} a block of straight-line code):

if (C1) then {S11} else {S12}
if (C2) then {S21} else {S22}
.
.
if (Cn) then {Sn1} else {Sn2}

Depending upon whether the (Ci)’s evaluate to true or false, this code fragment
may experience any of 2n different execution flows through it; hence |J |, the
number of precedence-constrained collections of jobs in J , may be exponential
in the number of vertices in G. As a consequence, algorithms for the analysis
of conditional DAG tasks that are based upon explicitly examining each J ∈ J
will necessarily have exponential worst-case running time.

3 Some Prior Results on Scheduling DAG Tasks

As stated in Sect. 1 above, the workload of a DAG is often succinctly charac-
terized via the work (the cumulative worst-case execution time) and span (the
maximum cumulative worst-case execution time of any sequence of precedence-
constrained jobs) parameters. The relevance of these two parameters arises from
well-known results in scheduling theory concerning the multiprocessor schedul-
ing of precedence-constrained jobs (i.e., DAGs) to minimize makespan—this is
the widely-studied P | prec | Smax problem in the classic 3-field α | β | γ nota-
tion [8]. This problem has long been known to be NP-hard in the strong sense [9];
i.e., computationally highly intractable. However, Graham’s list scheduling algo-
rithm [10], which constructs a work-conserving schedule by executing at each
instant in time an available job, if any are present, upon any available processor,
performs fairly well in practice. It was shown [10] that list scheduling makes
the following guarantee: if Smax denotes the minimum makespan with which a
particular DAG can be scheduled upon m processors, then the schedule gener-
ated by list scheduling this DAG upon m processors will have a makespan no
greater than (2 − 1

m) × Smax. This result, in conjunction with a hardness result
in [11] showing that determining a schedule for this DAG of makespan ≤ 4

3Smax

remains NP-hard in the strong sense, suggests that list scheduling is a reasonable
algorithm to use in practice, and in fact most run-time scheduling algorithms
that are used for scheduling DAGs upon multiprocessors use some variant or the
other of list scheduling. We will do so in this paper as well.

224 S. Baruah

An upper bound on the makespan of a schedule generated by list scheduling
is easily stated. Letting work and span denote the work and span parameters of
the DAG being scheduled, it has been proved in [10] that the makespan of the
schedule for a given DAG is guaranteed to be no larger than

work − span

m
+ span (1)

Computing work and span for Conditional DAGs. As in Sect. 2, let J
denote all possible complete collections of jobs that comprise a single dag-job
of the conditional DAG task under consideration, along with the precedence
constraints amongst these jobs that are imposed by the edges in the DAG. Recall
that the work of a regular (i.e., not conditional) DAG task denotes the sum of
the WCETs of all the nodes, and span the maximum sum of WCETs of any
precedence-constrained chain of nodes, in the DAG. These definitions have been
extended to conditional DAGs [6]: for each J ∈ J , let work(J) denote the sum
of the WCETs of all the jobs in J and span(J), the maximum sum of WCETs of
any precedence-constrained chain of jobs in J . If J is the collection of precedence-
constrained jobs yielded during some execution of a dag-job of τ , the makespan
of a schedule generated by the List Scheduling algorithm is, by Expression 1,
guaranteed to be no larger than

(work(J) − span(J)
m

+ span(J)
)

Letting

work
def= max

J∈J

{
work(J)

}
and span

def= max
J∈J

{
span(J)

}
, (2)

it has been shown in [5] that
(

work−span
m + span

)
is a 2-approximation on the

actual makespan if the conditional DAG is list-scheduled upon m processors. We
therefore use the following sufficient condition for ensuring that conditional spo-
radic DAG task τ , with relative deadline parameter D, is correctly list-scheduled
upon m unit-speed processors:

work − span

m
+ span ≤ D (3)

It remains to specify how the work and span parameters of a conditional spo-
radic DAG task are to be computed. As mentioned above, an algorithm based
on exhaustive enumeration of J , and then computing work(J) and span(J) sep-
arately for each J ∈ J would yield an exponential-time algorithm; a recursive
procedure for computing span and work for a given conditional DAG task is
specified in [6,7] that has running time polynomial in the representation of the
task.

4 Our Proposed Scheduling Approach

Given a conditional DAG task that is to be executed upon a platform compris-
ing m identical processors, we will perform some analysis prior to run-time to

Resource-efficient execution of conditional parallel real-time tasks 225

compute the values of two parameters mN and SN . These two parameters are
then used during run-time by the run-time scheduler to ensure that the task
always executes correctly (i.e., always meets its deadline) during runtime.

Pre-run-time analysis comprises three steps: given the conditional DAG task
and the number m of processors that are available for its use,

1. Determine the work and span parameters of the conditional DAG task (as
defined in Expression 2), using the algorithm of [6,7].

2. Check whether Inequality 3 holds. If it does not, our scheduling algorithm
declares failure: it is unable to schedule this task in a manner that guarantees
timing correctness.

3. Otherwise, it computes a pair of values mN and SN—the manner in which
these values are computed will be presented in Sect. 4.1; a property that they
will satisfy is derived in Theorem 1.

Example 1. Consider the example task fragment in Fig. 1. Suppose this has a
deadline D = 300, and that we have m = 7 processors available. Suppose, too,
that upper branch (Branch A) is taken overwhelmingly more frequently than
the lower branch (Branch B).

1. For this task, work = 1000 and span = 100
2. Inequality 3 evaluates as

(work − span

m
+ span ≤ D

)
⇔

(1000 − 100
7

+100 ≤ 300
)

⇔
(
228.6 ≤ 300

)

which is true. Hence, the task can be scheduled correctly upon the eight
processors provided.

3. In Example 3, we will see that our pre-processing algorithm, using the tech-
nique for computing mN and SN derived in Sect. 4.1, would compute the
values mN = 2 and SN = 100 (these parameter values are used during
run-time scheduling as discussed below).

	

Run-Time Scheduling. Suppose that the conditional sporadic DAG task
releases a dag-job at some time-instant to during run-time.

1. Our run-time scheduler sets a timer to go off at time-instant (to + SN), and
begins executing the task upon mN processors using the list-scheduling algo-
rithm [10]. The remaining (m − mN) processors are placed/remain in sleep
mode.

2. If the task has not completed execution when the timer goes off at time-instant
(to +SN), then the scheduler awakens the (m−mN) sleeping processors, and
uses list-scheduling to execute the remainder of the task upon the entire bank
of m processors.

226 S. Baruah

We highlight that the run-time scheduler does not need to monitor the flow of
control through the code – i.e., which branches are taken – during execution
of the conditional DAG; in fact, no run-time monitoring is needed other than
whether the DAG completes execution within SN units of arrival or not. This
enables far more efficient implementation than if it needs to actively examine
the internal state (the program counter; the values of the conditional expressions
that are evaluated; etc.) of the task.

Example 2. Returning to the task in Example 1, each time a dag- job of this
task is released the run-time scheduler list-schedules it upon two processors. If
the task does not complete execution within 100 time units of its arrival, the
remaining (7 − 2 =) five processors are awakened, and the task list-scheduled
upon all seven processors for the remaining 200 time units until its deadline. 	

In Theorem 1 below we derive sufficient conditions upon the values that are
assigned to mN and SN in order to ensure that this run-time algorithm always
meets the task deadline.

Theorem 1. Suppose that we are given values of mN and SN , with 0 < mN ≤
m and 0 ≤ SN ≤ D. If these given values satisfy

SN ≤ D − span − (work − span)/m

1 − (mN/m)
(4)

then the run-time scheduling algorithm described above is guaranteed correct.

Proof: If the task completes execution within SN time units, correctness is pre-
served since SN ≤ D. Let us therefore consider the case when it does not com-
plete execution by time-instant SN . Let work′ and span′ denote the work and
span parameters of the remaining amount of computation, which will execute
upon m processors. By Expression 1 the overall makespan is therefore bounded
from above by

SN +
(
(work′ − span′)/m + span′) (5)

Since the remaining span at time-instant SN is span′, an amount (span −
span′) of the critical path of the task has executed during [0,SN]. At each instant
when the critical path is not executing, all mN processors must be busy executing
tasks not on the critical path. Hence the total amount of execution occurring
over [0,SN) is at least

[(SN − (span − span′)
) × mN + (span − span′)

]
, from

which it follows that

work′ ≤ work − SN × mN + (span − span′) × mN − (span − span′)
= work − SN × mN + span × (mN − 1) − span′ × (mN − 1) (6)

Substituting Inequality 6 into the Expression 5, we obtain the following upper
bound on the overall makespan:

SN +
(work − SN × mN + span × (mN − 1) − span′ × (mN − 1) − span′

m
+ span

′
)

= SN +
(work − SN × mN + span × (mN − 1)

m
+ span

′ × (
1 − mN

m

)) (7)

Resource-efficient execution of conditional parallel real-time tasks 227

Since mN ≤ m, Expression 7 is maximized when span′ is as large as possible;
i.e., span′ = span. Substituting span′ = span into Expression 7, we get the
following upper bound on the overall makespan:

SN +
(work − SN ×mN + span× (mN − 1)

m
+ span× (

1− mN

m

))

= SN +
(work − SN ×mN − span

m
+ span

)

Correctness is guaranteed by having this upper bound on the makespan be ≤D:

(
SN +

(work − SN × mN − span

m
+ span

)) ≤ D

⇔
(
SN − SN × mN

m

)
≤

(
D − work − span

m
− span

)

⇔ SN

(
1 − mN

m

)
≤

(
D − work − span

m
− span

)

⇔ SN ≤ D − span − (work − span)/m

1 − (mN/m)

which is the same as Expression 4, and the theorem is thus proved. 	

4.1 Computing mN and SN

We now describe how we assign values to the parameters mN and SN satisfying
Expression 4. We reiterate that our objective here is to enhance efficiency while
maintaining correctness – the guarantee that the deadline will be met. Our
approach to this will be based on profiling the run-time behavior of the task, in
order to obtain an estimate of the likelihood (i.e., probability) that the make-
span on the mN processors will exceed the threshold SN , thus triggering the use
of the remaining (m − mN) processors.

In somewhat greater detail, let us suppose that we seek to minimize the
expected number of processors that will be used during any given invocation of
the task2. We first observe that one strategy for guaranteeing correctness is to
execute the task upon m̂ processors that will be used during each invocation,
where m̂ satisfies

(work − span

m̂
+ span

) ≤ D

⇔ m̂ ≥
⌈

work − span

D − span

⌉
(8)

This value of m̂ represents an upper bound on the desired value of mN : our
run-time scheduler will never need to activate more than m̂ processors upon the

2 We point out that other optimization objectives could also reasonably be considered,
such as minimizing the cumulative expected duration that the processors will be active,
using an approach similar to the one we adopt here – see the discussion in the
paragraphs immediately following displayed equation (10).

228 S. Baruah

arrival of a dag-job. Below, we exhaustively consider each potential value of mN

in [0, m̂]:

for m′ = 1 to m̂ do

1. Assign SN (m′) a value as follows:

SN (m′) =
D − span − (work − span)/m̂

1 − (m′/m̂)
(9)

so that Expression 4 of Theorem 1 is satisfied with mN = m′ and SN =
SN (m′).

2. Profile the run-time behavior of the task upon m′ processors to determine
the probability that the makespan of the task is ≤SN (m′). Let p(m′) denote
this probability.

3. Compute E(m′), the expected number of processors that are used during any
given invocation of the task if our run-time algorithm is implemented with
mN = m′, as follows:

E(m′) = p(m′) × m′ + (1 − p(m′)) × m (10)

This represents the fact that there is a probability p(m′) that just the m′

processors will be used, and a probability (1 − p(m′)) that all m processors
will be used.
If we were interested in optimizing the duration for which the processors are
to be kept active, we would replace Expression 10 with

E(m′) = m′ × SN (m′) + (1 − p(m′)) × m × (D − SN (m′))

Let mmin denote the value of m′ for which E(m′), as computed in Expression 10
above, is the minimum. We assign mN and SN values as follows:

mN ← mmin and S ← SN (mmin).

Example 3. Let us revisit the example task fragment in Fig. 1, that was con-
sidered in Examples 1 and 2. Recall that this task had work = 1000, span = 100,
and D = 300, and is to be scheduled upon m = 7 processors. Furthermore, we
had assumed that the upper branch in Fig. 1 is taken far more frequently than
the lower branch; let po denote the probability that the uper branch is taken
upon any given execution.

We compute m̂ = (1000 − 100)/(300 − 100)� = 900/200� = 5. From
Expression 9, we have

S(m′) =
300 − 100 − (1000 − 100)/7

1 − m′/7
=

200 − 900/7
1 − m′/7

=
500

7 − m′

Resource-efficient execution of conditional parallel real-time tasks 229

Hence S(1) = 500/6 ≈ 83.3, while S(2)–S(5) are all ≥100. Making the simpli-
fying conservative assumption that each piece of sequential code executes for
a duration equal to its WCET, it is clear from visual inspection of the task
fragment in Fig. 1 that when the upper branch is taken, the makespan is 100;
hence p(1) = 0 while p(2)–p(5) are all equal to po (the probability that the
upper branch is taken). Consequently, mmin = 2 and our algorithm computes
and returns

mN ← 2 and SN ← 100.

	

5 Context and Summary

To our knowledge, the concept of representing a single parallelizable real-time
task with multiple pairs of work and span parameters was first proposed by
Li et al. [12], in the context of mixed-criticality scheduling [13]. Li et al. [12]
were motivated by the fact that determining tight upper bounds on WCET’s
of even sequential pieces of code can be a very challenging problem upon the
kinds of advanced computing platforms that are widely used today; additionally,
upon such platforms the difference between typical-case and worst-case execution
times may be very considerable. They hence proposed that two pairs of work and
span parameters be estimated for each parallel task, one pair that is made under
very conservative assumptions and therefore perhaps very large but trust-worthy
to a very high level of assurance, and another pair made under less conservative
assumptions and therefore considerably smaller than the conservative bounds,
but also to be trusted to a lesser level of assurance. The appropriate pair of
estimates—the more conservative pair, or the less conservative one, could then
be used for validating the correctness of the run-time behavior of each task
depending upon the criticality of the functionality that it is responsible for.

Integrating multiply-specified tasks of this kind with the approach of dynam-
ically changing the number of processors assigned to an individual task during
run-time was originally proposed in [14]. The principal motivation for the work
in [14] was to explore whether ideas and techniques from the considerable body
of prior research (e.g., [15–17]) on measurement-based techniques for estimating
probabilistic worst-case execution time distributions (pWCET) are applicable to
run-time scheduling of parallel real-time tasks.

The work presented in the current paper extends and generalizes these prior
approaches: we have proposed here a method based upon combining worst-case
characterization and experimental profiling of run-time behavior, for modeling
complex parallelizable real-time code that may include conditional branching,
that is to be implemented upon multiprocessor platforms. This model, and the
scheduling algorithms we have derived for it, enables us to obtain implementa-
tions that combine correctness guarantees with improved efficiency. Correctness
depends only upon the conservative worst-case characterization, while the sole
effect of the experimental characterization is on efficiency; hence, system correct-
ness is not compromised at all if the experimental profiling mis-characterizes, or

230 S. Baruah

fails to capture all subtleties of, actual run-time behavior. In this manner the
correctness of safety properties may be validated under worst-case assumptions;
a system so validated may be experimentally profiled to enhance the run-time
efficiency of its implementation.

Acknowledgements. This research was supported in part by NSF Grants CNS
1409175, CPS 1446631, and CNS 1563845.

References

1. Liu, C., Layland, J.: Scheduling algorithms for multiprogramming in a hard real-
time environment. J. ACM 20(1), 46–61 (1973)

2. Baruah, S., Mok, A., Rosier, L.: Preemptively scheduling hard-real-time sporadic
tasks on one processor. In: Proceedings of the 11th Real-Time Systems Symposium,
Orlando, Florida, pp. 182–190. IEEE Computer Society Press (1990)

3. Baruah, S., Bonifaci, V., Marchetti-Spaccamela, A., Stougie, L., Wiese, A.: A gen-
eralized parallel task model for recurrent real-time processes. In: Proceedings of
the IEEE Real-Time Systems Symposium, RTSS 2012, San Juan, Puerto Rico, pp.
63–72 (2012)

4. Li, J., Saifullah, A., Agrawal, K., Gill, C., Lu, C.: Analysis of federated and global
scheduling for parallel real-time tasks. In: Proceedings of the 2012 26th Euromicro
Conference on Real-Time Systems, ECRTS 2014, Madrid, Spain. IEEE Computer
Society Press (2014)

5. Baruah, S.: The federated scheduling of systems of conditional sporadic DAG
tasks. In: Proceedings of the 15th International Conference on Embedded Soft-
ware (EMSOFT), Amsterdam, The Netherlands (2015)

6. Baruah, S., Bonifaci, V., Marchetti-Spaccamela, A.: The global EDF scheduling
of systems of conditional sporadic DAG tasks. In: Proceedings of the 2014 26th
Euromicro Conference on Real-Time Systems, ECRTS 2015, Lund, Sweden, pp.
222–231. IEEE Computer Society Press (2015)

7. Melani, A., Bertogna, M., Bonifaci, V., Marchetti-Spaccamela, A., Buttazzo,
G.: Response-time analysis of conditional DAG tasks in multiprocessor systems.
In: Proceedings of the 2014 26th Euromicro Conference on Real-Time Systems,
ECRTS 2015, Lund, Sweden, pp. 222–231. IEEE Computer Society Press (2015)

8. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann. Discret.
Math. 5, 287–326 (1979)

9. Ullman, J.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–
393 (1975)

10. Graham, R.: Bounds on multiprocessor timing anomalies. SIAM J. Appl. Math.
17, 416–429 (1969)

11. Lenstra, J.K., Rinnooy Kan, A.H.G.: Complexity of scheduling under precedence
constraints. Oper. Res. 26(1), 22–35 (1978)

12. Li, J., Ferry, D., Ahuja, S., Agrawal, K., Gill, C., Lu, C.: Mixed-criticality federated
scheduling for parallel real-time tasks. In: Proceedings of the 22nd IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), April 2016

13. Vestal, S.: Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In: Proceedings of the Real-Time Systems Symposium,
Tucson, AZ, pp. 239–243. IEEE Computer Society Press, December 2007

Resource-efficient execution of conditional parallel real-time tasks 231

14. Agrawal, K., Baruah, S.: A measurement-based model for parallel real-time tasks.
In: 2018 30th Euromicro Conference on Real-Time Systems. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, July 2018

15. Edgar, S., Burns, A.: Statistical analysis of WCET for scheduling. In: 2001 IEEE
Real-Time Systems Symposium (RTSS), pp. 215–224, December 2001

16. Bernat, G., Colin, A., Petters, S.M.: WCET analysis of probabilistic hard real-
time systems. In: 2002 IEEE Real-Time Systems Symposium (RTSS), pp. 279–288
(2002)

17. Bernat, G., Colin, A., Petters, S.: pWCET: a tool for probabilistic worst-case
execution time analysis of real-time systems. Technical report, The University of
York, England (2003)

High Performance Architectures and
Compilers

Improving GPU Cache Hierarchy
Performance with a Fetch
and Replacement Cache

Francisco Candel1(B), Salvador Petit1, Alejandro Valero2,
and Julio Sahuquillo1

1 Department of Computer Engineering, Universitat Politècnica de València,
46022 Valencia, Spain

fracanma@inf.upv.es,{spetit,jsahuqui}@disca.upv.es
2 Departamento de Informática e Ingenieŕıa de Sistemas,

Instituto Universitario de Investigación en Ingenieŕıa de Aragón
Universidad de Zaragoza, 50018 Zaragoza, Spain

alvabre@unizar.es

Abstract. In the last few years, GPGPU computing has become one of
the most popular computing paradigms in high-performance computers
due to its excellent performance to power ratio. The memory require-
ments of GPGPU applications widely differ from the requirements of
CPU counterparts. The amount of memory accesses is several orders of
magnitude higher in GPU applications than in CPU applications, and
they present disparate access patterns. Because of this fact, large and
highly associative Last-Level Caches (LLCs) bring much lower perfor-
mance gains in GPUs than in CPUs.

This paper presents a novel approach to manage LLC misses that effi-
ciently improves LLC hit ratio, memory-level parallelism, and miss laten-
cies in GPU systems. The proposed approach leverages a small additional
Fetch and Replacement Cache (FRC) that stores control and coherence
information of incoming blocks until they are fetched from main mem-
ory. Then, fetched blocks are swapped with victim blocks to be replaced
in the LLC. After that, the eviction of victim blocks is performed from
the FRC. This management approach improves performance due to three
main reasons: (i) the lifetime of blocks being replaced is increased, (ii) the
main memory path is unclogged on long bursts of LLC misses, and (iii)
the average L2 miss delaying latency is reduced. Experimental results
show that our proposal increases the performance (OPC) over 25% in
most of the studied applications, reaching improvements up to 150% in
some applications.

1 Introduction

In recent years, GPU (Graphics Processing Unit) architectures have acquired
a great relevance in the field of high-performance computing. The main reason
has been that GPUs are able to accelerate the execution of massively parallel
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 235–248, 2018.
https://doi.org/10.1007/978-3-319-96983-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_17&domain=pdf

236 F. Candel et al.

applications, since they provide a much higher level of parallelism than CPU
architectures. In addition, GPUs are energetically more efficient [1,2] for a given
performance, than its CPU counterparts. Because of these reasons, many super-
computers in the top 500 list [3] rely on GPUs. For instance, the Piz Daint
supercomputer, ranked in third place of the list in November 2017, was built
with Nvidia Tesla P100 GPU devices.

GPU architectures are optimized to run applications composed of thousands
of logical threads. In order to support the execution of such a high number
of threads, the GPU core must be coupled with a memory subsystem able to
support a high Memory-Level Parallelism (MLP). GPU memory subsystems are
therefore designed to sustain a high memory bandwidth. Because of the poor
data temporal locality of GPGPU applications or kernels, on a very long burst
of L2 accesses many requests can miss, which cause subsequent main memory
accesses.

In this scenario, the memory subsystem of GPUs poorly performs. In this
paper, we look into the reasons explaining this behavior, and we find that one of
the main sources of performance losses of the memory subsystem is the manage-
ment of L2 cache misses. We find that conventional caches designed to address
memory patterns of CPU applications do not properly meet the requirements of
GPGPU applications, but they seriously penalize their performance since they
can significantly slow down the management of L2 cache requests on long bursts
of requests. The previous rationale means that improving the L2 cache man-
agement is a key design concern that should be tackled to improve the system
performance. This paper proposes a novel L2 cache design aimed at boosting
the memory level parallelism by adding a Fetch and Replacement Cache (FRC)
that provides additional cache lines that help unclog the memory subsystem.
The FRC approach uses these extra resources to prioritize the fetch of incom-
ing L2 cache requests and to delay the eviction of the blocks to be replaced.
The proposal has been evaluated considering an AMD GPU based architecture,
although the results would also apply in almost all current GPU architectures
as they implement a similar memory hierarchy.

The proposal has been modeled in the Multi2Sim simulation framework [4],
a state-of-the-art GPU simulator widely used in both the academia and the
industry. Experimental results show that FRC improves the Operations Per cycle
(OPC) more than 25% in most applications by drastically reducing the Misses
Per Kilo-Operation (MPKO) and L2 miss latency.

The remainder of this work is organized as follows. Section 2 describes the
architecture of the AMD Southern Islands family of GPUs. Section 3 motivates
this work by presenting the problems that FRC tackles in current GPU memory
subsystems. In Sect. 4, the proposed approach is described in detail. Section 5
presents the experimental results. Section 6 summarizes related studies about
GPU memory subsystems. Finally, in Sect. 7 some concluding remarks are drawn.

Improving GPU Cache Hierarchy Performance 237

2 Background

This section provides some background about the architecture of modern GPUs.
Since this paper focuses on the AMD Southern Islands [5] family of GPUs, AMD
terminology is used throughout this work.

Fig. 1. Diagram of an AMD Southern Islands GPU.

Figure 1 depicts a block diagram of an AMD Southern Islands GPU. This
GPU includes up to 32 Compute Units (CUs), each one implementing the Graph-
ics Core Next (GCN) [6] microarchitecture. Internally, a GCN CU consists of 4
Single Instruction Multiple Data (SIMD) arithmetic logic units.

GPU applications or kernels are composed of a massive number of threads or
work-items. These threads are organized in 64-thread bundles, named wavefronts,
which are allocated to SIMD units. During most of the execution time of a kernel,
the GPU ensures that each SIMD unit is assigned tens of wavefronts. In this way,
SIMD units can switch among wavefronts in a fine-grain basis, which helps hide
memory latencies.

A SIMD unit executes instructions from threads of a wavefront in a lockstep
manner. That is, at a given point of the execution time a SIMD unit is performing
the same arithmetic instruction in the 64 threads of the same wavefront. Memory
reference instructions are also executed following the SIMD paradigm; that is, a
wavefront can generate up to 64 memory requests at the same time. To reduce
the overall amount of memory requests, those referencing the same 64-byte cache
block are coalesced into a single memory request, which is issued to the memory
subsystem.

As in a conventional processor, the memory subsystem is organized hierar-
chically. After being coalesced, memory requests access the L1 data cache of
the corresponding CU. Those requests that miss the L1 cache are forwarded
to a multi-banked L2 cache, acting as Last-Level Cache (LLC). L2 banks con-
tain interleaved block addresses at a granularity of 256 bytes, and each bank is
connected to a dual-channel memory controller that manages the correspond-
ing off-chip GDDR5 main memory. This design reduces the number of channel
conflicts and increases the memory bandwidth utilization.

3 Motivation

The coalesce mechanism reduces the number of requests to the memory sub-
system. However, GPGPU applications generate enormous amounts of memory

238 F. Candel et al.

traffic; for instance, a typical GPU can issue thousands of memory requests in
a given cycle. These amounts yield conventional cache organizations to signifi-
cant performance losses. The main reason is that the massive number of threads
is executing in parallel causes sudden bursts of memory transactions, which
involve a high number of cache replacements. As a consequence, in a relatively
short interval of time, a given cache line can suffer a long number (e.g. in the
order of tens) of consecutive block replacements, each one involving different
actions such as coherence invalidations or accesses to lower levels of the memory
hierarchy. Since these actions are serialized at the cache line, the management of
cache replacements becomes a major performance bottleneck, which can heavily
reduce the MLP and the L2 hit ratio.

Fig. 2. Sequence of events involved in three consecutive replacements targeting the
same L2 cache line for both the conventional and the proposed approaches.

To help understand the problem, Fig. 2 depicts a time diagram with the
events involved in three consecutive replacements all targeting the same L2 vic-
tim line. The three requests causing these replacements have been labeled as
Req. B, C, and D, and have been generated at cycles 0, 90, and 240, respectively,
after the requests miss the L1 cache and are forwarded to the L2 cache.

As can be seen in Fig. 2a, which shows the behavior of a conventional replace-
ment approach, Req. B triggers the replacement of the currently stored block
(block A). From this moment, the victim line is in a transient state (represented
by dashed lines), preventing other requests from accessing the line. To manage
the replacement, depending on the state of A, an invalidation to the L1 cache
and an L2 cache eviction must be performed. Once the victim line is freed, the

Improving GPU Cache Hierarchy Performance 239

requested incoming block (B), must be fetched from main memory and allocated
to this line.

While block B is being fetched, Req. C arrives to L2, which triggers another
replacement in the same victim line. However, because of the line is in a transient
state, Req. C must be enqueued. Thus, Req. C cannot be attended until cycle
210, delaying its completion until cycle 400. This serialization also affects Req.
D at cycle 240.

Moreover, the hit ratio is also reduced, since (i) the invalidation and eviction
of the contents of a victim line are performed before fetching the requested block
and (ii) the fetch operation is the longest one involved in a replacement due to
the high main memory latencies. As an example, even if a complex protocol
allows reading the contents of a cache line while it is in a transient state, a load
requesting block A would only hit between cycles 0 and 90, and would miss
afterwards.

Although theoretically possible, it is very rare that this situation occurs in
a conventional CPU processor since there is likely a non-transient line in the
same cache set that can be selected as a victim, which avoids the serialization
of replacements. In contrast, in GPUs, it is often the case that a burst of misses
triggers replacements in all the lines of the same cache set. Therefore, further
misses targeting the same set cannot be served from memory, which impacts on
the exploited memory parallelism.

A naive solution to this problem is blindly increasing cache associativity
so that a set has more available lines. However, this approach incurs in high
latencies and energy penalties since associative tag lookups do not scale well
with the number of ways. Moreover, although such a solution may alleviate the
problem, larger sets can also be blocked provided that bursts of misses affecting
the same cache set are large enough.

4 FRC Approach

The proposed approach is aimed at increasing MLP and LLC hit ratio. With
this aim, we introduce a Fetch and Replacement Cache (FRC) to each L2 cache
bank. The FRC provides additional cache lines that allow (i) start fetching from
memory as soon as an L2 miss rises, increasing MLP, and (ii) performing inval-
idation and eviction actions after fetching the requested block, which increases
the lifetime of victim blocks and the overall hit ratio.

Figure 2b shows how the FRC can help improve the management of consecu-
tive replacements affecting the same line. By cycle 10, when Req. B misses in L2,
instead of immediately invalidating the victim line, a free FRC entry (FRC0)
is allocated and used to fetch block B. After this block is fetched, the contents
of the victim line and FRC0 are swapped. Then, the invalidation and eviction
of block A are performed from FRC0, which becomes free when the eviction
is completed. In this way, fetch actions can be performed as long as there are
free FRC entries (e.g. the fetch of block C can start in parallel at cycle 90). To
ensure that there are free FRC entries, they are recycled. Thus, after block A

240 F. Candel et al.

Fig. 3. Block diagram with the steps followed on an L2 miss. Those steps introduced
with the FRC are highlighted in gray color.

has been replaced, FRC0 is freed, which allows this entry to be used later by
Req. D.

The swap operation guarantees that the victim line is never in a transient
state (note that it is not represented with dashed lines in Fig. 2b), and that the
invalidation and eviction of its contents are performed after the requested block
is fetched. Consequently, FRC supports a higher cache level parallelism that
allows responding to several requests at the same time. Furthermore, compared
to the conventional approach, the lifetime of the victim block becomes longer
when FRC is used.

Tags and control bits of blocks in transient state are stored in the FRC.
Thus, to reduce tag lookup overhead, FRC is organized as a conventional cache,
although its geometry (i.e. associativity and number of sets) can be different
from that of the L2 cache. L2 accesses must search the requested block both in
the target L2 bank and its associated FRC. A hit in the L2 bank is performed
as in the conventional approach, while a hit in FRC for a block being fetched is
enqueued until the fetch operation completes.

As shown in Fig. 3, the FRC approach modifies the classical miss management
by adding the events highlighted in gray color. On an L2 miss (both in the L2
bank and the FRC), and if there are free entries in the FRC’s set mapped to
the missing block, the block is assigned to a FRC ’s entry and the access is
immediately propagated to the lower memory hierarchy level (early fetch). Once
the fetch has been performed, the miss can be already served. In this way, the
victim block eviction is taken out of the critical path. To manage the eviction
without leaving L2 cache lines in a transient state, the data stored in the FRC’s
entry and the victim line are swapped. Thereby, the eviction is done from the

Improving GPU Cache Hierarchy Performance 241

FRC’s entry. Once the eviction has finished, the FRC’s entry is set as free to
handle subsequent L2 misses.

Finally, note that in case there is not any free entry in the FRC’s set tar-
geted by the missing block, the proposed approach operates like the conventional
approach. In addition, FRC does not change the state of blocks stored in the
cache, but only modifies the resources they are using. Thus, it does not affect
the coherence protocol.

Overall, as experimental results will show, FRC has three main impacts on
performance: (i) new requests do not wait (or wait much less) for cache block’s
evictions, which reduces the memory access latency, (ii) the lifetime of an L2
block becomes longer, decreasing the number of misses, and (iii) a higher MLP
is achieved, since FRC allows immediate access to lower memory levels as long
as there are free FRC entries.

5 Experimental Evaluation

To evaluate the proposal, we have modeled the FRC approach with the
Multi2Sim [4] simulation framework. We focus on the Southern Islands GPU
architecture from AMD, which is one of the most recent GPU architectures
modeled on a detailed simulation framework. In particular, we model the char-
acteristics of an HD7770 GPU [6], including CUs, L1 and L2 caches, memory
controllers, and GDDR5 memory [7]. The L2 cache consists of two 16-way 128 KB
banks, which is our baseline configuration. In addition, to evaluate the impact
on performance of cache associativity and capacity, we evaluate two additional
conventional L2 caches consisting of two 32-way 256 KB banks and two 32-way
512 KB banks. Both configurations are compared to the FRC one, which is com-
posed of the baseline configuration plus two additional FRCs (1 per bank). We
analyze the sensitivity our proposal to the number of FRC entries, which ranges
between 4 and 512. All the evaluated FRC configurations, except the smallest
one with 4 entries, are organized with 8-way sets.

Notice that the FRC approach represents a minor area increase over the
baseline, since the area occupied by an additional FRC is much smaller than
doubling or quadrupling the cache bank capacity, which would present roughly
the same cost in area as adding 2048 and 6144 entries, respectively. Nevertheless,
we conservatively assume that all the analyzed L2 cache configurations have the
same access time.

For evaluation purposes, a subset of the OpenCL SDK 2.5 benchmarks [8]
has been used, covering all the possible performance behaviors from the entire
benchmark suite. These benchmarks are executed until completion.

5.1 Performance Analysis

System performance has been quantified in terms of Operations Per Cycle
(OPC), which is analogous to its counterpart IPC used to evaluate CPU pro-
cessors [7]. This metric accounts for the number of single scalar operations each

242 F. Candel et al.

Fig. 4. Operations Per Cycle (OPC) across the studied applications. (Color figure
online)

GPU instruction executes during the workload execution. For instance, if a given
vector instruction is internally executed as 64 individual scalar operations, this
metric accounts for 64 operations instead of only one instruction.

Figure 4 shows the OPC for the studied benchmarks. The red bar on the left
side of each plot represents the 2 × 128 KB L2 baseline cache, and the two red
bars on the right side represent the 2 × 256 KB L2 cache and the 2 × 512 KB
L2 cache, respectively. The black bars show results of the FRC configuration
varying the number of entries per FRC ranging from 4 to 512, labeled as +Ne,
where N indicates the number of entries. The proposed approach achieves, across
most of the studied applications, OPC improvements higher than 25% com-
pared to the baseline, reaching improvements up to 150% in applications such
as FastWalshTransform and MersenneTwister. In general, it can be observed
that almost all the applications achieve their highest OPC with around 32 or 64
entries, which represents by 64× and 32× less area, respectively, than doubling
the cache bank size to 256 KB. Moreover, in most applications, the performance
achieved by FRC is much higher than that obtained by blindly increasing the
L2 cache capacity with a higher associativity degree.

Three main behaviors can be appreciated:

– Smooth OPC increase. The OPC of applications exhibiting this behavior,
which is the common one, increases in small steps with additional FRC
entries until a given saturation point. This is the case of benchmarks such
as FastWalshTransform, MersenneTwister, and DCT.

– Sharp OPC increase. Applications presenting this behavior show signifi-
cant performance increase with just 4 FRC entries, but no remarkable

Improving GPU Cache Hierarchy Performance 243

OPC improvement is observed with additional entries. This is the case of
MatrixMultiplication.

– Similar OPC. Applications in this category experience the same performance
across all the studied cache approaches. This is the case of BinomialOption
and URNG, mainly due to their low number of memory accesses as discussed
below. Obviously, the OPC of this type of applications is also not affected
when enlarging the L2 cache size and associativity.

5.2 Analysis of Memory Subsystem Metrics

To provide insights into the OPC trend shown by the studied applications, we
analyze the following metrics: number of misses measured in Misses Per Kilo-
Operation (MPKO), percentage of misses served by FRC additional entries, and
the L2 miss latency penalty.

Misses Per Kilo-Operation. We define the metric MPKO for GPUs with
analogous meaning to the MPKI (Misses Per Kilo-Instruction), widely used when
studying the cache hierarchy of the CPU counterparts. Figure 5 plots the results.
It can be observed that the baseline configuration shows high MPKO values,
which can be notably reduced by adding FRC entries. This fact confirms the
benefits on performance brought by the FRC approach by keeping victim blocks
in a non-transient state until fetch actions are completed. As a consequence, the
hit ratio is improved compared to the conventional approach.

Fig. 5. Misses Per Kilo-Operation (MPKO) in the L2 cache.

244 F. Candel et al.

Fig. 6. Average L2 miss delaying latency quantified in processor cycles.

Overall, a clear inverse correlation between OPC and MPKO can be appre-
ciated. However, in a few applications like DwtHaar1D and Reduction, a signifi-
cant MPKO reduction over the baseline with a few FRC entries has a minimal
effect on OPC. On the other hand, as observed, BinomialOption and URNG
present a near-zero MPKO, meaning that no OPC gains can be achieved in
these applications by acting on the L2 cache. However, there are applications
like BlackScholes, DCT, QuasiRandomSequence, and SobelFilter, with a rel-
atively low MPKO (below 1.5) in the baseline which improve their OPC with
an FRC. In order to explain these behaviors, the MLP and memory latency are
analyzed below.

L2 Miss Latency. L2 cache misses can be handled either by normal cache
entries or by FRC entries. Misses handled by FRC entries can be considered
as fast L2 misses since, as explained in Sect. 4, they are able to access to main
memory with a minimum delay. In other words, the more misses handled by
FRC entries the better the performance. Figure 6 plots the results of the L2 miss
latency (excluding the actual main memory access time), quantified in processor
cycles.

The use of FRC entries reduce the average L2 miss latency for almost all the
applications. As observed, with just 4 FRC entries, latency is largely reduced
with respect to the 256 KB and 512 KB cache configurations. In fact, the largest
FRC configuration completely reduces the L2 contention in most benchmarks.
Nevertheless, it can be seen that just 4 FRC entries only provide a slight latency
improvement in some applications, thus large-sized FRCs are preferred. However,

Improving GPU Cache Hierarchy Performance 245

Fig. 7. Percentage of L2 misses handled by FRC entries.

DwtHaar1D and ScanLargeArrays suffer an increase in latency as the number of
FRC entries grows over around 8 entries. This is because the parallelism level is
higher than the baseline, which increases the memory contention. Notice that,
in spite of this increase, the higher MLP turns into OPC improvements.

Percentage of Misses Served by the FRC. Since the service of misses
is not stalled in case of consecutive replacements over the same victim line,
MLP is also improved. Figure 7 shows the percentage of misses served by the
FRC. As observed, FRC with only 64 entries handles by 75% of misses in most
applications. Moreover, this percentage significantly rises, even to almost 100%
in some benchmarks, for configurations smaller than the +512e configuration.

The applications Matrixtranspose and BinomialOption show an unex-
pected behavior as the percentage of misses handled by FRC entries saturate in
a relatively low number of entries, that is, this percentage does not increase even
if more entries are added. In other words, the L2 cache misses are mostly handled
by the cache itself instead of by FRC entries. This is due to two different reasons.
First, the kernel of Matrixtranspose presents bursts of accesses targeting the
same FRC set. This behavior can be improved by increasing FRC associativity
(8-way in these experiments). Second, BinomialOption makes important use of
the local memory of the CU, which significantly reduces the number of accesses
to main memory.

246 F. Candel et al.

6 Related Work

The GPU memory subsystem performance has been widely analyzed in recent
years from different angles, including memory scheduling strategies [9–11], cache
bypassing techniques [12,13], and optimizing the memory subsystem design [14–
18]. This section summarizes prior work in this regard.

Elastic-Cache [14] supports fine-grained L1 cache line management for those
kernels with irregular memory access patterns that do not efficiently exploit
cache space. Auxiliary tags for fine-grained cache line management are stored in
unused shared memory space, which is not fully occupied in many kernels.

Gebhart et al. [15] propose to dynamically adjust the storage partitioning
among registers, primary caches, and scratchpads depending on the kernel mem-
ory requirements, resulting in a reduction of the on-chip access latencies.

IBOM [16] is an integrated architecture that leverages unused register file
entries with lightweight ISA support to enlarge the L1 cache size. With enough
cache capacity, a set balancing technique exploits underutilized sets to improve
cache usage.

Other works have proposed additional memory structures to improve GPU
performance. Wang et al. [17] incorporate a victim cache between L1 and L2 that
presents the same capacity and associativity as the L1 cache. Reused blocks are
kept in the L1 cache by enabling swap operations with the victim cache. Since a
victim cache so large would impact on energy and area, unused entries from the
register file and shared memory are proposed as an alternative to holding data
that otherwise would remain in the victim cache.

In [18], the authors propose to allocate TinyCaches between each lane in
a CU and the L1 cache to filter out memory requests to lower memory lev-
els for energy saving purposes. By leveraging intrinsic characteristics of CUDA
and OpenCL programming models, these caches are kept non-coherent to avoid
incurring additional overheads.

All the above works primarily focus on L1 caches. In contrast, our proposed
FRC design targets LLCs where all accesses from L1 are merged and contention
greatly limits MLP. Furthermore, the FRC approach can be easily implemented
in different memory subsystem architectures, since it does not change the actions
required to handle misses, but the locations where these actions are performed
(i.e. FRC entries).

7 Conclusions

This paper has presented a novel GPU cache subsystem design that leverages
a small Fetch and Replacement Cache (FRC) between the Last-Level Cache
(LLC) and the main memory. The design provides additional cache lines that
allow prioritizing the fetch of incoming LLC cache blocks over the replacement of
victim blocks. The proposed design boosts the system performance by increasing
the Memory-Level Parallelism (MLP) and enlarging the lifetime of the victimized
blocks.

Improving GPU Cache Hierarchy Performance 247

FRC attacks by design three main cache performance related events, which
results in a much better L2 cache management: (i) it reduces the number of
Misses Per Kilo-Operation (MPKO) by keeping victim blocks in cache until
fetch actions are completed, (ii) it reduces the miss latency by starting the fetch
actions from main memory as soon as a miss rises, and (iii) it increases the MLP
by unclogging new block requests whose victim line is already being replaced.

Experimental results have shown that, compared to a conventional LLC
design, FRC increases the Operations Per Cycle (OPC) over 25% in all the
applications suffering contention in main memory.

Acknowledgments. This work was supported by the Spanish Ministerio de
Economı́a y Competitividad (MINECO) and Plan E funds under Grant TIN2015-66972-
C5-1-R and TIN2016-76635-C2-1-R (AEI/FEDER, UE), and by the Programa de Ayu-
das de Investigación y Desarrollo (PAID) de la Universitat Politècnica de València.

References

1. Huang, S., Xiao, S., Feng, W.: On the energy efficiency of graphics processing units
for scientific computing. In: Proceedings of the IEEE International Symposium on
Parallel and Distributed Processing, pp. 1–8 (2009)

2. Glenis, A., Petridis, S.: Performance and energy characterization of high-
performance low-cost cornerness detection on GPUs and multicores. In: Proceed-
ings of the 5th International Conference on Information, Intelligence, Systems and
Applications, pp. 181–186 (2014)

3. Top500.org: Top500 Supercomputer Sites. http://top500.org
4. Ubal, R., Jang, B., Mistry, P., Schaa, D., Kaeli, D.: Multi2Sim: a simulation frame-

work for CPU-GPU computing. In: Proceedings of the 21st International Confer-
ence on Parallel Architectures and Compilation Techniques, pp. 335–344 (2012)

5. AMD: Southern Islands Series Instruction Set Architecture (2012)
6. AMD: AMD Graphics Cores Next (GCN) Architecture White Paper (2012)
7. Candel, F., Petit, S., Sahuquillo, J., Duato, J.: Accurately modeling the on-chip

and off-chip GPU memory subsystem. Future Gener. Comput. Syst. 82, 510–519
(2018)

8. AMD: AMD Accelerated Parallel Processing (APP) Software Development Kit
(SDK) (2012)

9. Mu, S., Deng, Y., Chen, Y., Li, H., Pan, J., Zhang, W., Wang, Z.: Orchestrating
cache management and memory scheduling for GPGPU applications. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 22(8), 1803–1814 (2014)

10. Jia, W., Shaw, K.A., Martonosi, M.: MRPB: memory request prioritization for
massively parallel processors. In: Proceedings of the IEEE 20th International Sym-
posium on High Performance Computer Architecture, pp. 272–283 (2014)

11. Sethia, A., Jamshidi, D.A., Mahlke, S.: Mascar: speeding up GPU warps by reduc-
ing memory pitstops. In: Proceedings of the IEEE 21st International Symposium
on High Performance Computer Architecture, pp. 174–185 (2015)

12. Li, C., Song, S.L., Dai, H., Sidelnik, A., Hari, S.K.S., Zhou, H.: Locality-driven
dynamic GPU cache bypassing. In: Proceedings of the 29th International ACM
Conference on Supercomputing, pp. 67–77 (2015)

http://top500.org

248 F. Candel et al.

13. Liang, Y., Xie, X., Wang, Y., Sun, G., Wang, T.: Optimizing cache bypassing and
warp scheduling for GPUs. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
(2018, to appear)

14. Li, B., Sun, J., Annavaram, M., Kim, N.S.: Elastic-cache: GPU cache architecture
for efficient fine- and coarse-grained cache-line management. In: Proceedings of
the IEEE International Parallel and Distributed Processing Symposium, pp. 82–
91 (2017)

15. Gebhart, M., Keckler, S.W., Khailany, B., Krashinsky, R., Dally, W.J.: Unifying
primary cache, scratch, and register file memories in a throughput processor. In:
Proceedings of the IEEE/ACM 45th Annual International Symposium on Microar-
chitecture, pp. 96–106 (2012)

16. Mu, S., Deng, Y., Chen, Y., Li, H., Pan, J., Zhang, W., Wang, Z.: IBOM: an
integrated and balanced on-chip memory for high performance GPGPUs. IEEE
Trans. Parallel Distrib. Syst. 29(3), 586–599 (2018)

17. Wang, J., Fan, F., Jiang, L., Liang, X., Jing, N.: Incorporating selective victim
cache into GPGPU for high-performance computing. Wiley Concurr. Comput.:
Pract. Exp. 29(24), 1–11 (2017)

18. Sankaranarayanan, A., Ardestani, E.K., Briz, J.L., Renau, J.: An energy efficient
GPGPU memory hierarchy with tiny incoherent caches. In: Proceedings of the
International Symposium on Low Power Electronics and Design, pp. 9–14 (2013)

Abelian: A Compiler for Graph Analytics
on Distributed, Heterogeneous Platforms

Gurbinder Gill(B), Roshan Dathathri, Loc Hoang, Andrew Lenharth,
and Keshav Pingali

The University of Texas at Austin, Austin, TX 78712, USA
{gill,roshan,loc,pingali}@cs.utexas.edu, andrewl@lenharth.org

Abstract. The trend towards processor heterogeneity and distributed-
memory has significantly increased the complexity of parallel program-
ming. In addition, the mix of applications that need to run on parallel
platforms today is very diverse, and includes graph applications that
typically have irregular memory accesses and unpredictable control-flow.
To simplify the programming of graph applications on such platforms,
we have implemented a compiler called Abelian that translates shared-
memory descriptions of graph algorithms written in the Galois program-
ming model into efficient code for distributed-memory platforms with
heterogeneous processors. The compiler manages inter-device synchro-
nization and communication while leveraging state-of-the-art compilers
for generating device-specific code. The experimental results show that
the novel communication optimizations in the Abelian compiler reduce
the volume of communication by 23×, enabling the code produced by
Abelian to match the performance of handwritten distributed CPU and
GPU programs that use the same runtime. The programs produced by
Abelian for distributed CPUs are roughly 2.4× faster than those in the
Gemini system, a third-party distributed CPU-only system, demonstrat-
ing that Abelian can manage heterogeneity and distributed-memory suc-
cessfully while generating high-performance code.

Keywords: Graph analytics · Heterogeneous computing
Distributed computing · Compilers · High performance computing

1 Introduction

Graph analytics systems must handle very large data-sets with billions of nodes
and trillions of edges [16]. Graphs of this size are too big to fit into the memory
of a single machine, so one approach is to use distributed-memory clusters con-
sisting of multicore processors. Writing efficient distributed-memory programs
can be difficult, so a number of frameworks and libraries such as Pregel [18],
PowerGraph [12], and Gemini [33], have been developed to ease the burden of
writing graph analytics applications for such machines. New trends in proces-
sor architecture have made this programming problem much more difficult. To

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 249–264, 2018.
https://doi.org/10.1007/978-3-319-96983-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_18&domain=pdf

250 G. Gill et al.

reduce energy consumption, computer manufacturers are turning to heteroge-
neous processor architectures in which each machine has a multicore proces-
sor and GPUs or FPGAs. To exploit such platforms, we must tackle the twin
challenges of processor heterogeneity and distributed-memory computing. Frame-
works like Lux [15] and Gluon [10] permit graph analytics applications writers
to use distributed GPUs, but they require writing platform-specific programs
that are not portable.

Ideally, we would have a compiler that takes single-source, high-level speci-
fications of graph analytics algorithms and automatically translates them into
distributed, heterogeneous implementations while optimizing them for diverse
processor architectures. This paper describes such a compiler, called Abelian.
Application programs are generalized vertex programs written in the Galois
programming model, which provides programming patterns and data structures
to support graph applications [20]. Section 2 describes this programming model
in more detail. The Abelian compiler, described in Sect. 3, targets the Gluon
runtime [10], which implements bulk-synchronous execution. Unlike other sys-
tems in this space, this runtime supports a number of graph partitioning policies
including edge-cuts and vertex-cuts, and the programmer can choose any of these
policies. The compiler exploits domain-knowledge to generate distributed code,
inserting optimized communication code. Back-end compilers generate optimized
code for NUMA multi-cores and GPUs from the output of Abelian.

The experimental results presented in Sect. 4 show that the communica-
tion optimizations in Abelian reduce communication volume by 23×, enabling
Abelian-generated implementations to match the performance of hand-tuned
distributed-CPU and distributed-GPU programs on the same platform. In addi-
tion, the distributed-CPU implementations produced by Abelian yield a geomet-
ric mean speedup of 2.4× over those in the stand-alone distributed-CPU system
Gemini [33] on the same hardware. This shows that the flexibility of Abelian
in compiling a high-level, shared-memory, single address space specification for
heterogeneous and distributed-memory architectures does not come at the cost
of performance, even when compared to integrated, homogeneous systems.

2 Programming Model

The Abelian compiler supports a generalized vertex programming model [12,
18,33] that is a restriction of the Galois programming model [20,24]. Nodes
and edges of the graph have labels that are updated iteratively by the program
until some quiescence condition is reached. Updating of labels is performed by
applying operators to active nodes in the graph; this is called an activity. A
push-style operator uses the label of the active node to conditionally update
the labels of immediate neighbors of that node while a pull-style operator reads
the labels of the immediate neighbors and conditionally updates the label of the
active node.

Abelian: A Compiler for Graph Analytics 251

Abelian supports more general operators than other systems in this space. In
particular, an operator is allowed to update the labels of both the active node and
its immediate neighbors, which is useful for applications like matrix completion
using stochastic gradient descent. In addition, Abelian does not require updates
to node labels to be reduction operations. For example, k-core decomposition
evaluated in Sect. 4 uses subtraction on node labels.

In addition to the operator, the programmer must specify how active nodes
are found in the graph [19]. The simplest approach is to execute the program
in rounds and apply the operator to every node in each round. The order in
which nodes are visited is unspecified, and the implementation is free to choose
whatever order is convenient. These topology-driven algorithms [24] terminate
when a global quiescence condition is reached. The Bellman-Ford algorithm for
single-source shortest-path (sssp) is an example.

An alternative strategy is to track active nodes in the graph and apply the
operator only to those nodes, which potentially creates new active nodes. These
data-driven algorithms [24] terminate when there are no more active nodes in
the graph. As before, the order in which active nodes are to be processed is
left unspecified, and the implementation is free to choose whatever order is con-
venient. Chaotic relaxation sssp uses this style of execution. Tracking of active
nodes can be implemented by maintaining a work-list of active nodes. Alterna-
tively, this can be implemented by marking active nodes in the graph and making
sweeps over the graph, applying the operator only to marked nodes; we call this
approach filtering. Fine-grain synchronization in marking and unmarking nodes
can be avoided by using Jacobi-style iteration with two flags, say current and
next, on each node; in a round, active nodes whose current flag is set are pro-
cessed, and if a node becomes active in that round, its next flag is set using
an ordinary write operation. The roles of these flags are exchanged at the end
of each round. In our programming model, data-driven algorithms are written
using work-lists, but the compiler transforms the code to use a filtering imple-
mentation. The correctness of this transformation is ensured by the fact that
active nodes can be processed in any order.

Implementation: This programming model is implemented in C++ using
the Galois library [20]. Figure 1 shows a program for push-style data-driven
algorithm of pagerank. A work-list is used to track active nodes. The
Galois::for each in line 30 populates the work-list initially with all nodes in
the graph and then iterates over it until the work-list is empty. The operator
computes the update to the pagerank of the active node, and it pushes this
update to all neighbors of the active node. If the residual at a neighbor exceeds
some user-specified threshold, that neighbor becomes active and is pushed to the
work-list.

252 G. Gill et al.

The semantics of the Galois::for each iterator permit work-list elements
to be processed in any order. In a parallel implementation of the iterator, each
operator application must appear to have been executed atomically. To ensure
this, the application programmer must use data structures provided in the Galois
library which include graphs, work-lists, and accumulators. This permits the
runtime to manage updates to distributed data structures on heterogeneous
devices and allows the compiler to treat data structures as objects with known
semantics, which enables program optimization and generation of parallel code
from implicitly parallel programs as described in Sect. 3.

Restrictions on Operators: Like in other programming models for graph ana-
lytics [12,15,26,33] and compilers for data-parallel languages [3,27,30], opera-
tors cannot perform I/O operations. They also cannot perform explicit dynamic
memory allocation since some devices (like GPUs) have limited support for this
in their runtimes. The library data structures can perform dynamic storage allo-
cation, but this is done transparently to the programmer.

3 Abelian Compiler

Figure 4 is an overview of how input programs are compiled for execution on
distributed, heterogeneous architectures. The Abelian compiler (implemented as
a source-to-source translation tool based on Clang’s libTooling) analyzes the
patterns of data accesses in operators, restructures programs for execution on
distributed-memory architectures, and inserts code for optimized communica-
tion. The output of the Abelian compiler is a bulk-synchronous parallel C++
program with calls to the Gluon [10] communication runtime (Fig. 3). Gluon
transparently handles the graph partitioning while loading the input graph.
The generated code is independent of the partitioning policy, but the parti-
tioning policy determines which portions of this code are executed. This permits
Gluon’s optimization that exploits structural invariants in partitioning without
recompiling the program. The Abelian compiler also generates IrGL [22] inter-
mediate representation kernels corresponding to each Galois::do all call in the
C++ program and inserts code in the C++ program to switch between calling
the Galois::do all and the corresponding IrGL kernel depending on the config-
uration chosen for the host (these are not shown in Fig. 3 for brevity). The
C++ program and the IrGL intermediate code are then compiled using device-
specific compilers. The output executable is parameterized by the graph input,
the partitioning policy, and the number of hosts and their configuration (CPU
or GPU). The user can thus experiment with a variety of partitioning strategies
and heterogeneous devices with a single command-line switch.

Abelian: A Compiler for Graph Analytics 253

1 s t r u c t NodeData{
2 / / d a t a on each node
3 un s i gned i n t nou t ; / / out−deg r e e
4 f l o a t r ank ;
5 s td : : atomic<f l o a t> r e s ; / / r e s i d u a l
6 } ;
7

8 s t r u c t PageRank {
9 Graph∗ g ;

10 PageRank (Graph∗ g) : g (g) {}
11 vo id o p e r a t o r () (GNode s r c ,
12 Wo r k l i s t& wl) {
13 a u t o& sd = g−>ge tDa t a (s r c) ;
14 a u t o r e s o l d =sd . r e s . exchange (0) ;
15 / / app ly r e s i d u a l t o s e l f
16 sd . r ank += r e s o l d ;
17 a u t o d e l t a = r e s o l d ∗ a l ph a / sd . nou t ;
18 f o r (a u t o e : g−>ge tEdges (s r c)) {
19 GNode d s t = g−>ge tEdgeDs t (e) ;
20 a u t o& dd = g−>ge tDa t a (d s t) ;
21 / / upda t e r e s i d u a l o f d e s t
22 dd . r e s += d e l t a ;
23 i f (dd . r e s > t o l e r a n c e) {
24 wl . push (d s t) ;
25 }
26 }
27 }
28 } ;
29

30Galo i s : : f o r each (g , PageRank{g}) ;

Fig. 1. Pagerank source program

1 s t r u c t Add con t r i b {
2 t y p e d e f f l o a t ValTy ;
3 s t a t i c ValTy e x t r a c t (NodeData& node){
4 r e t u r n node . c o n t r i b ;
5 }
6 s t a t i c boo l r educe (NodeData& node ,
7 ValTy y) {
8 add (node . c o n t r i b , y) ;
9 r e t u r n t r u e ;

10 }
11 s t a t i c vo id r e s e t (NodeData& node) {
12 node . c o n t r i b = 0 ;
13 }
14 } ;
15

16 s t r u c t B c a s t c o n t r i b {
17 t y p e d e f f l o a t ValTy ;
18 s t a t i c ValTy e x t r a c t (NodeData& node){
19 r e t u r n node . c o n t r i b ;
20 }
21 s t a t i c vo id s e tV a l (NodeData& node ,
22 ValTy y) {
23 node . c o n t r i b = y ;
24 }
25 } ;

Fig. 2. Compiler-generated
synchronization structures for
field contrib in pagerank

1 s t r u c t NodeData {
2 / / d a t a on each node
3 un s i gned i n t nou t ; / / out−deg r e e
4 f l o a t r ank ;
5 f l o a t r e s ; / / r e s i d u a l
6 / / c omp i l e r added f i e l d
7 s td : : atomic<f l o a t> c o n t r i b ;
8 } ;
9Dis tr ibutedAccumulator work done ;
10 . . . / / f i e l d−s p e c i f i c b i t v e c t o r , f l a g s
11 . . . / / f i e l d−s p e c i f i c sync s t r u c t u r e s
12 s t r u c t PageRank {
13 Graph∗ g ;
14 c o n s t f l o a t &l a l p h a , &l t o l e r a n c e ;
15 . . . / / copy c o n s t r u c t o r f o r members
16 vo id o p e r a t o r () (GNode s r c) {
17 a u t o& sd = g−>ge tDa t a (s r c) ;
18 i f (sd . r e s > l t o l e r a n c e) {
19 work done += 1 ; / / do no t t e rm i n a t e
20 au t o r e s o l d = sd . r e s ;
21 sd . r e s = 0 ;
22 sd . r ank += r e s o l d ;
23 B i t v e c r a n k . s e t (s r c) ;
24 a u t o d e l t a = r e s o l d ∗ l a l p h a / sd . nou t ;
25 f o r (a u t o e : g−>ge tEdges (s r c)) {
26 GNode d s t = g−>ge tEdgeDs t (e) ;
27 a u t o& dd = g−>ge tDa t a (d s t) ;
28 dd . c o n t r i b += d e l t a ;
29 B i t v e c c o n t r i b . s e t (d s t) ;
30 } } }
31 } ;
32 s t r u c t PageRank sp l i tOp {
33 Graph∗ g ;
34 PageRank sp l i tOp (Graph∗ g) : g (g) {}
35 vo id o p e r a t o r () (GNode s r c) {
36 a u t o& sd = g−>ge tDa t a (s r c) ;
37 sd . r e s += sd . c o n t r i b ;
38 B i t v e c r e s . s e t (s r c) ;
39 sd . c o n t r i b = 0 ;
40 }
41 } ;
42 . . . / / 1 s t round f o r a l l nodes i n

i n i t i a l work− l i s t
43 do { / / s u b s e qu en t rounds : p r e d i c a t e−

based f i l t e r
44 work done . r e s e t () ; / / f o r t e rm i n a t i o n
45

46 . . . / / sync r e s i f r e q u i r e d : r e a dS r c
47 Galo i s : : d o a l l (g . g e t S ou r c e s () ,
48 PageRank{&g , a lpha , t o l e r a n c e }) ;
49 F l a g r a n k . s e t w r i t e S r c () ;
50 F l a g c o n t r i b . s e t r e d u c eD s t () ;
51

52 i f (F l a g c o n t r i b . i s r e d u c eD s t ()) {
53 g raph . sync<r educeDs t , r e adS rc ,
54 Add con t r i b , B c a s t c o n t r i b>
55 (B i t v e c c o n t r i b) ; / / e x e cu t e d
56 F l a g c o n t r i b . r e s e t r e d u c eD s t () ;
57 } e l s e i f (F l a g c o n t r i b . i s r e d u c e S r c ()){
58 / / sync c o n t r i b : r educeS rc , r e a dS r c
59 } e l s e { . . . } / / sync c o n t r i b i f r e q u i r e d
60 Galo i s : : d o a l l (g . g e t S ou r c e s () ,
61 PageRank sp l i tOp{&g}) ;
62 F l a g r e s . s e t w r i t e S r c () ;
63} whi l e (work done . r educe ()) ;

Fig. 3. Compiler-generated
pagerank program

254 G. Gill et al.

3.1 Graph-Data Access Analysis

Input

Graph-Data Access Analysis

Restructuring Computation

Inserting Communication

g++
IrGL

OpenCL

Gluon Runtime

LLVM AST

GPU code

Abelian
Compiler

CUDA

Gluon Runtime

CPU code
Sync

Device
Specific

CompilersC++

Galois

Fig. 4. System overview

The access analysis pass analyzes the
fields accessed in an operator. The results
of this analysis are used to insert required
communication code. Field accesses are
classified as follows:

• Reduction: The field is read and
updated using a reduction operation
inside an edge iterator within the
operator (e.g., addition to residual in
line 22 in Fig. 1). This is a common
and important pattern in graph ana-
lytics applications.

• Read: The field is read, and it is not
part of a reduction (e.g., read from
nout in line 17 in Fig. 1).

• Write: The field is written, and it is
not part of a reduction (e.g., write to
rank in line 16, Fig. 1).

In addition, it is useful to abstract the context in which a field access is made.

• At source: The field is accessed at the source node of an edge.
• At destination: The field is accessed at the destination node of an edge.
• At any: The field is accessed at a node independent of any edge or at both

endpoints of an edge.

3.2 Restructuring Computation

The goal of computation restructuring is to bridge the semantic gap between the
programming model, which has a single address space, and the execution model,
which is distributed-memory and bulk-synchronous parallel. The semantics of
Galois iterators permit iterations to be executed in parallel as long as each iter-
ation appears to execute atomically. This fine-grain, iteration-level parallelism
must be converted to round-based, bulk-synchronous parallelism by the Abelian
compiler. This includes eliminating global variables (similar to closure conver-
sion in functional languages) by adding them as members of the structure. This
also requires two key transformations.

Splitting Operators. When active nodes are processed in parallel on a shared-
memory machine, fine-grain synchronization may be needed for correct execu-
tion. This problem appears in a different guise on distributed-memory machines:
if the two active nodes are on different hosts, proxies will be created on both hosts
for the common neighbor, and it is necessary to reconcile the values pushed to

Abelian: A Compiler for Graph Analytics 255

these proxies so that the semantics of the program are respected. The bulk-
synchronous execution model does not permit fine-grain synchronization, so
these kinds of problems must be solved, in general, by breaking up the operator
into phases if necessary and introducing sync calls between phases. There are a
number of cases to consider depending on the type of field access as determined
by the graph-data access analysis. We describe this for one such case.

In the PageRank source code in Fig. 1, the residual field is read (line 14) to
update the rank field (line 16) and written (line 14 using exchange(0)) at the
source, but it is also reduced (line 22) at the destination. Since different hosts
could update the residual, the hosts reading it should have the reduced value.
To handle this, the compiler splits any operator that has such a dependence into
multiple operators (a form of loop fission): one with only Read and Write accesses
to the field and another with only Reduction accesses, as shown in the PageRank
and PageRank splitOp operators (lines 12–41) respectively in Fig. 3. This may
involve introducing new fields to store the intermediate values (e.g., contrib).
The compiler also transforms some non-reduction read-after-write operations
(e.g., subtraction) to equivalent reduction operations (e.g., addition) in a similar
way. After this transformation, sync calls are introduced between the parallel
phases, as described in Sect. 3.3.

Eliminating Work-Lists. The Abelian compiler eliminates work-lists by using
filtering, as explained in Sect. 2: in a given round, all nodes in the graph are
visited and the operator is applied to nodes whose current flag is set. This flag
is reset, and if a node becomes active in that round, its next flag is set; the roles
of the flags are exchanged at the end of each round.

In some algorithms, the predicate used in the source program to push an
active node to the work-list can be used during filtering to check if the node is
active. Extracting this predicate involves a form of loop fission, and it avoids
introducing flags and synchronizing their accesses. For example, in Fig. 1, the
code in lines 23–24 adds active nodes to the work-list. In the generated code,
this is eliminated, and a new operator is created to conditionally activate nodes
as shown in line 18 in Fig. 3. Another operator is created to execute all nodes that
would have been on the initial work-list (line 42). Abelian can also directly take
filter-based implementation of data-driven algorithms as an input, in which case
this transformation is not required. Termination is detected using a distributed
accumulator (lines 19 and 63) provided by Gluon.

3.3 Inserting Communication

The final pass of the Abelian compiler inserts code for communication and syn-
chronization. A simple approach is the following: in each round, every mirror
sends its value to its master where these values are combined, and the result
is broadcast back to all the mirrors. This is essentially the gather-apply-scatter
model used by most systems in this space, and it can be implemented by inserting
a Gluon [10] sync call after each operator for every field that might be updated

256 G. Gill et al.

by that operator. Compilers for heterogeneous systems, such as Falcon [30], Dan-
delion [27], LiquidMetal [3], and DMLL [6], take a similar approach since their
granularity of synchronization is an object or field. This coarse-grained approach
can be seen as a more elaborate version of the write-broadcast cache coherence
protocol used in systems with hardware cache-coherence. Abelian implements
a different, fine-grained communication protocol to reduce the communication
volume: a host sends the value of a field to other hosts only if that field has
been updated in the previous rounds and if this value will be read in the current
round. Static analysis is not adequate to determine these properties, so instru-
mentation code is inserted to track this dynamically. The actual communication
is performed by the Gluon runtime, and it is invoked by inserting sync calls into
the code.

Fine-Grained Communication. In graph analytics applications, each round
typically updates the field of only a small subset of graph nodes. A device-local,
field-specific bit-vector is used to track updates to nodes’ fields that participate
in communication. The analysis pass determines points in the operator where
these fields might be updated, and the compiler inserts instrumentation code at
those points to also update the node’s bit in the bit-vector for that field (lines 23,
29, 38 in Fig. 3). The Gluon sync interface permits this bit-vector to be passed
to the runtime system, which uses it to avoid sending node values that have not
been updated in the current round.

On-Demand Communication. Using the bit-vector ensures only updated
values are communicated, but it does not permit Gluon’s communication opti-
mization that exploits structural invariants in partitioning policies [10]. To do
so, the domain-specific knowledge of abstract write and read locations for the
last reduction access(es) and next read access of the field must be specified,
respectively. If it is unspecified or imprecise, Gluon may conservatively perform
some redundant synchronization. The Abelian compiler can only precisely iden-
tify the abstract locations of fields accessed within an operator and cannot be
precise about the future accesses. Therefore, after an operator, it inserts code
that sets or invalidates the sync-state invalidation flags for fields that could be
written in the operator using its write location (lines 49, 50, 62 in Fig. 3). Before
an operator, it inserts the synchronization structures, as shown in Fig. 2 (equiv-
alent GPU functions generated for a vector of nodes are omitted for brevity),
and the communication code for fields that could be read in the operator (lines
46, 52–59 in Fig. 3). The code checks the field-specific sync-state flags and calls
the Gluon sync routine with the precise write and read locations if the flag is
invalidated.

3.4 Device-Specific Compilers

The Abelian compiler outputs C++ code that can be compiled using existing
compilers like g++ to execute on shared-memory NUMA multicores using the

Abelian: A Compiler for Graph Analytics 257

Galois runtime [20]. A naive translation of this C++ code to CUDA or OpenCL
is not likely to yield high-performance code because it will not exploit SIMD exe-
cution. We instead use the IrGL [22] compiler, which produces highly optimized
CUDA and OpenCL code from an intermediate representation that is intended
for graph applications. This compiler exploits nested parallelism, which is impor-
tant when processing scale-free graphs. To interface with the IrGL compiler, the
Abelian compiler generates IrGL intermediate code, translating data layout of
fields from arrays of structures to structures of arrays.

4 Experimental Results

To evaluate the performance of programs generated by the Abelian compiler,
we studied a number of graph analytical applications: betweenness centrality
(bc), breadth-first search (bfs), connected components (cc), k-core decomposition
(kcore), pagerank (pr), single-source shortest path (sssp), and matrix comple-
tion using stochastic gradient descent (sgd). We specify the programs in Galois
C++: pull-style topology-driven algorithm for pr, push-and-pull-style topology-
driven algorithm for sgd, and push-style work-list-driven algorithms for the rest.
The Abelian compiler analyzes the program, restructures the operators, and
synthesizes precise communication. Unless otherwise noted, all optimizations
are applied in our evaluation, including eliminating work-lists. The programs
work with different partitioning policies. In our evaluation, we choose incoming
edge-cut for pr, cartesian vertex-cut for sgd, and outgoing edge-cut for all other
benchmarks. We have empirically found these policies to work well in practice;
an exhaustive search to find the best policy is outside the scope of this work.

Table 1. Inputs and their key properties
clueweb12 [25] kron30 [17] rmat28 [7] amazon [13]

|V | 978M 1073M 268M 31M

|E| 42,574M 10,791M 4,295M 82.5M

|E|/|V | 44 16 16 2.7

max Dout 7,447 3.2M 4M 44557

max Din 75M 3.2M 0.3M 25366

Table 1 shows the
input graphs we used
along with their prop-
erties. All the CPU
experiments were done
on the Texas Advanced
Computing Center’s [2]
Stampede [28] KNL
Cluster. For GPU experiments, the Bridges [21] supercomputer at the Pitts-
burgh Supercomputing Center [1,29] was used. Table 2 shows the configuration
of these clusters used in our experiments. In all our experiments, we choose the
max-degree node as the source for bc, bfs, and sssp. For kcore, we solve for
k = 100. We present the mean execution time of 3 runs, excluding graph parti-
tioning time. We run pr and sgd for 100 and 50 iterations, respectively; all other
algorithms are run until convergence.

4.1 Comparison with the State-of-the-Art

We compare the with handwritten D-Galois programs for CPU-only systems [10]
and handwritten D-IrGL programs for GPU-only systems [10]. D-Galois and

258 G. Gill et al.

Table 2. Cluster configurations

Stampede (CPU) Bridges (GPU)

NIC Omni-path Omni-path

Machine Intel Xeon Phi KNL 4 NVIDIA Tesla K80s

No. of hosts 32 16

Each host 272 threads 1 Tesla K80

Memory 96GB DDR4 128GB DDR5

Compiler g++ 7.1 g++ 5.3

Table 3. Bridges: execu-
tion time (in seconds) on
16 GPUs for rmat28

D-IrGL Abelian

bc 9.6 9.6

bfs 1.1 1.2

cc 2.6 2.7

kcore 1.5 1.5

pr 32.9 30.5

sssp 2.5 2.5

D-IrGL programs have explicit synchronization specified by the programmer; in
contrast, synchronization in programs produced by the Abelian compiler is intro-
duced automatically by the compiler. However, all these programs use Gluon [10],
a communication substrate that optimizes communication at runtime by exploit-
ing structural and temporal invariants in partitioning (Gluon uses LCI [9] for
message transport between hosts). In addition, D-Galois and Abelian use the
same Galois [20] computation operators on the CPU while D-IrGL and Abelian
use the same IrGL [22] computation kernels on the GPU. Therefore, differences
in performance between Abelian-generated code and D-Galois/D-IrGL code arise
mainly from differences in how synchronization code is inserted by the Abelian
compiler.

Table 4. Stampede: execution time (in seconds) (H: hosts)

Gemini D-Galois Abelian

8H 32H 8H 32H 8H 32H

bc clueweb12 - − OOM 430.4 OOM 437.6

kron30 - − 41.3 27.0 39.7 27.3

bfs clueweb12 OOM 69.9 11.6 9.1 12.0 10.1

kron30 5.1 7.1 5.1 4.0 5.2 4.2

cc clueweb12 39.3 38.8 OOM 16.5 OOM 18.3

kron30 15.8 14.8 7.6 4.6 7.7 4.0

kcore clueweb12 - − OOM 290.4 OOM 289.1

kron30 - − 4.4 3.0 4.5 3.0

pr clueweb12 OOM 257.9 395.1 248.0 402.1 277.4

kron30 245.1 232.4 278.1 221.9 281.0 232.5

sssp clueweb12 OOM 128.3 OOM 14.3 OOM 15.8

kron30 14.0 14.9 9.4 8.2 9.3 8.2

sgd amazon - − 1570.2 701.6 1570.2 696.2

We also compare
Abelian-generated pro-
grams with distributed-
CPU programs written
in the Gemini frame-
work [33] (Gemini does
not have kcore and sgd;
bc in Gemini uses bfs
while that in Abelian
uses sssp, so it is
omitted). Gemini has
explicit communication
messages in the pro-
gramming model, and
it provides a third-
party baseline for our
study.

Tables 3 and 4 show the distributed-GPU and distributed-CPU results.
Abelian programs match the performance of D-Galois and D-IrGL programs;
the difference is not more than 12%. Gemini is 15% faster than Abelian for pr

Abelian: A Compiler for Graph Analytics 259

with kron30 on 8 hosts. In all other cases, Abelian matches or outperforms Gem-
ini. The geometric mean speedup of Abelian over Gemini on 32 KNL hosts is
2.4×. These results show that Abelian is able to compile a high-level, shared-
memory, single address space specification into efficient implementations that
either match or beat the state-of-the-art graph analytics platform. Although
the Abelian compiler produces code for heterogeneous devices, we do not report
numbers for distributed CPU+GPU execution because the 4 GPUs on a node
on Bridges outperform the CPU by a significant margin.

4.2 Impact of Communication Optimizations

We analyze the performance impact of the communication optimizations in
Abelian (Sect. 3.3) by comparing three levels of communication optimization.

1. Unoptimized (UO): the Gluon sync call is inserted for a field after an operator
if it could be updated in that operator. The bit-vector as well as the abstract
write and read locations are left unspecified, so all elements in the field are
synchronized. Existing compilers for heterogeneous systems like Falcon [30],
Dandelion [27], and Liquid Metal [3] do similar field-specific, coarse-grained
synchronization.

2. Fine-grained communication optimization (FG): the compiler instruments the
code to use a bit-vector that dynamically tracks updates to fields. The Gluon
sync call used is the same as in UO, but it only synchronizes the elements in
the field that have been updated using the bit-vector. This is similar to exist-
ing graph analytical frameworks [8,12,33] that synchronize only the updated
elements.

3. Fine-grained and on-demand communication optimization (FO): this (default
of Abelian compiler) uses on-demand communication along with fine-grained
optimization. It instruments invalidation flags to track fields that have been
updated and inserts Gluon sync calls before an operator for fields that could
be read in the operator, thereby precisely identifying both the abstract write
and read locations. This enables Gluon’s communication optimization that
exploits structural invariants in partitioning policies.

We compare these three communication optimization variants with hand-tuned
(HT) programs written in D-Galois and D-IrGL on distributed CPUs and dis-
tributed GPUs respectively. In these programs, the programmer (with global
control-flow knowledge) specified the precise communication using Gluon sync
calls.

Figures 5 and 6 present the comparison results on 32 KNL hosts of Stam-
pede and 16 GPU devices of Bridges respectively. Each bar in the figures shows
the execution time (maximum across hosts). We measure the maximum compu-
tation time across hosts in each round and take their sum, which is the total
computation time (top). The rest of the execution time is non-overlapped com-
munication time (bottom). We also measure the total communication volume
across all rounds, shown in text on the bars.

260 G. Gill et al.

31
86

.8
G

B
14

.2
G

B
10

G
B

10
G

B

21
6G

B
2.

1G
B

1.
5G

B
1.

5G
B

22
9.

9G
B

25
.6

G
B

12
.5

G
B

12
.5

G
B

69
56

.6
G

B
16

.6
G

B
2.

2G
B

2.
2G

B

93
9.

5G
B

22
0.

5G
B

22
0.

5G
B

22
0.

5G
B

23
0G

B
9.

1G
B

6.
8G

B
6.

8G
B

bc bfs cc kcore pr sssp
U

O
FG FO H

T

U
O

FG FO H
T

U
O

FG FO H
T

U
O

FG FO H
T

U
O

FG FO H
T

U
O

FG FO H
T

0

10

20

30

40

50

0

100

200

300

0

500

1000

1500

0

10

20

30

40

50

0

10

20

30

40

50

0

500

1000

1500

Ti
m

e
(s

ec
)

time Computation Non−overlapped Communication

11
89

.6
G

B
10

6.
2G

B
75

.5
G

B
75

.5
G

B

15
8.

6G
B

19
.8

G
B

10
.8

G
B

10
.8

G
B

19
8G

B
33

G
B

21
.4

G
B

21
.4

G
B

16
9.

7G
B

28
.4

G
B

6.
8G

B
6.

8G
B

19
82

.7
G

B
96

4.
7G

B
95

9.
9G

B
96

4.
7G

B 21
8.

1G
B

37
.7

G
B

25
.9

G
B

25
.9

G
B

bc bfs cc kcore pr sssp

U
O

FG FO H
T

U
O

FG FO H
T

U
O

FG FO H
T

U
O

FG FO H
T

U
O

FG FO H
T

U
O

FG FO H
T

0

10

20

30

0

100

200

300

0

5

10

15

0

5

10

15

20

0

5

10

15

20

0

50

100

150

200

Ti
m

e
(s

ec
)

time Computation Non−overlapped Communication

Fig. 5. 32 KNL hosts on Stampede: clueweb12 (left) and kron30 (right). Different vari-
ants are: UnOpt (UO), Fine-Grained opt (FG), Fine-grained+On-demand opt (FO),
Hand-Tuned (HT)

41
5.

7G
B

26
4.

3G
B

23
.8

G
B

23
.8

G
B

45
.5

G
B

9.
9G

B
3.

5G
B

3.
5G

B

15
0.

1G
B

17
.6

G
B

8.
4G

B
8.

4G
B

78
.6

G
B

61
.3

G
B

1.
8G

B
1.

8G
B

30
8.

7G
B

30
7.

1G
B

14
1.

2G
B

14
1.

6G
B

25
3.

3G
B

18
.6

G
B

7.
9G

B
7.

9G
B

bc bfs cc kcore pr sssp

U
O

FG FO H
T

U
O

FG FO H
T

U
O

FG FO H
T

U
O

FG FO H
T

U
O

FG FO H
T

U
O

FG FO H
T

0

2

4

6

0

10

20

30

40

0.0

2.5

5.0

7.5

10.0

0

1

2

3

4

0

1

2

3

4

0

10

20

30

Ti
m

e
(s

ec
)

time Computation Non−overlapped Communication

Fig. 6. 16 GPU devices on Bridges: rmat28

61
.3

G
B

74
.3

G
B

69
.3

G
B

17
93

8.
9G

B

18
.1

G
B

17
.9

G
B

19
.8

G
B

50
81

.6
G

B

14
.2

G
B

10
G

B
10

G
B

31
86

.8
G

B

cvc hvc ec

U
O

FG FO H
T

U
O

FG FO H
T

U
O

FG FO H
T

0

500

1000

1500

0

1000

2000

0

1000

2000

3000

Ti
m

e
(s

ec
)

time Computation Non−overlapped Communication

Fig. 7. 32 KNL hosts on Stampede:
partitionings for bc on clueweb12

The trends are clear in the figure. Each optimization reduces communication
volume and time, improving execution time further. FG significantly reduces
communication volume and time over UO, with the exception of pr. FG performs
atomic updates to the bit-vector, which could be overhead when the updates are
dense, like in pr. FO optimizes the communication volume and time further to
match the performance of HT. FO reduces communication volume by 23× over
UO, yielding a geometric mean execution time speedup of 3.4×. Fine-grained
and on-demand communication optimizations (FO) are thus essential to match
the performance of HT on both CPUs and GPUs.

Abelian compiler-generated programs can support different partitioning poli-
cies, and we study whether they can fully exploit Gluon’s partition-aware opti-
mizations like HT. Figure 7 presents the comparison results for bc on clueweb12
using different partitioning policies namely, cartesian vertex cut [5] (cvc), hybrid
vertex-cut [8] (hvc), and outgoing edge cut (ec). This shows that FO matches
the performance of HT, although FG does not. This shows that the compiler

Abelian: A Compiler for Graph Analytics 261

can capture sufficient domain-specific knowledge to aid the Gluon runtime in
performing partition-aware optimizations.

5 Related Work

Distributed Graph Processing Systems: Many frameworks [8,10,12,15,18,31,33]
exist which provide a runtime to simplify writing distributed graph analytics
algorithms. Like Abelian, these systems use a vertex programming model and
bulk-synchronous parallel (BSP) execution. Abelian is the first compiler that
synthesizes the required communication. Our evaluation shows that the pro-
grams generated by the Abelian compiler that use the Gluon [10] runtime match
hand-tuned programs in the Gluon system and outperform those in the Gem-
ini [33] system.

Single-Host Heterogeneous Graph Processing Systems: There are several frame-
works for graph processing on a single GPU [22], multiple GPUs [4,23,32] and
multiple GPUs with a CPU [11]. All of these are restricted to a single physical
node that connects all devices unlike our system, and consequently, they can-
not handle graphs as large as the ones our system can. Abelian leverages the
throughput optimizations in the IrGL [22] compiler that are essential for perfor-
mance on power-law graphs. Unlike IrGL, which compiles an intermediate-level
program representation to CUDA, the Abelian compiler not only generates this
from a high-level C++ program but also synthesizes synchronization code to
execute the compiled code on multiple devices in multiple hosts.

Compilers for Distributed or Heterogeneous Architectures: Liquid Metal [3] com-
piles the Lime language to heterogeneous CPUs, GPUs, and FPGAs. Dande-
lion [27] compiles high-level LINQ programs to distributed heterogeneous sys-
tems. Green-Marl [14] is a DSL that is compiled to Pregel. Brown et al. [6]
compile a data-parallel intermediate language DMLL to multicores, clusters,
and GPUs. Upadhyay et al. [30] compile a domain-specific language, Falcon, to
Giraph code for CPU clusters and MPI+OpenCL code for GPU clusters, but
it does not do GPU-specific computation restructurings like nested parallelism
which Abelian compiler does using IrGL. In all these compilers, the granularity
of communication is an object or field, whereas Abelian identifies fine-grained
elements of a label-array and communicates them precisely using the Gluon run-
time. Moreover, none of the existing compilers use domain-specific analysis and
computation restructurings for graph analytical applications like Abelian.

6 Conclusions

Abelian is the first graph analytics compiler that can produce high-performance,
distributed, heterogeneous implementations from high-level, shared-memory, sin-
gle address space specification of graph algorithms. It splits operators and elim-
inates work-lists to make the programs bulk-synchronous. The fine-grained, on-
demand communication optimizations in Abelian yield a speedup of 3.4× over

262 G. Gill et al.

field-specific, coarse-grained communication code generated by existing compil-
ers. This enables the generated implementations to match the performance of
hand-tuned implementations for distributed CPUs and distributed GPUs in the
state-of-the-art Gluon system using the same computation engines on the same
hardware. The distributed-CPU implementations produced by Abelian also yield
a geometric mean speedup of 2.4× over programs in the distributed CPU-only
system Gemini on the same hardware. This shows that the Abelian compiler
can manage heterogeneity and distributed-memory successfully while generat-
ing high-performance code, even in comparison to homogeneous systems.

Acknowledgments. This research was supported by NSF grants 1337217, 1337281,
1406355, 1618425, 1725322 and by DARPA contracts FA8750-16-2-0004 and FA8650-
15-C-7563. This work used XSEDE grant ACI-1548562 through allocation TG-
CIE170005. We used the Bridges system, supported by NSF award number ACI-
1445606 at the Pittsburgh Supercomputing Center, and the Stampede system at the
Texas Advanced Computing Center at The University of Texas at Austin.

References

1. Pittsburgh Supercomputing Center (PSC) (2018). https://www.psc.edu/
2. Texas Advanced Computing Center (TACC), The University of Texas at Austin

(2018). https://www.tacc.utexas.edu/
3. Auerbach, J., et al.: A compiler and runtime for heterogeneous computing. In: DAC

(2012). https://doi.org/10.1145/2228360.2228411
4. Ben-Nun, T., Sutton, M., Pai, S., Pingali, K.: Groute: An asynchronous multi-

GPU programming model for irregular computations. In: PPoPP (2017). https://
doi.org/10.1145/3018743.3018756

5. Boman, E.G., Devine, K.D., Rajamanickam, S.: Scalable matrix computations on
large scale-free graphs using 2D graph partitioning. In: 2013 SC - International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC), pp. 1–12, November 2013. https://doi.org/10.1145/2503210.2503293

6. Brown, K.J., et al.: Have abstraction and eat performance, too: optimized het-
erogeneous computing with parallel patterns. In: CGO (2016). https://doi.org/10.
1145/2854038.2854042

7. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph
mining, pp. 442–446 (2004). https://doi.org/10.1137/1.9781611972740.43

8. Chen, R., Shi, J., Chen, Y., Chen, H.: PowerLyra: differentiated graph computation
and partitioning on skewed graphs. In: EuroSys (2015). https://doi.org/10.1145/
2741948.2741970

9. Dang, H.V., et al.: A lightweight communication runtime for distributed graph
analytics. In: IPDPS (2018)

10. Dathathri, R., et al.: Gluon: a communication optimizing framework for distributed
heterogeneous graph analytics. In: PLDI (2018)

11. Gharaibeh, A., Beltrão Costa, L., Santos-Neto, E., Ripeanu, M.: A yoke of oxen
and a thousand chickens for heavy lifting graph processing. In: PACT (2012)

12. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: PowerGraph: dis-
tributed graph-parallel computation on natural graphs. In: OSDI (2012). http://
dl.acm.org/citation.cfm?id=2387880.2387883

https://www.psc.edu/
https://www.tacc.utexas.edu/
https://doi.org/10.1145/2228360.2228411
https://doi.org/10.1145/3018743.3018756
https://doi.org/10.1145/3018743.3018756
https://doi.org/10.1145/2503210.2503293
https://doi.org/10.1145/2854038.2854042
https://doi.org/10.1145/2854038.2854042
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1145/2741948.2741970
https://doi.org/10.1145/2741948.2741970
http://dl.acm.org/citation.cfm?id=2387880.2387883
http://dl.acm.org/citation.cfm?id=2387880.2387883

Abelian: A Compiler for Graph Analytics 263

13. He, R., McAuley, J.: Ups and downs: modeling the visual evolution of fashion
trends with one-class collaborative filtering. In: WWW (2016). https://doi.org/10.
1145/2872427.2883037

14. Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-Marl: a DSL for easy and
efficient graph analysis. In: ASPLOS (2012). https://doi.org/10.1145/2150976.
2151013

15. Jia, Z., Kwon, Y., Shipman, G., McCormick, P., Erez, M., Aiken, A.: A distributed
multi-GPU system for fast graph processing. In: Proceedings of VLDB Endowment,
November 2017. https://doi.org/10.14778/3157794.3157799

16. Lenharth, A., Nguyen, D., Pingali, K.: Parallel graph analytics. Commun. ACM
59(5), 78–87 (2016). https://doi.org/10.1145/2901919

17. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., Ghahramani, Z.: Kro-
necker graphs: an approach to modeling networks. J. Mach. Learn. Res. 11, 985–
1042 (2010). http://dl.acm.org/citation.cfm?id=1756006.1756039

18. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: SIGMOD
(2010). https://doi.org/10.1145/1807167.1807184

19. Nasre, R., Burtscher, M., Pingali, K.: Data-driven versus topology-driven irregular
computations on GPUs. In: Proceedings of the 27th IEEE International Parallel
and Distributed Processing Symposium. IPDPS 2013. Springer, London (2013)

20. Nguyen, D., Lenharth, A., Pingali, K.: A lightweight infrastructure for graph ana-
lytics. In: SOSP (2013). https://doi.org/10.1145/2517349.2522739

21. Nystrom, N.A., Levine, M.J., Roskies, R.Z., Scott, J.R.: Bridges: a uniquely flexi-
ble HPC resource for new communities and data analytics. In: Proceedings of the
2015 XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyber-
infrastructure. XSEDE 2015, pp. 30:1–30:8. ACM, New York (2015). https://doi.
org/10.1145/2792745.2792775

22. Pai, S., Pingali, K.: A compiler for throughput optimization of graph algorithms
on GPUs. In: OOPSLA (2016)

23. Pan, Y., Wang, Y., Wu, Y., Yang, C., Owens, J.D.: Multi-GPU graph analytics.
In: IPDPS, May 2017. https://doi.org/10.1109/IPDPS.2017.117

24. Pingali, K., et al.: The TAO of parallelism in algorithms. In: Proceedings of ACM
SIGPLAN Conference on Programming Language Design and Implementation.
PLDI 2011, pp. 12–25 (2011). https://doi.org/10.1145/1993498.1993501

25. The Lemur Project: The clueweb12 dataset (2013). http://lemurproject.org/
clueweb12/

26. Prountzos, D., Manevich, R., Pingali, K.: Synthesizing parallel graph programs
via automated planning. In: Programming Language Design and Implementation.
PLDI 2015 (2015)

27. Rossbach, C.J., Yu, Y., Currey, J., Martin, J.P., Fetterly, D.: Dandelion: a compiler
and runtime for heterogeneous systems. In: SOSP (2013). https://doi.org/10.1145/
2517349.2522715

28. Stanzione, D., et al.: Stampede 2: the evolution of an XSEDE supercomputer. In:
Proceedings of the Practice and Experience in Advanced Research Computing 2017
on Sustainability, Success and Impact, pp. 15:1–15:8. PEARC17. ACM, New York
(2017). https://doi.org/10.1145/3093338.3093385

29. Towns, J., et al.: XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16(5),
62–74 (2014)

30. Upadhyay, N., Patel, P., Cheramangalath, U., Srikant, Y.N.: Large scale graph
processing in a distributed environment. In: Heras, D.B., Bougé, L. (eds.) Euro-
Par 2017. LNCS, vol. 10659, pp. 465–477. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-75178-8 38

https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2150976.2151013
https://doi.org/10.1145/2150976.2151013
https://doi.org/10.14778/3157794.3157799
https://doi.org/10.1145/2901919
http://dl.acm.org/citation.cfm?id=1756006.1756039
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1145/2792745.2792775
https://doi.org/10.1145/2792745.2792775
https://doi.org/10.1109/IPDPS.2017.117
https://doi.org/10.1145/1993498.1993501
http://lemurproject.org/clueweb12/
http://lemurproject.org/clueweb12/
https://doi.org/10.1145/2517349.2522715
https://doi.org/10.1145/2517349.2522715
https://doi.org/10.1145/3093338.3093385
https://doi.org/10.1007/978-3-319-75178-8_38
https://doi.org/10.1007/978-3-319-75178-8_38

264 G. Gill et al.

31. Xin, R.S., Gonzalez, J.E., Franklin, M.J., Stoica, I.: GraphX: a resilient distributed
graph system on spark. In: GRADES (2013)

32. Zhong, J., He, B.: Medusa: simplified graph processing on GPUs. IEEE TPDS
(2014). https://doi.org/10.1109/TPDS.2013.111

33. Zhu, X., Chen, W., Zheng, W., Ma, X.: Gemini: a computation-centric dis-
tributed graph processing system. In: OSDI (2016). http://dl.acm.org/citation.
cfm?id=3026877.3026901

https://doi.org/10.1109/TPDS.2013.111
http://dl.acm.org/citation.cfm?id=3026877.3026901
http://dl.acm.org/citation.cfm?id=3026877.3026901

Using Dynamic Compilation to Achieve
Ninja Performance for CNN Training

on Many-Core Processors

Ankush Mandal1(B), Rajkishore Barik2, and Vivek Sarkar1

1 Georgia Institute of Technology, Atlanta, GA 30332, USA
{ankush,vsarkar}@gatech.edu

2 Uber Technologies Inc., San Francisco, USA
rajbarik@uber.com

Abstract. Convolutional Neural Networks (CNNs) represent a class of
Deep Neural Networks that is growing in importance due to their state-
of-the-art performance in pattern recognition tasks in various domains,
including image recognition, speech recognition, and natural language
processing. However, CNNs are very time consuming to train due to the
computationally intensive nature of their convolution operations. Typ-
ically, a convolution operation is exposed as a library API that dupli-
cates and reorganizes input tensors under-the-hood in order to leverage
existing matrix-matrix multiplication (GEMM) BLAS routines. Unfor-
tunately, this widely-used approach suffers not only from memory expan-
sion but also from memory bandwidth limitations. Moreover, although
there has been a significant amount of past work on optimizing CNNs on
GPUs, those approaches are not directly applicable to many-core CPU
platforms such as Intel Xeon Phi.

In this paper, we show how a novel dynamic code generation approach
can be used to implement convolution on Intel Knights Landing systems
with AVX-512 support, so as to obtain order-of-magnitude performance
improvements compared to the GEMM-based approach. Moreover, our
approach gives robust performance across different convolution layers
of the state-of-the-art CNNs, such as AlexNet, GoogleNetV1, Overfeat,
and Vgga. The methods in this paper should be applicable to future
many-core CPU platforms with vector lengths of 512 bits or larger.

Keywords: Direct convolution · KNL · Dynamic code generation

1 Introduction

Concepts from the field of Machine Learning drive many aspects of modern soci-
ety, from social networks to recommendations on e-commerce, and are powering

Rajkishore Barik contributed to this work when he was at Intel Labs, Santa Clara
CA 95054, USA.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 265–278, 2018.
https://doi.org/10.1007/978-3-319-96983-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_19&domain=pdf

266 A. Mandal et al.

an increasing number of consumer products, including cameras, and self-driving
cars. In particular, Deep Learning (DL) has become one of the most critical
technologies, demonstrating equal or even better than human-level performance
for tasks in domains such as object recognition, board games, and speech recog-
nition. This became possible due to two reasons - (1) Deep Neural Networks
(DNNs) can learn features automatically from large datasets and represent com-
plex functions using multiple hidden layers, (2) recent advances in processor
technologies made it possible to satisfy the huge computational requirement
associated with DL.

Although different DNNs aim at different problems, one of the most critical
DL applications today is image recognition [11], and currently, Convolution Neu-
ral Network (CNN) is the state-of-the-art DNN for image recognition. A CNN
consists of multiple hidden layers, and among these layers, the core of a CNN is
the convolution layer. It is also the most computationally expensive layer [1] of
a CNN where it performs a large number of small convolutions. As an abundant
amount of data parallelism is available in the computation of convolution through
many images or mini-batch size and feature maps or channels, massively parallel
architectures such as GPUs, in particular, have been used for training and infer-
ence on CNNs. As a consequence, all existing CNN frameworks [2,5,10,12] have
GPU backends that implement convolution layers as libraries using cuDNN [4].
However, recent advancement in many-core CPUs, such as Intel Knights Land-
ing (KNL) [16] with 68–72 cores and AVX-512 support, have made it potentially
capable of delivering significantly high erformance (6TFLOPs for single preci-
sion). Still, many-core CPUs have not been explored much from the perspective
of optimizing CNNs due to several challenges – (a) low-end cores have high
penalties for branches and memory accesses, (b) although vectorization of regu-
lar apps is simple for AVX-512 on KNL, it is extremely difficult to extract peak
performance due to the cores being two issue-wide and at the same time having
two VPUs (it is practically impossible to saturate the issues only with vector
floating point instructions), (b) it is harder to hide memory latency because of
inherent latency oriented design, and (c) cache prefetching plays an important
role in performance but it can be challenging to get right. In order to overcome
these challenges and get near-peak performance, we require very high-quality
code generation.

A widely used approach to implementing convolutions in CNNs is to flatten
the corresponding input data (image2column or im2col operation [3]) and use
standard matrix multiplications (GEMM) on the flattened data. One of the main
reasons behind the popularity of this method is ample availability of optimized
libraries for GEMM operations. While it is easier to implement, this method has
severe drawbacks when aiming for high performance on CPUs. The image flat-
tening step is a data copy and redistribution operation which is purely memory
bandwidth bound. Even though the GEMM computation is highly optimized,
the flattening step acts as a bottleneck and creates a huge performance penalty.
On the other hand, the direct convolution method does not involve the im2col
operation.

Using Dynamic Compilation to Achieve Ninja Performance 267

Even though CNNs provide state-of-the-art accuracy, training CNNs requires
an enormous amount of time and can span several weeks. For example, it
requires 21 days to train GoogleNetV1 [17] with the ImageNet dataset on a
single Nvidia R© K20 GPU [8]. Training on CNNs involves forward propagation
and back-propagation phases. Although our method is applicable for convolu-
tions in all phases, for the purpose of demonstration in this paper, we choose
convolution in back-propagation as a focused candidate problem. We believe
that it is a good candidate problem since it involves a more complex data reuse
pattern than forward propagation. Due to this complex data reuse over the data
it writes to, it is much harder to exploit data reuse in back-propagation, thereby
posing a more challenging optimization problem than the forward propagation
case.

In this work, we leverage the direct convolution approach to avoid the expen-
sive memory operations associated with an im2col operation and to optimize the
convolution in back-propagation. Another critical aspect to consider, when trying
to optimize convolution in CNNs, is that the input parameters for convolution
vary significantly across layers of a CNN and also across different CNNs. Thus,
the parameter values are only known during runtime, making it hard to achieve
good performance through static compilation. In this work, we instead explore
runtime code specialization for optimizing CNNs on many-core CPUs with large
vector lengths.

Our main contributions in this work are:

– For optimizing convolutions in state-of-the-art CNNs, we propose a novel
dynamic code generation approach targeting high performance on Intel’s
Knights Landing architecture. Prior work has shown that it is a daunting
task to extract peak performance on Xeon Phi processors even for regular
matrix-matrix multiplication application [6]. Our research novelty lies in using
a low overhead dynamic code generator to achieve close to possible peak
performance for convolutions on Xeon Phi processors. This code generator
not only performs standard compiler optimizations including register alloca-
tion, loop unrolling, tiling, vectorization, latency hiding, software pipelining,
and software prefetching, but it also specializes generated code based on the
parameters of the convolution operation, which vary widely across layers and
networks.

– As another research contribution, our work debunks the claim that direct
convolution is not a good method when aiming for high performance [4].
Almost all existing approaches in CNNs use GEMM formulation for convolu-
tions, which has performance bottleneck due to a memory bandwidth bound
step. We show that the direct convolution method, with our runtime code
specialization, can achieve order-of-magnitude performance improvement by
avoiding such overhead.

– We provide a thorough performance analysis of our implementation of direct
convolution in back-propagation on KNL for several state-of-the-art CNNs.
We further compare our performance with other leading approaches on KNL,
such as Intel R© MKL-DNN and ZNNPhi.

268 A. Mandal et al.

2 Background

As our work focuses on optimizing the costly convolution operation associated
with the convolution layers, we start with a brief description of it. During a
convolution operation, each output pixel is generated from the weighted sum of a
spatially connected neighborhood of inputs. Specifically, the operation adds each
element of the input image with elements from a defined region after multiplying
all the elements with specific weights from filter data.

Naive code of
direct

convolution

Manually apply
optimizations

Optimized code
of direct

convolution
Abstract out few
innermost loops

to JITer

Kernel with some
outermost loops

+
JITed function call
in the innermost
position using

function pointer

Static compilation
and parallelization

using standard
threading library

Executable

Create
descriptor of
optimization
factors from
parameter

Parameter values
known at runtime

Pass descriptor to JITer
and it returns function
pointer to object code

containing optimized
code sequence for

innermost loops

Execute code with
JITed function call

using function
pointer returned by

JITer

Design Time Compile Time Execution Time

Fig. 1. Pipeline used in our approach

In case of CNNs, we usually perform convolution over a batch of images.
This is termed as batched convolution [4]. A batched convolution deals with
three four-dimensional tensors: I ∈ RNCHW as input image data, O ∈ RNKPQ

as output data, and F ∈ RKCRS as filter data. The input data ranges over N
images in a mini-batch, C input image feature maps, H rows or image height,
W columns or image width. The filter data ranges over K output feature maps,
C input feature maps, R rows or filter height, and S columns or filter width.
A mathematical definition of the convolution operation can be found in [4] and
other references.

One interesting observation regarding the values of the parameters mentioned
above is that they vary significantly across different convolution layers of a CNN
and also across different CNNs. For example, in the case of GoogleNetV1 [17],
the input feature map or channel (C) ranges from 16 to 832. For the same CNN,
the image height (H) and width (W) vary from 224 to 7. Thus, even though
the parallelism in a convolution operation may appear to be straightforward,
efficient exploitation of this parallelism can be very challenging because of the
substantial variation in loop lengths based on the input data. Due to these widely
varying parameter values, it is almost impossible to propose a single optimized
solution for computing the convolution that gives excellent performance in every
scenario. We describe our approach to addressing this challenge in Sect. 3.

Using Dynamic Compilation to Achieve Ninja Performance 269

3 Overview of Our Approach

In this section, we present our novel code generation approach to optimize direct
convolution for parallel execution on KNL. As mentioned in Sects. 1 and 2, the
input parameters for the convolution operation in CNNs vary widely. Moreover,
the dynamic values of these parameters are only known at execution time. Fur-
ther, the computational pattern of the convolution kernel depends on the input
parameter values. For example, when the filter height (R) and width (S) are 5,
the density of arithmetic operations is almost 25 times for image tensors com-
pared to the scenario when R and S are 1. The apparent dependence of the
kernel runtime behavior on dynamic parameter values given at execution time
indicates that achieving good performance through static compilation is very
hard for our problem. So, as a more suitable alternative, we perform runtime
code specialization and adopt a Just-In-Time (JIT) compilation approach1. We
determine the optimization factors from the input parameter values at runtime
and provide our dynamic code generator with such factors to produce highly
optimized code for the kernel. We show in Sect. 6.2 that, from the performance
perspective, our JIT-based method is highly adaptable to a wide range of input
parameter values compared to other-state-of-the-art methods.

Figure 1 gives a high-level overview of our approach. First, we start with
manually applying standard compiler optimizations to the naive code. Then we
take the optimized code and abstract several innermost loops to the JITer. In the
static code segment, we refer to the output of the JITer as a function pointer.
During static compilation of the code, we leverage widely available threading
libraries such as OpenMP for parallelization of the outermost loops. Now, at run-
time, we create a descriptor of optimization factors from the parameter values.
We pass this descriptor to the JITer to produce optimized code for the abstracted
code at runtime. Then JITer creates an in-memory function and returns a pointer
to it. We use this function pointer in the static code segment to execute the JITer
generated code.

Fig. 2. Pseudo code of naive direct convolution for back-propagation

1 For convenience, we will use “JIT” as a shorthand root in words such as “JITer”
and “JITed”.

270 A. Mandal et al.

4 Runtime Code Specialization

To start with, we show a “C” style pseudocode2 of a straightforward, but naive,
implementation of the kernel in Fig. 2. In this section, we discuss the runtime
specialization of this code and separation of code blocks between dynamic code
generation and static compilation.

During the design of our dynamic code generator, we exploit the fact that it
is targeted for domain-specific JIT code generation (that is, it targets CNN com-
putations). This enables us to design and implement a very low overhead JITer
compared to traditional dynamic compilers. At a high level, our JITer can avoid
all the steps of handling generic code in a traditional JITer, and directly proceed
to the assembly code generation phase because we have manually applied all the
high-level optimizations beforehand and know the exact computation sequence
inside the JITer. So, we hardcode the register allocation, loads/stores of data,
fused multiply-add computation, tiling, unrolling, and prefetching process inside
our code generator while the associated factors still depend on the descriptor we
pass to our JITer. For the conversion of the assembly code generated by our JITer
to machine code, we have extended the dynamic assembler from LIBXSMM [7]
which targeted matrix multiplication style applications. Section 5 discusses the
optimizations that we consider for the implementation of our JITer on KNL
architecture and how the input parameter values influence the factors associ-
ated with these optimizations.

After applying the optimizations described in Sect. 5 on the code in Fig. 2,
we determine the partitioning of the kernel between the code that is statically
compiled using standard compilers such as Intel R© ICC and the code that we
generate at runtime. Figure 3 depicts that partition. The idea here is to keep the
overhead of JIT code generation as low as possible. We achieve this by leaving
low-level optimizations and parallelization to a static compiler and amortizing
the cost of JIT code generation over the outermost loops.

Figure 3 also depicts the interface for our dynamic code generator. First,
we create a descriptor (bp desc) of optimization factors depending on the run-
time values of the input parameters. Then we pass the descriptor to our JITer
(bp jit). The JITer generates optimized code using the descriptor and returns
a function pointer (conv bp). We use this function pointer to execute the JITed
code inside the innermost loop that we statically compile (in this case, theoi loop
in line 9). During the descriptor creation, we derive several crucial optimization
factors depending on the input parameter values, such as register blocking fac-
tor, cache blocking factor, which loops to unroll, and how much to prefetch in
each iteration. Additionally, we ensure that the JITed code fits in L1 instruc-
tion cache and that the data footprint of JITed code fits in L1 data cache. This
is important because the penalty for missing L1 caches are multiplied by the
number of outermost loops and effectively becomes quite high.

2 Array accesses appear within “()” instead of “[]” due to the use of macros e.g., A(i,
j, k, l) denotes location A [i*dim2*dim3*dim4 + j*dim3*dim4 + k*dim4 + l].

Using Dynamic Compilation to Achieve Ninja Performance 271

Fig. 3. Partition between static compilation and dynamic code generation

5 Optimizations for KNL Many-Core Architecture

5.1 Key Features to Consider for Code Optimization

The processor under discussion is the second generation Intel Xeon Phi many-
core processor, codenamed Knights Landing (KNL). An architectural overview
of the KNL chip can be found in [16]. The KNL chip features up to 72 out-of-
order Silvermont Atom cores, each with 4 hardware-level hyper-threads. A key
feature of this processor’s microarchitecture is that each core includes two 512-bit
vector processing units (VPUs) for increased SIMD level parallelism, i.e., each
core can start the execution of two 16-wide single precision SIMD instructions
in the same clock cycle. Another important feature of KNL is that it supports
explicit instructions to prefetch data into L1 or L2 caches (via prefetcht0 and
prefetcht2 instructions respectively).

5.2 Fine-Grain Parallelism and Related Optimizations

Data Layout - Needless to say, the large number of on-chip VPUs makes vec-
torization a critical optimization to consider for KNL. Keeping this in mind, we
design the data layouts for the tensors to favor vectorization on x86 systems.
From our domain knowledge, we find that the input feature map, C, and the
output feature map, K, are typically multiples of vector length on x86 architec-
tures. So, we block these dimensions by the vector length and bring the block-
ing factor to the innermost dimension to have contiguous SIMD access for the

272 A. Mandal et al.

tensors. The resulting data layouts are as follows: (a) Input : NCHW −→
NCBI

HWBI , BI = V LEN , (b) Output : NKPQ −→ NKBO
PQBO, BO =

V LEN , and (c) Filter orWeight : KCRS −→ KBO
CBI

RSBOBI .

Vectorization - Following the notations in Fig. 2, we block the ifm loop by a
factor of vector length (BI) and bring that blocking factor loop to the inner-
most position, i.e., after ki loop. Then we vectorize the loop and perform the
computation of the loop with a single fused multiply and add (fmadd) vector
instruction.

Is Vectorization All We Need? - Let’s consider where we are in the per-
formance landscape after vectorization. To get some insight, we present perfor-
mance for convolution layers from Overfeat [14] in Table 1. As we can see, we
gain significant performance improvement over the naive code in Fig. 2 through
vectorization. However, the theoretical peak performance of KNL is 6 TFLOPs
and large HPC-style matrix-multiplication benchmarks (Top500 benchmark [13])
achieve roughly 4.5 TFLOPs on KNL for single precision. This means we are still
a large distance away from the peak performance. So, how can we do better?
The following describes other equally important optimizations for KNL which
improve the performance beyond vectorization, and we finally show in Sect. 6
that we achieve an order-of-magnitude better performance and sometimes, even
close to peak performance (>4 TFLOPs).

Table 1. Performance gain from vectorization (Using 64 threads)

Convolution layer Performance from naive
code (GFLOPs)

Performance from
vectorized code (GFLOPs)

Overfeat CONV2 22.618 267.22

Overfeat CONV3 11.797 180.05

Overfeat CONV4 11.948 169.38

Overfeat CONV5 11.959 174.09

Exploiting Instruction-Level Parallelism - KNL has 32 vector registers per
core. We use these registers for register blocking to increase both instruction-level
parallelism and register reuse. Our input tensor layout is NCBI

HWBI , and we
vectorize along the BI dimension. Therefore, a good candidate for register block-
ing would be the next innermost dimension, i.e., W dimension. Correspondingly,
we perform register blocking along oi loop and bring the blocking factor(BQ)
loop inside ki loop.

Optimizing Vector Load and Stores - Vector loads and stores can be quite
expensive in number of cycles, even when their data resides in L1 cache. It
is therefore important to reduce the number of loads and stores as much as
possible, so as to reduce their overhead, as well as to reduce the number of stalls
in the instruction pipeline. One interesting observation regarding the input access

Using Dynamic Compilation to Achieve Ninja Performance 273

pattern is that we have significant reuse for input values over ki loop when the
stride is 1. We exploit this to gain register reuse for the input tensor. The strategy
is outlined in Fig. 4. Basically, we rotate the logical register indices from one ki

loop iteration to the next iteration. Thus we get significant reuse of physical
registers and effectively reduce the number of loads and stores on input tensor.
To hide load latencies, we use software pipelining to issue loads on the weight
tensor ahead of its usage. The strategy is depicted in Fig. 5.

Fig. 4. Register reuse for input tensor

Fig. 5. Software pipelining for loads on weight tensor

5.3 Thread-Level Parallelism and Optimizations

We use the standard OpenMP R© threading library for multi-threading. To ensure
coarse granularity of work, we use the outermost loops, i.e., img and ifm loops to
exploit thread-level parallelism. We collapse the iteration space of these two loops
and issue a parallel for using the #pragma omp for collapse(2) directive.
As the work inside each ifm iteration is similar, there is no problem of load
imbalance here.

Cache Blocking - We consider improving thread performance through blocking
for L1 Data cache. The output tensor layout is NKBO

PQBO. If we do cache
blocking along BO, we gain spatial locality for the output tensor. Furthermore,
since the input tensor does not depend on BO, we ensure temporal locality for
the input tensor. So, we apply a cache blocking along the ofm loop by a factor
of BO and bring the tiled loop inside the ki loop.

274 A. Mandal et al.

Software Prefetching - KNL supports explicit L1 and L2 cache prefetch
instructions (prefetcht0 and prefetcht2 respectively). We use these instruc-
tions in our dynamic code generator to hide load latencies by bringing data
into cache before their actual usage, while also ensuring that the data are not
prefetched too early so as to be evicted before their usage. Our software prefetch
pipeline is presented in Fig. 6.

JITed Function JITed Function

Will access L
cache lines

starting from
memory address M

Pass pointer to M as
function argument

Time or execution of code

Use prefetching
to bring L cache
lines starting
from pointer
passed as
argument

Executing
Will execute

next

Fig. 6. Software prefetch pipeline to hide load latencies

6 Performance Evaluation

In this section, we evaluate the performance of a C-based implementation of our
method on a single-socket Intel R© Xeon Phi 7250 processor which is equipped
with 68 cores and 16 GB MCDRAM. We used Turbo mode which set the proces-
sor frequency at 1.3 GHz. We also configured the processor with FLAT memory
mode and QUADRANT cluster mode. We keep all the data on MCDRAM using
numactl -membind=1. For multi-threading, we set the number of threads to 64
for all the experiments. We compiled our code with Intel R© C++ Compiler (ICC)
2017 with the “-O2” flag.

For evaluating our approach, we chose four state-of-the-art CNNs, namely
Alexnet [11], Overfeat [14], Vgga [15], and GoogleNet V1 [17]. We get 67 con-
volution layers in total from these CNNs. However, to improve readability, we
present performance results on 12 convolution layers from these CNNs. We tried
to include as diverse parameter values as possible. The parameter values of the
selected convolution layers are presented in Table 2.

6.1 Comparison with GEMM-Based Method

As we can see from Fig. 7, we get an order-of-magnitude performance improve-
ment over GEMM-based method implemented with Intel R© MKL 2018. Moreover,
the figure also supports our hypothesis that the image flattening step (im2col)
required by the GEMM-based methods incurs significant overhead. We see that

Using Dynamic Compilation to Achieve Ninja Performance 275

Table 2. Parameter values for convolution layers

Layers W H N C K R S Pad Stride

Alexnet CONV2 27 27 256 96 256 5 5 2 1

Alexnet CONV4 13 13 256 384 384 3 3 1 1

Overfeat CONV2 28 28 256 96 256 5 5 0 1

Overfeat CONV3 12 12 256 256 512 3 3 1 1

Vgga CONV2 112 112 128 64 128 3 3 1 1

Vgga CONV3 56 56 128 128 256 3 3 1 1

Googlenetv1 CONV4 28 28 128 192 64 1 1 0 1

Googlenetv1 CONV17 14 14 128 96 208 3 3 1 1

Googlenetv1 CONV18 14 14 128 480 16 1 1 0 1

Googlenetv1 CONV25 14 14 128 32 64 5 5 2 1

Googlenetv1 CONV41 7 7 128 160 320 3 3 1 1

Googlenetv1 CONV49 7 7 128 48 128 5 5 2 1

the FLOPs measured for only the GEMM operation is much higher than the
effective FLOPs for the method. Hence, our work shows that direct convolution
method can achieve much higher performance over GEMM-based approach by
avoiding memory bandwidth bound im2col operation. One thing to note here,
the GEMM operation does not reach very high FLOPs (i.e. >4 TFLOPs) due
to the irregular sizes of matrices.

6.2 Comparison with State-of-the-Art Libraries

To compare our method with other state-of-the-art methods, we present perfor-
mance comparison with Intel R© MKL-DNN [9] and ZNNPhi [18]. Both of them
have optimized the convolution operation for KNL. Figure 8 presents the per-
formance results. It shows that our method gives better performance for all the
convolution layers except for Alexnet CONV2 where MKL-DNN gives the best
performance. It proves the importance of our adaptable runtime code special-
ization which decides the optimization factors depending on the execution time
values of input parameters. We see that even MKL-DNN, a highly optimized
manually tuned library by experts, fails to capture specific scenarios and gives
quite poor performance, for example, Vgga CONV2 and Googlenetv1 CONV18.
On the other hand, ZNNPhi generates several kernels with different values of
the optimization parameters. We only present the best performance achieved
among those kernels. In general, our method gives much better performance
than ZNNPhi except for convolution layers from Vgga where the performance
is similar. Another important advantage of our method is that we do not incur
the overhead of any benchmarking or auto-tuning step involving several kernels
to choose the best one.

276 A. Mandal et al.

Fig. 7. Comparison of the performance in GFLOPS of our Back-Propagation method
with the GEMM-based method implemented using IntelR© MKL 2018. For complete-
ness, we also show the performance of only the GEMM calls.

Fig. 8. Back-propagation: comparison with state-of-the-art libraries

6.3 Overhead of JIT Code Generation

Figure 9 shows an evaluation of the overhead of our dynamic code generation
using the following metric: code generation time as a percentage of the total
execution time for convolution over a mini-batch. In reality, the kernel is exe-
cuted over several iterations during the training step, while JIT code genera-
tion is required only once. Hence, in practice, the cost of JIT code generation is
amortized over multiple executions of the kernel with the same parameter values,
which in most cases is well over 1,000. Nevertheless, even for a single execution,
we see negligible overhead for many convolution layers, especially the ones with
high iteration space. In case of kernels with comparatively low iteration space,
such as Googlenetv1 CONV18 and Googlenetv1 CONV25, we see a discernible

Using Dynamic Compilation to Achieve Ninja Performance 277

Fig. 9. Overhead of JIT code generation as a percentage of the total execution time of
a mini-batch

overhead (but still under 10%) because they have significantly small execution
times (9.6 ms for Googlenetv1 CONV18). However, with amortization from the
number of iterations, this small overhead becomes negligible.

7 Conclusion

Convolution Neural Networks (CNN) are state-of-the-art Deep Neural Networks
for image recognition applications today. The core of these CNNs is the convo-
lution layer, which performs a large number of small convolutions with irregular
dimensions. CNN training requires massive computing power, and it turns out
that the convolution operation is the key performance enabler for CNNs. As a
primary contribution of this work, we propose a novel low overhead dynamic code
generation approach for runtime code specialization based on the input param-
eter values for convolution. We demonstrate that an efficient implementation of
direct convolution in back-propagation using our approach can achieve close to
peak performance in many cases on the Intel Knights Landing (KNL) proces-
sor. Furthermore, we debunk the claim that the direct convolution method is
not suitable for high performance. We show that the direct convolution method,
using our approach, can achieve a significant performance improvement over the
GEMM based method on KNL. Finally, we compare our performance results
with other cutting-edge approaches on KNL, such as MKL-DNN and ZNNPhi
for several convolution layers of state-of-the-art CNNs. The comparison supports
the robustness of our method on performance over a wide range of input param-
eter values. We have released our implementation at https://github.com/hfp/
libxsmm, which is currently used by high-level frameworks such as TensorFlow.

https://github.com/hfp/libxsmm
https://github.com/hfp/libxsmm

278 A. Mandal et al.

References

1. Awan, A.A., et al.: An in-depth performance characterization of CPU- and GPU-
based DNN training on modern architectures. In: Proceedings of the Machine
Learning on HPC Environments. MLHPC 2017, pp. 8:1–8:8 (2017)

2. Bergstra, J., et al.: Theano: a CPU and GPU math compiler in Python. In: Pro-
ceedings of 9th Python in Science Conference, pp. 1–7 (2010)

3. Chellapilla, K., Puri, S., Simard, P.: High performance convolutional neural net-
works for document processing. In: Tenth International Workshop on Frontiers in
Handwriting Recognition. Suvisoft (2006)

4. Chetlur, S., et al.: cuDNN: efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759 (2014)

5. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a matlab-like environment for
machine learning. In: BigLearn, NIPS Workshop, No. EPFL-CONF-192376 (2011)

6. Heinecke, A., et al.: Design and implementation of the linpack benchmark for sin-
gle and multi-node systems based on intel R© xeon phi coprocessor. In: Proceedings
of the 2013 IEEE 27th International Symposium on Parallel and Distributed Pro-
cessing. IPDPS 2013, pp. 126–137 (2013)

7. Heinecke, A., Pabst, H., Henry, G.: LIBXSMM: a high performance library for
small matrix multiplications. In: Poster and Extended Abstract Presented at SC
(2015)

8. Iandola, F.N., et al.: FireCaffe: near-linear acceleration of deep neural network
training on compute clusters. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2592–2600 (2016)

9. Intel: MKL-DNN (2017). https://github.com/01org/mkl-dnn
10. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:

Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–
678 (2014)

11. Krizhevsky, A., et al.: Imagenet classification with deep convolutional neural net-
works. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

12. Martin, A., et al.: TensorFlow: large-scale machine learning on heterogeneous sys-
tems (2015). tensorflow.org

13. Meur, H., et al.: Top500 list, June 2016. https://www.top500.org/
14. Sermanet, P., et al.: Overfeat: integrated recognition, localization and detection

using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)
15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556 (2014)
16. Sodani, A., et al.: Knights landing: second-generation intel xeon phi product. IEEE

Micro 36(2), 34–46 (2016)
17. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
18. Zlateski, A., Seung, H.S.: ZNNPhi (2017). https://github.com/seung-lab/znnphi-

release

http://arxiv.org/abs/1410.0759
https://github.com/01org/mkl-dnn
https://www.tensorflow.org
https://www.top500.org/
http://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1409.1556
https://github.com/seung-lab/znnphi-release
https://github.com/seung-lab/znnphi-release

Parallel and Distributed Data
Management and Analytics

Privacy-Preserving Top-k Query
Processing in Distributed Systems

Sakina Mahboubi(B), Reza Akbarinia, and Patrick Valduriez

INRIA & LIRMM, University of Montpellier, Montpellier, France
sakina.mahboubi@inria.fr

Abstract. We consider a distributed system that stores user sensitive
data across multiple nodes. In this context, we address the problem of
privacy-preserving top-k query processing. We propose a novel system,
called SD-TOPK, that is able to evaluate top-k queries over encrypted
distributed data without needing to decrypt the data in the nodes where
they are stored. We implemented and evaluated our system over syn-
thetic and real databases. The results show excellent performance for
SD-TOPK compared to baseline approaches.

1 Introduction

We consider a distributed system where users can outsource their sensitive data
and issue top-k queries. A top-k query is an important kind of query that allows
the user to get the k data items that are most relevant to the query. The user
data are encrypted (for privacy reasons) and distributed (for performance rea-
sons) across multiple nodes. In this context, we address the problem of privacy-
preserving top-k query processing.

Privacy preserving top-k query processing is critical for many applications
that outsource sensitive data. For example, consider a university that outsources
the students database in a public cloud, in Infrastructure-as-a-Service (IaaS)
mode, with non-trusted nodes. The database is vertically partitioned (for per-
formance reasons) and encrypted. Then, an interesting top-k query over the
encrypted distributed data is the following: return the k students that have the
worst averages in some given courses.

There are different approaches for processing top-k queries over plaintext
(non encrypted) data. One of the best known approaches is TA [6] that works
on sorted lists of attribute values. However, there is no efficient solution capable
of evaluating efficiently top-k queries over encrypted data in distributed systems.

In this paper, we propose a system, called SD-TOPK (Secure Distributed
TOPK), that encrypts and stores user data in a distributed system, and is able
to evaluate top-k queries over the encrypted data. SD-TOPK comes with a novel
top-k query processing algorithm that finds a set of encrypted data that is proven
to contain the top-k data items. This is done without having to decrypt the data
in the nodes where they are stored. In addition, we propose a powerful filtering

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 281–292, 2018.
https://doi.org/10.1007/978-3-319-96983-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_20&domain=pdf

282 S. Mahboubi et al.

algorithm that removes the false positives as much as possible without data
decryption.

We implemented and evaluated the performance of our system over synthetic
and real databases. The results show excellent performance for SD-TOPK com-
pared to TA-based approaches. They show the efficiency of our filtering algorithm
that eliminates almost all false positives in the distributed system, and reduces
significantly the communication cost between the distributed system and the
user.

The rest of this paper is organized as follows. Section 2 gives the problem defi-
nition. Section 3 describes SD-TOPK system. Section 4 presents the performance
evaluation results. Section 5 discusses related work, and Sect. 6 concludes.

2 Problem Definition

In this section, we define the problem which we address.

2.1 Top-k Queries

By a top-k query, the user specifies a number k, and the system should return
the k most relevant answers. The relevance degree of the answers to the query
is determined by a scoring function. A common method for efficient top-k query
processing is to run the algorithms over sorted lists (also called inverted lists)
[6]. Let us define them formally.

Let D be a set of n data items, then the sorted lists are m lists L1, L2, . . . , Lm,
such that each list Li contains every data item d ∈ D in the form of a pair
(id(d), si(d)) where id(d) is the identification of d and si(d) is a value that
denotes the local score (attribute value) of d in Li. The data items in each list
Li are sorted in descending order of their local scores. For example, in a relational
table, each sorted list represents a sorted column of the table where the local
score of a data item is its attribute value in that column.

Let f be a scoring function given by the user in the top-k query. For each
data item d ∈ D an overall score, denoted by ov(d), is calculated by applying
the function f on the local scores of d. Formally, we have ov(d) = f(s1(d), s2
(d), . . . , sm(d)).

The result of a top-k query is the set of k elements that have the highest
overall scores among all elements of the database. In this work, we assume that
the scoring function is in the class of linear functions with positive coefficients
(denoted by LFPC). Formally, a function f is LFPC if f = a1x1 + a2x2 + · · · +
amxm where each coefficient ai ≥ 0 for 1 ≤ i ≤ m. Many functions such as SUM,
COUNT, AVG and MAX are in the class of LFPC functions.

2.2 Distributed System and Adversary Model

We suppose that the sorted lists are stored in the nodes of a distributed system.
We make no specific assumption about the distributed system architecture which

Privacy-Preserving Top-k Query Processing in Distributed Systems 283

can be very general, e.g., a cluster of nodes. Formally, let P be the set of the
nodes in the distributed system. Each sorted list Li is kept in a node p ∈ P . We
call p the owner of Li.

We consider the honest-but-curious adversary model for the nodes of the dis-
tributed system. In this model, the adversary is inquisitive to learn the sensitive
data without introducing any modification in the data or protocols. This model
is widely used in many preserving processing solutions [10].

2.3 Problem Statement

The problem we attack in this paper is top-k query processing over encrypted
data in distributed systems.

Let D be a database composed of n data items. We want to encrypt the data
items contained in D, and store the encrypted data items in a distributed system.
Then, our goal is to develop a distributed algorithm A that given any top-k query
q (including a scoring function f) returns the k data items that have the highest
overall scores with regard to f . This should be done without decrypting the data
items in the nodes of the distributed system, while minimizing the response time
and the communication cost of the query execution.

3 SD-TOPK System

In this section, we present our system, called SD-TOPK, that encrypts and
outsources the user data in a distributed system, and is capable to efficiently
evaluate top-k queries over the distributed encrypted data.

The rest of this section is organized as follows. We first describe the architec-
ture of our outsourcing system. Then, we present our method for encrypting the
data items and storing them in the distributed system. Afterwards, we propose
our algorithm for processing top-k queries over the encrypted data.

3.1 System Architecture

The architecture of our outsourcing system has two main components:

– Trusted client. It is responsible for encrypting the user data, decrypting
the results and controlling the user accesses. The security keys used for data
encryption/decryption are managed by this part of the system. When a query
is issued by a user, the trusted client checks the access rights of the user. If
the user does not have the required rights to see the query results, then her
demand is rejected. Otherwise, the query is transformed to a query that can
be executed over the encrypted data. Note that the trusted client compo-
nent should be installed in a trusted location, e.g., the machine(s) of the
person/organization that outsources the data.

284 S. Mahboubi et al.

– Remote service. It is installed in the nodes of the distributed system, and is
responsible for storing the encrypted data, executing the queries provided by
the trusted client, and returning the results. This component does not keep
any security key, thus cannot decrypt the encrypted data in the distributed
system.

3.2 Data Encryption and Outsourcing

Before outsourcing a database, SD-TOPK creates sorted lists for all important
attributes, i.e., those that may be used in the top-k queries. Then, each sorted
list is partitioned into buckets. There are several methods for partitioning a
sorted list, for example dividing the attribute domain of the list to almost equal
intervals or creating buckets with equal sizes. In the current implementation of
our system, we use the latter method, i.e., we create buckets with almost the
same size where the bucket size is configurable by the system administrator.

Let b1, b2, . . . , bt be the created buckets for a sorted list Lj . Each bucket
bi has a lower bound, denoted by min(bi), and an upper bound, denoted by
max(bi). A data item d is in the bucket bi, if and only if its local score (attribute
value) in the list Lj is between the lower and upper bounds of the bucket, i.e.,
min(bi) ≤ sj(d) < max(bi).

We use two types of encryption schemes (methods) for encrypting the data
item ids and the local scores of the sorted lists: deterministic and probabilis-
tic. With the deterministic scheme, for two equal inputs, the same ciphertexts
(encrypted values) are generated. We use this scheme to encrypt the ID of the
data items. This allows us to have the same encrypted ID for each data item in
all sorted lists.

The probabilistic scheme is used to encrypt the local scores (attribute values)
of data items. With the probabilistic encryption, for the same plaintexts different
ciphertexts are generated, but the decryption function returns the same plaintext
for them. Thus, for example if two data items have the same local scores in a
sorted list, their encrypted scores may be different. The probabilistic encryption
is the strongest type of encryption.

After encrypting the data IDs and local scores of each list Li, the trusted
client puts them in their bucket (chosen based on the local score). Then, the
trusted client sends the buckets of each sorted list to one node in the distributed
system. The buckets are stored in the nodes according to their lower bound
order. However, there is no order for the data items inside each bucket, i.e., the
place of the data items inside each bucket is chosen randomly. This prevents the
nodes to know the order of data items inside the buckets.

3.3 Top-k Query Processing Algorithm

The main idea behind top-k query processing in SD-TOPK is to use the bucket
boundaries and a new technique to decide when to stop reading the encrypted
data from the lists.

Privacy-Preserving Top-k Query Processing in Distributed Systems 285

For each top-k query, one of the nodes of the distributed system performs
the coordination between the nodes to execute the query. We call this node as
coordinator. The coordinator may be the node that initially receives the user’s
query or be randomly chosen among the system nodes.

Let us describe our top-k query processing algorithm. Given a top-k query
with a number k and a scoring function f that is linear with positive coefficients,
i.e., it is in the form of f = a1x1 +a2x2 + · · ·+amxm. SD-TOPK chooses a node
as coordinator, and then the following steps are performed to answer the query:

1. The coordinator broadcasts the query in parallel to the nodes, and asks each
node to return the buckets that contain the k first data items in its list. Each
node returns the encrypted identifier of the first k data items, as well as the
lower bound of their including buckets.

2. For each returned data item d, the coordinator calculates its minimum overall
score defined as follows: ovmin(d) = f(v1(d), v2(d), . . . , vm(d)) where vi(d) is
the lower bound of the bucket that contains d in the list Li. If d has not been
returned to the coordinator by the owner of a list Lj then vj(d) = 0.

3. The coordinator sorts the received data items according to their minimum
overall score, and chooses the data item d′ that has the kth minimum overall
score denoted by δ. Then, it uses the minimum overall score of d′ to calculate
a threshold θ as follows: θ = δ∑m

i=1 ai
where a1, . . . , am are the coefficients in

the scoring function.
4. The coordinator broadcasts θ in parallel to the nodes. Each node returns to

the coordinator the buckets that have upper bounds greater than or equal to
θ.

5. Let Y be the set of all data items that are sent to the coordinator by at least
one node. We call Y the set of candidate items. The coordinator sends the
encrypted id of all data items contained in Y to the nodes, and they return
the encrypted score of each data item contained in Y .

6. Finally, the coordinator returns to the trusted client the candidate items and
their encrypted local scores.

When the trusted client receives the candidate items, it decrypts them using the
secret keys. Then, it calculates for each candidate d its overall score, extracts
the k data items that have the highest overall scores, and returns them to the
user.

The following theorem shows that the output of the above algorithm contains
the encrypted top-k data items.

Theorem 1. Given a top-k query with a scoring function f that is linear with
positive coefficients. Then, the output of the top-k algorithm of SD-TOPK con-
tains the encrypted top-k results.

Proof. Let the scoring function be f = a1x1 + a2x2 + · · · + amxm. Let Y
be the output of the algorithm, i.e., the set of candidate items. To prove the
theorem, it is sufficient to show that each data item d that has not been sent
to the coordinator in the 4th step of the algorithm, has an overall score less

286 S. Mahboubi et al.

than or equal to the overall score of at least k data items in Y . Let θ be the
threshold value that is sent to the nodes in the 4th step of the algorithm. For
each list Li, let si be the local score of d in the list Li. The overall score of d
is computed as ov(d) = a1s1 + · · · + amsm. Since d has not been sent to the
coordinator, from the 4th step of the algorithm we know that si < θ. Thus, we
have ov(d) < a1 × θ + · · · + am × θ =

∑m
i=1 ai × θ. From the 3rd step of the

algorithm, we know that θ = δ∑m
i=1 ai

. Thus, we have ov(d) < δ. In other words,
the overall score of d is less than the minimum overall score of the data item d′

that is the kth data item found in the 3rd step of the algorithm. Therefor, the
overall score of d is less than at least k data items found by the top-k algorithm
of SD-TOPK, so d cannot be among the top-k results. ��

In the set Y returned by the above algorithm, in addition to the top-k results
there may be false positives. Below, we propose a filtering algorithm to eliminate
most of them in the distributed system, without decrypting the data items.

Given the set of candidate data items Y , the filtering algorithm executed by
the coordinator proceeds as follows:

1. Calculate the minimum overall score of all candidate data items, sort them
according to their minimum overall score, and take the kth minimum overall
score denoted by δ2.

2. Calculate the maximum overall score of all candidate data items, and elimi-
nate those with maximum overall score less than < δ2. The maximum overall
score of a data item d is computed as follows: ovmax(d) = f(v1(d), v2(d)
, ..., vm(d)) where vi(d) is the upper bound of the bucket that contains d in
the list Li. If d has not been returned to the coordinator by the node that
keeps Li then vi(d) is equal to the lower bound of the last bucket received
from that node.

The above algorithm eliminates almost all false positives (see the experimen-
tal results on filtering rate in Sect. 4), and by doing that it improves significantly
the response time of the queries because the eliminated false positives do not
need to be communicated to the trusted client and should not be decrypted.

To strengthen the security of our system, we obfuscate the bucket boundaries
as follows. We choose two random numbers a and c. These numbers are kept
secret in the trusted client. Before sending the encrypted database to the nodes
of the distributed system, the trusted client multiplies the lower (and upper)
bounds of buckets by a secret number a, and then adds the secret number c to
the result. These obfuscated bucket boundaries are sent to the nodes together
with the encrypted IDs and scores.

4 Performance Evaluation

In this section, we first describe the experimental setup, and then report the
results of our experiments.

Privacy-Preserving Top-k Query Processing in Distributed Systems 287

4.1 Setup

We implemented SD-TOPK and performed experiments on real and synthetic
datasets. As in some previous work on privacy (e.g., [10]), we use the Gowalla
database, which is a location-based social networking dataset collected from users
locations. The database contains 6 million tuples where each tuple represents
user number, time, user geographic position, etc. In our experiments, we are
interested in the attribute time, which is the second value in each tuple. As
in [10], we decomposed this attribute into 6 attributes (year, month, day, hour,
minute, second), and then created a database with the values of those attributes.
In addition to the real dataset, we have also generated random datasets using
uniform and Gaussian distributions.

We compared SD-TOPK with two algorithms based on the TA algorithm
[6]: Remote-TA and Block-TA. In Remote-TA, the trusted client retrieves the
encrypted data from the sorted lists of the distributed system one by one using
sorted access, and for each retrieved data d, it retrieves the encrypted local
scores of d from the other lists, decrypts the read local scores, computes the
TA threshold, and checks if it can stop or not (as in TA). Block-TA is like
Remote-TA, except that the encrypted data items are read block by block. For
the TA-based algorithms, we sort the encrypted data items in each list based on
their initial order (i.e., their order in plaintext).

In the experiments, the number of nodes is equal to the number of lists, i.e.,
each node stores one of the lists. The coordinator of SD-TOPK is one of the
nodes of the system (randomly chosen).

We study the effect of several parameters: (1) n: the number of data items in
the database; (2) m: the number of lists; (3) k: the number of required top items;
(4) bsize: the number of data items in the buckets (or blocks) in SD-TOPK and
Block-TA. The default value for n is 2M items. Unless otherwise specified, m is 5,
k is 50, and bsize is 10. The default database is the synthetic uniform database,
and the latency of the messages is around 50 ms.

To evaluate the performance of SD-TOPK, we measured the following met-
rics:

– Response time: includes top-k query processing time, communication time,
filtering time, and the result post-processing time (e.g., decryption).

– Filtering rate: the number of false positives eliminated by the filtering algo-
rithm in the distributed system.

– Communication cost: we measure two metrics: (1) the number of mes-
sages communicated between the nodes to answer a top-k query; (2) the total
number of bytes communicated to answer a top-k query.

4.2 Effect of Database Size

In this section, we compare the response time of SD-TOPK, Remote-TA and
Block-TA, while varying the number of data items, i.e., n.

288 S. Mahboubi et al.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 6 7 8 9 10 15 20 100

R
es

po
ns

e
tim

e
(s

)

n (x1000)

SD-TOPK
Block TA

Remote TA

Fig. 1. Response time vs. number of
database tuples

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1 2 3 4 5 6 7

R
es

po
ns

e
tim

e
(s

)

m (list)

SD-TOPK
Block TA

Remote TA

Fig. 2. Response time vs. number of
lists

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90 100 110

R
es

po
ns

e
tim

e
(s

)

k

SD-TOPK

Fig. 3. Response time vs. k

 0.1

 1

 10

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 6 7 8 9 10 15 20 100

N
um

be
r

of
 m

es
sa

ge
s

n (x1000)

SD-TOPK
Block TA

Remote TA

Fig. 4. Number of communicated mes-
sages vs. number of database tuples

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1x109

 6 7 8 9 10 15 20 100

C
om

m
un

ic
at

ed
 d

at
a

si
ze

 (
by

te
)

n (x1000)

SD-TOPK
Block TA

Remote TA

Fig. 5. Size of communicated data (in
bytes) vs. number of database tuples

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 20 50 100 250 500 1000

R
es

po
ns

e
tim

e
(s

)

Bucket size

SD-TOPK

Fig. 6. Response time vs. bucket size

Privacy-Preserving Top-k Query Processing in Distributed Systems 289

Figure 1 shows how response time evolves, with increasing n, while the other
parameters are set as default values described in Sect. 4. Note that the results are
shown in logarithmic scale. The response time of all approaches increases with
increasing the database size. SD-TOPK is the best; its response time is at least
two orders of magnitude better than the other algorithms. This high difference
between SD-TOPK and TA-based algorithms is mainly due to the high number
of encrypted data items that should be decrypted by TA-based algorithms in
trusted client, and also the messages needed for communicating them. Block-TA
performs better than Remote-TA, because of reading the lists in blocks, thus it
needs less number of messages.

4.3 Effect of the Number of Lists

Figure 2 shows the response time of SD-TOPK and TA-based algorithms when
varying m (i.e., the number of attributes in the scoring function), and the other
parameters set as default values. We observe that the response time of SD-TOPK
increases slightly comparing to Remote-TA and Block-TA when the number of
lists increases. The reason is that when we increase the number of lists, more
data (sent by the nodes) should be processed by the coordinator for finding the
candidate items.

4.4 Effect of k

Figure 3 shows the response times of SD-TOPK with increasing k, and the other
parameters set as default values. We observe that with increasing k the response
time increases slightly. The reason is that when k increases, SD-TOPK needs
to get more data items from the list owner nodes in each step. In addition,
increasing k augments the number of data items that the trusted client needs to
decrypt (because at least k data items are decrypted by the trusted client).

4.5 Effect of Bucket Size

Figure 6 reports the response time of SD-TOPK when varying the size of buckets,
and the other parameters set as default values. We observe that the response time
increases slightly when the bucket size increases. The reason is that increasing the
bucket size increases the number of data items to be considered in the different
steps of SD-TOP algorithm. It also increases the number of false positives to be
removed by the filtering algorithm.

4.6 Communication Cost

We measure the communication cost of SD-TOPK, Remote-TA and Block-TA
in terms of the total number of messages exchanged between the different nodes
of the distributed system and the size of the exchanged data.

Figure 4 shows the number of communicated messages while increasing the
number of tuples and fixing the other parameters to the default values. We

290 S. Mahboubi et al.

observe that SD-TOPK needs to exchange a small number of messages comparing
to the others approaches. The reason is that SD-TOPK runs in only some rounds
of communication, and does not depend on the database size. But for the TA-
based algorithms, the number of messages depends on the position where they
stop in the lists, and that position depends on the database size.

Figure 5 illustrates the size of the communicated data in bytes, while increas-
ing the number of tuples in the database and setting the other parameters to the
default values. We note that the size of the communicated data increases with
the database size. The amount of data transferred by SD-TOPK is less than that
of Remote-TA and Block-TA. The reason is that SD-TOPK uses the obfuscated
bucket boundaries to check the top-k data items and these boundaries have a
size less than the encrypted scores used by other algorithms.

4.7 Filtering Rate

We study the efficiency of the filtering algorithm of SD-TOPK by using different
datasets. The results are shown in Table 1. The results show that the filtering
algorithm is very efficient over all the tested datasets. However, there is a lit-
tle difference in the filtering rates because of the local score distributions. For
example, in the Gaussian distribution, the local scores of many data items are
very close to each other, thus the filtering rate decreases in this dataset.

Table 1. False positive elimination by the filtering algorithm of SD-TOPK over dif-
ferent databases

Uniform dataset Real dataset Gaussian dataset

Filtering rate 100% 99.995% 99.991%

5 Related Work

In the literature, there has been some research work to process keyword queries
over encrypted data, e.g., [2,13]. For example [2,13] propose matching techniques
to search words in encrypted documents. However, the proposed techniques can-
not be used to answer top-k queries. There have been also some solutions pro-
posed for secure kNN similarity search, e.g., [3–5,11,15]. The problem is to find
k points in the search space that are the nearest to a given point. This problem
should not be confused with the top-k problem in which the given scoring func-
tion plays an important role, such that on the same database and with the same
k, if the user changes the scoring function, then the output may change. Thus,
the proposed solutions proposed for kNN cannot deal with the top-k problem.

The bucketization technique (i.e., creating buckets) has been used in the lit-
erature for answering range queries over encrypted data, e.g., [7,8]. For example,
in [8], Hore et al. use this technique, and propose optimal solutions for distribut-
ing the encrypted data in the buckets in order to guarantee a good performance

Privacy-Preserving Top-k Query Processing in Distributed Systems 291

for range queries. In [9], Kim et al. propose an approach for preserving the pri-
vacy of data access patterns during top-k query processing. In [14], Vaidya et al.
propose a privacy preserving method for top-k selection from the data shared
by individuals in a distributed system. Their objective is to avoid disclosing the
data of each node to other nodes. Thus their assumption about the nodes is
different from ours, because they can trust the node that stores the data (this
is why the data are not crypted), but in our system we trust no node of the
distributed system.

CryptDB [12] is a system designed for processing SQL like queries over
encrypted data. It is capable to execute several types of queries, e.g., exact-
match, join and range queries. However, top-k queries are not supported by
CryptDB.

The Three Phase Uniform Threshold (TPUT) [1] is an efficient algorithm to
answer top-k queries in distributed systems. Like our SD-TOPK algorithm, it is
done in few round-trips between the nodes of the distributed system. However,
TPUT can be used only with the queries in which the scoring function is SUM,
whereas our algorithm can be used for a large range of scoring functions. In
addition, our algorithm finds top-k results over encrypted data, while TPUT
can be used only over plaintext data.

In [16], the authors propose an approach for top-k query processing over
encrypted data. The proposed approach assumes the existence of two non-
colluding nodes s1 and s2 in two different clouds. One of the nodes, say s2,
has the decryption keys, and the other one, say s1, stores the data. Top-k query
processing proceeds by using the TA algorithm and accessing the encrypted data
in s1, such that after reading each data in s1, its encrypted local scores are sent
to the node s2 (using a special protocol) where they are decrypted and com-
pared with the TA threshold. Our assumptions about the distributed system
are different. In our solution, we do not need to trust any node, and during the
top-k query processing, we do not decrypt the encrypted data in the nodes of the
system. In addition, the solution in [16] needs a lot of communications between
cloud nodes (i.e., at least two messages for each sorted/random access, which is
even more than the TA-based algorithms compared with SD-TOPK).

6 Conclusion

In this paper, we proposed SD-TOPK, an efficient system that encrypts and out-
sources user data in a distributed system, and is able to evaluate top-k queries
over encrypted data, without decrypting them in the nodes of the system. We
evaluated the performance of our solution over synthetic and real databases.
The results show excellent response time and communication cost for SD-TOPK.
They show that the response time of SD-TOPK can be several order of mag-
nitude better than that of the TA-based algorithms. This is mainly due to its
optimized top-k query processing and filtering algorithms. The results also show
a significant gain in communication cost of SD-TOPK compared to the other
algorithms. They also show the efficiency of the filtering algorithm that elimi-
nates almost all false positives in the distributed system.

292 S. Mahboubi et al.

Acknowledgement. The research leading to these results has received funding from
the European Union’s Horizon 2020 - The EU Framework Programme for Research
and Innovation 2014–2020, under grant agreement No. 732051.

References

1. Cao, P., Wang, Z.: Efficient top-k query calculation in distributed networks. In:
Proceedings of ACM PODC, pp. 206–215 (2004)

2. Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote
encrypted data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005). https://doi.org/10.
1007/11496137 30

3. Choi, S., Ghinita, G., Lim, H.-S., Bertino, E.: Secure kNN query processing in
untrusted cloud environments. IEEE TKDE 26(11), 2818–2831 (2014)

4. Ding, X., Liu, P., Jin, H.: Privacy-preserving multi-keyword top-k similarity search
over encrypted data. IEEE TDSC 99, 1–14 (2017)

5. Elmehdwi, Y., Samanthula, B.K., Jiang, W.: Secure k-nearest neighbor query over
encrypted data in outsourced environments. In: Proceedings of IEEE ICDE, pp.
664–675 (2014)

6. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
J. Comput. Syst. Sci. 66(4), 614–656 (2003)

7. Hore, B., Mehrotra, S., Canim, M., Kantarcioglu, M.: Secure multidimensional
range queries over outsourced data. J. VLDB 21(3), 333–358 (2012)

8. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
In: VLDB, pp. 720–731 (2004)

9. Kim, H.-I., Kim, H.-J., Chang, J.-W.: A privacy-preserving top-k query process-
ing algorithm in the cloud computing. In: Bañares, J.Á., Tserpes, K., Altmann,
J. (eds.) GECON 2016. LNCS, vol. 10382, pp. 277–292. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-61920-0 20

10. Li, R., Liu, A.X., Wang, A.L., Bruhadeshwar, B.: Fast range query processing
with strong privacy protection for cloud computing. In: PVLDB, vol. 7, no. 14, pp.
1953–1964 (2014)

11. Liao, X., Li, J.: Privacy-preserving and secure top-k query in two-tier wireless
sensor network. In: Global Communications Conference (GLOBECOM), pp. 335–
341 (2012)

12. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: process-
ing queries on an encrypted database. Commun. ACM 55(9), 103–111 (2012)

13. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE S&P, pp. 44–55 (2000)

14. Vaidya, J., Clifton, C.: Privacy-preserving top-k queries. In: 21st International
Conference on Data Engineering. ICDE 2005, pp. 545–546 (2005)

15. Wong, W.K., Cheung, D.W.-L., Kao, B., Mamoulis, N.: Secure kNN computation
on encrypted databases. In: ACM SIGMOD, pp. 139–152 (2009)

16. Zhu, H., Meng, X., Kollios, G.: Top-k query processing on encrypted databases
with strong security guarantees. arXiv:1510.05175v2 (2016)

https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/11496137_30
https://doi.org/10.1007/978-3-319-61920-0_20
http://arxiv.org/abs/1510.05175v2

Minimizing Network Traffic
for Distributed Joins Using Lightweight

Locality-Aware Scheduling

Long Cheng1,2(B), John Murphy1, Qingzhi Liu2, Chunliang Hao3,
and Georgios Theodoropoulos4

1 PEL, University College Dublin, Dublin, Ireland
long.cheng@ucd.ie

2 Eindhoven University of Technology, Eindhoven, The Netherlands
3 Institute of Software, CAS, Beijing, China

4 Southern University of Science and Technology, Shenzhen, China

Abstract. Large computing systems such as data centers are becom-
ing the mainstream infrastructures for big data processing. As one of
the key data operators in such scenarios, distributed joins is still chal-
lenging current techniques since it always incurs a significant cost on
network communication. Various advanced approaches have been pro-
posed to improve the performance, however, most of them just focus
on data skew handling, and algorithms designed specifically for commu-
nication reduction have received less attention. Moreover, although the
state-of-the-art technique can minimize network traffic, it provides fine-
grained optimal schedules for all individual join keys, which could result
in obvious overhead. In this paper, we propose a new approach called
LAS (Lightweight Locality-Aware Scheduling), which targets reducing
network communication for large distributed joins in an efficient and
effective manner. We present the detailed design and implementation
of LAS, and conduct an experimental evaluation using large data joins.
Our results show that LAS can effectively reduce scheduling overhead
and achieve comparable performance on network reduction compared to
the state-of-the-art.

1 Introduction

To cope with the growing Big Data from various domains, large systems such
as data centers have been built across the globe to support high-performance
data processing. As one of the core tasks in such scenarios, efficient execution
of distributed data operators such as joins is still challenging current techniques
and systems. The main reason is that these operators are always expensive,
in terms of both network resource consumption and network communication
time. In fact, in recent years, the performance of CPUs has grown much faster
than network bandwidth and, as such, the network becomes a performance bot-
tleneck to computation [1,2]. Therefore, effective strategies on the execution of

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 293–305, 2018.
https://doi.org/10.1007/978-3-319-96983-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_21&domain=pdf

294 L. Cheng et al.

distributed data operators, which can reduce data communication time, becomes
increasingly desirable.

In this work, we focus on one of the most challenging operators – distributed
joins, which is used to facilitate combination of two relations based on a common
key. More specifically, we focus on reducing its network traffic. The main reason is
that any communication reduction in a distributed join will be directly translated
to faster execution, for both low-end and high-end platforms [3]. Moreover, data
systems would also benefit from our design in terms of energy consumption, since
data centers could consume obvious energy on communication links, switching
and aggregation elements.

A typical distributed join implementation contains a data redistribution pro-
cess, which always incurs large amounts of data transferring over networks [4].
Various advanced join approaches have shown that they can effectively reduce
network communication [4,5]. However, they mainly focus on data skew han-
dling, i.e., communication reduction is only considered as a byproduct of their
designs. In comparison, the state-of-the-art track approach [3] is designed specifi-
cally for minimizing network traffic. It provides a fine-grain granularity optimum
on data locality for all input tuples, and thus minimal data communication can
always be achieved. Moreover, the experiments have shown that the method
can significant speed up conventional join approaches. However, the scheduling
process of track is relatively complex, which would make the scheduling itself
costly and thus bring in obvious overhead for the final joins, especially when the
number of keys is large (details see Sect. 2).

To reduce network traffic for distributed joins in an efficient and effective
manner, in this paper, we present a novel algorithm called LAS (Lightweight
Locality-Aware Scheduling). We provide the detailed design and implementation
of LAS in a distributed computing environment and conduct a performance eval-
uation using maximal 100 GB data over up to 128 computing cores (32 nodes).
We summarize the contributions of this work as following:

– We introduce the state-of-the-art scheduling approach for distributed joins
and analyze its possible performance issues in the presence of big datasets.

– We propose LAS, for minimizing network traffic in distributed joins, by incor-
porating efficient and effective strategies on data locality exploration.

– Our experimental results demonstrate that LAS is obviously lightweight and
can achieve comparable performance on network reduction compared to the
state-of-the-art. Moreover, join implementations based on LAS can signifi-
cantly outperform the conventional approaches for large datasets.

The rest of this paper is organized as follows: In Sect. 2, we introduce some
current distributed join approaches and analyze their possible performance
issues. We describe our new method and its implementation in Sect. 3, and
present the experimental evaluation in Sect. 4. We report on related work in
Sect. 5 while we conclude the paper in Sect. 6.

Minimizing Network Traffic for Distributed Joins Using LAS 295

2 Background

In this section, we briefly introduce two basic join approaches and two advanced
techniques. Moreover, we also discuss about their possible performance issues in
terms of network communication.

2.1 Basic Approaches

The redistribution-based and duplication-based joins are the two conventional
distributed join methods. In the former approach, tuples on each node are firstly
partitioned into distinct sets. Then, each set is transferred to a remote node for
final local joins [4]. As the partitioning is usually based on the hash values of join
keys, we refer the method to Hash in the following. An example of the scheme
between two relations R and S is shown in Fig. 1(a). There, tuples are in the
form of 〈k, v〉 pairs, where k is join key and v is payload. Assuming each hash
value is calculated based on the modulus of 5, then all the tuples with key 3 will
be transferred to node 3. If we quantify the cost of network traffic by the number
of tuples transferred to remote nodes, then the cost of Hash is 13. Similarly, as
shown in Fig. 1(b), for a duplication-based case, all the 4 tuples in the small
relation R is duplicated to all the remote nodes, and thus its cost is 16.

From a scheduling perspective, the two approaches have not used any related
techniques: the destination node(s) of a tuple only depends on the hash value
of its join key or the size of the relation it belongs to. These kinds of straight-
forward processing make the two methods far from optimal in terms of network
communication, because transferring all input tuples or broadcasting a relation
over networks is always expensive. Additionally, as a well known issue, the per-
formance of Hash will dramatically decrease in the presence of significant data
skew [4]. We will focus on Hash in the following, as the approach is widely used in
various data applications. In contrast, the duplication-based method is relatively
seldom adopted, except for small-large joins [4].

2.2 Skew Handling Methods

To improve the performance of the conventional approaches, various advanced
techniques have been proposed, and one of them is PRPD (partial redistribution
& partial duplication) [5]. Its main idea is to distinguish skew and non-skew
tuples and handle them in different ways: non-skew tuples are processed by Hash
while the skew ones are based on duplication. As shown in Fig. 2(a), assume the
tuples with key 3 are the skew ones, then the two tuples 〈3, 10〉 and 〈3, 11〉 of R at
node 2 will be broadcast, and the tuples 〈5, 13〉 and 〈8, 12〉 will be redistributed.
Then, the network cost of PRPD is 10, which is smaller than Hash. Moreover,
it should be noticed that all the skew tuples in S are kept locally rather than
being redistributed, and thus the data skew problem in Hash is well addressed.

In terms of data locality scheduling, PRPD only needs to identify the skew
keys of input tuples. This process would be simple and can be done in a quick
way, such as sampling, while the cost of which is always negligible for join time [5].

296 L. Cheng et al.

node0 node1 node2 node3 node4

S

R

(3,1)
(3,2)
(3,3)
(3,4)

(3,5)
(...)
(3,9)

(5,13) (3,10)
(3,11)
(8,12)

(a) redistribution-based (Hash)

node0 node1 node2 node3 node4

S

R

(3,1)
(3,2)
(3,3)
(3,4)

(3,5)
(...)
(3,9)

(5,13) (3,10)
(3,11)
(8,12)

(b) duplication-based

Fig. 1. Two basic data movement approaches in a distributed join.

node0 node1 node2 node3 node4

S

R

(3,1)
(3,2)
(3,3)
(3,4)

(3,5)
(...)
(3,9)

(5,13) (3,10)
(3,11)
(8,12)

(a) prpd-based

node0 node1 node2 node3 node4

S

R

(3,1)
(3,2)
(3,3)
(3,4)

(3,5)
(...)
(3,9)

(5,13) (3,10)
(3,11)
(8,12)

(b) track-based

Fig. 2. Two advanced data movement approaches in a distributed join.

Because of the efficiency of PRPD, the method has been widely used and studied
in various large data systems. However, if we look at the details of PRPD in
Fig. 2(a), we can find that PRPD is not optimal in communication reduction
in two perspectives: (1) part of data transferring is actually unnecessary. For
example, the tuples 〈5, 13〉 and 〈8, 12〉 do not make any contributions to the
join, i.e., their join results are actually empty, but they are scheduled to be
transferred; and (2) some nodes may receive some tuples that they do not really
need. For instance, S does not have any tuples on node 0 and 3, but the two
tuples 〈3, 10〉 and 〈3, 11〉 are scheduled to be duplicated to the two nodes.

2.3 The State-of-the-art

Compared to PRPD, the track approach [3] (referred to Track) is able to mini-
mize network traffic for a distributed join, which can be considered as the state-
of-the-art. The method is based on the complete knowledge of occurrence fre-
quency of each key on each node. As illustrated in Fig. 2(b), based on a global
statistic, Track knows that none of the five nodes has tuples with keys 5 or 8
in S, thus the tuples with these two keys in R, i.e., 〈5, 13〉 and 〈8, 12〉, will be
scheduled to keep locally (and be ignored in later join execution). Moreover, for
the case with key 3, Track only broadcasts the two tuples 〈3, 10〉 and 〈3, 11〉 to
the nodes with matching keys in S, i.e., node 1 and 4. This process is called as
select broadcast, which is different from PRPD that broadcasting to all the nodes
(i.e., full broadcast). After that, Track uses a very smart way, i.e., migration, to
further explore the possibilities on reducing communication traffic. For example,

Minimizing Network Traffic for Distributed Joins Using LAS 297

Track will check whether the cost is decreased, when moving 〈3, 1〉 from node
1 to node 2 with removing the duplication of 〈3, 10〉 and 〈3, 11〉 from node 2
to node 1. In this case, the traffic is indeed decreased, and consequently the
schedule plan will be updated. Following this processing, the final network cost
of Track is 3, which is much smaller than the above approaches.

Track is actually an approach which has extensively used the philosophy of
moving small data chunks instead of large data chunks in a distributed environ-
ment to minimize network traffic. More specifically, it employs of a fine-grained
multi-phase scheduling algorithm to explore data locality in a superlative way,
i.e., per distinct key1. In fact, the global statistic of each key is done in a way
which is very similar to a distributed join over all unique keys. This could be
costly, when the number of unique keys is large. Moreover, different from a sim-
ple join, to record the frequency and location of each distinct key, the pre-join
has to aggregate all the keys in the form of (key, (list[N r], list[N s]), the com-
puting of which could be expensive. In addition to that, the scheduling using
select broadcast and migration (SBM) has to be performed on all the aggregated
(list[N r], list[N s]), which would be also time costly if the number of nodes is
large. All of these could result in obvious overhead for the join execution of
Track. In comparison, as we will show later that LAS is significantly lightweight
and can achieve comparable performance to Track on network reduction.

3 Our Approach

In this section, we present LAS and its implementation in detail. Additionally,
we also discuss about its advantages by the comparison with current techniques.

3.1 The LAS Method

Based on the analysis of the approaches described above, we can see that there is
actually a trade-off between communication reduction and scheduling overhead.
Namely, scheduling leading to less network traffic could have a heavier overhead
in data locality exploration, and vice versa. To reduce network traffic as much
as we can and also in a quick manner for big data joins, we have one core design
principle for LAS: fine granularity optimal scheduling such as Track should only
be applied to a small number of keys which can greatly reduce network traffic,
rather than all the distinct keys.

Following the above principle, we can use a hybrid way to explore data local-
ity for input tuples, i.e., applying Track on the skew tuples and Hash on the
rest ones. The main motivation is that the number of skewed tuples could be
huge, but the number of their unique keys is normally small, and thus they can
be scheduled in a quick way. Moreover, although the number of non-skew keys
is large, Hash can always handle them quickly. This means that such a hybrid
1 Note that here per distinct key means that even though a key in R and a key in S

have the same value, they will be distinguished, i.e., each of them is identified by a
tag like R or S. Later, we will use the term per join key to remove this distinction.

298 L. Cheng et al.

scheduling will be very lightweight. However, since the communication reduction
ability of Hash is weak, the network traffic brought by the hybrid scheduling
could be still high. Taking the case in Fig. 2(b) for example, the non-skew tuples
〈5, 13〉 and 〈8, 12〉 will be transferred, which is actually not necessary.

To improve the above problem, we use a relatively fine-grained method for
the non-skew data from the idea of Track: exploring data locality in a per-key
level. The main difference is that we perform our scheduling based on per join key
rather than per distinct key. Namely, when we count the key appearing frequency,
a key in R and a key in S will be treated as a same key, if they have the same value
(i.e., matching). For the detailed scheduling, we do not distinguish keys from R
and S, thus we do not need to perform any SBM operations. Instead, for each
join key, we just set its destination to a node, which contains the most number of
tuples having the key. We call this processing as a locality-aware operation (LA).
Obviously, LA can greatly simplify the statistic and data locality exploration
operations on each node, compared to Track. In general, the proposed LAS can
be divided into the following three main phases from a global point of view:

– phase 1 : on the basis of identified skew keys, group all input tuples of R and
S into two parts, the skew ones (R′, S′) and non-skew ones (R′′, S′′).

– phase 2 : minimize the network traffic for (R′, S′) use Track [3], i.e., exploring
data locality for each distinct key using select broadcast and migration.

– phase 3 : minimize the network traffic for (R′′, S′′) by exploring data locality
for each join key with a locality-aware way.

Based on LAS, the non-skew tuples 〈5, 13〉 and 〈8, 12〉 in Fig. 2(b) will not
be transferred. The reason is that node 1 has the most number tuples with key
5 and node 2 with 8, and thus the destination nodes of the two tuples will be
assigned to node 1 and node 2 respectively. In this case, the network cost of LAS
is 3, which is much smaller than Hash and PRPD.

3.2 Comparison with Current Approaches

From a scheduling granularity viewpoint, we summarize the differences of the
four techniques Hash, PRPD, Track and LAS, in Table 1. It can be seen that
LAS is based on per-key level scheduling, thus it will be more powerful than Hash
and PRPD on communication reduction. More specifically, LAS has inherited
the advantages from Track so that it can avoid any redundant duplication for
skew data, compared to PRPD. Moreover, for non-skew tuples, LAS also has
tried to explore data locality, instead of just simply redistributing them.

Compared to Track, LAS does not distinguish keys with a same value in R
and S for the non-skew inputs. The used LA operation is much simpler than
SBM, and thus LAS will be more lightweight than Track, especially when the
number of unique keys is large. We have an additional skew quantification process
in LAS. Nevertheless, as we have described in Sect. 2.2, the cost (of sampling)
will be very small. Moreover, although we have used a relatively coarse way to
schedule the non-skew tuples, our approach is still based on per-key, and thus

Minimizing Network Traffic for Distributed Joins Using LAS 299

Table 1. A general comparison of different approaches

Data/Alg. Hash PRPD [5] Track [3] LAS

Skew Chunk, FR Per join key, FB Per distinct key, SBM Per distinct key, SBM

Non-skew Chunk, FR Chunk, FR Per distinct key, SBM Per join key, LA

FR: full redistribut., FB: full broadcast, SBM: select broadcast & migration, LA: locality-aware

Algorithm 1. Implementation of LAS, parallel processing on each node i

Input: Ri, Si, skew
Output: schedule plan Li(key, src, des)

step 1: key statistics
1: initialize dk and jk in Array[Map[int,int]](n)
2: for key ∈ Ri, Si do //record frequency
3: h ← hash(|key|)
4: if key ∈ skew then
5: increase freq of key in dk(h) by 1
6: else
7: increase freq of |key| in jk(h) by 1
8: end if
9: end for
10: for j ← 0..(n − 1) do //send to node j
11: send dk(j), jk(j) to dk r(i), jk r(i) at

node j
12: end for

step 2: locality exploration
13: initialize dk aggr in Map[int,List[Triple]]

and jk aggr in Map[int,List[Pair]]

//aggregation on key
14: for j ← 0..(n − 1), st ∈ dk r(j) do
15: put

(|st.k|, (st.k, j, st.v)) in dk aggr

16: end for
17: for j ← 0..(n − 1), st ∈ jk r(j) do
18: put

(
st.k, (j, st.v)

)
in jk aggr

19: end for
20: for entry ∈ dk aggr do //apply Track
21: apply SBM on entry.v
22: for tr ∈ entry.v do
23: put (tr.1, tr.2, SBM(tr.1)) in Li

24: end for
25: end for
26: for entry ∈ jk aggr do //apply LA
27: get pair P with max. pair.v in entry.v
28: for pair ∈ entry.v do
29: put (entry.k, pair.k, P.k) in Li

30: end for
31: end for

32: collect each Lj

network traffic can still be effectively reduced. In fact, as we will show in our
later evaluation, LAS can achieve comparable performance on communication
reduction to Track, and much better than other methods.

3.3 Parallel Implementation

LAS schedules each key independently, therefore it can be implemented in par-
allel in a distributed computing environment. The parallel implementation of
LAS on each node i is given in Algorithm 1. We assume that we have obtained
the skew keys. Then, the inputs of LAS are the two relations and the skew, and
the output is a schedule plan including the source node and destination node(s)
of each key. In the local statistic process, we count the appearing frequency of
keys in skew and non-skew tuples in a separate way (lines 2–9). The recorded
information is in the form of 〈key, freq〉 pairs, and each pair is collected by a
specified bucket, based on the hash value of the key. We have to distinguish the
keys with the same value but from different relations for the skew data (i.e., per
distinct key). For simplicity, we have added a negative sign to each key from S,
when we read the relation (assume all the input keys are positive integers). In
this condition, when we count the appearing number for the non-skew keys, we
just simply used their absolute values (lines 6–7). After that, similar to a hash

300 L. Cheng et al.

redistribution, each bucket is pushed to the assigned remote node for further
processing (lines 10–12).

Based on the received pairs from each node, the detailed scheduling of LAS
is presented in lines 13–31 of Algorithm 1. All the keys are firstly aggregated, so
that we can get the frequency information of each key on each node. Then, we
perform the SBM operations over the skew data (lines 20–25). For each key in the
non-skew part, we simply scan the aggregated entries and search the node with
the maximal value on freq. Then, the found node will be added into schedule
plan as the destination node for the key (lines 26–31). All the scheduling process
will be ended when the destination(s) of each key from each node is assigned.
For the latter join executions, input tuples will be partitioned based on their
destination nodes and then transferred to remote nodes for local joins.

4 Experimental Evaluation

4.1 Experiment Setup

We evaluate our approach over a cluster located at SUSTech in Shenzhen City
in China. We use 4 CPU cores running at 2.80 GHz for each computing node
with 64 GB of RAM. The nodes are connected by Infiniband, and the operating
system is Linux kernel version 2.6.32-431.

We compare LAS with the widely used Hash and the state-of-the-art Track,
and have implemented the three methods using the programming language
X10 [6], with version 2.3, compiling to C++ with gcc version 4.4.7. The evalu-
ation is implemented on joins between two relations R and S. We fix the car-
dinality of R to 64 million and S to 1 billion records. Following a general way,
we set the data format to 〈key, payload〉 pairs, where each key is an integer. We
assume that R and S meet the foreign key relationship, and thus we only add
skew to S, following the Zipf distribution. As listed in Table 2, besides a uniform
distributed dataset, we have generated another three sets with different degrees
of skew, by varying the Zipf factor from 0.8 to 1.1. It should be noted that joins
with such characteristics and workloads are common in data warehouses [4].

Table 2. Details of test datasets and meanings of used parameters

Data set Skew # unique Top1 Top10 Data set Skew # unique Top1 Top10

DS1 0 250,000,000 0.0% 0.0% DS3 1 46,947,295 4.7% 13.8%

DS2 0.8 136,137,483 0.3% 1.1% DS4 1.1 19,966,276 10.7% 28.7%

X: the number of selected top skew keys, Y: the size of the payload for each tuple

In all our experiments, we set the system parameter X10 NPLACES to the
number of cores. This lets us be able to focus on analyzing the performance
of our approach in distributed computing environments rather than computing

Minimizing Network Traffic for Distributed Joins Using LAS 301

0

20

40

60

80

100

4321

D
at
a
Lo

ca
lit
y
(%

)

Dataset

Hash Track LAS

0

20

40

60

80

100

S
ch

ed
ul
e
Ti
m
e
(s
)

Hash Track LAS

4321
Dataset

Fig. 3. Data locality and scheduling time by varying data skew over 64 cores (16 nodes).

0

20

40

60

80

100

D
at
a
Lo

ca
lit
y
(%

)

Hash Track LAS

128643216
Number of Cores

0

10

20

30

40

50

60

S
ch

ed
ul
e
Ti
m
e
(s
)

Hash Track LAS

128643216
Number of Cores

Fig. 4. Data locality and scheduling time by varying number of cores over skew=1.

with multiple thread parallelism (as each place in X10 can be considered as a
logical node). To capture the precise characteristics of LAS, we manually set the
first top X keys as skewed keys and do not take the actually skew quantification
time into account in our results. As a default, we set X to 4000, and we use 64
cores (16 nodes) and the data set DS3.

4.2 Experimental Results

We measure the efficiency and effectiveness based on three metrics: data local-
ity, scheduling time and join runtime. The first metric indicates the volume of
network traffic, a high data locality indicates a light traffic load on a network.

Vary Data Skew. We run our tests using 64 cores (16 nodes) over the four
different datasets. Figure 3 shows the results of data locality and scheduling
time of each algorithm. There, LAS and Track achieve much higher data locality
than Hash in all the cases, demonstrating the effectiveness of the two approaches
on reducing data communication. Specifically, their data locality is around 92%
when the data is uniform distributed. This means the per-key level strategies can
effectively explore data locality for non-skew tuples, and Hash or current skew
handling techniques such as PRPD [5] have not considered such an optimization.
Moreover, we can observe that the data locality of LAS is generally lower than
Track. However, their results are still in a comparable range. In fact, as shown in
our later results in Fig. 5, this kind of data locality difference can be decreased
by increasing X in LAS. For scheduling time, it can be seen that LAS is always

302 L. Cheng et al.

more lightweight than Track. Moreover, their scheduling time decreases with the
increasing of data skew, the reason is that the number of unique keys decreases.

Vary Number of Nodes. We also test the three approaches over the system
by varying the number of cores from 16 (4 nodes) to 128 over the default dataset.
As shown in Fig. 4, the data locality of LAS and Track are always much higher
than Hash. Although Track transfers less data than LAS, their difference is
decreasing with increasing the number of cores. The possible reason is that the
distribution of keys becomes sparse, and part of skew keys could become not so
skew, and thus the LA operation in LAS starts to perform similarly to the SBM
in Track. For scheduling time, both the LAS and Track decrease with increasing
the number of cores, showing the good scalability of the two algorithms.

Vary Number of Skew Keys. LAS treats skew and non-skew keys in different
ways. To show the impacts of the selected skew keys in our implementations, we
vary the value of X from 1000 to 50000 over the four datasets and present the
results in Fig. 5. There, the data locality for DS1 keeps consistence, due to the
dataset is uniform distributed. For the skew cases, the data locality is increasing
with increasing the number of selected top skew keys. This is because the SBM
operation used for skew keys can provide a more fine-grained control on reducing
network traffic than the LA. In this experiment, we find that the scheduling time
over each data set has only slight changes (in 1 s) with increasing X. The reason
is that the number of selected keys is still much smaller compared to the whole
unique keys. This also means that we can actually set X to 50 K rather than
4 K as a default at least, to keep the data locality differences between LAS and
Track smaller in the results presented in Figs. 3 and 4. For example, the data
locality of LAS can be increased from 55% to 68% for DS3 by changing X from
4 K to 50K, without any increase on the scheduling time.

0 10 20 30 40 50
0

20

40

60

80

100

DS1 DS2 DS3 DS4

D
at
a
Lo

ca
lit
y
(%

)

First Top Keys (k)

Fig. 5. Data locality with different X.

0 20 40 60 80 100
0

50

100

150

200

R
un

tim
e
(s
)

Size of Payload (Byte)

Hash
Track
LAS

Fig. 6. Join comparison with different Y.

Join Performance. We finally compare the join performance of the three
approaches by varying the size of payload Y for all tuples, from 10 Bytes to 100
Bytes. This means that the maximal dataset in size is around 100 GB. For local
join execution, we select the commonly used hash joins, i.e., hash table building
and probing [4]. For each join, we only count the number of matches rather than

Minimizing Network Traffic for Distributed Joins Using LAS 303

materializing the output. Additionally, to avoid the network congestion in data
transferring, we use a simple and efficient round-robin communication pattern in
the joins [4]. The results are shown in Fig. 6. There, joins using LAS and Track
perform better than Hash. However, we notice that when the dataset is small
(e.g., Y = 10), the runtime difference between Hash and LAS (and Track) is
only 20 s. Considering the scheduling time of LAS is 12 s and Track is 29 s, we
believe Hash could be the best choice for joins, when the number of keys is huge
but the whole dataset in size is small. With the increase of Y, the advantages of
LAS and Track become obviously, indicating that these two approaches would
be more suitable for large datasets (in size). Moreover, we can see that LAS
can always achieve similar performance with Track, and their difference is only
15 s when the data reaches 100 GB. Since LAS is around 17 s faster than Track
on scheduling for the case, we believe that LAS would be a better solution for
moderate size datasets (e.g., 100 GB or smaller). It should be noticed that, in
real cases, a system optimizer will be able to get the possible cost of scheduling
and network communication for each approach, and consequently to choose the
best plan for executions. Nevertheless, detailed discussion on how to compute
and compare the cost is outside the scope of this paper.

Brief Summary. In general, LAS has applied per-key strategies on communi-
cation reduction, thus it always transfers much less data over networks than
Hash. Compared to the state-of-the-art Track, LAS has adopted a relatively
coarse-grained operation (i.e., LA) to large number of non-skew keys, and thus
its scheduling is more lightweight, especially when the number of unique keys is
large. From above results, we can see the LAS can always achieve comparable
performance to Track, in terms of data locality and join runtime. In such sce-
narios, we believe that LAS can be considered as a new and efficient solution for
distributed joins in large-scale distributed scenarios.

5 Related Work

Research towards optimizing main-memory joins has already achieved signifi-
cant performance speedups through optimizations over modern processors. Nev-
ertheless, as applications grow, join performance would be limited by the avail-
able computing cores or system memory [4]. The two conventional Hash and
duplication-based methods offer the potential scalability on processing big data.
However, they are far from network-optimal, because transferring all input tuples
or broadcasting a single relation would incur a heavy time-cost. Moreover, Hash
could meet serious load balancing issues when input data is skew.

As data skew is quite common in data applications, various advanced algo-
rithms have been proposed to against join skew [4,5]. The main idea of these
approaches is keeping large number of skew tuples locally instead of transfer-
ring them over networks. This leads to obvious network traffic reduction in
their join executions. However, all these methods focus on skew handling rather
than reducing network traffic, and thus they are still not optimal. For exam-
ple, although the work [4] proposes a fetch on demand method to process skew

304 L. Cheng et al.

tuples, similar to PRPD [5], it has not explored data locality issues for non-skew
data yet. In comparison, LAS provides a more fine-grained scheduling for all
input tuples, and thus it can perform better on communication reduction.

To maximize data-locality, different data partitioning techniques have been
proposed to avoid remote join operations for queries [7]. More generally, var-
ious advanced data placement and replication strategies have been proposed
for data center storage systems to reduce the network overhead for particular
workloads [8,9]. Different from them, we focus on exploring data locality using
online scheduling rather than pre-processing. On the other hand, although the
state-of-the-art Track [3] is able to minimize network traffic, it applies complex
schedules to all join keys, which could lead to heavy overhead in the presence
of big data. In comparison, LAS has used a simpler but effective way to han-
dle input data, and thus LAS is more lightweight. More important, as we have
shown in our experiments, LAS can reduce the network traffic significantly, and
also can achieve comparable performance to Track.

Recent work has tried to optimize network time for distributed joins [10].
However, the optimization problem is NP-complete, making the technique can
not be applied to per-key [3]. Although an efficient heuristic has been proposed
for the optimization [11], its scheduling still performs based on data chunks (i.e.,
partitions) rather than individual keys. In contrast, LAS uses linear scheduling
applied to each join key and thus it is more powerful on communication reduc-
tion. On the other hand, LAS can be used in conjunction with these techniques
to optimize network communication time at a more fine-grained granularity.

6 Conclusions

In this paper, we focus on effective and efficient scheduling techniques to reduce
network traffic for distributed joins. We have discussed the possible performance
issues of current approaches and proposed the LAS algorithm on that basis. We
have described the detailed design and implementation of LAS, and experimen-
tally shown that LAS is lightweight and can achieve comparable performance on
communication reduction, compared to the state-of-the-art. Moreover, we have
also shown that LAS can obviously outperform the conventional approaches such
as Hash in both communication reduction and join runtime. Our future work
mainly lies in extending the proposed scheduling approach in more complex
environments such as mobile and cloud computing systems [12,13].

Acknowledgments. Part of this work was supported by the European Union’s Hori-
zon 2020 research and innovation programme under the Marie Sklodowska-Curie grant
agreement No 799066. The computations were performed on the Inspur TS10K Cluster
at the High Performance Computing Center in SUSTech.

Minimizing Network Traffic for Distributed Joins Using LAS 305

References

1. Greenberg, A., et al.: VL2: a scalable and flexible data center network. Commun.
ACM 54(3), 95–104 (2011)

2. Cheng, L., Wang, Y., Pei, Y., Epema, D.: A coflow-based co-optimization frame-
work for high-performance data analytics. In: ICPP, pp. 392–401 (2017)

3. Polychroniou, O., Sen, R., Ross, K.A.: Track join: distributed joins with minimal
network traffic. In: SIGMOD, pp. 1483–1494 (2014)

4. Cheng, L., Kotoulas, S., Ward, T.E., Theodoropoulos, G.: Improving the robust-
ness and performance of parallel joins over distributed systems. J. Parallel Distrib.
Comput. 109, 310–323 (2017)

5. Xu, Y., Kostamaa, P., Zhou, X., Chen, L.: Handling data skew in parallel joins in
shared-nothing systems. In: SIGMOD, pp. 1043–1052 (2008)

6. Charles, P., et al.: X10: an object-oriented approach to non-uniform cluster com-
puting. ACM SIGPLAN Not. 40(10), 519–538 (2005)

7. Zamanian, E., Binnig, C., Salama, A.: Locality-aware partitioning in parallel
database systems. In: SIGMOD, pp. 17–30 (2015)

8. Yang, Z., et al.: AutoTiering: automatic data placement manager in multi-tier
all-flash datacenter. In: IPCCC, pp. 1–8 (2017)

9. Yang, Z., Wang, J., Evans, D., Mi, N.: AutoReplica: automatic data replica man-
ager in distributed caching and data processing systems. In: IPCCC, pp. 1–6 (2016)

10. Rödiger, W., Muhlbauer, T., Unterbrunner, P., Reiser, A., Kemper, A., Neumann,
T.: Locality-sensitive operators for parallel main-memory database clusters. In:
ICDE, pp. 592–603 (2014)

11. Cheng, L., Li, T.: Efficient data redistribution to speedup big data analytics in
large systems. In: HiPC, pp. 91–100 (2016)

12. Mao, Y., Wang, J., Sheng, B.: Mobile message board: location-based message dis-
semination in wireless ad-hoc networks. In: ICNC, pp. 1–5 (2016)

13. Wang, J., Yao, Y., Mao, Y., Sheng, B., Mi, N.: Fresh: fair and efficient slot config-
uration and scheduling for hadoop clusters. In: CLOUD, pp. 761–768 (2014)

Cluster and Cloud Computing

VIoLET: A Large-Scale Virtual
Environment for Internet of Things

Shreyas Badiger, Shrey Baheti, and Yogesh Simmhan(B)

Indian Institute of Science, Bangalore, India
{shreyasb,shreybaheti,simmhan}@IISc.ac.in

Abstract. IoT deployments have been growing manifold, encompass-
ing sensors, networks, edge, fog and cloud resources. Despite the intense
interest from researchers and practitioners, most do not have access to
large-scale IoT testbeds for validation. Simulation environments that
allow analytical modeling are a poor substitute for evaluating software
platforms or application workloads in realistic computing environments.
Here, we propose VIoLET, a virtual environment for defining and launch-
ing large-scale IoT deployments within cloud VMs. It offers a declarative
model to specify container-based compute resources that match the per-
formance of the native edge, fog and cloud devices using Docker. These
can be inter-connected by complex topologies on which private/public
networks, and bandwidth and latency rules are enforced. Users can con-
figure synthetic sensors for data generation on these devices as well. We
validate VIoLET for deployments with >400 devices and >1500 device-
cores, and show that the virtual IoT environment closely matches the
expected compute and network performance at modest costs. This fills
an important gap between IoT simulators and real deployments.

1 Introduction

Internet of Things (IoT) is expanding rapidly as diverse domains deploy sen-
sors, communication, and gateway infrastructure to support applications such
as smart cities, personalized health, and autonomous vehicles. IoT is also accel-
erating the need for, and the use of edge, fog and cloud resources, in a coordi-
nated manner. The need comes from the availability of large volumes of data
streams that need to be analyzed closer to the edge to conserve bandwidth (e.g.,
video surveillance), or of fast data streams that need to be processed with low
latency [16]. Edge gateway devices such as Raspberry Pi and Smart Phones have
non-trivial resource capabilities, and can run a full Linux stack on 64-bit ARM
processors. Fog devices such as NVidia’s TX1 and Dell’s Edge Gateways have
power-efficient Atom processors or GPUs to support the needs of several edge
devices [3,19]. At the same time, edge and even accelerated fog devices may
not have the elastic and seemingly infinite on-demand resource capacity that is
available in the cloud, and necessary for processing by certain IoT applications.

Besides production deployments of IoT, there is also active research at the
intersection of IoT, and edge, fog and cloud computing that is investigating appli-
cation scheduling, resiliency, big data platforms, and so on [8,9]. However, a key
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 309–324, 2018.
https://doi.org/10.1007/978-3-319-96983-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_22&domain=pdf

310 S. Badiger et al.

gap that exists is the ability to validate these research outcomes on real or real-
istic IoT environments. Research IoT testbeds may have just 10’s of devices, and
simulation environments make too many idealized assumptions and do not allow
actual applications to be deployed. Manually launching and configuring contain-
ers is time consuming and error-prone. Even planning of production deployment
of IoT, edge and fog resources are based on analytical models or simulations,
which may not hold in practice [11,14,18].

What is lacking is a virtualized IoT environment that offers the comput-
ing and network ecosystem of a real deployment without the need to purchase,
configure and deploy the edge, fog and networking devices. Here, we propose
VIoLET, a Large-scale Virtual Environment for Internet of Things. VIoLET
offers several essential features that make it valuable for researchers and plan-
ners. It is a virtualized environment that uses containers to offer comparable
compute resources as edge, fog and cloud, and can run real applications. It
allows the easy definition of diverse network topologies, and imposes bandwidth
and latency limits between containers. VIoLET also allows the definition of vir-
tual sensors that generate data with various distributions within the containers.
It runs on top of cloud VMs or commodity clusters, allowing it to scale to hun-
dreds or thousands of devices, provided cumulative compute capacity is avail-
able on the host machines. All of these help setup and validate an environment
that mimics the behavior of city-scale IoT deployments in a fast, reproducible
and cost-effective manner. VIoLET v1.0 is available for download from https://
github.com/dream-lab/VIoLET.

The rest of this paper is organized as follows. We motivate various require-
ments for VIoLET in Sect. 2, describe its architecture design that meets these
requirements and its implementation in Sect. 3, present results on deploying and
scaling VIoLET for different IoT topologies in Sect. 4, compare it with related
literature and tools in Sect. 5, and finally present our conclusions and future
work in Sect. 6.

2 Design Requirements

Here, we present high-level requirements for a Virtual Environment (VE) like
VIoLET, based on the needs of researchers and developers of applications, plat-
forms and runtime environments for IoT, edge, and fog resources.

Compute Environment. The VE should provide the ability to configure com-
puting resources that capture the performance behavior of heterogeneous IoT
resources, such as edge devices, gateways, fog and even cloud resources. Key
resource capabilities to be controlled include CPU rating, memory and storage
capacity, and network. Further, a compute environment that can host platforms
and run applications should be provided within these resources. Virtual Machines
(VM) have traditionally offered such capabilities, but are too heavy-weight for
the often light-weight and plentiful IoT devices. Containers are much more light-
weight and offer similar capabilities. One downside is the inability to change the

https://github.com/dream-lab/VIoLET
https://github.com/dream-lab/VIoLET

VIoLET: A Large-Scale Virtual Environment for Internet of Things 311

underlying Operating System (OS) as it is coupled with the Linux kernel of the
host machine. However, we expect most IoT devices to run a flavor of Linux.

Networking. Communication is central to IoT, and the networking layer is sen-
sitive to various deployment limitations on the field. Wired, wireless and cellular
networks are common, each with different bandwidth and latency characteristics.
There is also a distinction between local and wide area networks, and public and
private networks – the latter can limit the visibility of devices to each other.
These affect the platforms and applications in the computing environment, and
can decide who can connect to whom and if an indirection service is required.
The VE needs to capture such diverse network topologies and behavior.

Sensing and Data Streams. Sensors (and actuators) form the third vital
component of IoT. These are often connected to the edge computing devices
by physical links, ad hoc wireless networks, or even on-board the device. These
form the source of the distributed, fast data streams that are intrinsic to IoT
deployments. The VE should provide the ability to simulate the generation of
sensor event streams with various sampling rates and distributions at the com-
pute devices for consumption by hosted applications.

Application Environment. IoT devices often ship with standard platforms
and software pre-loaded so that potentially hundreds of devices do not have to
be reconfigured across the wide area network. The VE should allow platforms
and application environments to be pre-configured as part of the deployment,
and the setup to be ready-to-use. Users should not be forced to individually
configure each compute resources, though they should have the ability to do so
if required.

Scalable. IoT deployments can be large in the number of devices and sensors –
ranging in the 1000’s – and with complex network topologies. A VE should be
able to scale to such large deployments with minimal resource and human over-
heads. At the same time, these devices offer real computing environments that
require underlying compute capacities to be available on the host machine(s).
Hence, we require the VE to weakly scale, as long as the underlying infrastructure
provides adequate cumulative compute and network capacity for all the devices.
The use of elastic cloud resources as the host can enable this.

Reproducible. Simulators offer accurate reproducibility but limit the realism,
or the ability to run real applications. Physical deployments are hard to get
access to and may suffer from transient variability that affects reproducibility. A
VE should offer a balance between running within a realistic deployment while
being reproducible at a later point in time. This also allows easy sharing of
deployment recipes for accurate comparisons.

Cost Effective. Clouds are able to offer a lower cost per compute unit due
to economies of scale at data centers. But IoT devices while being commodity
devices are costlier to purchase, deploy and manage. Having VEs offer compara-
ble resource performance as the IoT deployment but for cheaper compute costs
is essential. They should also make efficient use of the pay-as-you-go resources.

312 S. Badiger et al.

Cloud Data Center
Admin VM

consul
Deployment

Manager

Docker Daemon

Container Host VM

Docker Daemon

Edge 1.2 Edge 2.2 Fog 1 Cloud 2

Container Host VM

Docker Daemon

Edge 1.1 Edge 2.1 Fog 2 Cloud 1

Overlay Network

-Par on NW topology graph
-Es mate VM count, CPU alloca on
-Start VMs, docker daemons
-Start containers from image
-Create private, public overlay network
-Start sensor services
-Return device, VM and sensor map to user

(a) Architecture Design

(b) JSON describing devices, sensors, VE deployment and host VMs.

Fig. 1. VIoLET architecture and deployment documents

Further, they should be deployable on-demand on elastic resources and release
those resources after the experiments and validations are done.

Ease of Design and Deployment. Users should be able to configure large
IoT deployments with ease, and have them deploy automatically and rapidly. It
should be possible to mimic realistic real-world topologies or generate synthetic
ones for testing purposes.

3 Architecture

We give the high-level overview architecture of VIoLET first, and then discuss
individual components and design decisions subsequently. Figure 1a shows the
high-level architecture of our framework. Users provide their IoT VE as JSON
deployment documents (Fig. 1b) that declaratively capture their requirements.
A devices.json document lists the devices, their types (e.g., Raspberry Pi
3B, NVidia TX1) and their CPU performance. Another, sensors.json docu-
ment list the virtual sensors and their configurations available. Lastly, the actual
deployment document, deployment.json lists the number of devices of various
types, the network topology of the device inter-connects, including bandwidths

VIoLET: A Large-Scale Virtual Environment for Internet of Things 313

and latencies, and optionally the virtual sensors and applications available on
each device.

VIoLET takes these documents and determines the number of cloud VMs of
a specified type that are required to host containers with resources equivalent to
the device types. It also decides the mapping from devices to VMs while meeting
the compute capacity, and network bandwidth and latency needs of the topology,
relative to what is made available by the host VMs.

Then, containers are configured and launched for each device using Docker,
and the containers are inter-connected through an overlay network. This allows
different private and public networks to be created in the VE. Further, Traffic
Control (TC) and Network Address Translation (NAT) rules are set in each
container to ensure that the requested network topology, bandwidth and latency
limits are enforced.

Virtual sensors, if specified, are then started on each device and their streams
available on a local network port in the container. Application environments or
startup scripts if specified are also configured or launched. After this, the user
is provided with a mapping from the logical device names in their deployment
document to the physical device IPs of the matching container, and the VMs
on which the containers are placed on. Users can access these devices using
the Docker exec command. Further, the port numbers at which various logical
sensors streams are available on each device is also reported back to the user.
Together, these give access to the deployed runtime environment to the user.

3.1 Compute Resources

Containers are emerging as a light-weight alternative to VMs for multi-tenancy
within a single host. They use Linux kernel’s cgroups feature to offer benefits
of custom software environment (beyond the OS kernel) and resource allocation
and isolation, while having trivial overheads compared to hypervisors. They
are well-suited for fine-grained resource partitioning and software sand-boxing
among trusted applications.

Computing devices in VIoLET are modeled as containers and managed using
the Docker automation framework. There are two parts to this: the resource allo-
cation and the software configuration. Docker allows containers to have resource
constraints to be specified1. We use this to limit a container’s capacity to match
the CPU and Memory available on the native device. We use CPU benchmarks
on the native device and the host machine to decide this allocation. The com-
monly used CoreMark2 is currently supported for an integer-based workload,
while Whetstone3 has been attempted for floating-point operations. One sub-
tlety is that while we use the multi-core benchmark rating of the device for the
CPU scaling, this may map to fewer (faster) cores of the host machine.

1 Docker Resource Constraints, docs.docker.com/config/containers/resource constrai
nts.

2 y, Embedded Microprocessor Benchmark Consortium (EEMBC), coremark.org.
3 Whetstone Benchmark History and Results, roylongbottom.org.uk/whetstone.htm.

https://docs.docker.com/config/containers/resource_constraints/
https://docs.docker.com/config/containers/resource_constraints/
http://coremark.org
http://www.roylongbottom.org.uk/whetstone.htm

314 S. Badiger et al.

Cloud 1

Fog 1 Fog 2

Edge 1.1 Edge 1.2 Edge 2.1 Edge 2.2

100Mbps, 0.5ms 75Mbps, 1ms

40Mbps, 100ms

Cloud 2
100Mbps, 100ms

(a) Sample Topology Description

Fog 1

Edge 1.1
Edge 1.2

Cloud 1

PV
T-

1 e0
e0
e0

docker-0

e0

e2
e1

e2
e1

Default
Docker

Bridge NW

PU
B-

1

e2

Fog 2

Edge 2.1
Edge 2.2

PV
T-

2 e0
e0
e0

40
/1

00
75

/1
10

0/
0.

5
PU

B -
2

10
0/

10
0

Cloud 2e0 e1

e1

(b) Bridges in Overlay to Achieve Topology

Fig. 2. Network topology and Docker overlay network

A container’s software environment is defined by the user as an image script
(Dockerfile) that specify details like applications, startup services, and envi-
ronment variables, and allow modular extensibility from other images. Public
Docker repositories have existing images for common IoT platforms and applica-
tions (e.g., Eclipse Californium CoAP, Microsoft IoT Edge, RabbitMQ, Spark).
VIoLET provides a base image that includes its framework configuration and
allow users to extend their device images from this base with custom software
configuration. This is similar to specifying a VM image, except that the users
are limited to the host device’s Linux kernel OS4. Hence, defining a compute
device in VIoLET requires associating a device type for resources, and a device
image for the software environment.

3.2 Network Topology

Users define the network topology for the devices based on three aspects: the
public network or a private network the device is part of; the visibility of devices
to each other as enforced by firewalls; and the bandwidth and latency between
pairs of devices. IoT networks are usually composed of numerous private net-
works that interface with each other and the public Internet through gateways.
We allow users to define logical private networks and assign devices to them.
These exist in their own subnet. Each private network has a gateway device
defined, and all traffic to the public network from other devices is routed through
it. All gateway devices are part of one or more public networks, along with other
devices that are on those public networks.

For simplicity, all devices in a private network by default can access each
other, and have a common latency and bandwidth specified between pairs of
devices by the user; and similarly for all devices connected to a public network.
By default, devices on different public networks can reach each other. However,

4 Docker recently introduced support for Windows and Linux containers hosted on
Windows Server using the Hyper-V hypervisor. But this is more heavy-weight than
Linux containers, and not used by us currently.

VIoLET: A Large-Scale Virtual Environment for Internet of Things 315

users can override this visibility between any pair of devices, and this is direc-
tional, i.e., D1 → D2 need not imply D1 ← D2.

We implement the bandwidth and latency between devices using Traffic Con-
trol (TC) rules offered by Linux’s iproute2 utility, and the network service that
we start on each container using systemd5. Here, every unique bandwidth and
latency requirement gets mapped to a unique virtual Ethernet port, and the
rules and enforced on it. This Ethernet port is also connected to the bridge cor-
responding to the (private or public) network that the device belongs to. The
bridges physically group devices that are on the same network, and also logically
assign a shared bandwidth and latency to them. All devices on public networks
are also connected to a common docker-0 bridge for the VM they are present
on, and which allows all to all communication by default. Restricting the routing
of traffic in a private network to/from the public network only through its gate-
way device is enacted through ip commands and Network Address Translation
(NAT) rules. These rules redirect packets from the Ethernet port connected to
the private network, to the Ethernet port connected to the public network.

Docker makes it easy to define connectivity rules and IP addressing of con-
tainers present in a single host machine using custom bridges defined on the
Docker daemon running on the host. However, devices in VIoLET can be placed
on disparate VMs and still be part of the same private network. Such com-
munication between multiple Docker daemons requires custom Docker overlay
networks. We create a standalone Docker Swarm pool which gives us the flexi-
bility to set network and system parameters6. For this, the host machines must
be able to access a shared key-value store that maintains the overlay networking
information. In VIoLET, we use the Consul discovery service as our key-value
store that is hosted in a separate container on an admin VM.

E.g., Fig. 2 shows a sample network topology, and the Ethernet ports and
bridges to enact this in VIoLET. Here, the edge devices E1.1, E1.2 form a pri-
vate network PVT-1 with the fog device F1 as a gateway, and likewise E2.1, E2.2
and F2 form another private network, PVT-2. Each device can have sensors
enabled to simulate data streams with different distributions. The bandwidth
and latency within these private networks is uniform: 100 Mbps/0.5 ms for PVT-
1, and 75 Mbps/1 ms for PVT-2. F1 and F2 fog devices go on to form a public net-
work PUB-1 along with the cloud device, C1, with 40 Mbps/100 ms. Similarly, the
two cloud devices form another public network PUB-2, with 100 Mbps/100 ms.
All these devices are on a single VM, and the public devices are also connected
to the docker-0 bridge for that VM. While the edge devices are connected to a
single overlay network, the fog and cloud devices can be connected to multiple
overlay networks, based on bandwidth and latency requirements.

As can be seen, configuring the required network topology is complex and
time consuming – if done manually for each IoT deployment. Having a sim-

5 Traffic Control in Linux, tldp.org/HOWTO/Traffic-Control-HOWTO.
6 Multi-host networking with standalone swarms, docs.docker.com/network/over

lay-standalone.swarm.

https://www.tldp.org/HOWTO/Traffic-Control-HOWTO/index.html
https://docs.docker.com/network/overlay-standalone.swarm/
https://docs.docker.com/network/overlay-standalone.swarm/

316 S. Badiger et al.

ple declarative document that captures the common network patterns in IoT
deployments helps automate this.

3.3 Sensors and Virtual Observation Streams

Edge devices are frequently used to acquire IoT sensor data over hardware inter-
faces like serial, UART or I2C, and then make them available for applications to
process and/or transfer. Experiments and validation of IoT deployments require
access to such large-scale sensor data. To enable this, we allow users to define
virtual sensors that are collocated with devices. These virtual sensors simulate
the generation of sensed events and make them available at a local network port,
which acts as a proxy for a hardware interface to the sensor. Applications can
connect to this port, read observations and process them as required.

We support various configuration parameters for these sensors. The values for
the sensor measurements themselves may be provided either as a text file with
real data collected from the field, or as the properties of a statistical distribution,
such as uniform random, Gaussian, and Poisson from which we sample and return
synthetic values. In addition, the rate at which these values change or the events
are generated is also specified by the user. Here too we can specify real relative
timestamp or a distribution.

We implement each sensor as a Python script that is launched as part of the
container startup. The script starts a Flask application server that listens on
a local port. It takes the sensor’s parameters, and internally starts generating
observations corresponding to that. When a client connects to this port and
requests a measurement, the service returns the current reading. For simplicity,
this is reported as a CSV string consisting of a user-defined logical sensor ID,
the observation timestamp and a sensed value, but can be easily modified.

3.4 Resource Mapping and Deployment

The admin VM runs a service that receives the user’s deployment document as a
REST request and enacts the deployment on cloud VMs in that data center. The
default resource hosts are Amazon EC2 VMs but this can easily be extended to
resources on other cloud providers or even a private cluster. All AWS EC2 VM
instances belong to a same Virtual Private Cloud (VPC) and the same subnet.
On receipt of the deployment request, VIoLET builds a graph of the network
topology that is used to deploy the devices onto host resources. Here, the vertices
of the graph are the devices and are labeled with the device’s CPU requirement,
given in the CPU benchmark metrics, e.g., iterations/sec for CoreMark, and
MWIPS for Whetstone. An edge exists if a source device can connect to a sink
device, and this is labeled by the bandwidth and latency for that network link.
E.g., a private network where all devices can see each other will form a clique.

We then make a gross estimate of the number of underlying resources we
require. This is done by adding the vertex weights, dividing by the benchmark
metric for the host (cloud VM) and rounding it up. This is the least number of
identical host resources, say n, needed to meet the compute needs of all devices.

VIoLET: A Large-Scale Virtual Environment for Internet of Things 317

Table 1. Device perf., device counts and host VM counts used in deployments

Deployment→ D105 D408

Device Cores CMark Count
∑

CMark (k) Count
∑

CMark (k)

Pi 2B 4 8,910 50 445 200 1,782

Pi 3B 4 13,717 50 685 200 2,743

NVidia TX1 4 26,371 4 105 7 184

Softiron 8 76,223 1 76 1 76

Total 1,311 4,786

m4.10XL (host) 40 371,384 4 1,485 13 4,827

Then, we partition the graph across these n hosts using gpmetis such that
the vertex weights are balanced across hosts and the sum of edge cuts between
hosts, based on device bandwidths, is minimized. This tries to collocate devices
with high bandwidth inter-connects on the same host. We then check if the sum
of the bandwidth edge cuts between devices in each pair of hosts is less than
the available bandwidth capacity between them, and if the sum of benchmark
metrics of all devices in a host is smaller than its capacity. If not, we increment
n by 1 and repeat the partitioning, and so on.

This greedy approach provides the least number of host resources and the
mapping that will meet the CPU and bandwidth capacities of the deployment.
For now, we do not optimize for memory capacity and latency, but these can be
extended based on standard multi-parameter optimization techniques.

4 Evaluation

We evaluate VIoLET for two different IoT deployment configurations: D105
with 105 edge and fog devices, and D408 with 408 edge and fog devices. The
configuration of each of the devices, their CoreMark CPU performance and the
deployment counts are shown in Table 1, along with the number of AWS VMs
required to support them. CoreMark v1.0 is run with multi-threading enabled.

We use two generations of Raspberry Pis as edge devices – Pi 2B with 4 ×
900 MHz ARM32 cores and Pi 3B with 4×1.2 GHz ARM64 cores, and 1 GB RAM
each. In addition, we have two fog resources – a Softiron 3000 (SI) with AMD
A1100 CPU with 8 × 2 GHz ARM64 cores and 16 GB RAM, and an NVidia
TX1 device with 4 × 1.7 GHz ARM64 cores and 4 GB RAM (its GPU is not
exposed). We use Amazon AWS m4.10XL VMs that have 40 × 2.4GHz Intel
Xeon E5-2676 cores, 160 GB RAM and 10 Gbps network bandwidth as the host.
Each costs US$2.00/hour in the US-East (Ohio) data center. As we see, the D105
deployment with 424 ARM cores requires 3 of these VMs with 120 Xeon cores,
and D408 with 1, 636 ARM cores requires 13 of these VMs with 390 Xeon cores.
These deployments cost about US$6/hour and US$26/hour, respectively – these
are cheaper than a single Raspberry Pi device, on an hourly basis.

318 S. Badiger et al.

Table 2. Configuration of private and public networks in D105, and deviation%
between observed and expected bandwidth and latency per network.

Network Expected Obs. BW Dev.% Obs. Lat. Dev.%

BW (Mbps) Lat. (ms) Median Mean Median Mean

PVT-1 5 25 11.0 11.0 0.6 0.5

PVT-2 5 75 13.8 13.8 0.0 0.0

PVT-3 25 1 4.8 4.8 15.0 15.5

PVT-4 25 25 4.0 3.7 1.0 1.1

PVT-5 25 50 1.6 1.4 0.0 0.0

PUB-1 25 75 −3.6 −3.6 0.0 0.0

PUB-2 25 75 −3.6 −3.6 0.0 0.0

PUB-3 25 75 −3.6 −3.5 0.0 0.0

PUB-4 25 75 −3.6 −3.6 0.0 0.0

Table 3. Configuration of private and public networks in D408, and deviation%
between observed and expected bandwidth and latency per network.

Network Expected Obs. BW Dev.% Obs. Lat. Dev.%

BW (Mbps) Lat. (ms) Median Mean Median Mean

PVT-1 100 5 −2.6 −2.4 6.0 5.2

PVT-2 75 5 −1.1 −1.3 3.0 4.9

PVT-3 75 25 −4.1 −4.0 0.6 1.0

PVT-4 50 5 0.0 0.1 4.0 4.9

PVT-5 50 25 −1.8 −2.0 0.6 0.8

PVT-6 25 25 −1.8 −2.0 0.6 0.8

PVT-7 25 5 2.8 3.2 0.6 0.8

PVT-8 25 50 4.8 5.0 0.6 0.8

PUB-1 25 75 −3.6 −3.6 0.0 0.0

PUB-2 25 100 −7.0 −7.0 0.0 0.0

4.1 Results for D105 and D408

The network topology for these two deployments is generated synthetically. D105
is defined with 5 private networks and 4 public networks, while D408 has 8
private networks and 2 public networks. A fog device serves as the gateway in
each private network, and we randomly place an equal number of edge devices
in each private network. Their respective network configurations are given in
Tables 2 and 3. Each network has a fixed bandwidth and latency configuration,
and this ranges from 5–100 Mbps bandwidth, and 1–100 ms latency, as specified.
All devices in the public networks can see each other. Edge devices in the private
network can access the public network, routed through their gateway, but devices

VIoLET: A Large-Scale Virtual Environment for Internet of Things 319

(a) D105 Deployment (b) D408 Deployment

Fig. 3. Violin plot of deviation% for network latency, bandwidth and CoreMark CPU.

in the public network cannot access the devices in the private network. It takes
about 8 mins and 24 mins to launch these two topologies on VIoLET.

Once deployed, we run four baseline benchmarks to validate them. The first
does fping between 2n pairs of devices in each private and public network,
where n is the number of devices in the network, and measures the observed
latency on the defined links. Next, we sample a subset of n

2 links in each private
and public network and run iperf on them to measure the observed bandwidth.
Since iperf is costlier than fping, we limit ourselves to fewer samples. Third,
we run traceroute to verify if the gateway device configured for each device
matches the gateway of the private network, as a sanity check. These network
sanity checks take ≈ 3 mins per network for D105, and run in parallel for all
networks. Lastly, we run multi-core CoreMark concurrently on all devices.

Figures 3a and b show a violin plot of the deviation% of the observed network
latency, bandwidth, and CoreMark performance from the expected metrics for
the two deployments, where deviation% = (Observed−Expected)

Expected %. The median
value is noted in purple text. We see that the median latency and bandwidth
deviation% are within ±5% for both the D105 and D408 deployments, with
latency of 0.4% and 1.6%, and bandwidth of 4.8% and −0.8%, respectively. This
is within the margin of error for even real-world networks. The entire distribution
in all these cases does not vary by more than 15%, showing a relatively tight
grouping given the number of devices and VMs. We analyze these further for
diverse network configurations in the next section.

We run the CoreMark CPU benchmark on all the devices concurrently and
report the violin plot for the deviation% for each of the 4 device types. The
median CoreMark value for each device is included in the violin, except for the
SI fog where we report values from all the trials since there is just one such
device in each deployment. We see that for the two Pis and TX1 – the three
slowest devices – the median CoreMark deviation% is within ±2.5% for D105,
and the most deviation is +10% for Pi2B. These indicate that the observed
performance is marginally higher than expected, and there is little negative

320 S. Badiger et al.

0
5

10
15
20
25
30
35
40
45

0 25 50 75 100

M
ea

n
La

te
nc

y
D

ev
ia

on
%

Latency (ms)

(a) Latency

0-40

-30

-20

-10

0

10

20

30

0 25 50 75 100

M
ea

n
Ba

nd
w

id
th

 D
ev

ia
on

%

Bandwidth (Mbps)

Latencies (ms) 1 5 25 50 75 100

(b) Bandwidth, at different Latencies. Bot-
tom row shows ideal bandwidth for latency.

Fig. 4. Variation of deviation% for different latency and bandwidth configurations.

deviation for these three devices. However, we see that the single SI fog device,
which is the largest device, has a median deviation% of −42.1% from 40 trials of
CoreMark that were run on it. The distribution is also wide, ranging from −45%
to +21%. This indicates that the concurrent multi-threaded CoreMark runs on
10’s of containers on the same VM is causing the largest device container to
have variable performance. In fact, the sum of the observed CoreMarks for all
the deployed devices in D105 is 1, 319k, which is close to the sum of the expected
CoreMark from the devices of 1, 311k. So the small over-performance of many
small devices is causing the under-performance of the large device. D408 shows a
different behavior, with Pi3B showing higher positive deviations, with a median
of 23.2%, while the other devices show a smaller positive deviation of 2.6–6%.
SI however does show a wider distribution of the deviation% as before.

Besides these baseline network and CPU metrics, we also run two types
of application workloads. One of them starts either an MQTT publisher or a
subscriber on each device, and each connects to an Eclipse Mosquitto MQTT
broker on its gateway. A publisher samples observations from a local sensor and
publishes it to a unique topic at its gateway broker while a subscriber subscribes
to it. This tests the network and process behavior for the common pub-sub
pattern seen in IoT. While results are not plotted due to lack of space, we
observe that the median end-to-end latency for each message is ≈ 50 ms, which
loosely corresponds to the two network hops required from the publisher to the
broker, and broker to subscriber.

Another workload that we evaluate is with the ECHO dataflow platform for
edge and cloud [15]. Here, we incrementally launch 100 Extract-Transform-Load
dataflows using the Apache NiFi engine on distributed devices and observe the
latency time for deployment and the end to end latency for the dataflows. This
is yet another use-case for VIoLET to help evaluate the efficacy of such edge,
fog and cloud orchestration platforms and schedulers.

VIoLET: A Large-Scale Virtual Environment for Internet of Things 321

4.2 Analysis of Network Behavior

Being able to accurately model network behavior is essential for IoT VEs. Here,
we perform more detailed experiments that evaluate the impact of specific band-
width and latency values on the deviation%. Specifically, we try out 19 different
network configurations of the D105 deployment while varying the pair of band-
width and latency values on these networks. These together form 143 different
networks. In Fig. 4b, we plot the deviation% of the mean bandwidth, as the
bandwidth increases for different latency values, while in Fig. 4a, we plot the
deviation% of the mean latency, as latency increases.

It is clear from Fig. 4a that the latency deviation is sensitive to the absolute
latency value. For small latency values of 1 ms, the deviation% ranges between
15–40%, and this drops to 2.6–8% for 5 ms. The deviation% exponentially reduces
for latencies higher than that, with latencies over 50 ms having just 0.1% devia-
tion. The latency between VMs is measured at 0.4 ms, while between containers
on the same VM is 0.06 ms. Hence, achieving a latency better these is not pos-
sible, and the achieved latency depends on the placement of containers on the
same or different VMs. Since our network partitioning currently is based on
bandwidth and compute capacity, and not latency limits, it is possible that two
devices requiring low latency are on different VMs. As a result, the deviation%
increases. Here, we see that the latency deviation is independent of the band-
width of the network link.

We observe that the deviation in bandwidth is a function of both latency
and bandwidth. In fact, it is also a function of the TCP window size, which by
default is set to 262, 144 bytes in the containers. The Bandwidth Delay Product
(BDP) is defined as the product of the bandwidth and latency. For efficient use
of the network link, the TCP window size should be greater than this BDP, i.e.,
Window ≥ Bandwidth × Latency. In other words, given a fixed latency and
TCP window size, the Peak Bandwidth = Window

Latency .
Figure 4b shows the bandwidth deviation% on the Y axis for different laten-

cies, as the bandwidth increases on the X axis. It also shows the maximum pos-
sible bandwidth for a given latency (based on the window size) along the bottom
X axis. We observe that for low latencies of 1–25 ms, the bandwidth deviation%
is low and falls between −5.1–18% for all bandwidths from 5–100 Mbps. This is
because with the default window size, even a latency of 25 ms supports a band-
width of 83 Mbps, and lower latencies support an even higher peak bandwidth.
The positive deviation% is also high for low bandwidth values and lower for high
bandwidth values – even small changes in absolute bandwidth causes a larger
change in the relative deviation% when the bandwidth is low.

We also see that as the latency increases, the negative deviation% increases
as the bandwidth increases. In particular, as we cross the peak bandwidth value
on the X axis, the deviation% becomes more negative. E.g., at 75 ms, the peak
bandwidth supported is only 28 Mbps, and we see the bandwidth deviation% for
this latency worsen from −3.6% to −11.9% when the bandwidth configuration
increases from 25 Mbps to 75 Mbps. This is as expected, and indicates that the
users of the container need to tune the TCP window size in the container to
enforce bandwidths more accurately.

322 S. Badiger et al.

5 Related Work

The growing interest in IoT and edge/fog computing has given rise to several
simulation environments. iFogSim [11] extends the prior work on CloudSim [5]
to simulate the behavior of applications over fog devices, sensors and actuators
that are connected by a network topology. Users define the compute, network and
energy profiles of fog devices, and the properties and distributions of tuples from
sensors. DAG-based applications with tasks consuming compute capacity and
bandwidth can be defined by the user, and its execution over the fog network is
simulated using an extensible resource manager. The goal is to evaluate different
scheduling strategies synthetically. We similarly let devices, network and sensors
to be defined, but actually instantiate the first two – only the sensor stream is
simulated. This allows users to evaluate real applications and schedulers.

Edgecloudsim [18] offers similar capabilities, but also introduces mobility
models for the edge into the mix. They simulate network characteristics like
transmission delay for LAN and WAN, and also task failures due to mobility
for a single use-case. IOTSim, despite its name, simulates the execution of Map
Reduce and stream processing tasks on top of a cloud data center, and uses
CloudSim as the base simulation engine. While IoT motivates the synthetic
application workloads for their big data platform simulation, they do not actually
simulate an IoT deployment.

In the commercial space, city-scale simulators for IoT deployments in smart
cities are available [14]. These mimic the behavior of not just devices, sensors,
actuators and the network, but also application services like MQTT broker and
CoAP services that may be hosted. These offer a comprehensive simulation envi-
ronment for city-planners to perform what-if analysis on the models. We go a
step further and allow realistic devices and networks to be virtualized on elas-
tic cloud VMs, and applications themselves to be executed, without physically
deploying the field devices. Simulators are popular in other domains as well, such
as cloud, network and SDN simulators [5,12,13].

There have been container-based solutions that are closer to our approach,
and allow large-scale customized environments to be launched and applications
to be run on them. Ceesay et al. [6], deploy container-based environments for Big
Data platforms and workloads to test different benchmarks, ease deployment and
reduce reporting costs. Others have also used such container-based approaches
to inject faults into the containers, and evaluate the behavior of platforms and
applications running on them [7].

Other have proposed IoT data stream and application workloads for evalu-
ating big data platforms, particularly stream processing ones. Here, the sensor
data is simulated at large-scales while maintaining realistic distributions [1,10].
These can be used in place of the synthetic sensor streams that we provide. Our
prior work has proposed stream and stream processing application workloads for
IoT domains [17]. These can potentially use VIoLET for evaluating execution
on edge and fog, besides just cloud resources.

Google’s Kubernetes [4] is a multi-node orchestration platform for container
life-cycle management. It schedules containers across nodes to balance the load,

VIoLET: A Large-Scale Virtual Environment for Internet of Things 323

but is not aware of network topologies that are overlaid on the containers. VIo-
LET uses a simple graph-partitioning approach for placement of containers on
VMs to balance the CPU capacity, as measure by CoreMark, and ensure that the
required device bandwidths stay within bandwidth available between the hosts.

6 Conclusions and Future Work

In this paper, we have proposed the design requirements for a Virtual IoT Envi-
ronment, and presented VIoLET to meet these needs. VIoLET allows users to
declaratively create virtual edge, fog and cloud devices as containers that are con-
nected through user-defined network topologies, and can run real IoT platforms
and applications. This offers first-hand knowledge of the performance, scalabil-
ity and metrics for the user’s applications or scheduling algorithms, similar to a
real IoT deployment, and at large-scales. It is as simple to deploy and run as a
simulation environment, balancing ease and flexibility, with realism and repro-
ducibility on-demand. It is also affordable, costing just US$26/hour to simulate
over 400 devices on Amazon AWS Cloud. VIoLET serves as an essential tool for
IoT researchers to validate their outcomes, and for IoT managers to virtually
test various software stacks and network deployment models.

There are several extensions possible to this initial version of VIoLET. One
of our limitations is that only devices for which container environments can be
launched by Docker are feasible. While any device container that runs a standard
Linux kernel using cgroups (or even a Windows device7) can be run, this limits
the use of edge micro-controllers like Arduino, or wireless IoT motes that run
real-time OS. Also, leveraging Docker’s support for GPUs in future will help
users make use of accelerators present in devices like NVidia TX18. There is also
the opportunity to pack containers more efficiently to reduce the cloud costs [2],
including over-packing when devices will not be pushed to their full utilization.

Our network configurations focus on the visibility of public and private net-
works, and the bandwidth and latency of the links. However, it does not yet
handle more fine-grained transport characteristics such as collision and packet
loss that are present in wireless networks. Introducing variability in bandwidth,
latency, link failures, and even CPU dynamism is part of future work. More rig-
orous evaluation using city-scale models and IoT applications are also planned
using large private clusters to evaluate VIoLET’s weak scaling.

Acknowledgments. This work is supported by research grants from VMWare,
MHRD, IUSSTF and Cargill, and by cloud credits from Amazon AWS and Microsoft
Azure. We also thank other DREAM:Lab members, Aakash Khochare and Abhilash
Sharma, for design discussions and assistance with experiments. We also thank the
reviewers of Euro-Par for their detailed comments that has helped us improve the
quality of this paper.

7 Docker for Windows, https://docs.docker.com/docker-for-windows/.
8 GPU-enabled Docker Containers, https://github.com/NVIDIA/nvidia-docker.

https://docs.docker.com/docker-for-windows/
https://github.com/NVIDIA/nvidia-docker

324 S. Badiger et al.

References

1. Arlitt, M., Marwah, M., Bellala, G., Shah, A., Healey, J., Vandiver, B.: IoTAbench:
an internet of things analytics benchmark. In: International Conference on Perfor-
mance Engineering (ICPE) (2015)

2. Awada, U., Barker, A.: Improving resource efficiency of container-instance clusters
on clouds. In: Cluster, Cloud and Grid Computing (CCGRID) (2017)

3. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: ACM Workshop on Mobile Cloud Computing (MCC) (2012)

4. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, omega, and
kubernetes. ACM Queue 14(1), 10 (2016)

5. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.:
CloudSim: a toolkit for modeling and simulation of cloud computing environments
and evaluation of resource provisioning algorithms. Softw.: Pract. Exp. (SPE)
41(1), 23–50 (2011)

6. Ceesay, S., Barker, D., Varghese, D., et al.: Plug and play bench: simplifying big
data benchmarking using containers. In: IEEE International Conference on Big
Data (BigData) (2017)

7. Dabrowa, J.: Distributed system fault injection testing with Docker. In: JDD (2016)
8. Dastjerdi, A.V., Gupta, H., Calheiros, R.N., Ghosh, S.K., Buyya, R.: Internet of

things: principles and paradigms. In: Fog Computing Principles, Architectures, and
Applications. Morgan Kaufmann (2016)

9. Ghosh, R., Simmhan, Y.: Distributed scheduling of event analytics across edge and
cloud. ACM Trans. Cyber Phys. Syst. (TCPS) (2018, to Appear)

10. Gu, L., Zhou, M., Zhang, Z., Shan, M.C., Zhou, A., Winslett, M.: Chronos: an
elastic parallel framework for stream benchmark generation and simulation. In:
IEEE International Conference on Data Engineering (ICDE) (2015)

11. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for
modeling and simulation of resource management techniques in the internet of
things, edge and fog computing environments. Softw.: Pract. Exp. 47(9), 1275–
1296 (2017)

12. Henderson, T.R., Roy, S., Floyd, S., Riley, G.F.: Ns-3 project goals. In: Workshop
on Ns-2: The IP Network Simulator (2006)

13. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for
software-defined networks. In: Workshop on Hot Topics in Networks (2010)

14. Leland, J.: Deploy scalable smart city architectures confidently with network sim-
ulation. Technical report, insight tech (2017)

15. Ravindra, P., Khochare, A., Reddy, S.P., Sharma, S., Varshney, P., Simmhan, Y.:
Echo: an adaptive orchestration platform for hybrid dataflows across cloud and
edge. In: International Conference on Service-Oriented Computing (ICSOC) (2017)

16. Satyanarayanan, M., et al.: Edge analytics in the internet of things. IEEE Pervasive
Comput. 14(2), 24–31 (2015)

17. Shukla, A., Chaturvedi, S., Simmhan, Y.: RIoTBench: a real-time IoT bench-
mark for distributed stream processing platforms. Concurr. Comput.: Pract. Exp.
29(21), 1–22 (2017)

18. Sonmez, C., Ozgovde, A., Ersoy, C.: EdgeCloudSim: an environment for perfor-
mance evaluation of edge computing systems. In: Fog and Mobile Edge Computing
(FMEC) (2017)

19. Varshney, P., Simmhan, Y.: Demystifying fog computing: characterizing architec-
tures, applications and abstractions. In: IEEE International Conference on Fog and
Edge Computing (ICFEC) (2017)

Adaptive Bandwidth-Efficient Recovery
Techniques in Erasure-Coded Cloud

Storage

Rekha Nachiappan(B), Bahman Javadi, Rodrigo N. Calheiros,
and Kenan M. Matawie

School of Computing, Engineering and Mathematics, Western Sydney University,
Sydney, Australia

{30045376,B.Javadi,R.Calheiros,K.Matawie}@westernsydney.edu.au

Abstract. In order to handle the dramatic growth of digital data, cloud
storage systems demand novel techniques to improve data reliability.
Replication and erasure codes are the most important data reliability
techniques employed in cloud storage systems, but individually they
have their own challenges. In this paper, we propose a hybrid tech-
nique employing proactive replication of data blocks in erasure-coded
storage systems. The technique employs a set of erasure coding-agnostic
bandwidth-efficient data recovery techniques that reduce the bandwidth
used for recovery without compromising data reliability. Experiments
show that our approach improves repair bandwidth efficiency and reduces
network traffic in cloud storage systems with limited storage overhead
compared to available recovery approaches.

1 Introduction

A recent trend in cloud storage systems is the adoption of erasure codes, as
it provides excellent reliability with less storage overhead than replication [1].
For example, Facebook and Microsoft Azure replaced replication with erasure
coding in parts of their data, resulting in significant cost savings in terms of
storage overhead [2]. However, failure rates in large-scale cloud storage systems
are high as such systems are composed of large number of hardware and soft-
ware components. Repairing a single data block stored using Reed-Solomon(n,k)
code requires k data blocks to be transferred over the network, while repairing a
single data block in replication involves the transfer of one data block [3]. Hence,
repair network traffic is increased by k times in Reed-Solomon(n,k) code com-
pared to replication. The network traffic incurred by such data movement has
also the extra drawback of increasing energy consumption significantly, resulting
in extra costs for cloud service providers. Moreover, growing network traffic is
regulated by network throttling, which affects read performance. All the above
facts prevent cloud storage systems to adopt erasure codes in large scale.

Hardware failures (disk failures, machine failures, and latent sector errors)
and temporary machine failures are the most common failures that affect dura-
bility and availability of data in cloud storage [2]. In order to avoid permanent
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 325–338, 2018.
https://doi.org/10.1007/978-3-319-96983-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_23&domain=pdf

326 R. Nachiappan et al.

data loss due to hardware failures, contents in failed nodes or disks have to be
restored in another hardware devices, a process that is known as data recovery.
Data stored in a machine that experiences temporary outage will cause tempo-
rary data loss. Temporary data loss in erasure code is handled by degraded read,
i.e., data blocks in the failed node are reconstructed and served using the next
available k blocks. In order to avoid unnecessary repairs of short term transient
node failures, data recovery is delayed for a certain amount of time. Google File
System (GFS) delays recovery of unavailable nodes for 15 min. However, this
affects availability and degrades read performance [5]. In contrast, when replica-
tion is used, degraded read is handled by simply redirecting the request to the
next available replica.

As both replication and erasure coding have its own advantages, cloud stor-
age systems require hybrid approaches in order to leverage the advantages of
both methods, which are the recovery performance of replication and the stor-
age efficiency of erasure coding. In this paper, we propose several novel recovery
techniques. These techniques follow a proactive replication method. They repli-
cates erasure-coded data blocks which are predicted to fail, keeping down repair
network bandwidth/traffic at the same time without much overhead. We also
showed that the ProDisk method proposed by Li et al. [13], reduces repair net-
work bandwidth/traffic. All the aforementioned methods use machine and disk
failure prediction techniques to predict hardware failures and long-time tempo-
rary machine outage. When hardware failures (permanent machine/disk failures)
are predicted, proposed storage system immediately starts the recovery of data
and proactively replicates erasure-coded data fragments in to permanent stor-
age. When long-term machine failures are predicted, proposed storage system
starts proactive recovery with the goal of maintaining data availability. During
proactive recovery of long-term machine failures, data is written into dedicated
temporary storage rather than on recovered blocks.

The amount of dedicated temporary storage required in the proposed app-
roach is linearly related to the number of long term machine failures predicted
over the time period. In order to address this issue, we introduce a novel method
to proactively replicate hot data in temporary storage and apply lazy recovery
for cold data. This reduces the recovery bandwidth/traffic significantly without
increasing the temporary storage needed for supporting transient node failures.

2 Background and Motivation

In a distributed storage system, a data file is dispersed into multitude of intercon-
nected nodes, which serves any end user request by tapping data from multiple
nodes. Improving the resilience of distributed storage system with limited storage
overhead is desirable. Replication is the simplest mean of increasing resiliency
of the distributed storage. In replication, a data file is divided into multiple
data blocks which are replicated into several locations such that failure of any
data block in one location enables the user to access it from different location.
However, reliability is directly proportional to storage overhead in replication.

Adaptive Bandwidth-Efficient Recovery Techniques 327

Erasure coding is an important option to increase reliability with less storage
overhead. In erasure coding, data file is divided in to k data blocks and dispersed
into n locations while adding n-k parity blocks. Upon any failure, a data block
is reconstructed by downloading any k available data blocks. The data recovery
in erasure coding increases recovery network bandwidth k times, compared to
replication.

Facebook employed Reed-Solomon to only 8% of data in 3000 node pro-
duction cluster and it has been estimated that if 50% of data were replaced
with Reed-Solomon, repair network traffic would saturate their network links [4].
Increased repair network traffic is one of the major bottleneck to erasure cod-
ing becoming more pervasive in cloud storage systems. Novel blockchain-based
cloud storage systems like Sia1 and Storj2 use consumer storage to serve their
customer’s storage needs. They suggest, as a means to improve reliability, the
use of Reed-Solomon (60, 40) code. This means that, to reconstruct any missing
data, 40 surviving data fragments have to be transferred to reconstruct any sin-
gle failed data fragment. These novel storage systems demand more bandwidth-
efficient recovery, which is the focus of this paper. The proactive recovery tech-
niques proposed in this paper use several failure prediction methods. As these
systems are running on end-users client, it may not be possible to apply exist-
ing hardware failures prediction techniques on the users computers. However, it
is possible to predict the availability of user computers using availability logs.
Hence it is possible to apply the proposed methods in blockchain-based cloud
storage systems.

The main contribution of this paper is the definition of bandwidth-efficient
recovery techniques based on client’s needs without significant increase of per-
manent storage.

3 Related Work

A substantial amount of research concentrated on reducing repair bandwidth of
erasure codes. Dimakis et al. [6] presented a theoretical framework for regen-
eration codes that can optimize recovery bandwidth for a given storage. How-
ever, exact repair of regeneration codes, matching information theoretic bound,
remained unresolved. Following this, several works [2] showed that exact repair
is possible for some parameters. Sathiamoorthy et al. [4], proposed Xorbas which
reduces network traffic by half compared to Reed-Solomon codes with 14% addi-
tional storage overhead [4]. LRC in Windows Azure storage reduces repair net-
work bandwidth significantly with the help of local parities, which have the
side effect of increasing storage overhead by 1.33x compared to Reed-Solomon
[1]. Hitchhiker code, built on top of Reed-Solomon code using “piggybacking”
framework, reduces network traffic by 35% with some encoding time overhead
incurred [7].

1 https://sia.tech/.
2 https://storj.io/.

https://sia.tech/
https://storj.io/

328 R. Nachiappan et al.

Failure predictions in cloud storage systems offer cloud service providers an
efficient proactive failure management in cloud storage. Various statistical and
machine learning methods are used to predict failures in cloud storage systems.
A few methods [8,9] are used to predict hard drive failures based on SMART
attributes. Li et al. [9], achieved 95% predictions with False Alarm rate less
than 0.1%. Many researches focused on predicting failures in distributed systems
based on system logs. Javadi et al. [10], presented failure model as a predictive
method of distributed systems availability and unavailability. Agrawal et al. [11],
uses log messages to predict failures in Hadoop clusters.

Silberstein et al. [12], proposed lazy recovery to reduce recovery bandwidth
in distributed storage by reducing the recovery rate. It reduces recovery band-
width up to 76% compared to Reed-Solomon. However, applying this method
on cloud storage affects read performance and data durability. Li et al. [13],
used failure prediction techniques to implement proactive replication in erasure
codes for reducing degraded read latency and improving read performance. Li
et al. [14], defined a cost effective data reliability management mechanism to
ensure reliability of massive data with minimum replication based on a gener-
alized data reliability model. Wu et al. [15,16], used prediction tools to identify
the upcoming events and proactively migrates the data blocks on the degraded
device belonging to the hot data zones in the large-scale data centers.

4 The Proposed Cloud Storage System

The target system in this paper is an object storage that initially stores data
with any appropriate erasure code to reduce storage overhead while maintaining
reliability. Consider a distributed cloud storage system composed of a number
of disks accommodated in a machine, group of machines in a rack, and several
racks in a distributed storage. Data blocks stored in a disk can be determined
as an at-risk block based on the machine and disks health status where it is
stored. Machine and disk failure prediction algorithms run individually to pre-
dict disk/machine failure and machine unavailability. Since rack failures are tran-
sitory, the health of data blocks is determined with machine and disks health
status. Data blocks that are marked as at-risk in this system are proactively
replicated before the occurrence of failure based on the client’s Service Level
Agreement (SLA). Proactive replication reduces the number of blocks required
for reconstructions in erasure coded cloud storage system. Hence, the system
reduces network traffic with less storage overhead. This system utilizes various
recovery schemes to reduce reconstruction bandwidth in erasure coded cloud
storage systems.

4.1 Architecture and Design

An overview of the system architecture is depicted in Fig. 1. It is implemented
as an extension of a regular object storage. Object storage manages data as
objects where each object has both data and metadata. A dedicated proxy server

Adaptive Bandwidth-Efficient Recovery Techniques 329

Fig. 1. Architecture of the proposed recovery techniques.

extends the support of encoding and decoding erasure codes. It also handles
failures in storage systems. The object server stores and retrieves object data.
Object server’s availability status and disks health status are reported to the
proxy server, which is responsible for increasing or decreasing the data object’s
replication factor. The system adjusts the replication factor of erasure coded
objects when failures are predicted. The components of the architecture are
discussed as follows.

Disk Failure Prediction. This module monitors the health status of indi-
vidual disks and reports prediction results to the Node Failure History & Disk
Health Information module in the proxy server. SMART is implemented on disks
and it monitors, compares disk attributes and issues warnings. This SMART
attributes are used to predict disk health status using various statistical and
machine learning techniques [8,9]. Disk failures are calculated using classifica-
tion and regression trees methods here [9].

Proactive Replication Management. Redundancy of data blocks are
adjusted according to node/disk health status and client SLA.

Node Failure History and Disk Health Information. This module collects the
information of disk health status and node failure history. Various statistical
and machine learning techniques can be used to predict node’s Mean Time To
Failure (MTTF) and Mean Time To Repair (MTTR). Based on node’s predicted
MTTF and MTTR, node failures are classified as permanent, long time, or short
time failures. Node’s MTTF and MTTR are calculated using various statistics
of availability and unavailability [10].

330 R. Nachiappan et al.

Data Block Health Monitor and Client SLA. Failure predicted nodes and disks
information are collected from Node Failure History and Disk Health Information
module. It identifies the disks that are predicted to fail in the underlying storage
system. It also identifies permanent, long term, and short term machine failures
by predicting machines MTTF and MTTR. Permanent machine failures are
handled as disk failures. This module sends failure information to the Dynamic
Replication module, which takes an action when necessary. Clients can request
various recovery schemes based on their needs. The client can define several
reconstruction requests as follows,

– High durability, normal availability (ProDisk).
– High durability, high availability (ProMachine).
– High durability, high availability for hot and normal availability for cold data

(ProHot).
– High durability, high availability for hot and low availability for cold data

(ProHot LazyCold).

Based on the client SLA, the variable for different recovery scheme will be set.

Data Access Pattern. Data access patterns in a distributed storage can be used
to identify the popularity of data blocks in real-time over a certain period of time.
Based on their popularity, data blocks can be classified as hot, warm, or cold.
As the access pattern changes, popularity of data blocks need to be updated.
Various researches used popularity-based classification to improve durability,
availability, and read performance of cloud storage systems [17]. Our approach
combines both failure prediction and data access patterns to make the decisions.
Data access pattern is used here to define hot data. We assume that data blocks
with high access frequency have more chance to be accessed in the future and
those are defined as hot. This module uses data access pattern to classified a
block as hot data block and recorded as H = {b1, b2, ...} where the block bi is
identified as hot.

Dynamic Replication Manager. This module collects information from Data
Block Health Monitor, Client SLA, and Data Access Pattern module and acti-
vates various proposed recovery schemes, as follows:

– ProDisk: When disk failures/permanent machine failures are predicted, all
the data blocks in the failure predicted disks (all disks in failure predicted
machine) are proactively replicated permanently as described in [13]. In the
occurrence of failure, the reference is made to the proactively replicated data
instead of the typical reconstruction of erasure codes. This was originally
proposed by Li et al. [13] but the early approach only considered the recovery
performance not recovery bandwidth. The following ProMachine, ProHot,
ProHot LazyCold are the novel methods proposed in this research which are
the main contribution of this paper.

– ProMachine: When temporary long term machine failures are predicted
with MTTR greater than 15 min, data in failure predicted machines are

Adaptive Bandwidth-Efficient Recovery Techniques 331

proactively replicated to a dedicated node allocated specifically to handle
temporary machine failure. In case of any failure, data is accessed from the
dedicated node.

– ProHot: When temporary long term machine failures are predicted with
MTTR greater than 15 min, data identified as hot in failure predicted machine
will be proactively replicated to the dedicated node which has been allo-
cated to handle temporary machine failure. In case of any failure, hot data
is accessed from the dedicated node and typical reconstruction is applied to
recover cold data.

– ProHot LazyCold: When temporary long term machine failures are pre-
dicted with MTTR greater then 15 min, data identified as hot in failure pre-
dicted machine is proactively replicated to a dedicated node that is allocated
specifically to handle temporary machine failure. In case of any failure, hot
data is accessed from the dedicated node and lazy recovery [12] is applied for
cold data recovery.

This module is responsible for scaling up and down the number of dedicated
temporary storage nodes, according to the failure predictions and amount of
data need to be stored in temporary storage during a period of time. It is also
responsible for allocating highly available node as a temporary storage such that
any failure in this temporary storage node is minimal. Any failure prediction
in this temporary storage will also lead to proactive replication. Any failure
prediction in this temporary storage will also lead to proactive replication.

4.2 Recovery Approach

In our target scenario, a cloud storage system initially stores data with any
(n,k) erasure code. With the help of disk/machine failure prediction methods
employed in cloud storage systems, failure types and MTTR of node failures are
predicted. Failures are also identified as disk, permanent machine, temporary
long term machine (MTTR > 15 min), or temporary short term machine (MTTR
< 15 min) failures. The set of data blocks (b1, b2, ..., bi) that is more likely to be
accessed soon is defined as the hot data set H. Based on the failure types, hot
data blocks, and client SLAs, one of the proposed recovery techniques ProDisk,
ProMachine, ProHot, ProHot LazyCold will be chosen.

When the disk/permanent machine failures are predicted (proDisk), all the
data blocks in the failure predicted disk (all data blocks of each disk in a fail-
ure predicted machine) are proactively replicated into the permanent storage
as described in Procode [13]. The counter variables of corresponding replicated
data blocks are incremented. These counter variables are used to identify if the
particular data blocks are replicated already or to delete data blocks against
noisy prediction. A delay is applied while deleting data blocks against noisy
prediction. Time In Advance (TIA) which is provided by failure prediction algo-
rithm is used as a time delay to delete the data blocks that are replicated due
to noisy prediction. Time delay larger than TIA is the better choice. However,

332 R. Nachiappan et al.

this will result in extra storage. The choice of time delay varies and depends on
the storage system where the system is utilized.

While temporary machine failures are predicted, proactive recovery is acti-
vated for either all (ProMachine) or some of the data blocks (ProHot, Pro-
Hot LazyCold) in a failure predicated machine. Data are replicated into the
dedicated temporary storage. The data blocks that are not replicated are recov-
ered by typical reconstruction of erasure codes. While data blocks are proactively
replicated into temporary storage, the corresponding data blocks counter vari-
ables are incremented. These variables are used to identify if the particular data
blocks are replicated already or to delete blocks when the machine recovers from
temporary machine failures. The dynamic replication module also provisions and
adjusts the number of temporary dedicated nodes, based on long term temporary
machine failure rate and client SLAs. When the failure predicted nodes recover
from actual failure and if no further failures are predicted for the same nodes,
the proactively replicated data blocks corresponds to those nodes are deleted.
Also, any data fragments which have more than one copy in the system are also
deleted periodically. In the occurrence of node/disk failure, the reference is made
to proactively replicated blocks which reduces number of data reconstructions
in erasure coded storage systems.

5 Performance Analysis

Since all the methods proposed in this paper use a combination of proactive
and lazy recovery methods, we will carry out the performance analysis on those
methods.

5.1 Bandwidth Analysis

The bandwidth required to reconstruct any missing data is directly proportional
to the number of transfers required, which is k in (n,k) erasure coded storage
system. The amount of data transfer required to recover any missing block is

TransferRequired = S ∗ (k + NumberOfMissingBlocks − 1) (1)

where S is the chunk size and k is number of fragments needed to reconstruct
data. k is 1 for replication. The recovery bandwidth is calculated as

RecoveryBandwidth = TransferRequired/RecoveryT ime (2)

Equation 2 shows that the RecoveryBandwidth is directly proportional to
TransferRequired. Let us consider (14, 10) Reed-Solomon code with the chunk
size of 250 MB. From Eq. 1, TransferRequired can be calculated as 2500 MB for
recovering a single missing data block. However, it is 250 MB if the data block
is proactively replicated. From this, we can conclude that proactive replication
reduces the recovery bandwidth significantly. Lazy recovery delays the recovery
of the data fragments until certain amount of data fragments are unavailable.

Adaptive Bandwidth-Efficient Recovery Techniques 333

In this paper, we use lazy recovery only for handling long term temporary
machine failures such that it does not impact durability of data. Since all the
predicted disk failures are proactively replicated, it does not affect durability.
Furthermore, lazy recovery is activated based on client SLA. If the client needs
good read performance only for data identified as hot, it activates lazy recovery
only for cold data. It also activates proactive recovery for hot data.

5.2 Storage Overhead Analysis

Erasure coding offers excellent storage efficiency compared to replication. Pro-
portional increase in storage of various reliability methods is defined as:

(systematicdata + originaldata)/systematicdata (3)

The method proposed in this paper proactively replicates data into a new
hardware device when permanent node/disk failures are predicted. Once the
failure predicted device fails, reference will be made to the proactively repli-
cated device. Eventually, there will be wrong predictions about devices failing.
When this occurs, it is expected that the storage overhead will suffer a slightly
increase. False positive for disk failures are calculated as less than 0.1% using
classification and regression trees [9]. Hence, the storage overhead will not be
significantly increased by wrong predictions. Temporary nodes are dedicated to
handle long term node failures. However, data in those temporary nodes are
periodically evicted. Hence, temporary node failures will not increase storage
overhead permanently.

6 Performance Evaluation

We use ds-sim simulator [12] to compare recovery bandwidth from replication
and erasure coding to the various bandwidth efficient recovery technique pro-
posed in this paper. We have simulated 3-tier storage components including
disks, machines, and racks. We have modified ds-sim to add failure predic-
tions, proactive replication, and hot data prediction. As output, ds-sim calcu-
lates repair bandwidth and number of degraded strips. The simulator models
distributed storage systems of 3 Petabyte of storage for 10 years. Simulation
parameters are 11 machines/rack, 20 disks/machine with each disk capacity of
750 GB and maximum recovery bandwidth capacity of 650 TB/day. Also 40%
of random data blocks were considered as hot to evaluate ProHot and Pro-
Hot LazyCold recovery methods. For each result we run the simulation with
number of iterations and calculated the result with 95% confidence interval.

6.1 Results and Discussions

In this section, we compare the bandwidth and reliability of replication, Reed-
Solomon (14,10) and various recovery techniques proposed in this paper.

334 R. Nachiappan et al.

Fig. 2. (a) Average recovery bandwidth in GB per day and (b) Maximum instantaneous
recovery bandwidth, in MB/hr, calculated over 10 years.

Recovery Bandwidth. We run simulations with the above configuration
parameters with failure prediction rate 90%, false positive 0.1%, and time in
advance 24 h which found reasonable in [9,11]. Recovery bandwidth is calcu-
lated for each failure event except for machine failures lasting less than 15 min.
Figure 2 shows the comparison of average recovery bandwidth in GB/day versus
storage overhead for replication, Reed-Solomon(14,10), Lazy [12], and the various
recovery techniques proposed in this paper. The proposed recovery techniques
are also applied on Reed-Solomon (14,10) erasure code in this comparison.

Replication reduces recovery bandwidth in up to 66% compared to Reed-
Solomon (14,10). ProDisk reduces average repair bandwidth up to 19% compared
to Reed-Solomon (14,10). ProHot reduces recovery bandwidth up to 38% whereas
ProMachine reduces recovery bandwidth by 75% compared to the same app-
roach. ProMachine and ProHot LazyCold outperform replication.This is because
in replication, data blocks are distributed among large number of hardware
devices. Hence it experiences a large number of recovery events that increases
recovery bandwidth. ProHot LazyCold outperform lazy recovery. This is because
the failure predicted hot data blocks are replicated proactively and it reduces
number of lazy recoveries. However, ProMachine technique increases the tempo-
rary storage proportionally to the temporary long term machine failure rate.

Figure 2(b) shows the maximum instantaneous recovery bandwidth, in
MB/hr (network traffic) in distributed storage systems over the simulation
period. The simulation calculates network traffic as follows. Upon each recov-
ery event, instantaneous total recovery bandwidth, in MB/hr is calculated and
compared with the previous maximum recovery bandwidth. If the new recov-
ery bandwidth is larger than maximum recovery bandwidth, the new recovery
bandwidth becomes the maximum recovery bandwidth. The network traffic in
(14,10) Reed-Solomon code is approximately 10 times higher than replication.

ProDisk, ProMachine, ProHot and ProHot LazyCold reduces network traffic
better than replication and lazy recovery. This is due to proactive replication in
erasure coding, which reduces amount of data to be transferred while keeping
number of recoveries less than replication.

Adaptive Bandwidth-Efficient Recovery Techniques 335

Fig. 3. Number of durable degraded and available degraded slices over 10 years.

Reliability. To evaluate reliability of different approaches, we use the number
of durable degraded slices and available degraded slices to compare durability
and availability over the mission time. In a distributed storage systems, disks are
partitioned into units called strip. Set of corresponding strips from n disks that
encode and decode together is called stripe [18]. A stripe is termed degraded if
one or more systematic blocks is unavailable. The term durable degraded refers
the degraded stripe due to permanent failures, whereas available degraded refers
to transient failures.

Replication does not increase available degraded slice counts in the system
as request to any temporary unavailable slices are redirected to next avail-
able replica. Smaller number of durable and available degraded stripes indi-
cates smaller probability of data loss as the system has less number of fail-
ure and repair events. Moreover, smaller number of degraded slices reduces the
access latency and increases the performance of the application running on it.
From Fig. 3 ProHot and ProHot LazyCold methods do not decrease number
of available degraded stripes. However, available degraded slices are increased
with respect to cold data. Also, the proposed system predicts and handles disk
and node failures separately. ProHot and ProHot LazyCold methods handle all
failure predicted disk failures proactively. Hence, they do not affect durability,
contrary to lazy recovery method [12].

Proactively replicated data blocks reduce the number of durable degraded
and available degraded slices in cloud storage systems and hence reduce the
number of reconstructions. Less reconstructions reduces the number of data loss
events in distributed storage. Figure 3 shows that even 90% of disk failure pre-
diction rate do not eliminate degraded slices.

6.2 Sensitivity Analysis

The proposed recovery techniques are influenced by various important factors
such as TIA and Failure Detection Rate. In this section, we examine how disk
failure prediction rate affects network traffic and how the recovery bandwidth is
affected by TIA.

336 R. Nachiappan et al.

Fig. 4. Maximum instantaneous recovery bandwidth, in MB/hr, calculated over 10
years. (a) with varying failure prediction rates (b) for ProDisk with varying TIA.

Disk Failure Prediction Rate. For analyzing how the system is affected by
the failure prediction rate, we measured network traffic with varying disk failure
prediction rate. Li et al. [9], showed that more than 90% accuracy of disk failure
prediction is possible. We run simulation with disk failure prediction accuracy
varying from 50% to 90% and calculated recovery network traffic in ProDisk
method, as shown in Fig. 4(a).

The proactive recovery in the storage systems will reduce network traffic
(max instantaneous recovery bandwidth in MB/hr) associated with data recon-
struction. As expected, network traffic decreases as the failure prediction rate
increases. Accurate failure predictions proactively handle failures (transfer one
data block instead of 10 data blocks in Reed-Solomon) in storage systems and
hence reduce the recovery traffic. Moreover, only in the ProDisk the network
traffic varies according to the prediction rate. The rest of the methods are accor-
dance with machine failures. It transfers large amount of data while proactive
recovery compared to ProDisk. Hence it is not showing much variations in net-
work traffic with respective to prediction rates.

Time in Advance. We examine how the failure prediction’s TIA affects recov-
ery network traffic of storage systems. Figure 4(b) shows how the recovery net-
work traffic changes with reduction of TIA of failure prediction in the ProDisk
method. This will be similar for the rest of the methods. Since the maximum
recovery bandwidth capacity in this experiments is set to 650 TB/day, reducing
TIA from 24 h to 12 h does not change average recovery bandwidth drastically.
However, reduction in TIA below 30 min increases network traffic in storage
systems. Hence TIA will not affect the recovery bandwidth drastically.

Amount of Data Transferred. To evaluate resource savings from proactive
replication only for hot data, we calculated the total amount of data transferred
to the temporary dedicated storage to handle long term temporary machine
failure. The amount of data transferred in ProHot/ProHot LazyCold are directly
proportional to the percentage of data determined as hot. Figure 5 shows that the

Adaptive Bandwidth-Efficient Recovery Techniques 337

Fig. 5. Total number of proactively replicated slices due to long term temporary
machine failures calculated over 10 years.

total amount of data transferred in ProMachine is approximately twice than in
ProHot. The methods ProHot and ProHot LazyCold reduces temporary storage
needs.

7 Conclusions and Future Work

The two primary reliability mechanisms employed by cloud storage systems have
its own drawbacks. Even though erasure code offers tremendous storage savings
compared to replication, reconstructing lost or corrupted data blocks involves
large communication overhead.

In this paper, we proposed an approach that applies failure prediction tech-
niques to proactively replicate and handle failures in erasure coded storage sys-
tems. We defined various recovery techniques with the combination of repli-
cation, erasure codes, and lazy recovery methods in order to reduce network
bandwidth/traffic in cloud storage systems. It uses data blocks hot data status
and client SLAs to define an appropriate recovery technique in cloud storage
systems.

In our future work, we plan to investigate scheduling of proactive replicas in
distributed storage such that it reduces degraded read latency in cloud storage.
The interactions of foreground running tasks during proposed recovery schemes
could also be considered in future. Another interesting and promising area of
future research is energy-efficient scheduling of proactive replicas in cloud stor-
age.

References

1. Huang, C., et al.: Erasure coding in windows azure storage. In: Presented as part
of the 2012 USENIX Annual Technical Conference (USENIX ATC 12), Boston,
USA, pp. 15–26. USENIX, June 2012

2. Nachiappan, R., Javadi, B., Calheiros, R.N., Matawie, K.M.: Cloud storage relia-
bility for big data applications: a state of the art survey. J. Netw. Comput. Appl.
97, 35–47 (2017)

338 R. Nachiappan et al.

3. Plank, J.S.: T1: erasure codes for storage applications. In: Proceedings of the 4th
USENIX Conference on File and Storage Technologies (FAST), San Francisco,
USA, pp. 1–74. USENIX, December 2005

4. Sathiamoorthy, M., et al.: XORing elephants: novel erasure codes for big data.
Proc. VLDB Endow. 6(5), 325–336 (2013)

5. Ford, D., et al.: Availability in globally distributed storage systems. In: Proceedings
of the 9th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), Vancouver, Canada. USENIX, October 2010

6. Dimakis, A.G., Godfrey, P.B., Wu, Y., Wainwright, M.J., Ramchandran, K.: Net-
work coding for distributed storage systems. IEEE Trans. Inf. Theory 56(9), 4539–
4551 (2010)

7. Rashmi, K., Shah, N.B., Gu, D., Kuang, H., Borthakur, D., Ramchandran, K.: A
hitchhiker’s guide to fast and efficient data reconstruction in erasure-coded data
centers. ACM SIGCOMM Comput. Commun. Rev. 44(4), 331–342 (2015)

8. Li, J., Stones, R.J., Wang, G., Liu, X., Li, Z., Xu, M.: Hard drive failure prediction
using decision trees. Reliab. Eng. Syst. Saf. 164, 55–65 (2017)

9. Li, J., et al.: Hard drive failure prediction using classification and regression
trees. In: Proceedings of the 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), Atlanta, USA, pp. 383–394. IEEE,
June 2014

10. Javadi, B., Kondo, D., Iosup, A., Epema, D.: The failure trace archive: enabling the
comparison of failure measurements and models of distributed systems. J. Parallel
Distrib. Comput. 73(8), 1208–1223 (2013)

11. Agrawal, B., Wiktorski, T., Rong, C.: Analyzing and predicting failure in hadoop
clusters using distributed hidden Markov model. In: Qiang, W., Zheng, X., Hsu,
C.-H. (eds.) CloudCom-Asia 2015. LNCS, vol. 9106, pp. 232–246. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-28430-9 18

12. Silberstein, M., Ganesh, L., Wang, Y., Alvisi, L., Dahlin, M.: Lazy means smart:
reducing repair bandwidth costs in erasure-coded distributed storage. In: Proceed-
ings of the International Conference on Systems and Storage (SYSTOR), Haifa,
Israel, pp. 1–7. ACM, June 2014

13. Li, P., Li, J., Stones, R.J., Wang, G., Li, Z., Liu, X.: Procode: a proactive erasure
coding scheme for cloud storage systems. In: Proceedings of the 2016 IEEE 35th
Symposium on Reliable Distributed Systems (SRDS), Budapest, Hungary, pp. 219–
228. IEEE, September 2016

14. Li, W., Yang, Y., Yuan, D.: Ensuring cloud data reliability with minimum replica-
tion by proactive replica checking. IEEE Trans. Comput. 65(5), 1494–1506 (2016)

15. Wu, S., Jiang, H., Mao, B.: Proactive data migration for improved storage avail-
ability in large-scale data centers. IEEE Trans. Comput. 64(9), 2637–2651 (2015)

16. Wu, S., Jiang, H., Feng, D., Tian, L., Mao, B.: Improving availability of raid-
structured storage systems by workload outsourcing. IEEE Trans. Comput. 60(1),
64–79 (2011)

17. Liu, J., Shen, H.: A popularity-aware cost-effective replication scheme for high
data durability in cloud storage. In: Proceedings of the 2016 IEEE International
Conference on Big Data (Big Data), Washington, DC, USA, pp. 384–389. IEEE
December 2016

18. Plank, J.S., Luo, J., Schuman, C.D., Xu, L., Wilcox-O’Hearn, Z., et al.: A per-
formance evaluation and examination of open-source erasure coding libraries for
storage. In: FAST, vol. 9, pp. 253–265 (2009)

https://doi.org/10.1007/978-3-319-28430-9_18

IT Optimization for Datacenters Under
Renewable Power Constraint

Stephane Caux1, Paul Renaud-Goud2, Gustavo Rostirolla1,2(B),
and Patricia Stolf2

1 LAPLACE, Université de Toulouse, CNRS, Toulouse, France
{caux,gustavo.rostirolla}@laplace.univ-tlse.fr

2 IRIT, Université de Toulouse, 31062 Toulouse, France
{paul.renaud.goud,stolf}@irit.fr

Abstract. Nowadays, datacenters are one of the most energy consuming
facilities due to the increase of cloud, web-services and high performance
computing demands all over the world. To be clean and to be with no
connection to the grid, datacenters projects try to feed electricity with
renewable energy sources and storage elements. Nevertheless, due to the
intermittent nature of these power sources, most of the works still rely
on grid as a backup. This paper presents a model that considers the
datacenter workload and the several moments where renewable energy
could be engaged by the power side without grid. We propose to optimize
the IT scheduling to execute tasks within a given power envelope of only
renewable energy as a constraint.

Keywords: Cloud computing · Renewable energy · Scheduling

1 Introduction

Datacenters are now known to be one of the biggest actors when talking about
energy consumption [1]. In 2006, particularly, datacenters were responsible for
consuming 61.4 billion kWh in the United States [2]. In another study [3], dat-
acenters are in charge of consuming about 1.3% of world’s electricity consump-
tion. Datacenters are currently consuming more energy than the entire United
Kingdom, and our needs are increasing.

Supplying datacenters with clean-to-use renewable energy is therefore essen-
tial to help mitigate climate change. The vast majority of cloud provider com-
panies that claim to use green energy supply on their datacenters consider the
classical grid, and deploy the solar panels/wind turbines somewhere else and sell
the energy to electricity companies [4], which incurs in energy losses when the
electricity travels throughout the grid. Even though several efforts have been
conducted at the computing level in datacenters partially powered by renewable
energy sources, the scheduling considering the variations in the power produc-
tion without the grid can still be widely explored. In this paper we consider a
datacenter powered only with renewable energy.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 339–351, 2018.
https://doi.org/10.1007/978-3-319-96983-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_24&domain=pdf

340 S. Caux et al.

Since energy efficiency in datacenters is directly related to the resource con-
sumption of a computing node [5], performance optimization and an efficient
load scheduling is essential for energy saving. Today, we observe the use of cloud
computing as the basis of datacenters, either in a public or private fashion. The
task management is first optimized by Virtual Machine (VM) management [6],
where a task should be placed considering an energy consumption model to
describe the task’s consumption, depending on the resource description (pro-
cessor and memory power characteristics) and task’s demand (resources usage)
while respecting the Quality of Service (QoS - in our case their due dates).

To address the IT load scheduling while considering the renewable energy
available we propose Renewable Energy Constrained Optimization (RECO).
RECO is a module to schedule batch tasks, which are characterized by their
release time, due date and resource demand, in a cloud datacenter while respect-
ing a power envelope. This envelope represents an estimation which would be
provided by a power decision module and is the expected power production based
on weather forecasts, states of charge of storage elements and other power pro-
duction characteristics. We also highlight that this RECO module is intended
to be used as part of the ANR Datazero project1. RECO aims at maximizing
the Quality of Service with a constraint on electrical power. There are sev-
eral possible power envelopes which could be generated using only renewable
energy sources and the different moments when storage elements can be engaged.
This interaction between datacenter electrical consumption and electrical power
sources part is fundamental to profit as much as possible from the renewable
energy sources. We propose and evaluate this RECO module with a comparison
between classical greedy algorithms and meta-heuristics constrained by power
envelopes.

The remainder of this article will present the classical approaches on schedul-
ing with and without renewable energy sources in Sect. 2. In Sect. 3 the problem
formulation is presented in details, followed by the resolution in Sect. 4 and the
evaluation methodology as well as the results obtained are presented in Sect. 5.
Finally, Sect. 6 presents final remarks, highlights the contributions with quanti-
tative data and also directions for future works.

2 Related Work

Several techniques exist to save energy [5,7]. In this section some of these research
initiatives are presented, mainly related to the energy aware task scheduling in
datacenters. In this sense, several authors tackle this problem using heuristics to
schedule tasks trying to reduce the energy consumption in a cloud datacenter,
some of which consider also the use of renewable energy. Below we present some
initiatives that utilizes green energy to the datacenter in order to maximize the
green energy usage.

Goiri et al. proposes GreenSlot [8] which focus on batch jobs and Green-
Hadoop [9] focused on MapReduce jobs scheduling for a datacenter powered
1 http://www.datazero.org.

http://www.datazero.org

IT Optimization for Datacenters Under Renewable Power Constraint 341

by photovoltaic panels and the electrical grid. The schedulers are based on a
predicted amount of solar energy that will be available, and aims to maximize
the green energy consumption while meeting the jobs constraints. If grid energy
must be used to avoid due date violations, the scheduler finds the cheapest point.
Aksanli et al. [10] proposes an adaptive datacenter job scheduler which also uti-
lizes short term prediction but in the case of solar and wind energy production.
The aim of the scheduler is to reduce the number of canceled or violated jobs,
and improve the efficiency of the green energy usage. Liu et al. [11] investigates
the feasibility of powering cloud datacenters using renewable energy. The study
focus on geographical load balancing, and the optimal mix of renewable energy
using a concept called “follow the renewables” in which the workload is migrated
among datacenters to improve the renewable energy usage. Finally, Beldiceanu
et al. [4] presents EpoCloud, a prototype aims at optimizing the energy consump-
tion of mono-site cloud datacenters connected to the regular electrical grid and
to renewable energy sources, aiming to find the best trade-off between energy
cost and QoS degradation using application reconfiguration or jobs suspension
along with Vary-On/Vary-Off (VOVO) policy which dynamically turn on/off
the computing resources. Sharma et al. [12] presents Blink, a way to handle
intermittent power constraints activating and deactivating servers. For example,
a system that blinks every 30 seconds is on for 30 seconds and then off for 30
seconds. This approach can be useful for some web applications, but not realistic
for the vast majority of applications running in cloud platforms.

As it can be observed, techniques are employed in order to reduce the brown
energy consumption [5], such as node consolidation, DVFS (processor voltage
and frequency variation) and some authors also take profit of heterogeneity in
the datacenter. Nevertheless, with exception of Sharma et al. [12] the authors
always consider the grid as a backup and not a datacenter powered only by
renewable energy sources, and the fluctuations that could occur in the power
production. The scheduling over several possible power profiles allow us to see
the impact on metrics such as QoS and the usage of renewable energy. To do
so, a module to schedule tasks in a cloud datacenter is proposed in this paper
while respecting the several possible power envelopes, minimizing the number
of due date violations. For comparison purposes we also explore classical greedy
algorithms and meta-heuristics constrained by a provided power envelope.

3 Core Problem Formulation

3.1 The Principles of the RECO Module

IT scheduling problems consist in allocating tasks on the IT resources under
constraints depending on the IT platform current state and on energy availabil-
ity. Several levels of decision are concerned as IT resource management (server
switch on/off, process migration, voltage and frequency scaling, etc.). On the
other side, we have the power systems where several power profiles could be
provided, depending on the moment when the renewable energy is produced and
the batteries are engaged for instance.

342 S. Caux et al.

RECO focuses on integrating both power and computing systems to provide
a power constrained optimization using power envelopes, which is applicable in
the context of projects such as Datazero. The power envelope is considered as
an input of the IT scheduling problem. The objective is to optimize the tasks
placement in a cloud datacenter respecting a power envelope provided by the
Power Management while maximizing the QoS (in our case, minimizing the due
date violations).

RECO can be triggered when a new task arrives or due to some changes in
the power envelope. It decides which task will be executed on which resource,
when and at which frequency (using DVFS), and also when each node will be
turned on or off. RECO ensures that the placement will respect a power envelope
engaged by a power module, while minimizing the number of tasks that will be
violated (finishing after the due date).

In the next sections, the models for IT and power characteristics and the
proposed scheduling approaches are exposed in details.

3.2 IT Management Model

In this work we focus mainly on batch tasks. The IT system receives a set of n
tasks {Tj}j∈{1,...,n}, characterized by the following information: etj represents
the execution time of task Tj running at a reference frequency F

(1)
1,1 (see later),

memj is the requested memory, rtj represents the release time of the task (the
moment when Tj can start to be executed), and dj represents the due date of
this task (the moment when Tj must be finished).

M multi-processor hosts {Hh}h∈{1,...,M} populate the datacenter, while each
host Hh is composed of Ch processors equipped with DVFS, each of them
exposing Mh memory. The power dissipated by Hh can be computed based
on Mudge [13]:

Ph =

⎧
⎪⎨

⎪⎩

P (idle)
h +

Ch∑

h=1

runh,p · P (dyn)
h · (fh,p)

3 if sh = on

0 otherwise

(1)

where sh determines whether Hh is on or off , P (idle)
h is the idle power, runh,p

is a boolean describing whether there is a task running on the processor, P (dyn)
h

is a host-dependent coefficient, and fh,p is the clock frequency of processor p on
host h.

Every processor have a set of available frequencies Fh,p =
{
F

(1)
h,p , . . . ,

F
(FMh,p)
h,p

}
, in such a way that at any instant, fh,p ∈ Fh,p. Finally, note that

under any clock frequency, a power overhead of P
(on)
h (resp. P

(off)
h) is paid dur-

ing t
(on)
h (resp. t

(off)
h) when Hh is turned on (resp. off).

We consider that an external Power Management module sends a set of
piecewise power envelopes in a time window [ti,min , ti,max] where each envelope i
is described with time steps {ti,l}l∈{0,...,N} (where ti,0 = ti,min and ti,N = ti,max)

IT Optimization for Datacenters Under Renewable Power Constraint 343

and power values. The available electrical power, constant on each [ti,l, ti,l+1], is
given in Watts and N represents the granularity. Here we also loosely call these
time intervals as steps.

3.3 Objective

The aim is to find when and at which frequency to run every task, i.e. to find
assignment functions σproc , σhost and σfreq expressing that Tj runs on processor
σproc(j) of host σhost(j) at frequency F

(σfreq(j))

σhost(j),σproc(j)
, and a starting point

function st expressing that Tj starts at time st(j). We denote by ft(j) the
finish time of Tj , hence, for all j:

ft(j) = st(j) +
F

(σfreq(j))

σhost(j),σproc(j)

F
(1)
1,1

· etj . (2)

The problem can then be formulated as follows: minimize
∑

j max (0, ft(j) − dj),
while fulfilling memory and power constraints.

4 Core Problem Resolution

Finding a mapping of the tasks onto the processors such that no due date con-
straint is violated is an NP-complete problem, while DVFS is not enabled and
memory is not taken into account, even with two processors. In this way, we
focus on approximation methods. More specifically, we explore Greedy Heuris-
tics (GH) and Genetic Algorithms (GA) as a way to validate our proposal. GH
can provide locally optimal decisions, and in general have a short execution time.
On the other hand, the combinations of choices locally optimal do not always
lead to a global optimum. The second approach (GA), can provide a large num-
ber of adapted solutions and also makes possible to approach a local minimum
starting from an existing solution. Nevertheless, the problem of GA methods
can be the execution time on large scale problems. In this work we propose a
time window approach. More specifically, an off-line resource allocation problem
is considered with a fixed set of tasks that have constant resource needs.

The difference from regular scheduling algorithms is that in this case we
need considering the power envelope as a constraint. To do so, the implemented
algorithms use a power check function which is responsible for evaluating if a
task can be scheduled in a given processing element on the desired time interval.
It returns how much power would be consumed to schedule the task using a
specific processor and frequency. Hereafter, two different approaches that provide
scheduling possibilities are presented but this model is not limited to it and new
approaches could be used as long as they rely on the presented function.

For GH, we considered three versions of the Best Fit, where we use different
sort task functions. It tries to fit the tasks in the node that presents the smallest
power consumption, respecting the power envelope and resource constraints,
and three versions of the First Fit algorithm which schedules a task at the first

344 S. Caux et al.

available node which can finish the task before the due date. The difference
among the three versions of each algorithm is the way that the tasks are sorted:
(i) Due date, closest task first; (ii) Arrival time, first task that arrives is the first
to be scheduled; and (iii) Task size, longest one first. Even though the changes
occur only in the task ordering, the impact on the results can be significant.
All considered GH algorithms must respect the power envelope, meaning that
if there is not enough power in a given time step to power a machine, this task
will be delayed until the next time step in which a possible solution is found
(increasing the start step).

Regarding the GA we propose two variations, the first one where the fitness
function consists only in reducing the number of due date violations, and the
second one uses a weight based approach, also trying to minimize the power
consumption in a Mixed Objective (hereafter called MPGA - MultiPhase Genetic
Algorithm and MPGA-MO - MultiPhase Genetic Algorithm Mixed Objective,
respectively). Equation 3 is used to normalize all metrics considered for each
chromosome Ck, described below, where M (max) is the maximum value for a given
metric, M (min) is the minimum, and Mk is the value of the kth chromosome. The
normalized values are then inputs in Eq. 4 where DDk is the normalized due date
violations and Ek is the normalized energy consumption. The metrics should be
weighted using α, depending on the importance of the objective (for MPGA the
only metric considered is the number of due date violations, i.e. α is equal to 1).

M
(norm)
k =

M (max) − Mk

M (max) − M (min)
(3)

fitnessk = α × DDk + (1 − α) × Ek (4)

In both cases each chromosome represents a scheduling possibility for the
given power profile. Figure 1 presents an example of crossover operation (Algo-
rithm1) where each gene represents a task and the value is the node where it
will be executed. For the crossover operation we consider two points crossover
since it allows the change of a higher number of genes in a single operation, and
the selection consists in tournament selection, which allows the best fitted genes
to survive. After that, the processor, frequency and time are assigned using a
greedy algorithm. To improve the execution time of both GAs (the verification
of the power available occurs for each step in the power envelope) we also use
two different power envelopes, the first one provides a rough scheduling based
on an aggregation of the initially provided envelope, reducing in this case the
number of steps. After obtaining an initial placement, a fine grained power enve-
lope (smaller steps) is used to absorb power peaks and respect the given power
envelope.

Node 0Node 2 Node 3
T1 T3T2

Node 3 Node 0 Node 2

T1 T3T2

Node 0 Node 2 Node 3

T1 T3T2

Node 3 Node 0 Node 2

T1 T3T2

Parents O springsCrossover/Mutation

Fig. 1. Genetic algorithm chromosome representation and crossover example.

IT Optimization for Datacenters Under Renewable Power Constraint 345

A pseudocode of the GA used is presented in Algorithm 1 where it can be
seen the generation of the simplified envelope in line 2 (assigned to individuals
in line 4), the first execution from line 6 to 11, and the execution with the
detailed power envelope and the respective stopping criteria from line 12 to 19.
The stopping criteria for the MPGA, since it only considers the number of due
date violations, is when it has at least one chromosome that has no violation the
execution can be stopped, or the maximum number of generations is reached. For
the second algorithm (MPGA-MO) the stopping criteria is only the number of
generations, since the minimum energy to schedule the tasks in advance cannot
be defined easily.

Algorithm 1. Multiphase genetic algorithm pseudocode.
input : Set of tasks in queue, set of resources available, power envelope for the

window, selection method, population size, number of generations first phase,
number of generations second phase, number of simplified steps, mutation
probability, crossover probability

output: Tasks scheduled, actions to be performed in nodes, QoS metrics, power
consumption estimation

1 begin

2 simplifiedPowerEnvelope = generateSimplifiedEnvelope(powerEnvelope,nSteps);

/* First Phase - Simplified Power Envelope */

3 foreach Individual i in population do

4 i.setPowerEnvelope(simplifiedPowerEnvelope.copy);
5 end

6 generateInitialPopulation();
7 for (g=0; g < generationsFirstPhase; g++) do
8 scheduleAndCheckConstraints(individuals);
9 calculateFitness(individuals);

10 selectionMethod.select(individuals);

11 end

/* Second Phase - Detailed Power Envelope */

12 foreach Individual i in population do

13 i.setPowerEnvelope(powerEnvelope.copy);
14 end

15 while StopCriteriaNotReached do
16 scheduleAndCheckConstraints(individuals);

17 calculateFitness(individuals);
18 selectionMethod.select(individuals);

19 end

20 end

When a set of individuals of a generation is computed, the greedy
algorithms is used to perform the time schedule and DVFS adjustment
(scheduleAndCheckConstraints called in lines 8 and 16). In a simplified man-
ner, how the tasks would be allocated in a processor is presented in Fig. 2 where
we illustrate a node with two processors. In (a) we present the scheduling after

346 S. Caux et al.

the greedy algorithm that defines the time and processor inside a node is exe-
cuted. The aim of this greedy algorithm is to align the execution of the processors
of the same node to be able to switch it off. First we populate an associative
array with all the tasks and the time intervals where they can be scheduled.
After, we get the first unscheduled task and compare if there is another task
which the time to be schedule intercepts this time interval. The algorithm eval-
uates then, what is the earliest start step in which the tasks can be allocated
and not violated. Finally, the algorithm finds a free processor inside the node
and schedule the tasks in parallel (as illustrated in (b) by T1 in Processor 1 and
T2 and T3 in Processor 2. We also highlight that the algorithm always verifies
the power envelope and resources constraints.

In Fig. 2(c) we show a per processors DVFS where we reduce the frequency
of Processor 2 in this case, to reduce the power consumption, and consequently
increasing the execution time of tasks T2, T3. The frequency in this case is only
reduced if the due date is not violated. This DVFS control does not impact
the idle power consumption of a node, allowing an easy consolidation of nodes
where more energy saving can be obtained. In this sense, at the end of the
task placement and DVFS adjustment we also calculate when each node can
be turned off in order to reduce the power consumption without impacting the
system performance.

T1

T2

Processor 1

Processor 2 T3

on o

T1

T2

Processor 1

Processor 2 T3

on o

(b)

(c)T1 T3T2

Node 0
Processor 1

Frequency: F1
Start: 1:00pm
End: 5:00pm

Node 0
Processor 2

Frequency: F0
Start: 1:00pm
End: 2:30pm

Node 0
Processor 2

Frequency: F3
Start: 2:30pm
End: 5:00pm

(a)

Fig. 2. Tasks allocation inside a node with two processing elements using greedy
scheduling inside GA (a), and DVFS adjustment where (b) is before DVFS and (c)
after DVFS adjustment.

5 Evaluation Methodology and Results

5.1 Methodology

To validate RECO we simulated an IT and Power production infrastructure
based on the prototype presented in the previous section. The DCWoRMS sim-
ulator and the other modules are executed on the same machine. The IT infras-
tructure inside the simulator is based on Villebonnet et al. [14], more specifically
we are using 30 hosts (15 of each kind) and the power consumption values of Par-
avance and Taurus clusters from Grid50002. We consider P (dyn) = 4.725W ·s3

2 https://www.grid5000.fr/.

https://www.grid5000.fr/

IT Optimization for Datacenters Under Renewable Power Constraint 347

(see Eq. 1) and P (idle) = 69.9W for Paravance and P (dyn) = 5.255W ·s3 and
P (idle) = 95.8W for Taurus. For Paravance we considered P (on) = 112.91W
over t(on) = 189 s and for P (off) = 65.7W over t(off) = 10 s . For Taurus we
considered P (on) = 125.78W over t(on) = 164 s and for P (off) = 106.63W over
t(off) = 11 s.

Regarding the GA, we bound the number of generations to 100 (resp. 400)
with the simplified power envelope (resp. with the original power envelope) and
the population size to 100 individuals. The probabilities for crossover and muta-
tion are 0.9 and 0.3 respectively. For the MPGA-MO we consider α = 0.9 where
the main objective is minimize the due date violations. For the Google based
workload [15] generator we use a two-day window (i.e. all the tasks have to be
executed inside this interval) to generate 3 different workloads with 234, 569
and 1029 tasks. Each workload is scheduled with 3 different power profiles as
observed in Fig. 3. Profile i with peak production of 7249 W and average of
2879W, Profile ii peak production of 7249 W and average of 2893 W and Pro-
file iii with peak production of 6387 W and average of 2756W. Even though
the values are similar, the moment in which the power is delivered is different,
as observed in Fig. 3.

Fig. 3. Graphical representation of the three power profiles.

5.2 Results Evaluation

In Fig. 4 we present the number of due date violations (a) the total time violated
(b) and energy consumption (c) for all the proposed workloads for best fit and
genetic algorithms (first fit is presented only in text for better visualization),
considering the three different power profiles.

Considering the three power profiles with only 234 tasks, almost all algo-
rithms, even with the power constraint, can reduce the number of violations to
0 and keep the energy consumption around 15 kWh. The exceptions in this case
are the first fit algorithms which have a higher energy consumption (around
18 kWh) and one violation (198s of total time violated) with Profile ii. As
the number of tasks increases an expected degradation of performance of both
first fit and best fit algorithms is observed when compared to the GA. When
considering 1029 tasks we have in Profile i 18 due date violations (114046 s)

348 S. Caux et al.

for the best fit algorithm against 5 (545446 s) and 6 (30684 s) of the two genetic
algorithms variations, which also obtained a reduction of 6.3% in the energy
consumption. In Profile ii we observed the same behavior, reducing from 19
(189892 s) to 12 (78471 s and 114845 s) due date violations with a reduction of
4.9% in the energy consumption. The same goes for Profile iii which reduced
from 22 (169612 s) to 11 (118092 s and 118477 s) due date violations with an
economy of 5% in energy. The values for the total time violated of the tasks may
seem high but we need to consider that the scheduling is constrained by a power
envelope, and in this case the tasks need to be delayed for the next moment with
enough power available (if we consider only solar energy for instance, this may
take a whole day).

In Fig. 5 we present the power produced and consumed for Profile i. These
results were obtained when using the Best Fit Due Date (a) and MPGA-MO
(b) scheduling planners with Profile i and 1029 tasks. We can observe that
in some points (such as in the first 100 samples) the power consumption can
be similar for both algorithms due to the high number of tasks that needs to
be scheduled and so reaching the maximum power available. This justifies why
we have different number of due date violations with the same workload under
different power profiles: at some points we have too many tasks to be scheduled,
and they lack flexibility (time between release and due date) to wait the next
moment where enough power will be available (samples 100–200). This highlights
the importance of the generation of multiple power envelopes when considering
renewable energy sources and storage elements engagement. We could not only
save energy but also provide a better QoS; this behavior can be observed by
comparing the results obtained with Profile i against the two others, which
have a higher number of violations and in case of Profile ii also a higher energy
consumption.

The results become even more significant if we consider the long term impact
that it could provide. For Profile i, displayed in Fig. 5, in a period of 2 days
we could save 164.98 kWh using the MPGA-MO, instead of 155.35 kWh and
160.04 kWh for first fit and best fit due date respectively. This energy could be
stored and used in the generation of the next scheduling windows improving the
results, or sold to the grid power provider.

In Fig. 6 the average execution time of all the algorithms (with minimum
and maximum values in the bars) is presented. Despite of the smaller number
of due date violations and lower energy consumption, as expected, the Genetic
Algorithm can have an execution time exponentially higher than the greedy ones.
Nevertheless, if the scheduling requested is not a reactive action, this execution
time is not prohibitive (around 12 min in the worst case for two days scheduling).
We also highlight that it is possible to improve even more the execution time by
improving the stopping criteria, but this will have an impact of the quality of
the schedule.

IT Optimization for Datacenters Under Renewable Power Constraint 349

Fig. 4. Power available and consumed in the power profiles using best fit and genetic
algorithm scheduling plan.

Fig. 5. Power available and consumed in the power Profile i considering two different
algorithms and 1029 tasks.

350 S. Caux et al.

Fig. 6. Execution time of the different algorithms with different number of tasks with
Profile i.

6 Conclusion

This article focused on presenting and evaluating an optimization module called
RECO that aims to schedule tasks in a cloud datacenter while respecting the
possible power envelopes.

We presented different algorithms that try to minimize due date violations
while respecting power and resource constraints. The proposed genetic algorithm
approach (MPGA and MPGA-MO) was able to reduce from 304 (First Fit)
to 11 due date violations, in the best scenario, while also reducing the energy
consumption from 78.7 kWh to 73.15 kWh respecting one of the power envelopes
provided by a power manager. We have also presented an evaluation of the
impact the power envelopes can have in the task scheduling, and concluded that
more power does not necessarily means better QoS for the IT part, but it is
more important to know when this power is delivered.

Finally, we intend to continue our research extending RECO to support real
time task arrival, services (not only batch tasks), and variations in the amount
of resources that are consumed by the applications. We also intend to connect
RECO’s generic interface through a message queue with an electrical middleware
to receive the power envelopes.

Acknowledgments. The work presented in this paper was supported by the French
ANR DATAZERO project ANR-15-CE25-0012. For source characterization, the exper-
imental database has been obtained thanks to the financial support of several
LAPLACE projects, France (leaders Christophe TURPIN, Eric BRU)

References

1. Khan, Z., Kiani, S.: A cloud-based architecture for citizen services in smart cities.
In: 2012 IEEE Fifth International Conference on Utility and Cloud Computing
(UCC), pp. 315–320, November 2012

2. Le, K., Bilgir, O., Bianchini, R., Martonosi, M., Nguyen, T.D.: Managing the cost,
energy consumption, and carbon footprint of internet services. SIGMETRICS Per-
form. Eval. Rev. 38(1), 357–358 (2010)

IT Optimization for Datacenters Under Renewable Power Constraint 351

3. Koomey, J.: Growth in data center electricity use 2005 to 2010. In: A report by
Analytical Press, completed at the request of The New York Times, p. 9 (2011)

4. Beldiceanu, N., et al.: Towards energy-proportional clouds partially powered by
renewable energy. Computing 99(1), 3–22 (2017)

5. Orgerie, A.-C., Assuncao, M.D.D., Lefevre, L.: A survey on techniques for improv-
ing the energy efficiency of large-scale distributed systems. ACM Comput. Surv.
46(4), 1–31 (2014)

6. Borgetto, D., Stolf, P.: An energy efficient approach to virtual machines manage-
ment in cloud computing. In: 2014 IEEE 3rd International Conference on Cloud
Networking (CloudNet), pp. 229–235, October 2014

7. Deng, W., Liu, F., Jin, H., Li, B., Li, D.: Harnessing renewable energy in cloud
datacenters: opportunities and challenges. IEEE Netw. 28(1), 48–55 (2014)

8. Goiri, I., et al.: GreenSlot scheduling energy consumption in green datacenters.
In: 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pp. 1–11, November 2011

9. Goiri, I., Le, K., Nguyen, T.D., Guitart, J., Torres, J., Bianchini, R.: GreenHadoop:
leveraging green energy in data-processing frameworks. In: Proceedings of the 7th
ACM European Conference on Computer Systems, EuroSys 2012, pp. 57–70. ACM,
New York (2012)

10. Aksanli, B., Venkatesh, J., Zhang, L., Rosing, T.: Utilizing green energy prediction
to schedule mixed batch and service jobs in data centers. In: Proceedings of the 4th
Workshop on Power-Aware Computing and Systems, HotPower 2011, pp. 5:1–5:5.
ACM, New York (2011)

11. Liu, Z., Lin, M., Wierman, A., Low, S.H., Andrew, L.L.: Geographical load bal-
ancing with renewables. SIGMETRICS Perform. Eval. Rev. 39(3), 62–66 (2011)

12. Sharma, N., Barker, S., Irwin, D., Shenoy, P.: Blink: managing server clusters on
intermittent power. SIGARCH Comput. Archit. News 39(1), 185–198 (2011)

13. Mudge, T.: Power: a first-class architectural design constraint. Computer 34, 52–58
(2001)

14. Villebonnet, V., Costa, G.D., Lefevre, L., Pierson, J.M., Stolf, P.: Energy aware
dynamic provisioning for heterogeneous data centers. In: 2016 28th International
Symposium on Computer Architecture and High Performance Computing (SBAC-
PAD), pp. 206–213, October 2016

15. Da Costa, G., Grange, L., Courchelle, I.D.: Modeling and generating large-scale
Google-like workload. In: 2016 Seventh International Green and Sustainable Com-
puting Conference (IGSC), pp. 1–7, November 2016

GPU Provisioning: The 80 − 20 Rule

Eleni Kanellou1(B), Nikolaos Chrysos1, Stelios Mavridis1, Yannis Sfakianakis1,
and Angelos Bilas1,2

1 ICS-FORTH, N. Plastira 100, 70013 Heraklion, Greece
{kanellou,chrysos,mavridis,jsfakian,bilas}@ics.forth.gr

2 Computer Science Department, University of Crete,
Voutes Campus, 70013 Heraklion, Greece

Abstract. The use of accelerators, such as GPUs and FPGAs, in data-
centers has been increasing in an effort to improve response time for user-
facing tasks. Although accelerators offer performance improvements for
certain types of applications, they contribute to total cost of ownership
and need to be deployed thoughtfully. In addition, the complexity of mod-
ern applications and different accelerator types, makes this a challenging
task. In this paper, we derive a generalized model of workload core per-
formance in datacenters. We find that the sweet spot for cost/benefit is
when deploying a relatively low number of GPU accelerators compared
to the number of servers. We also quantify this effect in the presence
of data transfers and verify our observations using performance simula-
tions and experiments in a realistic testbed with multiple GPUs. Overall,
we detect aspects of accelerator deployment that should be taken into
account to achieve trade-offs for their use in datacenters.

1 Introduction

With the end of Dennard scaling [1], the evolution of general-purpose processors
cannot benefit from technology improvements alone. Thus, modern datacen-
ters actively pursue heterogeneity by including special-purpose accelerators. For
instance, Microsoft, Google, and Amazon reportedly use FPGA, ASIC, and GPU
accelerators in order to speedup the execution of user-facing tasks, such as web
search, speech recognition, etc. [2,3]. The spreading integration of accelerators
in datacenters raises a question that we address in this paper: how many and
what type of accelerators should we deploy in a functional datacenter?

Deployment decisions may influence many datacenter cost and performance
aspects, such as machine utilization, energy consumption, task latencies, cost
of purchase and maintenance (as evidenced for instance in [4–7]). In addition,
modifying a deployment paradigm can be a costly and time-consuming process.
In this paper, we evaluate deployment compositions for heterogeneous datacen-
ters. We use a model that approximates the performance of a datacenter when
executing a given workload. We experiment with workloads that have a deter-
mined specific characteristics on some aspects (e.g. task duration and type) but
we have also experimented with workloads that we designed so as to mimic the
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 352–364, 2018.
https://doi.org/10.1007/978-3-319-96983-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_25&domain=pdf

GPU Provisioning: The 80 − 20 Rule 353

real-life traces available in literature that are representative for at least a class
of datacenters. In summary, our main observation is the 80 − 20 rule, i.e. that
under certain circumstances, building a deployment with more than 20% GPUs
does not significantly improve performance. Experiments in small-scale systems
validate this finding.

Our results can help and guide datacenter designers when they plan a deploy-
ment. The data transfer overhead can limit the performance gain from accelera-
tors, challenging our key observations, especially considering deployments with
remote accelerators (or GPUs). Nevertheless, we were able to partly validate our
results in such deployments using simulations and realistic testbeds. Our main
contributions in this paper are:

1. A model to evaluate workload core performance in datacenters.
2. A powerful rule-of-thumb that can help direct GPU provisioning.
3. Evaluation some of our results on a realistic testbed of 6 GPUs and 6 CPUs.

The remainder of this paper is organized as follows. In Sect. 2, we outline
the conceptual model of the datacenter, on which we base our analysis. Then,
Sect. 3 describes the theory behind the 80-20 rule. In Sect. 4, we elaborate further
on this rule, by providing simulations results taking data transfer into account
and by presenting our results from small scale testbed with a mix of CPUs and
GPUs. Related efforts in literature are summarized in Sect. 5. Section 6 provides
a discussion of further aspects of the work and a summary.

2 Conceptual Datacenter Model

In this section, we construct a model that will allow us to define and evalu-
ate various datacenter deployments. We actively neglect processor architecture
details, such as out-of-order execution, core number, memory hierarchy, etc. The
performance variability of the heterogeneous nodes is not (re)constructed by the
model itself, but comes as user input1. We consider heterogeneous processing
units, such as CPUs, GPUs, FPGAs, and ASICs. Each processing unit, or accel-
erator, has coordinates that identify its position (rack and shelve IDs) inside the
datacenter. In the following, we may abuse terminology and refer to processing
units in general as accelerators. The processing units execute tasks (or kernels),
which are pieces of computation. Tasks may have input and output data, both
of which are characterized by size and rack/shelve coordinates. Similarly with
processing units, tasks are also characterized by a type. To simplify things, we
assume that all tasks can be executed on all processing units, an assumption
that we expect to hold true in the near future.

A datacenter is used in order to execute workloads. A workload is a collection
of tasks. Tasks arrive in different time slots, as can be defined by a time-series
or trace. The tasks in a workload may be stand-alone or they may belong to

1 In practice, we derive it by profiling applications or by using the raw capacity num-
bers advertized by device vendors.

354 E. Kanellou et al.

Fig. 1. High level model of the task
selection and routing performed by the
deployment scheduler. The service rate
of the accelerators is not a scalar, but a
vector with a scalar value for each task
type.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 w
or

kl
oa

d
ex

ec
ut

io
n

tim
e

Fraction of type p2 processing units

α=2
α=4
α=8

α=16
α = 32
α = 64

α = 128
α = 256

Fig. 2. Total execution time normalized to
that of a CPU-only deployment as a func-
tion of f = n

N
, i.e. the fraction of GPUs in

the deployment, for varying affinity ratios
between CPUs and GPUs.

a taskset or job. Tasks belonging to a user-facing job are latency-critical tasks.
Typically, they all have to complete fast in order for the job to terminate on
time [8]. In our model, we vary the workload by using different mixes of task
types and sizes. We consider that tasks arrive at the datacenter at a configurable
arrival rate λ. At one extreme, tasks arrive slowly, and the datacenter is largely
idle; at the other, many tasks arrive concurrently, in a burst, in which case they
may have to spend some time in a task queue of infinite capacity.

Our model takes as input a 2D affinity matrix that defines the throughput
of the processing units for each task type, measured in tasks per second. The
affinity matrix expresses the heterogeneity of computation and hides the node-
level intricacies of nodes, while nevertheless allowing the model to accurately
model node-level performance. Any particular instance of a datacenter, i.e. a
datacenter for which the specific numbers, types, and affinities of processing
units is referred to as a datacenter deployment.

We may view the datacenter as an M/M/c queuing system (multiple servers),
where, however, not only the servers are heterogeneous in terms of service rate,
but where the arriving “customers”, i.e. tasks, also belong to several different
classes. Effectively, as shown in Fig. 1, the mean service times of the N comput-
ing units/accelerators are vectors instead of scalar values. Arriving tasks enter
the system task queue waiting for service. The task queue is controlled by a task
scheduler, which assigns tasks to time processing units, scheduling their execu-
tion. Each task will be executed by a processing unit. We identify the following
two decisions in task scheduling: (i) Task selection, which determines the order in
which the scheduler visits the tasks in the task queue, and (ii) Unit selection (or
task routing), which selects the processing unit that will execute the currently
examined task. The task selection order can be FIFO or non-FIFO, but in either
case, multiple tasks can be selected at the same time when multiple computing

GPU Provisioning: The 80 − 20 Rule 355

units are available. The tasks can be issued in parallel, as would happen in a
Map-Reduce workload, and can complete out of order. The unit selection can be
work conserving, when it always picks one of the available accelerators for the
next task, or non-work conserving, when the scheduler may prefer to wait for a
better match to become available. The unit selection may be aware of resources
heterogeneity, or oblivious of affinity relationships of tasks to accelerators.

We could set out to find the performance of an examined deployment using
optimal scheduling. For instance, the minimization of workload completion time
can be formulated as a maximum-weight flow problem in directed graphs. How-
ever, in principle, the optimal task scheduling may depend on the workload and
probably also on the deployment. For this reason, in this paper we chose to
compare deployments for the following set of schedulers for heterogeneous data-
centers: (i) the oblivious scheduler visits tasks in FIFO order, and assigns them to
an available processing unit; and (ii) the fastest server first visits tasks in FIFO
order and the next (head of line) task is assigned to the available processing unit
with the highest affinity. In either case, the unit selection is work-conserving.

3 Deciding How Many Accelerators to Deploy

Suppose that we want to populate a rack with N machine slots using a mix of
type p1 and p2 computing units. To improve the correspondence with a realistic
(and popular nowadays) setup, assume that p1 units are CPUs and p2 units
are GPUs. The workload of interest, W , consists of M number of tasks. We
will first consider that all tasks are of the same type, t, and that, possibly
belonging to a single job, they all arrive together, in a burst. Such workloads
with a predominant task-type may be seen in dedicated clusters of production
datacenters [9] working e.g. on web-search or deep learning. Furthermore, assume
that it’s a peak hour for the service provided by the cluster. In this work, we
find that for a highly loaded system, i.e. M >> N , if the cluster is working on
a single task type, any work-conserving scheduler performs optimally. Below we
assume such a scheduler.

Assume that the affinity of CPUs on type t tasks is equal to 1 and that of
GPUs is α > 0. (Note that in general α is a function of task type t.) A starting
deployment contains only CPUs (p1 units), without any GPU (p2 unit). The
aggregate throughput (or service rate) in tasks per second of the deployment is
AW

CPU = N tasks per time unit. Now consider the deployment that results if we
substitute n out of N CPUs with GPUs. The aggregate service rate of the new
deployment for this workload is AW

n = (N − n) + α · n.
The system can be modeled as a queue of tasks drained by the heterogeneous

processing units. Let TW be the total time necessary to execute workload W .
According to Little’s law, the total drain time of the task queue is inversely
proportional to the aggregate service rate of the deployment. Therefore, we can
express the speedup obtained by a deployment containing n GPUs and N − n

CPUs relative to the CPU-only deployment as: Sn = TW
CPU

TW
n

= AW
n

N = N+(α−1)·n
N ,

356 E. Kanellou et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20 40 60 80 100

A
ve

ra
ge

 la
te

nc
y

(m
ill

is
ec

on
d)

Percentage of GPUs in Deployment

16x
25x
33x
50x

(a) Average latency.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 20 40 60 80 100

A
ve

ra
ge

 la
te

nc
y

(m
ill

is
ec

on
d)

Percentage of GPUs in Deployment

16x
25x
33x
50x

(b) 99.9 percentile.

Fig. 3. Latency under high load of workload consisting of GPU-F task-type only, in
deployments where α, the relative affinity of GPUs and CPUs, changes.

and if we set f = n/N , we obtain:

SW
n = 1 + (α − 1) · f. (1)

If α = 1, changing the proportions of CPUs and GPUs does not affect the
execution speed. If α > 1, then adding GPUs speeds up the execution; reversely,
if 0 < α < 1, adding GPUs slows it down.

Indicative curves of the execution time of the n-GPUs deployment relative
to the CPUs-only one, i.e. TW

n

TW
CPU

= 1
SW , are presented in Fig. 2 for various values

of α > 1. Because α > 1, the latency is reduced as we add more GPUs. For each
curve, the latency is minimized when all processing units are of GPUs, at the
right end of graph. The figure shows clearly that, for large α, the deployments
with more than than around 20% GPUs, depending on α, provide diminishing
benefits. We refer to this observation as the 80 − 20 rule. At first, this may
seem somewhat surprising because according to Eq. 1 (and normal intuition), the
speedup is proportional to f . The catch is that the speedup is also proportional
to α, which can outweigh the effect of f : a few but well customized accelerators
may cut down sharply the workload execution time, masking out the benefits of
bringing in more accelerators.

One can further show that, for α >> 1, we can have at least 75% of the
latency reduction achieved by the N -GPUs system (TW

0 − TW
N) with a deploy-

ment containing (f =) 4+a
3 times fewer GPUs. For example, if a GPU kernel

achieves a speedup α ≥ 12 relative to CPUs, we need to replace just 20% of
the processors to reach this performance point. To get the remaining 25% of
latency reduction, we need to buy 5x more GPUs. Many accelerators with good
affinity are reported in the literature [10]. For instance, GPUs contain thou-
sands of cores and can greatly speedup traditional high-performance computing
or deep-learning tasks.

Adding GPUs to a Fixed Deployment: Adding GPUs (accelerators) to
servers without removing CPUs does not modify the aforementioned results.

GPU Provisioning: The 80 − 20 Rule 357

One can easily show that the speedup obtained by a deployment with N CPUs
and m GPUs is: SW

m = TW
CPU

TW
m

= AW
m

N = N+(α+1)·m
N therefore: SW

m = 1+(α+1) ·f .

Bad Performing Accelerators: The hardware of accelerators is frequently
built to match the requirements of certain tasks. Effectively, some tasks with a
lot of branching activity may run faster on CPUs instead of GPUs. In order to
account for such tasks in our model, allow for values of α < 1. The results are
analogous to those considered so far: adding GPUs in place of CPUs increases the
workload execution time, along curves that are symmetrical to the ones shown
in Fig. 2.

4 Exploring the 80 − 20 Rule

In this section, we validate 80− 20 rule with experiments for the above analysis,
both in a custom-made C++ simulator, as well as in a setup with real machines.

System Simulations. Our simulator essentially follows the abstract datacenter
model described in Sect. 2 and outlined in Fig. 1. In our first experiment, we
model a single rack consisting of N = 40 machines, each of which can be either
CPU or GPU. We feed the simulator with a workload consisting of same-type
tasks. A new job arrives in the system every 10 µs and consists of 30 tasks.
We use an abstract task type GPU-friendly (GPU-F) that can be accelerated
on GPUs. These tasks take 500 µs to execute on the simulated CPU. On a
simulated GPU a task takes 500

a µs, i.e. a single GPU is α times faster than a
CPU. Thus, α defines the relative affinity of GPUs and CPUs with respect to
GPU-F tasks. Notice that we have based decision of considering a proportional
relation of relative affinity between GPUs and CPUs, on real-life experiments
that we have performed, where we measured individual execution time of tasks
on GPUs and CPUs. In each of those experiments, our workload consisted of a
single task of a different type for each experiment, focusing on making sure the
execution times that we measured excluded any data transfer or queuing delays.

With respect to our simulated experiments, the small job inter-arrival that we
use (10 µs) creates a high load for any deployment, thus resembling peak hours
in a datacenter. In this experiment, we use the fastest-server first scheduler,
described in Sect. 2. However, we have observed that for single-task workloads
operating under high load, any work-conserving scheduling performs the same.
In this experiment, we assume that no data transfers are needed in order to
execute a task.

Figure 3 shows the results of a GPU-friendly workload, executed in config-
urations that contain a varying percentage of GPUs. It depicts multiple plots,
representing deployments with a varying number of GPUs and a fixed affinity
relationship (i.e. α) between CPUs and GPUs for tasks of type GPU-F. The
x-axis shows a varying percentage of GPU contents. In Fig. 3a, the y-axis shows
the average task latency in ms; in Fig. 3b, we depict the 99.9 percentile of task
latency. Our simulation results match our theoretical expectations (cf. Sect. 3):
the higher the affinity ratio between GPUs and CPUs, the greater the overall

358 E. Kanellou et al.

Fig. 4. A deployment spanning two
racks. In rack 1, each of the 40 servers
has a CPU plus a data storage device.
The data needed by each task is hosted
in one of these servers. Rack 2 has 40
processing units which can be either
a CPU or a GPU. The hosts inside
each rack are connected to a top-of-
rack (ToR) switch using 10Gb/s links.
The two racks are connected with a link
running at 200 Gb/s.

Fig. 5. Transfers between the host that
holds the task data and a remote acceler-
ator, which can be a CPU or a GPU. The
GPUs are attached to the PCI interface in
another rack. As multiple transfers of size s
may be concurrently active between the two
racks, they are necessarily serialized on the
inter-rack link of capacity C = 200 Gb/s.
The maximum rate of a single transfer is,
however, always limited by the capacity of
an intra-rack link which runs at 10 Gb/s.

performance improvement, both in average and tail latency. Currently, a usual
practice is to over-provision datacenters, aiming at always ensuring resource
availability. However, as we see in the plot, after 20% of GPUs, “throwing more
hardware at the problem” does not significantly improve latency.

The Case of Remote Accelerators. In this experiment, we examine whether
the effect of data transfers influences the observed trends. For this purpose, we
simulate two racks, racks 1 and 2. We assume that all GPUs in the deployment
are located in rack 2, as shown in Fig. 4. This models a deployment with remote
(network-attached) accelerators, which highly stresses the network. All tasks
must take their data from a server in rack 1. Therefore, whenever a processing
unit in rack 2 is used to accelerate the execution, a data transfer over the inter-
rack link is triggered.

As noted in Fig. 5, the intra-rack link runs at 200 Gb/s. In our model, the
rate of a single transfer is limited by the minimum of the current fair share on
inter-rack link and the 10 Gb/s rate of a single intra-rack link–assuming that the
modern PCI can run faster than that. In this experiment, we assume a relative
affinity between GPUs and CPUs equal to α = 16. Interestingly, the 80−20 rule
still holds. Figure 6 contains multiple plots corresponding to different task data
size. In our configuration, moderate data sizes correspond to up to 320K bytes.
For larger transfers, the data transfers dominate and the use of accelerators does
not improve the performance even at 100% GPUs in the deployment.

This effect is depicted in Fig. 7. The vertical blocks depict the delay incurred
by task execution and the required data transfers over inter-rack links, assuming

GPU Provisioning: The 80 − 20 Rule 359

Fig. 6. Average latency, under high
load, of workload consisting of same-
size, GPU-F task-type only, with dif-
ferent data transfer sizes. X-axis indi-
cates % of GPUs in the deployment of
rack B.

Fig. 7. The effect of data transfers on accel-
erator speedup.

Fig. 8. Task latency behaviour for deployments with 6 (CPU/GPU) accelerator.

the data that the task needs has to be transferred to the CPU or the GPU
from a remote rack. The higher the block, the longer the corresponding delay.
Notice that in the case of GPUs, we assume that, once the data reaches the
rack and node where the GPU is located, then the eventual PCI transfer delay
is negligible, compared to the rack-to-rack transfer delay. The observed effect is
reminiscent of Amdahl’s law: the data transfer is the serial part of a computation
that limits the speedup that can be obtained by any good accelerator. When the
latency of the communication required to move the data to a remote accelerator
approaches the computation time on the CPU, the maximum speedup that can
be obtained is upper bounded by 2×. In this case, we might be better off if we
avoid the data transfer and schedule the task to a processing unit that can access
the data locally [11].

Validation with NVidia GPUs. We have tested our theoretical and simu-
lation findings on a real machine setup. Specifically, we populated six (6) Gen

360 E. Kanellou et al.

Fig. 9. Realistic synthesized job size distribution. Average task latency during simu-
lated peak hours.

PCIe (8x) slots of an Intel Xeon CPU E5−2630 processor with (6) P1000 GPUs
from NVidia. We employ a custom middleware [12], which allows for the sharing
of several accelerators, such as GPUs, among the processors residing on a sin-
gle node. We use DarkGrey kernels as workload. DarkGrey is a custom-created
kernel that converts an RGB image to grayscale and then darkens the result.

In our experiments, we manipulate a 62 MB image files. On a CPU, the kernel
takes 895 ms to execute, whereas it takes only 7.26 ms on P1000. However, in
order to execute the task on the GPU, we need to transfer the data over the
PCI, an operation that takes 38 ms. The workload tested in our experiments is
set of 100 DarkGrey tasks that enter a task queue. Tasks are scheduled across
the available processing units, regardless of task affinity, using the oblivious
work-conserving FIFO scheduler policy. In Fig. 8, we keep the total number of
processing units constant to six (6), and we examine how the task latency is
affected when vary the mix of GPUs and CPUs in the deployment.

Figure 8a depicts the individual latency of each one of the 100 tasks for each
deployment. The latency of each task includes the queuing delay, i.e. the total
execution time of the tasks that precede it in the queue. Tasks that can be
executed concurrently from start to finish, incur the same queuing delay. This is
most clearly shown in the plot depicting the task latency in the deployment with
6 CPUs. This deployment produces a stair-step-type graph, where task latency
increases in every batch of 6 consecutive tasks, since 6 tasks can be executed in
parallel on the 6 processing units. Figure 8b shows the average task latency for
each of the deployments. As can be seen, we obtain a great reduction of average
task latency after trading the first two CPUs for two GPUs. However, this trend
does not continue so prominently after the inclusion of more GPUs. This is in
accordance with our theoretical expectations outlined previously in Fig. 2. Note
that this effect is still observable, despite the fact that executing on the GPU
incurs an additional latency of 38 ms.

GPU Provisioning: The 80 − 20 Rule 361

Mixed Workloads. We now turn our attention to workloads that may con-
tain both GPU-F tasks, as well tasks that are not suitable for execution on
GPU, meaning that the GPU cannot sufficiently accelerate them, possibly even
harming their execution time with respect to the execution on CPU. We refer to
this type of tasks as GPU-averse (GPU-A)2. The GPU-A type represents, for
example, tasks with branching or memory access patterns ill-suited for GPUs.

We start by examining average task latency in Fig. 9. We have used the
fastest-server-first scheduling policy and showcase various workloads in situa-
tions of high load. Given that information regarding the task length, exact type,
distribution, etc., of a datacenter trace, is not readily available, we attempt
to synthesize workloads that are as realistic as possible, basing our choice of
values on datacenter trace analyses such as [13–17] and others. We use simple
algorithms such as the ones used in [17] in order to create synthetic datacenter
traces containing combinations of GPU-A and GPU-F tasks.

Figure 9a shows task traces with realistic taskset size distributions, where the
task type depends on the job size; and Fig. 9b shows task traces with realistic
taskset size distributions and different task type mixes. We observe that the
highest gain in task latency occurs once more with the inclusion of already a
few GPUs. However, this only occurs on those traces that are predominantly
or exclusively composed of GPU-F tasks. On the contrary, when traces are
exclusively of type GPU-A or when GPU-A tasks dominate, the inclusion of
more GPUs than CPUs ceases to offer benefit and is instead even detrimental.
But what is more, when GPU-F and GPU-A tasks are in equivalent numbers or
when even GPU-A tasks are in the trace even though GPU-F tasks dominate,
then again only the inclusion of the first few GPUs offers benefit.

5 Related Work

As an alternative to pure simulation, analytical modeling and analysis can be
used. In [18], the performance of a given workload is expressed as a function
of the CPU and GPU throughput and the data transfer time between them.
Mathematical solvers are used to predict the optimal relative content of CPUs
and GPUs. However, this method requires some partial profiling and is targeted
at specific applications. While it remains to be seen whether such analysis could
be applied to datacenters, in our paper we wished to eschew analytical solving
and explore performance over a more generic variety of application types and
deployment compositions. In [19], a queuing-theoretical approach is favored, in
order to determine which deployment decisions lead to robustness, i.e. main-
taining the minimum worst-case energy consumption in the face of a varying
workload. In contrast, in this work, we are concerned with reducing task queu-
ing time and execution latency. An exploratory approach is also followed in [20].
There, however, analytic workloads are modeled and used as workload inputs to

2 We opt for these two categories because our model relies on expressing the suitability
of an accelerator for a task instead of the nature of its computation.

362 E. Kanellou et al.

a machine-learning system. After training on a variety of hardware configura-
tions, the system predicts expected performance of a given workload on a given
datacenter setup. We tackle the issue differently, striving to predict the hardware
configuration that is sufficient, given expected workload characteristics.

6 Conclusion

In this paper, we studied what constitutes a good datacenter deployment in the
face of heterogeneity. We focused on the use of GPUs in datacenters and devel-
oped a model in order to explore various deployment options, but our insights
may prove useful in cases of ad hoc heterogeneity, as well. Our main finding
shows that even including few GPUs significantly improves performance, while
often, a few but powerful GPUs can outperform many, but less powerful ones.
We proceed to discuss a number of assumptions made in obtaining these results,
as well as some general trends worth noting.

All Tasks can be Executed on all Processing Units: We made the assump-
tion that any task may be executed on any accelerator. While this was done for
the sake of abstraction, it may gradually become a reality as people port their
codes into accelerators. For instance, specialized, highly parallel applications,
traditionally executed on dedicated grids, are now moved to datacenters for the
sake of lowering energy consumption [21] and applications such as analytics are
being actively rewritten to take advantage of new accelerator architectures [22].

Independent Tasks: Our model assumes that tasks in a taskset are not inter-
dependent, and therefore, that they can be executed in parallel as long as accel-
erators are available. This assumption is valid for jobs belonging to Online Data-
Intensive (OLDI) services and Map-Reduce-style computations.

Homogeneous Workloads: Datacenter workloads do not necessarily consist
of a single task type. However, many high-performance datacenter clusters work
on a predominant task type, e.g. web search, and many datacenters are deployed
to run tasks that benefit from the presence of certain accelerators. For instance,
one may deploy a set of physical machines, or of virtual machines in the cloud,
in order to run machine learning algorithms. Both the learning and inference
phases of neural networks can benefit from GPUs or ASIC accelerators [22]. Our
work can help the user estimate the number of accelerators needed in order to
obtain the targeted performance.

While our exploration is not exhaustive, we regard our findings as a step
towards understanding the benefits offered by accelerators, considering as a plus
that they were derived without being dependent on a specific datacenter con-
figuration or a particular application. Besides datacenter planners, our results
can be also used by users that deploy virtual machines and GPUs (or generally
accelerators) in the cloud. Given that scarce FPGA resources are a constraint,
our results may also prove useful when populating cluster of FPGAs [23,24].
In future work, we plan to deal with diversifying some of the aforementioned

GPU Provisioning: The 80 − 20 Rule 363

assumptions. For instance, our current efforts focus on workloads with interde-
pendent tasksets, and we consider that heterogeneous workloads and the vali-
dation of the 80 − 20 rule under different scheduling techniques are interesting
avenues of future research.

Acknowledgments. This work has received funding from the European Union’s
Horizon 2020 Research and Innovation program “VINEYARD: Versatile Integrated
Accelerator-based Heterogeneous Data Centers”, under grant agreement No 687628.

References

1. Esmaeilzadeh, H., Blem, E., Amant, R.S., Sankaralingam, K., Burger, D.: Dark
silicon and the end of multicore scaling. In: Proceedings of the 38th Annual Inter-
national Symposium on Computer Architecture (ISCA), pp. 365–376. ACM, New
York (2011)

2. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit.
arXiv preprint arXiv:1704.04760 (2017)

3. Putnam, A., et al.: A reconfigurable fabric for accelerating large-scale datacenter
services. In: ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), pp. 13–24. IEEE (2014)

4. Kindratenko, V.V., et al.: GPU clusters for high-performance computing. In: IEEE
International Conference on Cluster Computing and Workshops (2009)

5. Wu, C., Buyya, R.: Cloud Data Centers and Cost Modeling: A Complete Guide
To Planning, Designing and Building a Cloud Data Center, 1st edn. Morgan Kauf-
mann Publishers Inc., San Francisco (2015)

6. Koomey, J., Brill, K., Turner, P., Stanley, J., Taylor, B.: A simple model for deter-
mining true total cost of ownership for data centers. Technical report, Uptime
Institute (2008)

7. Popa, L., Ratnasamy, S., Iannaccone, G., Krishnamurthy, A., Stoica, I.: A cost
comparison of datacenter network architectures. In: Proceedings of the 6th Inter-
national Conference on Emerging Networking Experiments and Technology, pp.
16:1–16:12. ACM, New York (2010)

8. Dean, J., Barroso, L.A.: The tail at scale. Commun. ACM 56(2), 74–80 (2013)
9. Barroso, L.A., Dean, J., Hölzle, U.: Web search for a planet: the google cluster

architecture. IEEE Micro 23, 22–28 (2003)
10. Kachris, C., Soudris, D.: A survey on reconfigurable accelerators for cloud com-

puting. In: 2016 26th International Conference on Field Programmable Logic and
Applications (FPL), pp. 1–10. IEEE (2016)

11. Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.:
Delay scheduling: a simple technique for achieving locality and fairness in cluster
scheduling. In: Proceedings of the 5th European conference on Computer systems,
pp. 265–278. ACM (2010)

12. Mavridis, S., et al.: VineTalk: simplifying software access and sharing of FPGAs in
datacenters. In: 2017 27th International Conference on Field Programmable Logic
and Applications (FPL), pp. 1–4. IEEE (2017)

13. Chen, Y., Alspaugh, S., Katz, R.: Interactive analytical processing in big data
systems: a cross-industry study of MapReduce workloads. Proc. VLDB Endow.
5(12), 1802–1813 (2012)

http://arxiv.org/abs/1704.04760

364 E. Kanellou et al.

14. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the
Third ACM Symposium on Cloud Computing. SoCC 2012, pp. 7:1–7:13. ACM,
New York (2012)

15. Awasthi, M., Suri, T., Guz, Z., Shayesteh, A., Ghosh, M., Balakrishnan, V.:
System-level characterization of datacenter applications. In: Proceedings of the
6th ACM/SPEC International Conference on Performance Engineering, pp. 27–
38. ACM, New York (2015)

16. Moreno, I.S., Garraghan, P., Townend, P., Xu, J.: Analysis, modeling and simula-
tion of workload patterns in a large-scale utility cloud. IEEE Trans. Cloud Comput.
2(2), 208–221 (2014)

17. Wang, G., Butt, A.R., Monti, H., Gupta, K.: Towards synthesizing realistic work-
load traces for studying the hadoop ecosystem. In: 2011 IEEE 19th Annual Inter-
national Symposium on Modelling, Analysis, and Simulation of Computer and
Telecommunication Systems, pp. 400–408, July 2011

18. Shen, J., Varbanescu, A.L., Sips, H.: Look before you leap: using the right hardware
resources to accelerate applications. In: Proceedings of 16th IEEE International
Conference on High Performance Computing and Communications (HPCC 2014),
pp. 383–391. IEEE, August 2014

19. Garg, S., Sundaram, S., Patel, H.D.: Robust heterogeneous data center design: a
principled approach. SIGMETRICS Perform. Eval. Rev. 39(3), 28–30 (2011)

20. Venkataraman, S., Yang, Z., Franklin, M., Recht, B., Stoica, I.: Ernest: efficient
performance prediction for large-scale advanced analytics. In: Proceedings of the
13th Usenix Conference on Networked Systems Design and Implementation. NSDI
2016, Berkeley, CA, USA, pp. 363–378. USENIX Association (2016)

21. Li, K.: Power and performance management for parallel computations in clouds
and data centers. J. Comput. Syst. Sci. 82(2), 174–190 (2016)

22. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous dis-
tributed systems. arXiv preprint arXiv:1603.04467 (2016)

23. Katevenis, M., et al.: The exanest project: interconnects, storage, and packaging
for exascale systems. In: 2016 Euromicro Conference on Digital System Design
(DSD), pp. 60–67. IEEE (2016)

24. Abel, F., Weerasinghe, J., Hagleitner, C., Weiss, B., Paredes, S.: An FPGA plat-
form for hyperscalers. In: IEEE 25th Annual Symposium on High-Performance
Interconnects (HOTI), pp. 29–32. IEEE (2017)

http://arxiv.org/abs/1603.04467

ECSched: Efficient Container Scheduling
on Heterogeneous Clusters

Yang Hu1,2(B), Huan Zhou1, Cees de Laat1, and Zhiming Zhao1

1 University of Amsterdam, Amsterdam, The Netherlands
{Y.Hu,H.Zhou,delaat,Z.Zhao}@uva.nl

2 National University of Defense Technology, Changsha, China

Abstract. Operating system (OS) containers are becoming increasingly
popular in cloud computing for improving productivity and code porta-
bility. However, container scheduling on large heterogeneous cluster is
quite challenging. Recent research on cluster scheduling focuses either
on scheduling speed to quickly assign resources, or on scheduling quality
to improve application performance and cluster utilization. In this paper,
we propose ECSched, an efficient container scheduler that can make high-
quality and fast placement decisions for concurrent deployment requests
on heterogeneous clusters. We map the scheduling problem to a graphic
data structure and model it as minimum cost flow problem (MCFP).
We implement ECSched based on our cost model, which encodes the
deployment requirements of requested containers. In the evaluation, we
show that ECSched exceeds the placement quality of existing container
schedulers with relatively small overheads, while providing 1.1× better
resource efficiency and 1.3× lower average container completion time.

1 Introduction

Operating system (OS) containers are becoming increasingly popular in cloud
computing for improving productivity and code portability. Major cloud
providers have recently announced container-based cloud services to cater for this
popularity [1,4]. Meanwhile, container orchestration platforms, such as Docker
Swarm [2], Mesosphere Marathon [12], and Google Kubernetes [8], are emerging
to provide container-based infrastructure for automating deployment, scaling,
and management of containers on underlying clusters.

Typically, Infrastructure as a Service (IaaS) offered by the cloud providers
(e.g., Amazon EC2, Microsoft Azure [1,4]) is based on Virtual Machines (VMs).
Compared with VM-based infrastructure, container-based infrastructure (1) can
be deployed on both physical and virtual machines, and the highly diverse con-
figuration of VMs makes the clustered machines more heterogeneous; (2) can
provide fine-grained resource allocation based on operating-system-level virtu-
alization techniques, which is much more flexible than predefined VM types in
VM-based infrastructure; and (3) can support users specifying affinities among
containers (e.g., Affinity in Kubernetes) for a distributed application, which
facilitates the coordination of containers.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 365–377, 2018.
https://doi.org/10.1007/978-3-319-96983-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_26&domain=pdf

366 Y. Hu et al.

With these new features, container-based infrastructure imposes emerging
and stringent requirements on the scheduling to provide performance guarantee
for applications.

1. Multi-resource demands from each container are often specified as a combina-
tion of constraints of CPU, memory, network, etc., which have to be consid-
ered with the diverse capacity and capability of the underlying heterogeneous
cluster.

2. Containers of a distributed application often have strong affinities with other
containers (due to frequent data communication) or specific machines (due to
data locality). Placing containers on the appropriate node can significantly
reduce the latency of container communication and the volume of data trans-
ferred. Thus, affinity also has to take into account in the deployment sched-
uler.

3. Scheduling overheads in large clusters are relatively high, which may hurt the
performance of quality critical applications [13,24,27,28], especially for very
short jobs like real-time analytics [19,23]. Moreover, the scheduling algorithm
is frequently invoked during the execution of an application when scaling out
or recovering from failure, which often has critical time constraints. Thus, the
scheduler should be fast to scale to large clusters.

During the past years, container orchestration and scheduling have attracted
quite a lot research attention. In the containers orchestration platforms, such
as Swarm [2] and Kubernetes [3], they typically adopt queue-based scheduler
which process one container at a time (process one pod at a time in Kubernetes).
The requested container first waits in a queue until the scheduler fetches it and
performs the scheduling algorithm. Regarding the scheduling algorithms to the
queue-based scheduler, variants of heuristic packing algorithms, such as Best-
Fit Decreasing (BFD) and First-Fit Decreasing (FFD) [6,16], are often used to
achieve practical solutions.

Container-by-container scheduling has the advantage of being suitable for
concurrent, parallel decisions in distributed scheduler [9,19]. On the contrary,
scheduling one container at a time also has a crucial disadvantage: the scheduler
makes a decision early for a container and restricts its choices for the waiting
containers, where it is difficult to make a high-quality placement. To schedule a
batch of tasks concurrently, the most common method is using meta-heuristic
algorithms [17,25], which consider the scheduling problem as a whole and find an
optimal solution offline. However, they often face difficulties online for a real-time
response to dynamic requests [26].

In this paper, we propose ECSched, an efficient container scheduler that
can make high-quality and fast placement decisions for concurrent deployment
requests on heterogeneous clusters. We map the scheduling problem to a graphic
data structure and model it as minimum cost flow problem (MCFP). In the
model, edge weights and capacities encode the container demands of multi-
ple resources and container/machine affinities. We implement ECSched based
on classical MCFP algorithms and problem-specific optimizations, which can
compute the optimal solution online according to our cost model. We evaluate

ECSched: Efficient Container Scheduling on Heterogeneous Clusters 367

ECSched in a small-scale cluster and large-scale simulations. In the evaluation,
we show that ECSched exceeds the placement quality of state-of-the-art con-
tainer schedulers with relatively small overheads, while providing 1.1× better
resource efficiency and 1.3× lower average container completion time.

2 Problem Formulation

In this section, we first formulate the containers scheduling problem with
networked heterogeneous machines in the cluster. Then, we analyze different
requirements for container deployment.

2.1 Model Description

In container-based infrastructure, the cluster is typically composed of a set of
networked heterogeneous machines {M = {m1,m2, ...,mM} where M = |M| is
the number of machines. We consider R types of resources R = {r1, r2, ..., rR}
(e.g., CPU, memory, or network bandwidth) in each machine. For machine mi, let−→
Vi = (V 1

i , V
2
i , ..., V

R
i) be the vector of its resource capacities where the element

V j
i denotes the total amount of resource rj available on machine mi.

We model the deployment request in the scheduler as a set of containers
C = {c1, c2, ..., cN} that are to be deployed on M machines, and N = |C| is
the number of containers. For container ci, let

−→
Di = (D1

i ,D
2
i , ...,D

R
i) be the

vector of its resource demands, where the element Dj
i denotes the amount of

resource rj that the container ci demands. To affinity specification, let matrix
CA = [CAij]N×N denote the container affinity. If CAij = 1, it means that the
container ci has a affinity with container cj . Let matrix MA = [MAij]N×M

denote the machine affinity. If MAij = 1, it means that the container ci has a
affinity with machine mj .

Next, we model a placement solution of the scheduler. Note that a placement
solution means a mapping of containers to machines on the cluster in this paper.
Let matrix X = [Xij]N×M denote a solution, where Xij is 1 if container ci is to
be deployed on machine mj , otherwise Xij is 0.

2.2 Deployment Requirements

By analyzing the features of container-based infrastructure, we desire a place-
ment solution that satisfies the following objectives.

Multi-resource Guarantee. Providing multi-resource guarantee for each con-
tainer on the heterogeneous cluster is the primary requirement to the scheduler.
Container-based infrastructure, which has the advantages and benefits of con-
tainer techniques inherently, can allocate resources in a more fine-grained way
than VM-based infrastructure, which facilitates the flexibility of resource alloca-
tion for applications. Given the constraints of Service Level Agreements (SLAs)
with users, different types of resource demands should be at least guaranteed

368 Y. Hu et al.

with a placement solution so that SLAs are not violated. Thus, the resource
demands of the containers in the same machine should not exceed its capacity.

∑

ci∈C

XijD
k
i ≤ V k

j

∀mj ∈ M, ∀rk ∈ R

(1)

Affinity Awareness. In container-based infrastructure, users can specify the
affinity of containers in a deployment request, which represents the demands
of data communication or data locality. As distributed applications, especially
data-intensive applications, transfer data frequently, the network performance
would directly affect the overall performance. Considering the influence of the
network, the scheduler should be aware of the affinity requirements so that it can
take advantage of this information to adjust container placement. The intuitive
and effective solution is to co-locate the containers which have container affinities
on the same machine,

∑

mk∈M

XikXjk ≥ CAij

∀ci,∀cj ∈ C

(2)

and place the container on the affinity machine.

Xik ≥ MAk
i

∀ci ∈ C,∀mk ∈ M
(3)

With these objectives, the challenge for a scheduler is how to make placement
decisions fast to improve cluster resource utilization while maintaining container
performance.

3 ECSched Approach

As existing queue-based schedulers process one container at a time, the entire
workload cannot be considered in the decision-making phase. Consequently, it
is hard for the scheduler to make a high-quality placement. In this paper, we
choose a graph-based approach to achieve concurrent containers scheduling and
model the scheduling problem as minimum cost flow problem (MCFP) [5]. In
the rest of this section, we describe how to construct the graph of MCFP to
solve the container scheduling problem and what MCFP algorithms to use.

3.1 Minimum Cost Flow Problem

The minimum cost flow problem is an optimization and decision problem to
find the minimum-cost way of sending a certain amount of flow through a flow
network. A flow network is a directed graph G = (V,E) with a source node
s ∈ V and a sink node t ∈ V , where each edge eu,v ∈ E has capacity cu,v > 0

ECSched: Efficient Container Scheduling on Heterogeneous Clusters 369

and cost au,v. The edge eu,v can be assigned a flow fu,v ≥ 0, and the cost of
sending this flow is fu,v · au,v. The problem requires an amount of flow K to be
sent from source s to sink t, and the goal is to minimize the total cost of the
flow over all edges:

Minimize
∑

eu,v∈E

fu,v · au,v (4)

subject to: fu,v ≤ cu,v (5)
∑

w∈V

fw,u =
∑

w∈V

fu,w (u �= s, t) (6)

∑

w∈V

fs,w =
∑

w∈V

fw,t = K (7)

3.2 Flow Network Structure

To map the container scheduling problem to MCFP, we represent it using a
specific flow network. Figure 1 shows an example of the flow network, in which
we only annotate the capacity on edges. This graph corresponds to an instan-
taneous status of the container cluster, encoding a set of requested containers
and clustered machines. The overall structure of the graph can be described as
follows.

Fig. 1. An example of the flow network

• Source Node: The source node s on the left hand with a supply K, which
represents how many containers can be scheduled at a time in our context.
By default, the supply is set to the total number of requested containers in
the scheduler (K = N).

• Container Node: Each requested container is represented as node Ci in the
graph, and has an edge from source node s with capacity 1.

• Machine Node: Each clustered machine is represented as node Mi in the
graph, and has an edge from the container node with capacity 1 if the machine
is eligible to place the container.

370 Y. Hu et al.

• Unscheduled Node: Inspired by the work [14], we add a new node, called
unscheduled node U . All container nodes have an outgoing edge to node U
with capacity 1.

• Sink Node: The sink node t on the right hand is the place to drain off
the flow. All machine nodes have an edge to sink with capacity 1, and the
unscheduled node has an edge to sink with capacity N .

MCFP algorithms would optimally route the flow from the source to the
sink without exceeding the capacity constraint on any edge. A path in the flow
network first gets to a container node from the source, and then reaches the sink
through a machine node or unscheduled node. Thus, if the path goes through a
machine node, it corresponds to an assignment for the container. Otherwise, if
the path goes through an unscheduled node, it does not schedule the container
at this moment.

3.3 Encoding Deployment Requirements

As the goal of the MCFP problem is to minimize the total cost of the flow over
all edges, we can flexibly assign the costs on the edges to make the MCFP algo-
rithms return a solution which we desire for the container placement. Considering
two deployment requirements from containers, we propose following methods to
encode them on edges.

Fig. 2. An example for encoding the multi-resource requirements

Multi-resource Guarantee. In order to make the values of different resources
comparable to each other and easy to handle, we first normalize the resource
number to be the fraction of the corresponding maximum capacity indepen-
dently. After normalization, the scheduler checks which machines have sufficient
resources to place the requested containers. If a machine is eligible for a container,
it adds an edge from the container node to the machine node with capacity 1.
The challenge here is how to assign the costs on the edges to differentiate the
quality of different placements. We introduce two strategies which are inspired

ECSched: Efficient Container Scheduling on Heterogeneous Clusters 371

by vector bin packing algorithms [20]: dot-product heuristic and most-loaded
heuristic.

In dot-product heuristic, dot product between the demand vector of container
ci and the capacity vector of machine mj is defined as dpij =

∑
rk∈R

Dk
i V

k
j . The

higher dpij is, the better the placement is. The idea of this heuristic is that it
takes into account not only the resource demands of containers but also how
well its demands align with the resource capacities of machines. Nevertheless,
the cost on the edge between them is assigned to −dpij , because the lower the
cost is, the better the flow is in MCFP. For the edge from container node to
unscheduled node, the cost is 0 which is the highest. An example is shown in
Fig. 2(a).

In most-loaded heuristic, the container tends to be placed on the most loaded
machine. In our cost model, it is also based on a scalar value mlij =

∑
rk∈R

Dk
i

V k
j

between the container ci and the machine mj to prioritize the placement. The
higher mlij is, the more loaded the machine is. Similarly, the cost on the edge
is assigned to −mlij . An example is shown in Fig. 2(b).

Fig. 3. An example for encoding the affinity requirements (dot-product heuristic)

Affinity Awareness. The location of containers is crucial for the overall per-
formance. In the flow network, it is flexible to handle container affinity (co-
located on the same machine) and machine affinity (located on specific machine).
Figure 3(a) shows an example with machine affinity, where container c1 has a
machine affinity to machine m1. In the example, container c1 has only the edge
to machine m1 but no edge to machine m0. Figure 3(b) shows an example with
container affinity, where container c0 and container c1 have an affinity. In the
flow network, we add a new node, called aggregator node Ai (A0 in the example).
Both container c0 and container c1 have an edge to aggregator node A0. Hence,
the scheduler can treat the two containers as one to handle container affinity.

372 Y. Hu et al.

3.4 MCFP Algorithms

After constructing the flow network, the scheduler will perform a MCFP
algorithm to find the optimal placement solution with respect to the costs
we have assigned. Known worst-case complexity bounds on the MCFP are
O(M log(N)(M +N log(N))) [18] and O(NM log(N) log(NC)) [11], Where N is
the number nodes, M the number of edges and C the number of the largest edge
capacity. In the container scheduling problem, it is the case as M > N > C.
We currently implement the latter algorithm in our ECSched. However, MCFP
algorithms have variable runtimes depending on the input graph. The compar-
ison of different algorithms and the optimization of algorithms can be explored
as future work. The design of ECSched is based on a heartbeat mechanism. On
a heartbeat, ECSched fetches all the deployment requests to construct a flow
network, and performs the MCFP algorithm to find a placement solution.

4 Evaluation

We implement ECSched with a container manager and the above MCFP algo-
rithm in Python. In this section, we evaluate our ECSched on a 30-machine
cluster in ExoGENI to compare the placement quality. To understand the over-
head of ECSched, we do large-scale simulations using synthetic workloads.

4.1 Comparison of Placement Quality

Cluster. We create a container cluster with 30 virtual machines (VM) in Exo-
GENI [7] testbed. Considering the heterogeneity, we choose three types of VM
configurations in our experiments. Thus, the container cluster is composed of 10
VMs of “XOMedium” type (1 core, 3 GB of memory), 10 VMs of “XOLarge”
type (2 core, 6 GB of memory) and 10 VMs of “XOXLarge” type (4 core, 12 GB
of memory). After normalization, the capacity vectors are: (CPU: 0.25, MEM:
0.25), (CPU: 0.5, MEM: 0.5), and (CPU: 1, MEM: 1).

Workloads. To test our prototype, we constructed container deployment
requests based on the Google cluster trace [21], which provides data from a
12,500-machine cluster over a month-long period. As we chose to spend 5 hours
at each experiment, we analyzed the trace of the first five hours. There are 83,241
tasks completed, and the average duration of the tasks is 764 s. Considering the
scale of our testbed cluster, we randomly sample 8,300 tasks (10%) from them
at each experiment. The generator yields container requests according to fol-
lowing aspects from the trace: task submission times, task durations and task
resource requirements. The resource requirements have been normalized in the
trace. Additionally, we add the requirements of container affinity and machine
affinity with 6% probability according to the percentage of task constraints in
the trace [21].

Baselines. We compare ECSched to state-of-the-art scheduling algorithms
implemented in Google Kubernetes [3] and Docker Swarm [2]. Under multi-
resource requirements, the default scheduler of Kubernetes tends to distribute

ECSched: Efficient Container Scheduling on Heterogeneous Clusters 373

pods (smallest deployable units in Kubernetes) evenly across the cluster to bal-
ance the resources, while the scheduler of Swarm tends to place containers on
the most loaded machines to improve resource utilization. Both are queue-based
schedulers, which schedule one unit at a time.

Metrics. We consider two metrics: the average container completion time and
average cluster resource utilization to compare the placement quality of different
schedulers. The improvement of average container completion time is computed
as:

Factor of Improvement =
Duration of a Baseline
Duration of ECSched

(8)

Factor of Improvement greater than 1 means ECSched is performing better, and
vice versa.

Fig. 4. CDF of factors of improvement in average container completion time

Figure 4 compares the performance of ECSched with baseline schemes to
handle 8,300 container requests on the cluster. We use two strategies in our
scheduler to do the comparisons, where ECSched-dp is based on dot-product
heuristic, and ECSched-ml is based on most-loaded heuristic. In the figure, the
results show that for more than 68% of the containers, ECSched performs better
than the alternatives, and only 10% of the containers slow down. For two different
strategies, ECSched-dp performs better than ECSched-ml in our evaluation. To
the scheduler of Kubernetes, ECSched-dp speeds up containers by 1.2× at the
median, 1.28× at the 60th percentile, and 1.5× at the 80th percentile. To the
scheduler of Swarm, ECSched-dp speeds up containers by 1.21× at the median,
1.3× at the 60th percentile, and 1.57× at the 80th percentile. Overall, ECSched
improves over the alternatives by up to 1.3× on average. The improvements
accrue from the increase in the number of simultaneously running containers (less
waiting time in the queue), as ECSched takes entire workloads into consideration
to make placement decisions.

To evaluate the resource efficiency, we make some changes to the workloads.
All the container requests are submitted at the beginning in the experiment.

374 Y. Hu et al.

Table 1 shows the average cluster resource utilization of the experiment. Due
to the better placement (cause less resource fragmentation), ECSched sustains
higher cluster resource utilization than the baselines. Overall, ECSched provides
1.1× better resource efficiency. Consequently, it demonstrates that the ECSched
approach can achieve higher quality placements for deploying containers on het-
erogeneous clusters.

Table 1. Average cluster resource utilization in the experiment

Resource type ECSched-dp ECSched-ml Kubernetes Swarm

CPU 76.57% 75.80% 70.00% 69.98%

MEMORY 76.71% 75.93% 70.12% 70.10%

4.2 Overheads Evaluation

As we model the scheduling problem as a MCFP, the scheduling algorithm in
our scheduler is more complex than existing schedulers. To estimate overheads,
we simulate large-scale clusters to run our scheduling algorithm. We consider
two cluster sizes: 1000-machine cluster and 5000-machine cluster (largest cluster
which Kubernetes can support currently). The configuration of each machine is
chosen uniformly at random from Amazon EC2 instances (19 kinds of general
purpose instances) in order to make the simulated cluster more heterogeneous,
and each machine is half loaded in the simulation. By analyzing the trace [21],
the scheduler needs to make hundreds of task placement decisions per second
in peak hours. Thus, we try to submit 100, 200 and 300 container deployment
requests to the scheduler to evaluate the algorithm runtime. In order to fairly
compare the algorithm runtime, we also implement the scheduling algorithm of
Kubernetes and Swarm in Python. We conduct this experiment on a server with
48 cores and 128 GB memory.

Figure 5 shows the results of the experiment which we repeated ten times. We
see that the algorithm runtime of ECSched is longest while Swarm is shortest.
The algorithm of Swarm is a simple greedy search to place requested contain-
ers. Compared with Swarm, the algorithm of Kubernetes is complex, which has
multiple predicated policies and priorities policies to filter and score machines.
Obviously, our algorithm is the most complicated one. Nevertheless, ECSched
can respond in sub-second time when the number of requested containers is less
than 100. When processing 300 containers concurrently, the ECSched responds
in about 1.8 s for 1000-machine cluster and about 3.4 s for 5000-machine cluster.
Actually, compared to the average duration (764 s in our experiments) of the
containers in the cluster [21], the overhead is relatively small and acceptable.
We believe that our scheduler is effective and usable in practice.

ECSched: Efficient Container Scheduling on Heterogeneous Clusters 375

Fig. 5. Comparing algorithm runtime in large-scale simulation

5 Related Work

The problem investigated in this paper - container scheduling on heterogeneous
clusters - is related to a variety of research topics as follows.

Bin Packing. The problem of VM placement or consolidation which is similar
to our problem is often formulated as vector bin packing problem, and various
heuristics have been proposed for this problem [15,16]. Mark Stillwell et al.
[22] studied variants of FFD concluding that the algorithm that reasons on
the sum of the resource needs of the tasks are the most effective. Panigrahy
et al. [20] presented a generalization of the classical first fit decreasing (FFD)
heuristic. In their experiments, it showed that the Dot-Product heuristic often
outperforms FFD-based heuristics. These contributions focus on VM packing,
and only consider each request independently.

Metaheuristics. In recent years, many metaheuristic techniques have become
prevalent for the approximate solution of multi-objective optimization problems
[25]. Mi et al. [17] proposed a genetic algorithm based approach, namely GABA,
to adaptively self-reconfigure the VMs in virtualized large-scale data centers
consisting of heterogeneous nodes. Xu et al. [25] presented a modified genetic
algorithm with fuzzy multi-objective evaluation for efficiently searching the large
solution space and conveniently combining possibly conflicting objectives. How-
ever, these approaches often take minutes or hours to generate a solution, which
face difficulties for a online response.

Cluster Schedulers. Many cluster schedulers have been proposed for different
purposes. Sparrow [19] and Tarcil [9] are distributed schedulers developed for
clusters that achieve a high throughput for short tasks. Quincy [14], a cluster fair
scheduler, models the fair scheduling problem as a minimum cost flow problem
to schedule jobs into slots. Firmament [10], a centralized scheduler, achieves low
latency via a min-cost max-flow (MCMF) optimization. Differently, ECSched
shows that how to encode multi-resource requirements and affinity requirements
in MCFP.

376 Y. Hu et al.

6 Conclusion

In this paper, we have presented ECSched, an efficient container scheduler to
schedule concurrent containers on heterogeneous clusters. ECSched is a graph-
based scheduler, which takes entire deployment requests into consideration for
placement decisions. We demonstrate that ECSched can achieve better place-
ment quality than state-of-the-art scheduler in the evaluation. The large-scale
simulation shows there are small overheads of ECSched, but it is acceptable
in practice. In the future work, we will consider container dependencies and
resource dynamics for the scheduler to adopt more sophisticated situations.

Acknowledgments. This research has received funding from the European Union’s
Horizon 2020 research and innovation program under grant agreements 643963
(SWITCH project), 654182 (ENVRIPLUS project) and 676247 (VRE4EIC project).
The research is also funded by Chinese Scholarship Council.

References

1. Amazon web services. https://aws.amazon.com/
2. Docker swarm. https://docs.docker.com/engine/swarm/
3. Google kubernetes. https://kubernetes.io/
4. Microsoft azure. https://azure.microsoft.com/
5. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Elsevier, New York

(2014)
6. Ajiro, Y., Tanaka, A.: Improving packing algorithms for server consolidation. In:

International CMG Conference, vol. 253 (2007)
7. Baldin, I., et al.: ExoGENI: a multi-domain infrastructure-as-a-service testbed. In:

McGeer, R., Berman, M., Elliott, C., Ricci, R. (eds.) The GENI Book, pp. 279–315.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33769-2 13

8. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, omega, and
kubernetes. Commun. ACM 59(5), 50–57 (2016)

9. Delimitrou, C., Sanchez, D., Kozyrakis, C.: Tarcil: reconciling scheduling speed
and quality in large shared clusters. In: Proceedings of the Sixth ACM Symposium
on Cloud Computing, pp. 97–110. ACM (2015)

10. Gog, I., Schwarzkopf, M., Gleave, A., Watson, R.N., Hand, S.: Firmament: fast,
centralized cluster scheduling at scale. USENIX (2016)

11. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by canceling
negative cycles. J. ACM (JACM) 36(4), 873–886 (1989)

12. Hindman, B., et al.: Mesos: a platform for fine-grained resource sharing in the data
center. In: NSDI, vol. 11, p. 22 (2011)

13. Hu, Y., et al.: Deadline-aware deployment for time critical applications in clouds.
In: Rivera, F.F., Pena, T.F., Cabaleiro, J.C. (eds.) Euro-Par 2017. LNCS, vol.
10417, pp. 345–357. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
64203-1 25

14. Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., Goldberg, A.:
Quincy: fair scheduling for distributed computing clusters. In: Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, pp. 261–276.
ACM (2009)

https://aws.amazon.com/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/
https://azure.microsoft.com/
https://doi.org/10.1007/978-3-319-33769-2_13
https://doi.org/10.1007/978-3-319-64203-1_25
https://doi.org/10.1007/978-3-319-64203-1_25

ECSched: Efficient Container Scheduling on Heterogeneous Clusters 377

15. Lee, S., et al.: Validating heuristics for virtual machines consolidation. Microsoft
Research, MSR-TR-2011-9 pp. 1–14 (2011)

16. Lodi, A., Martello, S., Vigo, D.: Recent advances on two-dimensional bin packing
problems. Discret. Appl. Math. 123(1), 379–396 (2002)

17. Mi, H., Wang, H., Yin, G., Zhou, Y., Shi, D., Yuan, L.: Online self-reconfiguration
with performance guarantee for energy-efficient large-scale cloud computing data
centers. In: 2010 IEEE International Conference on Services Computing (SCC),
pp. 514–521. IEEE (2010)

18. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Oper. Res.
41(2), 338–350 (1993)

19. Ousterhout, K., Wendell, P., Zaharia, M., Stoica, I.: Sparrow: distributed, low
latency scheduling. In: Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pp. 69–84. ACM (2013)

20. Panigrahy, R., Talwar, K., Uyeda, L., Wieder, U.: Heuristics for vector bin packing
(2011). research.microsoft.com

21. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity
and dynamicity of clouds at scale: Google trace analysis. In: Proceedings of the
Third ACM Symposium on Cloud Computing, p. 7. ACM (2012)

22. Stillwell, M., Schanzenbach, D., Vivien, F., Casanova, H.: Resource allocation algo-
rithms for virtualized service hosting platforms. J. Parallel Distrib. Comput. 70(9),
962–974 (2010)

23. Taherizadeh, S., Jones, A.C., Taylor, I., Zhao, Z., Stankovski, V.: Monitoring self-
adaptive applications within edge computing frameworks: a state-of-the-art review.
J. Syst. Softw. 136, 19–38 (2018)

24. Wang, J., et al.: Planning virtual infrastructures for time critical applications with
multiple deadline constraints. Future Gen. Comput. Syst. 75, 365–375 (2017)

25. Xu, J., Fortes, J.A.: Multi-objective virtual machine placement in virtualized data
center environments. In: Proceedings of the 2010 IEEE/ACM International Con-
ference on Green Computing and Communications & International Conference
on Cyber, Physical and Social Computing, pp. 179–188. IEEE Computer Society
(2010)

26. Zhan, Z.H., Liu, X.F., Gong, Y.J., Zhang, J., Chung, H.S.H., Li, Y.: Cloud comput-
ing resource scheduling and a survey of its evolutionary approaches. ACM Comput.
Surv. (CSUR) 47(4), 63 (2015)

27. Zhao, Z., et al.: A software workbench for interactive, time critical and highly
self-adaptive cloud applications (switch). In: 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 1181–1184.
IEEE (2015)

28. Zhou, H., et al.: Fast resource co-provisioning for time critical applications based on
networked infrastructures. In: 2016 IEEE 9th International Conference on Cloud
Computing (CLOUD), pp. 802–805. IEEE (2016)

http://research.microsoft.com/

Combinatorial Auction Algorithm
Selection for Cloud Resource Allocation

Using Machine Learning

Diana Gudu(B), Marcus Hardt, and Achim Streit

Karlsruhe Institute of Technology, Karlsruhe, Germany
{diana.gudu,marcus.hardt,achim.streit}@kit.edu

Abstract. Demands for flexibility, efficiency and fine-grained control for
the allocation of cloud resources have steered the research in this field
towards market-inspired approaches. Combinatorial auctions can fulfill
these demands, but their inherent NP-hardness makes them impractical
if an optimal solution is desired in a reasonable time. Various heuristic
algorithms that yield good allocations fast have been proposed, but their
performance and solution quality are highly dependent on the input. In
this paper, we investigate which features of a problem instance are pre-
dictive of algorithm performance and quality, and propose an algorithm
selection method that uses machine learning to find the best heuristic
for each given input. We introduce a new cost model for the trade-off
between execution time and solution quality, which enables quantita-
tive algorithm comparison. Using feature-based classification to train the
algorithm selection model, we can show that our approach outperforms
the single best algorithm, as well as a random algorithm selection.

Keywords: Cloud resource allocation · Combinatorial auction
Algorithm selection · Feature-based classification

1 Introduction

Cloud computing leverages economies of scale to provide resources as a utility.
Therefore, market-oriented approaches are necessary to regulate the demand
and supply of cloud resources, as well as provide economic incentives for both
providers and customers [1].

The concept of dynamic pricing is gaining interest, as cloud providers such
as Amazon use single-good auctions to sell their unused resources on the spot
market [2]. Moreover, dynamic pricing is an essential part of smart contracts [3],
an emerging alternative to broker-based matchmaking for cloud service selec-
tion, which support changes in agreements while offering quality and security
guarantees through their self-executing nature.

Combinatorial auctions [4] can offer more flexibility and fine-grained con-
trol, by affording customers to request and pay only for the combination of

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 378–391, 2018.
https://doi.org/10.1007/978-3-319-96983-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_27&domain=pdf

Combinatorial Auction Algorithm Selection for Cloud Resource Allocation 379

resources that fits their requirements. However, their applicability to resource
allocation has been limited to the realm of academic research [5], due to their
NP-hardness. The forecast growth of public cloud services market [6] will further
impede their practical use due to scalability concerns – as long as optimal solu-
tions are desired. Therefore, for real-world adoption, it is necessary to sacrifice
optimality requirements by using heuristics.

Existing heuristic algorithms for combinatorial auctions [7–9] perform dif-
ferently depending on the input characteristics, in terms of both runtime and
solution quality [10]. A more robust usage is essential, since any performance gain
can translate into high increases in revenue for cloud providers. Furthermore, the
quality-speed trade-off of each algorithm needs to be reliably controlled, in order
to fit any particular needs.

In this paper, we address these challenges by using machine learning to select
the most suited heuristic for each individual auction instance, while introducing
a quantitative definition for this suitability – based on a runtime and welfare-
dependent cost model. Furthermore, we propose a feature set tailored to combi-
natorial auctions to aid the learning process. We perform an extensive evaluation
and show that the proposed approach outperforms single algorithms, as well as
a random algorithm selection.

2 Related Work

Various approaches for algorithm selection have been applied to combinatorial
search problems, as summarized in [11]. The techniques are categorized according
to the type of algorithm portfolio (static or dynamic), features (low or high-
knowledge, static or dynamic), performance models, and prediction types. Their
applicability is exemplified across a range of application domains: SAT, Mixed
Integer Programming, machine learning, etc. However, these methods focus on
a single optimization objective, usually runtime.

The only work where algorithm selection was applied to combinatorial auc-
tions [12] is concerned with optimal algorithms and minimizing the execution
time, whereas we look at heuristic algorithms and optimize both social welfare
and execution time. Leyton-Brown et al. [12] studied the empirical hardness
of combinatorial auctions and devised a methodology to understand this hard-
ness using feature-based supervised learning. They identified certain structural
features of the WDP that are predictive of running time, and used this run-
time prediction to select the fastest algorithm for each problem instance, out-
performing the best algorithm in the average case. We note that this work used
regression-based learning techniques to predict the runtime of algorithms instead
of classification, in order to penalize mispredictions differently.

Beck and Freuder [13] use algorithm selection for scheduling problems. They
optimize the performance of a portfolio of optimal algorithms only based on low-
knowledge information, obtained by running all the algorithms for a short time,
recording their performance, and using this information to inform the prediction.

380 D. Gudu et al.

3 Formal Problem Definition

To model the cloud resource allocation using market-inspired concepts, we make
the following assumptions:

1. there are multiple cloud providers offering computing resources and multiple
customers requesting resources from any provider at a centralized market-
place,

2. there is a fixed number of resource types on the market, known apriori by all
market participants,

3. all resources requested by a customer need to come from the same provider,
4. all requests and offers are independent, and
5. no partial allocations or floating point quantities are allowed.

The problem can then be formalized as a multi-unit, double combinatorial
auction, consisting of: a set of n bidders U = {1, . . . , n}, a set of m providers
P = {1, . . . , m}, a set of l goods G = {1, . . . , l}, and an auctioneer that decides
the allocation and pricing of resources based on the bids and asks.

Each customer i submits a single bid for a bundle of resources, expressed as
(〈ri1, . . . , ril〉, bi), where rik is the number of items of resource type k that the
bidder i requests, and bi is the maximum amount bidder i is willing to pay for the
entire bundle. Similarly, a seller j submits its ask expressed as (〈sj1, . . . , sjl〉, aj),
where sjk are the quantities offered by seller j of each resource type k. Seller j
offers its bundle of resources at a price aj , which is the minimum acceptable.

In the context of cloud computing, a bundle represents a virtual machine
(VM), consisting of resources such as CPU cores, memory, disk storage, GPU
cores, etc. This model makes assumption 3 indispensable, since a VM cannot
contain resources from different providers. Furthermore, we showed that the
resource locality constraint makes the allocation problem harder in terms of time
complexity [10], and thus requires the use of heuristic algorithms. Therefore, the
algorithm selection approach is aimed at this specific use case.

The auctioneer collects the bids and asks, and finds the best allocation
of resources that maximizes the social welfare of the system. To that end, it
first determines which bidders will receive the requested bundles and which
providers can sell their resources – also called the Winner Determination Prob-
lem (WDP) [14] – and then decides the trading prices – also called the payment
scheme.

The social welfare is defined [15] as the sum of all the participants’ utilities,
where the utility is a measure of a trader’s satisfaction. For example, a bidder
i’s utility for a requested bundle S is defined as ui(S) = vi(S) − pi, if i wins
the auction, and 0 otherwise, where vi(S) (valuation) is the true value bidder i
is willing to pay for bundle S, and pi is the actual price paid at the end of the
auction. When a bidder is truthful, vi(S) = bi.

We assume that customers and providers are single-minded, which means
that they are only interested in buying or selling the full bundle, and have 0
valuation for all the other bundles.

Combinatorial Auction Algorithm Selection for Cloud Resource Allocation 381

Then the WDP can be written as the following integer program:

max
x,y

⎛
⎝

n∑
i=1

bixi −
m∑

j=1

n∑
i=1

ajyij

⎞
⎠ (1)

subject to:

xi, yij ∈ {0, 1},∀i ∈ U,∀j ∈ P (2)
n∑

i=1

yij ≤ 1,∀j ∈ P (3)

m∑
j=1

yij = xi,∀i ∈ U (4)

rikxi ≤
m∑

j=1

sjkyij ,∀i ∈ U,∀k ∈ G (5)

where constraint (2) expresses the single-mindedness of bidders and sellers, con-
straint (3) ensures that a seller can allocate its bundle to at most one bidder,
and constraint (4) ensures that each customer receives the resources in its bundle
from a single provider. Finally, constraint (5) ensures that a provider cannot sell
more than the amount of resources it offered.

The auctioneer then uses a κ-pricing scheme [10] to set the bundle prices by
distributing the trade surplus among the auction winners, thus ensuring budget-
balance. The truthfulness requirement is relaxed, but it was shown that it can
be achieved in practice, since non-truthful bidding increases the risk of no allo-
cation [16].

4 Algorithm Selection

Combinatorial auctions are NP-hard [4], hindering their wide adoption in real-
world applications. Existing heuristic algorithms mitigate the scalability and
efficiency issues posed by optimal algorithms, but their solution quality varies
with the input [10]. For a more robust usage of heuristic algorithms for combina-
torial auctions, we propose using an algorithm selection approach [11]: selecting
the most suitable algorithm on a case-by-case basis. To predict which heuristic
will perform best on each problem instance, we propose the use of supervised
machine learning in conjunction with an algorithm portfolio.

The workflow for algorithm selection, based on similar approaches for run-
time prediction [12], is depicted in Fig. 1. We first build an algorithm portfolio
by assembling a collection of complementary heuristic algorithms for combina-
torial auctions. The data are collected in two sub-steps: (1.a) generating a large
number of auction instances (defined by a set of bids and asks) that covers a
representative part of the input space, by using our artificial input generator
for combinatorial auctions CAGE [10]; (1.b) running all the algorithms in the

382 D. Gudu et al.

Fig. 1. Algorithm selection workflow

portfolio on all the generated instances to record their runtime and resulting
social welfare. Since using the raw input for learning can be computationally
expensive or even intractable, we propose to use domain knowledge to extract a
set of features that contain sufficient information; the features are mainly statis-
tics related to bid and ask values, quantities or demand-supply balance (see
Sect. 4.2). The preprocessing step (2) includes feature extraction, labeling the
data by selecting the best algorithm for each instance – the algorithm with the
lowest cost, as defined in Sect. 4.3 – and splitting the dataset into training and
test data for supervised learning. We formulate the algorithm selection prob-
lem as a multi-class classification problem: given observations (a set of instances
defined by their features) whose class labels (best algorithm) are known, we (3)
train a model that can predict the class label of any new observation. The model
is then (4) tested on unseen data. At this step, several appropriate metrics to
evaluate the quality of the prediction should be considered (see Sect. 4.4).

4.1 Algorithm Portfolio

In [10], we investigated and compared different algorithms for approximating
the solutions of WDPs. We built an algorithm portfolio by either adapting var-
ious combinatorial auction algorithms [7–9], or applying well-known optimiza-
tion methods [17,18] to combinatorial auctions. The experiments revealed that
algorithm runtime and solution quality are highly dependent on the input, and
no single algorithm outperformed the others in all test cases. This result was
most pronounced when resource locality was a desired property – all resources
requested by a customer being allocated on the same cloud provider. The prob-
lem formulation presented in this paper already includes the resource locality
constraint, and the algorithms were adapted accordingly.

In the rest of this section, we briefly describe the 12 algorithms included
in our portfolio. Based on the employed optimization approach, we can group

Combinatorial Auction Algorithm Selection for Cloud Resource Allocation 383

the algorithms into four families: greedy, hill climbing, simulated annealing, and
stochastic local search.

The greedy algorithms sort the bid and ask lists according to a certain cri-
teria (e.g. bid density), and then traverse the list to greedily match bids with
asks. Based on [7], we used three different sorting criteria to implement algo-
rithms greedy1, greedy2 and greedy3. A greedy algorithm that gives pri-
ority to sellers was also implemented (we denote seller priority by a ‘-s’ suffix:
greedy1s).

Hill climbing algorithms perform a local search in the solution space, similar
to gradient descent. We included two methods of exploring the neighborhood of
a solution: first, by changing the ordering of bids or ask onto which a greedy allo-
cation is performed [8] (algorithms hill1 and hill1s), and second, by toggling
the allocation of a bid through the xi variables [19] (hill2 and hill2s).

Simulated annealing algorithms (sa and sas) use the same method of gener-
ating a neighboring solution as hill2, but randomly accept worse solutions to
escape from local optima.

Finally, to mitigate the same problem, stochastic local search algorithms
(casanova and casanovas) use random walks with restarts, while exploring
the solution neighborhood by adding bids based on their ranking and novelty [9].

The algorithms based on simulated annealing and stochastic local search
techniques are stochastic, yielding different results for multiple runs on the same
input. For reliable usage, the average welfare and execution time over 10 runs
were used in our experiments.

The portfolio is easily extensible, and more algorithms can be added as they
are developed. However, this affects the rest of the algorithm selection pipeline:
the prediction models need to be retrained for every portfolio change.

4.2 Features

Using domain knowledge – insights into the inner workings of combinatorial
auctions, as well as each individual algorithm – we defined a number of 75
features that can be extracted from any problem instance. The features are
mainly statistics, and can be computed in O (l (m + n)), which is faster than
any of the algorithms in the portfolio. The defined features can be grouped in
four categories: price related, quantity related, quantity per resource related (as
measures of heterogeneity of requests) and demand-supply balance related.

We give some examples of features in the following. First, statistics of the
distribution of the asking price per unit over all asks were included (mean, stan-
dard deviation, skewness and kurtosis). Similarly, we looked at the distribution
of the bid price per unit over all bids, as well as the corresponding quantity
related features: the total bundle sizes of bids and asks. Moreover, we included
economics concepts such as the bid-ask spread, defined as the difference between
the minimum ask and maximum bid, and used as a measure of the market liq-
uidity. Similarly, we defined a quantity spread per resource, as the difference
between the maximum requested quantity and the minimum offered quantity
per resource, and computed the first four central moments of the distribution

384 D. Gudu et al.

of quantity spread over all the l resource types. Other features in the group
of demand-supply balance related features deal with quantity surpluses, either
total surplus (the difference between the total number of resources offered and
requested), or a quantity surplus per resource type.

4.3 Cost Model

Since the algorithms in the portfolio are heuristic, they generally trade solution
quality for speed. Thus, labeling the dataset requires, for each problem instance,
a comparison of all algorithms with respect to both social welfare and execution
time, which can then yield the best algorithm for both criteria. We propose
modeling this as a multi-objective optimization problem [20], whose objectives
are a maximum social welfare and a minimum execution time. In order to find
a Pareto optimal solution, we use the idea of a compromise solution [21], which
minimizes the distance between the potential optimal point and a utopia (or
ideal) point.

As welfare and time are measured on different scales, they should first be
normalized to obtain non-dimensional objective functions. We normalize the
welfare objective function, and call it welfare cost cw(o, a), as defined in Eq. 6,
where w(o, a) is the welfare computed by algorithm a on instance o, while wmin(o)
and wmax(o) are, respectively, the minimum and maximum welfare obtained for
instance o by any algorithm in the portfolio. Thus, the best algorithm when only
welfare objective is considered will have zero welfare cost.

cw(o, a) =
wmax(o) − w(o, a)
wmax(o) − wmin(o)

(6)

Similarly, in Eq. 7 we define the time cost ct(o, a) as the normalized time
objective, where t(o, a) is the execution time of algorithm a on instance o, and
tmin(o) and tmax(o) are the execution times of the fastest and slowest algorithms
in the portfolio on instance o. The best algorithm with respect to time will also
have zero time cost.

ct(o, a) =
t(o, a) − tmin(o)
tmax(o) − tmin(o)

(7)

Then the multi-objective function is defined as a vector in the two-
dimensional objective space, C =

[
cw ct

]�. Furthermore, we introduce a user-
defined preference parameter λ ∈ [0, 1] that reflects the relative importance of the
two objectives, in order to provide more control over the decision of selecting the
best algorithm. This changes the multi-objective vector to Cλ =

[
λ (1 − λ)

]
C.

A value of λ = 1 implies that solely the welfare objective should be considered,
while λ = 0.5 places equal importance on welfare and time.

Finally, we find the optimal solution (best algorithm) by minimizing the
distance to the utopian vector C◦, whose components are the lower bounds of
each objective function – in this case

[
0 0

]�. We use the Euclidean distance to
compute the scalar cost metric that will ultimately be used to select the best
algorithm, as defined in Eq. 8.

Combinatorial Auction Algorithm Selection for Cloud Resource Allocation 385

cλ(o, a) = ‖Cλ − C◦‖ =
√

(λcw (o, a))2 + ((1 − λ) ct (o, a))2 (8)

In Fig. 2, we exemplify the use of λ on a random problem instance. For
different λ values, different algorithms have minimum cost and are thus selected
as the best: when speed is more important (λ = 0.1), the casanovas algorithm
is selected, while an algorithm based on hill climbing (hill2s) is best when
welfare has a higher priority (λ = 0.9). A simulated annealing algorithm (sas)
is the best when time and welfare are weighted equally (λ = 0.5).

Fig. 2. Visualization of a problem instance in the two-dimensional objective space.
Isolines represent scalar cost cλ. Different algorithms emerge as best depending on λ.

4.4 Evaluation Metrics

There are several success measures when evaluating a classification model. The
most intuitive measure is the accuracy, namely how often the model correctly
predicts the algorithm with the lowest cost. More specifically, we define the
accuracy in Eq. 9, for a given dataset O, as the fraction of the instances for
which the predicted algorithm ŷo is the same as the algorithm with the lowest
cost yo.

accuracyλ(y, ŷ) =
1

|O|
∑
o∈O

1(ŷo = yo) (9)

However, the accuracy does not give a quantitative evaluation of a model’s
mispredictions: it penalizes all misclassifications equally, irrespective of their
associated costs. To that end, we introduce a metric that considers the cost of
the predicted algorithm: the mean relative error (MRE), as defined in Eq. 10.

MREλ(y, ŷ) =
1

|O|
∑
o∈O

(cλ(o, ŷo) − cλ(o, yo))
2 (10)

For a meaningful evaluation, we also compare our portfolio-based algorithm
selection against a single algorithm a∗. Therefore, we introduce the relative mean
relative error (RMRE) metric, defined in Eq. 11 as the ratio between the MRE of

386 D. Gudu et al.

the classification model and the MRE of using algorithm a∗ on the entire dataset.
The classification model can be similarly compared to a random selection model.

RMREλ(y, ŷ, a∗) =
MREλ(y, ŷ)
MREλ(y, a∗)

(11)

5 Evaluation

We evaluated our machine learning-based algorithm selection on an artificially
generated dataset, as real data for combinatorial auctions of cloud resources
(e.g. user bidding data) is not available. We used CAGE [10], a flexible input
generator designed specifically for multi-unit, multi-good double combinatorial
auctions.

We created a dataset of 5970 auction instances by varying input parameters
such as the number of bids, asks and resource types, sparsity of resources inside a
bundle, additivity, and distributions used for generating base prices. Given that
we model cloud resources, we assume that bundle sizes for both bids and asks
are drawn from exponential random distributions, which means that most of the
bundles are small. This is in accordance with Google cloud traces [22], where
most task are short, while only a few tasks are long running with high resource
demands. Regarding bidding strategies, we assume a normal distribution around
base prices, meaning that bidders are willing to pay, per unit, a price close to a
resource’s known market price.

5.1 Dataset Analysis

We analyze the dataset by evaluating the relevance of the defined features to the
prediction, as well as the distribution of class labels. The dataset was labeled by
selecting, for each problem instance, the algorithm that yielded the lowest cost.
Since the cost is λ-dependent, so are the labels.

Figure 3 shows the support for each class, over 11 values of λ equidistantly
distributed over [0, 1]. Note that the dataset is imbalanced for all λ. Furthermore,
for small λ values, when time is more important than welfare, greedy algorithms
were selected more frequently, as they are fast, but have poor quality, while at the
other end hill climbing algorithms, although slower, were selected for their higher
welfare. For λ ∈ [0.1, 0.6], simulated annealing algorithms were often selected as
best – not surprising, since they are similar to hill climbing, but randomly accept
worse solutions to climb out of local optima and reach to a solution faster. An
interesting result is the λ-independent number of instances for which the greedy
algorithms are selected as best (e.g. 47 instances for greedy1). These are the
infeasible instances, or the auctions where no match exists and the social welfare
is 0—thus the fastest algorithm is always selected as best.

Figure 3 hence demonstrates the input-dependent performance of heuristic
algorithms, and the potential for improvement by using algorithm selection.

Next, we investigated which features are more relevant to the prediction.
The aim is to identify irrelevant or redundant features, and remove them to

Combinatorial Auction Algorithm Selection for Cloud Resource Allocation 387

Fig. 3. Algorithm selection dataset: breakdown by class labels for several λ values.

reduce the dimensionality of the input space and prevent over-fitting. We used
tree-based estimators to compute relative feature importances to the model’s
performance.

In Fig. 4, all 75 features are sorted based on their importance and the first 20
are shown. Note that only a few are relevant, e.g. 16 features have an importance
over 0.02. The most relevant features are related to the quantities per resource,
demanded or supplied on the market – minimum, maximum, and average val-
ues – as well as the mean and standard deviation of bundle sizes. This can be
explained by the fact that quantities per resource are instrumental in assessing
the feasibility of a solution, as enforced by constraint (5), and influence the way
algorithms move in the search space. From the price-related features, only the
minimum and standard deviation of the asking price per unit have a certain
effect on the prediction.

5.2 Classification Evaluation

The dataset was split into a training set (70%) and a test set (30%), used to test
how the model generalizes on unseen data. Because of the imbalanced dataset,
the splitting was performed using stratified sampling, to ensure that the train
and test sets have the same percentage of samples of each class as the full set.

Using auto-sklearn [23], we trained a classification model for each λ value. The
auto-sklearn library implements an automated machine learning approach, which
relies on Bayesian optimization methods to construct an ensemble of classifiers
and find their best hyperparameters and preprocessing steps. The preprocessing,

388 D. Gudu et al.

0 0.05 0.1 0.15

minimum supply per resource mean
maximum supply per resource mean

average ask price stddev
minimum supply per resource stddev

minimum supply per resource kurtosis
minimum demand per resource mean
maximum supply per resource stddev
maximum demand per resource mean

quantity spread per resource mean
average ask price min
ask bundle size mean
bid bundle size mean

bid bundle size stddev
average supply per resource stddev

ask bundle size stddev
total supply per resource stddev

maximum demand per resource stddev
total demand per resource mean

minimum demand per resource stddev
total demand per resource stddev

Fig. 4. Relative feature importances averaged over all λ values, computed using Extra-
TreesClassifier in scikit-learn with 500 estimators. Only the first 20 most relevant fea-
tures are shown.

in this case, includes feature scaling and feature selection for dimensionality
reduction, based on their relevance as described in Sect. 5.1.

Figure 5 shows the accuracy of the models for each λ, on both training and
test set. Good accuracies over 93% are obtained for most λ preferences, with
higher accuracy for higher λ, suggesting that the selected features are more
relevant to the welfare objective rather than the time objective.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

80

90

100

λ

a
cc

u
ra

cy
[%

]

Training Set
Test Set

Fig. 5. Accuracy of ML-based algorithm selection for different λ values.

More importantly, a comparison between the trained models for each λ and
random selection (see Fig. 6) shows that our algorithm selection approach is

Combinatorial Auction Algorithm Selection for Cloud Resource Allocation 389

always 2 to 4 orders of magnitude better than a random selection approach.
Note that an RMRE value below 1 implies that the algorithm selection using
machine learning is better than its counterpart in the comparison.

Similarly, a comparison between our models and the best pure algorithm a∗

for each λ, where a∗ is defined as the algorithm selected most often as the best
in the labeling phase (cf. Fig. 3), showed that our approach outperforms the best
pure algorithm for all values of λ except 0.7 and 0.8 (see Fig. 6), with overall
lower RMRE for smaller λ. The best pure algorithm method can also be seen
as a rule-based system that uses domain knowledge to select an algorithm per
λ value, e.g. when speed is the most important, greedy algorithms are always
used.

Therefore, our machine learning approach yields higher welfare, but also
higher cost error MRE with increasing λ, leading to worse performance than
a single algorithm when only the welfare obective is considered. This can be
explained by the fact that the algorithms’ performances vary more in the wel-
fare dimension than the runtime, but classification penalizes all mispredictions
eaqually, ultimately leading to the paradox of 96% accuracy with RMRE ≥ 1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.01

1

λ

R
M
R
E

Training Set (a∗) Test Set (a∗)
Training Set (random) Test Set (random)

Fig. 6. RMRE comparison of ML-based algorithm selection to random selection and
best pure algorithm for different λ values.

6 Conclusions

In this paper, we proposed an algorithm selection approach to improve the per-
formance and solution quality of combinatorial auctions, applied to the problem
of cloud resource allocation. We introduced a machine learning approach that
selects the best heuristic algorithm for each problem instance, where the best
algorithm is defined by our proposed multi-objective cost model. Another con-
tribution of this paper is a feature set to aid in the learning process, engineered
using domain knowledge. We showed that our proposed approach predicts the
best algorithm per instance with an accuracy of up to 99%. This approach also
outperforms a random algorithm selection approach, as well as the best pure
algorithm, in most cases.

390 D. Gudu et al.

To further improve the prediction, in the future we will integrate low-
knowledge, dynamic features, that can be obtained by running all the algorithms
on a small sample of the problem instance.

References

1. Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: vision,
hype, and reality for delivering IT services as computing utilities. In: 10th IEEE
International Conference on High Performance Computing and Communications,
2008. HPCC 2008, pp. 5–13. IEEE (2008). https://doi.org/10.1109/HPCC.2008.
172

2. Amazon: Amazon EC2 spot instaces (2017). https://aws.amazon.com/ec2/spot/
3. Scoca, V., Uriarte, R.B., De Nicola, R.: Smart contract negotiation in cloud

computing. In: 2017 IEEE 10th International Conference on Cloud Computing
(CLOUD), pp. 592–599. IEEE (2017). https://doi.org/10.1109/CLOUD.2017.81

4. De Vries, S., Vohra, R.V.: Combinatorial auctions: a survey. INFORMS J. Comput.
15(3), 284–309 (2003). https://doi.org/10.1287/ijoc.15.3.284.16077

5. Zaman, S., Grosu, D.: Combinatorial auction-based allocation of virtual machine
instances in clouds. J. Parallel Distrib. Comput. 73(4), 495–508 (2013). https://
doi.org/10.1016/j.jpdc.2012.12.006

6. Smith, D.M.: Predicts 2017: cloud computing enters its second decade. Gartner
Special report (2017)

7. Nejad, M.M., Mashayekhy, L., Grosu, D.: Truthful greedy mechanisms for dynamic
virtual machine provisioning and allocation in clouds. IEEE Trans. Parallel Distrib.
Syst. 26(2), 594–603 (2015). https://doi.org/10.1109/TPDS.2014.2308224

8. Zurel, E., Nisan, N.: An efficient approximate allocation algorithm for combinato-
rial auctions. In: Proceedings of the 3rd ACM conference on Electronic Commerce,
pp. 125–136. ACM (2001). https://doi.org/10.1145/501158.501172

9. Hoos, H.H., Boutilier, C.: Solving combinatorial auctions using stochastic local
search. In: AAAI/IAAI, pp. 22–29 (2000)

10. Gudu, D., Zachmann, G., Hardt, M., Streit, A.: Approximate algorithms for double
combinatorial auctions for resource allocation in clouds: an empirical comparison.
In: Proceedings of the 10th International Conference on Agents and Artificial Intel-
ligence, ICAART, pp. 58–69 (2018). https://doi.org/10.5220/0006593900580069

11. Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. In:
Bessiere, C., De Raedt, L., Kotthoff, L., Nijssen, S., O’Sullivan, B., Pedreschi, D.
(eds.) Data Mining and Constraint Programming. LNCS (LNAI), vol. 10101, pp.
149–190. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50137-6 7

12. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models:
methodology and a case study on combinatorial auctions. J. ACM (JACM) 56(4),
22 (2009). https://doi.org/10.1145/1538902.1538906

13. Beck, J.C., Freuder, E.C.: Simple rules for low-knowledge algorithm selection.
In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 50–64.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24664-0 4

14. Lehmann, D., Müller, R., Sandholm, T.: The winner determination problem. In:
Combinatorial Auctions, pp. 297–318 (2006). https://doi.org/10.7551/mitpress/
9780262033428.003.0013

15. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, Cambridge
(2008). https://doi.org/10.1145/1753171.1753181

https://doi.org/10.1109/HPCC.2008.172
https://doi.org/10.1109/HPCC.2008.172
https://aws.amazon.com/ec2/spot/
https://doi.org/10.1109/CLOUD.2017.81
https://doi.org/10.1287/ijoc.15.3.284.16077
https://doi.org/10.1016/j.jpdc.2012.12.006
https://doi.org/10.1016/j.jpdc.2012.12.006
https://doi.org/10.1109/TPDS.2014.2308224
https://doi.org/10.1145/501158.501172
https://doi.org/10.5220/0006593900580069
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.1145/1538902.1538906
https://doi.org/10.1007/978-3-540-24664-0_4
https://doi.org/10.7551/mitpress/9780262033428.003.0013
https://doi.org/10.7551/mitpress/9780262033428.003.0013
https://doi.org/10.1145/1753171.1753181

Combinatorial Auction Algorithm Selection for Cloud Resource Allocation 391

16. Schnizler, B., Neumann, D., Veit, D., Weinhardt, C.: Trading grid services-a multi-
attribute combinatorial approach. Eur. J. Oper. Res. 187(3), 943–961 (2008).
https://doi.org/10.1016/j.ejor.2006.05.049

17. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simulated
annealing. Science 220(4598), 671–680 (1983). https://doi.org/10.1126/science.
220.4598.671

18. Russell, S., Norvig, P.: Beyond classical search. In: Artificial Intelligence: A Modern
Approach, pp. 125–128 (2010)

19. Bertocchi, M., Butti, A., S�lomiñ ski, L., Sobczynska, J.: Probabilistic and deter-
ministic local search for solving the binary multiknapsack problem. Optimization
33(2), 155–166 (1995). https://doi.org/10.1080/02331939508844072

20. Deb, K.: Multi-objective optimization. In: Burke, E., Kendall, G. (eds.) Search
Methodologies, pp. 403–449. Springer, Boston (2014). https://doi.org/10.1007/
978-1-4614-6940-7 15

21. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engi-
neering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004). https://doi.org/10.
1007/s00158-003-0368-6

22. Mishra, A.K., Hellerstein, J.L., Cirne, W., Das, C.R.: Towards characterizing cloud
backend workloads: insights from Google compute clusters. ACM SIGMETRICS
Perform. Eval. Rev. 37(4), 34–41 (2010)

23. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:
Efficient and robust automated machine learning. In: Advances in Neural Informa-
tion Processing Systems, pp. 2962–2970. Curran Associates, Inc. (2015)

https://doi.org/10.1016/j.ejor.2006.05.049
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1080/02331939508844072
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1007/978-1-4614-6940-7_15
https://doi.org/10.1007/s00158-003-0368-6
https://doi.org/10.1007/s00158-003-0368-6

Cloud Federation Formation
in Oligopolistic Markets

Yash Khandelwal1, Karthik Ganti1, Suresh Purini1(B), and Puduru V. Reddy2

1 International Institute of Information Technology, Hyderabad, India
suresh.purini@iiit.ac.in

2 Indian Institute of Technology, Chennai, India

Abstract. In this paper, we study how an oligopolist influences the
coalition structure in federated cloud markets. Specifically, we use coop-
erative game theory to model the circumstances under which a cloud
provider prefers to join a cloud federation vis-a-vis consider taking a
price offer made by an oligopolist.

Keywords: Federated clouds · Oligopoly · Linear production games

1 Introduction

The current cloud computing market structure is akin to oligopoly as few mega
cloud providers completely own the market share. Each of them individually or
in collusion has the power to affect the market prices leading to what is called an
imperfect competition. Further, due to the large scale of operations in the data
centers associated with these oligopolists, there is an acute stress on electricity
and other natural resources. Many studies [1,2] indicated the resulting adverse
impact on the environment due to carbon emissions and other pollutants.

Since computing has become a common commodity these days, it is easy to
envisage a large number of micro cloud providers with small to medium scale
data centers. With the presence of a large number of producers, an oligopolistic
market leans towards perfectly competitive market. In a market with perfect
competition, producers become price takers and it is not possible for one or few
cloud providers to affect the market prices. Further, as these small data centers
are geographically spread out, the stress on the local resources and the impact on
the microclimate will be mitigated, especially by the usage of renewable energy
resources and productive use of dissipated heat energy.

However, such micro cloud providers will be able to serve only moderate sized
consumer requests due to the limited availability of resources in their data cen-
ters. In order to serve large consumer requests many micro cloud providers have
to come together and form a coalition or a federation. The federation formation
can happen in a peer-to-peer fashion leading to what is called an Peer-to-Peer
Inter-Cloud Federation (refer Fig. 1(a)) [3]. The other option is to use the services
of a broker as in Fig. 1(b) resulting in a Multi-Cloud federation model.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 392–403, 2018.
https://doi.org/10.1007/978-3-319-96983-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_28&domain=pdf

Cloud Federation Formation in Oligopolistic Markets 393

Cloud B

Cloud A

Cloud C

(a) Peer-to-Peer Inter-Cloud Federation

Cloud A

Cloud B

Cloud C

Broker

(b) Multi-Cloud Model

Fig. 1. Cloud federation models

Given a set of cloud providers and a broker, in this paper, we study the ques-
tion whether it is beneficial for cloud providers to form a peer-to-peer federation
or to subscribe to the services of a broker. We use cooperative game theory to
address this interesting question. To the best of our knowledge, we did not find
any prior work related to the proposed problem of study in this paper.

In Sect. 2, we provide the necessary background on cooperative game the-
ory and linear production games; in Sect. 3, we formulate the cloud federation
formation and payoff distribution using linear production games; in Sect. 4, we
show the impact of an oligopolist on federation formation and how we can arrive
at stable coalitional structures; in Sect. 5 we present our experimental analysis;
Sect. 6 contains the related work; and finally we conclude with Sect. 7.

2 Background

We study the proposed problem in this paper using a special class of games
called linear production games [4] from the cooperative game theory [5,6]. We
provide the necessary game theoretic background in this section to understand
the rest of the paper.

2.1 Cooperative Game Theory

Given a set of N = {1, · · · , n} players, a subset S ⊆ N of them can pool their
resources and form a coalition to generate an utility or value v(S). We say that
the utility is transferable if it can be split among the coalition partners in an
arbitrary fashion.

Definition 1. A cooperative n-person game in coalitional form is denoted by
G = (N, v) where N = {1, · · · , n} and v : 2N → R

+, with v(φ) = 0. The
function v is called the characteristic function of the game and v(S) is called the
value of the coalition S.

We say that a cooperative game is super-additive if v(S ∪ T) ≥ v(S) + v(T) for
all S, T ∈ 2N with S ∩ T = φ. When a game is super-additive, then the value
v(N) generated by the grand coalition N would be the maximum. However, the
formation of a grand coalition or any other coalition depends on the payoff vector
which determines the profit distribution among the coalition members.

394 Y. Khandelwal et al.

Definition 2. A payoff vector x = (x1, · · · , xn) ∈ R
n is called an imputation if

it satisfies the following individual rationality and efficiency conditions.

1. Individual rationality: xi ≥ v({i}) ∀i ∈ N .
2. Efficiency:

∑n
i=1 xi = v(N).

The set of imputations associated with a game G = (N, v) is denoted by I(G).
For a payoff vector x and a coalition S ⊆ N , let x(S) denote

∑
i∈S xi.

Definition 3. The core of a game G = (N, v) denoted as C(G) is defined as
follows.

C(G) = {x ∈ I(G) | x(F) ≥ v(F) ∀F ⊆ N}
If the payoff vector is from the core, then there is no incentive for any sub-
coalition S ⊂ N to deviate from the grand coalition N , thus ensuring stability.
However, the core of a game is not necessarily non-empty. Bondareva [7] and
Shapley [8] gave independently a characterization of games with a non-empty
core. The characteristic vector eS associated with a coalition S ⊆ N is defined
as eS

i = 1 if i ∈ S and eS
i = 0 if i ∈ N \ S.

Definition 4. A map λ : 2N \ {φ} → R
+ is called a balanced map if

∑

S∈2N\{φ}
λ(S)eS = eN

Definition 5. A cooperative game G = (N, v) is called a balanced game if for
each balanced map λ : 2N \ {φ} → R

+ the following condition holds good.
∑

S∈2N\{φ}
λ(S)v(S) ≤ v(N)

A cooperative game G = (N, v) can induce a subgame GS = (S, vS) where
S ⊆ N and vS(T) = v(T) for all T ⊆ S.

Definition 6. A cooperative game G = (N, v) is called totally balanced if every
induced subgame GS = (S, vS) for all S ∈ 2N \ {φ} is balanced.

The following theorem due to Bondareva and Shapley characterizes the set
of games with a non-empty core.

Theorem 1. A cooperative game G = (N, v) will have a non-empty core if and
only if it is a balanced game.

2.2 Linear Production Games

Consider a production situation where m different types of products P1, . . . , Pm

can be manufactured using q distinct kind of resources G1, . . . , Gq. Further,
there is a production matrix Am×q whose (j, k)th entry ajk denotes the number
of units of resource Gk required to manufacture an unit of product Pj . Overall,

Cloud Federation Formation in Oligopolistic Markets 395

the jth row of the matrix denoted by aj gives the overall resource requirements
per unit of product Pj . The linearity of the production situation comes from
the fact that to manufacture α units of product Pj the corresponding resource
requirements scale-up linearly to αaj . Let the jth entry of the price vector c1×m =
(c1, · · · , cm) denote the price per unit of product Pj . Given a resource bundle
bq×1 = (b1, · · · , bq)T with non-negative entries, the optimal production plan
xm×1 = (x1, · · · , xm)T is obtained by solving the following linear programming
problem.

Maximize
x

c · x

subject to AT · x ≤ b
x ≥ 0

Consider now an n-player game G = (N, v) wherein the resource bundle
owned by the ith player is denoted by bi. The resource bundle owned by a
coalition S ⊆ N is defined as b(S) =

∑
i∈S bi. The value v(S) associated with

the coalition S is obtained by solving the following linear programming problem.

Maximize
x

c · x

subject to AT · x ≤ b(S)
x ≥ 0

The following is an important theorem which we use in this paper.

Theorem 2. Every linear production game G = (N, v) is totally balanced.
Hence not only the core C(G) is non-empty but also the core C(GS) of every
induced subgame GS = (S, vS) where S ⊆ N is also non-empty.

3 Federation Formation and Payoff Distribution Using
Linear Production Games

In this section, we will present a model for peer-to-peer inter-cloud federation
and an efficient payoff distribution scheme which gives a core allocation using
linear production games.

3.1 Federation Formation Model

Let I = {C1, · · · , Cn} be a collection of cloud providers. A cloud provider Ci

owns a resource bundle bi = (bc
i , b

m
i , bs

i)
T where bc

i is the total number of available
compute cores; bm

i and bs
i denotes the total available main memory and secondary

storage respectively. The cloud providers can offer m types of virtual machines
denoted by V Mj , 1 ≤ j ≤ m. The core, main memory and storage requirements
for each virtual machine type is given by the production matrix Am×3 whose
jth row, aj = (ac

j , a
m
j , as

j), corresponds to the resource configuration vector of a
virtual machine of type V Mj . Table 2 gives example virtual machine types and

396 Y. Khandelwal et al.

the associated production matrix used in the experimental analysis section of
this paper. The per unit market price of different types of virtual machines is
denoted by the price vector p = (p1, · · · , pm). Table 2 also provides the hourly
rental price for various types of virtual machines considered. Given this market
scenario, the cloud providers have to decide upon a federation structure such
that each of them maximize their respective payoffs.

It can be observed that we can model this problem by constructing a linear
production game which is exactly similar to the game Glp = (N, v) described
in the Sect. 2.2. We denote the total pooled cores, memory and storage from a
federation S by bc(S), bm(S) and bs(S) respectively. The value v(S) associated
with a federation S is obtained by solving the following linear programming
problem OPTLP(S).

Maximize
x

m∑

j=1

xjpj (1a)

subject to
m∑

j=1

xja
c
j ≤ bc(S) (1b)

m∑

j=1

xja
m
j ≤ bm(S) (1c)

m∑

j=1

xja
s
j ≤ bs(S) (1d)

xj ≥ 0 (1 ≤ j ≤ m) (1e)

Constraints 1b, 1c and 1d denote the capacity constraints corresponding to
core, memory and storage respectively. In fact, this game being super additive,
we can infer that the grand coalition generates the maximum revenue, which is
obtained by solving the linear programming problem OPTLP(N). Further, from
Theorem 2, we know that there is a core allocation possible as it is a totally
balanced game. In the next section, we show how we can do payoff distribution
using a core allocation, thereby achieving the stability of the grand coalition.

3.2 Payoff Distribution

Owen [9] showed that we can compute a core allocation for a linear production
game Glp = (N, v) by solving the following dual problem associated with the
primal problem OPTLP(N).

Minimize
y

y1b
c(N) + y2b

m(N) + y3b
s(N) (2a)

subject to y1a
c
j + y2a

m
j + y3a

s
j ≥ pj (∀j, 1 ≤ j ≤ m) (2b)

y ≥ 0 (2c)

Cloud Federation Formation in Oligopolistic Markets 397

We interpret the optimal solution y∗ = (yc
∗, y

m
∗ , ys

∗) to the dual problem as
the shadow prices for cores, memory and storage. Owen proved that we can
obtain a core allocation vector by paying the ith player with the resource bundle
bi = (bc

i , b
m
i , bs

i)
T as follows.

αi(N) =
∑

j∈{c,m,s}
yj

∗b
j
i

We denote the payoff vector as α(N) = (α1(N), · · · , αn(N)) where the param-
eter N indicates that the payoff corresponds to the grand coalition. The subset
of core allocations which are formed using optimal dual solutions is know as the
Owen set. In the next section, we will present how a broker or an oligopolist
can intervene in the formation of a grand coalition by offering higher payoff to
individual cloud providers.

4 Intervention of an Oligopolist in Federation Formation

In order to maintain market control, the oligopolists may intervene in the peer-
to-peer federation formation, refer Fig. 1(a), by offering incentives to the micro
cloud providers to lend their resources to them. The oligopolists in turn use the
lent resources to supply virtual machines to the end consumers potentially at a
higher price due to their wider market reach. During this process, an oligopolist
assumes the role of a broker leading to a multi-cloud architecture depicted in
Fig. 1(b). In the rest of this section, we study how an oligopolist can affect the
structure of cloud federation and the resulting impact on the payoff to individual
cloud providers.

Let an oligopolist offers a price mi to rent the entire resource bundle bi

from the cloud provider Ci. In this paper, we study the restricted problem of
an interaction between a single oligopolist and a set of cloud providers1. One
simple way of considering more than one oligopolist is to set the price offer mi

made to the cloud provider Ci to the maximum of the offers made by different
oligopolists in the market, and the rest of the theory proposed in this section
holds good.

4.1 Core Allocation for Subgames

In Sect. 3.2, we described how the payoff distribution vector α(N) can be com-
puted for the game Glp = (N, v). Since, every subgame GS = (S, vS) induced
by Glp is also a linear production game, we can analogously compute the payoff
distribution vector α(S) by solving the dual problem for the primal problem
OPTLP(S). Overall, we have to solve 2n − 1 linear programming problems to
compute the payoff distribution vectors for all the induced subgames, which
1 An alternate way to view this problem is to consider the single oligopolist as a

monopolist by ignoring the market influences due to other oligopolists which is not
the subject matter of this paper.

398 Y. Khandelwal et al.

is computationally expensive. However, it can be noted from the constraints
(2b) and (2c), the feasible region for the dual problem of OPTLP(S) is inde-
pendent of the federation S and only the coefficients of the objective function
change. Hence, for practical values of m, we can enumerate the basic feasible
solutions, in other words, the extreme points of the polyhedra defined by the
dual problem constraints. For different objective functions associated with dif-
ferent subgames, we can exhaustively check the list of extreme points and find
the optimal solution.

4.2 Influence of the Oligopolist

Definition 7. The marginal payoff for a cloud provider Ci with respect to a
coalition S and a price offer mi from an oligopolist is defined as

βi(S) = αi(S) − mi.

A cloud provider has an incentive to deviate from a federation S and take
up the offer of an oligopolist if and only if βi(S) < 0. Thus the oligopolist may
destabilize the grand coalition as all the cloud providers whose βi(N) < 0 will
break away from the coalition.

Definition 8. For a cooperative game G = (N, v) and a price offer vector m =
(m1, · · · ,mn), a coalition S ⊆ N is called a feasible coalition if and only if
βi(S) ≥ 0 for all i ∈ S.

From the discussion in Sect. 4.1, we can enumerate the list of all feasible coalitions
in 2N by computing the respective payoff distribution vectors.

Definition 9. Given price offer vector m = (m1, · · · ,mn), we call a partition
CS = {F1, · · · , Fk−1, F

∗} of the player set N as a stable coalition structure if

1. The coalitions Fi, 1 ≤ i ≤ k − 1 are feasible coalitions.
2. There exists no subset S ⊆ F ∗ which is a feasible coalition. Thus all the cloud

players from F ∗ take the price offer made by the monopolist.

Note that if mi < v({i}), then cloud provider Ci is a feasible coalition by himself.

4.3 Finding a Stable Coalition Structure

There can be many possible stable coalition structures for a given price offer
vector from the oligopolist. We may prefer one stable coalition structure to
other based on certain criteria. For example, one criteria could be to minimize
the number of cloud providers taking up oligopolist’s offer, i.e., |F ∗|. Another
criteria could be to be maximize the sum of payoffs of all the cloud providers,
i.e.,

∑k−1
i=1

∑
j∈Fi

αj(Fi) +
∑

j∈F ∗ mj .

Definition 10. Associated with a feasible coalition F and a price offer vector
m = (m1, · · · ,mn), we define a goodness value g(F) as follows.

g(F) =
∑

i∈F

(αi(F) − mi)/|F |

Cloud Federation Formation in Oligopolistic Markets 399

In this paper, we propose the following simple greedy algorithm for stable
coalition formation.

1. Let the initial coalition structure be CS = φ. Repeat the following step until
it terminates.

2. (ith iteration)
(a) Among all the feasible coalitions, choose a coalition Fi with a maximum

goodness value g(Fi) and F ∩ Fi = φ for all F ∈ CS.
(b) If there exists no feasible coalition which is disjoint with the already

chosen feasible coalitions, then set

F ∗ = N − ∪F∈CSF

CS = CS ∪ {F ∗}
and exit the algorithm.

We can easily note from the above algorithm, that different goodness functions
will yield different coalition structures. In the next section, we do an experimental
analysis on the influence of the oligopolist on stable coalition formation and
overall payoff distribution.

5 Experimental Results

In this section, we study how increasing price offers from the oligopolist to the
individual cloud providers impact the structure of stable coalitions formed. We
consider a set of 12 cloud providers I = {C1, · · · , C12} whose resource capacities
are given in the Table 1. These resource capacities are randomly chosen, first by
choosing one of the three buckets: small, medium and large; and then choosing a
capacity randomly within a range determined by that bucket type. Inspired from
Microsoft Azure, we let each cloud provider offer four types of virtual machines:
General Purpose (B2S), Storage Optimized (L4), Memory Optimized (E8 v3),
and Compute Optimized (F16 v2). The resource requirements of each type of
virtual machine is given in the Table 2. The same table also provides the hourly
rental price for each type of virtual machine.

We consider l = 45 different market scenarios. In the ith market scenario,
Mi, 1 ≤ i ≤ l, the oligopolist makes a price offer m = (m1, · · · ,mj , · · · ,m12)
wherein

mj = (1 +
i

100
) × v({Cj}). (3)

That means the oligopolist is offering a price which is i% greater than the
value a cloud provider can generate by working all alone. For small values of
i, a cloud provider can potentially get better payoff by forming a coalition;
whereas for larger values of i he may be better off taking up the oligopolist’s
offer. This can be observed from the Fig. 2 which depicts how the stable coali-
tion structure evolves with the increasing price offers from the oligopolist.

400 Y. Khandelwal et al.

Table 1. Resource capacity
of cloud providers. vCPUs
are expressed in 100s of
cores, memory and storage
in 100GB units.

vCPU Memory Storage

C1 36 44 1845

C2 55 74 1704

C3 120 165 548

C4 15 133 1906

C5 61 490 2100

C6 110 503 3164

C7 119 900 3468

C8 181 150 3900

C9 182 986 6814

C10 210 610 4654

C11 166 531 13000

C12 239 850 4100

Table 2. VM instance types, their resource config-
urations and hourly rental prices.

vCPU Memory Storage Price

(in GB) (in GB) (per hour)

General
Purpose

2 4 8 0.047$

Storage
Optimized

4 32 678 0.312$

Memory
Optimized

8 64 200 0.532$

Compute
Optimized

16 32 128 0.716$

Fig. 2. Evolution of coalition structure with increasing price offers going from market
scenario M1 to M45 (refer Eq. (3)).

The stable coalition structures are computed using the greedy algorithm pro-
posed in Sect. 4.3. Each track of the semi-circle represents the coalition structure
for a given price offer. The purple colored cloud providers are those who take
up the oligopolists offer. Similar colored cloud providers in a track belong to the
same coalition. For example, at one percent price offer, the coalition structure is
CS = {{1, 2, 5, 11}, {3, 6}, {4, 10}, {8, 9}, {7, 12}}. The members of the last set
F ∗ = {7, 12} are those who accepted the offer made by the oligopolist. Further,

Cloud Federation Formation in Oligopolistic Markets 401

the semi-circle shows only those tracks where there is a change in the coalition
structure from the previous market scenario. For example, since the coalition
structure did not change from the market scenario M7 till M17, the intervening
coalition structures are not represented. We can notice the increasing purple
color as we move from inside to outside in the semi-circle indicating that with
increasing price offers more cloud providers will lean towards the oligopolist. This
is further illustrated by the graph in Fig. 3 which shows the size of F ∗, |F ∗|, with
increasing price offers. Another interesting observation is that a cloud provider
may take an oligopolist’s offer in market scenario Mi but may change his mind
in Mi′ where i′ > i. This is due to the overall change in the coalition structure.
This phenomenon can be observed by looking at the sector corresponding to the
cloud provider 5 in Fig. 2.

0 10 20 30 40
0

2

4

6

8

10

12

14

Market Scenario

|F
∗ |

Fig. 3. Number of cloud providers tak-
ing up the offer made by the oligopolist
with increasing price offers.

0 10 20 30 40
0

20

40

60

80

100

120

Market Scenario

A
ve

ra
ge

m
ar

gi
na

lp
ay

off
(i

n
$)

Fig. 4. Average marginal payoff with
changing market scenarios.

Figure 4 shows the average marginal payoff of the cloud providers who pre-
ferred to form a peer-to-peer coalition. For a given market scenario, CS is a
stable coalition structure (refer Definition (9)), then the average marginal payoff
is defined as

∑
Fi∈CS\F ∗

∑
j∈Fi

βj(Fi)/|N \ F ∗|. As expected, with the increas-
ing price offer from the oligopolist, the marginal payoff goes down. However, it
need not be monotic, as it may increase locally due to the changes in the sta-
ble coalition structure. Figure 5 shows the total time taken for the computation
of the stable coalition structure for a given market scenario. It can be noted
that overall it is in the order of milliseconds and hence computationally feasible
problem to solve. Further, with the increasing price offers, the number of feasible
coalitions go down, which makes the greedy algorithm converge faster.

For a coalition, we know that vS(S) is the total payoff available for the
coalition S. The combined payoff from an oligopolist to a coalition S is

∑
i∈S mi.

Figure 6 compares the coalitional payoff and the combined broker payoff for all
the coalitions in the market scenario M1. For cloud providers 7 and 12, who
take up the oligopolist’s offer, these two values are almost the same (one percent
difference).

402 Y. Khandelwal et al.

0 10 20 30 40
12.00

13.00

14.00

15.00

16.00

17.00

18.00

Market Scenario

T
im

e
(i

n
m

s)

Fig. 5. Total time taken to compute
the stable coalition structure for a
given market scenario.

[8-9] [3-6] [1-2-5-11] [4-10]
0

500

1,000

1,500

2,000

Coalition

P
ay

off
in

$

Coalition payoff Oligopolist’s Payoff

Fig. 6. Comparision between the coali-
tional payoff and combined broker price
offer for the market scenario M1.

6 Related Work

Grozev and Buyya [3] provided a systematic taxonomy of various inter-cloud
architectures. The peer-to-peer inter-cloud architecture and the broker based
multi-cloud architecture considered in this paper are based on their taxonomy.
There has been several works on federation formation and payoff distribution
using cooperative game theory [10–15]. Hassan et. al. [16] solved the problem of
resource allocation and federation formation using Stackelberg games. However,
none of these works consider the impact of an oligopolist or a monopolist on
coalition formation which is the main focus of this paper. Niytao et al. [12] pro-
posed the usage of stochastic linear programming games for payoff distribution
among coalition members. The payoff distribution scheme we presented in this
paper using linear production games is similar to their work. The closest work
related to ours in literature is due to Fragnelli [17]. The author studied a market
scenario which is very similar to that of ours but the specific problem addressed
is the pricing strategy to be adopted by the players. Innes and Sexton [18] also
studied very similar market scenario but the problem they studied is the pricing
strategy to be adopted by the monopolist to deter coalition formation.

7 Conclusions

In this paper, we showed how we can model the influence of an oligopolist in a
cloud market where multiple cloud providers can potentially come together to
form a federation in order to increase their market reach. Further, we introduced
the notion of stable coalition structures in the presence of oligopolists and a
greedy algorithm for computing them. We believe that our work paves way for
further research in this less studied facet of federated cloud computing.

Cloud Federation Formation in Oligopolistic Markets 403

References

1. Dai, X., Wang, J.M., Bensaou, B.: Energy-efficient virtual machines scheduling in
multi-tenant data centers. IEEE Trans. Cloud Comput. 4(2), 210–221 (2016)

2. Wajid, U., et al.: On achieving energy efficiency and reducing CO2 footprint in
cloud computing. IEEE Trans. Cloud Comput. 4(2), 138–151 (2016)

3. Grozev, N., Buyya, R.: Inter-cloud architectures and application brokering: taxon-
omy and survey. Softw. Pract. Exp. 44(3), 369–390 (2014)

4. Granot, D.: A generalized linear production model: a unifying model. Math. Pro-
gram. 34(2), 212–222 (1986)

5. Curiel, I.: Cooperative Game Theory and Applications. Springer, Boston (1997).
https://doi.org/10.1007/978-1-4757-4871-0

6. Tijs, S.: Introduction to Game Theory. Hindustan Book Agency, Gurgaon (2003)
7. Bondareva, O.N.: Some applications of linear programming methods to the theory

of cooperative games. Probl. Kibern. 10, 119–139 (1963)
8. Shapley, L.S.: On balanced sets and cores. Nav. Res. Logist. Q. 14(4), 453–460

(1967)
9. Owen, G.: On the core of linear production games. Math. Program. 9(1), 358–370

(1975)
10. Mashayekhy, L., Nejad, M.M., Grosu, D.: Cloud federations in the sky: formation

game and mechanism. IEEE Trans. Cloud Comput. 3(1), 14–27 (2015)
11. Khandelwal, Y., Purini, S., Reddy, P.V.: Fast algorithms for optimal coalition

formation in federated clouds. In: Proceedings of the 9th International Conference
on Utility and Cloud Computing. UCC 2016, pp. 156–164. ACM, New York (2016)

12. Niyato, D., Vasilakos, A.V., Kun, Z.: Resource and revenue sharing with coalition
formation of cloud providers: game theoretic approach. In: 2011 11th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, pp. 215–224,
May 2011

13. Romero Coronado, J.P., Altmann, J.: Model for incentivizing cloud service feder-
ation. In: Pham, C., Altmann, J., Bañares, J.Á. (eds.) GECON 2017. LNCS, vol.
10537, pp. 233–246. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68066-8 18

14. Samaan, N.: A novel economic sharing model in a federation of selfish cloud
providers. IEEE Trans. Parallel Distrib. Syst. 25(1), 12–21 (2014)

15. Guazzone, M., Anglano, C., Sereno, M.: A game-theoretic approach to coalition
formation in green cloud federations. In: 14th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGrid), pp. 618–625, May 2014

16. Hassan, M.M., Hossain, M.S., Sarkar, A.M.J., Huh, E.N.: Cooperative game-based
distributed resource allocation in horizontal dynamic cloud federation platform.
Inf. Syst. Front. 16(4), 523–542 (2014)

17. Fragnelli, V.: A note on the owen set of linear programming games and nash
equilibria. In: Gambarelli, G. (ed.) Essays in Cooperative Games. TDLC, vol. 36,
pp. 205–213. Springer, Boston (2004). https://doi.org/10.1007/978-1-4020-2936-
3 16

18. Innes, R., Sexton, R.J.: Customer coalitions, monopoly price discrimination and
generic entry deterrence. Eur. Econ. Rev. 37(8), 1569–1597 (1993)

https://doi.org/10.1007/978-1-4757-4871-0
https://doi.org/10.1007/978-3-319-68066-8_18
https://doi.org/10.1007/978-3-319-68066-8_18
https://doi.org/10.1007/978-1-4020-2936-3_16
https://doi.org/10.1007/978-1-4020-2936-3_16

Improving Cloud Simulation Using the
Monte-Carlo Method

Luke Bertot(B) , Stéphane Genaud , and Julien Gossa

Icube-ICPS — UMR 7357, Université de Strasbourg, CNRS Pôle API,
300 Blvd S. Brant, 67400 Illkirch-Graffenstaden, France

{lbertot,genaud,gossa}@unistra.fr

Abstract. In the cloud computing model, cloud providers invoice clients
for resource consumption. Hence, tools helping the client to budget the
cost of running his application are of pre-eminent importance. However,
the opaque and multi-tenant nature of clouds make task runtimes vari-
able and hard to predict, and hamper the creation of reliable simulation
tools. In this paper, we propose an improved simulation framework that
takes into account this variability using the Monte-Carlo method.

We consider the execution of batch jobs on an actual platform, sched-
uled using typical heuristics based on the user estimates of task runtimes.
We model the observed variability through simple random variables to
use as inputs to the Monte-Carlo simulation. Based on this stochastic
process, predictions are expressed as interval-based makespan and cost.
We show that, our method can capture over 90% of the empirical obser-
vations of makespan while keeping the capture interval size below 5% of
the average makespan.

1 Introduction

Over the last decade, the advancement of virtualization techniques has led to the
emergence of new economic and exploitation approaches of computer resources
in Infrastructure as a Service (IaaS), one form of cloud computing. In this model,
all computing resources are made available on demand by third-party operators
and paid based on usage. The ability to provision resources on demand is mainly
used in two ways. First, it can serve for scaling purposes where new machines
are brought online to face higher workloads and allows for a lower baseline cost.
Second, it is useful for parallelizing tasks to achieve a shorter makespan (i.e. the
time between the submission of the first task and the completion of the last task)
at equal cost, this approach being often used for scientific and industrial work-
loads when runtime is heavily dependent on computing power. This approach is
made possible by the pricing model of cloud infrastructures, as popularized by
Amazon Web Services, in which payment for computing power provided as Vir-
tual Machines (VMs), happens in increments of arbitrary lengths of time, billing
time unit (BTU), usually of one hour. This model offers the client an almost com-
plete freedom to start or stop new servers as long as it can be afforded. However,
for distributed applications, it quickly becomes difficult to manually provision
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 404–416, 2018.
https://doi.org/10.1007/978-3-319-96983-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_29&domain=pdf
http://orcid.org/0000-0002-2576-0677
http://orcid.org/0000-0003-0065-8083

Improving Cloud Simulation Using the Monte-Carlo Method 405

the resources in an efficient way. The use of a scheduler becomes unavoidable for
such workloads. In this paper, we are interested in predicting the execution time
and cost of such workloads, in which the scheduling plays an important role.

Independently of scheduling decisions, the accurate prediction of complex
workload execution is hampered by the inherent variability of clouds, explained
by multiple factors. Firstly IaaS operates in an opaque fashion: the exact nature
of the underlying platforms is unknown, and their hardware are subject to evolu-
tion. Secondly cloud systems are multi-tenant by nature. This adds uncertainty
due to contention on network and memory accesses. This variability, reported
by a number of practitioners who evaluate parallel application performance on
clouds (e.g. [13], who report an average 5%–6% variability on AWS cluster com-
pute instances), has also been measured by one of the most comprehensive and
recent surveys by Leitner and Cito [9]. We will see in this paper that our obser-
vations fit with the figures presented in this survey. This variability increases
the difficulty of modeling task execution times. In this regard, the prediction is
highly dependent on the underlying simulator of the system and on the phenom-
ena it can capture. In our work, we rely on the SimGrid [4] simulation toolkit,
enabling us to build discrete event simulators of distributed systems such as
Grids, Clouds, or HPC systems. SimGrid has been chosen for its well-studied
accuracy against reality (e.g. [18,20]). In particular, given a precise description of
the hardware platform, its network model takes into account network contention
in presence of multiple communication flows.

However, we may not be able to provide a fully accurate platform description,
or be unable to estimate the network cross-traffic, yielding a distortion between
simulation and reality. To deal with this problem, the standard approach is to
consider task runtimes to be stochastic. Every task can be modeled by a random
variable (RV) that models the whole spectrum of possible runtimes. These RVs
are the basis required for a stochastic simulation. Such simulations output RVs
of the observed phenomenon (makespan or BTU) which in turn can be used to
create intervals of possible results with their assorted confidence. In this paper,
we propose a stochastic method to enrich the classical prediction based on the
discrete-event simulator SimGrid, and we study the conditions needed for this
approach to be relevant. This study is carried out in a real setting, described in
Sect. 3, where the applications, and the scheduler are presented. The stochastic
framework we propose is then presented in Sect. 4 and is evaluated in Sect. 5.
We discuss the limits of this approach in Sect. 6.

2 Related Work

Simulation. Most cloud simulators are based on discrete event simulation (DES).
In discrete event simulation the simulation is a serie of events changing the state
of the simulated system. For instance, events can be the start (or end) of compu-
tations or communications. The simulator will jump from one event to the next,
updating the times of upcoming events to reflect the state change in the simula-
tion. Such DES-based simulators require at least a platform specification and an

406 L. Bertot et al.

application description. The available cloud DESs can be divided in two cate-
gories. In the first category are the simulators dedicated to study the clouds from
the provider point-of-view, whose purpose is to help evaluating the design deci-
sions of the datacenter. Examples of such simulators are MDCSim [11], which
offers specific and precise models for low-level components including network
(e.g. InfiniBand or Gigabit ethernet), operating system kernel and disks. It also
offers a model for energy consumption. However, the cloud client activity that
can be modeled is restricted to web-servers, application-servers, or data-base
applications. GreenCloud [8] follows the same purpose with a strong focus on
energy consumption of cloud’s network apparatus using a packet-level simulation
for network communications (NS2). In the second category (which we focus on)
are the simulators targeting the whole cloud ecosystem including client activity.
In this category, CloudSim [2] is the most broadly used simulator in academic
research. It offers simplified models regarding network communications, CPU,
or disks. However, it is easily extensible and serves as the underlying simulation
engine in a number of projects. Simgrid [4] is the other long-standing project,
which when used in conjunction with the SchIaaS cloud interface provides similar
functionalities as CloudSim. Among the other related projects is iCanCloud [15]
proposed to address scalability issues encountered with CloudSim (written in
Java) for the simulation of large use-cases. Most recently, PICS [7] has been pro-
posed to evaluate specifically the simulation of public clouds. The configuration
of the simulator uses only parameters that can be measured by the cloud client,
namely inbound and outbound network bandwidths, average CPU power, VM
boot times, and scale-in/scale-out policies. The data center is therefore seen as a
black box, for which no detailed description of the hardware setting is required.
The validation study of PICS under a variety of use-cases has nonetheless shown
accurate predictions.

However, when the simulated system is subject to variability, it is difficult to
establish the validity of simulation results formally. Indeed, given some defined
inputs, a DES outputs a single deterministic result, while a real system will
output slightly different results at each repeated execution. Hence, in practice
the simulation is informally regarded as valid if its results are “close” to one or
some of the real observations.

Stochastic Simulation and Monte-Carlo Method. For more comprehensive pre-
dictions in such variable environments, the simulation must be stochastic. In
stochastic simulations inputs become random variables (RVs) representing the
distribution of possible values for the parameters. The result of one such simu-
lation is itself an RV representing the distribution of the results.

Extensive work has been done on numerical methods for solving stochastic
simulations of directed acyclic graph (DAG) [10,12]. In a DAG model the ver-
tices represent the tasks comprising the application, and the edges represent the
dependencies between those tasks. The numerical approach presented in [10,12]
shows that, when tasks’ runtimes are independent, the makespan distribution
of two successive tasks is the convolution product of the tasks’ probability den-
sity function, while the makespan of two parallel tasks joining is the product of

Improving Cloud Simulation Using the Monte-Carlo Method 407

the tasks’ cumulative distribution function. This makes the numerical approach
computationally intensive and its core constraint, the tasks RVs independence,
can not be guaranteed in all cases. Moreover this DAG-based approach implies
fixed scheduling, since the scheduling creates implicit dependencies between tasks
scheduled one after another. In a cloud context where resources can be provi-
sioned on the fly, dynamic scheduling is much more common.

Instead of numerically computing the resulting RV, a Monte-Carlo simula-
tion (MCS) samples the possible results by testing multiple realizations in a
deterministic fashion. A realization is obtained by drawing a runtime that fol-
lows their task’s respective RV for every task in the application. This allows
one to simulate each realization using traditional methods like DES. Eventu-
ally, given enough realizations, the distribution of the simulation results will
tend towards the distribution of the equivalent stochastic simulation. Statistical
fitting techniques can then be used to characterize this makespan RV. MCS’s
permits non-independent RV and dynamic scheduling. This approach was first
suggested in [17] for stochastic PERT graphs. Later, in the context of grids,
where the number of resources is fixed during one execution, Tang et al. [19]
proposed, a modification of the well-known scheduling heuristic HEFT to com-
pute a schedule yielding the shortest makespan given randomly variable task
durations. Canon and Jeannot [3] have used MCS to evaluate the robustness of
DAG schedules when task durations vary, and similarly, Zheng and Sakellariou
[21] evaluated the impact of this variability on the makespan. More recently,
ElasticSim [1] has been proposed as a simulator extending Cloudsim to inte-
grate resource auto-scaling and stochastic task durations. Similarly to our work,
ElasticSim computes a schedule whose objective is to minimize rental cost while
meeting deadline constraints. For several generated workflows, the study com-
pares the simulation results regarding rental cost and makespan, when varying
the variability of task duration and deadline with arbitrary values. By contrast,
our work focuses on how the MCS method, under some given variability assump-
tions, captures actual observations.

3 Work Context

The study conducted in this paper is built upon a real comparison between
experiments run in actual environments and experimental results obtained by
simulation. To strengthen the validity of the comparison, the experimental condi-
tions for the real setup and the simulation should share as many commonalities
as possible, as advocated in [16]. Our experimental setup described hereafter
consists of two test applications which, on one hand, are run on a real platform
with our scheduler Schlouder, and on the other hand are simulated with our
simulator SimSchlouder based on SimGrid.

Test Applications. We carried out multiple executions of two broadly used sci-
entific applications to evaluate Schlouder performance. The execution traces for
those runs were collected in an archive. This backlog of real executions is the

408 L. Bertot et al.

benchmark against which our simulation performance will be evaluated. Those
applications are:

– Montage [6], the Montage Astronomical Image Mosaic Engine, is designed to
splice astronomical images. This application is a data intensive fork-join type
workflow with a communication-to-computation ratio greater than 90%.

– OMSSA [5], the Open Mass-Spectrometry Search Algorithm, is used to ana-
lyze mass-spectrometer results. The application is a computation intensive
set of independent parallel tasks with a communication-to-computation ratio
lower than 20%.

Real Execution Setup. Schlouder [14] is a client-side cloud broker for IaaS capable
of executing the user’s batch jobs, sets of independent tasks and workflows alike.
The broker’s main role is to schedule the tasks onto a set of cloud resources, which
the broker can scale up or down. Technically, the broker connects to the cloud
management system (for instance, OpenStack) to instruct how the infrastructure
should be provisioned. It then assigns the tasks to the resources using the Slurm
job management system. As in most batch scheduler systems, the task descrip-
tion includes its runtime estimation by the user called user estimate. In case of
a workflow, the task dependencies are also provided. Schlouder uses just-in-time
scheduling where tasks are assigned to VMs as soon as all their dependencies
are satisfied. A task’s real runtime, called effective runtime, usually differs from
estimated runtimes, but this does not change previous scheduling decisions. The
scheduling problem in IaaS clouds is a bi-objective optimization problem, taking
into account the rental cost of resources and the execution makespan. Schlouder’s
requests users to choose a strategy that favors one objective or the other. The
scheduling and provisioning decisions are then controlled accordingly by specific
heuristics. In this paper, we used the two following heuristics:

– ASAP (as soon as possible) schedules each task onto an idle VM if one is
available, or provisions a new VM otherwise. This heuristic minimizes the
makespan.

– AFAP (as full as possible) schedules each task onto one VM if it does not
increase the rental cost (i.e. the number of BTU), or provisions a new VM
otherwise. This heuristic minimizes cost by minimizing the BTU count.

Simulated Execution Setup. As a follow-up to our work on Schlouder we devel-
oped SimSchlouder, a simulator mimicking the behaviour of Schlouder. It has
the same interfaces and implements the same scheduling heuristics as Schlouder.
It uses SimGrid as its core simulation engine. In practice, SimSchlouder is
included as a plugin into Schlouder to allow the user to request an estimate
of the makespan and cost before choosing an heuristic for a real run. Sim-
Schlouder shares with Schlouder a common subset of inputs, including the same
tasks description and heuristic. Whereas Schlouder operates on a real cloud con-
troller, SimSchlouder provisions simulated VMs through SimGrid’s cloud inter-
face called SchIaaS. Additionally SimSchlouder requires a platform specification,

Improving Cloud Simulation Using the Monte-Carlo Method 409

Task
RVs

{T1, . . . , Tn}

Realizations
{t1, . . . , tn}1

...
{t1, . . . , tn}500

Sim

Sim

...

Samples
m1

m500

...

Makespan
RV

M

realization
draw

distribution
aggregation

Fig. 1. Overview of a 500-iteration Monte-Carlo simulation.

which describe the physical nature of the cloud as well as the management rules,
and the effective runtime of each task, that are used by the simulator to com-
pute the tasks’ end dates. Together, they allow the simulation to be accurately
representative of reality.

4 Proposal: An Enriched Simulation Framework

To address the limited trustworthiness of DES in variable environments such as
clouds, we propose a framework implementing the Monte-Carlo method using
SimSchlouder as simulation engine. This solution combines the extensive results
provided by stochastic simulations with correctness of scheduling and provision-
ing provided by SimSchlouder.

4.1 Simulation Process

The whole extended simulation process is referred to as MCS. For an application
composed of n tasks (as depicted Fig. 1), MCS consists in applying successive
MCS-iterations. Assuming we can provide a runtime distribution Tj for every
task j, a MCS-iteration k consists in:

– drawing a runtime value, tj , for each task from the associated RV, Tj ;
– proceed to a simulation using all runtimes tj to obtain a makespan mk.

With enough makespans mk, we can compute a statistical distribution of the
makespan as a final RV noted M . We extend our simulation to two output
variables: we will not only observe the makespan computed at every iteration
but also the cost for each execution in number of BTU.

4.2 Real Observations

Using Schlouder (cf. Sect. 3), we performed numerous executions of the applica-
tion of OMSSA and Montage. These executions were performed on a 96 cores
Openstack cloud system set up on 4 identical dual 2.67 GHz Intel Xeon X5650
servers. We used the KVM hypervisor and Openstack version 2012.1 and 2014.4.

410 L. Bertot et al.

Heuristic afap asap

0.000

0.001

0.002

0.003

12800 13200 13600 14000
makespan (s)

de
ns

ity

OMSSA

0

25

50

75

100

34 36 38 40
BTU

%
 ru

ns

OMSSA

0.000

0.005

0.010

0.015

0.020

1500 2000 2500
makespan (s)

de
ns

ity

Montage

0

25

50

75

100

1 5 10
BTU

%
 ru

ns

Montage

Fig. 2. Empirical observations for makespan distributions and #BTU.

The traces obtained from these experiments contain several useful metrics includ-
ing, but not limited to, the VM start dates, boot time, shutdown times, and
assigned tasks, as well as the task start date and effective runtimes. They were
initially used all along the development of Schlouder and then to properly tune
SimSchlouder in order to make the simulation as accurate as possible. As a
result, for the execution used in this paper, simulations done with SimSchlouder
are precise to the second on the makespan and systematically exact on the BTU
count. Regarding variability, we find our platform variability to stand between
3% and 6% using the metrics described in the study [9] based on relative stan-
dard deviation of tasks runtimes. This variability is within the range reported
in the study for platforms like Amazon’s EC2 or Google Cloud Engine, with the
exception of shared CPU instances.

In this paper these execution traces are used to generate our MCS input RVs
using the method we will describe in Sect. 4.3 and we compare the makespan and
BTU distributions of the MCS to the distribution observed in the corresponding
traces. For this purpose, traces from comparable runs are grouped by appli-
cation and heuristic. Figure 2 presents the distribution of resulting makespans
and BTU counts. For OMSSA, ASAP yields a makespan variation in the range
[12811s;13488s] (variability ≈5%) with a constant BTU count of 40, and AFAP
yields [13564s;14172s] (4%) with a BTU count ranging [33;36]. For Montage, the
makespans are in the range [1478s;1554s] (≈ 4%) with 10 BTUs for ASAP and
[2833s;2837s] (0.1%) with 1 BTU for AFAP.

4.3 Input Modeling

Using a MCS we can account for this variability and provide the user with a
range of possible makespans. The MCS requires a runtime RV for every task
in the application. These RVs form the input model. Although precise models
will yield more exact results, creating such models would not be possible in
more common use-cases where a backlog of real observations is not available. In
this section we propose a simple model to represent the variability of the whole
system using a single factor parameter to create a small range around every
estimated runtime. We test this model against our backlog of real runs. The key
finding detailed hereafter is that this simple model can be precise enough for the
MCS to predict over 90% of real runs.

Improving Cloud Simulation Using the Monte-Carlo Method 411

This model for the runtimes RV uses a single expected runtime per task and
a global perturbation level for all tasks. This model uses uniform distributions
(U). These RVs are centered on the expected runtime of the task they represent.
The relative spread of these distributions is defined by the perturbation level P ,
which is the same for every task. If we assume P can summarize the variability of
the whole system, a central question is how should P and the expected runtimes
be chosen to assess the validity of the MCS. To this end, we assume a good guess
for an expected runtime is the average of all effective runtimes, r̄j for a given
task j. As such the runtime distribution’s RV Tj for task j is:

Tj = U [r̄j × (1 − P), r̄j × (1 + P)] (1)

Since the global perturbation level P establishes the limit for the worst devi-
ations from the estimated runtimes, the relative standard deviation metric used
in [9] is not well suited. Instead we choose to build P using the average of the
worst observed deviation for every task in the application. With rnj the nth
runtime observation for task j, P is set to :

P = mean
j

(
max
n

(|rnj − r̄j |
r̄j

))
(2)

For OMSSA, the perturbation level given by this model is P ≈ 10% for
both heuristics. For Montage our calculated perturbation level is P ≈ 20% for
ASAP and P ≈ 5% for AFAP. Using a similar metric, [7] also observed most
deviations to be within 10% of the average runtime when working on Amazon
EC2 instances with dedicated CPUs.

Simulation Execution. The execution of an MCS is implemented through a
series of scripts created to automate large numbers of simulations. The simu-
lation driver first passes an application template, including dependencies and
task expected runtimes, to a generator script. The generator creates the neces-
sary number of simulation input files, with task runtimes randomised following
the input model. The driver script can then execute an instance of SimSchlouder
for every input file, sequentially or concurrently. Once all the instances of Sim-
Schlouder have been executed, the result are aggregated in the MCS output file.
This process is supple enough to accommodate other simulator and models as
long as the user can provide a command to generate input files and another to
parse simulation outputs.

5 Evaluation

We ran a 500-iteration MCS for every heuristic × application group using the
task model described in the previous section. The resulting distributions are
shown in Fig. 3. The makespan density graphs show the simulation result distri-
bution as filled curves. The real observed executions, as in Fig. 2, are shown as
non-filled curves. On the BTU count graphs, the left bar represents the empiri-
cal data, and the right bar the results from the simulation. These graphs show

412 L. Bertot et al.

Type/Heuristic real/afap real/asap sim/afap sim/asap

0.000

0.001

0.002

0.003

0.004

13000 13500 14000 14500
makespan (s)

de
ns

ity

OMSSA

0

25

50

75

100

34 36 38 40
BTU

%
 ru

ns

OMSSA

0.000

0.005

0.010

0.015

0.020

1500 2000 2500
makespan (s)

de
ns

ity

Montage

0

25

50

75

100

1 5 10
BTU

%
 ru

ns

Montage

Fig. 3. Makespan and #BTU distributions for MCS compared to reality for P = 10%.

the simulation results cover the same ranges as the real observation, but do not
present the same distribution within those ranges. We quantify our simulation
results correctness using statistical confidence intervals. Since the makespan is
in essence the sum of the tasks’ runtimes in the execution critical path and tasks
are all distributed using the uniform distribution which has a finite variance,
we consider the Central Limit Theorem applicable. Fitting to a normal distri-
bution gives us an average makespan μ, and a standard deviation σ. These can
be used to build confidence intervals (CIs). For the normal distribution the 95%
CI, defined as [μ − 2σ, μ + 2σ] and the 99% CI, [μ − 3σ, μ + 3σ]. The capture
rate expresses the number of observed real makespans that fall within a given
CI relative to the total number of real observations. Table 1 presents the capture
rate obtained by each interval computed after normal fitting. Additionally we
provide for each interval its size relative to the average makespan. Regarding
OMSSA, the MCS captures at least 90% of real observed makespans. The diver-
gence between the capture rate and the CI expected capture rate is due to the
fact that the empirical makespan distribution does not follow a perfect normal
distribution. Using a 99% CI improves the capture rate up to 98%, hence very
close to the theoretical expectation. Regarding Montage the MCS achieves a
capture rate of 100% for any CI.

Our MCS and a simple task model can capture 90% of reality all the while
producing makespan intervals of limited size, a 3% relative size representing

Table 1. Makespan and BTU capture rate depending on CI for P= 10%.

Application Heuristic Makespan (size of CI) BTU

CI 95% CI 99%

OMSSA ASAP 90% (3%) 98% (5%) 100%

AFAP 92% (4%) 100% (6%) 100%

Montage ASAP 100% (2%) 100% (4%) 100%

AFAP 100% (1%) 100% (2%) 100%

Improving Cloud Simulation Using the Monte-Carlo Method 413

Heuristic afap asap

OMSSA
asap 40%

OMSSA
asap real

OMSSA
asap 10%

13000 13500 14000
makespan (s)

OMSSA

10%
40%

34 36 38 40

0
100
200
300
400
500

0
100
200
300
400
500

BTU
co

un
t

OMSSA

Montage
asap 40%

Montage
asap real

Montage
asap 10%

1400 1500 1600 1700 1800
makespan (s)

Montage

10%
40%

1 5 10

0
100
200
300
400
500

0
100
200
300
400
500

BTU

co
un

t

Montage

Fig. 4. Makespan intervals and #BTU distributions for OMSSA and Montage at dif-
ferent perturbation levels. In the makespan interval graph the boxes represent the 95%
CI resulting from the normal fit of the MCS’s results, and the bar the results of a single
unperturbed simulation.

7 min on a 3 h 45 m long makespan. We consider this result a satisfactory trade-
off between the simplicity of the input model and the accuracy with regards to
the theoretical CI.

6 Perspectives

Outside of the realm of reproduction or predictions, we believe that MCS can
have other more research oriented applications. In this section we will illustrate
one such application. Then we will discuss limitations we have encountered in
our work with MCS.

High Perturbation Simulations. We have so far set the perturbation level to a
value that was relevant to the real system observed (see Sect. 4.3). A subsequent
question is how does the prediction change when increasing this perturbation
level. In this section we will focus on simulation of makespans using the ASAP
heuristic. Figure 4 presents the 95% CIs obtained through the normal distribu-
tion fitting of simulations with both P =10% and P =40%. Notice that a 40%
perturbation level may be experienced in current cloud provider offers when
renting shared instances ([9]). On the makespan interval graphs (first and third
subfigures from left to right) the boxes represent the span of the CI interval.
The mean simulated makespan (μ) is represented by the vertical bar inside the
interval. The middle row shows the interval of real observed makespans. Simu-
lation of OMSSA using P = 40% exhibits a clear drift upward of the ranges of
simulated makespans and BTU. This drift is significant compared to the growth
of the capture interval to the point that the capture rate of the simulation with
P =40% is of only 83% when the P =10% simulation had a 90% capture rate.
Montage simulations exhibit the upwards drift but not to the extent that it
affects the simulation’s capture rate. These results have two interesting implica-
tions. Firstly, the perturbation level can not be used as a trade-off variable to
augment capture rate at the expense of CI compactness. The lower capture rate
at P = 40% is a strong indication that our real platform exhibits a variability

414 L. Bertot et al.

closer to 10% than to 40%. Misestimation of the perturbation level will have the
same implication for the MCS as a wrong effective runtime given to DES. Users
for whom higher capture rates are more important than interval compactness
should use statistical methods to build higher rate CIs, like the 99% normal
distribution CI used in Sect. 5. Secondly, this result shows that MCSs can be
used to exhibit heuristic behaviours. This upwards shift of the CI shows that
ASAP, an heuristic geared towards reducing the makespan regardless of cost, is
not as effective when scheduling bag-of-tasks with task runtimes that might vary
widely. However, the same observation on Montage shows that when scheduling
workflows ASAP remains capable of low makespans. This can be explained by
the scheduler’s behaviour and the workflow’s nature. In workflows the makespan
depends only on execution of tasks in the critical path, and remains unaffected
by variability of tasks outside the path. This is compounded by the just-in-time
scheduling used in Schlouder, later scheduling decisions take into account the
tasks’ deviation from their expected runtimes. This kind of analysis can be used
to gain insight in the strengths and weaknesses of any heuristic, regardless of
complexity.

Limitations of the Enriched Simulation. In this paper all the MCS presented
used 500 iterations. Such an MCS requires in average 15 min of CPU time,
and iterations can be parallelized. We determined that this was enough in the
context of our simulation as additional simulations did not change the results
and only marginally increased the confidence of the fitting process. The number
of simulations necessary in an MCS depends on the number of input variables
and the distribution of these variables. A MCS works by sampling the possible
scenarios to get a distribution of possible outcomes, hence when more scenarios
are possible then more samples are required. The relative quick convergence
(as compared to other scientific fields where MCS is used) is explained by the
relatively low number of input variables found in batch job scheduling. In our
case, there are respectively 223 and 184 tasks for OMSSA and Montage. As the
perturbation level influences the input variable distribution, we are currently
studying its relationship with the number of required MCS-iterations.

7 Conclusion

Predicting the execution behaviour of complex workloads in the cloud is an
important challenge. While a number of works have proposed model-driven sim-
ulators, much remains to be done for their adoption in production-grade cloud
settings. As advocated by Puchert et al. [16], the trust we can put in the predic-
tion demands certainty and precision that only comes from validating simulation
against empirical observation. This paper contributes to this effort in two ways.
First, we propose a Monte-Carlo simulation extension to a discrete event sim-
ulator based on SimGrid. This extension provides stochastic predictions which
are more informative than single values of billing cost and makespan produced
by traditional discrete event simulators. The Monte-Carlo simulation must be

Improving Cloud Simulation Using the Monte-Carlo Method 415

parameterized to draw random values from relevant value spaces. In this work
we show that the variability we seek to account for can be modeled by a single
parameter, called perturbation level and applied to all task runtimes. Second,
we apply our model in a real setting, on two different applications, for which we
have collected execution traces. At the light of these empirical observations, our
study shows that the proposed model could capture over 90% of the observed
makespans for all combinations of application and scheduling heuristics given an
appropriate perturbation level. We now aim to test our simulator on more use-
cases and platforms. In particular as a number of studies on public clouds have
reported variability levels similar to our platform [7,9], we intend to reproduce
these results on public clouds.

References

1. Cai, Z., Li, Q., Li, X.: ElasticSim: a toolkit for simulating workflows with cloud
resource runtime auto-scaling and stochastic task execution times. J. Grid Comput.
15(2), 257–272 (2017). https://doi.org/10.1007/s10723-016-9390-y

2. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: CloudSim:
a toolkit for modeling and simulation of cloud computing environments and evalu-
ation of resource provisioning algorithms. Softw.: Pract. Exp. 41(1), 23–50 (2011)

3. Canon, L., Jeannot, E.: Evaluation and optimization of the robustness of DAG
schedules in heterogeneous environments. IEEE Trans. Parallel Distrib. Syst.
21(4), 532–546 (2010). https://doi.org/10.1109/TPDS.2009.84

4. Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scalable,
and accurate simulation of distributed applications and platforms. J. Parallel Dis-
trib. Comput. 74(10), 2899–2917 (2014). https://doi.org/10.1016/j.jpdc.2014.06.
008

5. Geer, L.Y., et al.: Open mass spectrometry search algorithm. J. Proteome Res.
3(5), 958–964 (2004)

6. Jacob, J.C., et al.: Montage: a grid portal and software toolkit for science-grade
astronomical image mosaicking. Int. J. Comput. Sci. Eng. 4(2), 73–87 (2009)

7. Kim, I.K., Wang, W., Humphrey, M.: PICS: a public IaaS cloud simulator. In: Pu,
C., Mohindra, A. (eds.) 8th IEEE International Conference on Cloud Computing,
CLOUD 2015, New York City, NY, USA, 27 June–2 July 2015, pp. 211–220. IEEE
Computer Society (2015). https://doi.org/10.1109/CLOUD.2015.37

8. Kliazovich, D., Bouvry, P., Khan, S.U.: GreenCloud: a packet-level simulator of
energy-aware cloud computing data centers. J. Supercomput. 62(3), 1263–1283
(2012)

9. Leitner, P., Cito, J.: Patterns in the chaos - a study of performance variation and
predictability in public IaaS clouds. ACM Trans. Internet Technol. 16(3), 15:1–
15:23 (2016). https://doi.org/10.1145/2885497

10. Li, Y.A., Antonio, J.K.: Estimating the execution time distribution for a task
graph in a heterogeneous computing system. In: 6th Heterogeneous Computing
Workshop, HCW 1997, Geneva, Switzerland, 1 April 1997, pp. 172–184. IEEE
Computer Society (1997). https://doi.org/10.1109/HCW.1997.581419

https://doi.org/10.1007/s10723-016-9390-y
https://doi.org/10.1109/TPDS.2009.84
https://doi.org/10.1016/j.jpdc.2014.06.008
https://doi.org/10.1016/j.jpdc.2014.06.008
https://doi.org/10.1109/CLOUD.2015.37
https://doi.org/10.1145/2885497
https://doi.org/10.1109/HCW.1997.581419

416 L. Bertot et al.

11. Lim, S., Sharma, B., Nam, G., Kim, E., Das, C.R.: MDCSim: a multi-tier data cen-
ter simulation, platform. In: Proceedings of the 2009 IEEE International Confer-
ence on Cluster Computing, 31 August–4 September 2009, New Orleans, Louisiana,
USA, pp. 1–9. IEEE Computer Society (2009). https://doi.org/10.1109/CLUSTR.
2009.5289159

12. Ludwig, A., Möhring, R.H., Stork, F.: A computational study on bounding the
makespan distribution in stochastic project networks. Annals OR 102(1–4), 49–64
(2001). https://doi.org/10.1023/A:1010945830113

13. Mehrotra, P., et al.: Performance evaluation of Amazon elastic compute cloud for
NASA high-performance computing applications. Concurr. Comput.: Pract. Exp.
28(4), 1041–1055 (2016). https://doi.org/10.1002/cpe.3029

14. Michon, E., Gossa, J., Genaud, S., Unbekandt, L., Kherbache, V.: Schlouder: a
broker for IaaS clouds. Future Gener. Comput. Syst. 69, 11–23 (2017). https://
doi.org/10.1016/j.future.2016.09.010

15. Nuñez, A., Vázquez-Poletti, J.L., Caminero, A.C., Castañé, G.G., Carretero, J.,
Llorente, I.M.: iCanCloud: a flexible and scalable cloud infrastructure simulator. J.
Grid Comput. 10(1), 185–209 (2012). https://doi.org/10.1007/s10723-012-9208-5

16. Pucher, A., Gul, E., Wolski, R., Krintz, C.: Using trustworthy simulation to engi-
neer cloud schedulers. In: 2015 IEEE International Conference on Cloud Engineer-
ing, IC2E 2015, Tempe, AZ, USA, 9–13 March 2015, pp. 256–265 (2015). https://
doi.org/10.1109/IC2E.2015.14

17. van Slyke, R.M.: Monte carlo methods and the PERT problem. Oper. Res. 11(5),
839–860 (1963). http://www.jstor.org/stable/167918

18. Stanisic, L., Thibault, S., Legrand, A., Videau, B., Méhaut, J.: Faithful per-
formance prediction of a dynamic task-based runtime system for heterogeneous
multi-core architectures. Concurr. Comput.: Pract. Exp. 27(16), 4075–4090 (2015).
https://doi.org/10.1002/cpe.3555

19. Tang, X., Li, K., Liao, G., Fang, K., Wu, F.: A stochastic scheduling algorithm for
precedence constrained tasks on grid. Future Gener. Comput. Syst. 27(8), 1083–
1091 (2011). https://doi.org/10.1016/j.future.2011.04.007

20. Velho, P., Schnorr, L.M., Casanova, H., Legrand, A.: On the validity of flow-level
tcp network models for grid and cloud simulations. ACM Trans. Model. Comput.
Simul. 23(4), 23:1–23:26 (2013). https://doi.org/10.1145/2517448

21. Zheng, W., Sakellariou, R.: Stochastic DAG scheduling using a monte carlo app-
roach. J. Parallel Distrib. Comput. 73(12), 1673–1689 (2013). https://doi.org/10.
1016/j.jpdc.2013.07.019

https://doi.org/10.1109/CLUSTR.2009.5289159
https://doi.org/10.1109/CLUSTR.2009.5289159
https://doi.org/10.1023/A:1010945830113
https://doi.org/10.1002/cpe.3029
https://doi.org/10.1016/j.future.2016.09.010
https://doi.org/10.1016/j.future.2016.09.010
https://doi.org/10.1007/s10723-012-9208-5
https://doi.org/10.1109/IC2E.2015.14
https://doi.org/10.1109/IC2E.2015.14
http://www.jstor.org/stable/167918
https://doi.org/10.1002/cpe.3555
https://doi.org/10.1016/j.future.2011.04.007
https://doi.org/10.1145/2517448
https://doi.org/10.1016/j.jpdc.2013.07.019
https://doi.org/10.1016/j.jpdc.2013.07.019

Distributed Systems and Algorithms

Nobody Cares if You Liked Star Wars:
KNN Graph Construction on the Cheap

Anne-Marie Kermarrec1,2, Olivier Ruas3(B) , and François Täıani3

1 Mediego, Rennes, France
anne-marie.kermarrec@mediego.com

2 EPFL, Lausanne, Switzerland
3 Univ Rennes, Inria, CNRS, IRISA, Rennes, France
olivier.ruas@inria.fr, francois.taiani@irisa.fr

Abstract. K-Nearest-Neighbors (KNN) graphs play a key role in a large
range of applications. A KNN graph typically connects entities character-
ized by a set of features so that each entity becomes linked to its k most
similar counterparts according to some similarity function. As datasets
grow, KNN graphs are unfortunately becoming increasingly costly to con-
struct, and the general approach, which consists in reducing the number
of comparisons between entities, seems to have reached its full potential.
In this paper we propose to overcome this limit with a simple yet power-
ful strategy that samples the set of features of each entity and only keeps
the least popular features. We show that this strategy outperforms other
more straightforward policies on a range of four representative datasets:
for instance, keeping the 25 least popular items reduces computational
time by up to 63%, while producing a KNN graph close to the ideal one.

1 Introduction

K-Nearest-Neighbors (KNN) graphs play a crucial role in a large number of
applications, ranging from classification [22] to recommender systems [4,15,17].
In a KNN graph, every entity (or node) is linked to its k closest counterparts,
based on a given similarity metric. Despite being one of the simplest model
of machine learning, computing an exact KNN graph1 is unfortunately a highly
time consuming task. A simple brute force approach for instance has a quadratic
complexity in the number of entities. For applications for which data freshness
is more valuable than the exactness of the results, such as news recommenders,
such computation time is prohibitive. To overcome these costs, most applications
therefore compute an approximate KNN graph by using pre-indexing mecha-
nisms [5,11] or by exploiting greedy incremental strategies [4,10] to reduce the
number of similarity computations. However, it seems hard to lower even further
that number.

1 We focus here on the computation of the whole graph, which is different from the
related but distinct problem of answering KNN queries.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 419–431, 2018.
https://doi.org/10.1007/978-3-319-96983-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_30&domain=pdf
http://orcid.org/0000-0002-6862-9046
http://orcid.org/0000-0002-9692-5678

420 A.-M. Kermarrec et al.

In this paper we focus on an orthogonal approach, and leverage sampling
as a preliminary pruning step to accelerate the time to compute similarities
between two entities. Our proposal stems from the observation that many KNN
graphs computations are performed on entities (users, documents, molecules)
linked to items (e.g. the web pages an user has viewed, the terms of a document,
the properties of a molecule). In these KNN graphs, the similarity function is
expressed as a set similarity between bags of items (possibly weighted), such as
Jaccard’s coefficient or cosine similarity. The goal of sampling is to limit the size
of these bags of items and thus the time to compute the similarity.

Sampling might however degrade the resulting approximated KNN graph to
a point where it becomes unusable, and must therefore be performed with care.
In this paper we propose to sample the bags of items associated with each entity
to a common fixed size s, by keeping their s least popular items. Our intuition is
that less popular items are more discriminant when comparing entities than more
popular or random items. For instance, the fact that Alice enjoys the original
1977 Star Wars movie tells us less about her tastes than the fact she also loves
the 9 hour version of Abel Gance’s 1927 Napoléon movie.

We compare this policy against three other sampling policies: (i) keeping
the s most popular items of each entity, (ii) keeping s random items of each
entity, and (iii) sampling the universe of items, independently of the entities.
We evaluate these four sampling policies on four representative datasets. As a
case study, we finally assess the effects of these strategies on recommendation, an
emblematic application of KNN graphs. Our evaluation shows that our sampling
policy clearly outperforms the other policies in terms of computation time and
resulting quality: keeping the 25 least popular items reduces the computational
time by up to 63%, while producing a KNN graph close to the ideal one. The
recommendations done by using the resulting KNN graphs are moreover as good
as the one relying on the exact KNN graph on all datasets.

The rest of this paper is organized as follows. In Sect. 2 we formally define the
context of our work and our approach. The evaluation procedure is described in
Sect. 3. Section 4 presents our experimental results. The related work is discussed
in Sect. 5 and we conclude in Sect. 6.

2 Problem Statement: Reduce KNN Computation Time

2.1 System Model and Problem

For ease of exposition, we will speak about users rather than entities, but our
approach remains applicable to any entity-item dataset. We consider a set of
users U = {u1, . . . , un} in which each user u is associated with a set of items
(the movies this user has liked, the pages she has viewed), termed her profile,
and noted Pu. We note I the universe of all items: I = ∪u∈UPu.

A k-nearest neighbor (KNN) graph associates each user u with the set of k
other users knn(u) ⊆ U which are closest to u according to a given similarity
metric on profiles:

Nobody Cares if You Liked Star Wars 421

sim : U × U → R

(u, v) sim(u, v) = fsim(Pu,Pv).

Thus computing the KNN graph results in finding knn(u) for each u such that

knn(u) ∈ argmax
S∈P(U\{u}):|S|=k

∑

v∈S

sim(u, v), (1)

where P(X) is the powerset of a set X. We focus in this work on Jaccard simi-
larity, a commonly used similarity metric, but our work can be applied to others.
The Jaccard similarity between two users u and v is expressed as the size of the
intersection of their profiles divided by the size of the union of their profiles:

fsim(Pu,Pv) = J(Pu,Pv) =
|Pu ∩ Pv|
|Pu ∪ Pv| (2)

Since |Pu∪Pv| = |Pu|+|Pv|−|Pu∩Pv|, and since we can store |Pu| for every user,
computing the size of the intersection is the only non-trivial operation required
to compute the Jaccard similarity.

2.2 Gance’s Napoléon tells us more than Lucas’s Star Wars

Computing the intersection Pu ∩ Pv is time consuming for large sets and is
the main bottleneck of Jaccard’s similarity. To reduce the complexity of this
operation, we propose to sample each profile Pu into a subset P̂u in a prepara-
tory phase applied when the dataset is loaded into memory, and to compute an
approximated KNN graph on the sampled profiles.

Although simple, this idea has surprisingly never been applied to the compu-
tation of KNN graphs on entity-item datasets. Sampling carries however its own
risks: if the items that are most characteristic of a user’s profile get deleted, the
KNN neighborhood of this user might become irremediably degraded. To avoid
this situation, we adopt a constant-size sampling that strives to retain the least
popular items in a profile.

The intuition is that unpopular items carry more information about a user’s
tastes than other items: if Alice and Bob have both enjoyed Abel Gance’s
Napoléon—a 1927 silent movie about Napoléon’s early years—they are more
likely to have similar tastes, than if they have both liked Star Wars: A New
Hope—the 1977 first installment of the series, enjoyed by 96% of users2.

2.3 Our Approach: Constant-Size Least Popular Sampling (LP)

More formally, if the size of the profile of an user u is larger than a parameter
s, we only keep its s least popular items

P̂u ∈ argmin
S∈Ps

u

∑

i∈S

pop(i), (3)

2 https://www.rottentomatoes.com/m/star wars, accessed 21 Feb. 2018.

https://www.rottentomatoes.com/m/star_wars

422 A.-M. Kermarrec et al.

where Ps
u is the set of subsets of Pu of a given size s, i.e. Ps

u = {S ∈ P(I) : |S| =
s ∧ S ⊆ Pu}, and pop(i) is the popularity of item i ∈ I over the entire dataset:

pop(i) = |{u ∈ U : i ∈ Pu}|. (4)

If the profile’s size is below s, the profile remains the same: P̂u = Pu.
In terms of implementation, we compute the popularity of every item when

reading the dataset from disk. We then use Eq. (3) to sample the profile of every
user in a second iteration. The sampled profiles are finally used to estimate
Jaccard’s similarity between users when the KNN graph is constructed:

Ĵ(Pu,Pv) = J(P̂u, P̂v) =
|P̂u ∩ P̂v|

|P̂u| + |P̂v| − |P̂u ∩ P̂v|
(5)

3 Experimental Setup

3.1 Baseline Algorithms and Competitors

Our Constant-Size Least Popular sampling policy (LP for short) can be applied
to any KNN graph construction algorithm [4,5,10]. For simplicity, we apply it
to a brute force approach that compares each pair of users and keeps the k
most similar for each user. This choice helps focusing on the raw impact of sam-
pling on the computation time and KNN quality, without any other interfering
mechanism.

We use full profiles for our baseline, and compare our approach with three
alternative sampling strategies: constant-size most popular, constant-size ran-
dom, and item sampling.

Baseline: No Sampling. We use our brute force algorithm without sampling
as our baseline. This approach yields an exact result, which we use to assess the
approximation introduced by sampling, and provide a reference computing time.

Constant-Size Most Popular Sampling (MP). Similarly to LP, MP only
keeps the s most popular items of each profile Pu:

P̂u ∈ argmax
S∈Ps

u

∑

i∈S

pop(i). (6)

As with LP, we do not sample the profile if its size is lower than s.

Constant-Size Random Sampling (CS). This sampling policy randomly
selects s items from Pu, with a uniform probability. As above, there is no sam-
pling if the size of the profile is lower than s. In terms of implementation, this
policy only requires one iteration over the data.

Nobody Cares if You Liked Star Wars 423

Table 1. The datasets used in our experiments

Dataset Users Items Scale Ratings > 3 |Pu| |Pi| Density

ml1M [13] 6,038 3,533 1–5 575,281 95.28 162.83 2.697%

ml10M [13] 69,816 10,472 0.5-5 5,885,448 84.30 562.02 0.805%

ml20M [13] 138,362 22,884 0.5–5 12,195,566 88.14 532.93 0.385%

AM [20] 57,430 171,356 1–5 3,263,050 56,82 19.04 0.033%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

P
(|

U
P

|≥
x)

User profile size

ml1M
ml10M
ml20M

AM

Fig. 1. CCDF of user profile sizes on the datasets used in the evaluation (positive
ratings only). Between 77% (movielens1M) and 53% (AmazonMovies) of profiles are
larger than the default cut-off value 25 (marked as a vertical bar).

Item Sampling (IS). This last policy uniformly removes items from the com-
plete dataset. More precisely, each item i ∈ I is kept with a uniform probability
p to construct a reduced item universe Î (i.e. ∀i ∈ I : P(i ∈ Î) = p). The sampled
profiles are then obtained by keeping the items of each profile that are also in
Î: P̂u = Pu ∩ Î. On average, the profile of all users is reduced by a factor of 1

p ,
but this policy does not adapt to the characteristics of individual profiles: small
profiles run the risk of losing too much of their content to maintain good quality
results.

3.2 Datasets

We use four publicly available datasets containing movie ratings (Table 1): 3
datasets from the MovieLens project, and one from Amazon. Ratings range
from disliking (0.5 or 1) to liking (5). To apply Jaccard similarity, we binarize
the datasets by keeping only ratings that reflect a positive opinion (i.e. > 3),
before performing any sampling. Figure 1 shows the resulting Complementary
Cumulative Distribution Functions (CCDF) of profile sizes for each dataset. For
instance, more than 66% of users have profiles larger than 25 in movielens10M
(ml10M). This means that a constant-size sampling with s = 25 on movie-
lens10M removes more than 3 millions ratings (−69.23%).

The Three Movielens Datasets. movielens1M (ml1M for short), movie-
lens10M (ml10M) and movielens20M (ml20M) originate from GroupLens

424 A.-M. Kermarrec et al.

Research [13]. They contain movie reviews by on-line users from 1995 to 2015,
and only consider users with more than 20 ratings.

The AmazonMovies Dataset. (AM) [20] aggregates movie reviews received
by Amazon from 1997 to 2012. To avoid users with very few ratings (the so-called
cold start problem), we only consider users with at least 20 ratings.

3.3 Evaluation Metrics

We measure the effect of sampling along two main metrics: (i) their computation
time, and (ii) the quality ratio of the resulting KNN graph.

The time is measured from the beginning of the execution of the algorithm,
until the KNN graph is computed. It does not take into account the preprocessing
of the dataset, which is evaluated separately in Sect. 4.2.

When applying sampling, the resulting KNN graph is an approximation of
the exact one. In many applications such as recommender systems, this approxi-
mation should provide neighborhoods of high quality, even if those do not overlap
with the exact KNN. To gauge this quality, we introduce the notion of similarity
ratio, which measures how well the average similarity of an approximated graph
compares against that of an exact KNN graph. Formally we define the average
similarity of an approximate KNN graph ĜKNN as

avg sim(ĜKNN) = E
(u,v)∈U2:v∈̂knn(u)

fsim(Pu,Pv), (7)

i.e. as the average similarity of the edges of ĜKNN, and we define the quality of
ĜKNN as its normalized average similarity

quality(ĜKNN) =
avg sim(ĜKNN)
avg sim(GKNN)

, (8)

where GKNN is an ideal KNN graph, obtain without sampling.
A quality close to 1 indicates that the approximate neighborhoods of ĜKNN

present a similarity that is very close to that of ideal neighborhoods, and can
replace them with little loss in most applications, as we will show in the case of
recommendations in our evaluation.

Throughout our experiments, we use a 5-fold cross-validation procedure
which creates 5 training sets composed of 80% of the ratings. The remaining
20%, i.e. the training sets, are used for recommendations in Sect. 4.4. Our results
are the average on the 5 resulting runs.

3.4 Experimental Setup

We have implemented the sampling policies in Java 1.8. We ran our experiments
on a 64-bit Linux server with two Intel Xeon E5420@2.50GHz, totaling 8 hard-
ware threads, 32 GB of memory, and a HHD of 750 GB. We use all 8 threads.

Nobody Cares if You Liked Star Wars 425

Table 2. Computation time (s) of the baseline and the 4 sampling policies. The param-
eters were chosen to have a quality equal to 0.9. LP reduces computation time by 40%
(ml1M) to 63% (AM), and outperforms other sampling policies on all datasets.

Dataset Base. LP Δ (%) MP Δ (%) CS Δ (%) IS Δ (%)

ml1M 19 11 −40.5 14.3 −24.7 14.2 −25.3 12.9 −32.1

ml10M 2028 1131 −44.2 1416.6 −30.1 1461.6 −27.9 1599.8 −21.1

ml20M 8393 4865 −42.0 5766.0 −31.3 5965.0 −28.9 6535.3 −22.1

AM 1862 687 −63.1 817.8 −56.1 748.1 −59.8 850.0 −54.4

(a) Computation time (lower is better) (b) KNN quality (higher is better)

Fig. 2. Computation time and KNN quality of the baseline and the sampling policies on
movielens10M, when quality is set to 0.9. LP yields a reduction of 44.2% in computation
time, outperforming other sampling policies.

Our code is available online3. In our experiments, we compute KNN graphs with
k set to 30, which is a standard value.

4 Experimentations

4.1 Reduction in Computing Time, and Quality/Speed Trade-Off

The baseline algorithm (without sampling) produces an exact KNN graph, with
a quality of 1. To compare the different sampling policies (LP, MP, CS and IS) on
an equal footing, we configure each of them on each dataset to achieve a quality
of 0.9. The resulting parameter s ranges from 15 (LP on AM) to 75 (MP on
movielens1M), while p (for IS) varies between 0.35 (on AmazonMovies) and 0.68
(on movielens20M). Table 2 summarizes the computation times measured on the
four datasets with the percentage time reduction obtained against the baseline
(Δ columns), while Fig. 2 shows the results on movielens10M. LP outperforms
all other policies on all datasets, reaching a reduction of up to 63%.

Because they reduce the size of profiles, sampling policies exchange quality
for speed. To better understand this trade-off, Fig. 3 plots the evolution of the
computation time and the resulting quality when s ranges from 5 to 200 for LP,
MP, and CS (s ∈ {5, 10, 15, 20, 30, 40, 50, 75, 100, 200}), and p ranges from 0.1 to
1.0 for IS (p ∈ {0.1, 0.2, 0.4, 0.5, 0.75, 0.9, 1.0}).

3 https://gitlab.inria.fr/oruas/SamplingKNN.

https://gitlab.inria.fr/oruas/SamplingKNN

426 A.-M. Kermarrec et al.

(a) movielens1M (b) movielens10M

(c) movielens20M (d) AmazonMovies

Fig. 3. Trade-off between computation time and quality. Closer to the top-left corner
is better. LP clearly outperforms all other sampling policies on all datasets.

Table 3. Preprocessing time (seconds) for each dataset, and each sampling policy, with
parameters set so that the resulting KNN quality is 0.9. The preprocessing times are
negligible compared to the computation times.

Dataset Base. LP Δ (s) MP Δ (s) CS Δ (s) IS Δ (s)

ml1M 0.36 0.50 +0.14 0.49 +0.13 0.46 +0.10 0.33 −0.03

ml10M 4.03 5.49 +1.46 5.67 +1.64 4.99 +0.96 3.98 −0.05

ml20M 8.55 11.95 +3.40 12.35 +3.80 11.05 +2.50 8.71 +0.16

AM 3.42 4.90 +1.48 4.70 +1.28 4.32 +0.90 2.41 −1.01

For clarity, we only display points with a quality above 0.7, corresponding
to the upper values of s and p. The dashed vertical line on the right shows the
computation time of the baseline (producing a quality of 1), while the dotted
horizontal line shows the quality threshold of 0.9 used in Table 2 and Fig. 2.

Lines closer to the top-left corner are better. The figures confirm that our
contribution, LP, outperforms other sampling policies on all datasets. There
is however no clear winner among the remaining policies: IS performs well on
movielens1M, but arrives last on the other datasets, and MP and CS show no
clear order, which depends on the dataset and the quality considered.

4.2 Preprocessing Overhead

As is common with KNN graph algorithms [5,10], the previous measurements do
not include the loading and preprocessing time of the datasets, which is typically

Nobody Cares if You Liked Star Wars 427

dominated by I/O rather than CPU costs. Sampling adds some overhead to
this preprocessing, but Table 3 shows that this extra cost (Δ columns) remains
negligible compared to the computation times of Table 2. For instance, LP adds
3.4s to the preprocessing of movielens20M, which only represents 0.07% of the
complete execution time of the algorithm (4865s + 11.95s = 4877s). IS even
decreases the preprocessing time on 3 datasets out of 4, by starkly reducing the
bookkeeping costs of profiles while introducing only a low extra complexity.

4.3 Influence of LP at the User’s Level

Constant size sampling has a different influence on each user, depending on
this user’s profile’s size. Profiles whose sizes are below the parameter s remain
unchanged while larger profiles are truncated, thus losing information.

Figure 4 investigates the impact of this loss with our approach, LP, on movie-
lens10M with s = 25 (corresponding to a quality of 0.9). Figure 4a plots the
distribution of the similarity error ε = |J(Pu,Pv) − J(P̂u, P̂v)| introduced by
sampling when ε is computed for each pair of users (u, v). The figure shows that
35% of pairs experience no error (ε = 0), and that 96% have an error below 0.05
(dotted vertical line), confirming that our sampling only introduces a limited
distortion of similarities.

Figure 4b represents the impact of LP on the quality of users’ neighborhoods,
according to the initial profile size of users. For every user u with an initial profile
size of |Pu|, we compute the average similarity of u’s approximated neighborhood
k̂nn(u), and normalize this similarity with that of u’s exact neighborhood knn(u).
The closest to 1 the better. We then average this normalized similarity for users
with the same profile size {u ∈ U : |Pu| = P}. These points are displayed as
a scatter plot (in black, note the log scale on the x axis), and using a moving
average of width 50 (red curve). The first dashed vertical line is the value of
the truncation parameter s (x = 25). The points after the second vertical line
(at x = 1553) represent 24 users (out of 69816) and thus are not statistically
significant. As expected, there is a clear threshold affect around the truncation
value s = 25, yet even users with much larger profiles retain a high neighborhood
quality, that remains on average above 0.75.

4.4 Recommendations

We want to evaluate the impact of the loss in quality on a practical use of
the KNN graphs. To do so we perform item recommendations using the exact
KNN graphs and the approximated graphs produced with LP. We recommend
the items that an user u is more likely to like. This likelihood is expressed as a
weighted average of the ratings the items received by the neighbors of u, weighted
by the similarity of u with them. We use the real profiles, without sampling nor
binarization, to compute these predicted ratings. After computing the score of
every item, we recommend to u a set Ru composed by 30 items with the highest
scores:

428 A.-M. Kermarrec et al.

 0

 0.2

 0.4

 0.6

 0.8

 0 0.02 0.04 0.06 0.08 0.1

P
(ε

>
x)

ε

(a) CCDF of the similarity’s error. Only
4% of the users have their similarities
changed by more than 0.05.

(b) Quality per user as a function
of a user’s profile size (note the
log scale for x).

Fig. 4. Influence on the similarity and the quality of sampling with LP with s = 25 on
movielens10M (total KNN quality equal to 0.9) (Color figure online).

Table 4. Recommendation recall without sampling (Base.) and using the Least Popular
(LP) policy (total KNN quality set to 0.9).

Dataset Base. LP Δ

movielens1M 0.218 0.220 +0.002

movielens10M 0.273 0.275 +0.002

movielens20M 0.256 0.258 +0.002

AmazonMovies 0.595 0.596 +0.001

Ru ∈ argmax
R⊆I\Pu:|R|=30

∑

i∈S

∑

v∈knnu

sim(u, v) ∗ rv,i, (9)

where rv,i is the rating made by the user v on the item i. We use the same
5-fold cross-validation as used for the KNN graph computation. We consider a
recommendation successful when a recommended item is found within the 20%
removed ratings (the testing set) with a rating above 3 (ru,i > 3). The quality
of the recommendation is measured using recall, the proportion of successful
recommendations among all recommendations.

Table 4 shows the recall we obtain by using the exact KNN graphs obtained
with the baseline and with LP using when the KNN quality is set to 0.9. In spite
of its approximation, LP introduces no loss in recall, and even achieves slightly
better scores than the baseline, which shows that our sampling approach can be
used with little impact in concrete applications.

5 Related Work

For small datasets, some specific data structures can be used to compute the
KNN graphs very efficiently [3,18,21]. On the other hand, these solutions do not
scale and computing efficiently exact KNN graphs with large datasets remains
an open problem.

Nobody Cares if You Liked Star Wars 429

For large datasets, an approximation of the KNN graph, called approximate
nearest-neighbor (ANN) graph, is computed instead, by decreasing the number of
comparisons between users. Locally Sensitive Hashing [11,14] hashes users into
buckets and only users within the same buckets are compared. Depending on
the chosen similarity, different hashing functions are used [6–8]. Despite being
very efficient for KNN queries, the preprocessing is too expensive to compete
with other ANN graph algorithms. KIFF [5] first assigns to every user the users
with which she shares at least one item. Since the Jaccard similarity is null
if two users do not share any item, the neighbors research is limited to these
ones. This algorithm performs particularly well on sparse datasets. Hyrec [4]
and NNDescent [10] rely on the assumption that the neighbors of the neighbors
are more likely to be also neighbors than random users to decrease drastically
number of similarity computed.

However it seems that lowering even further the number of similarities is no
longer possible. An orthogonal strategy is to speed-up the similarity computation
itself by compacting the users’ profiles. b-bit minwise hashing [2,16] relies on a
similar approach than LSH to compact users’ profiles in order to approximate the
Jaccard similarity. It is space efficient but at the expense of a high preprocessing
time. In [9] the profiles are compacted by using bit arrays: each bit represents a
feature, which value has been rounded. This does not scale and cannot be used
in our case where the items are the features. To avoid such a problem [12] uses
constant-sized Bloom filters to encode the profiles. Then the Jaccard’s similarity
is approximated by a bitwise AND operation. Despite its privacy properties and
its speed-up, there is a substantial loss in precision.

As far as we know, sampling has never been used to compact the users’ pro-
files, even though it is used in information filtering systems such as collaborative
filtering. It can be used to find association rules [1], to reduce the size of the
items’ universe to recommend [17] and to change the distribution of the training
points [19,23]. The popularity is used to solve the cold-start problem [24] by
finding items the new user is likely to rate, but not to represent its profile in a
compact manner.

6 Conclusion

In this paper, we have proposed Constant-Size Least Popular Sampling (LP) to
speed up the construction of KNN graphs on entity-item datasets. By keeping
only the least popular items of users’ profiles, we make them shorter and thus
faster to compare. Our extensive evaluation on four realistic datasets shows that
LP outperforms more straightforward sampling policies. More precisely, LP is
able to decrease the computation time of KNN graphs by up to 63%, while
providing a KNN graph close to the ideal one, with no observable loss when
used to compute recommendations.

In the future, we plan to investigate more advanced sampling policies, and
to explore how sampling could be combined with orthogonal greedy techniques
to accelerate KNN graph computations [4,5,10].

430 A.-M. Kermarrec et al.

Acknowledgments. This work was partially funded by the PAMELA project of the
French National Research Agency (ANR-16-CE23-0016), the Web-Alter-Ego Google
Focused Award, the ANR-DFG joint project DISCMAT (ANR-14-CE35-0010) and the
DeSceNt project granted by the Labex CominLabs excellence laboratory of the French
Agence Nationale de la Recherche (ANR-10-LABX-07-01).

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: VLDB
1994 (1994)

2. Bachrach, Y., Porat, E.: Sketching for big data recommender systems using fast
pseudo-random fingerprints. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M.,
Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 459–471. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39212-2 41

3. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In:
ICML (2006)

4. Boutet, A., Frey, D., Guerraoui, R., Kermarrec, A.-M., Patra, R.: Hyrec: leveraging
browsers for scalable recommenders. In Middleware (2014)

5. Boutet, A., Kermarrec, A.-M., Mittal, N., Täıani, F.: Being prepared in a sparse
world: the case of KNN graph construction. In: ICDE (2016)

6. Broder, A.Z.: On the resemblance and containment of documents. In: Compression
and Complexity of Sequences 1997 (1997)

7. Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of
the web. In: Computer Networks and ISDN Systems (1997)

8. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:
STOC 2002 (2002)

9. Cui, B., Shen, H.T., Shen, J., Tan, K.-L.: Exploring bit-difference for approximate
KNN search in high-dimensional databases. In: ADC (2005)

10. Dong, W., Moses, C., Li, K.: Efficient k-nearest neighbor graph construction for
generic similarity measures. In: WWW (2011)

11. Gionis, A., Indyk, P., Motwani, R., et al.: Similarity search in high dimensions via
hashing. In: VLDB (1999)

12. Gorai, M., Sridharan, K., Aditya, T., Mukkamala, R., Nukavarapu, S.: Employing
bloom filters for privacy preserving distributed collaborative KNN classification.
In: WICT (2011)

13. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. In: TIIS
(2015)

14. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: STOC (1998)

15. Levandoski, J.J., Sarwat, M., Eldawy, A., Mokbel, M.F.: LARS: a location-aware
recommender system. In: ICDE (2012)

16. Li, P., König, A.C.: Theory and applications of b-bit minwise hashing. Commun.
ACM 54, 101–109 (2011)

17. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item col-
laborative filtering. Internet Comput. 7, 76–80 (2003)

18. Liu, T., Moore, A.W., Yang, K., Gray, A.G.: An investigation of practical approx-
imate nearest neighbor algorithms. In: NIPS (2004)

19. Mani, I., Zhang, I.: KNN approach to unbalanced data distributions: a case
study involving information extraction. In: Workshop on learning from imbalanced
datasets, ICML (2003)

https://doi.org/10.1007/978-3-642-39212-2_41

Nobody Cares if You Liked Star Wars 431

20. McAuley, J.J., Leskovec, J.: From amateurs to connoisseurs: modeling the evolution
of user expertise through online reviews. In: WWW (2013)

21. Moore, A.W.: The anchors hierarchy: using the triangle inequality to survive high
dimensional data. In: UAI (2000)

22. Nodarakis, N., Sioutas, S., Tsoumakos, D., Tzimas, G., Pitoura, E.: Rapid aknn
query processing for fast classification of multidimensional data in the cloud. CoRR
(2014)

23. Pan, R., et al.: One-class collaborative filtering. In: ICDM (2008)
24. Rashid, A.M., et al.: Getting to know you: learning new user preferences in recom-

mender systems. In: IUI (2002)

One-Sided Communications for More
Efficient Parallel State Space Exploration

over RDMA Clusters

Camille Coti, Sami Evangelista(B), and Laure Petrucci

LIPN, CNRS UMR 7030, Université Paris 13, Sorbonne Paris Cité,
99, Avenue J.-B. Clément, 93430 Villetaneuse, France

Sami.Evangelista@lipn.univ-paris13.fr

Abstract. This paper investigates the use of one-sided communications
in the context of state space exploration. This operation is often the core
component of model checking tools that explores a system state space to
look for behaviours deviating from its specification. It basically consists
in the exploration of a (usually huge) directed graph whose nodes and
edges represent respectively system states and system changes. We revisit
the state of the art distributed algorithm and adapt it to RDMA clus-
ters with an implementation over the OpenSHMEM library and report
on preliminary experiments conducted on the Grid’5000 cluster. This
asynchronous approach thus reduces the significant communication costs
induced by process synchronisation in two-sided communications.

1 Introduction

Model checking [2] based on state space exploration is a prominent approach
used to prove that finite-state systems match behavioural specifications. In its
most basic form, it is based on a systematic exhaustive exploration of all system
states (the state space) in the search for illegal behaviours violating the specifi-
cation. This state space can be viewed as a graph capturing the behaviour of the
system. Its nodes represent system states (e.g., program counters and content of
variables and channels in the case of a distributed system) and its edges repre-
sent system changes (e.g., variable assignments or synchronisations). Despite the
simplicity of this technique, its practical application is subject to the well-known
state explosion problem [17]: the state space may be far too large to be explored
in reasonable time or to fit within the available memory. Distributed verifica-
tion thus arose [16] as a natural means to push the limits of model checking:
distributing state space search allows to benefit from the aggregate memory and
computational power of a machine network and hence to analyse larger models
and/or reduce exploration times.

Although distributed algorithms have been proposed for various classes of
properties, e.g., LTL (Linear-time Temporal Logic) properties [4,18], we focus
in this work on the verification of safety properties, i.e., system invariants that

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 432–446, 2018.
https://doi.org/10.1007/978-3-319-96983-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_31&domain=pdf

One-Sided Communications for More Efficient Parallel State 433

can be verified using a simple enumeration of system states. Many interesting
properties can however be expressed as system invariants.

An important characteristic of graph-based algorithms used in verification
is that the graph is not known a priori. The model checker is instead provided
with an initial state describing the system’s initial configuration and a successor
function that, from one state, can generate its successors. Many verification algo-
rithms are built upon this state space construction step. Therefore, the workload
cannot be divided using traditional, static domain decomposition techniques.
Moreover, the granularity of this step does not make it a good candidate for
chunk-based approaches such as master-worker patterns.

The state-of-the-art algorithm that can be used for the verification of safety
properties [16] distributes the search by partioning the state space among par-
ticipating processes. A partition function maps state vectors (i.e., bit strings
encoding states) to processes. Each process is then responsible of any state that
is assigned to it: it stores it in a local state table, generates its successors and
sends them to their owners that will later process these states in the same way.

To the best of our knowledge, all implementations of [16] are based on two-
sided communications. In this distributed programming paradigm, two processes
have to synchronise to exchange data. This means that, from a development per-
spective, the programmer has to explicitly mention in the code where processes
have to wait for incoming data by invoking a receive statement. This constraint
adds points of synchronisation in the code that makes each communication a big
concern in terms of performance.

In this paper we redesign the algorithm of [16] to adapt it to one-sided com-
munications. In such a model, a process can directly access remote memory
segments of another process without the latter being aware of this access. The
one-sided communication model is particularly interesting here, because when a
process needs data located in another process’s memory, the target process does
not need to be aware that the source process needs it: the source process can get
the remote data on its own.

In the more general context of model checking, [14] is the only work we
are aware of, that proposes a distributed algorithm for Remote Direct Mem-
ory Access (RDMA) clusters. It can be used in the context of symbolic model
checking, a different algorithmic approach than ours.

After an overview of the verification process by state space exploration con-
sidered in this work in Sect. 2 and a quick presentation of the communication and
distributed memory model in Sect. 3, our new algorithm is described in Sect. 4.
We present experiments conducted with this new implementation and compare
it to the well known distributed model checker DiVinE [3] in Sect. 5.

2 Background

Model checking by state space exploration explores all the possible states of the
system until it finds a counterexample of the property to be verified. If it can
explore all possible states without finding a counterexample, it concludes that

434 C. Coti et al.

Algorithm 1. Sequential state space exploration
1: procedure exploreSequential is
2: Q.init(s0); R.init(s0)
3: while ¬Q.isEmpty() do
4: s := Q.remove()
5: for s′ ∈ succ(s) do
6: if ¬s′.checkInvariant() then
7: halt and report error
8: else if ¬R.isIn(s′) then
9: Q.insert(s′); R.insert(s′)

the property is always verified by the system. Therefore, it is of major importance
to use an efficient algorithm for this state space exploration.

In this paper we assume a universe of system states S, an initial state s0 ∈ S
and a mapping succ : S → 2S , that, from one state s, gives its set of successors.
We want to explore the state space induced by these parameters, i.e., the smallest
set R ⊆ S of reachable states defined inductively as : s0 ∈ R∧(s ∈ R ⇒ succ(s) ∈
R).

Algorithm 1 is a sequential state space exploration algorithm usable for invari-
ant checking. It operates on a queue Q of unexplored states and incrementally
builds the reachability set R. Both initially contain the initial state. States are
taken from Q (l. 4), their successors generated and put in R and Q (if not seen
before) to be later processed (loop at ll. 5–9). The algorithm terminates when an
erroneous state is found (ll. 6–7) or when the queue is empty, which is guaranteed
to happen for finite-state systems.

The distributed algorithm of [16] that represents the core component of many
distributed algorithms is given in Algorithm2. P exploration processes are used
(l. 2). Each process i owns a local portion of the queue and the reachable states.
The state space is partitioned among processes using a state hash function. Each
exploration process basically acts as the sequential algorithm presented above
except that when a state s′ is reached, the process checks if it is the owner of
this state (condition at l. 8). In that case, it is processed as in the sequential
scenario. Otherwise it is sent to its owner and discarded by the current process.
Similarly, only the owner of the initial state puts it in its local data structures
(ll. 13–14). Processes also have to check for incoming messages (ll. 16–19). A
state received is handled as would be any other new state owned by the process
(i.e., ll. 18–19 and ll. 10–11 match).

Termination detection (not shown in the algorithm) is triggered by a unique
process (e.g., node 0) when this one has been idle (i.e., it does not receive any
messages and its queue is empty) for some amount of time. It then asks it peers
if they are in the same situation and if all channels are empty (check made by
counting messages sent and received) before notifying termination to other nodes
if both conditions are met.

One-Sided Communications for More Efficient Parallel State 435

Algorithm 2. Distributed state space exploration algorithm usable for invariant
checking
1: procedure exploreDistributed() is
2: launch explore0 || . . . || exploreP−1

3: procedure processQueuei() is
4: s := Q.remove()
5: for s′ ∈ succ(s) do
6: if ¬s′.checkInvariant() then
7: halt and report error
8: else if s′.hash()%P �= i then
9: s′.sendTo(s′.hash()%P)

10: else if ¬R.isIn(s′) then
11: Q.insert(s′); R.insert(s′)

12: procedure explorei() is
13: if s0.hash()%P = i then
14: Q.insert(s0); R.insert(s0)
15: while ¬termination() do
16: if stateReceived() then
17: s := receiveState()
18: if ¬R.isIn(s) then
19: Q.insert(s); R.insert(s)
20: if ¬Q.isEmpty() then
21: processQueuei()

3 RDMA Architectures and the OpenSHMEM
Specification

This section gives a brief presentation of the one-sided communication model
we are using in this paper, and its implementation in the OpenSHMEM shared
heap and communication interface.

3.1 RDMA and One-Sided Communications

RDMA (Remote Direct Memory Access) is a communication mechanism that
implements one-sided inter-process communication. It relies on two basic com-
munication primitives: put() and get(). A process can read (get()) and write
(put()) in another process’s memory. In practice, not all the process’s memory
can be reached from other processes, but only a specific, public area.

An attractive feature of one-sided communications is that only the process
that initiates the communication needs to take active part in it. The process
that owns the memory area it is reading from or writing into is not participating
to the communication, nor is it even aware that this communication is happen-
ing. This fact makes one-sided communication more tricky to use in parallel,
distributed programs compared to two-sided communications, and more prone
to race conditions.

Fast cluster interconnection networks such as InfiniBand implement RDMA
communications with zero-copy, meaning that the NIC transfers data directly
from one process’s memory into the other process’s memory, and, in particular,
without involving the other process’s operating system.

3.2 The OpenSHMEM Communication and Memory Model

OpenSHMEM is an API for parallel programs. It defines a set of one-sided,
RDMA communication routines, designed specifically for clusters featuring low-
latency networks [1]. The processes are called Processing Elements (PEs). Each

436 C. Coti et al.

PE has its own (private) memory, and it exhibits a public heap. One particularity
of OpenSHMEM is that this heap is symmetric: every PE has a shared heap of
the same size and that contains the same allocated objects and static global
objects (Fig. 1).

PE0 PE1 PE2

Private

memory

Symmetric

heap

Static global
objects

Symmetric
objects

Fig. 1. OpenSHMEM memory model.

Symmetry is maintained between shared heaps through the use of dedicated
memory management routines: shmem malloc(), shmem realloc(), shmem
align() and shmem free() (or shmalloc(), shrealloc(), shmemalign() and
shfree() until OpenSHMEM v1.2). The OpenSHMEM specification states that
these routines are collective routines and must end by something semantically
equivalent to a barrier. Hence, every object is allocated at the same offset from
the beginning of the buffer on all the PEs [8]. Besides, global and static variables
are also located in the shared heaps and therefore remotely accessible by other
PEs.

The OpenSHMEM specification also defines interfaces for atomic accesses
(such as fetch-and-add), collective operations, locks and synchronisation and
ordering routines.

4 Distributed Reachability Analysis with One-Sided
Communications

We now propose a distributed algorithm (see Algorithm3) for state space explo-
ration on RDMA clusters using one-sided communications. It assumes the fol-
lowing two procedures are provided by the communication layer:

– getMem(i, o) returns the shared object o stored on PE i
– putMem(i, o, data) stores data in the shared object o of PE i.

These correspond in the OpenSHMEM API to shmem getmem and shmem putmem.
Our algorithm acts basically as the distributed algorithm presented in Sect. 2.

PEs exchange states on the basis of a state space partition induced by the state
hash function. These states are communicated through the shared memory space
using remote put operations. Hence, we focus next on the specificities of our
implementation.

One-Sided Communications for More Efficient Parallel State 437

A PE shares two objects with its peers: buf, an array of buffers containing
states sent by other PEs ; and free, a boolean array used to prevent the PE from
erasing states it has previously put in the buf object of another PE and which
have not been consumed yet. Basically, it is an invariant property of the algo-
rithm that getMem(i, free[j]) = true implies that the buffer getMem(j, buf [i])
does not contain states put by PE i for PE j but not consumed by PE j yet.

Besides its private queue Q of states to process and its reachable states R, a
PE also owns an array sbuf containing buffers of states to be sent to their owner
and grouped together to avoid sending individual states.

In the main procedure (ll. 3–12), each PE periodically processes incoming
states (ll. 7–8). This is done (ll. 36–43) by inspecting the buf array of its local
shared memory space. All the states put by remote PEs are put in the private
queue and in the reachable states set (ll. 42–43). Each time a buffer has been
retrieved, the remote PE that sent these states is notified via the free array
(l. 40) located in the shared memory of this remote PE. The implementation of
checkForIncomingStates used to decide if input buffers must be inspected is
discussed in Sect. 5. As soon as its queue empties the process also has to flush
its output buffers containing states destinated to remote PEs (ll. 9–10). This
is mandatory to avoid a premature termination caused by all PEs being idle
and ready to terminate whereas buffers still contain potentially new states to
be processed. This is the purpose of procedures flushOutBuffer i described below
and flushOutBuffersi (ll. 23–26) that simply flushes all non empty buffers.

Any state s belonging to another PE is processed by function
processOutStatei (ll. 13–16). The PE puts s in a private buffer containing states
to be sent to their owner, i.e., the PE j = s.hash%PES. This private buffer is
sbuf [j]. If it becomes full, it has to be put in the shared space memory of PE j
using procedure flushOutBufferi (ll. 17–22). In this one, the PE first periodi-
cally polls its local shared memory to check whether the states it previously put
in the shared memory of PE j have been consumed by this one. The condition at
l. 18 evaluates to false as soon as PE j has completed its put statement at l. 40.
Hence, we see that the purpose of the free shared array is to avoid communica-
tions when checking whether or not the states can be remotely put in the shared
memory segment of its owner. Also note that, during polling, the process also
has to process incoming states it may have received (l. 19). This is mandatory
as, otherwise, a deadlock could occur. This would be the case, for instance, with
two PEs, each PE waiting for the other to free its buffer, i.e., completing the
put operation at l. 40, whereas it is blocked at ll. 18–19.

For termination detection (not shown in the algorithm to avoid overloading
it) we adapted the algorithm of [16]. As soon as PE 0 has been idle for 100 ms it
sends a token to PE 1. A PE receiving the token passes it to the next PE if it is
idle, or destroys it otherwise. If PE 0 receives back the token, it asks all other PEs
to participate to termination detection: a synchronisation barrier occurs, then
all PEs process incoming states (if any) and publish in the shared memory their
status (idle, i.e., without any state to process, or working). Termination occurs
when all the processes are idle. The circulation of the token can be more efficient

438 C. Coti et al.

than a ring, for instance using Bruck’s algorithm [6], which has a logarithmic
number of steps. However, we have measured in the experimental evaluation of
this algorithm that the termination phase is not significantly long with respect
to the overall execution time. A more scalable algorithm can be used if this
algorithm is meant to be executed on a large scale system.

Sketch of proof that all states in a buffer are indeed read. Let us assume a PE i
has written states in the buffer of PE j. PE j can read them as long as they are
not superseeded by other values, which could only be the result of PE i flushing
a new version of the buffer. This operation is performed by flushOutBufferi(j).
Before PE i actually flushes the buffer at l. 21, it waits for free[j] to become true
(l. 18). This boolean value can only be set to true at l. 40 by PE j. This occurs
after PE j reads the contents at l. 38. Note that PE i is also the only PE to set
this variable to false, at l. 20, before writing the contents.

Therefore, it is not possible to write twice to a distant buffer without the
corresponding process reading in between.

Sketch of proof that all states are processed. A state is created as the initial
state s0 at ll. 4–5, or as the successor of a state being processed. In this case, if
it belongs to the same PE, it is inserted in the local queue at l. 35. Otherwise,
processOutState is called, and the state is added to its PE buffer at l. 14, to be
sent later. The buffer is sent when it is full (l. 16), or when the current PE has
an empty queue (l. 10). In both cases, flushOutBuffer is eventually called, which
puts the buffer in its associated PE memory. A PE checks its incoming states
regularly, at l. 7 and l. 19. In both cases, the states read from the buffers are
inserted in the local queue at l. 43.

Thus, all states are explored either processed locally or sent/received/
processed.

Sketch of proof that there is no livelock at l. 18. The only place where a PE
could get stuck waiting forever is at l. 18. In this case, PE i is waiting for PE
j to free the memory by reading it and setting the free boolean to true. This
operation is done in processInStatesj , which reads all incoming buffers. Note that
a PE cannot be stuck in processInStates nor calls any function from it. Function
processInStatesj is called either in the while loop at ll. 18–19 or from explorej
at l. 8. PE j is thus handling its own states in the while loop at ll. 6–12, one by
one, checking for any incoming state after processing one state. If it has no state
to handle it flushes its buffers, and thus executes processInStatesj at l. 19.

Hence no process gets stuck in the while loop of ll. 18–19.

5 Experiments

We have implemented the algorithm of the previous section in the Helena tool [9]
(see http://www-lipn.univ-paris13.fr/evangelista/helena). We experimented
with our algorithm on models of BEEM [15], a database of models written in
the DVE modelling language and used to benchmark model checkers.

http://www-lipn.univ-paris13.fr/evangelista/helena

One-Sided Communications for More Efficient Parallel State 439

Algorithm 3. Distributed state space exploration based on one-sided commu-
nications

Constant PES : int := number of processing elements

Shared objects buf : state list[PES] := {empty, . . . , empty};
free : bool[PES] := {true, . . . , true};

Private objects Q,R : state set := empty;

sbuf : state list[PES] := {empty, . . . , empty};

1: procedure exploreDistributed() is

2: launch explore0 || . . . || explorePES−1
3: procedure explorei() is

4: if s0.hash()%P = i then

5: Q.insert(s0);R.insert(s0)

6: while ¬termination() do

7: if checkForIncomingStates() then

8: processInStatesi()

9: if Q.isEmpty() then

10: flushOutBuffersi ()

11: else

12: processQueuei()

13: procedure processOutStatei (j , s) is

14: sbuf [j].append(s)

15: if sbuf [j].full() then

16: flushOutBufferi (j)

17: procedure flushOutBufferi (j) is

18: while ¬getMem(i, free[j]) do

19: processInStatesi()

20: putMem(i, free[j], false)

21: putMem(j, buf [i], sbuf [j])

22: sbuf [j].empty()

23: procedure flushOutBuffersi () is

24: for j ∈ {0, . . . , |PES| − 1} with j �= i do

25: if ¬sbuf [j].isEmpty() then

26: flushOutBufferi (j)

27: procedure processQueuei() is

28: s := Q.remove()

29: for s′ ∈ succ(s) do

30: if ¬s′.checkInvariant() then

31: halt and report error

32: else if s′.hash()%P �= i then

33: processOutStatei(s
′.hash()%P, s′)

34: else if ¬R.isIn(s′) then

35: Q.insert(s′);R.insert(s′)
36: procedure processInStatesi() is

37: for j ∈ {0, . . . , |PES| − 1} with j �= i do

38: buf := getMem(i, buf [j])

39: if ¬buf .isEmpty() then

40: putMem(j, free[i], true)

41: for s ∈ buf do

42: if ¬R.isIn(s) then

43: Q.insert(s);R.insert(s)

Helena first compiles the model into a C library including state and transi-
tion definitions, the transition relation (successors computation), the initial state
definition, and so on. This library is then linked with the model checking engine
integrating search algorithms to produce a dedicated executable. This approach,
adopted by many other model checkers, greatly speeds up the verification com-
pared to model checkers that directly interpret the model without compiling
it.

5.1 Experimental Environment

Experiments presented in this paper were carried out using the Grid’5000 [7]
testbed, supported by a scientific interest group hosted by Inria and including
CNRS, RENATER and several Universities as well as other organisations (see
https://www.grid5000.fr). We used the Graphene cluster, which is made of 144
nodes (although we could not experiment with more than 127 nodes), each of
which features a quad-core Intel Xeon X3440 running at 2.53 GHz, 16 GiB of
RAM and a 20G InfiniBand network interconnection. The nodes were running
a 64-bit Linux 4.9 kernel. All the code was compiled using the GNU gcc 6.3.0
compiler with -03 optimization flag. We used the OpenSHMEM implementation
provided by OpenMPI 2.0.1 and the InfiniBand communication libraries libverbs
1.2.1 and librdmacm 1.1.0.

https://www.grid5000.fr

440 C. Coti et al.

Since the machines feature four cores, we executed four processes per node.
Each experiment was run 5 times and plots present the average and standard
deviation of the set of measurements. Each run consisted of a complete state
space exploration, i.e., no property was checked.

5.2 Implementation Details

We now address some implementation details that were left out in the description
of the algorithm of the previous section.

First, at l. 7 in the main procedure, a process checks if it has received any
new state to be processed. Such a check implies to look at all buffers of the
shared memory space and must therefore not be done too frequently. The simple
solution we adopted is to perform this check every 10 000th state processed. We
experimented with other values and this one yielded the best performance on
the average although we did not witness this parameter to have a large impact
unless set to a too small value. It would however be relevant to experiment with
a dynamic solution allowing this frequency to evolve during the search in order
to try to maximise the state generation rate.

The SHMEM heap size was set to a number that allows buffers of 65 000 bytes
which is close to the MTU of our network interfaces. Hence, a buffer becomes
full (test at l. 15 of the algorithm) when it cannot store any more state (DVE
states are encoded with a constant number of bytes). We did not intensively
experiment with that parameter and leave this to future works.

5.3 Scalability

We evaluated the scalability of Helena on models of various sizes. The sizes
(number of states and transitions) of these models are given in Table 1. The last
column indicates the range of process numbers we experimented with on the
model. Unless noted otherwise, the speed-up is computed as, by definition, the
ratio between the execution time of the sequential implementation of Helena and
the execution of the parallel implementation on a given set of processes, using
one core per process.

As expected, small size models (see Fig. 2(a)) can be run on a small number
of cores, but they do not scale well beyond a certain number of processes, i.e.,
about 100–150 processes. Then the runtime tends to slightly increase. Indeed,
as the number of processes grows, the number of states owned by each process
decreases, meaning that queues often become empty. This causes an excessive
number of flushes of partially filled buffers (l. 16 of the algorithm), synonym of
an inefficient network usage.

When the size of the input model increases, Helena cannot be run on a
single node. For medium and large size models, we computed the speed-up by
normalizing using the execution time on the smallest number of processes we
could get.

One-Sided Communications for More Efficient Parallel State 441

Table 1. Model characteristics

Name States Transitions Processes
used

Small size models
(runnable on 1 node)

iprotocol.7 59 794 192 200 828 479 1–384

peterson.5 131 064 750 565 877 635 1–384

elevator.5 185 008 051 185 008 051 1–384

Medium size models
(< 109 states)

lifts.9 266 445 936 846 144 885 16–384

firewire link.3 425 333 983 1 621 543 475 16–384

leader filters.8 431 401 020 1 725 604 080 32–384

collision.5 431 965 993 1 644 101 878 32–384

iprotocol.8 447 570 146 1 501 247 756 32–384

anderson.8 538 699 029 2 972 732 133 32–384

Large size models
(≥ 109 states)

public subscribe.5 1 153 014 089 5 447 695 171 32–508

lamport.9 1 436 848 880 7 025 053 020 48–508

brp.8 1 526 547 707 3 207 513 490 32–508

synapse.9 1 675 298 471 3 291 122 975 48-508

szymanski.6 6 779 809 484 38 604 341 308 256–508

For medium size models (see Fig. 2(b)), the plots have the same shape, but
the number of processes for which the execution time stagnates or increases is
pushed to about 300 processes.

For four of the large models (see Fig. 2(c)) we did not observe any slow-
down: they scale well on the full range of processes we were able to execute
them on which is remarkable for a non-embarrassingly parallel application that
communicates often.

For model brp.8, we faced some unexpected behaviour described in Sect. 5.4
that explains the relatively bad speed-up observed. But beyond this problem, we
conjecture that the high depth of this graph makes this model less appropriate
for distributed model checking. The parallel exploration of such graphs is known
to be less efficient.

5.4 Process Workload

We also studied the process workload to further investigate some issues revealed
by Fig. 2 and make sure the load is balanced evenly among processes. Indeed,
for some configurations (same model and number of processes) we noticed sig-
nificant variations in the execution times of the five runs performed. This is
especially visible for model brp.8 through the error bars. We thus recorded dur-
ing each run, the number of states visited by each process during each second.
The heat maps of Fig. 3 reproduce this data for two problematic runs of mod-
els brp.8 and firewire link.3 (with 320 and 304 processes respectively); and, for

442 C. Coti et al.

Fig. 2. Scalability of Helena on the models of Table 1. On the X axis are the numbers
of processes. On the left (resp. right) Y axis are execution times (speed-ups). The plain
line with error bars gives execution times. The dashed one gives speed-ups. The dotted
one gives the optimal theoretical speed-up (linear).

the sake of comparison, for two “friendly” runs of models leader filters.8 and
public subscribe.5 (with 240 and 384 processes respectively).

We first observe in all cases a slow start during which all processes have
very few states to visit and spend most of their time idle, waiting for states

One-Sided Communications for More Efficient Parallel State 443

coming from processes. This scenario is actually common to all models although
the duration of this phase can vary, depending on—we conjecture—the struc-
tural characteristics of the state space graph. More specifically, the shape of the
graph might be such that little parallelism can be extracted. The hash function
distributes the few states between the processes and therefore, processes need
to access only remote states. In the case of model brp.8 the long idle time at
startup could indeed be explained by the important depth of its graph and the
fact that very few states are gathered around the initial state. To remedy this
issue we will investigate in future works the use of a small state cache used by a
process to explore states it does not own in order to accelerate the discovery of
its states, rather than waiting for other processes to send these states.

Fig. 3. Workload (number of states processed by second) of processes for four runs

In the case of models brp.8 and firewire link.3, the heat maps also reveal
that, after this slow start, the algorithm enters again a phase during which all
processes are completely idle. This represents approximatively 5 and 7 s of the
whole execution times of these two runs. Unfortunately, we are currently unable
to explain this phenomenon. We plan to profile the code to identify the source
of this problem. Let us remark that this issue is actually the only source of the
variations we observed during different runs with the same configuration. When
the processes did not mysteriously halt this way during the search, we obtained
remarkably stable performances.

Last, Fig. 3 also shows that the workload is well balanced among processes.
This was however expected since all processes perform the same task and receive
approximately the same amount of work, since states are distributed using the
state hash function. Again, this observation can be generalised to all experiments
we made.

444 C. Coti et al.

5.5 Comparison with the DiVinE Model Checker

We also experimented with the DiVinE model checker [3], version 3.3, under the
same conditions. DiVinE is a state-of-the-art verification tool that implements
parallel algorithms for LTL model checking and reachability analysis using two-
sided MPI communications [18]. Comparing these two tools can be viewed under
two perspectives: speed, which depends highly on the speed of sequential com-
putations, and parallel speed-up, which exhibits the efficiency of the parallel
approach.

In this section, we are presenting both metrics. In their sequential imple-
mentation, Helena is slower than DiVinE, as we can see on the only models
for which we were able to run sequential executions and presented Fig. 4 (top).
We can see that, Helena has a higher speed-up and scales better than DiVinE.
Although DiVinE is significantly faster when run sequentially, the two runtime
curves cross each other quickly and Helena becomes faster. Therefore, our app-
roach is efficient enough to make Helena faster when we use more than a handful
of processes and the parallelism become non-trivial.

On very big models (public subscribe.5, anderson.8), the difference between
Helena and DiVinE is relatively small, especially at large scale. In our algorithm,

Fig. 4. Performance comparison between DiVinE and Helena on models of Table 1. On
the X axis are the numbers of processes. On the left (resp. right) Y axis are execution
times (speed-ups). Helena is represented by red lines, that are plain for the execution
time and a pattern made of two dots and a dash for the speed-up. DiVinE is represented
by blue lines, that are dashed for the execution time and a pattern made of a dot and
a dash for the speed-up. Inside of each plot is a zoom on the execution time. (Color
figure online)

One-Sided Communications for More Efficient Parallel State 445

the number of communication scales with the size of the model. Therefore, on
large models, the parallel application performs a large number of communica-
tions. On DiVinE, we can expect that communicating often on all the processes
reduces the penalty involved by the “forced” synchronisation between the pro-
cesses and reduces the performance gap.

As explained in Sect. 5.3, when we cannot explore the state space with the
sequential implementations, we normalize the speed-up using the execution time
of the smallest possible parallel execution (using the same number of processes for
DiVinE and Helena). Therefore, for larger models (Fig. 4, bottom), we normalize
the speed-up beyond this cross-over between the execution time of DiVinE and
Helena. But still, Helena scales better than DiVinE. We believe that the higher
parallel efficiency of Helena is due to the less synchronous nature of the parallel
algorithm for the state space exploration, which is made possible by the one-sided
communication model.

6 Conclusion and Perspectives

This paper is a first step towards the use of one-sided based communications
in the context of distributed state model checking. Our experiments revealed
that our distributed state space exploration algorithm can compete with the
DiVinE model checker which is, to the best of our knowledge, the reference tool
in distributed automated verification.

An immediate perspective is to experiment more thoroughly with our algo-
rithm. The experiments have revealed some undesired behaviour that has to be
investigated and we need to gain better understanding of the impact of some
parameters such as the SHMEM shared heap size.

Our algorithm currently is a direct adaptation of the state of the art dis-
tributed algorithm for the one-sided communication model and it does not
fully benefit from the primitives provided by the OpenSHMEM library (or any
other library that falls in that category, such as MPI 3.0), such as, e.g., remote
atomic compare-and-swap. We therefore plan, in future works, to study how
to take advantage of the specificities of OpenSHMEM to efficiently implement
distributed versions of state space reduction techniques such as the state com-
pression technique of [11] based on distributed hash tables or other distributed
state space exploration algorithms like the one we designed for multi-core archi-
tectures [10].

The adaptation of various optimisations proposed by the model checking
community, such as load balancing [5,12], to the context of one-sided commu-
nications, is another perspective. Such techniques are especially required in the
case of heterogeneous networks, which we did not consider nor experiment with
in this work.

Last, we will consider the design of a multi-threaded version of our algorithm
as done in the Eddy Murphi tool [13] that separates state operations (e.g., suc-
cessor computation, insertion in the hash table) performed by a first thread from
communications done by second thread.

446 C. Coti et al.

References

1. OpenSHMEM Application Programming Interface version 1.4, December 2017.
http://www.openshmem.org/site/sites/default/site files/OpenSHMEM-1.4.pdf

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Baranová, Z., et al.: Model checking of C and C++ with DIVINE 4. In: D’Souza, D.,
Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 201–207. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 14

4. Barnat, J., Brim, L., Stř́ıbrná, J.: Distributed LTL model-checking in SPIN. In:
Dwyer, M. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 200–216. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45139-0 13

5. Bingham, B., Bingham, J., de Paula, F.M., Erickson, J., Singh, G., Reitblatt,
M.: Industrial strength distributed explicit state model checking. In: PDMC 2010
(2010)

6. Bruck, J., Ho, C.-T., Kipnis, S., Upfal, E., Weathersby, D.: Efficient algorithms
for all-to-all communications in multiport message-passing systems. IEEE Trans.
Parallel Distrib. Syst. 8(11), 1143–1156 (1997)

7. Cappello, F., et al.: Grid’5000: a large scale and highly reconfigurable grid experi-
mental testbed. In: SC 2005: Proc. The 6th IEEE/ACM International Workshop on
Grid Computing CD, Seattle, Washington, USA, pp. 99–106. IEEE/ACM, Novem-
ber 2005

8. Coti, C.: POSH: Paris OpenSHMEM: a high-performance OpenSHMEM imple-
mentation for shared memory systems. In: Procedia Computer Science, Special
Issue on the 2014 International Conference on Computational Science (ICCS 2014),
vol. 29, pp. 2422–2431 (2014)

9. Evangelista, S.: High level petri nets analysis with Helena. In: Ciardo, G., Daron-
deau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 455–464. Springer, Heidelberg
(2005). https://doi.org/10.1007/11494744 26

10. Evangelista, S., Kristensen, L.M., Petrucci, L.: Multi-threaded explicit state space
exploration with state reconstruction. In: Van Hung, D., Ogawa, M. (eds.) ATVA
2013. LNCS, vol. 8172, pp. 208–223. Springer, Cham (2013). https://doi.org/10.
1007/978-3-319-02444-8 16

11. Holzmann, G.J.: Recursive indexing and compression training runs. In: SPIN 1997
(1997)

12. Kumar, R., Mercer, E.G.: Load balancing parallel explicit state model checking.
ENTCS 128(3), 19–34 (2005)

13. Melatti, I., Palmer, R., Sawaya, G., Yang, Y., Kirby, R.M., Gopalakrishnan, G.:
Parallel and distributed model checking in Eddy. STTT 11(1), 13–25 (2009)

14. Oortwijn, W., van Dijk, T., van de Pol, J.: Distributed binary decision diagrams
for symbolic reachability. In: SPIN 2017, pp. 21–30. ACM (2017)

15. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73370-6 17

16. Stern, U., Dill, D.L.: Parallelizing the Murφ verifier. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 256–267. Springer, Heidelberg (1997). https://doi.org/
10.1007/3-540-63166-6 26

17. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-65306-6 21

18. Verstoep, K., Bal, H., Barnat, J., Brim, L.: Efficient large-scale model checking.
In: IPDPS 2009, pp. 1–12. IEEE (2009)

http://www.openshmem.org/site/sites/default/site_files/OpenSHMEM-1.4.pdf
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/3-540-45139-0_13
https://doi.org/10.1007/11494744_26
https://doi.org/10.1007/978-3-319-02444-8_16
https://doi.org/10.1007/978-3-319-02444-8_16
https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/3-540-63166-6_26
https://doi.org/10.1007/3-540-63166-6_26
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21

Robust Decentralized Mean Estimation
with Limited Communication

Gábor Danner1 and Márk Jelasity2(B)

1 University of Szeged, Szeged, Hungary
2 MTA-SZTE Research Group on Artificial Intelligence, University of Szeged,

Szeged, Hungary
jelasity@inf.u-szeged.hu

Abstract. Mean estimation, also known as average consensus, is an
important computational primitive in decentralized systems. When the
average of large vectors has to be computed, as in distributed data min-
ing applications, reducing the communication cost becomes a key design
goal. One way of reducing communication cost is to add dynamic state-
ful encoders and decoders to traditional mean estimation protocols. In
this approach, each element of a vector message is encoded in a few bits
(often only one bit) and decoded by the recipient node. However, due to
this encoding and decoding mechanism, these protocols are much more
sensitive to benign failure such as message drop and message delay. Prop-
erties such as mass conservation are harder to guarantee. Hence, known
approaches are formulated under strong assumptions such as reliable
communication, atomic non-overlapping transactions or even full syn-
chrony. In this work, we propose a communication efficient algorithm
that supports known codecs even if transactions overlap and the nodes
are not synchronized. The algorithm is based on push-pull averaging,
with novel features to support fault tolerance and compression. As an
independent contribution, we also propose a novel codec, called the pivot
codec. We demonstrate experimentally that our algorithm improves the
performance of existing codecs and the novel pivot codec dominates the
competing codecs in the scenarios we studied.

1 Introduction

Mean estimation has been studied in decentralized computing for a long
time [1,6,8,19]. The applications of these algorithms include data fusion in sen-
sor networks [20], distributed control [15] and distributed data mining [17]. A
very interesting potential new application is federated learning, where a deep
neural network (DNN) model is trained on each node and these models are then
averaged centrally [11]. This average computation could be decentralized, allow-
ing for a fully decentralized solution. However, since DNNs may contain millions

This research was supported by the Hungarian Government and the European
Regional Development Fund under the grant number GINOP-2.3.2-15-2016-00037
(“Internet of Living Things”).

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 447–461, 2018.
https://doi.org/10.1007/978-3-319-96983-1_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_32&domain=pdf

448 G. Danner and M. Jelasity

of floating-point parameters all of which have to be averaged simultaneously,
optimizing the utilized bandwidth during decentralized averaging becomes the
central problem.

Many approaches have been proposed for bandwidth-efficient average calcu-
lation. For example, floating point numbers can be compressed to a few bits using
different quantization methods and these quantized values can then be averaged
by a server [9,18]. This is a synchronized and centralized solution, and the app-
roach also introduces an estimation error. Quantization has been studied also
in decentralized gossip protocols where the communicated values are quantized
onto a fixed discrete range (see, for example, [21]). Here, an approximation error
is introduced again, even in reliable networks, and message exchanges cannot
overlap in time between any pairs of nodes.

In control theory, more sophisticated dynamic quantization approaches have
been proposed that can provide exact convergence at least in reliable systems
by compensating for the quantization error. An example is the work of Li et
al. [10]. Here, full synchronization and reliability are assumed, and the quanti-
zation range is scaled by a fixed scaling function. Dynamic quantization has also
been proposed in the context of linear control in general, again, in a synchro-
nized model [5]. Carli et al. [4] adopt the compensating idea in [10] and compare
it with other static (non-adaptive) quantization techniques. The same authors
also study adaptive quantization; that is, dynamically changing the sensitivity
of the quantizer [3] (originally proposed in [2]), which is feasible over a fixed
communication overlay. The system model in these studies assumes reliability
and atomic communication as well.

A rather different kind of method involves compressing a stream of floating
point values using prediction and leading zero count compression [16]. Although
this method could be adapted to our application scenario with some modifica-
tions, in this study we focus only on the quantization-based compression meth-
ods.

Our contributions include a modified push-pull averaging algorithm and a
novel codec. These two contributions are orthogonal: the codec can be used
along with any algorithm and the push-pull algorithm can use any codec. The
novel codec, called pivot codec, encodes every floating point value onto a single
bit and it can adapt dynamically to the range of the encoded values. The novel
push-pull protocol is robust against message drop failure, it does not require the
synchronization of the clocks of the nodes, and it includes a smoothing feature
based on recorded link-flows that improves the performance of our compression
codec. Here, we evaluate our contributions in simulation. We compare our solu-
tions with the competing codecs and algorithms from related work and show
that we can improve both robustness and the compression rate significantly.

2 System Model

We model our system as a large set of nodes that communicate via message
passing. The protocols we discuss here send very large messages, so the delay

Robust Decentralized Mean Estimation with Limited Communication 449

of successfully delivered messages is determined by the message size and the
available network bandwidth (as opposed to network latency). Our protocols
assume that the delay of most (but not necessarily all) of the messages that are
delivered is less than an upper bound. This upper bound is at least half of the
gossip period, or more, depending on the overlay network. The messages can be
lost and their order of delivery is not guaranteed. We do not require time to be
synchronized over the nodes but we do assume the existence of a local clock.
Each node is assumed to have a small set of neighbors, with which the node can
exchange messages. This neighbor set is assumed to be stable and in this study
we do not consider node failure. The set of neighbors might be a uniform random
sample from the network or it might be defined by any fixed overlay network,
depending on the application.

3 Proposed Algorithms

We first discuss our novel codec and then present the modified push-pull averag-
ing protocol in several steps, addressing its robustness, compression, and smooth-
ing features.

3.1 Codec Basics

Central to our algorithms is the concept of encoding and decoding messages over
a given directed link using a codec. A codec consists of an encoder and a decoder
placed at the origin and the target of the link, respectively. We assume that the
link is used to send a series of real valued messages during the execution of the
protocol. We follow the notations used in [13]. First of all, the compression (or
encoding) is based on quantization, that is, mapping real values to a typically
small discrete space (an alphabet) denoted by S. The decoding maps an element
of alphabet S back to a real value.

Codecs may also have state. This state might contain, for example, informa-
tion about the current granularity or scale of the encoding, the previous value
transmitted and elapsed time. The state space will be denoted by Ξ. Every codec
implementation defines its own state space Ξ (if the implementation is stateful).
Both the encoder and the decoder are assumed to share the same state space.

We now introduce a notation for the mapping functions mentioned above. Let
Q : Ξ×IR → S denote the encoder (or quantizer) function that maps a given real
value to a quantized encoding based on the current local state of the encoder.
Let K : Ξ × S → IR denote the decoding function that maps the encoded value
back to a real value based on the current local state of the decoder. Finally, let
F : Ξ×S → Ξ define the state transition function that determines the dynamics
of the state of the encoder and the decoder. Note that in a given codec both
the encoder and the decoder uses the same F . These three mappings are always
executed in tandem, that is, an encoded message is decoded and then the state
transition is computed.

450 G. Danner and M. Jelasity

Although the encoder and the decoder are two remote agents that communi-
cate over a limited link, the algorithms we discuss will ensure that both of them
maintain an identical state. In this sense, we can talk about the state of the
codec. To achieve this, first we have to initialize the state using the same value
ξ0. Second, if the encoder and the decoder have identical states at some point
in time, then an identical state can be maintained also after the next transmis-
sion, because the encoder can simulate the decoder locally, thus they can both
execute the state transition function with identical inputs. Note that here we
assumed that communication is reliable. If this is not the case, the algorithms
using the codec must handle unreliability appropriately so as to maintain the
identical states.

3.2 Pivot Codec

Here we describe our codec implementation that we coined the pivot codec, for
reasons that will be explained below. The main goal in our implementation was
aggressive compression, so we put only a single bit on the wire for each encoded
value. This means Spivot = {0, 1}.

The intuition behind the design is that we treat the encoder and the decoder
as two agents, such that the encoder stores a constant value and the decoder has
to guess this value based on a series of encoded messages. Obviously, in real appli-
cations the encoded value is rarely constant. However, the design is still efficient
if the encoded values do not change much between two transmissions. In fact, this
assumption holds in many applications, including decentralized mean approxi-
mation, which allows for an efficient compression. Many competing codecs, espe-
cially simple quantization techniques, do not make any assumptions about the
correlation of subsequent encoded values, hence they are unable to take advan-
tage of the strong positive correlation that is present in many applications.

The codec is stateful. The state is defined by a triple (x̂, d, slast) ∈ Ξpivot =
IR × IR × Spivot. Here, x̂ is the approximation of the pivotal value, namely the
actual (constant or slowly changing) real value stored by the encoder agent. The
remaining values are d, the signed step size, and slast, the last encoded value
that was transmitted. The encoding function is given by

Qpivot((x̂, d, slast), x) =

{

1, if |x̂ + d − x| < |x̂ − x|
0, otherwise,

(1)

where x is the value to be encoded. In other words, the encoded value is 1 if and
only if adding the current step size to the approximation makes the approxima-
tion better. Accordingly, the decoding function

Kpivot((x̂, d, slast), s) =

{

x̂ + d, if s = 1
x̂, otherwise

(2)

will add the step size to the current approximation if and only if a 1 is received.
Note that this design ensures that the approximation never gets worse. It can

Robust Decentralized Mean Estimation with Limited Communication 451

only get better or stay unchanged, assuming the encoded value is a constant.
Note that both the encoder and the decoder share the same state. This is possible
because the encoder can simulate the decoder locally, thus both the encoder and
the decoder can compute the same state transition function given by

Fpivot((x̂, d, slast), s) =

⎧

⎪

⎨

⎪

⎩

(x̂ + d, 2d, s), if s = 1 ∧ slast = 1
(x̂ + d, d, s), if s = 1 ∧ slast = 0
(x̂,−d/2, s), otherwise.

(3)

Here, if d is added for the second time, we double it (assuming that the direction
is good) and if we have s = 0 then we halve the step size and reverse its direction,
assuming that adding d overshot the target. The step size is left unchanged after
its first successful application (middle line).

In order for the encoder and the decoder to share their state, they also have
to be initialized identically. The initial state ξ0 might use prior knowledge, for
example, prior information about the expected mean and the variance of the
data are good starting points for x̂ and d, respectively, but a generic value like
ξ0 = (0, 1, 0) can also be used.

3.3 Robust Push-Pull Averaging

As a first step towards the compressed algorithm, here we propose a variant
of push-pull averaging (Algorithm1) that is robust to message loss and delay
and that also allows for the application of codecs later on. We assume that the
links are directed. This means that if both A → B and B → A exist, they
are independent links. Over a given directed link there is a series of attempted
push-pull exchanges with push messages flowing along the link and the answers
(pull messages) moving in the opposite direction. The algorithm ensures that
both ends of each link will eventually agree on the flow over the link. This will
ensure a sum preservation (also called mass conservation) property which we
prove below.

The algorithm is similar to traditional push-pull averaging in that the nodes
exchange their values first. However, as a generalization the new value will not
be the average of the two values, but instead a difference δ is computed at both
sides using a “learning rate” parameter η ∈ (0, 1], where δ can be viewed as
the amount of material being transferred by the given push-pull exchange. Note
that both sides can compute the same δ (with opposite signs) independently as
they both know the two raw values and they have the same parameter η. Here,
η = 1 results in the traditional variant, and smaller values allow for stabilizing
convergence when the push-pull exchanges are not atomic, in which case—despite
sum-preservation—convergence is not guaranteed.

As for ensuring sum preservation, we assign an increasing unique ID to all
push-pull exchanges. Using these IDs we simply drop out-of-order push messages.
Dropping push messages has no effect on the update counters and the local
approximations so no further repair action is needed. When the pull message
arrives in time, the update is performed, and since the sender of the pull message

452 G. Danner and M. Jelasity

Algorithm 1. Robust push-pull
1: x is the local approximation of the average, initially the local value to be averaged.

2: ui,in and ui,out record the number of times the local value was updated as a result of an
incoming push or pull message from i, respectively.

3: si is the value that was sent in the last push message to i.
4: δi,out, δi,in are the last push, or pull transfers to i, respectively.

5: idi is the current unique ID created when sending the latest push message to i, initially 0.

6: idmax,i is the maximal unique ID received in any push message from i, initially −∞.
7:
8: procedure onNextCycle � called every Δ time units

9: i ← randomOutNeighbor()
10: si ← x

11: idi ← idi + 1
12: send push message (ui,out, si, idi) to node i

13:
14: procedure onPushMessage(u, s, id, i) � received from node i
15: if idmax,i < id then

16: idmax,i ← id
17: if u < ui,in then � last pull has not arrived, roll back corresponding update
18: x ← x + δi,in
19: ui,in ← ui,in − 1

20: send pull message (x, id) to node i
21: update(i, in, x, s)

22:
23: procedure onPullMessage(s, id, i) � received from node i
24: if idi = id then

25: update(i, out, si, s)

26:
27: procedure update(i, d, sloc, srem)

28: ui,d ← ui,d + 1
29: δi,d ← η · 1

2
(sloc − srem)

30: x ← x − δi,d

(say, node B) has already performed the same identical update (using the same
δ), the state of the network is consistent. If, however, the pull message was
dropped or delayed then the update performed by node B has to be rolled back.
This is done when B receives the next push message and learns (with the help
of the update counters) that its previous pull message had not been received in
time. The update can be rolled back using δ, which ensures that the sum in the
network is preserved.

After this intuitive explanation, let us describe the sum-preservation property
in formal terms. For this, let us assume that there exists a time t after which
there are no failures (message drop or delay). We will show that after time t the
sum of the approximations will eventually be the same as the original sum of
local values.

Definition 1. We say that, over link A → B, a successful transaction with ID
j is completed when node A receives a pull message with id = j from node B
before sending the next push message with id = j + 1 to B.

Robust Decentralized Mean Estimation with Limited Communication 453

Let jk be the ID of the kth successful transaction over link A → B, and let
j0 = 0. For any variable v of Algorithm 1, let vX denote the value of variable v
at node X.

Theorem 1. For any index K ≥ 0, right after processing the pull message from
B to A of a successful transaction jK (or for K = 0 right after initialization),
A and B agree on the total amount of mass transferred over the link A → B,
furthermore, uA

B,out = uB
A,in = K holds.

Proof. The theorem trivially holds for K = 0. Assume that the theorem holds
for K = k − 1. We show that it holds for K = k as well. First of all, line 25 is
executed if and only if the transaction is successful. Then, uA

B,out is incremented
by 1, therefore uA

B,out = k indeed holds right after the kth successful transaction.
As for uB

A,in, the inductive assumption states that uB
A,in = k − 1 right after

the (k − 1)-th successful transaction. After this point, there will be a series of
incoming push messages that are not out of order with IDs i1, . . . , in such that
jk−1 < i1 < · · · < in = jk, where jk is the ID of the kth successful transaction.
These incoming messages are assumed to be processed sequentially. In all of
these push messages we will have u = k − 1. It follows that after processing i1
we will have uB

A,in = k and after processing each new message i2, . . . , in we will
still have uB

A,in = k. This means we have uA
B,out = uB

A,in = k right after the
successful transaction jk.

Let us turn to the transferred mass, and show that after the kth successful
transaction A and B will add or remove, respectively, the same δ mass from
their current approximations. This is analogous to our previous reasoning about
the counters uA

B,out and uB
A,in, exploiting the observation that only at most one

update has to be rolled back between consecutive updates (which can be done
due to recording δBA,in) until the correct update occurs. Also, due to recording sAB
both A and B can compute the same δ despite the delay at A between sending
the push message and updating after receiving the pull message.

Corollary 1. After time t push-pull exchanges become atomic transactions so
after a new push message is sent on each link, each pair of nodes will agree on
the transferred amount of mass, resulting in global mass conservation. Also, the
algorithm will become equivalent to the atomic push-pull averaging (for η = 1),
for which convergence has also been shown [6].

Note that if the message delay is much longer than the gossip period Δ then
progress becomes almost impossible, because sending a new push message over
a link will often happen sooner than the arrival of the pull message (the reply
to the previous push message), so the pull message will be dropped. Therefore,
the gossip period should be longer than the average delay. In particular, if the
gossip period is at least twice as large as the maximal message delay then no
pull messages will be dropped due to delay.

Transactions over different links are allowed to overlap in time. When this
happens, it is possible that the variance of the values will temporarily increase,

454 G. Danner and M. Jelasity

although the sum of the values will remain constant. In networks where transac-
tions overlap to a great degree, it is advisable to set the parameter η to a lower
value to increase stability.

3.4 Compressed Push-Pull Averaging

Here, we describe the compressed variant of push-pull averaging, as shown in
Algorithm 2. Although the algorithm is very similar to Algorithm1, we still
present the full pseudocode for clarity. Let us first ignore all the f variables.
The algorithm is still correct without keeping track of the f values, these are
needed to achieve a smoothing effect that we explain later on. Without the f
values, the algorithm is best understood as a compressed variant of Algorithm1
where values are encoded before sending and decoded after reception. There are
some small but important additional details that we explain shortly.

Algorithm 2. Compressed smooth push-pull
1: ξi,in,loc, ξi,in,rem, ξi,out,loc, ξi,out,rem ∈ Ξ are the states of the codecs for the local node

and remote node i, initially ξ0.
2: fi,in, fi,out are the amounts of mass transferred so far to i, initially 0.
3: ξi,in′,loc, ξi,in′,rem, and fi,in′ are the previous values of ξi,in,loc, ξi,in,rem, and fi,in, ini-

tially ξ0, ξ0, and 0, respectively.
4:
5: procedure onNextCycle � called every Δ time units

6: i ← randomOutNeighbor()
7: si ← Q(ξi,out,loc, x + fi,out)

8: idi ← idi + 1
9: send push message (ui,out, si, idi) to node i

10:
11: procedure onPushMessage(u, s, id, i) � received from node i
12: if idmax,i < id then
13: idmax,i ← id

14: if u < ui,in then � last pull has not arrived, roll back corresponding update
15: x ← x + δi,in
16: ui,in ← ui,in − 1

17: (ξi,in,loc, ξi,in,rem, fi,in) ← (ξi,in′,loc, ξi,in′,rem, fi,in′)

18: spull ← Q(ξi,in,loc, x + fi,in)
19: (ξi,in′,loc, ξi,in′,rem, fi,in′) ← (ξi,in,loc, ξi,in,rem, fi,in)
20: send pull message (spull, id) to node i
21: update(i, in, spull, s)

22:
23: procedure onPullMessage(s, id, i) � received from node i

24: if idi = id then
25: update(i, out, si, s)

26:
27: procedure update(i, d, sloc, srem)

28: ui,d ← ui,d + 1
29: δi,d ← η · 1

2
(K(ξi,d,loc, sloc) − K(ξi,d,rem, srem) − 2fi,d)

30: (ξi,d,loc, ξi,d,rem, fi,d) ← (F (ξi,d,loc, sloc), F (ξi,d,rem, srem), fi,d + δi,d)

31: x ← x − δi,d

Robust Decentralized Mean Estimation with Limited Communication 455

In the messages, the value of x is compressed, but the u and id values are
not. This is not an issue, however, because our main motivation is the applica-
tion scenario where x is a large vector of real numbers. The amortized cost of
transmitting two uncompressed integers can safely be ignored.

The algorithm works with any codec that is given by the definition of the
state space Ξ, the alphabet S, and the functions Q, F and K, as described
previously. We maintain a codec for every link and for every direction. That is,
for every directed link (j, i) there is a codec for the direction j → i as well as
j ← i. For the j → i direction, node j stores the codec state (used for encoding
push messages) in ξi,out,loc and for the j ← i direction the codec (used for
decoding pull messages) is stored in ξi,out,rem at node j. In this notation, “out”
means that the given codecs are associated with the outgoing link. The states
for the incoming links are stored in a similar fashion.

Recall that codecs must have identical states at both ends of the link and
this state is used for encoding and decoding as well. For example, the codec
state ξi,out,loc at node j for the direction j → i should be the same as ξj,in,rem
at node i. This requirement is implemented similarly to the calculation of δ in
Algorithm 1. The codec state transitions, too, are calculated at both ends of
each link independently, but based on shared information, so both nodes can
follow the same state transition path, assuming also that the states have the
same initial value ξ0. This state transition is computed right after computing δ,
in line 30.

Apart from δ, here we also need the previous codec states for rolling the last
update back if a pull message was dropped or delayed. To this end, the codec
states are backed up (line 19) and are rolled back when needed (line 17).

When calculating δ, we must take into account the fact that encoding and
decoding typically introduces an error. Therefore, in order to make sure that
both nodes compute the same δ, both nodes have to simulate the decoder at the
other node, and work with the decoded value instead of the exact value that was
sent (line 29). Fortunately, this can be done, since the state of the decoder at
the other node can be tracked locally, as explained previously. However, since
we are no longer working with the exact values, there is no guarantee that every
update will actually reduce variance over the network, so it is advisable to set η
to a value less than one.

3.5 Flow Compensation

So far we have ignored the f variables in Algorithm 2. The purpose of these vari-
ables is to make compression more efficient by making the transmitted values
over the same link more similar to each other. This way, good stateful adaptive
codecs can adjust their parameters to the right range achieving better compres-
sion.

The f values capture the flow over the given link. This approach was inspired
by flow-based approaches to averaging to achieve robustness to message loss [7,
14]. However, our goal here is not to achieve robustness, but rather to reduce
fluctuations in the transmitted values. The algorithm accumulates these flows

456 G. Danner and M. Jelasity

for each link in both directions. In addition, the flow value is added to the
transmitted value. This has a smoothing effect, because if a large δ value was
computed over some link (that is, the value of x changed by a large amount),
then the sum of x and the flow will still stay very similar the next time the link
is used. The beneficial effect of this on compression will be demonstrated in our
experimental study.

Clearly, both nodes can still compute the same δ locally, because the flow
value is also known at both ends of a link, only the sign will differ. Hence we
can apply the formula in line 29.

4 Simulation Results

We evaluate our algorithms in simulation using PeerSim [12]. Apart from the
modified push-pull protocol presented here, we experiment with the synchronized
version of average consensus, the most well-known algorithm in related work in
connection with quantized communication. In addition, we study a set of codecs
and combine these with the two algorithms (synchronized iteration and our push-
pull gossip). This way, both the codecs and the algorithms can be compared, as
well as their different combinations.

Synchronized average consensus is described, for example, in [1]. The idea
in a nutshell is that—assuming the values of the nodes are stored in a vector
x(t) at time t—if the adjacency matrix A of the nodes is invertible and doubly
stochastic then the iteration x(t + 1) = Ax(t) will converge to a vector in which
all the elements are equal to the average of the original values. The distributed
implementation of such an iteration requires strong synchronization. Quantized
and compressed solutions in related work focus on such approaches, as well as
slightly more relaxed versions where the adjacency matrix can be different in
each iteration, but the different iterations can never overlap.

The codecs we test include simple floating point quantization (F16, F32)
assuming a floating point representation of 16 and 32 bits (half and single pre-
cision, respectively). Here, the codec is stateless, and decoding is the identity
mapping. Encoding involves finding the numerically closest floating point value.

We also include the zoom in - zoom out codec (Zoom) of Carli et al. [3]. We
cannot present this codec in full detail due to lack of space, but the basic idea is
that an m-level quantization is applied such that there is a quantizer mapping
to m−2 equidistant points within the [−1, 1] interval and the values -1 and 1 are
also possible levels used for mapping values that are outside the interval. The
codec state also includes a dynamically changing scaling factor that scales this
interval according to the values being transferred. This codec resembles the pivot
codec we proposed, and to the best of our knowledge this is the state of the art
dynamic adaptive codec. Note that the minimal number of quantization levels
(or alphabet size) is 3, when m = 3. The codec has two additional parameters:
zin ∈ (0, 1) and zout > 1. The first determines the zoom-in factor and the second
is the zoom-out factor. We fix the setting zout = 2 based on the recommendation
of the authors and our own preliminary results.

Robust Decentralized Mean Estimation with Limited Communication 457

4.1 Experimental Setup

The network size is N = 5,000, and the results are the average of 5 runs. We also
simulated a select subset of algorithms with N = 500,000 (single run) in order to
demonstrate scalability. The overlay network is defined by a k-out network, where
k = 5 or k = 20. In the case of synchronized average consensus, we transform this
network into a doubly stochastic adjacency matrix A by dropping directionality
and setting the weights on the links using the well-known Metropolis-Hastings
algorithm: Aij = 1/(1 + max(di, dj)), where di is the degree of node i. Loop
edges are also added with weight Aii = 1 − ∑

j �=i Aij .
The initial distribution of values is given by the worst case scenario when

one node has a value of 1, and all the other nodes have 0. This way, the true
average is 1/N (where N is the network size). Our performance metric is the
mean squared distance from the true average. We study the mean squared error
as a function of the number of bits that are transferred by an average node to
average a single value. Recall that we assume that many values are averaged
simultaneously (we work with a large vector) so network latency can be ignored.
This means that the number of transmitted bits can be converted into wall-clock
time if one fixes a common bandwidth value for all the nodes.

We examine the value of the parameter η (see Algorithm 1) using a range
depending on the actual codec (we determined the optimal value for each scenario
and experimented with neighboring values). We also vary the cycle length Δ. We
experiment with short and long cycles. When using short cycles, the round-trip
time of a message is assumed to be 98% of the cycle length. With long cycles, the

10-30

10-25

10-20

10-15

10-10

10-5

 500 1000 1500 2000

m
ea

n
sq

ua
re

d
er

ro
r

bits transferred per node

F32
F16
zoom
pivot

10-30

10-25

10-20

10-15

10-10

10-5

 500 1000 1500 2000

m
ea

n
sq

ua
re

d
er

ro
r

bits transferred per node

F32, k=20
F32, k=5
F16, k=20
F16, k=5
zoom
pivot

10-30

10-25

10-20

10-15

10-10

10-5

 500 1000 1500 2000

m
ea

n
sq

ua
re

d
er

ro
r

bits transferred per node

F32
F16
zoom
pivot

10-30

10-25

10-20

10-15

10-10

10-5

 500 1000 1500 2000

m
ea

n
sq

ua
re

d
er

ro
r

bits transferred per node

F32, k=20
F32, k=5
F16, k=20
F16, k=5
zoom
pivot

Fig. 1. Comparison of codecs in push-pull with no message drop (left) and a 5% mes-
sage drop (right) with short cycles (top) and long cycles (bottom). The parameters of
all of the codecs have been optimized.

458 G. Danner and M. Jelasity

10-30

10-25

10-20

10-15

10-10

10-5

 500 1000 1500 2000

m
ea

n
sq

ua
re

d
er

ro
r

bits transferred per node

η=1, k=20
η=1/2, k=20
η=1/4, k=20
η=1, k=5
η=1/2, k=5
η=1/4, k=5

10-30

10-25

10-20

10-15

10-10

10-5

 500 1000 1500 2000

m
ea

n
sq

ua
re

d
er

ro
r

bits transferred per node

η=1, k=20
η=1/2, k=20
η=1/4, k=20
η=1, k=5
η=1/2, k=5
η=1/4, k=5

Fig. 2. The effect of parameters η and neighborhood size k on the pivot codec, with
no message drop (left) and a 5% message drop (right).

round trip time is assumed to be only 2% of the cycle length. The motivation of
looking at these two extreme scenarios is that in the latter case messages overlap
to a much lesser extent than in the former case. Thus, we wish to demonstrate
that our solutions are robust to short cycles. As for failures, we simulate message
drop failure, where the message drop rate is either 0% or 5%.

4.2 Results

Figure 1 gives a comparison of the performance of different codecs when using our
push-pull algorithm. The parameters were optimized for every codec using a grid
search in the space η ∈ {20, 2−1, . . . , 2−4}, k ∈ {5, 20}, zin ∈ {0.35, 0.4, . . . , 0.85}
and m ∈ {4, 8, 16}. In all the four scenarios shown on the plots, the best param-
eter settings were η = 1/2 and k = 5 for the pivot codec and η = 1/4, k = 5,
m = 4, and zin = 0.55 for the zooming codec. For the floating point codecs,
η = 1/2 and η = 1 were the best for short and long cycles, respectively, and
k = 20 was the best without message drop. With message drop, the floating
point codecs are more stable with k = 5 but they converge slightly faster with
k = 20, especially with short cycles. The pivot codec clearly dominates the other
alternatives.

The difference between k = 5 and k = 20 is that in the former case more
transactions are performed over a given fixed link. In the case of the stateless
codecs, this means that k = 5 results in a more stable convergence because
errors are corrected faster, but with k = 20 the correlation between consecutive
updates over a fixed link are lower which results in a faster initial convergence.
In the case of the pivot codec, Fig. 2 illustrates the effect of parameters η and
k. It is clear that the algorithm is robust to η, however, parameter k has a
significant effect. Unlike the stateless codecs, the pivot codec benefits from a
somewhat larger correlation between updates as well as the higher frequency of
the updates over a link since these allow for a better prediction of the value at
the other end of the link. The zooming codec has a similar behavior (not shown),
and we predict that every stateful codec prefers smaller neighborhoods.

Figure 3 presents a similar comparison using the synchronized average con-
sensus algorithm. Note that here, the long and short cycle variants behave

Robust Decentralized Mean Estimation with Limited Communication 459

10-30

10-25

10-20

10-15

10-10

10-5

 500 1000 1500 2000

m
ea

n
sq

ua
re

d
er

ro
r

bits transferred per node

F32
F16
zoom
pivot

Fig. 3. Comparison of codecs in synchronized average consensus. The parameters of
all of the codecs are optimized.

10-30

10-25

10-20

10-15

10-10

10-5

 500 1000 1500 2000

m
ea

n
sq

ua
re

d
er

ro
r

bits transferred per node

F32
F16
zoom
pivot

10-30

10-25

10-20

10-15

10-10

10-5

 500 1000 1500 2000

m
ea

n
sq

ua
re

d
er

ro
r

bits transferred per node

F32
F16
zoom
pivot

Fig. 4. Comparison of codecs with network size N = 500,000 (left) and without the
flow compensation technique (with N = 5,000, right).

identically. Again, the parameters were optimized for every codec and the best
parameter settings were η = 1/2 and k = 5 for the pivot codec, η = 1 and k = 5
for the floating point codecs, and η = 1, k = 5, m = 8, and zin = 0.45 for the
zooming codec. Again, the pivot codec dominates the other alternatives. Fur-
thermore, note that, for the pivot codec, the optimal parameters are the same as
those in the case of the push-pull algorithm. This suggests that these parameters
are robust.

Figures 1 and 3 allow us to compare the push-pull algorithm with the syn-
chronized algorithm. It is clear that all the codecs perform better with push-pull
than with the synchronized algorithm. This implies that the push-pull algorithm
is a better choice for compression, independently of the selected codec.

Figure 4 contains two remaining observations. First, it demonstrates that the
mean squared error of push-pull gossip does not depend on network size as the
results with N = 500,000 (left plot) are very similar to those with N = 5,000
(Fig. 1, top left). This is not surprising as this is predicted by theory when no
compression is applied [6].

Second, Fig. 4 (right) shows the effect of the flow compensation technique
introduced in Algorithm2, where we used the f variables to smooth the stream of
values over each link. As before, we optimized the parameters for all the codecs.
The optimal parameter value for the pivot codec turned out to be η = 1/8
and k = 5. This means that if we drastically reduce η, thus smoothing the

460 G. Danner and M. Jelasity

transactions much more aggressively with this alternative technique, the pivot
codec still dominates the other codecs. However, we are not able to get the
same compression rate we could achieve with flow compensation (Fig. 1) so the
flow compensation technique is a valuable addition to the protocol. The other
codecs have the same optimal parameters as with flow compensation. Note that
the zooming codec also benefits from flow compensation, although to a lesser
extent. We also observed that the zooming codec is very sensitive to zin in this
case, small deviations from the optimal value result in a dramatic performance
loss (not shown).

5 Conclusions

In this paper we presented two contributions, namely a novel push-pull algorithm
for computing the average, and a novel codec (called pivot codec) for compressed
communication. These two contributions are orthogonal, because the push-pull
algorithm can be used with any codec and the pivot codec can be used with any
distributed algorithm that supports codecs.

The original features of the push pull algorithm include a mechanism to tol-
erate message drop failure, and a technique to support overlapping transactions
with different neighbors. We also added a mechanism that we called flow compen-
sation, which makes the stream of values over a given link smoother to improve
compression. Another smoothing technique is a learning rate parameter η that
controls the magnitude of each transaction. The pivot codec that we introduced
is based on the intuition that in decentralized aggregation algorithms the values
sent over a link are often correlated so compressing the stream is in fact similar
to trying to guess a constant value on the other side of an overlay link.

We demonstrated experimentally that the novel codec is superior in the sce-
narios we studied in terms of the compression rate. We also demonstrated that
the flow compensation mechanism indeed improves performance, although the
pivot codec dominates the other codecs from related work even without the flow
compensation mechanism. We saw that the push-pull protocol is highly robust
to overlapping transactions as well, and in general outperforms the synchronized
iteration algorithm independently of the codec used.

References

1. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms.
IEEE Trans. Inf. Theory 52(6), 2508–2530 (2006)

2. Brockett, R.W., Liberzon, D.: Quantized feedback stabilization of linear systems.
IEEE Trans. Autom. Control 45(7), 1279–1289 (2000)

3. Carli, R., Bullo, F., Zampieri, S.: Quantized average consensus via dynamic cod-
ing/decoding schemes. Int. J. Robust Nonlinear Control 20(2), 156–175 (2010)

4. Carli, R., Fagnani, F., Frasca, P., Zampieri, S.: Gossip consensus algorithms via
quantized communication. Automatica 46(1), 70–80 (2010)

5. Fu, M., Xie, L.: Finite-level quantized feedback control for linear systems. IEEE
Trans. Automatic Control 54(5), 1165–1170 (2009)

Robust Decentralized Mean Estimation with Limited Communication 461

6. Jelasity, M., Montresor, A., Babaoglu, O.: Gossip-based aggregation in large
dynamic networks. ACM Trans. Comput. Syst. 23(3), 219–252 (2005)

7. Jesus, P., Baquero, C., Almeida, P.S.: Fault-tolerant aggregation for dynamic net-
works. In: Proceedings of 29th IEEE Symposium on Reliable Distributed Systems
(SRDS), pp. 37–43 (2010)

8. Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: Proceedings of 44th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 2003) (2003)

9. Konecný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.:
Federated learning: strategies for improving communication efficiency. In: Private
Multi-Party Machine Learning (NIPS 2016 Workshop) (2016)

10. Li, T., Fu, M., Xie, L., Zhang, J.F.: Distributed consensus with limited communi-
cation data rate. IEEE Trans. Automatic Control 56(2), 279–292 (2011)

11. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
Singh, A., Zhu, J. (eds.) Proceedings of 20th International Conference on Artificial
Intelligence and Statistics. Proceedings of Machine Learning Research, vol. 54, pp.
1273–1282 (2017)

12. Montresor, A., Jelasity, M.: Peersim: a scalable P2P simulator (extended abstract).
In: Proceedings of 9th IEEE International Conference on Peer-to-Peer Computing
(P2P 2009), pp. 99–100 (2009)

13. Nair, G.N., Fagnani, F., Zampieri, S., Evans, R.J.: Feedback control under data
rate constraints: an overview. Proc. IEEE 95(1), 108–137 (2007)

14. Niederbrucker, G., Gansterer, W.N.: Robust gossip-based aggregation: A practical
point of view. In: Proceedings of Fifteenth Workshop on Algorithm Engineering
and Experiments (ALENEX), pp. 133–147 (2013)

15. Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked
multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)

16. Ratanaworabhan, P., Ke, J., Burtscher, M.: Fast lossless compression of scientific
floating-point data. In: Data Compression Conference (DCC 2006), pp. 133–142
(2006)

17. van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: a robust and scalable tech-
nology for distributed system monitoring, management, and data mining. ACM
Trans. Comput. Syst. 21(2), 164–206 (2003)

18. Suresh, A.T., Yu, F.X., Kumar, S., McMahan, H.B.: Distributed mean estimation
with limited communication. In: Proceedings of 34th International Conference on
Machine Learning, (ICML), pp. 3329–3337 (2017)

19. Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. Syst. Control
Lett. 53(1), 65–78 (2004)

20. Xiao, L., Boyd, S., Lall, S.: A scheme for robust distributed sensor fusion based on
average consensus. In: IPSN 2005: Proceedings of 4th International Symposium on
Information Processing in Sensor Networks, p. 9 (2005)

21. Zhu, M., Martinez, S.: On the convergence time of asynchronous distributed quan-
tized averaging algorithms. IEEE Trans. Automatic Control 56(2), 386–390 (2011)

Parallel and Distributed Programming,
Interfaces, and Languages

Snapshot-Based Synchronization: A Fast
Replacement for Hand-over-Hand Locking

Eran Gilad1(B), Trevor Brown2, Mark Oskin3, and Yoav Etsion1

1 Technion – Israel Institute of Technology, Haifa, Israel
erangi@cs.technion.ac.il, yetsion@tce.technion.ac.il

2 Institute of Science and Technology, Klosterneuburg, Austria
3 University of Washington, Seattle, USA

Abstract. Concurrent accesses to shared data structures must be syn-
chronized to avoid data races. Coarse-grained synchronization, which
locks the entire data structure, is easy to implement but does not scale.
Fine-grained synchronization can scale well, but can be hard to reason
about. Hand-over-hand locking, in which operations are pipelined as they
traverse the data structure, combines fine-grained synchronization with
ease of use. However, the traditional implementation suffers from inher-
ent overheads.

This paper introduces snapshot-based synchronization (SBS), a novel
hand-over-hand locking mechanism. SBS decouples the synchronization
state from the data, significantly improving cache utilization. Further, it
relies on guarantees provided by pipelining to minimize synchronization
that requires cross-thread communication. Snapshot-based synchroniza-
tion thus scales much better than traditional hand-over-hand locking,
while maintaining the same ease of use.

1 Introduction

Hand-over-hand locking1 is a fine-grained synchronization technique that pre-
vent data races among concurrent operations. Commonly applied to pointer-
based data structures, operations lock nodes as they traverse the data structure.
In order to prevent bypassing, a node’s lock is released by the owning operation
only after it acquires the next node’s lock. Generally, operations that traverse
the same path are pipelined. As the pattern guarantees a node will not be con-
currently accessed by two threads, data races are avoided.

The fine nature of hand-over-hand locking exposes more parallelism. Given
each thread locks at most two nodes at once, multiple threads can operate on
a data structure concurrently. Threads are ordered, namely one is forced to
wait for another, only when trying to access the same node. In a tree, ordering
always applies to the root, as locks are associated with nodes. However, threads
operating on different branches need not be ordered once their paths diverge.

1 Also known as lock coupling, chain locking, latch coupling, crabbing etc.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 465–479, 2018.
https://doi.org/10.1007/978-3-319-96983-1_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_33&domain=pdf

466 E. Gilad et al.

The concept of hand-over-hand locking is appealing: fine-grained locking
exposes large amounts of parallelism, and ordering provides thread safety. Order-
ing also makes hand-over-hand locking easy to apply to sequential data struc-
tures (that have properties discussed later), providing a quick way to parallelize
existing sequential code. Indeed, the popular textbook The Art of Multiproces-
sor Programming [1] uses hand-over-hand locking to demonstrate fine-grained
locking. However, näıve hand-over-hand locking suffers from a few inherent lim-
itations, causing it to be rarely used in the real world.

Poor Cache Utilization: Memory latencies are the most significant short-
coming of hand-over-hand locking. Acquiring and releasing per-node locks cause
memory state modifications. As a thread makes its way to a certain node, it
modifies the state of each node it passes. The modification is not performed on
the data that the data structure is designed to hold (keys, values and pointers)
but rather to the state of each node’s lock. Consequently, even read-only accesses
still require changes to memory for each node accessed. In the memory system,
writes to a node that are performed on one core invalidate any cached copies of
that node on other cores. Accessing nodes that are not in the cache can be two
orders of magnitude slower than accessing cached nodes. Given a large enough
number of threads operating on the same data structure, the overhead incurred
by poor cache utilization can exceed the potential benefits of parallelism.

Entrance Bottleneck: Locking each node during traversal provides thread
safety, but also turns the entrance to the data structure into a bottleneck. Con-
sider operations on a tree: as every thread must go through the root, the root’s
lock effectively serializes all accesses. While parallelism increases as threads
diverge in the tree, the serialized entrance caps potential speedup on parallel
execution. The effect of the bottleneck is determined by the number of threads
and the depth of the tree, which yield a ratio between threads actively traversing
the tree and threads stalled at the entrance.

Extra Locking: As each node is associated with a different lock, moving from
one node to the next requires both to be locked at the beginning of the transi-
tion. Albeit for a short while, the extra locking delays the divergence of threads
that share an initial prefix of their paths. This initial prefix always includes the
entrance of the data structure, which should be evacuated quickly.

1.1 Snapshot-Based Synchronization

Snapshot-based synchronization is designed to address the shortcomings of basic
hand-over-hand locking while maintaining the same ease of use. The fundamental
insights driving snapshot-based synchronization are: (1) the number of locations
that must be locked at any given moment is bound by the number of threads,
not the number of nodes; and (2) as long as nodes are locked in the correct order,

Snapshot-Based Synchronization: A Fast Replacement 467

N2

N1

N3

N4 N5 N6

T1 : N2 T2 : N3

T1 T2

T3

(a) T3 enters. Snapshot: T1 at
N2, T2 at N3

N2

N1

N3

N4 N5 N6

T1 : N2 T2 : N3

T1 T2

T3

(b) T3 can’t access N2 - snap-
shot indicates T1 might be there

N2

N1

N3

N4 N5 N6

T1 : N4 T2 : N3

1

2

T1

T3

(c) After loading T1’s new loca-
tion, T3 can proceed

Fig. 1. (a) Thread T3 creates a snapshot when entering tree; (b) uses it to detect
potential collision; and (c) moves on after ensuring T1 is no longer at N2.

a thread cannot overtake (namely, race with) the thread in front of it, even if it
somehow gets a delayed view of the first thread’s traversal.

Building on those insights, snapshot-based synchronization decouples locks
from nodes and associates them with threads. Each lock is then dynamically
assigned to a single memory location, which represents the location of the node
currently accessed by the thread. At any given moment, the set of locked loca-
tions can be considered to be a snapshot of all threads’ locations. As depicted in
Fig. 1, a thread that obtains such a snapshot when entering the data structure
can query it throughout the traversal; as long as a node it wishes to access is not
in the snapshot, the thread can freely access that node. If the node’s location
happens to exist in the snapshot, the current thread must wait until the thread
at that location moves on.

Snapshot-based synchronization’s main component is therefore the snapshot,
which marks the locations of all other threads when taken. As threads move on,
the snapshot quickly becomes outdated. However, observing outdated location
can merely cause unnecessary waits; necessary waits to threads traversing the
same path will never be missed. Crucially, since threads that complete an oper-
ation can reenter the data structure, a snapshot cannot be used indefinitely, and
a thread must obtain a fresh snapshot at the beginning of each operation.

To facilitate location-based synchronization, threads must report their where-
about in a place that is visible to other threads. Reporting should take place
often to reduce unnecessary stalls caused by false synchronization. However, the
use of snapshots allows location reports to be seldom read – only when a snapshot
indicates possible contention must a thread reload the locations of the others.

2 Snapshot-Based Synchronization Design

In this section we describe the basic design of snapshot-based synchronization
and its core components. While the basic design overcomes most of the limita-
tions of hand-over-hand locking, some are rooted deep in the pipelining pattern.
Optimizations that address those limitations are discussed on the next section.

Hand-over-hand locking pipelines threads that traverse the same path. In
other words, a thread can access a node that was locked by the thread in front

468 E. Gilad et al.

Table 1. API for hand-over-hand vs. snapshot-based synchronization

Operation Hand-over-hand Snapshot-based sync.

Lock head head–>lock() moveToHead(head)

Before accessing node node–>lock() waitForLoc(node)

After access granted prev–>unlock() moveToLoc(node)

of it only once the leading thread moved on and unlocked the node. Bypassing
within such a pipeline is impossible, so data races are avoided. Threads whose
paths diverge are no longer synchronized, consequently hand-over-hand locking
is only applicable to data structures that have no cycles (and algorithms that
introduce no such cycles by, say, revisiting a node during a rebalancing phase).
Snapshot-based synchronization is designed as a substitute for hand-over-hand
locking, and its correctness is guaranteed only when the latter is safe. Graph
data structures that have cycles, for instance, can neither be synchronized using
hand-over-hand nor using snapshot-based synchronization.

The central component of snapshot-based synchronization is the snapshot. As
depicted in Fig. 1, when a thread enters the data structure, it records the location
of all other threads. Before the thread moves to another location, it checks if the
snapshot recorded any other thread at that location. If so, it must not access the
location until it verifies the other thread has moved. This verification is done by
obtaining the latest location of the other thread (and possibly additional ones,
as discussed later). Consequently, each thread must report its current location
once it moves.

Snapshot-based synchronization manages two kinds of data: private (per
thread) and public (shared). Snapshot-based synchronization reduces cross-
thread communication by serving most reads from private data, falling back
to reading public data only when encountering possible contention. Each thread
stores the snapshot in private memory. The current location of each thread, on
the other hand, is stored publicly and is available to all other threads. However,
public data is read only when a snapshot must be created or updated.

Snapshot-based synchronization leverages modern hardware features to
reduce overheads: loads from local caches are much faster than loads from main
memory, and stores do not stall subsequent operations. The snapshot is read
often but can be efficiently cached. Threads frequently report their locations
publicly, but due to micro-architecture features such as out-of-order execution
and store buffers, location reports do not stall subsequent instructions even if
they incur a cache miss.

2.1 Interface and Algorithms

Snapshot-based synchronization’s interface is similar to hand-over-hand lock-
ing’s, and converting code using the latter to the former is straightforward.
However, the underlying operations differ significantly, and the interface naming

Snapshot-Based Synchronization: A Fast Replacement 469

represents the actual semantics. Briefly, when using snapshot-based synchro-
nization, operations must start with a call to moveToHead. Before accessing a
location, waitForLoc must be called to make sure no other thread is present
at that location. Lastly, moveToLoc is used to publish the new location of the
thread, preventing others from accessing it. Table 1 compares the two interfaces.

moveToHead. Since most synchronization is done using the private snapshot,
it is crucial that the snapshot is sufficiently up-to-date. In particular, a snapshot
must include the location of each thread that entered the data structure before the
current thread and has not completed its operation yet. Using a snapshot that
does not include all threads ahead might yield a race.

The pipelining pattern must be maintained by snapshot creation as well.
A snapshot is used to ensure a thread does not bypass (race with) threads in
front of it. Given all threads enter the data structure via a single entry point, a
snapshot must be created right before attempting to enter and must record all
threads ahead. However, the snapshot needs not include threads that are behind
in the pipeline – it is up to those threads behind to make sure they stay behind.

The moveToHead operation is implemented as follows:

1. Establish ordering among threads competing at the entrance.
2. Once the leading thread allows, create a snapshot by gathering the locations

of all threads ahead.
3. Wait for the entrance to become available.
4. Move to the entrance and update current location.
5. Allow following thread to create a snapshot.

Two threads must not create a snapshot at the same time. Doing so will cause
both to miss each other, and since one will eventually enter ahead of the other,
the missing location will cause a race.

A significant part of entering the data structure requires serialization. Mea-
sures must therefore be taken to mitigate the bottleneck. Those measures are
detailed in Sect. 3. moveToHead has no equivalent operation in hand-over-hand.
Instead, in hand-over-hand the order in which threads lock the root of the data
structure determines the order in which they will lock (and access) all other
nodes, until their paths diverge.

waitForLoc. Before a thread can access a location, it must make sure no other
thread will concurrently modify that location. To do so, the thread must:

1. Check if the snapshot contains any other thread at that location.
2. If no thread was observed at that location, waitForLoc can safely return.
3. Else, the current thread must wait until the thread ahead moves.
4. Update its snapshot.

The minimal update of the snapshot depends on the modifications done by
the data structure algorithms. Consider a thread T1, which executes an operation

470 E. Gilad et al.

N2

N1

N3

T2

T1

1

1

(a) T1 locks all N1, preventing
T2 from moving towards N3

N2

N1

N3

T2
T1

1 2

(b) T1 locks the pointer to N2,
allowing T2 to move to N3

Fig. 2. Locking nodes vs. locking pointers. The latter allows more parallelism.

that does not modify the layout of the data structure (e.g., updates a value in a
binary search tree), and a thread T2 which is behind T1. If T2 waits for T1 before
accessing some location, only T1’s location must be updated in T2’s snapshot.
However, if T1 deletes a node, it might prevent T2 from waiting to some T0 that
T2 observed at the deleted node. In such cases, T2’s snapshot must be recreated.

moveToLoc. Moving to the next location is simple: a thread just updates
its publicly visible location. This move is equivalent to locking the next node
and unlocking the previous one in hand-over-hand. The overhead, however, is
noticeably lower: the state of involved nodes is not changed, and only one location
is locked at any given moment. Hand-over-hand’s excessive locking is due to the
lack of support for a single atomic modification of multiple memory locations in
current hardware2, which does not allow two locks to be modified at once.

2.2 Locking Granularity

Hand-over-hand relies on locks, and must therefore bind a lock to every object
it wishes to protect. The most natural locking granularity is one lock per node3.
Locking a node prevents all its fields from being accessed by other threads.
Consider a tree in which node N1 points to N2 and N3, depicted in Fig. 2a.
Thread T1 locks N1, and is now considering whether it needs to delete N2 (which
will also involve modifying the pointer on N1). Thread T2 is heading towards
N3, but must pass through N1. While neither N2 nor the pointer to N2 will be
accessed by T2, per-node locking will force T2 to wait until T1 unlocks N1.

Snapshot-based synchronization does not use lock objects, and instead
(semantically) locks memory locations. Consequently, locking can be done at any
desired granularity. The one we had found most useful is per pointer. Consider
the previous example; as depicted in Fig. 2b, on a per-pointer synchronization
scheme, T1 would have locked the pointer to N2. T2 could have then check N1’s
key, determine it needs to go to N3, and freely move on without being stalled by

2 Hardware transactional memory does allow multiple modifications to happen effec-
tively atomically, but is not ubiquitous. We discuss software TM in Sect. 4.

3 A lock array can service any number of nodes using some hash function but might
cause deadlocks, and in our experiments, not faster than storing locks as node fields.

Snapshot-Based Synchronization: A Fast Replacement 471

T1. On lower parts of the tree, threads usually diverge and locking granularity
has little effect. However, contention is a major problem at the top of the tree,
and locking pointers eliminates unneeded synchronizations.

3 Optimized Implementation

The basic snapshot-based synchronization scheme eliminates hand-over-hand’s
poor cache utilization and excessive locking overheads. However, the root of the
data structure remains a bottleneck. Creating a snapshot involves reading the
current locations of all threads. Since the locations are constantly being updated
by the reporting threads, creating a snapshot incurs multiple cache misses. Given
snapshots cannot be created in parallel, taking a snapshot before entering the
data structure serializes execution for a large portion of the run. In this section,
we discuss major optimizations that improve snapshot-based synchronization’s
efficiency, and in particular mitigate the entrance bottleneck.

3.1 Copying Snapshots

Creating a snapshot involves accessing data constantly updated, incurring mul-
tiple cache misses. To avoid creating a snapshot from scratch, a thread can copy
the snapshot used by the immediate leading thread. If the complete snapshot
resides on a single cache line, copying incurs a single cache miss.

Snapshots can only be copied from the thread that entered immediately
before the thread that needs the snapshot. Consider threads T1, T2 and T3 enter-
ing a data structure, in this order. T1’s snapshot is created first, thus does not
include T2’s location. If T3 copies from T1, it might race with T2. On the other
hand, if T3 copies T2’s snapshot it might obtain a somewhat stale view of T1’s
location. However, the worst outcome would be the detection of false collisions.
Importantly, care must be taken to avoid using snapshots after re-entrance into
the data structure: if T2 completes its operation, enters the data structure again
and tries to copy T3’s snapshot before T3 gets to copy T2’s, neither will have
a valid snapshot. This is a variant of the ABA problem, which we solve using
the conventional tool – timestamps. Once a thread detects it copied an invalid
snapshot, it simply falls back to creating a new one from scratch.

3.2 Deferring Snapshot Creation by Trailing

A thread that immediately follows a previous thread does not need a snapshot;
we call this state trailing. Due to the nature of pipelining, no thread can appear
between two consecutive threads. As illustrated in Fig. 3, while T2 trails T1, it
can rely on T1 to resolve any collision with threads in front of them, allowing
T2 to merely ensure it does not bypass T1. T2 can thus defer obtaining a snap-
shot until trailing breaks. Trailing thus eliminates the need to create a snapshot
before entering, significantly shortening the bottleneck. Further, trailing elim-
inates most contention points involving more than two threads, akin to MCS
locks [2].

472 E. Gilad et al.

Gate 1

Gate 2

Global

Gate

N2N1 N3

T:N T:N

T1T2

Fig. 3. Local gates order threads coming from the same NUMA node, creating chains.
The global gate orders the entrance of chains into the data structure. While trailing,
prev.’s position is examined directly without using a snapshot.

While T2 trails T1, T2 examines the location of T1 instead of checking the
snapshot. As long as T1 is still at the location T2 wishes to move to, T2 will
spin; once T1 moves, T2 can immediately follow. While this cross-thread commu-
nication is more expensive than checking a private snapshot, it is cheaper than
creating one. In the heavily-contended entrance, quickly evacuating the entrance
reduces stalls. Trailing stops as soon as T2 cannot be sure T1 passed through the
memory location it tries to access, whether because T1 moved too fast to the
next location or because T1 turned another way. Once trailing stops, T2 cannot
rely on T1 and must create (or copy) a snapshot before moving on.

3.3 NUMA Awareness

On NUMA systems, accessing remote memory (associated with another NUMA
node) is significantly slower than accessing local memory. Keeping as much cross-
thread communication within the same NUMA node can therefore reduce mem-
ory latencies. While snapshot-based synchronization is agnostic to the memory
management of the hosting data structure, adding NUMA-awareness to the syn-
chronization mechanism reduces its overhead.

Snapshot-based synchronization employs a technique that groups threads of
the same NUMA node, orders them internally, and lets them enter the data
structure in this exact order. The mechanism, depicted in Fig. 3, resembles the
one used in cohort locks [3]: a per NUMA node gate is first used to create chains
of threads belonging to that NUMA node. The head of each chain (namely the
first thread) competes over the global gate only with other heads. Once acquired,
the head closes its following chain and announces the last thread in the chain
via the global gate. The head of the next chain (probably coming from another
NUMA node) will trail the last thread in the chain in front of it.

Threads within the same chain all run on the same NUMA node. Trailing and
snapshot copying among those threads are noticeably faster than across NUMA
nodes. The ratio between local and remote communication is determined by the
length of the chains. Interestingly, if entering the data structure becomes slow
(e.g., due to some external interference) and threads accumulate at the entrance,
longer chains will be created. This in turn will provide more local communication,
allowing threads to leave the head quicker, reducing entrance time.

Snapshot-Based Synchronization: A Fast Replacement 473

3.4 Reader Synchronization

Read-only operations such as lookups are usually easier to parallelize, as they
need not synchronize with other readers (synchronization with write operations
is required, of course). In a hand-over-hand algorithm, readers can thus safely
bypass each other. This freedom could be of great use when threads enter the
data structure. Unfortunately, the straightforward readers optimization breaks
other optimizations. For instance, if writer W1 trails reader R1, and R1 bypasses
R2, then W1 will race with R2. Similarly, writers cannot copy snapshots from
readers as they might include stale locations of other readers. Our implemen-
tation includes a restricted set of reader optimizations. We do not elaborate on
them due to lack of space, and leave further reader optimizations for future work.

3.5 Putting it All Together

The optimized snapshot-based synchronization overcomes inherent limitations
of hand-over-hand: Poor cache locality is minimized by decoupling synchro-
nization state from the data structure and using a snapshot to further reduce
cross-thread communication. The entrance bottleneck is mitigated by using
NUMA-aware algorithms, deferring snapshot creation and reusing snapshots.
Extra locking is avoided by allowing an atomic move from one location to
another and by locking pointers rather than nodes. Reader synchronization
is reduced by allowing readers to bypass each other. The following section shows
snapshot-based synchronization is indeed faster than hand-over-hand locking.

4 Evaluation

In this section we compare the actual performance of snapshot-based syn-
chronization (SBS) to alternative synchronization mechanisms, revealing both
strengths and weaknesses. The alternative mechanisms are (a) traditional hand-
over-hand (HOH) and (b) software transactional memory (STM). Like SBS,
STM is a synchronization mechanism external to the data structure, which can
be used to parallelize sequential data structures. State-of-the-art concurrent data
structures can be much faster, but synchronization is deeply integrated in the
structures and associated algorithms. We therefore do not consider them com-
parable.

4.1 Experimental Setup

We perform a series of micro-benchmarks, running a mix of operations on binary
trees. We consider both integers (INT) and strings (STR) as key types – while
the former is more common in the literature, the latter is very common in real
programs, and sometimes exhibits a different behavior. All evaluations execute a
similar number of inserts and deletes, keeping the data structure size stable; we
also study the effect of the initial size. Lastly, read-write ratio on all benchmarks

474 E. Gilad et al.

0 2 4 6 8 10 12 14 16
Number of threads

0.0

1.0

2.0

3.0

4.0

M
ill
io
n
O
ps
/s
ec

SBS-INT
SBS-STR

STM-INT
STM-STR

HOH-INT
HOH-STR

Fig. 4. Scalability using 2 NUMA
nodes (init: 106)

0 2 4 6 8
Number of threads

0.0

1.0

2.0

3.0

M
ill
io
n
O
ps
/s
ec

SBS-INT
SBS-STR

STM-INT
STM-STR

HOH-INT
HOH-STR

Fig. 5. Scalability using 1 NUMA node
(init: 106)

100000 1000000 10000000 100000000
Initial tree size

0.0
1.0
2.0
3.0
4.0
5.0
6.0

M
ill
io
n
O
ps
/s
ec

SBS-INT
SBS-STR

STM-INT
STM-STR

HOH-INT
HOH-STR

Fig. 6. Effect of initial size (16 threads)

0 25 50 75
Read ops percent

0.0

1.0

2.0

3.0

4.0
M
ill
io
n
O
ps
/s
ec

SBS-INT
SBS-STR

STM-INT
STM-STR

HOH-INT
HOH-STR

Fig. 7. Effect of read-write ratio (16
threads,106 init size)

is 50–50. We do not analyze other ratios due to space limitations; in short, our
evaluation finds snapshot-based synchronization favors write-heavy workloads.

The server used has 2 NUMA nodes and Intel Xeon E5-2630 processors run-
ning at 2.4 Ghz. Hyperthreading, Turbo Boost and adjacent cache line prefetch-
ing were disabled. Each core has 32 KB L1 and 236 KB L2 caches; each processor
has a 20 MB L3 cache; and the system has 62 GB of RAM. Code was written in
C++ and compiled with GCC 7.2, which also provided the STM support.

4.2 Scalability

Figure 4 presents the throughput of all workloads running on a varying number
of threads, evenly distributed between the 2 NUMA nodes. Evidently, HOH does
not scale past 10 threads, and synchronization overhead overwhelms performance
as the number of threads increases. On the INT workloads, SBS is slightly slower
than STM. However, while STM’s scalability is consistent, SBS reaches its peak
at 14 threads. The STR workloads demonstrate different trends, as more work is
performed during traversal (mostly string comparisons, involving multiple mem-
ory accesses in a loop). Extending traversals reduces contention at the entrance,
allowing SBS to continue scaling past 16 threads. STM, however, suffers from
enlarged read and write sets, causing throughputs to drop.

Snapshot-Based Synchronization: A Fast Replacement 475

Figure 5 presents scalability when running on a single NUMA node. The
results emphasize the effect of NUMA: as cross-core communication is much
faster when running on the same NUMA node, HOH and SBS scale much bet-
ter. Most of the gain comes from entering the tree faster due to reduced cross-
thread communication latencies. STM, which does not require communication
at that point, sees little gain in this scenario. In summary, HOH and SBS are
more NUMA sensitive than STM. SBS performs best on most scenarios, but
short traversal times (INT) with long communication (NUMA) cap scaling at
14 threads.

4.3 Effect of Data Structure Size

The size of the data structure affects the duration of the traversal. As indicated
by the difference between INT and STR workloads, traversal time correlates to
entrance contention, which in turn determines scalability. Figure 6 presents the
throughput of the 6 benchmarks when running on trees of different sizes - 105,
106, 107 and 108; all using 16 threads. Accessing more memory locations as the
tree grows causes STM throughput to decrease. SBS, however, has about the
same throughput on the smaller 3 sizes. This somewhat unexpected behavior is
clearer when examining the results in the opposite direction: SBS throughput
does not increase as the tree size becomes smaller, indicating the size is not the
dominant factor. For SBS, 16 threads is the scalability limit on 107 trees; on
smaller trees, entrance is even more contended, canceling the benefit of shorter
traversals. In summary, SBS is more appropriate for trees of size 107 and higher
when using simple INT keys. When using STR keys that increase SBS traversal
times and STM’s read sets, SBS consistently performs best.

4.4 Effect of Read-Write Ratio

Since in our snapshot-based synchronization implementation readers enter the
data structure one-by-one, entrance bottleneck has a similar effect on scalability
regardless of reader-write ratio. Figure 7 shows that the write-only throughput of
SBS is equivalent to STM, but STM becomes faster as the percent of read oper-
ations is increased. Further optimizing readers could make SBS scale better, but
the implementation is non-trivial. Instead, snapshot-based synchronization can
be integrated with mechanisms such as RCU [4], combining multiple concurrent
writers with wait-free readers.

4.5 Entrance Bottleneck Analysis

Serialization at the entrance limits parallelism; we now dive deeper into this part
of execution. In our implementation, execution can be divided into 3 parts: (1)
initial ordering, (2) accessing the head, and (3) traversing the tree. The first and
last parts are mostly parallel. Accessing the head, however, can be done by a
single thread at a time. A thread can not access the head until it detected the

476 E. Gilad et al.

Table 2. Breakdown of overhead between accessing the head and allowing the following
thread to access the head.

Operation Overhead Frequency

Evacuate global gate Cache misses on local
read and remote write

Once per chain

Create a snapshot Varies Rare, due to trailing

Await node after head Varies Always

Move to node after head Sometimes cache miss
on local write

Always

Arrival of updated
location to next thread

Cache miss on read Once per chain remote miss,
otherwise local miss

previous thread moved to another node. Single-threaded execution thus takes
place between the time one thread detects it can access the head to the time the
following thread detects it can move on.

Before a thread can allow the following one to access the head, it needs to
move to another node. If the thread is the first in a chain, it must first make the
global gate available for the next chain once it accessed the head. It must then
move to the other node and report its new location. Lastly, the following thread
must read that report. The overheads of this sequence are detailed in Table 2.
In our experiments, on a 16-thread write-only SBS execution the sequence took
an average of 700 cycles. Multiplying this sequence latency by the throughput of
3M ops/s yields 2.1G cycles. The latency incurred by the traversal of the head
is the execution’s critical path, and matches our processors 2.4 GHz frequency.
In summary, Scalability is limited by the rate in which threads access the head.
Our implementation minimizes accesses to remote memory, but cache misses
that involve communication with a core residing on the same NUMA node incur
significant overhead. Serialized execution time can be reduced by either elimi-
nating operations or using faster cross-core communication; x86 MONITOR and
MWAIT, once available in user mode, are certainly of interest [5].

5 Related Work

The hand-over-hand locking scheme (also known as lock coupling, latch cou-
pling, crabbing etc.) was first described by Bayer and Schkolnick [6] as a way
to construct concurrent B-trees. It has since been used to parallelize various
data structures. As the major synchronization mechanism, it was used in linked
lists [1], B-trees [7], skip lists [8], relaxed red-black trees [9] and a Treap [10]. As a
utility for a certain part of the algorithm, it was also used in priority queues [11],
B+-trees [12,13], Blink-trees [14,15] and hash tables [16].

Data structures with properties allowing hand-over-hand synchronization
have been defined as Unipath [17] and Dominance Locking [10]. Those properties
allow serializability verification [18,19] and even automatic parallelization [10].

Snapshot-Based Synchronization: A Fast Replacement 477

Locking individual memory locations has been supported in various forms.
Lock-box [20] provided architectural support for SMT threads to lock particu-
lar addresses without using conventional synchronization mechanisms. The Syn-
chronization State Buffer [21] extended this idea to a many-core system, while
vLock [22] offered a software solution. TL2 [23] incorporated an array of locks in
an STM library, allowing a fixed (yet large) set of locks to protect any number of
locations. ROKO [24] synchronized accesses using versioning memory locations,
and O-structures [25] added renaming to eliminate false dependencies.

6 Conclusions

Hand-over-hand locking is a widespread fine-grained synchronization technique.
The simple interface makes hand-over-hand attractive, and it has been used to
parallelize multiple data structures. Furthermore, the method is simple to reason
about, allowing verification and automatic parallelization. However, fine-grained
locking comes at a price: locking causes cache misses on every node access. As
all threads enter at the same place, the top of the data structure becomes a
bottleneck that disallows scaling past a small number of threads.

Snapshot-based synchronization is a drop-in replacement for hand-over-hand
locking, but uses a very different synchronization mechanism under the hood.
Leveraging the data structure layout, private snapshots allow threads to avoid
data races without communicating with other threads. Leveraging modern hard-
ware, communication minimally interferes with the surrounding algorithm. In
our evaluation, on large data structures snapshot-based synchronization is on
average 2.6× faster than hand-over-hand locking and 1.6× faster than STM.

While its interface is simple and easy to use, Snapshot-based synchroniza-
tion’s implementation is considerably more complex than simple per-node locks.
Albeit undesired in general, complexity brings about many optimization oppor-
tunities. We consider the implementation described in this paper a baseline: other
implementations, possibly using newer hardware features, can make snapshot-
based synchronization scale even better. In particular, reducing data structure
entrance time and relaxing reader-to-reader synchronization are of interest.

Acknowledgements. This research was funded, in part, by Google and the Israel
Ministry of Science, Technology, and Space. Trevor Brown was supported in part by
the ISF (grants 2005/17 & 1749/14) and by a NSERC post-doctoral fellowship. Eran
Gilad was supported by the Hasso-Plattner Institute fellowship.

References

1. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc., Los Altos (2008)

2. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991)

478 E. Gilad et al.

3. Dice, D., Marathe, V.J., Shavit, N.: Lock cohorting: a general technique for design-
ing NUMA locks. In: Symposium on Principles and Practices of Parallel Program-
ming (PPoPP) (2012)

4. Desnoyers, M., McKenney, P.E., Stern, A.S., Dagenais, M.R., Walpole, J.: User-
level implementations of read-copy update. IEEE Trans. Parallel Distrib. Syst.
23(2), 375–382 (2012)

5. Akkan, H., Lang, M., Ionkov, L.: HPC runtime support for fast and power efficient
locking and synchronization. In: International Conference on Cluster Computing
(2013)

6. Bayer, R., Schkolnick, M.: Concurrency of operations on B-trees. Acta Inform. 9,
1–21 (1977)

7. Rodeh, O.: B-trees, shadowing, and clones. ACM Trans. Storage 3(4), 2:1–2:27
(2008)

8. Sánchez, A., Sánchez, C.: A theory of skiplists with applications to the verification
of concurrent datatypes. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi,
R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 343–358. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20398-5 25

9. Ohene-Kwofie, D., Otoo, E.J., Nimako, G.: Concurrent operations of O2-tree on
shared memory multicore architectures. In: Australasian DB Conference (ADC)
(2013)

10. Golan-Gueta, G., Bronson, N., Aiken, A., Ramalingam, G., Sagiv, M., Yahav, E.:
Automatic fine-grain locking using shape properties. In: Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA) (2011)

11. Tamir, O., Morrison, A., Rinetzky, N.: A heap-based concurrent priority queue
with mutable priorities for faster parallel algorithms. In: International Conference
on Principles of Distributed Systems (OPODIS) (2016)

12. Srinivasan, V., Carey, M.J.: Performance of B+ tree concurrency control algo-
rithms. Very Large Databases J. (JVLDB) 2(4), 361–406 (1993)

13. Mao, Y., Kohler, E., Morris, R.T.: Cache craftiness for fast multicore key-value
storage. In: European Conference on Computer Systems (EUROSYS) (2012)

14. Evangelidis, G., Lomet, D., Salzberg, B.: The hBΠ -tree: a multi-attribute index
supporting concurrency, recovery and node consolidation. Very Large Databases J.
(JVLDB) 6(1), 1–25 (1997)

15. Jaluta, I., Sippu, S., Soisalon-Soininen, E.: Concurrency control and recovery for
balanced B-link trees. Very Large Databases J. (JVLDB) 14(2), 257–277 (2005)

16. Ellis, C.S.: Distributed data structures: a case study. IEEE Trans. Comput. 34,
1178–1185 (1985)

17. Gilad, E., Mayzels, T., Raab, E., Oskin, M., Etsion, Y.: Towards a deterministic
fine-grained task ordering using multi-versioned memory. In: Computer Architec-
ture and High Performance Computing (SBAC-PAD) (2017)

18. Attiya, H., Ramalingam, G., Rinetzky, N.: Sequential verification of serializability.
In: Symposium on Principles of Programming Languages (POPL) (2010)

19. Vafeiadis, V., Herlihy, M., Hoare, T., Shapiro, M.: Proving correctness of highly-
concurrent linearisable objects. In: Symposium on Principles and Practices of Par-
allel Programming (PPoPP) (2006)

20. Tullsen, D.M., Lo, J.L., Eggers, S.J., Levy, H.M.: Supporting fine-grained syn-
chronization on a simultaneous multithreading processor. In: Symposium on High-
Performance Computer Architecture (HPCA) (1999)

21. Zhu, W., Sreedhar, V.C., Hu, Z., Gao, G.R.: Synchronization state buffer: sup-
porting efficient fine-grain synchronization on many-core architectures. In: Inter-
national Symposium on Computer Architecture (ISCA) (2007)

https://doi.org/10.1007/978-3-642-20398-5_25

Snapshot-Based Synchronization: A Fast Replacement 479

22. Yan, J., Tan, G., Zhang, X., Yao, E., Sun, N.: vLock: lock virtualization mechanism
for exploiting fine-grained parallelism in graph traversal algorithms. In: Interna-
tional Symposium on Code Generation and Optimization (CGO) (2013)

23. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC
2006. LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006). https://doi.org/
10.1007/11864219 14

24. Segulja, C., Abdelrahman, T.: Architectural support for synchronization-free deter-
ministic parallel programming. In: Symposium on High-Performance Computer
Architecture (HPCA) (2012)

25. Gilad, E., Mayzels, T., Raab, E., Oskin, M., Etsion, Y.: Architectural support for
unlimited memory versioning and renaming. In: International Parallel and Dis-
tributed Processing Symposium (IPDPS) (2018)

https://doi.org/10.1007/11864219_14
https://doi.org/10.1007/11864219_14

Measuring Multithreaded Message
Matching Misery

Whit Schonbein1,2(B), Matthew G. F. Dosanjh1, Ryan E. Grant1,2,
and Patrick G. Bridges2

1 Sandia National Laboratories, Center for Computing Research,
Albuquerque, USA

{wwschon,mdosanj,regrant}@sandia.gov
2 Department of Computer Science, University of New Mexico,

Albuquerque, USA
bridges@cs.unm.edu

Abstract. MPI usage patterns are changing as applications move
towards fully-multithreaded runtimes. However, the impact of these pat-
terns on MPI message matching is not well-studied. In particular, MPI’s
mechanic for receiver-side data placement, message matching, can be
impacted by increased message volume and nondeterminism incurred by
multithreading. While there has been significant developer interest and
work to provide an efficient MPI interface for multithreaded access, there
has not been a study showing how these patterns affect messaging pat-
terns and matching behavior. In this paper, we present a framework for
studying the effects of multithreading on MPI message matching. This
framework allows us to explore the implications of different common
communication patterns and thread-level decompositions. We present a
study of these impacts on the architecture of two of the Top 10 super-
computers (NERSC’s Cori and LANL’s Trinity). This data provides a
baseline to evaluate reasonable matching engine queue lengths, search
depths, and queue drain times under the multithreaded model. Further-
more, the study highlights surprising results on the challenge posed by
message matching for multithreaded application performance.

1 Introduction

As the number of cores per node increase, scientific codes are moving toward
hybrid model of parallelism combining an inter-process communication model,

Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia LLC, a wholly owned sub-
sidiary of Honeywell International Inc. for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525.

This research was supported by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

Under the terms of Contract DE-NA0003525, there is a non-exclusive license for
use of this work by or on behalf of the U.S. Government.

c© National Technology & Engineering Solutions of Sandia, LLC 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 480–491, 2018.
https://doi.org/10.1007/978-3-319-96983-1_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_34&domain=pdf

Measuring Multithreaded Message Matching Misery 481

such as MPI, with a threading model. Due to performance concerns with MPI
implementations, most contemporary codes leverage a hybrid BSP model where
computation phases fan out to use multiple threads and communication phases
filter down to a single thread. However, there is significant developer interest in
leveraging MPI in a multithreaded manner to increase communication and com-
putation overlap, decrease thread fan in/out overheads, and reduce development
overheads.

While some studies address improvements to MPI’s multithreaded code-
paths, few assess how multithreaded communication affects the behavior of
MPI message processing. Specifically, in single-threaded contexts, determinism in
communication patterns allows users to ensure performance by ordering receive
requests to match the corresponding sends. In contrast, non-determinism intro-
duced by multithreaded communication may undermine this optimization, lead-
ing to increased message processing times. Furthermore, since the common strat-
egy of packing data into a few large messages is likely to be discarded in favor
of having each thread send smaller messages, the issue may be exacerbated by
the increased number of messages. Since the acceptable performance of many
current scientific codes is based on the assumption MPI message processing
overhead is small in comparison to time spent in computation phases, it is of
critical importance we grasp the implications of multithreaded communication
so that appropriate steps can be taken in advance of the exascale timeframe.

In this paper, we explore the impact of increased messaging and decreased
determinism in message ordering on MPI message processing. This study
explores this impact on widely-used, simple, and highly-scalable stencil com-
munication patterns that limit communication to a minimal number of peers.
We introduce a model for the number of threads engaged in inter-process com-
munication, and messages exchanged, when these stencil patterns are converted
to multithreaded messaging in straightforward ways. We then empirically assess
the effects of these patterns on average search depths and times. The results of
these tests are surprising to us as MPI experts, as the MPI queue search depths
are worse than expected. This means that MPI multi-threaded message process-
ing overhead will be unacceptable when compared to the current performance
of scientific codes.

The contributions of this paper are:

– A theoretical analysis of the characteristics of different thread-level decom-
positions for common stencil communication patterns;

– A testing structure enabling experiments of the effect of different thread-level
decompositions on MPI message matching;

– An empirical study of the effects of threading on average search depths and
queue drain times for MPI message matching.

The rest of this paper is organized as follows: Sect. 2 explores the back-
ground of this work including MPI Matching and MPI thread multiple. Section 3
presents our analysis of thread decompositions of different stencil patterns that
we explore in this paper. Section 4 presents our empirical study of multithreaded
non-determinism on search depth, list length, and queue drain time. Section 5

482 W. Schonbein et al.

presents the state-of-the-art related work to this study. Finally, Sect. 6 presents
the conclusions and implications of this work.

2 Background

In this section we present relevant background on MPI message matching and
multithreaded MPI.

2.1 Message Matching

Message matching is MPI’s receiver-side data-placement mechanic, used primar-
ily to support point-to-point communication. To send a message (e.g., MPI Send
or MPI Isend), an MPI process specifies a buffer containing data to be sent, a
destination ID (‘rank’), and a placement identifier (‘tag’). The receiving MPI
process posts a corresponding receive (e.g., MPI Recv or MPI Irecv) specifying
a buffer where data will be placed, the rank of the sender, and the tag of the
expected message. The communication is completed when the receiver matches
the sending rank and tag of an incoming message to that of a posted receive,
and the payload delivered to the specified buffer.

The MPI specification imposes several constraints on receiver-side message
matching. First, messages must be matched in the order their receives are posted.
Second, the matching mechanism must allow wildcards for both rank and tag.
To handle these requirements, traditional implementations use two linked lists:
a list of outstanding receive requests in a posted receive queue (PRQ), and a
list of unmatched messages in the unexpected message queue (UMQ). When
an MPI process posts a receive, its UMQ is traversed to determine whether a
message with the desired sending rank and tag has already arrived, and if not,
the receive is appended to the PRQ. When a message arrives at that process, the
PRQ is traversed to determine whether a receive with the required rank and tag
has already been posted, and if not, the information is appended to the UMQ.
MPI ordering and wildcard semantics are guaranteed by initiating searches from
queue heads and appending to their tails.

For the purposes of this paper, we use a traditional model for message match-
ing, based on the model used by MPICH [19] and its derivatives. Some other
implementations have opted for different models. For example, Open MPI [20]
utilizes an array of lists, indexed by sending rank, which can reduce average
search depth at the cost of increased memory. The benchmark and results pre-
sented in this paper can provide a better understanding on how these optimized
models will impact next-generation applications.

2.2 Multithreaded MPI

The MPI standard introduces four threading modes which can be chosen dur-
ing initialization [15]. Three of these require the user to prevent simultaneous
requests while the fourth provides thread-safety. This paper is concerned with

Measuring Multithreaded Message Matching Misery 483

MPI’s thread-safe mode, MPI THREAD MULTIPLE, which requires the under-
lying implementation be able to handle simultaneous requests from different
threads.

While the prevalence of hybrid-parallel applications has risen, few have lever-
aged MPI THREAD MULTIPLE. This has been due to the community’s per-
ception of the performance implications of this mode [7]. These performance
implications are not inherent in the MPI standard, but are often a result of the
complexity of implementing that standard. Recently, there have been efforts to
improve this performance through mechanisms such as fine grained locks [1,2],
one sided communication [10], and software offloading [23]. These efforts have
primarily looked at improving the mechanics of multithreaded MPI; there has
been little work on the impact of multithreaded MPI access patterns on MPI
processing such as message matching.

3 Analysis of Stencil Decomposition

In this section, we provide an analysis for several possible stencil communication
patterns using thread-level decompositions. The analysis assumes, first, that
the thread decomposition is uniform, and second, each thread is responsible
for its own outgoing and incoming data. This has implications for number of
messages received, but maintains memory management schemes used by current
applications at the process level (Table 1).

Table 1. Notation

Ld Length of decomposition along dimension d

Tr Number of receiving threads

Ts Number of sending threads

Me Number of messages across a 1d edge

Ms Number of messages across a 2d surface

Mt Total number of messages exchanged in BSP communication phase

Given these assumptions, the simplest pattern is a naive case, where each
thread communicates with all of its neighbors. For example, if the problem
domain allocated to an MPI process is decomposed into Lx × Ly threads, and
the stencil is 9 point, then each thread posts 8 receives, and the MPI match-
ing engine must handle 8LxLy total messages during each BSP communication
phase, distributed across LxLy threads.

A more nuanced approach assumes threads need only communicate along a
process’ domain boundaries; intra-process communication is handled outside of
the MPI message matching engine. This maps well to real-world applications,
where shared memory is typically used for intra-process communication. Even if
intra-process MPI calls are used, they often bypass internal data structures and
processing.

484 W. Schonbein et al.

In this scenario, the number of sending and receiving threads differ because
of corners and edges of the decomposed domain, as well as the type of stencil.
Here we provide analyses for the case of 2d, 9pt and 3d, 27pt stencil communi-
cation. The analyses of 5pt and 7pt stencils are omitted for space. Note these
analyses make the additional assumption that the length of each dimension is
≥2 subdomains.

3.1 9 Point Stencil

Me = 3Le (1)
Mt = 6Lx + 6Ly − 4 (2)
Tr = 2Lx + 2Ly − 4 (3)
Ts = 2Lx + 2Ly + 4 (4)

A 9-point stencil is a communication pattern for a 2 dimensional split of
the problem space based on a 2d, radius-1 Moore neighborhood. The pattern
requires communication to each neighbor process, including the corners. Equa-
tion 1 shows the number of messages sent across a single edge of the domain.
Under our assumptions, the number of messages crossing an edge is three times
the number of subdomains along that edge. Equation 2 extends the previous
equation, by summing the number messages across all four edges and removing
overlap. Equation 3 counts the communicating internal threads by calculating
the sum of all the subdomains touching an edge of the process’s domain and
subtracting the overlap. This formula is subject to the Ld ≥ 2 limitation as
the overlap at Ld = 1. Finally, Eq. 4 counts the external threads by calculating
the sum of all the subdomains that touch an edge of the process’s domain and
accounting for the four corners that weren’t previously counted.

3.2 27 Point Stencil

Ms = 9LmLn (5)

Mt = 2(
∑

m<n|m,n∈{x,y,z}
9LmLn) − 4(

∑

m∈x,y,z

3Lm) + 8 (6)

Tr = 2(
∑

m<n|m,n∈{x,y,z}
LmLn) − 4(

∑

m∈x,y,z

Lm) + 8 (7)

Ts = 2(
∑

m<n|m,n∈{x,y,z}
LmLn) + 4(

∑

m∈x,y,z

Lm) + 8 (8)

A 27-point stencil is a communication pattern for a 3 dimensional split of
the the problem space, based on a 3d, radius-1 Moore neighborhood. The pat-
tern requires communication to each neighbor process across edges and corners.
Equation 5 shows the number of messages sent across a single surface of the
domain. Under our assumptions, the number of messages crossing a surface is

Measuring Multithreaded Message Matching Misery 485

the number of subdomains on that surface times 9. Equation 6 extends the pre-
vious equation, by summing the number messages across all six surfaces and
removing overlap. Note in these equations, the notation m < n|m,n ∈ {x, y, z}
can be thought of as nested loops generating the products xy, xz, and yz; an
alternative notation is N ∈ {x, y, z}(2), where N is a metavariable ranging over
the set formed by the ‘n choose k’ operator. Messages going diagonally from an
edge are counted twice and are thus removed. Corner communication is counted
three times but removed three times by accounting for the diagonal edge, and so
are re-included. Equation 7 counts the internal threads by calculating the sum
of all the subdomains touching an edge of the process’ domain, subtracting the
overlapped edges, and re-including corners. This formula is subject to the Ld ≥ 2
limitation. Finally, Eq. 8 counts the external threads by calculating the sum of
all the subdomains that touch an surface of the process’s domain and accounting
for the twelve edges and eight corners that weren’t previously counted.

4 Experimental Results

4.1 Methods

To investigate the effects of multithreading on MPI matching, we (i) instru-
mented MPI to report average PRQ search depths and time spent searching,
and (ii) designed a benchmark to utilize MPI point-to-point communication
in thread-multiple mode, while varying the thread count and total messages
exchanged. For the former, an Open MPI development branch1 was modified to
use a matching engine mimicking that of MPICH. Open source MPICH does not
provide support for our high-speed network, but is the basis for the vendor opti-
mized MPI library on our system, therefore we used an open-source instrumented
Open MPI with a MPICH style match list to best represent a fully-optimized
vendor MPI. Since all messages originate from the same sending process, the list
length under Open MPI’s native matching engine is the same, although lengths
for Open MPI matching can be roughly estimated from the results given below,
by dividing by the anticipated number of sending MPI processes.

The benchmark emulates the behavior of an MPI process participating in
bulk synchronous parallel (BSP) application with multi-threaded communica-
tion. Two nodes are allocated, each hosting a single MPI process. One is des-
ignated the receiving process, while the other serves as a proxy for the send-
ing processes in the communication pattern. In an openMP region utilizing Tr

threads, the receiving process pre-posts Mt receives; each message is given a
unique tag. The order in which receives are posted is thus determined by thread
scheduling and lock contention. Both processes barrier to ensure that all receives
are pre-posted. The sending process then issues Mt sends, distributed across Ts

threads, also in a free-for-all ordering incurred by a multithreaded region. To
ensure fairness, tags are strided across sending and receiving threads. This pro-
vides a tag-ordering to the messages as mi will have higher priority than mj

given i < j.
1 Open MPI git hash f56847542eace89512aa482b186012d43fed7d4d.

486 W. Schonbein et al.

As recent work has shown that some applications have queue lengths in excess
of 1000 messages [11], the naive results include the case where each thread posts
512 receives, in addition to 9 and 27 point stencils. For the two- and three-
dimensional decompositions, two stencils are considered for each: 5 and 9 point
for 2d, and 7 and 27 point for 3d.

Experiments were run on a Cray XC40 using KNL nodes with 68 cores and
four hardware threads per core, for a total of 272 possible threads. This system
uses the Aries Interconnect. In all experiments, the receiving process is never
oversubscribed. Since we only model threads at the boundaries of the decompo-
sition, in some cases we are able to present data that goes beyond the expected
number of total receiving threads for the system. We allow for oversubscription
of sending threads. For the data points where this occurs the oversubscription
is noted in the figure captions. To avoid overhead incurred by thread start up
costs, no data is collected during initial trials. Runs are distributed across dif-
ferent nodes as determined by the resource manager (SLURM), and all values
given are averaged across ten runs.

(a) Average Search Depth (b) Average Queue Drain Time

Fig. 1. Naive decomposition. Oversubscription does not occur. Grey region highlights
drain times ≥1 ms.

4.2 Results

Figure 1(a) shows the average search depths observed for the naive decomposition
using 9 and 27 point stencils (8 and 26 messages per thread, respectively), and
512 messages per thread. Average search depths increase rapidly as the number
of threads grow. For instance, at 64 threads the average search depth for 512
messages-per-thread is over 3000 list elements, and the 27 point stencil exceeds
1000 at 256 threads.

Unsurprisingly, these inflated search depths translate into onerous search
times (Fig. 1(b)). In this and subsequent graphs, the grey region highlights the
range where drain times extend beyond 1 ms, which is problematic for many

Measuring Multithreaded Message Matching Misery 487

(a) Average Search Depth (b) Average Queue Drain Time

Fig. 2. 2D square domain decomposition. Oversubscription does not occur. Queue
drain times for both stencils in the 1 × 1 condition are under one µsec, so are not
shown.

codes (see discussion in Sect. 4.3). For instance, at 64 threads, the 27 point case
requires, on average, more than four milliseconds to drain the queue, and at 256
threads requires 147147 ms.

More reasonable decompositions reduce search depths and times, but these
remain surprisingly large (Fig. 2(a) and (b)). For instance, a 32-by-32 decompo-
sition using a 5 point stencil has 124 receiving threads and 128 total messages,
yielding an average search depth of 35.512 items and an average queue drain
time of 91.78µs; the 9 point stencil increases these to 85.18 items searched and
486.54µs to drain the queue.

(a) Average Search Depth (b) Average Queue Drain Time

Fig. 3. 3D domain decomposition. Sending threads for 7pt never oversubscribe; those
for 27pt oversubscribe at 8 × 8 × 4 (Ts = 344). Grey region highlights drain times
≥1 ms.

488 W. Schonbein et al.

Figure 3(a) and (b) show search depths and times for a 3d cube decomposition
using 7 and 27 point stencils. For an 8 × 8 × 4 decomposition where Tr = 184,
a 7 point stencil results in Mt = 256 giving an average search depth of 65.85
items and an average queue drain time of 479.15µs, while the 27 point stencil
(Mt = 2072) results in 410.02 items and drain time of 14.86 ms. A less-ambitious
decomposition to 4 × 4 × 4 yields 56 communicating boundary threads. With a
7 point stencil (Mt = 96), we observe an average search depth of 25.1 items
and drain time of 41.02µs. Under the same conditions, the 27 point stencil
(Mt = 728) has an average depth of 135.86 items and a time of 1044.17µs.

Finally, Fig. 4(a) and (b) show results for another common 3d decomposi-
tion strategy, where the problem is decomposed only along the z axis. Because
this decomposition has no internal cells, every thread communicates across the
boundaries to neighboring MPI processes, putting additional stress on match-
ing. For example, a 1× 1× 256 decomposition (Tr = 256) using a 7 point stencil
(Mt = 576) has an average search depth of 114.81 and a drain time of 3.29 ms,
while the 27 point counterpart has a depth of 967.27 and time of 163.05 ms.

(a) Average Search Depth (b) Average Queue Drain Time

Fig. 4. Linear 3D domain decomposition; x and y dimensions are both 1, while z varies.
7pt sending threads oversubscribe at z = 128 (ts = 514), 27pt at z = 32 (Ts = 274).
Grey region highlights drain times ≥1 ms.

4.3 Discussion

Single-threaded MPI codes often leverage deterministic communication patterns
to optimize search so that search depths can be kept shallow (typically less than
ten elements), even when matching lists grow long (a few thousand elements,
total) [11]. Furthermore, contemporary hybrid MPI+X codes typically do not
take advantage of thread multiple mode due to inefficiencies in current implemen-
tations. However, not only are these implementation issues being addressed for
the exascale time frame (2020s), recent surveys show send/recv will remain the
dominant programming model for exascale applications, and developers antici-
pate taking advantage of multi-threaded MPI communication [7]).

Measuring Multithreaded Message Matching Misery 489

The results reported here suggest the matching overhead introduced by multi-
threaded point-to-point MPI communication may be unacceptable for the future
performance of some scientific codes. For example, molecular dynamics codes
commonly use halo exchanges of the sorts investigated here. It is important to
note that these halo-exchanges represent the highest scalability and lowest com-
plexity of the communication patterns observed in scientific computing. From
discussions with the developers of leading MD codes and comparative bench-
marks [14,16], we observe the number of timesteps performed per second – where
each step includes a halo exchange – ranges from tens to thousands (where each
timestep simulates 1 femtosecond of time). This creates a total time budget per
timestep of 100 ms to less than 1 ms. In the preceding timing graphs, this budget
is highlighted in grey. This is the region where message matching overhead alone
can exceed the iteration’s time budget. Our results confirm this budget can be
met for low thread-counts across all common communication patterns. However,
as thread counts grow, and non-determinism increases, these same communica-
tion patterns can introduce more overhead than the entire current budget for
completing a timestep at a competitive application speed. MPI matching over-
heads can take up to 30x to 300x the target iteration time for highly-scalable
stencil communication patterns.

5 Related Work

Understanding MPI message matching has been a topic of interest that has been
explored for single threaded MPI in the past. Initial work by Underwood and
Brightwell [21] explored the performance impact of long lists. Further studies by
Barrett et al. [3] showed the impact of match list length on a variety of system
architectures.

A significant body of contemporary work exploring how to enhance the per-
formance of MPI Message Matching exists, with some approaches looking to
alter the matching list themselves to hash tables [12] or modifying the funda-
mental match list structures [24]. Other approaches have used a hybrid hash
table approach, to accelerate common cases while providing long list perfor-
mance [6]. Work using unique hardware features [17] and GPUs [13] has also
been performed. Alternative solutions accelerate matching by not providing sup-
port for some MPI features [8]. MPI message matching hardware has also been
explored [22] and specified/developed [4,9]. While hardware mitigates the long
list matching performance concerns, it is limited in how many elements can be
supported in the hardware match unit (typically 1K–4K). Despite this, recent
work has shown that modern applications don’t need these solutions: by leverag-
ing programmer knowledge and sequential execution determinism, search depths
can be kept low, even for long lists [11]. However, as noted above, many appli-
cation developers expect to leverage communication libraries in ways that don’t
provide the same levels of ordering determinism that exist today [7]. To the best
of the authors’ knowledge there is no publicly available empirical data showing
the effect of the lack of determinism on processes such as MPI message match-
ing. While some new approaches with hybrid fine-grained over-decomposition of

490 W. Schonbein et al.

computation has been done that would create large amounts of non-determinism
in some cases [5,18], this work did not introduce the effect, as it serialized the
threaded access to MPI in order to avoid the issues we explore in this paper
(with the penalty of not having concurrent network accesses). The goal of this
paper is to explore the effects of multithreaded non-determinism on message
matching to enable new techniques as well as support traditional multi-threaded
MPI access.

6 Conclusions

As we move towards exascale, we expect developers to both retain common sten-
cil communication patterns under a send/receive model, and to take advantage
of improvements in fully multithreaded MPI runtimes [7]. However, the potential
impact of the nondeterminism introduced by multithreading on MPI’s mechanic
for receiver-side data placement – message matching – is not well-understood.

In this paper, we addressed this gap by characterizing the number of threads
engaged in inter-process communication, and the number of messages exchanged,
when common stencil patterns are converted to multithreaded messaging. On
this basis, we conducted an empirical study of the consequences of multithreading
for average message matching search depths and queue drain times, assuming
a BSP model. Results indicate that under some decompositions and stencils,
search depths and times may become unacceptable given current performance
expectations.

References

1. Amer, A., Lu, H., Wei, Y., Balaji, P., Matsuoka, S.: MPI+ threads: runtime con-
tention and remedies. ACM SIGPLAN Not. 50(8), 239–248 (2015)

2. Balaji, P., Buntinas, D., Goodell, D., Gropp, W.D., Thakur, R.: Fine-grained mul-
tithreading support for hybrid threaded MPI programming. Int. J. High Perform.
Comput. Appl. 24(1), 49–57 (2010)

3. Barrett, B.W., Brightwell, R., Grant, R.E., Hammond, S.D., Hemmert, K.S.: An
evaluation of MPI message rate on hybrid-core processors. Int. J. High Perform.
Comput. Appl. 28(4), 415–424 (2014)

4. Barrett, B.W., et al.: The Portals 4.0.2 networking programming interface (2014)
5. Barrett, R.F., Stark, D.T., Vaughan, C.T., Grant, R.E., Olivier, S.L., Pedretti,

K.T.: Toward an evolutionary task parallel integrated MPI+X programming
model. In: Proceedings of the Sixth International Workshop on Programming Mod-
els and Applications for Multicores and Manycores, pp. 30–39. ACM (2015)

6. Bayatpour, M., Subramoni, H., Chakraborty, S., Panda, D.K.: Adaptive and
dynamic design for MPI tag matching. In: 2016 IEEE International Conference
on Cluster Computing (CLUSTER), pp. 1–10. IEEE (2016)

7. Bernholdt, D.E., et al.: A survey of MPI usage in the U.S. exascale computing
project. Concurrency and Computation: Practice and Experience (2017, in Press)

8. Dang, H.-V., Snir, M., Gropp, W.: Towards millions of communicating threads.
In: Proceedings of the 23rd European MPI Users’ Group Meeting, pp. 1–14. ACM
(2016)

Measuring Multithreaded Message Matching Misery 491

9. Derradji, S., Palfer-Sollier, T., Panziera, J.-P., Poudes, A., Atos, F.W.: The
BXI interconnect architecture. In: 2015 IEEE 23rd Annual Symposium on High-
Performance Interconnects (HOTI), pp. 18–25. IEEE (2015)

10. Dosanjh, M.G., Groves, T., Grant, R.E., Brightwell, R., Bridges, P.G.: RMA-MT:
a benchmark suite for assessing MPI multi-threaded RMA performance. In: 2016
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), pp. 550–559. IEEE (2016)

11. Ferreira, K.B., Levy, S., Pedretti, K., Grant, R.E.: Characterizing MPI matching
via trace-based simulation. In: Proceedings of the 24th European MPI Users’ Group
Meeting, p. 8. ACM (2017)

12. Flajslik, M., Dinan, J., Underwood, K.D.: Mitigating MPI message matching mis-
ery. In: Kunkel, J.M., Balaji, P., Dongarra, J. (eds.) ISC High Performance 2016.
LNCS, vol. 9697, pp. 281–299. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41321-1 15

13. Klenk, B., Froning, H., Eberle, H., Dennison, L.: Relaxations for high-performance
message passing on massively parallel SIMT processors. In: 31st International Par-
allel and Distributed Processing Symposium (IPDPS). IEEE (2017)

14. Lindahl, E., Hess, B., Páll, S., Metere, A.: GROMACS 5.0 benchmarks (2017)
15. MPI Forum: MPI: a message-passing interface standard version 3.0. Technical

report, University of Tennessee, Knoxville (2012)
16. Plimpton, S., Crozier, P., Thompson, A.: LAMMPS-large-scale atomic/molecular

massively parallel simulator, vol. 18. Sandia National Laboratories (2007)
17. Rodrigues, A., Murphy, R., Brightwell, R., Underwood, K.D.: Enhancing NIC per-

formance for MPI using processing-in-memory. In: 19th IEEE International Parallel
and Distributed Processing Symposium (IPDPS), p. 8–pp. IEEE (2005)

18. Stark, D.T., Barrett, R.F., Grant, R.E., Olivier, S.L., Pedretti, K.T., Vaughan,
C.T.: Early experiences co-scheduling work and communication tasks for hybrid
MPI+X applications. In: Proceedings of the 2014 Workshop on Exascale MPI, pp.
9–19. IEEE Press (2014)

19. MPICH Development Team: MPICH (2017). Accessed 30 Mar 2017
20. Open MPI Development Team: Open MPI (2017). Accessed 28 Mar 2017
21. Underwood, K.D., Brightwell, R.: The impact of MPI queue usage on message

latency. In: International Conference on Parallel Processing (ICPP), pp. 152–160.
IEEE (2004)

22. Underwood, K.D., Hemmert, K.S., Rodrigues, A., Murphy, R., Brightwell, R.: A
hardware acceleration unit for MPI queue processing. In: 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), p. 10–pp. IEEE (2005)

23. Vaidyanathan, K., et al.: Improving concurrency and asynchrony in multithreaded
MPI applications using software offloading. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
p. 30. ACM (2015)

24. Zounmevo, J.A., Afsahi, A.: A fast and resource-conscious MPI message queue
mechanism for large-scale jobs. Future Gener. Comput. Syst. 30, 265–290 (2014)

https://doi.org/10.1007/978-3-319-41321-1_15
https://doi.org/10.1007/978-3-319-41321-1_15

Global-Local View: Scalable Consistency
for Concurrent Data Types

Deepthi Akkoorath1(B), José Brandão2,
Annette Bieniusa1, and Carlos Baquero2

1 Technical University of Kaiserslautern, Kaiserslautern, Germany
{akkoorath,bieniusa}@cs.uni-kl.de

2 HASLab, Universidade do Minho and INESC TEC, Braga, Portugal
jose.brandao1994@gmail.com, cbm@di.uminho.pt

Abstract. Concurrent linearizable access to shared objects can be pro-
hibitively expensive in a high contention workload. Many applications
apply ad-hoc techniques to eliminate the need for synchronous atomic
updates, which may result in non-linearizable implementations. We pro-
pose a new model which leverages such patterns for concurrent access
to objects in a shared memory system. In this model, each thread main-
tains different views on the shared object: a thread-local view and a
global view. As the thread-local view is not shared, it can be updated
without incurring synchronization costs. These local updates become vis-
ible to other threads only after the thread-local view is merged with the
global view. This enables better performance at the expense of lineariz-
ability. We discuss the design of several datatypes and evaluate their
performance and scalability compared to linearizable implementations.

1 Introduction

As the number of cores increases in multi-core systems, the synchronization cost
becomes more apparent [20]. While linearizability [14] is very useful for reasoning
about the correctness of concurrent data structures, its implementation can be
prohibitively expensive. As a consequence, programming patterns are emerging
in practice, that attempt to limit the associated cost of the required synchro-
nization on the memory accesses by relaxing the concurrent objects semantics.
For example, in the widely used messaging library ZeroMQ, adding messages
to the queue is performance-critical to the application. While lock-free lineariz-
able queues are fast, the developers observed that the synchronous enqueue of
each new messages was affecting the overall performance, especially in high con-
tention workloads [21]. An analysis of the problem domain revealed that only
the relative order of messages from a single thread is relevant for the semantics
of the message queue; it is not necessary to maintain a strict order of enqueue
operations when two independent threads try to insert messages. To overcome
the linearizability penalty, the developers re-engineered their message queue such
that multiple messages are added in batch, within a single atomic operation.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 492–504, 2018.
https://doi.org/10.1007/978-3-319-96983-1_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_35&domain=pdf

Global-Local View: Scalable Consistency for Concurrent Data Types 493

For another example, consider a shared counter that is concurrently updated
by several threads. The final value must include all increments performed, but the
order of increments is not relevant since they are commutative. If each increment
by each thread is an atomic operation made visible to all other threads, it can
become a bottleneck [8]. In many cases, it is sufficient to execute the increment
on a thread-local variable and to apply a combined update to the shared object.

In this paper, we propose a new model for shared objects that leverages the
different views of an object, the global-local view model. In this model, each
thread has a local view of the object which is private to it. Threads update and
read primarily their local view. The local updates, though visible in a local view,
are made visible on a global view only after an explicit two-way merge operation
is performed. The other threads observe these changes once they synchronize, by
merge, their local view with the global view. As the local view is non-shared, the
local updates can be executed without requiring synchronization. Threads can
execute many local updates without synchronizing with the global view, thus
enabling better performance, albeit at the expense of linearizability.

In addition to the local operations, the model also provides synchronous
operations on the global view. We call the operations that perform only on local
view, weak operations and those on global view, strong operations. Combining
operations on the global and the local views, we can build data types with
customizable semantics on the spectrum between sequential and purely merge-
able data types. Mergeable data types provide only weak and merge operations;
hybrid mergeable data types offer both weak and strong operations. An appli-
cation that uses a hybrid mergeable data type may use weak updates when a
non-linearizable access is sufficient (e.g. weak enqueue on a local queue) and can
switch to use only strong operations when stronger guarantees are required (e.g.
strong dequeue to guarantee that item are dequeued only once).

In distributed systems, similar concerns led to the development of conflict-
free replicated data types (CRDTs) [19]. CRDTs allow asynchronous updates to
local replicas, while guaranteeing strong eventual consistency. In this distributed
setting, each replica can be concurrently updated without requiring any synchro-
nization. It can then later be merged with other replicas, while it is guaranteed
that all nodes reach a convergent state once all updates are known. CRDTs
play an essential role in partition tolerance and scalability [1,2]. However, the
applicability of CRDTs as described in literature [19] is limited in a concurrent
shared memory environment. For example, a CRDT counter is implemented as
a map of replica id to integer. The merge operation iterates over the two maps
to be merged and returns a map with the maximum for each entry. Thus, the
relative cost in space and time of the merge is linear in the number of entries
and as such unfeasibly high. In the global-local view model, the merge is exe-
cuted synchronously on the global view. If the cost of merge is high, we lose the
benefits of allowing parallel updates. While our work is inspired by them, the
current CRDT designs are not suitable for relaxing consistency in concurrent
shared-memory objects.

Contributions. This paper makes the following contributions:

494 D. Akkoorath et al.

1. We describe the global-local view model for multi-threaded applications with
high contention that implements an adaptable trade-off between update vis-
ibility and synchronization cost (Sect. 3).

2. We discuss the implementation of a mergeable counter, a hybrid counter
and queue (Sect. 4) and compare their performance with their linearizable
counterparts under both low and high contention workloads (Sect. 6).

2 Related Work

Programming Models: Maintaining per-thread replicas and performing updates
on them has been considered by different programming models in the literature.
In Concurrent Revisions [9], a forked thread applies changes on its copy which is
merged (using type-specific merge) to the parent thread when it is joined back.
The focus of this work is on a fork-join model, where threads can communicate
their state only when they join their parent. In contrast, we provide a generic
model for the data types where a two-way merge and strong updates can share
states among the threads at any point in the execution.

The Global Sequence Protocol (GSP) [10] is a model for replicated and dis-
tributed data systems that allows offline client updates. Since GSP addresses
a distributed system model, with no bounds on message delays, there is much
less control on replica divergence and liveness of the global sequence evolution.
In contrast, we address a shared-memory concurrent architecture that allows
bounds on divergence and stronger guarantees on the evolution of shared state.

Read-copy-update (RCU) [13] is a synchronization mechanism, suitable for
a single-writer/multiple-readers scenario, that allows processes to read a shared
object while a concurrent modification is in progress. Read-log-update (RLU)
[16] is an improvement over RCU that allows concurrent writers. Unlike our
model, concurrent writes are serialized using fine-grained locking.

Relaxed Consistency Models: Many models attempt to relax the strict seman-
tics of linearizability [14] to achieve better performance. Quasilinearizability [3]
allows each operation to be linearized at a different point at some bounded
distance from its strict linearization point. Our work is complimentary to this
model, allowing a combination of strong and weak updates to achieve different
consistency semantics. Weak and medium future linearizability [15] is applicable
to data types implemented using futures which allow reordering of the opera-
tions. Others models, such as k-linearizability [4] and quiescent consistency [22],
also define the correctness based on some sequential history, possible reordered,
of the operations. Local linearizability [12] requires that each thread induced
history (a subset of each thread operations) is linearizable.

Mergeable Data Types: Conflict free Replicated Data Types (CRDTs) [19] pro-
vide deterministic merges and are now widely used in distributed replicated
data systems. Here, we present implementations of mergeable data types that
are tailored for shared memory concurrent programs. We benefit from a stronger

Global-Local View: Scalable Consistency for Concurrent Data Types 495

system model, where idempotence and merging among arbitrary replicas are no
longer required, as local state is merged atomically to a single global state.

Even though no consolidated theory on mergeable data types exists in the
shared memory ecosystem, there have been systems that use such types with
restricted properties. Doppel [18] is a multi-core database that uses a mechanism
called phase reconciliation to parallelize conflicting transactions. When a high
contention workload is detected, Doppel switches to a split phase where the
transaction updates per-core copy of the objects. At the end of the split phase,
per-core copies are merged. Only operations that are commutative are executed
in the split phase, thus guaranteeing serializability.

3 Global-Local View Model

The system we consider is built upon a classical shared-memory architecture
as supported by specifications such as the C++ or Java memory models. We
assume that the system consists of a variable number of threads. Any thread
can spawn new threads that may outlive their parent thread. The system dis-
tinguishes two types of memory: local memory is associated to a single thread
and can only be accessed by this thread; shared memory can be accessed by
any thread. Communication and coordination between the threads are done via
shared-memory objects; we assume that there are no side channels. In particular,
spawned threads do not inherit local objects from their parents.

Each shared object o has a global view that is accessible by all threads that
obtained a reference to it. In addition, each thread has its own local view of
o. A thread may update and read its local view, but the view is not accessible
by any other thread. The local updates are incorporated into the global copy
when a merge operation is executed. Conflicting (non-commutative) updates
from concurrent threads are resolved through a type-specific merge operation.
In addition to the local updates and reads, we also provide updates and reads
performed directly on the global view. This gives us flexibility for the data type
semantics and the implementation of the underlying data structure.

An object in the global-local view model consists of a global view g, and for
each thread identified by t, a non-shared local view consisting of two compo-
nents, st and lt. st denotes a local snapshot of the shared object state g which
gets updated upon synchronization, and lt refers to the local updates not yet
incorporated in the shared global state g. The state variables – g, st, lt – are
each modeled as a sequence of updates, initially empty; a sequence x can be
concatenated with another sequence y (or a single update), denoted by x · y.

An operation opKind on an object performed by thread t can be formalized
as a function

opKindt(m, g, st, lt) = (r, g′, s′
t, l

′
t)

where m comprises the (optional) type-specific update (u) or query (q) method
applied on the object. The operation returns a tuple (r, g′, s′

t, l
′
t) where r is the

return value of the method m and the other variables refer to the updated global
g′ and local state s′

t, l
′
t.

496 D. Akkoorath et al.

Following are the basic operations in the global-local view model; these are
type-independent and mergeable data types typically implement only a subset
of them:

pullt(, g, st, lt) = (⊥, g, g, lt)
weakReadt(q , g, st, lt) = (q(st · lt), g, st, lt)

strongReadt(q , g, st, lt) = (q(g · lt), g, st, lt)
weakUpdatet(u, g, st, lt) = (st · lt · u, g, st, lt · u)

strongUpdatet(u, g, st, lt) = (g · u, g · u, st, lt)
merget(, g, st, lt) = (⊥, g′, g′,⊥) where g′ = merge(g, (st, lt))

pull updates the local object snapshot with the global object state; local
operations are not modified. weakRead returns the result of a type-specific read-
only operation q on the state obtained by applying local updates on the local
snapshot. strongRead returns the result of a type-specific read-only operation
q on the state obtained by applying local updates on global state. Neither the
global state nor the local snapshot are modified. weakUpdate applies the update
method u on the local copy without any synchronization to the global state.
strongUpdate applies the update method u on the global state atomically. The
previous weak updates that are batched in lt are not merged at this point.
merge incorporates the local updates to the global states and updates the local
snapshot, using the type-specific merge(g, (st, lt)) operation.

A merge must incorporate all local updates into the global state in a mean-
ingful way, so that conflicting concurrent updates lead to a deterministic state.
For example, if the updates are commutative, they can be appended to the global
sequence g′ = g·lt. If they are not commutative, the data types offer a conflict
resolving merge operation, modifying the sequence of updates merged to g.

While weakRead and weakUpdate act exclusively on the local copy, strongRead
and strongUpdate act on the global state. The combination of these two oper-
ations supports flexible optimizations on each given data type. For example,
a queue can guarantee that an element is dequeued only once by executing
dequeues in strongUpdate. At the same time, enqueues can use weakUpdate and
merged later for better performance. For counters, we may enforce a weak limit
on the maximum value, i.e. values should not diverge arbitrarily from the defined
maximum value. We can use a strongRead to check the global value to adapt the
merge interval or switch to a fully synchronized version.

4 Data Types

Each mergeable type defines a subset of the basic operations from the global-
local view model, depending on the semantics needed. In this section, we discuss
the specification of several data types and their implementation.

Global-Local View: Scalable Consistency for Concurrent Data Types 497

4.1 Specification

Given a sequential counter with methods inc (increments the counter by 1), and
value (returns the current value), a purely mergeable counter implements the
following operations.

– weakValuet() = weakReadt(value, , st, lt)
– weakInct() = weakUpdatet(inc, , , lt)
– merge(g, (st, lt)) = g·lt

The merge appends the local increments to the global sequence g, because the
increments are commutative. A hybrid mergeable counter defines the following
operations in addition to the above ones. The applications may choose weak or
strong operations dynamically based on different criteria.

– strongInct() = strongUpdatet(inc, g, ,)
– strongValuet() = strongReadt(value, g, , lt)

The queue datatype has operations enqueue(e) and dequeue. A hybrid merge-
able queue with mergeable enqueue and synchronized dequeue defines the fol-
lowing operations:

– enqueuet(e) = weakUpdatet(enqueue(e), , , lt)
– dequeuet() = strongUpdatet(dequeue, g, ,)
– merge(g, (st, lt)) = g·lt

In the above semantics, if the global copy is empty, dequeue returns null
even if there are local enqueue operations by the same thread which have not
been merged yet. We can allow dequeue to include local enqueue operations by
defining

dequeuet() = strongUpdatet(dequeue, g
′, ,) with (, g′ ,) = merget(g, st, lt).

In this way we can combine the operations to give different semantics. For
example, a queue with weak enqueue and weak dequeue may be useful if redun-
dant dequeue is not a problem for the application. A queue with only strong
enqueue and strong dequeue behaves as a linearizable queue.

A grow-only bag is a set that provides only an add operation, and allows
duplicate elements. A purely mergeable bag implements weakAdd and merge [7].

4.2 Implementation

The implementation of (hybrid) mergeable data types consists of two parts – a
reference to the local view and another one to the global view.

498 D. Akkoorath et al.

Counter. The global view of a mergeable counter is an integer g. The local
view consists of a pair of integers (s,l). The weak increments are collected in
the thread-local state l and added to g during the merge. This design is inspired
on sloppy counters [8], while using a local counter per thread instead of per
core. The following pseudocode shows the implementation of a counter. It is
easy to extend this implementation to allow decrements, explicit arguments for
increments/decrements, and generalize to other commutative monoids.

type Counter: {
int g,
ThreadLocal int s,
ThreadLocal int l

}
weakInc () {

l++;
}
strongInc (){

atomic {g++}
}

int weakValue (){
return s+l;

}
int strongValue (){

return g+l;
}
merge(){

atomic {
g += l; s = g; l = 0;

}
}

A variable specified as ThreadLocal exists per thread in the thread’s private
storage. Many programming languages support some form of thread-local stor-
age (TLS). A mergeable data type can also implement its own TLS by mapping
thread ids to different instances of the local object. atomic refers to any synchro-
nization mechanism such as mutex or lock-free techniques such as compare-and-
swap or transactional memory that atomically executes the code block within.

For some data types, local views are isolated from each other and the global
view, by maintaining a full copy of the object in each view. For large data
structures, such as lists or trees, maintaining a full copy is not feasible. Thus,
the local views may contain references to parts of the data structures that are
shared by other local views and global view. The shared parts are not directly
updated by the weak updates, but only read. For example, a lookUp on a list may
first traverse the locally added items and then the shared parts of the list. The
following are the designs of a few data types where this can be done efficiently
and correctly without copying the entire data structure.

Grow-only Bag. A grow-only bag [7] is implemented using a multi-headed list
as shown in Fig. 1. The thread local view consists of a pointer to the local head.
A merge updates the global head of the list and does not change the local views
of other threads. A lookup that traverses the list starting from the local head
will never see an item that is concurrently added or merged.

head

T1

T2

(a) Two threads with different local
views.

T1

T2

head

(b) After T1’s local view is merged.

Fig. 1. Mergeable grow-only bag.

Global-Local View: Scalable Consistency for Concurrent Data Types 499

Queue. A hybrid mergeable queue can be implemented using a single-linked
list similar to a linearizable queue. The items enqueued are added to the tail
of the list, while dequeue is performed from the head. A mergeable queue
instance contains a global view – (head, tail), which points to the head and
tail nodes respectively of the global list and local view – (ThreadLocal lhead,
ThreadLocal ltail), which are the head and the tail of the local list of each
thread. The local list collects the items enqueued by the thread that are not yet
merged. The merge atomically appends the local list to the global list. The time
needed to merge a group of nodes is the same as the time needed to enqueue a
single node. By batching the enqueues, we can reduce the number of synchro-
nization operations, thus improving the overall throughput.

The dequeue operation directly updates the shared part of the list. For some
data types, an update on the shared part of the data structure should preserve
the old version, because local views may be keeping reference to it. However,
there is no weakRead, such as a weak lookup, defined on queue that must observe
a version before a concurrent dequeue. Hence, there is no need to keep those
versions, which simplifies the implementation.

5 Applications

In this section, we sketch some application scenarios that benefit from multi-view
mergeable data types.

A work-stealing queue is used to distribute tasks among threads running in
parallel. In Cilk runtime [11] each thread owns a queue with operations pushTop,
popTop, and popBottom. There is no pushBottom. When a thread is devoid of
tasks, it retrieves one from its queue using popTop, executes it and may generate
new tasks that are added to its queue using pushTop. When a thread’s task
queue is empty, it steals from other threads’ queue using popBottom. A work
stealing queue with this semantics is a natural fit to the global-local view model.
Instead of a queue per thread, we have a multi-view queue with a global view
and a local-view per thread. pushTop and popTop executes on the thread-local
views, and popBottom on the global view. One downside of this design is that it
may prevent threads from stealing tasks when the global view is empty even if
there are unmerged tasks in the local views. To avoid this, threads can be forced
to merge when the global view drops below a threshold.

In-memory multi-core databases. In high contention workloads, we can
achieve high performance by allowing concurrent conflicting transactions to pro-
ceed in parallel on different cores. Instead of serializing the access to the objects,
the transactions can update a per core copy of the object and merge them later.
In [18], authors describe a system that automatically parallelize high contention
transactions. A multi-view data type implemented in the global-local view model
is a natural fit to such scenario.

Message queues where multiple messages can be batched together and added
to the shared queue is a direct application of the hybrid queue described in this
paper. The applications that use aggregation counters that are computed by

500 D. Akkoorath et al.

Fig. 2. Throughput vs Overshoot of
mergeable counter. Points on the lines
are labeled with the number of threads.

Fig. 3. Throughput of hybrid merge-
able counter (overshoot free) vs atomic
counter, labelled with merge-interval.

parallel threads can use our mergeable counter. Similarly, the objects that store
statistical measures such as sums, min, max etc. that are computed by parallel
threads will benefit from the global-local view model. In software transactional
memory, we may use mergeable objects to avoid unnecessary aborts where the
conflicting updates can be meaningfully merged [6].

6 Evaluation

We evaluated the performance and scalability of the mergeable counter and the
hybrid mergeable queue using different micro-benchmarks. As an example of real
applications, we employed the hybrid queue in a breadth-first traversal on graphs.
We implemented the counter in C++ and the queue in Java. The evaluations
are performed on a 12 core CPU (2 NUMA nodes) with 2-way hyper-threading.

Counter. We provide two variants of a mergeable counter and compare them
with an atomic counter, implemented using the atomic compare and swap oper-
ation. In the first experiment, we allow threads to increment the shared purely
mergeable counter until a target value is reached. Since threads might not know
about non-merged increments from other threads, they typically end up over-
shooting the target. For this experiment, the target is set to 5 × 106 increments.
We evaluated several merge-intervals, labelled with how many local increments
are allowed between merges. Figure 2 shows that the throughput scales linearly
with the number of threads and with the merge-intervals. At the same time, the
overshoot increases. However, the percentage of the overshoot is small. (Notice
that overshoot is upper bound by the number of threads times the merge-interval,
as this reflects the amount of increments not yet accounted for.) The atomic
counter never overshoots the target, but since threads are always competing on
the increment, performance is very low and no speedup is obtained. In contrast,
the mergeable counter can scale linearly up to a good fraction of the available
concurrency, in particular with merge-interval of ≥4096.

While some applications could tolerate an overshoot, in general, applications
will require to further bound the overshoot. To address this, we provide a variant

Global-Local View: Scalable Consistency for Concurrent Data Types 501

of the mergeable counter that makes a hybrid use of initial weak local increments
and later switches to atomic strong increments when approaching the target. The
first thread that, upon the periodic merges, detects that it is close to the target,
initiates a barrier synchronization to ensure that all threads have switched to
strong operations. Figure 3 shows that under this approach, overshoot is elimi-
nated while the performance is mostly identical to the mergeable counter.

Fig. 4. CRDT counter using array and
map, m-mergeable counter with merge-
interval 1,16. sync-atomic counter.

Comparison to CRDT. In this
experiment, we demonstrate that
CRDT designs have significant over-
head in performance when used in a
shared memory program. We imple-
mented a CRDT counter on the
global-local view model, where each
local view and global view are a
CRDT replica. We implemented the
G-counter [19] using (1) a HashMap
that maps thread-id to an integer, (2)
an array where the array index corresponds to a thread id. Figure 4 shows that
the array scales better when the merge-interval is large. However, the size of
array must be fixed to the number of threads. The map implementation does
not scale well because (1) there is an overhead in accessing the map entries,
(2) merge requires an iteration over the entire map resulting in longer critical
section. Thus, the cost of merge operation is negating the benefit achieved by
the asynchronous local increment.

Queue. To evaluate the scalability of hybrid mergeable queue (referred to as
mergeable queue) in comparison to classical algorithms, we implemented four
different queues in Java – (1) a lock-based linearizable queue based on Michael
and Scott’s 2-lock queue [17] (LL), (2) a lock-based mergeable queue which
uses similar 2-lock mechanism (ML), (3) a lock-free linearizable queue adapted
from Michael and Scott’s lock-free queue [17] (LF) and (4) a lock-free mergeable
queue (MLF). Figure 5 shows the time to perform a total of 5×106 enqueues and
dequeues. We evaluated mergeable queues with different merge intervals m (a
merge is performed by a thread after m enqueues). In this experiment, we forced
half of the threads to run on one NUMA node and the other half on the second
NUMA node. For both lock-based and lock-free versions, the mergeable queue is
faster than the linearizable counterpart. Since this is a high-contention workload,
the lock-based version performs better than the lock-free version. Unlike the
mergeable counter, increasing the merge interval from 8 to 64 does not improve
the performance significantly because dequeue is always executed synchronously
which shadows the performance gain from asynchronous enqueues.

Breadth-First Traversal. A standard breadth-first traversal algorithm using
queues can be parallelized using concurrent queues. We evaluated four versions

502 D. Akkoorath et al.

Fig. 5. Queue. linearizable lock based
(LL), lock-free (LF). mergeable lock
based (ML), lock-free (MLF) 1,8,64-
merge interval.

Fig. 6. Breadth-first traversal. lineariz-
able lock based (LL), lock free (LLF).
mergeable lock-based (ML), lock-free
(MLF).

of the algorithm using different queue implementations, that traversed randomly
generated graphs of size of 2 × 106 vertices and 2 × 107 edges. Unlike the micro-
benchmark for the queue, there is no fixed merge interval. The threads merge
their local queue at the end of processing each level. Figure 6 shows the speedup
of each version compared to a single-threaded implementation. Mergeable queues
scale better than their linearizable counterparts. The speedup of the lock-free
mergeable queue is significantly higher than that of the others, and scales almost
linearly until 16 threads. Beyond 16 threads, the number of vertices processed
by each thread at each level is reduced, as they are divided among the threads,
leading to smaller merge frequencies. We believe the sudden drop in the speedup
of lock-based queues after 12 threads is due to the additional cost in synchro-
nization to the second NUMA core. This is a low-contention workload because a
significant amount of time is spent in processing the nodes rather than updating
the queue.

7 Conclusion

Incorporating more information about the respective datatype semantics is cru-
cial for datatype designs that are more parsimonious regarding synchronization.
CRDTs succeeded in capturing datatypes with clear concurrency semantics and
are now common components in industry. However, they do not migrate triv-
ially to shared-memory architectures due to high computational costs from merge
functions, which becomes apparent once network communication is removed.

In this paper, we define the global-local view model as base for a framework
that allows capturing the semantics of multi-view datatypes. The global-local view
distinguishes between local fast state and distant shared state where operations
need to be synchronized. This distinction allows the datatype designer to explore
the trade-offs in the design when using weak or strong operations. Our approach
enables speedups in order of magnitudes while preserving the datatypes’ target
behavior. It is quite possible that further increments of the number of compo-
nents involved will lead to a hierarchical model with more levels than the current
binary, local vs global, scheme.

Global-Local View: Scalable Consistency for Concurrent Data Types 503

Data Availability Statement and Acknowledgements. The work presented was
partially supported by EU H2020 LightKone project (732505), and SMILES Research
Line within project “TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of
Concept with Industrial Impact /NORTE-01- 0145-FEDER-000020” financed by the
North Portugal Regional Operational Programme (NORTE 2020), under the PORTU-
GAL 2020 Partnership Agreement, and through the European Regional Development
Fund (ERDF).

The datasets and code generated during and/or analysed during the current study
[5] are available in the figshare repository: https://doi.org/10.6084/m9.figshare.6383807

References

1. Antidotedb. http://syncfree.github.io/antidote/
2. Riak KV: a distributed key-value database. http://basho.com/products/riak-kv/
3. Afek, Y., Korland, G., Yanovsky, E.: Quasi-linearizability: relaxed consistency for

improved concurrency. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010.
LNCS, vol. 6490, pp. 395–410. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17653-1 29. http://dl.acm.org/citation.cfm?id=1940234.1940273

4. Aiyer, A., Alvisi, L., Bazzi, R.A.: On the availability of non-strict quorum sys-
tems. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 48–62. Springer,
Heidelberg (2005). https://doi.org/10.1007/11561927 6

5. Akkoorath, D., Brando, J., Bieniusa, A., Baquero, C.: Code to run experiments for
euro-par 2018 paper: Global-local view: Scalable consistency for concurrent data
types (2018). https://doi.org/10.6084/m9.figshare.6383807

6. Akkoorath, D.D., Bieniusa, A.: Transactions on mergeable objects. In: Feng, X.,
Park, S. (eds.) APLAS 2015. LNCS, vol. 9458, pp. 427–444. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26529-2 23

7. Akkoorath, D.D., Bieniusa, A.: Highly-scalable concurrent objects. In: Proceedings
of the 2nd Workshop on the Principles and Practice of Consistency for Distributed
Data. PaPoC 2016, pp. 13:1–13:4. ACM, New York (2016). https://doi.org/10.
1145/2911151.2911158

8. Boyd-Wickizer, S., et al.: An analysis of linux scalability to many cores. In: Pro-
ceedings of the 9th USENIX Conference on Operating Systems Design and Imple-
mentation. OSDI 2010, pp. 1–16. USENIX Association, Berkeley (2010). http://
dl.acm.org/citation.cfm?id=1924943.1924944

9. Burckhardt, S., Baldassin, A., Leijen, D.: Concurrent programming with revi-
sions and isolation types. In: Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications. OOP-
SLA 2010, pp. 691–707. ACM, New York (2010). https://doi.org/10.1145/1869459.
1869515

10. Burckhardt, S., Leijen, D., Protzenko, J., Fähndrich, M.: Global sequence proto-
col: a robust abstraction for replicated shared state. In: Boyland, J.T. (ed.) 29th
European Conference on Object-Oriented Programming (ECOOP 2015). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 37, pp. 568–590. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2015). https://
doi.org/10.4230/LIPIcs.ECOOP.2015.568

11. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. In: Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI 1998, pp. 212–223. ACM,
New York (1998). https://doi.org/10.1145/277650.277725

https://doi.org/10.6084/m9.figshare.6383807
http://syncfree.github.io/antidote/
http://basho.com/products/riak-kv/
https://doi.org/10.1007/978-3-642-17653-1_29
https://doi.org/10.1007/978-3-642-17653-1_29
http://dl.acm.org/citation.cfm?id=1940234.1940273
https://doi.org/10.1007/11561927_6
https://doi.org/10.6084/m9.figshare.6383807
https://doi.org/10.1007/978-3-319-26529-2_23
https://doi.org/10.1145/2911151.2911158
https://doi.org/10.1145/2911151.2911158
http://dl.acm.org/citation.cfm?id=1924943.1924944
http://dl.acm.org/citation.cfm?id=1924943.1924944
https://doi.org/10.1145/1869459.1869515
https://doi.org/10.1145/1869459.1869515
https://doi.org/10.4230/LIPIcs.ECOOP.2015.568
https://doi.org/10.4230/LIPIcs.ECOOP.2015.568
https://doi.org/10.1145/277650.277725

504 D. Akkoorath et al.

12. Haas, A., et al.: Local Linearizability for Concurrent Container-Type Data Struc-
tures. In: 27th International Conference on Concurrency Theory (CONCUR 2016).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 59, pp. 6:1–6:15
(2016). https://doi.org/10.4230/LIPIcs.CONCUR.2016.6

13. Hart, T.E., McKenney, P.E., Brown, A.D.: Making lockless synchronization fast:
performance implications of memory reclamation. In: Proceedings of the 20th
International Conference on Parallel and Distributed Processing. IPDPS 2006, p.
21. IEEE Computer Society, Washington, D.C. (2006). http://dl.acm.org/citation.
cfm?id=1898953.1898956

14. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990). https://doi.org/
10.1145/78969.78972

15. Kogan, A., Herlihy, M.: The future(s) of shared data structures. In: Proceedings of
the 2014 ACM Symposium on Principles of Distributed Computing. PODC 2014,
pp. 30–39. ACM, New York, (2014). https://doi.org/10.1145/2611462.2611496

16. Matveev, A., Shavit, N., Felber, P., Marlier, P.: Read-log-update: a lightweight
synchronization mechanism for concurrent programming. In: Proceedings of the
25th Symposium on Operating Systems Principles. SOSP 2015, pp. 168–183. ACM,
New York (2015). https://doi.org/10.1145/2815400.2815406

17. Michael, M.M., Scott, M.L.: Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In: Proceedings of the Fifteenth Annual ACM Sym-
posium on Principles of Distributed Computing. PODC 1996, pp. 267–275. ACM,
New York (1996). https://doi.org/10.1145/248052.248106

18. Narula, N., Cutler, C., Kohler, E., Morris, R.: Phase reconciliation for contended
in-memory transactions. In: Proceedings of the 11th USENIX Conference on Oper-
ating Systems Design and Implementation. OSDI 2014, pp. 511–524. USENIX
Association, Berkeley (2014). http://dl.acm.org/citation.cfm?id=2685048.2685088

19. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24550-
3 29. http://dl.acm.org/citation.cfm?id=2050613.2050642

20. Shavit, N.: Data structures in the multicore age. Commun. ACM 54(3), 76–84
(2011). https://doi.org/10.1145/1897852.1897873

21. Sstrik, M.: ZeroMQ. In: The Architecture of Open Source Applications, vol. 2
(2012)

22. Viotti, P., Vukolić, M.: Consistency in non-transactional distributed storage sys-
tems. ACM Comput. Surv. 49(1), 19:1–19:34 (2016). https://doi.org/10.1145/
2926965

https://doi.org/10.4230/LIPIcs.CONCUR.2016.6
http://dl.acm.org/citation.cfm?id=1898953.1898956
http://dl.acm.org/citation.cfm?id=1898953.1898956
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/2611462.2611496
https://doi.org/10.1145/2815400.2815406
https://doi.org/10.1145/248052.248106
http://dl.acm.org/citation.cfm?id=2685048.2685088
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
http://dl.acm.org/citation.cfm?id=2050613.2050642
https://doi.org/10.1145/1897852.1897873
https://doi.org/10.1145/2926965
https://doi.org/10.1145/2926965

OpenABL: A Domain-Specific Language
for Parallel and Distributed Agent-Based

Simulations

Biagio Cosenza1(B), Nikita Popov1,
Ben Juurlink1, Paul Richmond2,

Mozhgan Kabiri Chimeh2, Carmine Spagnuolo3,
Gennaro Cordasco3, and Vittorio Scarano3

1 TU Berlin, Berlin, Germany
cosenza@tu-berlin.de

2 University of Sheffield, Sheffield, UK
3 University of Salerno, Fisciano, Salerno, Italy

Abstract. Agent-based simulations are becoming widespread among
scientists from different areas, who use them to model increasingly com-
plex problems. To cope with the growing computational complexity, par-
allel and distributed implementations have been developed for a wide
range of platforms. However, it is difficult to have simulations that are
portable to different platforms while still achieving high performance.

We present OpenABL, a domain-specific language for portable, high-
performance, parallel agent modeling. It comprises an easy-to-program
language that relies on high-level abstractions for programmability and
explicitly exploits agent parallelism to deliver high performance. A source-
to-source compiler translates the input code to a high-level intermediate
representation exposing parallelism, locality and synchronization, and,
thanks to an architecture based on pluggable backends, generates target
code for multi-core CPUs, GPUs, large clusters and cloud systems.

OpenABL has been evaluated on six applications from various fields
such as ecology, animation, and social sciences. The generated code scales
to large clusters and performs similarly to hand-written target-specific
code, while requiring significantly fewer lines of codes.

1 Introduction

Agent-based simulations (ABS) are a powerful instrument to study a wide range
of scientific phenomena. According to Epstein [1], agent-based computational
models are well-suited to the analysis of phenomena where agent populations are
heterogeneous, there is no central control over individuals (autonomy), the space
where the agents work is explicit (e.g., an n-dimensional grid), and agents only
have local interactions with neighboring agents. Since SugarScape [2], computa-
tional models have been used to interpret society by translating social dynamics
into a type of computation. Examples are voting behaviors [3], epidemics [2],
and spatial unemployment patterns [4]. Applications go beyond social sciences,
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 505–518, 2018.
https://doi.org/10.1007/978-3-319-96983-1_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_36&domain=pdf

506 B. Cosenza et al.

from ecologists studying the predator-prey equilibrium [5] to hazard prevention
in evacuations [6].

With an increasing number of applications where agent modeling is used,
there is also a growing demand for computational power, due to larger agent
populations and increasingly complex models. For this purpose, parallel and
distributed implementations targeting different platforms, such as desktop GPUs
[7], HPC architectures [8], and distributed cloud systems [9] have been developed,
each focusing on a specific class of simulations and particular parallelization
issues. While the core concepts of all existing frameworks are fundamentally the
same, the variety of both hardware platforms and application contexts has led
to very different implementations. Ideally, ABS should be written in a portable
environment that can target a variety of parallel and distributed systems without
any program modifications.

The necessity of portable solutions to reproduce simulations on different par-
allel implementations and hardware platforms, has led to the OpenAB initiative1,
a community-driven collaborative project to provide models and procedures for
the benchmarking of multi-agent simulations on parallel and distributed com-
puting systems. This work aims at providing an effective and efficient tool to
these communities through the design and implementation of a domain-specific
language (DSL) for portable, parallel and high-performance ABS.

The contributions of this paper are:

1. The design of OpenABL, a novel domain-specific language for agent-based
computational modeling and simulation. The language targets the core
requirements of these simulations with tailored high-level semantics, and
enables parallel processing by explicitly exposing agent-parallelism.

2. A source-to-source compiler implementing the OpenABL language and sup-
porting five different parallel and distributed backends, which are capable of
running on diverse platforms such as multi-core CPUs, GPUs, and distributed
clouds.

3. A collection of six test simulations from different application fields includ-
ing biology, ecology and social sciences, and an experimental evaluation and
comparison across different platforms.

2 Background

Many frameworks and libraries for implementing parallel ABS have been pro-
posed; however, each addresses quite different target architectures, with distinct
solutions for locality and synchronization. REPAST [10] is an agent-based simu-
lation toolkit written in C++, later extended and parallelized into the REPAST-
HPC framework [11], and tested on a Blue Gene/P HPC cluster. Cosenza et al.
[8] introduced a distributed load balancing schema for parallel ABS that scales
a simulation with one million agents on a cluster with 64 processors. Mason [12]
is a popular multi-agent simulation library written in Java. D-Mason [13,14]
1 More information is available at http://www.openab.org.

http://www.openab.org

OpenABL: A DSL for Parallel and Distributed ABS 507

provides an effective and efficient way of parallelizing Mason programs for dis-
tributed systems, handling communication strategies and load balancing [15],
tested on Amazon Web Services [15], and used on several social science sce-
narios [16]. Flame [7] is an agent-based environment based on an underlying
formal model, called the X-Machine, and used in various scenarios such as cell
simulations [17] and immune system modeling [18]. FlameGPU [19] is an exten-
sion of Flame that executes agent-based models on GPU architectures. Other
GPU implementations have focused on bio-inspired visual clustering [20] and on
efficient compression of agent direction [21]. Several authors have performed a
comparison among ABS toolkits, both sequential [22] and parallel [23].

The idea of assuring portability across parallel implementations through
DSLs has been exploited in many application scenarios, in particular to target
large-scale computing systems [24]. Liszt [25] is the most similar to our work, with
a DSL for constructing mesh-based PDE solvers and capable of targeting clus-
ters, SMPs and GPUs. Liszt applications perform within 12% of hand-written
C++ code and scale to large clusters. Other DSL have been designed for stencil
computations [26], graph algorithms [27], and image processing pipelines [28].

3 Language Design

The goal of the OpenABL language is to provide a portable, efficient and easy-
to-use environment for agent-based modeling. This is achieved by a rich language
supporting domain-specific constructs, allowing the users to quickly prototype,
reproduce, and compare different models with different parameters. The lan-
guage also provides implicit support for agent parallelism and locality, so that
OpenABL codes can be efficiently mapped onto parallel and distributed imple-
mentations.

Fig. 1.OpenABL compilation workflow. The input code is translated to an AST-based
intermediate representation, from which different backends generate code for specific
platforms. The AST shows an excerpt of Listing 1.1.

Listing 1.1 shows a simple OpenABL code that demonstrates the general
structure of a simulation. The program is subdivided into multiple top-level sec-

508 B. Cosenza et al.

tions: agent declarations, simulation parameters, environment parameters, step
functions and the main code. The language uses C-like syntax to maintain famil-
iarity with mostly C and Java based ABS frameworks, and supports standard
operators and control-flow statements, as well as vector types.

1 // Agent declarations

2 agent Point {

3 position float3 pos;

4 }

5 // Simulation parameters and environment def.

6 float radius = 5;

7 float env_size = 100;

8 param int num_agents = 1000;

9 param int num_timesteps = 100;

10 environment { max: float3(env_size) }

11 // Step function

12 step move_point(Point in -> out) {

13 // Move towards the average direction of the neighbors

14 float3 dir = float3 (0);

15 int num_neighbors = 0;

16 for (Point other : near(in , radius)) {

17 dir += normalize(other.pos - in.pos);

18 num_neighbors += 1;

19 }

20 out.pos = clamp(in.pos + dir/num_neighbors , float3(

env_size));

21 }

22 // Main code: Initialization and execution

23 void main() {

24 for (int i : 0.. num_agents)

25 add(Point {pos: random(float3(env_size))});

26 simulate(num_timesteps) { move_point }

27 save("result.json");

28 }

Listing 1.1. An OpenABL code example implementing a simple agent motion.

Step Functions and Agent Parallelism. It is important to incorporate agent
parallelism into the language in a way that can be supported with the same
semantics by all backends. In OpenABL, this is accomplished using step func-
tions, which take an input agent of some type and yield a modified output agent.
For example, in

step move_point(Point in -> out) { ... }

the input agent in of type Point is the result of the last timestep, while the
output agent out will be the result of the current timestep. The output will only
become available once a step function has been called for all agents of that type.
Conceptually, this corresponds to a double buffering mechanism: an input buffer

OpenABL: A DSL for Parallel and Distributed ABS 509

of read-only agents and an output buffer of write-only agents, which are swapped
at the end of a discrete simulation step. The strict in/out separation is required
in order to produce deterministic, order-independent simulations. Surprisingly,
we found that many sequential agent libraries such as Mason do not provide a
native double-buffering mechanism. Therefore their results are not deterministic,
as they depend on the updating order of the agents. OpenABL overcomes this
limitation and always produces order-independent models.

The simulate statement invokes a simulation for a certain number of
timesteps, during which a list of step functions will be executed in the given
order. First one step function is executed for all agents (of the applicable type),
before the next step function is run. Between step functions, the out parameter
becomes the new in parameter. For instance, in the Ants model

simulate(num_timesteps) { ant_act1 , pheromone_deposit ,

ant_act2 }

three step functions are called: the first on ant agents; the second on pheromone
agents; the last again on ant agents.

The whole simulation starts at the main function, which is used to set up
agents (typically from a file or randomly generated), to invoke the simulation
and save the simulation results. Simulation parameters are declared as global
constants. If a constant is prefixed with the param keyword it may also be over-
ridden from the command line.

Locality. A fundamental concept of agent-based modeling is locality, because
interactions are usually limited to nearby agents. In general, this may be gov-
erned by arbitrary topologies, but OpenABL is currently limited to the common
case of two- and three-dimensional Euclidean topologies. Each agent declares a
designated position member of type float2 or float3, which provides the
position of the agent for spatial queries. The agent neighborhood can then be
accessed through the combination of a for loop and a radius-based near()
query:

for (AgentT neighbor : near(in, radius)) { ... }

The type of the input agent and the type of the neighboring agents that are fetched
does not necessarily have to match. The query is performed using a backend-
specific spatial acceleration data structure such as grid [19] and kd-tree [29].

Fig. 2. near() queries with homogeneous and heterogeneous agent types.

510 B. Cosenza et al.

Simulations with heterogeneous agents, i.e. with multiple agent types, are
implemented with multiple step functions on different agent types, and by spec-
ifying different return types on near() queries, as shown in Fig. 2.

Environment properties are specified using an environment declaration
which includes the environment dimensionality and bounds (min and max). Agent
positions must stay within these bounds. For performance reasons, this is not
automatically enforced by the language, but functions to perform the necessary
clamping or wrap-around are provided. The radius used for spatial acceleration
structures is usually determined automatically, but may also be explicitly given
here. The standard library also provides commonly used functions for geometric
and trigonometric operations.

Dynamic Agent Creation and Removal. Typically, the agents are created
at the beginning of the simulation and are not removed until the end; however,
some simulations require a dynamic mechanism for the creation and removal of
agents. For example, in the Predator-Prey model, predators pursue and eat prey,
who reproduce at a given rate. As a result, the agent populations periodically
increase and decrease during the course of a simulation. The language enforces
a number of additional constraints for backend compatibility: in a step function,
each agent may add at most one new agent. This means that in a single step,
the number of agents can at most double. The new agent position must be the
same as the generating agent position (e.g., in.pos). An agent can remove itself
by using the removeCurrent() function, but cannot remove a different agent.

4 Implementation

Compilation Process. OpenABL is a source-to-source compiler employing a
classical three-stage pipeline: First, Flex and Bison are used to parse the source
code into an abstract syntax tree (AST), which acts as our primary intermediate
representation. Then, target-independent analysis is performed, which validates
the code and enforces semantic constraints, while also annotating the AST with
necessary type and dependency information. Finally, different backends emit
source code (and other auxiliary files) for the target platform based on the
annotated AST.

Backends. OpenABL currently supports five backend implementations tar-
geting different agent models, acceleration data structures and platforms.

A basic C backend serves as a reference implementation and basis for other
C-based backends. It does not use acceleration structures, implements double-
buffering using two arrays of agents swapped after each step, and uses OpenMP
for trivial parallelization.

Flame [7] models agents using X-Machines, which are state machines that
support sending messages between agents. A step function can modify the mem-
ory of the current agent, send messages and iterate over messages sent in the

OpenABL: A DSL for Parallel and Distributed ABS 511

previous step. To support neighborhood queries, we determine which members of
neighboring agents are used inside a for-near loop and generate one step function
that sends a message containing all the used members. A second step function
processes the messages falling into the specified neighborhood. A side-effect of
this process is that no explicit double buffering of the agent memory is neces-
sary: because messages are generated in a previous step, changes to agents in
the current timestep are not observable. The backend generates the three parts
of a Flame model: an XML model specification, an XML initial agent state file,
and the C step function definitions. Flame does not support adding or removing
agents at runtime and does not use spatial acceleration structures.

FlameGPU [19] is based on Flame, but targets execution on the GPU using
CUDA. Our FlameGPU backend is structurally similar to the Flame backend.
It supports grid-based spatial acceleration, which requires a specification of the
environment dimensions and partitioning radius in the XML model. The environ-
ment bounds must be adjusted upwards to be multiples of the radius. Runtime
agent removal/addition is supported, but only the current agent may be removed
and one added per step function. Both restrictions are enforced by the language.

Mason [12] is an ABS and visualization library written in Java. The two
main components are an environment, which supports grid-based neighborhood
queries, and a schedule, which executes the step functions. Mason does not
have native support for double-buffering: simulations are fundamentally order-
dependent, based on the assumption that for most models it does not make a
significant difference if the state from the current (rather than previous) timestep
is used for some agents. To support our execution semantics, agents hold two
state objects, which are used alternately and swapped at the end of a step func-
tion. In Mason, each agent has only a single step function; however, our execution
model may require multiple step functions, executed for all agents and in a spe-
cific order.2 We solve this with a cyclic counter for each agent indicating which
step function to execute. Mason supports both removal and addition of agents at
runtime. This backend also produces code for the visualization of the simulation.

D-Mason [13,14] is a distributed extension of Mason that allows the dis-
tribution of the simulation across multiple, even heterogeneous machines. It is
based on a Master/Workers paradigm where the master partitions the simulation
environment into regions. All the agents in a region are assigned to a machine,
which performs the simulation, handles the migration of agents, and manages
the synchronization between neighboring regions. The D-Mason communication
mechanism is based on the Publish/Subscribe pattern. Unlike Mason, D-Mason
requires environments to use only positive coordinates. D-Mason supports agent
removal/addition at runtime; however, new agents must be positioned in the
current space partition.

Compiler flags are provided for further backend-specific configuration. For
example, the float data-type used by OpenABL is mapped to double-precision

2 While Mason itself supports multiple step functions in the form of anonymous Step-
pables, this is not supported by D-Mason, so a different solution is required.

512 B. Cosenza et al.

floats by default, because this is the only type supported by all backends, but
Flame and FlameGPU can switch to single-precision through a compiler flag.

5 Experimental Evaluation

OpenABL has been evaluated on six applications in terms of programmability
of the language and the performance of the code generated for the five backends,
including single-node performance on CPUs and GPUs, scalability on a cluster,
and a comparison against hand-written target-specific code.

Reference Simulation Models. The evaluation uses six agent-based models
from different domains, for which reference implementations were available for
at least one of our targets. Table 1 lists general properties of these models.

Circle is a standardized benchmark part of the OpenAB initiative, for assess-
ing the performance of fixed-radius near neighbor lookups, formally defined by
Chisholm et al. [30]. Boids [31] is a steering behavior for autonomous charac-
ters in animation and games, which simulates the flocking behavior of birds.
The agent motion is derived from three components: separation, alignment, and
cohesion. Conway’s Game-of-life is a cellular automaton model, implemented
with one agent per cell and an alive boolean status variable. Sugarscape is a
social science model where agents move on a grid of a regrowing resource (sugar),
which they must consume to survive. We implement it using a stationary grid
of agents. The Ants Foraging model simulates ants that, when they discover
a food source, establish a trail of pheromones between the nest and the food
source. The model uses two pheromones, which set up gradients and evaporate
after some simulation steps, to the nest and to the food source respectively.
We parallelized the original Mason model [32]: sequential access to global data
structures, which is not suitable for parallelization, has been replaced by two step
functions that handle the deposition and evaporation of (grid) pheromones, and
one for the ant movement. Predator-Prey is our largest model, which involves
three different agent types (prey, predator and grass), 13 step functions, and
utilizes dynamic agent creation and removal. Both predators and prey imple-
ment short-range collision avoidance, a mid-range flocking, and can reproduce
at different rates. Each predator follows the closest prey, which is eaten if it is
too close. Conversely, prey avoids predators and eats grass, which regrows after
a fixed time interval. All simulations have been executed with a different number
of agents. The environment is scaled with the square root (for two-dimensional
simulations) of the agent number, so that the agent density remains constant.

Programmability Evaluation. To evaluate the programmability and ease of
use of OpenABL, we compare the eLOC (effective lines of code, ignoring com-
ments and blank lines) of OpenABL models with available reference models

OpenABL: A DSL for Parallel and Distributed ABS 513

Table 1. Simulation benchmarks with the number of agent types, number of step
functions, whether dynamic agent addition/removal is used (AR), effective lines of
code (eLOC) of the implementations in OpenABL, FlameGPU and D-Mason.

Application Area Model properties Implementation size in eLOC

Types Steps AR OpenABL FlameGPU D-Mason

Circle Micro-benchmark 1 1 36 184 (×5.1) 537 (×14.9)

Boids Animation 1 1 82 240 (×2.9) 767 (×9.4)

Game of Life Cellular automaton 1 1 48 133 (×2.8) 477 (×9.9)

Sugarscape Social science 1 4 154 345 (×2.2) n/a

Ants Foraging Animal ecology 2 3 191 n/a 967 (×5.1)

Predator-Prey Animal ecology 3 13 ✓ 248 858 (×3.5) n/a

from FlameGPU and D-Mason.3 As seen in Table 1, the FlameGPU implemen-
tations are 2–5 times larger, while the D-Mason models are 5–15 times larger.
While eLOC is not a very reliable indicator of programmability, it is clear that
OpenABL models tend to be significantly more compact than manual imple-
mentations.

Single-Node Performance Comparison. For single-node performance eval-
uation, we compared the performance of the code generated by the OpenABL
compiler for the basic C, Mason, Flame and FlameGPU backends. The six test
models were run for 100 timesteps with population sizes ranging from 250 to 106

agents. The Predator-Prey model was only evaluated on backends supporting
dynamic addition/removal of agents. The benchmarks were performed on a sys-
tem with an Intel Core i5-4690K CPU (4 cores at 3.50 GHz), 16 GB of memory,
running on Ubuntu 16.04. For FlameGPU, we used an NVIDIA Titan Xp (Pas-
cal architecture) with 12 GB of memory. The basic C backend was configured to
use multiple threads using OpenMP.

The results in Fig. 3 show that Flame and basic C scale quadratically with the
number of agents. This is expected, as they do not use any spatial acceleration
structure. Mason is much faster than Flame, and is the best implementation for
small-sized simulations. FlameGPU pays a high overhead for small-sized simula-
tions, because of the data transfer from the host to the GPU; however, it is the
best-performing solution for larger simulations with more than 104 agents. For
most models, both Mason and FlameGPU scale approximately linearly at large
population counts. One notable exception is Ants, where Mason degenerates to
quadratic behavior, because of a very dense agent clustering at the start of the
simulation.

3 The used reference models are available at https://github.com/FLAMEGPU/
FLAMEGPU, https://github.com/FLAMEGPU/Tutorial and https://github.com/
isislab-unisa/dmason.

https://github.com/FLAMEGPU/FLAMEGPU
https://github.com/FLAMEGPU/FLAMEGPU
https://github.com/FLAMEGPU/Tutorial
https://github.com/isislab-unisa/dmason
https://github.com/isislab-unisa/dmason

514 B. Cosenza et al.

103 104 105 106

10−1

100

101

102

Circle

R
un

ti
m
e
(s
)

Mason
FlameGPU

Flame
Basic C

103 104 105 106

10−1

100

101

102

Boids2D

Mason
FlameGPU

Flame
Basic C

103 104 105 106
10−2

10−1

100

101

102

Game Of Life

Mason
FlameGPU

Flame
Basic C

103 104 105 106
10−2

10−1

100

101

102

Sugarscape

R
un

ti
m
e
(s
)

Mason
FlameGPU

Flame
Basic C

103 104 105 106

10−2

10−1

100

101

102

103

Ants

Mason
FlameGPU

Flame
Basic C

103 104 105 106

100

101

102

103

Predator-Prey

Mason
FlameGPU

Fig. 3. Performance of generated Mason, FlameGPU, Flame and basic C code with a
different number of agents (x-axis).

2 4 8 16 32 64 128

200,000

113,000
89,800
62,500
46,100

26,400

13,700

Circle

OpenABL
ideal

2 4 8 16 32 64 128

14,300

8,900

4,300

2,710

1,700

552
400

Boids

OpenABL
ideal

2 4 8 16 32 64 128

562

270

147

83

46

26
18

Game-of-Life

OpenABL
ideal

2 4 8 16 32 64 128

740,000

318,000
219,000
150,000
118,000

49,100
38,900

Sugarscape

OpenABL
ideal

2 4 8 16 32 64 128

8,450

5,540
4,000
3,0902,780
2,1802,320

Ants

OpenABL
ideal

2 4 8 16 32 64 128

1,310

700

402
294254236222

Predator-Prey

OpenABL
ideal

R
un

ti
m
e
(s
)

R
un

ti
m
e
(s
)

Fig. 4. OpenABL D-Mason strong scaling with different number of cores (x-axis).

Cluster Scaling. To evaluate the performance scaling of the OpenABL D-
Mason backend, we use a cluster of 12 nodes equipped with two Intel Xeon
E5-2430 (six cores) with hyper-threading disabled, connected by I350 Gigabit
network adapters. One node is used for coordinating the simulation, while the
others allocate one D-Mason logical processor for each core, running on Oracle
JVM 1.8 and exploiting Apache ActiveMQ as message broker for communica-

OpenABL: A DSL for Parallel and Distributed ABS 515

tion/synchronization (the broker is allocated on the coordinating node). Figure 4
shows the strong scalability of the six applications, with each model simulating
106 agents for 1000 timesteps. The plots show the runtime in seconds for an
increasing number of logical processors (cores).

The Boids model exhibits good scalability. Despite having similar behavior,
Circle’s scaling is slightly worse due to different parametrization, e.g., a wider
interaction radius. In Game-of-Life and Sugarscape, agents are distributed evenly
in the space (on a grid) and are stationary, resulting in high scalability. Ants and
Predator-Prey are the most complex simulations. The Ants model suffers from
a dense concentration of the ant agents, especially at the start of the simulation,
resulting in an uneven distribution of the workload. Predator-Prey is highly
dynamic because of the addition/removal of agents, which drastically affects
prey-crowded areas after the arrival of predators. This represents a challenge
for distributed memory system, leading to bad scalability. We believe that more
advanced load balancing strategies may substantially improve this aspect [33].

Performance Comparison Against Manually-Tuned Code. The potential
overhead of the generated code has been evaluated against manual implemen-
tations of the Boids benchmark, because it is available for most libraries and
is simple to validate. Results are summarized in Table 2. The generated code
for Mason is 9% slower than the manual implementation; the reason is the dou-
ble buffering mechanism introduced by OpenABL to ensure order-independent
correctness, not supported in standard Mason. For FlameGPU, both generated
code and manual implementation have similar performance: the semantics of
the language map very well without any noticeable overhead. The overhead for
D-Mason is 30%, motivated essentially by an improvement of the synchroniza-
tion mechanism for each step function (agent buffer analysis may potentially
reduce such overhead by avoiding unnecessary synchronizations). We omitted
Flame from the comparison because of its very poor scalability (impractical
with >5000 agents).

Table 2. Overhead of OpenABL generated code for Boids model compared to man-
ually tuned code.

Backend Overhead Main reason

Mason 9% Double-buffering

D-Mason 30% Double-buffering and additional synchronization

Flame n/a (Too slow to compare)

FlameGPU 0% Perfect programming model match

516 B. Cosenza et al.

6 Conclusion

We present OpenABL, a domain-specific language designed for agent modeling
on high-performance parallel and distributed architectures. It comprises an easy-
to-program language that relies on high-level abstractions for programmability
and explicitly exploits agent parallelism to deliver high-performance. It supports
a wide range of context-specific semantics such as order-independent step func-
tions, neighborhood queries, heterogeneous agents, and dynamic agent addition
and removal. A source-to-source compiler translates the input OpenABL code
into an AST-based intermediate representation exposing parallelism, locality and
synchronization at the agent level. Subsequently, a collection of pluggable back-
ends generate target codes for multi-core CPUs, massively parallel GPUs, large
clusters and cloud systems. The OpenABL generated codes have been tested on
a collection of six applications from various fields. While a program written in
OpenABL is much smaller than one written for non-portable platform-specific
libraries, its performance is very close to manual implementations.

OpenABL is an open source project available at https://github.com/
OpenABL/OpenABL, with the goal of becoming an open research platform. The
used code and instructions to reproduce our benchmarking results are available
in a figshare repository [34].

This research has been partially funded by the DFG project CELERITY
(CO 1544/1-1) and by the EPSRC fellowship Accelerating Scientific Discovery
with Accelerated Computing (EP/N018869/1).

References

1. Epstein, J.M.: Agent-based computational models and generative social science.
Complexity 4(5), 41–60 (1999)

2. Epstein, J.M., Axtell, R.: Growing Artificial Societies: Social Science from the
Bottom Up. The Brookings Institution, Washington, D.C. (1996)

3. Kollman, K., Miller, J.H., Page, S.E.: Adaptive parties in spatial elections. Am.
Polit. Sci. Rev. 86(4), 929–937 (1992)

4. Topa, G.: Social interactions, local spillovers and unemployment. Rev. Econ. Stud.
68(2), 261–295 (2001)

5. Haynes, T., Sen, S.: Evolving behavioral strategies in predators and prey. In: Weiß,
G., Sen, S. (eds.) IJCAI 1995. LNCS, vol. 1042, pp. 113–126. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-60923-7 22

6. Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-
density crowd simulation. In: EG Symposium on Computer Animation, pp. 99–108
(2007)

7. Kiran, M., Richmond, P., Holcombe, M., Chin, L.S., Worth, D., Greenough, C.:
FLAME: simulating large populations of agents on parallel hardware architectures.
In: Conference on Autonomous Agents and Multiagent Systems, pp. 1633–1636
(2010)

8. Cosenza, B., Cordasco, G., Chiara, R.D., Scarano, V.: Distributed load balancing
for parallel agent-based simulations. In: International Euromicro Conference on
Parallel, Distributed and Network-based Processing, PDP, pp. 62–69 (2011)

https://github.com/OpenABL/OpenABL
https://github.com/OpenABL/OpenABL
https://doi.org/10.1007/3-540-60923-7_22

OpenABL: A DSL for Parallel and Distributed ABS 517

9. Carillo, M., Cordasco, G., Serrapica, F., Spagnuolo, C., Szufel, P., Vicidomini, L.:
D-Mason on the cloud: an experience with amazon web services. In: Desprez, F.,
et al. (eds.) Euro-Par 2016. LNCS, vol. 10104, pp. 322–333. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-58943-5 26

10. North, M.J., Collier, N.T., Vos, J.R.: Experiences creating three implementations
of the repast agent modeling toolkit. Trans. Model. Comp. Sim. 16(1), 1–25 (2006)

11. Collier, N., North, M.: Parallel agent-based simulation with repast for high perfor-
mance computing. SIMULATION 89(10), 1215–1235 (2013)

12. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multi-
agent simulation environment. SIMULATION 81(7), 517–527 (2005)

13. Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo,
C.: A framework for distributing agent-based simulations. In: Alexander, M., et al.
(eds.) Euro-Par 2011. LNCS, vol. 7155, pp. 460–470. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29737-3 51

14. Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo,
C.: Bringing together efficiency and effectiveness in distributed simulations: the
experience with D-MASON. SIMULATION 89(10), 1236–1253 (2013)

15. Cordasco, G., Chiara, R.D., Raia, F., Scarano, V., Spagnuolo, C., Vicidomini, L.:
Designing computational steering facilities for distributed agent based simulations.
In: SIGSIM Principles of Advanced Discrete Simulation, pp. 385–390 (2013)

16. Lettieri, N., Spagnuolo, C., Vicidomini, L.: Distributed agent-based simulation and
GIS: an experiment with the dynamics of social norms. In: Hunold, S., et al. (eds.)
Euro-Par 2015. LNCS, vol. 9523, pp. 379–391. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-27308-2 31

17. Oliveira, A.P., Richmond, P.: Feasibility study of multi-agent simulation at the
cellular level with FLAME GPU. In: FLAIRS Conference, pp. 398–403 (2016)

18. Tamrakar, S., Richmond, P., D’Souza, R.M.: PI-FLAME: a parallel immune system
simulator using the FLAME graphic processing unit environment. SIMULATION
93(1), 69–84 (2017)

19. Richmond, P., Walker, D., Coakley, S., Romano, D.: High performance cellular
level agent-based simulation with FLAME for the GPU. Brief. Bioinform. 11(3),
334 (2010)

20. Erra, U., Frola, B., Scarano, V.: A GPU-based interactive bio-inspired visual clus-
tering. In: Symposium on Computational Intelligence and Data Mining, pp. 268–
275 (2011)

21. Cosenza, B.: Behavioral spherical harmonics for long-range agents’ interaction. In:
Hunold, S., et al. (eds.) Euro-Par 2015. LNCS, vol. 9523, pp. 392–404. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-27308-2 32

22. Macal, C.M., North, M.J.: Tutorial on agent-based modeling and simulation. In:
37th Conference on Winter Simulation, pp. 2–15 (2005)

23. Rousset, A., Herrmann, B., Lang, C., Philippe, L.: A survey on parallel and dis-
tributed multi-agent systems. In: Lopes, L., et al. (eds.) Euro-Par 2014. LNCS,
vol. 8805, pp. 371–382. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
14325-5 32

24. Grasso, I., Pellegrini, S., Cosenza, B., Fahringer, T.: A uniform approach for pro-
gramming distributed heterogeneous computing systems. J. Parallel Distrib. Com-
put. 74(12), 3228–3239 (2014)

25. DeVito, Z., et al.: Liszt: a domain specific language for building portable mesh-
based PDE solvers. In: Conference on High Performance Computing Networking,
Storage and Analysis, pp. 9:1–9:12 (2011)

https://doi.org/10.1007/978-3-319-58943-5_26
https://doi.org/10.1007/978-3-642-29737-3_51
https://doi.org/10.1007/978-3-319-27308-2_31
https://doi.org/10.1007/978-3-319-27308-2_31
https://doi.org/10.1007/978-3-319-27308-2_32
https://doi.org/10.1007/978-3-319-14325-5_32
https://doi.org/10.1007/978-3-319-14325-5_32

518 B. Cosenza et al.

26. Christen, M., Schenk, O., Cui, Y.: Patus for convenient high-performance sten-
cils: evaluation in earthquake simulations. In: Conference on High Performance
Computing, Networking, Storage and Analysis, SC, pp. 11:1–11:10 (2012)

27. Hong, S., Chafi, H., Sedlar, E., Olukotun, K.: Green-Marl: a DSL for easy and
efficient graph analysis. In: ASPLOS, pp. 349–362 (2012)

28. Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S.P., Durand, F.:
Decoupling algorithms from schedules for easy optimization of image processing
pipelines. ACM Trans. Graph. 31(4), 32:1–32:12 (2012)

29. Kofler, K., Steinhauser, D., Cosenza, B., Grasso, I., Schindler, S., Fahringer, T.: Kd-
tree based N-body simulations with volume-mass heuristic on the GPU. In: 2014
IEEE International Parallel and Distributed Processing Symposium Workshops,
Phoenix, AZ, USA, 19–23 May 2014, pp. 1256–1265 (2014)

30. Chisholm, R., Richmond, P., Maddock, S.: A standardised benchmark for assessing
the performance of fixed radius near neighbours. In: Desprez, F., et al. (eds.) Euro-
Par 2016. LNCS, vol. 10104, pp. 311–321. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-58943-5 25

31. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM
SIGGRAPH 21(4), 25–34 (1987)

32. Panait, L., Luke, S.: A pheromone-based utility model for collaborative foraging.
In: Conference on Autonomous Agents and Multiagent Systems, pp. 36–43 (2004)

33. Cordasco, G., Cosenza, B., De Chiara, R., Erra, U., Scarano, V.: Experiences with
mesh-like computations using prediction binary trees. Scalable Comput.: Pract.
Exp. Sci. Int. J. Parallel Distrib. Comput. (SCPE) 10(2), 173–187 (2009)

34. Cosenza, B., et al.: OpenABL: a domain-specific language for parallel and dis-
tributed agent-based simulations, figshare. Fileset (2018). https://doi.org/10.6084/
m9.figshare.6384413

https://doi.org/10.1007/978-3-319-58943-5_25
https://doi.org/10.1007/978-3-319-58943-5_25
https://doi.org/10.6084/m9.figshare.6384413
https://doi.org/10.6084/m9.figshare.6384413

Bulk: A Modern C++ Interface
for Bulk-Synchronous Parallel Programs

Jan-Willem Buurlage1(B) , Tom Bannink1,2 , and Rob H. Bisseling3

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
{j.buurlage,bannink}@cwi.nl

2 QuSoft, Amsterdam, The Netherlands
3 Mathematical Institute, Utrecht University, Utrecht, The Netherlands

r.h.bisseling@uu.nl

Abstract. The bulk-synchronous parallel (BSP) programming model
gives a powerful method for implementing and describing parallel pro-
grams. In this article we present Bulk, a novel interface for writing BSP
programs in the C++ programming language that leverages modern
C++ features to allow for the implementation of safe and generic parallel
algorithms for shared-memory, distributed-memory, and hybrid systems.
This interface targets the next generation of BSP programmers who want
to write fast, safe, clear and portable parallel programs. We discuss two
applications: regular sample sort and the fast Fourier transform, both in
terms of performance, and ease of parallel implementation.

1 Introduction

The bulk-synchronous parallel (BSP) model was introduced as a bridging model
for parallel programming by Valiant in 1989 [1]. It enables a way to structure
parallel computations, which aids in the design and analysis of parallel programs.

The BSP model defines an abstract computer, the BSP computer, on which
BSP algorithms can run. Such a computer consists of p identical processors, each
having access to their own local memory. A communication network is available
which can be used by the different processors to communicate data. During the
execution of an algorithm, there are points at which bulk synchronizations are
performed. The time of such a synchronization, the latency, is denoted by l. The
communication cost per data word is denoted by g. The parameters l and g are
usually expressed in number of floating-point operations (FLOPs). They can be
related to wall-clock time by considering the computation rate r of the individual
processors which is measured in floating-point operations per second (FLOP/s).
A BSP computer is captured completely by the parameter tuple (p, g, l, r).

At a high level, a BSP algorithm is a series of supersteps that each con-
sist of a computation phase and a communication phase. The processors of a
BSP computer can simultaneously send and receive data, and they can do so
independently. This means that the cost of communication is dominated by
the maximum number of words sent or received by any processor. At the end of
each superstep a bulk synchronization is performed ensuring that all outstanding
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 519–532, 2018.
https://doi.org/10.1007/978-3-319-96983-1_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_37&domain=pdf
http://orcid.org/0000-0001-5008-7173
http://orcid.org/0000-0003-2372-4207
http://orcid.org/0000-0002-9854-4481

520 J.-W. Buurlage et al.

communication has been resolved. Each processor runs the same program, but on
different data, which means that BSP algorithms adhere to the Single Program
Multiple Data (SPMD) paradigm.

The BSP cost of a BSP algorithm can predict the runtime of that algorithm
when it is run on a BSP computer. This cost can be expressed completely in the
parameters of a BSP computer. For each superstep, the cost depends on (1) w

(s)
i

the amount of work, measured in FLOPs, performed by processor s in the ith
superstep, (2) r

(s)
i , the number of data words received, and (3) t

(s)
i the number

of data words transmitted (sent) by processor s in superstep i. The runtime of
a parallel algorithm is dominated by the processor that takes the longest time,
both for computation and communication. In the case of communication, we
therefore require the concept of an h-relation, defined as the maximum number
of words transmitted or received by any processor during the superstep, i.e.,
hi = max0≤s<p max{t

(s)
i , r

(s)
i }. This leads naturally to the following cost, the

BSP cost, of a BSP algorithm consisting of k supersteps:

T =
k−1∑

i=0

(
max
0≤s<p

w
(s)
i + g hi + l

)
.

The BSP model has inspired many parallel programming interfaces. BSPlib
[2] describes a collection of a limited set of primitives which can be used for
writing BSP programs in the C programming language. Libraries that implement
the BSPlib standard include BSPonMPI [3] and MulticoreBSP for Java [4] and
C [5]. Paderborn University BSP (PUB) [6] is an alternative BSP library that
includes features not included in BSPlib such as subset synchronization and non-
blocking collective operations. A functional BSP library is provided in BSML
[7] for the multi-paradigm programming language Objective CAML. Big data
methodologies based on the BSP model include the popular MapReduce [8] and
Pregel [9] frameworks introduced by Google. These frameworks have open-source
implementations in respectively Apache Hadoop and Apache Giraph, the latter
of which is used for large scale graph computing by e.g. Facebook [10]. Apache
Hama [11] is a recent BSPlib alternative for the Java programming language.

For the C++ programming language, high-level parallel programming
libraries include HPX [12], whose current interface focuses on asynchronous
and concurrent applications, UPC++ [13], which provides a generic and object-
oriented partitioned global address space (PGAS) interface, and BSP++ [14]
which targets hybrid SMP architectures and implements direct remote memory
access but not bulk-synchronous message passing.

Modern hardware is increasingly hierarchical. In a typical HPC cluster there
are many nodes, each consisting of (several) multi-core processors together with
accelerators such as GPUs or many-core coprocessors. Furthermore, there are
multiple layers of random-access memory and caches which all differ in e.g.
size, latency, and read and write speed. In 2011, Valiant introduced Multi-BSP
[15], a hierarchical execution model based on BSP. The nested execution of BSP
programs is available in e.g. the PUB, MulticoreBSP, and NestStep [16] libraries.

In this article we introduce Bulk, a library for the C++ programming lan-
guage. The current version is based on the C++17 standard [17]. By leveraging

Bulk: A Modern Interface for BSP Programs 521

common idioms and features of modern C++ we increase memory safety and
code reuse, and we are able to eliminate boilerplate code from BSP programs.
Furthermore, the flexible backend architecture ensures that programs written
on top of Bulk are able to simultaneously target systems with shared memory,
distributed memory, or even hybrid systems. The remainder of this article is
structured as follows. In Sect. 2, we introduce the Bulk library, and highlight the
differences with previous BSP libraries. In Sect. 3, we discuss two applications,
regular sample sort and the fast Fourier transform (FFT). In Sect. 4, we provide
experimental results for these applications. Finally, in Sect. 5, we present our
conclusions and discuss possibilities for future work.

2 The Bulk Library

The Bulk library is a modern BSPlib replacement which focuses on the memory
safety, portability, code reuse, and ease of implementation of BSP algorithms.
Additionally, Bulk provides the possibility to program hybrid systems and it has
several new features compared to existing BSP libraries. First, we present all the
concepts of the library that are necessary to implement classic BSP algorithms.

Bulk Interface. Here, we give an overview of the Bulk C++ interface1. We use a
monospace font in the running text for C++ code and symbols. A BSP computer
is captured in an environment. This can be an object encapsulating e.g. an
MPI cluster, a multi-core processor or a many-core coprocessor. Within this
BSP computer, an SPMD block can be spawned. Collectively, the processors
running this block form a parallel world that is captured in a world object. This
object can be used to communicate, and for obtaining information about the
local process, such as the processor identifier (PID, in Bulk denoted rank) and
the number of active processors. In all the code examples, s refers to the local
rank, and t to an arbitrary target rank.

A simple program written using Bulk first instantiates an environment object,
which is then used to spawn an SPMD block (in the form of a C++ function)
on each processor, to which the local world is passed. See Listing 1 for a code
example, and Table 1 for a table with the relevant methods.

bulk::backend::environment env;

env.spawn(env.available_processors(), [](auto& world) {

world.log("Hello world from %d / %d\n",

world.rank(), world.active_processors());

});

Listing 1: The entry point for parallelism using Bulk. We create an environment,
where backend is a placeholder for a concrete backend such as MPI or C++
threads. Next, we spawn an SPMD block using all the available processors.
1 Although we try to be as complete as possible, we do not give a detailed and exhaus-

tive list of all the methods and functions provided by the library. For such a list,
together with all the function signatures and further examples we refer to the online
documentation which can be found at https://jwbuurlage.github.com/Bulk/.

https://jwbuurlage.github.com/Bulk/

522 J.-W. Buurlage et al.

Table 1. Available methods for environment and world objects.

Class Method Description

environment spawn starts an SPMD block

available processors returns maximum p

world active processors returns chosen p

rank returns local processor ID s

next rank returns s + 1 (mod p)

prev rank returns s − 1 (mod p)

sync ends the current superstep

log logs a string message

The spawned SPMD section, which is a function that takes the world as a
parameter, consists of a number of supersteps. These supersteps are delimited
with a call to world::sync. The basic mechanism for communication revolves
around the concept of a distributed variable, which is captured in a var object.
These variables should be constructed in the same superstep by each processor.
Although each processor defines this distributed variable, its value is generally
different on each processor. The value contained in the distributed variable on
the local processor is called the local value, while the concrete values on remote
processors are called the remote values.

A distributed variable is of little use if it does not provide a way to access
remote values of the variable. Bulk provides encapsulated references to the
local and remote values of a distributed variable. We call these references
image objects. Images of remote values can be used for reading, e.g. auto y
= x(t).get() to read from processor t, and for writing, e.g. x(t) = value,
both with the usual bulk-synchronous semantics. See Listing 2 for a more elab-
orate example. Since the value of a remote image is not immediately available
upon getting it, it is contained in a future object. In the next superstep, its
value can be obtained using future::value, e.g. y.value().

auto x = bulk::var<int>(world);

auto t = world.next_rank();

x(t) = 2 * world.rank();

world.sync();

// x now contains two times the ID of the previous logical processor

auto b = x(t).get();

world.sync();

// b.value() now contains two times the local ID

Listing 2: The basic usage of a distributed variable. The variable is created
on each processor running the SPMD block. Its images can then be written
to by using the convenient syntax x(processor) = value. Remote values are
obtained by using the syntax x(processor).get().

Bulk: A Modern Interface for BSP Programs 523

In this simple example, we already see some major benefits of Bulk over
existing BSP libraries: (1) we avoid accessing and manipulating raw memory
locations in user code, making the code more memory safe and (2) the resulting
code is shorter, more readable and therefore less prone to errors. Note that these
benefits do not come at a performance cost, since it can be seen as syntactic
sugar that resolves to calls to internal functions that resemble common BSP
primitives.

When restricting ourselves to communication based on distributed variables,
we lose the possibility of performing communication based on (sub)arrays. Dis-
tributed variables whose images are arrays have a special status in Bulk, and are
captured in coarray objects. The functionality of these objects is inspired by
Coarray Fortran [18]. Coarrays provide a convenient way to share data across
processors. Instead of manually sending and receiving individual data elements,
coarrays model distributed data as a 2D array, where the first dimension is over
the processors, and the second dimension is over local 1D array indices. The
local elements of a coarray can be accessed as if the coarray were a regular 1D
array. Images to the remote arrays belonging to a coarray xs are obtained in
the same way as for variables, by using the syntax xs(t). These images can be
used to access the remote array. For example, xs(t)[5] = 3 puts the value 3
into the array element at index 5 of the local array at processor t. Furthermore,
convenient syntax makes it easy to work with slices of coarrays. A basic slice
for the element interval [start, end), i.e., including start but excluding end,
is obtained using xs(t)[{start, end}]. See Listing 3 for examples of common
coarray operations. We summarize the most important put and get operations
for distributed variables and coarrays in Table 2.

auto xs = bulk::coarray<int>(world, 4);

auto t = world.next_rank();

xs[0] = 1;

xs(t)[1] = 2 + world.rank();

xs(t)[{2, 4}] = {123, 321};

world.sync();

// xs is now [1, 2 + world.prev_rank(), 123, 321]

Listing 3: The basic syntax for dealing with coarrays.

Instead of using distributed variables, it is also possible to perform one-
sided mailbox communication using message passing, which in Bulk is carried
out using a queue. The message passing syntax is greatly simplified compared
to previous BSP interfaces, without losing power or flexibility. This is possible
for two reasons. First, it is possible to construct several queues, removing a
common use case for tags to distinguish different kinds of messages. Second,
messages consisting of multiple components can be constructed on demand using
a syntax based on variadic templates. This gives us the possibility of optionally

524 J.-W. Buurlage et al.

Table 2. An overview of the syntax for puts and gets in Bulk. Here, x and xs are a dis-
tributed variable and a coarray, respectively, e.g. auto x = bulk::var<int>(world),
auto xs = bulk::coarray<int>(world, 10)

Object Image Description Code

var local (∗) set x = 5

use auto y = x + 3

remote put x(t) = 5

get auto y = x(t).get()

coarray local (∗) set xs[idx] = 5

use auto y = xs[idx] + 3

remote put xs(t)[idx] = 5

get auto y = xs(t)[idx].get()

put slice(∗∗) xs(t)[{start, end}] = {values...}
get slice(∗∗) auto ys = xs(t)[{start, end}].get()

(∗): a local image of a value of type T gets implicitly cast to a T& reference
to the underlying value.
(∗∗): subarrays corresponding to slices are represented using std::vector

containers.

attaching tags to messages in a queue, or even denoting the message structure
in the construction of the queue itself. For example, queue<int, float[]> is
a queue with messages that consist of a single integer, and zero or more real
numbers. See Listing 4 for the basic usage of these queues.

// queue containing simple data

auto numbers = bulk::queue<int>(world);

numbers(t).send(1);

numbers(t).send(2);

world.sync();

for (auto value : numbers)

world.log("%d", value);

// queue containing multiple components

auto index_tuples = bulk::queue<int, int, float>(world);

index_tuples(t).send({1, 2, 3.0f});

index_tuples(t).send({3, 4, 5.0f});

world.sync();

for (auto [i, j, k] : index_tuples)

world.log("(%d, %d, %f)", i, j, k);

Listing 4: The use of message passing queues. The local inbox acts as a regular
container, so we can use a range-based for-loop. The messages can be accessed
in a concise way using structured bindings.

In addition to distributed variables and queues, common communication pat-
terns such as gather all, foldl, and broadcast are also available. The Bulk

Bulk: A Modern Interface for BSP Programs 525

library also has various utility features for e.g. logging and benchmarking. We
note furthermore that it is straightforward to implement generic skeletons on
top of Bulk, since all distributed objects are implemented in a generic manner.

Backends and Nested Execution. Bulk has a powerful backend mechanism. The
initial release provides backends for distributed memory based on MPI [19],
shared memory based on the standard C++ threading library, and data stream-
ing for the Epiphany many-core coprocessor [20]. Note that for a shared-memory
system, only standard C++ has to be used. This means that a parallel program
written using Bulk can run on a variety of systems, simply by changing the
environment that spawns the SPMD function. No other changes are required. In
addition, libraries that build on top of Bulk can be written completely indepen-
dently from the environment, and only have to manipulate the world object.

Different backends can be used together. For example, distinct compute
nodes can communicate using MPI while locally performing shared-memory
multi-threaded parallel computations, all using a single programming interface.
Hybrid shared/distributed-memory programs can be written simply by nesting
environment objects with different backends.

3 Applications

3.1 Parallel Regular Sample Sort

Here, we present our BSP variant of the parallel regular sample sort proposed
by Shi and Schaeffer in 1992 [21]. Hill et al. [22] presented a BSP version, and
Gerbessiotis [23] studied variants with regular oversampling. Our version reduces
the required number of supersteps by performing a redundant mergesort of the
samples on all processors.

Our BSP variant is summarized in Algorithm1. Every processor first sorts its
local block of size b = n/p by a quicksort of the interval [sb, (s + 1)b − 1], where
s is the local processor identity. The processor then takes p regular samples
at distance b/p and broadcasts these to all processors. We assume for simplicity
that p divides b, and, for the purpose of explanation, that there are no duplicates
(which can be achieved by using the original ordering as a secondary criterion).
All processors then synchronize, which ends the first superstep. In the second
superstep, the samples are concatenated and sorted. A mergesort is used, since
the samples originating in the same processor were already sorted. Thus, p parts
have to be merged. The start of part t is given by start [t] and the end by
start [t+1]− 1. From these samples, p splitters are chosen at distance p, and are
used to split the local block into p parts. At the end of the second superstep, a
local contribution Xst is sent to processor P (t). In the third and final superstep,
the received parts are concatenated and sorted, again using a mergesort because
each received part has already been sorted. See Listing 5 for an illustration of
Bulk implementations of the two communication phases of Algorithm1.

Shi and Schaeffer have proven that the block size at the end of the algorithm
is at most twice the block size at the start, thus bounding the size by bs ≤ 2b. A

526 J.-W. Buurlage et al.

small optimization made possible by our redundant computation of the samples
is that not all samples need to be sorted, but only the ones relevant for the local
processor. The other samples merely need to be counted, separately for those
larger and for those smaller than the values in the current block.

The total BSP cost of the algorithm, assuming p is a power of two, is

Tsort ≤ n

p
log2

n

p
+ p2 log2 p +

2n

p
· log2 p +

(
p(p − 1) + 2

n

p

)
g + 2l. (1)

This is efficient in the range p ≤ n1/3, since the sorting of the array data then
dominates the redundant computation and sorting of the samples.

auto samples = bulk::coarray<T>(world, p * p); // Broadcast samples

for (int t = 0; t < p; ++t)

samples(t)[{s * p, (s + 1) * p}] = local_samples;

world.sync();

auto q = bulk::queue<int, T[]>(world); // Contribution from P(s) to P(t)

for (int t = 0; t < p; ++t)

q(t).send(block_sizes[t], blocks[t]);

world.sync();

Listing 5: Two communication phases in the regular sample sort algorithm.

3.2 Fast Fourier Transform

The discrete Fourier transform (DFT) of a complex vector x of length n is the
complex vector y of length n defined by

yk =
n−1∑

j=0

xje−2πijk/n =
n−1∑

j=0

xjωn
jk, for 0 ≤ k < n, (2)

where we use the notation ωn = e−2πi/n. The DFT can be computed in 5n log2 n
floating-point operations by using a radix-2 Fast Fourier Transform (FFT) algo-
rithm assuming that n is a power of two.

Our parallel algorithm for computing the DFT uses the group-cyclic distri-
bution with cycle c ≤ p, and is based on the algorithm presented in [24] and
explained in detail in [25]. The group-cyclic distribution first assigns a block of
the vector x to a group of c processors and then assigns the vector components
within that block cyclically. The number of processor groups (and blocks) is p/c.
The block size of a group is nc/p. Here, we assume that n, p, c are powers of two.
For c = 1, we retrieve the regular block distribution, and for c = p the cyclic
distribution.

The parallel FFT algorithm starts and ends in a cyclic distribution. First,
the algorithm permutes the local vector with components xs, xs+p, xs+2p, . . . ,
xs+n−p, by swapping pairs of components with bit-reversed local indices. The
resulting storage format of the data can be viewed as a block distribution, but

Bulk: A Modern Interface for BSP Programs 527

Algorithm 1. Regular sample sort for processor P (s), with 0 ≤ s < p.
input: x : vector of length n, n mod p2 = 0, block distributed with block size b = n/p.
output: x sorted in increasing order, block distributed with variable block size bs ≤ 2b.

Quicksort(x , sb, (s + 1)b − 1); � Sort local block and create samples
for i := 0 to p − 1 do

samples[i] := x[sb + i · b
p
];

for t := 0 to p − 1 do � Broadcast samples
put samples in P (t);

Sync;

for t := 0 to p − 1 do � Concatenate and sort samples
start [t] := tp;
for i := 0 to p − 1 do

sample[tp + i] := samplet[i];

start [p] := p2;
Mergesort(sample, start , p);

for t := 0 to p − 1 do � Create splitters
splitter [t] := sample[tp];

splitter [p] := ∞;

for t := 0 to p − 1 do � Split local block and send its parts
Xst := {xi : sb ≤ i < (s + 1)b ∧ splitter [t] ≤ xi < splitter [t + 1]};
put Xst in P (t); � Contribution from P (s) to P (t)

Sync;

x s := ∪p−1
t=0 Xts; � Concatenate received parts

starts[0] := 0; � Sort local block
for t := 1 to p do

starts[t] := starts [t − 1] + |Xt−1,s|;
bs := starts[p];
Mergesort(x s, starts, p);

with the processor identities bit-reversed. The processor numbering is reversed
later, during the first data redistribution. After the local bit reversal, a sequence
of butterfly operations is performed, just as in the sequential FFT, but with every
processor performing the pairwise operations on its local vector components. In
the common case p ≤ √

n, the BSP cost of this algorithm is given by

TFFT, p≤√
n =

5n log2 n

p
+ 2

n

p
g + l. (3)

528 J.-W. Buurlage et al.

4 Results

We evaluate the performance of Bulk implementations of the BSP algorithms
regular sample sort and FFT outlined in the previous section. The numbers pre-
sented are obtained on a single computer with two Intel Xeon Silver 4110 CPUs,
each with 8 cores and 16 hardware threads for a total of 32 hardware threads,
using the C++ threads backend. The benchmark programs are compiled with
GCC 7.2.1. The results are shown in Table 3. The parallel sort implementation
is a direct translation of Algorithm1, except that we opt for a three-phase com-
munication protocol instead of relying on bulk-synchronous message passing to
avoid potentially superfluous buffer allocations. The parallel FFT implementa-
tion is as described in Sect. 3.2, where we use FFTW [26] as a sequential kernel2.
The input arrays for both algorithms have size n, and the algorithms are run on
p processors.

For the parallel sorting algorithm, the array contains uniformly distributed
random integers between 0 and 2 × 105. We observe that good speedups are
obtained compared to the sequential implementation. The maximum speedup
seen is about 16× with p = 32 and n = 223.

For the FFT results, we observe good scalability up to p = 16, where we
seem to hit a limit presumably because of the shared floating-point unit (FPU)
between two logical threads on the same physical core, and possibly also due to
the memory requirements in the redistribution phase.

Various other algorithms and applications have been implemented on top of
Bulk. The current library release includes a number of examples, such as sim-
ple implementations for the inner product, or the word count problem. Future
releases of the library are planned to have additional features such as arbitrary
data distributions, which is already available as an experimental feature. Fur-

Table 3. Speedups of parallel sort (top) and parallel FFT compared to std::sort from
libstdc++, and the sequential algorithm from FFTW 3.3.7, respectively. Also given is
the sequential time tseq.

p = 1 p = 2 p = 4 p = 8 p = 16 p = 32 tseq(s)

Sort n = 220 0.93 1.95 3.83 6.13 8.10 12.00 0.08

n = 221 1.01 2.08 4.11 7.28 10.15 15.31 0.19

n = 222 0.88 1.82 3.58 5.99 10.27 13.92 0.33

n = 223 0.97 1.90 3.63 6.19 11.99 16.22 0.72

n = 224 0.93 1.79 3.21 6.33 8.47 14.76 1.39

FFT n = 223 0.99 1.07 2.08 2.77 5.60 5.51 0.20

n = 224 1.00 1.26 2.14 3.07 5.68 6.08 0.45

n = 225 1.00 1.23 2.22 3.09 5.80 6.05 0.96

n = 226 0.99 1.24 2.01 3.28 5.48 5.97 1.93

2 We use plans with the so-called planning-rigor flag FFTW MEASURE.

Bulk: A Modern Interface for BSP Programs 529

thermore, an open-source application in computed tomography, Tomos, has been
developed on top of Bulk, illustrating that the library can be used for the imple-
mentation of more complicated software.

4.1 Bulk vs. BSPlib

We believe the main goal of Bulk, which is to improve memory safety, portability,
code reuse, and ease of implementation compared to BSPlib, has been largely
achieved. In Listing 6, we show a Bulk and a BSPlib implementation of a common
operation. The Bulk implementation avoids the use of raw pointers, uses generic
objects, requires significantly fewer lines of code, and is more readable.

// BSPlib

int* xs = malloc(10 * sizeof(int));

bsp_push_reg(xs, 10 * sizeof(int));

bsp_sync();

int ys[3] = {2, 3, 4};

bsp_put((s + 1) % p, ys, xs, 2, 3 * sizeof(int));

bsp_sync();

...

bsp_pop_reg(xs);

free(xs);

// Bulk

auto xs = bulk::coarray<int>(world, 10);

xs(world.next_rank())[{2, 5}] = {2, 3, 4};

world.sync();

Listing 6: A comparison between Bulk and BSPlib for putting a subarray.

We compare the performance of Bulk to a state-of-the-art BSPlib implemen-
tation, MulticoreBSP for C (MCBSP) [5], version 2.0.3 released in May 2018.
We use the implementations of BSPedupack [25], version 2.0.0-beta, as the basis
of our BSPlib programs.

Table 4 shows the performance of Bulk compared to BSPlib. For sorting,
the Bulk implementation is significantly faster, presumably because the internal
sorting algorithm used is different. The Bulk implementation uses the sorting
algorithm from the C++ standard library, whereas the BSPlib implementation
uses the quicksort from the C standard library. The BSPedupack FFT imple-
mentation has been modified to use FFTW for the sequential kernel. For the
FFT, MCBSP outperforms Bulk slightly on larger problem sizes.

In Table 5, the BSP parameters are measured for Bulk and MCBSP. The
computation rate r is measured by applying a simple arithmetic transformation
involving two multiplications, one addition and one subtraction, to an array of
223 double-precision floating-point numbers. The latency l is measured by averag-
ing over 100 bulk synchronizations without communication. The communication-
to-computation ratio g is measured by communicating subarrays of various sizes,

530 J.-W. Buurlage et al.

Table 4. Comparing implementations of BSPedupack running on top of MCBSP, to
our implementations on top of Bulk.

Sort FFT

Size tMCBSP (ms) tBulk (ms) Size tMCBSP (s) tBulk (s)

n = 220 24.49 13.80 n = 222 0.153 0.144

n = 221 53.00 28.76 n = 223 0.305 0.320

n = 222 113.6 62.42 n = 224 0.629 0.694

n = 223 237.2 142.8

consisting of up to 107 double-precision floating-point numbers, between various
processor pairs.

The MCBSP library uses a barrier based on a spinlock mechanism by default.
This barrier gives better performance, leading to a low value for l. Alternatively,
a more energy-efficient barrier based on a mutex can be used, which is similar to
the barrier that is implemented in the C++ backend for Bulk. With this choice,
the latency of MCBSP and Bulk are comparable. MCBSP is able to obtain a
better value for g. We plan to include a spinlock barrier in a future release of
Bulk, and to improve the communication performance further.

Table 5. The BSP parameters for MCBSP and the C++ thread backend for Bulk.

Method r (GFLOP/s) g (FLOPs/word) l (FLOPs)

MCBSP (spinlock) 0.44 2.93 326

MCBSP (mutex) 0.44 2.86 10484

Bulk 0.44 5.65 11702

5 Conclusion

We present Bulk, a modern BSP interface and library implementation with many
desirable features such as memory safety, support for generic implementations
of algorithms, portability, and encapsulated state, and show that it allows for
clear and concise implementations of BSP algorithms. Furthermore, we show
the scalability of two important applications implemented in Bulk by providing
experimental results. Even though both algorithms have O(n log n) complexity,
and nearly all input data have to be communicated during the algorithm, we still
are able to obtain good speedups with our straightforward implementations. The
performance of Bulk is close to that of a state-of-the-art BSPlib implementation,
except for the mutex-based barrier.

Bulk: A Modern Interface for BSP Programs 531

References

1. Valiant, L.G.: A bridging model for parallel computation. Comm. ACM 33(8),
103–111 (1990)

2. Hill, J.M.D., et al.: BSPlib: the BSP programming library. Parallel Comput.
24(14), 1947–1980 (1998)

3. Suijlen, W.: BSPonMPI v0.3. https://sourceforge.net/projects/bsponmpi/
4. Yzelman, A.N., Bisseling, R.H.: An object-oriented bulk synchronous parallel

library for multicore programming. Concurr. Comput.: Pract. Exp. 24(5), 533–
553 (2012)

5. Yzelman, A.N., Bisseling, R.H., Roose, D., Meerbergen, K.: MulticoreBSP for C: a
high-performance library for shared-memory parallel programming. Int. J. Parallel
Programm. 42(4), 619–642 (2014)

6. Bonorden, O., Juurlink, B., von Otte, I., Rieping, I.: The Paderborn University
BSP (PUB) library. Parallel Comput. 29(2), 187–207 (2003)

7. Loulergue, F., Gava, F., Billiet, D.: Bulk synchronous parallel ML: modular imple-
mentation and performance prediction. In: Sunderam, V.S., van Albada, G.D.,
Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 1046–1054.
Springer, Heidelberg (2005). https://doi.org/10.1007/11428848 132

8. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: Proceedings of OSDI, pp. 137–149 (2004)

9. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: Proceed-
ings of SIGMOD, pp. 135–145 (2010)

10. Ching, A., Edunov, S., Kabiljo, M., Logothetis, D., Muthukrishnan, S.: One trillion
edges: graph processing at Facebook-scale. VLDB 8(12), 1804–1815 (2015)

11. Siddique, K., Akhtar, Z., Yoon, E.J., Jeong, Y.S., Dasgupta, D., Kim, Y.: Apache
Hama: an emerging bulk synchronous parallel computing framework for big data
applications. IEEE Access 4, 8879–8887 (2016)

12. Heller, T., Diehl, P., Byerly, Z., Biddiscombe, J., Kaiser, H.: HPX-An open source
C++ standard library for parallelism and concurrency. In: Proceedings of Open-
SuCo, p. 5 (2017)

13. Zheng, Y., Kamil, A., Driscoll, M.B., Shan, H., Yelick, K.: UPC++: a PGAS
extension for C++. In: Proceedings of IEEE IPDPS, pp. 1105–1114 (2014)

14. Hamidouche, K., Falcou, J., Etiemble, D.: Hybrid bulk synchronous parallelism
library for clustered SMP architectures. In: Proceedings of HLPP, pp. 55–62 (2010)

15. Valiant, L.G.: A bridging model for multi-core computing. J. Comput. Syst. Sci.
77(1), 154–166 (2011)

16. Keßler, C.W.: NestStep: nested parallelism and virtual shared memory for the BSP
model. J. Supercomput. 17(3), 245–262 (2000)

17. ISO/IEC: 14882:2017(E) - Programming languages - C++ (2017)
18. Numrich, R.W., Reid, J.: Co-array Fortran for parallel programming. ACM SIG-

PLAN Fortran Forum 17(2), 1–31 (1998)
19. MPI Forum: MPI: a message-passing interface standard. Int. J. Supercomput.

Appl. High-Perform. Comput. 8, 165–414 (1994)
20. Olofsson, A., Nordström, T., Ul-Abdin, Z.: Kickstarting high-performance energy-

efficient manycore architectures with Epiphany. In: Proceedings of IEEE ACSSC,
pp. 1719–1726 (2014)

21. Shi, H., Schaeffer, J.: Parallel sorting by regular sampling. J. Parallel Distrib.
Comput. 14(4), 361–372 (1992)

https://sourceforge.net/projects/bsponmpi/
https://doi.org/10.1007/11428848_132

532 J.-W. Buurlage et al.

22. Hill, J.M.D., Donaldson, S.R., Skillicorn, D.B.: Portability of performance with the
BSPLib communications library. In: Proceedings of MPPM, p. 33 (1997)

23. Gerbessiotis, A.V.: Extending the BSP model for multi-core and out-of-core com-
puting: MBSP. Parallel Comput. 41(Suppl. C), 90–102 (2015)

24. Inda, M.A., Bisseling, R.H.: A simple and efficient parallel FFT algorithm using
the BSP model. Parallel Comput. 27(14), 1847–1878 (2001)

25. Bisseling, R.H.: Parallel Scientific Computation: A Structured Approach using BSP
and MPI. Oxford University Press, Oxford (2004)

26. Frigo, M., Johnson, S.G.: FFTW: an adaptive software architecture for the FFT.
In: Proceedings of IEEE ICASSP, pp. 1381–1384 (1998)

SharP Unified Memory Allocator: An
Intent-Based Memory Allocator for

Extreme-Scale Systems

Ferrol Aderholdt1(B), Manjunath Gorentla Venkata1,
and Zachary W. Parchman2

1 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
{aderholdtwf1,manjugv}@ornl.gov

2 Tennessee Technological University, Cookeville, TN 38501, USA
zwparchman42@students.tntech.edu

Abstract. The pre-exascale systems will soon be deployed with a deep,
complex memory hierarchy composed of many heterogeneous memories.
This presents multiple challenges for users including: how to allocate data
objects with locality between memories and devices for the various mem-
ories in these systems, which includes DRAM, High-bandwidth Memory
(HBM), and non-volatile random access memory (NVRAM), and how
to perform these allocations while providing portability for their appli-
cation. Currently, the user can make use of multiple, disjoint libraries
to allocate data objects on these memories. However, it is difficult to
obtain locality between memories and devices when using libraries that
are unaware of each other. This paper presents the Unified Memory
Allocator (UMA) of the SHARed data-structure centric Programming
abstraction (SharP) library, which provides a unified interface for mem-
ory allocations across DRAM, HBM, and NVRAM and is extensible to
support future memory types. In addition, the SharP UMA allows for
portability between systems by supporting both explicit and implicit,
intent-based memory allocations. To demonstrate the ease of use of the
SharP UMA, we have extended both Open MPI and OpenSHMEM-X to
support SharP. We validate this work by evaluating the performance
implications and intent-based approach with synthetic benchmarks as
well as adaptations of the Graph500 benchmark.

F. Aderholdt—This manuscript has been authored by UT-Battelle, LLC under Con-
tract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United
States Government retains and the publisher, by accepting the article for publi-
cation, acknowledges that the United States Government retains a non-exclusive,
paid-up, irrevocable, worldwide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government purposes.
The Department of Energy will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan (http://energy.
gov/downloads/doe-public-access-plan).

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 533–545, 2018.
https://doi.org/10.1007/978-3-319-96983-1_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_38&domain=pdf
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan

534 F. Aderholdt et al.

1 Introduction

Many current extreme-scale systems have a deep, complex memory hierarchy
composed of heterogeneous memories including DRAM and high-performance
graphics DRAM. The memory hierarchy is becoming deeper with the inclusion
of HBM and NVRAM in many current and soon to be deployed systems. With
this trend of a deeper and more complex memory hierarchy continuing into the
exascale era, it is important that users are able to achieve high-performance from
each system executing their scientific or analytic applications.

Currently, for each memory and device in the system, there exists API calls
and libraries capable of allocating data objects on their particular memories.
These include libraries such as malloc in libc for DRAM, CudaMalloc in the
CUDA library for HBM memory on Graphical Processing Units (GPUs), and
the PMEM library for allocating memory on NVRAM. However, for each of these
memories, the libraries are not knowledgeable of the other libraries in the system,
which can create challenges for users who are attempting to obtain locality and
affinity with their memory allocations.

These challenges and the deepening of the memory hierarchy have caused
many in industry and the research community to develop new memory alloca-
tors capable of efficiently allocating memory on the newly included memories,
such as the memkind allocator [3]. The memkind allocator is capable of allo-
cating memory on both DRAM and HBM (i.e., MCDRAM on Intel KNL) and
presents itself to the user as an extensible interface, which can support future
heterogeneous memories. However, applications making use of memkind are not
portable between systems as the allocations of data objects are completed in an
explicit manner, which requires systems to have both identical memories and
affinities between devices and memories.

To alleviate the User from needing architectural knowledge of the machine,
with respect to allocating memory, the User ’s intent could be captured and
interpreted to perform the proper memory allocation. Capturing User intent is
a challenging task. The question that needs to be answered is: How do we abstract
the system architecture from the user while still providing accurate memory allo-
cations? Abstracting the system while forcing the User to know latency and
bandwidth characteristics of the underlying memory accomplishes little unless
these are used as thresholds for acceptable performance.

This paper presents a higher-level approach to solving this challenge with the
UMA of the SharP library [14]. The UMA is a unified memory allocator abstract-
ing the memories of the system and the allocators for those memories. This is
achieved through an internal, extensible interface that utilizes the excellent mem-
ory allocators for memories such as DRAM, HBM, and NVRAM including the
memkind, CudaMalloc, and PMEM allocators. This allows the user to lever-
age existing allocators while having SharP coordinate memory allocations and
provide data locality and affinity for the User .

The allocator is presented to the User through a single interface that
abstracts the memories from the User such that the User can perform memory
allocations with high-level Hints and Constraints that describe the user’s intent,

SharP Unified Memory Allocator 535

enabling intent-based memory allocations. In addition to high-level Hints and
Constraints, users with expert knowledge of the system may explicitly declare
the memory their data is to be allocated on as a constraint to the SharP UMA.

This work makes the following contributions:

– We classify and design higher-level abstractions for Users to perform mem-
ory allocations on multiple memory types in the system while enabling data
locality and affinity, which will reduce data movement.

– We design and implement the SharP UMA based on these higher-level
abstractions and demonstrate their ease of use by extending both Open MPI
and OpenSHMEM-X [1] to make use of this memory allocator.

– We demonstrate the effectiveness of this allocator with synthetic micro-
benchmarks on multiple systems, demonstrating the portability of the app-
roach, as well as porting the Graph500 benchmark to make use of our
extended Open MPI and OpenSHMEM-X.

2 Related Work

There are two main areas of research related to this work. The first is the area
of memory allocation, which has been thoroughly studied over many years for
both single node and distributed allocations. The second area focuses on pro-
gramming models that also use similar abstractions to provide portable memory
allocation across various memories within the system. We will first discuss the
area of memory allocators and then the abstractions enabling portable memory
allocations and memory usage.

There have been many memory allocators developed over the past several
years focused on providing simple interfaces for users to allocate memory. The
majority of the earlier memory allocators such as Doug Lea’s dlmalloc [11],
GNU’s malloc (ptmalloc) [8], Jason Evans’ malloc (jemalloc) [6], and others [2].
In each of these allocators, the primary focus is on allocation performance and the
reduction of fragmentation, as well as the elimination of false-sharing, through
interfaces that leveraged arenas or thread specific memory pools inside their
implementations. This allowed for thread-based allocations that remained lock-
free resulting in higher-performance within the critical paths of execution and
a reduction in false-sharing. Because of jemalloc’s ability to perform fast allo-
cations, it has been leveraged by other allocators such as the memkind [3] and
PMEM memory allocators [9]. The memkind allocator is an extensible memory
allocator that is designed to provide memory allocations on DRAM and HBM for
the Intel Xeon Phi Knights Landing. It accomplishes this by providing interfaces
for the user to create allocators for each memory kind in the system. If there
are memories other than DRAM and HBM, the user must manually implement
the underlying functionality for those memories. The PMEM memory allocator
focuses specifically on persistent memory and provides multiple methods of allo-
cating on these memories including: (i) memory-mapping a file in NVRAM and
using jemalloc to provide memory allocations of that memory, (ii) treating the
memory as a data object allowing the user to modify the object as they see fit

536 F. Aderholdt et al.

throughout execution, and (iii) giving the user a direct interface to treat the
memory as if its virtual scratch memory with jemalloc.

With respect to abstracting the memories of the system and allowing a user to
allocate memory in a portable fashion, there are multiple works focused on these
areas including UNITY [10] and kokkos [5]. UNITY is a library that abstracts
the memories of the system from the user allowing the user to consider only their
data structures. The abstraction is done so the data objects allocated by the user
are placed in memory and moved automatically based on usage and need. Kokkos
similarly handles data placement for the user based on “traits” of memory, which
are declared by the user in order to allocate memory appropriately.

Based on these works, the SharP UMA is different from the above works
by not only abstracting the memories of the system like UNITY and kokkos,
but also allow the user the place data in memories based on their intent. More
clearly, the user can implicitly and explicitly allocate memory using the SharP
UMA as well as being able to optimize their algorithms and data placement
beyond the capabilities that are provided by our library.

3 Capturing User Intent

Many of the current extreme-scale systems are composed of CPUs, compute
accelerators, and high-performing NICs. These architectures, while delivering
high-performance, are often dissimilar to other systems with different affinities
between devices, memories present, etc. With these differing architectures, it is
difficult for research scientists to produce high-performing, portable implemen-
tations of their scientific algorithms because the implementation will have to
be optimized for each system. With the increasing complexity of the memory
hierarchy, the changes necessary to optimize an application will grow.

Capturing the user’s intent could serve to lessen the changes required for
an application moving from system to system and increase productivity for the
application developer. The challenge of capturing user intent is determining the
required granularity to provide a sufficient amount of performance portability.
While the performance characteristics and programming of particular accelera-
tors may require changes to an application when not using programming models
such as OpenMP or OpenACC, we argue that users should not need to modify
their application when moving from system to system due to architectural dif-
ferences with respect to affinities and memory types. This is especially true as
we move to systems with an increased heterogeneity of devices.

In general, there are two levels of granularity that could be used to capture
user-intent. These levels include (i) lower-level characteristics and (ii) higher-
level generalizations of the components of the system.

For (i), the lower-level characteristics of the memories used for the storage of
data objects may include performance characteristics or device traits. This can
be demonstrated by having the user specify that a particular data object should
be allocated on a memory with a particular access latency or bandwidth. How-
ever, this requires the user to have a relatively high understanding of the mem-
ory technologies available in the system. Additionally, using specific constraints

SharP Unified Memory Allocator 537

on the latency and bandwidth of memories makes the assumption that mem-
ory technologies and their performance will be relatively static. Improving the
latency and bandwidth characteristics of memory types could cause previously
assumed values to be incorrect, resulting in an incorrectly behaving application
or a failure at runtime.

In (ii), a higher-level granularity further abstracts the system allowing the
user to know little about the underlying memory other than its general prop-
erties. For example, the user may wish to use HBM on a GPU for their com-
putation, but not know the specific latency and bandwidth measurements of
the HBM. By using a high-level hint, the user would still be able to ensure an
allocation on the proper memory. However, high-level abstractions of the mem-
ory types can produce incorrect results without the coupling of multiple hints
to help describe affinities to devices or other memory types that may be used.
Using the same example of HBM on a GPU, the user can specify that they wish
to allocate memory on the GPU that is also close to the executing Processing
Element (PE) by combining hints (i.e., a hint for HBM and locality to the PE).

4 SharP Unified Memory Allocator

Based on the discussion in Sect. 3 and to support the emerging architectures
in extreme-scale systems while providing high-performance and portability, we
have designed an interface to make use of high-level Hints and Constraints to
capture user intent while providing support for memory allocations on various
memories including DRAM, HBM, and NVRAM. In this section, we will discuss
both the capturing of user intent by our unified interface as well as the mapping
from the intent to the underlying allocators.

Memory
Allocator

CudaMalloc

Memkind

Memkind 0 Memkind 1

Device 0 Device 1

Hints Constraints

Near CPU0 Near CPU1

CPUPMEM

pmem_map

NVRAM GPU

Near GPU0 Near GPU1

Fig. 1. Memory allocation with the SharP UMA.

4.1 Unified Memory Allocator’s Interface

To provide a useful interface for the User , both the system and the allocators
used for the system are abstracted. This abstraction is accomplished by captur-
ing user intent at a high-level with Hints and Constraints and mapping these

538 F. Aderholdt et al.

correctly to the memories that will use them. To abstract the system and repre-
sent many possible intents the user may have, we provide several Hints specific
to areas such as data (i) usage, (ii) accessibility, and (iii) resilience.

1. Usage: To capture user intent for data usage, we provide various hints related
to usage based on computation. This includes computation on the Central
Processing Unit (CPU) and compute accelerators such as GPUs. In addition,
locality is another aspect of usage that may be described such as allocation
of data objects near the PE and near the NIC.

2. Accessibility: While providing usage hints allows us to narrow a mapping of
intent to a memory, it does not complete it. Coupling usage with accessibility,
which describes the properties of the memory with respect to its accessibility
by PEs within a job, we are capable of better defining a mapping. Examples of
accessibility include memories that are accessible only within a node, between
nodes, and across jobs.

3. Resilience: Resilience is captured from the user and their intent based on
persistence. This allows the user to declare specific data objects need to be
allocated such that the data objects can persist through catastrophic failures.

The list of hints and constraints can be used individually, where a single
hint is satisfactory for an accurate description of usage, access, or resilience, or
the user can compose the hints and form more complex descriptions. For exam-
ple, describing the level of resilience provided may be difficult for users. While
only persistence may be used to describe the users intent, memory placement
is important. For instance, if the user wished to describe that memory should
be persistent but backed by the parallel filesystem rather than NVRAM, then
the persistence hint is not satisfactory. However, when adding access hints, as
the parallel filesystem will be accessible between jobs, it can be used for persis-
tent data objects. This mapping is the greatest challenge for this type of unified
interface.

To support the mapping between memories and hints, we first abstract the
physical memories of the system and enumerate their capabilities to be stored
internally. We similarly compose the Hints and Constraints provided by the user
into an enumerated element. Thus, we are capable of determining mapping by
creating a list of matching enumerations between the memories and user intent.
After the mapping is completed, an allocator object is returned to the user, which
allows the user to allocate and free memory on the list of memories satisfying
their request. Explicit allocations are accomplished through the same interface
with explicit Hints (e.g., HINT DRAM0, HINT HBM0, HINT HBM1, etc.).

The resulting interface can be seen in Listing 1.1 and a demonstration of
memory allocation with the SharP UMA in Fig. 1.

SharP Unified Memory Allocator 539

typedef struct sharp_allocator_info_params {
sharp_hint_t allocator_hints;
sharp_constraints_t allocator_constraints;

} sharp_allocator_info_params_t;

sharp_allocator_obj_t * sharp_allocator_init_obj(sharp_allocator_info_params_t * params);

void * sharp_allocator_alloc(sharp_allocator_obj_t * allocator, size_t size);

void * sharp_allocator_alloc_memalign(sharp_allocator_obj_t * allocator,
size_t size,
int alignment);

int sharp_allocator_free(sharp_allocator_obj_t * allocator, void * buffer);

Listing 1.1: Intent-based Interface for SharP’s UMA

5 Extending Existing Programming Model
Implementations

To demonstrate the ease of leveraging SharP for allocating memory, we have
extended two popular programming model implementations: (i) Open MPI and
(ii) OpenSHMEM-X. In both cases, we extended the implementation to provide
the functionality of SharP to the User . However, in the case of OpenSHMEM, the
programming model, rather than just the implementation, had to be extended to
support the memory allocator. In this section, we will describe the modifications
we made to support SharP in both Open MPI and OpenSHMEM-X.

5.1 Extending Open MPI

In an effort to demonstrate the utility of the SharP UMA, we extended the Open
MPI implementation to support intent-based memory allocations on hierarchical
and heterogeneous memories. To do this, we leveraged the MPI Alloc mem func-
tionality available in the Message Passing Interface (MPI) specification. From
the specification, MPI Alloc mem allocates memory for the user with an effort in
allocating efficient memory for Remote Direct Memory Access (RDMA) opera-
tions [7]. This allows the user to allocate data objects on memories regardless
of whether the usage is purely local (i.e., local computation) or remote (i.e.,
point-to-point and one-sided communication).

To extend the functionality of MPI Alloc mem to support the SharP UMA,
we made use of its info objects. The info object in MPI is an object contain-
ing key-value pairs, which are parsed by functions like MPI Alloc mem with the
information contained in the object being used to provide extra functionality.
This allowed us to extend the function to support the Hints and Constraints
mentioned in Sect. 3. This allows Open MPI to allocate data objects based on
user intent across heterogeneous memories.

Unfortunately, the interface for the SharP UMA will generate an allocator
object based on the user’s Hints and Constraints. This presents a challenge
as only Open MPI will have access to the object, which means each call to
MPI Alloc mem will generate a new allocator object and can increase overhead if

540 F. Aderholdt et al.

placed in critical sections. In order to reduce this overhead, we added a caching
mechanism that caches the most recent allocator objects for future memory allo-
cations. This reduces the overhead as allocator objects only need to be generated
if the Hints and Constraints change between allocations.

Freeing allocated memory is accomplished by making use of MPI Free mem,
which only takes in a pointer to an allocated data object. In order to correctly
free the memory, we keep track of allocated memories in a list that is traversed
to determine if the memory is from SharP. If it is, then SharP will free the
memory.

5.2 Extending OpenSHMEM-X

Unlike the extension of Open MPI, which leveraged interfaces already present in
the MPI specification, OpenSHMEM uses a different memory model. In Open-
SHMEM, memory is allocated on DRAM in the symmetric heap, which is a
memory heap where all PEs allocate data objects with a symmetric address.
This means, new interfaces must be created such that OpenSHMEM may sup-
port the heterogeneous memories present in many extreme-scale systems.

To provide the necessary support in OpenSHMEM, we created a set of new
interfaces that both create a heap on a particular memory and allow future
symmetric memory allocations on these memories. For simplicity, the addressing
in these generated heaps are asymmetric. The new interfaces are as follows:

– shmemx hhm create: Creates a new heterogeneous memory region for future
memory allocations. This interface takes the Hints and Constraints from the
user along with a size parameter defining how large the heap should be. This
will generate an allocator object, which is stored internally and associated
with the memory region, which we refer to as a partition similar to Cray
SHMEM [12].

– shmemx partition malloc: Allocates memory on the newly created parti-
tion, which interfaces with the allocator object from the SharP UMA. There
are similar allocation interfaces for realloc, aligned memory allocations, and
freeing memory, and, for brevity, they are not listed here.

6 Experimental Evaluation

To evaluate this work, we will validate both the performance characteristics of
the allocator and the correctness of the allocator’s ability to provide intent-based
allocations. To show the performance characteristics of the allocator, we will
only measure the overhead of performing allocations as the allocator’s ability to
handle fragmentation and other characteristics are already known as the SharP
UMA is leveraging known allocators. To validate the correctness, we make use
of micro-benchmarks to measure the bandwidth and message rate of one-sided
Put operations. We also study the overhead of using the extended programming
model implementations from Sect. 5 with applications by porting and evaluating
the Graph500 benchmark.

SharP Unified Memory Allocator 541

The testbeds we used for the evaluation include multiple systems at ORNL
and the Oak Ridge Leadership Computing Facility (OLCF). These include Tur-
ing, a small 16 node cluster comprised of two Intel Xeon processors, 128 GB
of RAM, and a ConnectX-4 EDR interconnect per node, and Rhea, a 512 node
cluster similarly comprised of two Intel Xeon processors, 128 GB of RAM, and a
Connect-X 3 FDR interconnect per node. These two systems are very similar in
composition but have separate affinities with respect to the NIC, which should
give us a good understanding of the ability of intent-based memory allocation.

6.1 Performance

To determine the overhead of the SharP UMA interface for both Open MPI and
OpenSHMEM-X, we will perform a series of memory allocations and frees with
70% of the operations being allocations and 30% being free operations. This is
completed on increasing sizes of allocations from 8 byte allocations up to 2 MB
huge page allocations with the evaluation of each size being comprised of 20,000
operations. For this benchmark, we made use of the Turing cluster. The results
of this benchmark can be seen in Fig. 2.

 0

 2x106

 4x106

 6x106

 8x106

 1x107

 1.2x107

 1.4x107

 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M

O
pe

ra
tio

ns
 p

er
 S

ec
on

d

Allocation Size in Bytes

SharP UMA
MPI

(a) Open MPI

 0

 5x109

 1x1010

 1.5x1010

 2x1010

 2.5x1010

 3x1010

 3.5x1010

 4x1010

 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M

O
pe

ra
tio

ns
 p

er
 S

ec
on

d

Allocation Size in Bytes

SharP UMA
SHMEM

(b) OpenSHMEM-X

Fig. 2. Memory allocations and frees using the extended (a) Open MPI and (b)
OpenSHMEM-X versions with the SharP UMA with 70% of operations being memory
allocations. Higher is better.

The results for both the extended Open MPI and OpenSHMEM-X versions
were as expected. For Open MPI, the performance of the extension with SharP
UMA is very poor due to the constant checking of Hints and Constraints to
determine if an appropriate allocator object has been created yet. However,
the average time per memory allocation of a page size (i.e., 4 KB) and lower
is roughly 7µs, which means the extension is still useful so long as it used
outside of critical paths. On the other hand, the extension of OpenSHMEM-X
is more favorable with many allocation times being within 5% of the unmodified
shmem malloc timings. This is because the extension for OpenSHMEM-X does
not require a check to determine if a new allocator object needs to be created.
Instead, memory can be allocated from an already allocated pool.

542 F. Aderholdt et al.

-12

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

R
el

at
iv

e
P

er
fo

rm
an

ce
 %

Allocation Size in Bytes

Rhea
Turing

(a) Open MPI

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

R
el

at
iv

e
P

er
fo

rm
an

ce
 %

Allocation Size in Bytes

Rhea
Turing

(b) OpenSHMEM-X

Fig. 3. Bandwidth results on two systems with differing affinities to the NIC. Higher
is better.

-20

-15

-10

-5

 0

 5

 10

 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

R
el

at
iv

e
P

er
fo

rm
an

ce
 %

Allocation Size in Bytes

Rhea
Turing

(a) Open MPI

-15

-10

-5

 0

 5

 10

 8 1
6

 3
2

 6
4

 1
28

 2
56

 5
12 1K 2K 4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M

R
el

at
iv

e
P

er
fo

rm
an

ce
 %

Allocation Size in Bytes

Rhea
Turing

(b) OpenSHMEM-X

Fig. 4. Message rate results on two systems with differing affinities to the NIC. Higher
is better.

6.2 Correctness

To validate the correctness, we will perform a series of micro-benchmarks in
which we measure the bandwidth and message rate of Put operations on two
systems, Rhea and Turing, which have different affinities between DRAM and
the NIC. Thus, if we attempted to allocate memory near the NIC on one system
using the SharP UMA, then we would expect for the memory to be allocated
near the NIC on the other system without any code changes as the memory
should be allocated based on user intent.

For bandwidth and message rate, we increased the message size from 8 bytes
to 1 MB with 10,000 operations being completed for each message size. For the
evaluation of each size, we took the median result. For both systems and both
Open MPI and OpenSHMEM-X, the Unified Communication X (UCX) commu-
nication library [13] was used with short messages used for message sizes up to
128 bytes, buffered messages used for sizes between 128 bytes and 8 KB, and
zero-copy used afterwards. The relative results for each test can be seen in Figs. 3

SharP Unified Memory Allocator 543

and 4. In both, the relative performance is normalized based on memory allo-
cated near the calling PE with both communicating PEs being located without
affinity to the NIC. This particular configuration was chosen as PEs without
affinity to the NIC suffer from lower network performance than PEs near the
NIC.

As expected, the relative results for both systems under test follow a similar
path, with an increased amount of similarity when messages are large enough to
make use of zero-copy. For Open MPI, the similarity is less pronounced as the
overhead of buffered messages is quite large on the Turing cluster as compared to
the Rhea cluster. This suggests that as applications move large amounts of data,
the allocation of memory near the NIC is beneficial for PEs without affinity to
the NIC.

6.3 Graph500

For the Graph500 benchmark, we made use of the one-sided MPI implementation
and the OpenSHMEM adaptation [4]. In each, we modified the implementations
to make use of the interfaces described in Sect. 5 and allocate memory near the
PE and near the NIC. We used a scale of 16 and evaluated the strong scaling
of the application up to 256 PEs on the Turing cluster. The relative results can
be seen in Fig. 5, with the results normalized based on memory allocated near
the PE.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 16 32 64 128 256

R
el

at
iv

e
P

er
fo

rm
an

ce
 %

Number of PEs

OpenSHMEM-X
Open MPI

Baseline

Fig. 5. Results of the Graph500 benchmark with results normalized based on memory
allocated near the calling PE. Higher is better.

The results of this evaluation are relatively similar showing no significant
improvement in performance by allocating memory near the NIC. However, the
takeaway from these results is that we can now allocate the data objects used
in Graph500 across any memory with affinities to different devices. In addition,
the overhead of the allocator for Open MPI does not significantly impact the
performance of the application, which is promising.

544 F. Aderholdt et al.

7 Conclusion

In this paper, we presented the SharP UMA, an intent-based memory alloca-
tor with a unified interface for allocating memory across DRAM, HBM, and
NVRAM. We presented the interface of the SharP UMA in Sect. 4 and demon-
strated its simplicity by extending well known programming model implemen-
tations, Open MPI and OpenSHMEM-X, to support the SharP UMA in Sect. 5.
Additionally, we validated this work through an evaluation that examined the
performance implications of the intent-based allocator and the correctness of
the allocator while moving from system to system. We found the SharP UMA
provides minimal overhead in OpenSHMEM-X, but does provide overhead for
allocations of memory in Open MPI, which can be mitigated by not placing mem-
ory allocations in critical sections. We also showed the movement of our micro-
benchmarks between systems with differing device affinities without recompila-
tion produced similar results, demonstrating the correctness of our implemen-
tation. In addition, we ported the Graph500 benchmark to make use of the
extensions we made to Open MPI and OpenSHMEM-X and found relatively
similar performance while having greater control of the allocated memory.

Acknowledgment. This research used resources of the Oak Ridge Leadership Com-
puting Facility, which is a DOE Office of Science User Facility supported under Contract
DE-AC05-00OR22725.

References

1. Baker, M., Aderholdt, F., Venkata, M.G., Shamis, P.: OpenSHMEM-UCX: eval-
uation of UCX for implementing openSHMEM programming model. In: Gorentla
Venkata, M., Imam, N., Pophale, S., Mintz, T.M. (eds.) OpenSHMEM 2016. LNCS,
vol. 10007, pp. 114–130. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-50995-2 8

2. Berger, E.D., McKinley, K.S., Blumofe, R.D., Wilson, P.R.: Hoard: a scalable
memory allocator for multithreaded applications. SIGPLAN Not. 35(11), 117–128
(2000). http://doi.acm.org/10.1145/356989.357000

3. Cantalupo, C., Venkatesan, V., Hammond, J., Czurlyo, K., Hammond, S.D.:
Memkind: an extensible heap memory manager for heterogeneous memory plat-
forms and mixed memory policies. Technical report, March 2015

4. D’Azevedo, E.F., Imam, N.: Graph 500 in OpenSHMEM. In: Gorentla Venkata, M.,
Shamis, P., Imam, N., Lopez, M.G. (eds.) OpenSHMEM 2014. LNCS, vol. 9397, pp.
154–163. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26428-8 10

5. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling many-
core performance portability through polymorphic memory access patterns.
J. Parallel Distrib. Comput. 74(12), 3202–3216 (2014). Domain-Specific
Languages and High-Level Frameworks for High-Performance Computing.
http://www.sciencedirect.com/science/article/pii/S0743731514001257

6. Evans, J.: A scalable concurrent malloc (3) implementation for FreeBSD. In: Pro-
ceedings of the BSDCan Conference, Ottawa, Canada (2006)

7. Forum, M.P.: MPI: a message-passing interface standard. Technical report,
Knoxville, TN, USA (1994)

https://doi.org/10.1007/978-3-319-50995-2_8
https://doi.org/10.1007/978-3-319-50995-2_8
http://doi.acm.org/10.1145/356989.357000
https://doi.org/10.1007/978-3-319-26428-8_10
http://www.sciencedirect.com/science/article/pii/S0743731514001257

SharP Unified Memory Allocator 545

8. Gloger, W.: Wolfram Gloger’s malloc homepage. http://www.malloc.de/en
9. Intel: Intel NVM library. http://pmem.io/nvml/libpmem

10. Jones, T., et al.: Unity: unified memory and file space. In: Proceedings of the 7th
International Workshop on Runtime and Operating Systems for Supercomputers
ROSS 2017, pp. 6:1–6:8, ACM, New York (2017). http://doi.acm.org/10.1145/
3095770.3095776

11. Lea, D., Gloger, W.: A memory allocator (1996)
12. Namashivayam, N., et al.: Symmetric memory partitions in openSHMEM: a case

study with intel KNL. In: Gorentla Venkata, M., Imam, N., Pophale, S. (eds.)
OpenSHMEM 2017. LNCS, vol. 10679, pp. 3–18. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-73814-7 1

13. ORNL: UCX: Unified Communication X (2015). http://www.openucx.org
14. Venkata, M.G., Aderholdt, F., Parchman, Z.W.: Sharp: towards programming

extreme-scale systems with hierarchical and heterogeneous memory. In: Proceed-
ings of the 6th International Workshop on Heterogeneous and Unconventional Clus-
ter Architectures and Applications, August 2017

http://www.malloc.de/en
http://pmem.io/nvml/libpmem
http://doi.acm.org/10.1145/3095770.3095776
http://doi.acm.org/10.1145/3095770.3095776
https://doi.org/10.1007/978-3-319-73814-7_1
https://doi.org/10.1007/978-3-319-73814-7_1
http://www.openucx.org

Multi-granularity Locking in Hierarchies
with Synergistic Hierarchical

and Fine-Grained Locks

K. Ganesh, Saurabh Kalikar(B), and Rupesh Nasre

CSE, IIT Madras, Chennai, India
{cs16m006,saurabhk,rupesh}@cse.iitm.ac.in

Abstract. We propose a new locking mechanism for hierarchies wherein
the locking requests can be a combination of coarse and fine. Existing
protocols such as multiple-granularity locking (MGL) are efficient when
all the requests are of the same granularity. MGL is either too coarse or
too fine-grained when multiple threads request for various parts of the
hierarchy with differing granularity requirements. Simultaneous handling
of hierarchical and fine-grained requests poses new challenges in checking
for racy requests. We propose a novel indexing technique for hierarchies
which uniquely identifies every node as an interval value and effectively
captures hierarchical dependencies between nodes even when the hier-
archy is a tree, DAG or a cycle. Our experiments with real-world XML
hierarchies and synthetic benchmarks show that the proposed locking
technique provides a higher degree of concurrency with minimal locking
cost resulting in overall performance improvement.

1 Introduction

One of the main challenges in developing a multi-threaded parallel application is
the design of an efficient synchronization mechanism for shared data structures.
Lock constructs are widely used for thread synchronization. The nature of data
structures and their associated operations necessitate the use of various locking
protocols. In the context of shared data structures, hierarchies are special linked
structures, where each child node denotes a specialization or a part of its parents.
For instance, a node representing a department in an academic hierarchy is a part
of its parent institute. Conversely, a node representing an institute contains all
its departments. In the concurrent setting, operating on different nodes in such
a hierarchy is achieved using traditional fine-grained locking, which maintains
a lock with each node. While fine-grained locks ensure consistency of the data
structure, it also poses scalability challenges in the presence of a large number of
threads and unpredictable locking request pattern. For instance, in fine-grained
locking, an operation such as calculate GPA for all the students in department

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 546–559, 2018.
https://doi.org/10.1007/978-3-319-96983-1_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_39&domain=pdf

Multi-granularity Locking in Hierarchies with Synergistic Hierarchical 547

Fig. 1. (a) Example hierarchy along with its HiFi numbering (b) Compatibility matrix
for intention locking protocol

CS needs to acquire a lock on each student separately. This is clearly inefficient
and happens because locking cost is proportional to the number of students.

In this example, it seems logical to acquire a single lock on the department
CS, and process all the student records. This is achieved using hierarchical lock-
ing or multi-granularity locking. Multi-granularity locking (MGL) protocols [7,9]
ensure that if a node in a hierarchy (say, CS department) is locked, then every
node reachable from the locked node (i.e., every student, faculty and staff mem-
ber) is also implicitly locked.

On the other hand, there exist several operations that do not require hier-
archical locks. For instance, a fine-grained operation such as update class-room-
count= 20 where department=CS does not need the whole department (stu-
dents, staff, faculty) to get locked. Existing approaches do not support co-
existence of hierarchical and fine-grained locks. Thus, all the MGL locks are
either purely hierarchical (e.g., even to update number of classrooms), or purely
fine-grained (e.g., even to update GPA of all the students). The former is too con-
servative leading to reduced concurrency, while the latter is too precise leading
to locking overheads.

To address these issues, this paper makes the following contributions:

1. We propose a novel indexing technique which allows quick checking of overlaps
between two thread requests in a hierarchy. The indexing has useful properties
which can be independently exploited for other applications.

2. We propose HiFi, a locking protocol that allows synergistic co-existence of
fine-grained and hierarchical locks. The protocol crucially relies on the new
indexing mechanism and offers more concurrency.

3. We illustrate that HiFi considerably improves the parallel performance of
the underlying application. Using real-world XML hierarchies and synthetic
datasets, we identify scenarios where HiFi is a better choice for locking.

2 Background and Motivation

In this section, we provide a brief background on a de facto hierarchical locking
technique and highlight its limitations. To motivate HiFi, we use the example

548 K. Ganesh et al.

hierarchy from Fig. 1 which contains 18 nodes spread across six levels. The hier-
archy is carefully crafted to contain paths, tree-like substructure, as well as DAGs
and a cycle. Most real-world hierarchies we have come across are acyclic.

2.1 Hierarchical Locking

Hierarchical locking is a way to lock a node in a hierarchy which implicitly
locks its descendants. This is useful because the whole sub-hierarchy rooted at a
node can be protected using a single lock. A node could be hierarchically locked
only if (i) it is not locked by any other thread, and (ii) none of its descendants
are currently locked by any other thread, and (iii) none of its ancestors are
currently locked by any other thread. For instance, in Fig. 1, hierarchical locking
of node g requires that no other thread currently holds locks on (i) g itself, (ii)
its descendant nodes k and l, and (iii) its ancestors a, b, and d. Clearly, the näıve
mechanism of traversing through the descendants and ancestors for every lock
request works, but is impractical. In practice, database management systems
such as MySQL use an optimized traversal technique called intention locking.

Intention Locks. Traditionally, hierarchical locking is implemented using inten-
tion locks [7]. Unlike traversing sub-hierarchies, intention locking technique
marks all the ancestors of the targeted node before acquiring a hierarchical lock.
These markers serve as indicators to other concurrent threads, that there exists
a node along this path on which a lock has been acquired. These markers are
nothing but the intention locking modes, i.e., IS and IX of conventional shared
(S) and exclusive (X) locks respectively. Thus, before locking any node in S or
X mode, a thread has to lock all the ancestors (i.e., all the reference paths from
root) in IS or IX modes respectively. For example, before locking node g in X
mode, a thread must lock its ancestor nodes a, b and d in IX mode. Possible lock-
ing modes and their inter-operability are shown in the compatibility matrix 1.
Intention locks is an effective way to achieve hierarchical locking for tree struc-
tures, as each tree node has a single reference path from the root. However, in
case of directed graph structures (such as DAGs), a node may have multiple
reference paths from the root necessitating intention locking across each refer-
ence path. For instance, for locking node i, we need to traverse the hierarchy to
mark intention along each path a-c-e and a-c-f . For a large real-world hierarchy,
such a traversal is costly, and increases the thread waiting time. In summary,
intention locks are ill-suited for complex hierarchical structures.

Motivating Example. Consider a thread T1 currently holding a hierarchical
lock on node g for exclusive access and another thread T2 which wants to perform
a simple fine-grained update operation on node d. Intuitively, such a concurrent
operation seems plausible. However, intention locking (IL) protocol does not
support it, as MGLs support only hierarchical locking. Thus, locking node d
using IL protocol also locks g. IL can be extended to support extra modes for fine-
grained (shared and exclusive) locking. Thus, in this extension, a thread would
also mark along the path whether it wants to lock the target node in fine-grained
mode or hierarchical mode. Unfortunately, such an extension takes away the very

Multi-granularity Locking in Hierarchies with Synergistic Hierarchical 549

benefits of fine-grained locking – although the update is local (fine-grained), the
thread needs to traverse the hierarchy of ancestors. This poses several scalability
challenges when both hierarchical and fine-grained locking modes are desired. To
address this, we need a mechanism that (i) supports efficient co-existence of fine-
grained and hierarchical locks, and (ii) allows quick checking of overlap between
two lock requests (e.g., whether a node is already locked in a fine-grained manner
within a sub-hierarchy which is to be locked in hierarchical mode).

In this paper, we propose a new locking protocol which supports efficient
handling of fine-grained locks in presence of hierarchical (MGL) locks.

3 Our Proposal: HiFi

We design a new protocol that allows maximum concurrency; that is, if two
lock requests do not overlap, they can be executed in parallel (assuming the
availability of enough computing resources). Central to our method is a new
interval numbering technique which converts the structural overlap between sub-
hierarchies to interval overlap between numbers, which allows fast overlap check,
retaining the benefits of fine-grained locking.

Overview. Our proposed numbering is shown for the example hierarchy in
Fig. 1. Each node is assigned an interval [low, high] where low and high are
floating-point numbers. The numbering of nodes in a hierarchy follows the fol-
lowing invariants:

I1 The interval of each node is unique if the node is not part of a cycle. All the
nodes in a cycle have the same interval.

I2 The interval of every ancestor strictly subsumes the interval of each of its
(transitive) descendants. Interval [a, b] strictly subsumes interval [c, d] iff
a < c and b > d.

I3 Intervals of two nodes partially overlap if they have a common descendant.

For instance, in Fig. 1, each node has a unique interval value, except for
the cycle nodes j, n, r, o, which all have the same interval [26, 27], validating
Invariant I1. Also, interval of node e, which is [13, 21.5], subsumes those of
its descendants h, i, m, p, q, validating Invariant I2. The root subsumes the
intervals of all other nodes in the hierarchy (except when the root itself is part
of a cycle). Similarly, each leaf node has a non-overlapping interval with other
leaves. We can observe that nodes h and f have overlapping intervals that do
not subsume one another. The overlap is justified by the common descendants
m, p, q, thereby validating Invariant I3. Note that although h and f do not
subsume one another’s intervals, they both individually subsume the intervals
of m, p, and q, due to Invariant I2.

Using such an interval numbering, HiFi can quickly check if two hierarchies
overlap. Thus, the proposed numbering acts as an alternative to IL. In other
words, if there are two hierarchical locking requests, HiFi can exploit the pro-
posed numbering mechanism to identify if the two requests can be simultane-
ously satisfied. For instance, if thread T1 wants to lock the hierarchy rooted at

550 K. Ganesh et al.

h, and thread T2 wants to lock the hierarchy rooted at j, then HiFi can check
their intervals [14, 20.5] and [26, 27] which do not overlap, and permit access.
In contrast, if thread T2 wants to lock the hierarchy rooted at node i, then
HiFi can check the intervals [14, 20.5] and [14.5, 21] which overlap, and disallow
one of the locking requests (the other thread needs to block or try again later).
Note that, unlike in IL, HiFi protocol does not need to traverse the hierarchy to
identify overlap. This considerably improves the performance of the underlying
application – which usually has locking in its critical path. Once the hierarchy is
numbered as a pre-processing step, all runtime locking requests can be quickly
served.

3.1 Compatibility in HiFi

Assuming a numbering such as the previous subsection exists, we now describe
how fine-grained and hierarchical locks can co-exist in HiFi. Note that the locking
request could be shared or exclusive, and fine-grained or hierarchical.

Figure 2 shows the compatibility matrix for various locking scenarios in HiFi.
Using this matrix, our locking methodology allows/disallows locking the input
set of nodes in the given mode (S/X, fine/hierarchical). For instance, in our run-
ning example from Fig. 1, if thread T1 has locked descendant node g in fx mode,
and thread T2 requests node d in Hs mode, then the requests being incompat-
ible according to the matrix, would be denied concurrent access. In contrast, if
T1 has locked node g in Hx mode, and T2 requests node d in fs mode, then
the matrix deems these operations compatible with each other for concurrent
execution. Compared to the original compatibility matrix from Fig. 1, clearly
inter-operability of fine-grained and hierarchical locks allows more concurrent
operations.

Fig. 2. Lock compatibility matrix in HiFi (Legend: H = Hierarchical, f = Fine-grained,
s = shared, x = exclusive)

3.2 Numbering Algorithm

We now describe our numbering algorithm in detail. We first attend to cyclic sub-
structures in the hierarchy, if present. Unlike trees and DAGs, the nodes forming
cycles in a hierarchy do not have well-defined ancestor-descendant relationship
among themselves, that is, every node is an ancestor as well as a descendant of

Multi-granularity Locking in Hierarchies with Synergistic Hierarchical 551

every other node. For instance, nodes j, n, r and o are part of a cycle and each
of them is assigned the same interval [26, 27]. Therefore, it is logical to treat all
the nodes forming a cycle as one entity, with a single interval value.

Our interval-numbering algorithm has two passes. In the first pass, we per-
form a conventional depth-first traversal (DFS) from the root node and track
pre-visit and post-visit numbers of each node in the hierarchy. The advantage of
DFS-based numbering is that the intervals obtained using the pre- and post-visit
numbers [pre, post] satisfy all the three invariants when the underlying hierar-
chy is a tree. This can be validated from the left subtree of the root node a in
our running example from Fig. 1. Such a numbering, however, does not satisfy
the invariants in case of DAGs because DFS does not explore the already visited
nodes. Due to this, the numbering may miss out on some descendants, essentially
failing to satisfy invariants I2 and I3.

Meeting the invariants necessitates a bottom-up propagation of [pre, post]
intervals from leaf nodes towards the root. Such a propagation re-adjusts the
intervals of the ancestors to satisfy all the invariants.

Interval Propagation. Intervals are propagated in bottom-up fashion, there-
fore the intervals of leaf nodes remain unchanged to [pre, post] intervals according
to DFS traversal. According to Invariant I2, a node’s interval must strictly sub-
sume those of all its descendants. Therefore, the smallest integer interval which
subsumes the interval of the child nodes is assigned to the parent. For instance,
with k [5, 6] and l [7, 8] as children, g’s interval becomes[4, 9]. Similarly, the
intervals of nodes d, b and m become [3, 10], [2, 11] and [15, 20] respectively.

Such a mechanism works well when the sub-hierarchy is a tree. When a node
has more than one parent (e.g. node m), the subhierarchy is no longer a tree and
it poses interesting challenge to the numbering algorithm. The interval assigned
to each parent should be such that (i) it strictly subsumes the children’s interval,
and (ii) the parent intervals must overlap with each other but not subsume one
another. Thus, intervals of nodes h and i must overlap with each other, but not
subsume each other; however, they both should subsume m’s interval. To satisfy
these conditions, we exploit the range of floating point numbers. For instance,
we assign intervals [14, 20.5] to h and [14.5, 21] to i which both subsume m’s
interval [15, 20] and also have partial overlap with each other.

The propagation faces another difficulty due to strict subsumption. Since
the intervals of the ancestors are always larger than those of the children, it
can happen that an ancestor’s interval becomes so big that it subsumes that of
another of its sibling! For instance, when i propagates its interval [14.5, 21] to
its parent node f , strict subsumption property can assign interval [13, 22] to
f . While this does satisfy Invariant I2 between i and f , it also falsely satisfies
the invariant between h and f ([13, 22] subsumes [14, 20.5]). Note that f is not
an ancestor of h, and hence their intervals should not subsume each other. This
necessitates limiting the interval propagation to parents (as explained next).

Maintenance of Locks. To check if the new locking request overlaps with
an existing one, HiFi needs to track the currently locked nodes (along with
their type S/ X and fine-grained / hierarchical). We use the lock-pool imple-

552 K. Ganesh et al.

Fig. 3. Example of interval propagation

Algorithm 1. Bottom-up traversal (invoked with ROOT as the parameter)
1 Function bottomUp(root):
2 if root.isLeafNode() then root.lowLimit = root.upLimit = −1 ;
3 else
4 forall the c ∈ root.children do
5 if c.explored == false then bottomUp(c);

6 root.mergeIntervals()

7 sendPartitionLimits(root.lowLimit, root.upLimit, root)
8 root.explored = true

mentation from DomLock [9], which maintains per-thread lock information in
a table. A thread needs to check the complete table before inserting its entry,
which requires heavy synchronization. To counter this inefficiency, the lock-pool
exploits sequence locks to make the reading synchronization-free.

3.3 Main Algorithm

We now present Algorithm 1 for interval numbering and explain it using our run-
ning example. After the first phase of DFS pre-post visit numbering for the leaf
nodes, we call Algorithm 1 with the root of the hierarchy as a parameter. Algo-
rithm recursively traverses down to the leaf nodes and starts back-propagation
of intervals to respective parents (line 2). We use two flags lowLimit and upLimit
to indicate the restrictions placed on the interval updates that a node can send
to its parent(s). For instance, starting from the root node a in Fig. 1, the algo-
rithm recursively descends to the leaf node k and assigns default limit of −1.
Node k with interval [5, 6] invokes the method sendPartitionLimits to propa-
gate the limits upward (line 7). The function sendPartitionLimits is presented
in Algorithm 2. It partitions an interval into np (number of parents) partially
overlapping intervals, each of which strictly subsumes the child’s interval and is
within the range of lowLimit and upLimit. Thus, Algorithm2 ensures that the
interval updates sent to the parents conform to the invariants I1 – I3.

For instance, When k invokes the method to partition and update its parents,
Case 1 (line 2) of the method is invoked. It sends the intervals [4, 7] to g.

Multi-granularity Locking in Hierarchies with Synergistic Hierarchical 553

Similarly, g receives the interval [6, 9] from l, which is merged along with k’s
update to g (Algorithm 1, line 6), expanding g’s interval to [4, 9]. Similarly, node
m, as seen previously, has the default limits of -1 (line 2), and therefore splits the
range [14, 21] among its parents. In this case, the offsets for the limit partitioning
Δl and Δh are set to 1

2 since m has two parents (line 5). As illustrated in Fig. 3a,
the interval [14, 20.5] is updated to h while the interval [14.5, 21] is sent to i
(lines 20–25). With the interval updates, m also sends the relevant upper and
lower limits to its parents for interval expansion, to be used while they further
propagate intervals towards the root of the hierarchy. In case of node i, it receives
interval [14.5, 21] along with a lower limit of 14, and no upper limit from its child
node m (Case 3, line 10). This indicates to i that the interval updates it sends
to its parents must be bounded within the range [14.25, 22]. As illustrated in
Fig. 3b, node i splits the interval [14.25, 22] into two equal partitions. Note that
in this case Δl and Δh are 1

4 and 1
2 respectively (line 13). Therefore, via i nodes e

and f ’s intervals are updated to [14.25, 21.5] and [14.375, 22] respectively. Node
e also merges the interval updates from h and i and assigns the interval [13,
21.5] to itself. The backpropagation of intervals continues until the root receives
all the updates.

4 Experimental Evaluation

All our experiments are carried out on an Intel Xeon E5-2640 v4 machine with
40 cores clocked at 2.40 GHz having 64 GB RAM running CentOS 7.4. To assess
the effectiveness on real-world data, we use XML hierarchy from Treebank [16].
Further, to check scalability aspects and how HiFi works on various structures, we
also use synthetically generated hierarchies. In our synthetic dataset, we generate
k-ary trees with a million nodes, and arbitrary graphs with 0.1 million nodes.
k-ary trees allow us to assess the effect of HiFi on bushy versus skinny structures
by varying k, while graphs allow us to check for multiple path locking. Our test-
driver creates multiple pthreads which operate concurrently on the underlying
data structure. We note that the standard deviation in all our results is quite
small (about 2%). We compare HiFi against state-of-the-art DomLock [9] and
Intention Locking [7], under different values of critical section (CS) size, number
of nodes locked, and the density of the hierarchy (k-ary trees). DomLock is an
alternative to IL which locks the dominator of the requested nodes, and hence
has a constant locking cost. Note that neither of the two protocols support co-
existence of fine-grained and hierarchical locks.

4.1 Effect of Number of Nodes

Figure 4 describes the effect of varying locking request size. Figures 4a–c capture
the performance of concurrent requests with increasing number of nodes on
binary trees, while Figs. 4d–f show the same for arbitrary graphs. IL acquires
intention locks on nodes lying on all the paths that lead to the requested set of
nodes, while DomLock acquires a single lock on their dominator. With increasing

554 K. Ganesh et al.

Algorithm 2. Procedure sendPartitionLimits to propagate interval
limits
1 Function sendPartitionLimits(lowLimit, upLimit, root):

// np is number of parents of the root node

2 if lowLimit == −1 AND upLimit == −1 then
// Case 1: No Limits on interval expansion on either side

3 if np == 1 then
4 updateParent(lowLimit,upLimit,root.l −1,root.h +1)

5 Δl = 1
np

; Δh = 1
np

; l' = root.l − 1; h' = root.h + 1

6 else if lowLimit == −1 AND upLimit �= −1 then
// Case 2: Limited interval expansion only on right side

7 if np == 1 then

8 updateParent(lowLimit,upLimit,root.l −1, root.h+upLimit
2

)

9 Δl = 1
np

; Δh = upLimit−root.h
2np

; l' = root.l − 1; h' = root.h+upLimit
2

10 else if lowLimit �= −1 AND upLimit == −1 then
// Case 3: Limited interval expansion only on left side

11 if np == 1 then
12 updateParent(lowLimit,upLimit, root.l+lowLimit

2
,root.h +1)

13 Δl = root.l−lowLimit
2np

; Δh = 1
np

; l' = root.l+lowLimit
2

; h' = root.h + 1

14 else if lowLimit �= −1 AND upLimit �= −1 then
// Case 4: Limited interval expansion on both sides

15 if np == 1 then

16 updateParent(lowLimit,upLimit, root.l+lowLimit
2

, root.h+upLimit
2

)

17 Δl = root.l−lowLimit
2np

; Δh = upLimit−root.h
2np

;

18 l' = root.l+lowLimit
2

; h' = root.h+upLimit
2

19 for i = 1 to np AND np �= 1 do
20 if i == 1 then
21 updateParent(lowLimit,root.h+2Δh,l',root.h+Δh)

22 else if i == 1 to np −1 then
23 updateParent(l' +(i-2)Δl,root.h+(i-1)Δh,l' +(i-1)Δl,root.h+i Δh)

24 else if i == np then
25 updateParent(l' +(np −2)Δl,upLimit,l' +(np −1)Δl,h')

locking request size, the cost of marking intention across paths also increases,
making IL a less favorable choice until a certain threshold, as shown in Figs. 4a–c.
We do not depict IL’s performance in case of graphs as it is far worse compared to
that of DomLock and HiFi. In comparison, HiFi acquires exactly nr locks, where
nr is the number of nodes requested. In the cases shown in Figs. 4a, b, d and e
HiFi and DomLock perform almost similarly when the number of nodes requested
is less than 32, irrespective of the size of the critical section (small and medium
here). Beyond a threshold number, the cost of individual fine-grained operations

Multi-granularity Locking in Hierarchies with Synergistic Hierarchical 555

increases, and it is expected that hierarchical locking performs better, which is
evident from better performance of DomLock. In summary, HiFi is better suited
for operations with fewer node requests.

(a) Small CS, Tree (b) Medium CS, Tree (c) Large CS, Tree

(d) Small CS, Graph (e) Medium CS, Graph (f) Large CS, Graph

Fig. 4. Effect of the number of nodes locked, for varying critical section sizes (small
CS = 6µs, medium CS = 60µs, large CS = 600µs)

4.2 Effect of Critical Section Size

Critical section is critical in deciding the overall performance of an application.
It can be observed from Fig. 4 that for large critical section (CS) size, the critical
section quickly becomes the bottleneck compared to the rest of the processing.
Thus, the importance of fine-grained locking is more imperative for large CS.
This can be observed from Figs. 4c and f, wherein co-existence of fine-grained
and hierarchical locks improves concurrency in case of HiFi. This suggests that
HiFi is better suited for large critical sections. Figure 6 indicates that HiFi scales
well with increasing the value of k in a k-ary tree.

(a) Small critical section (b) Medium critical section (c) Large critical section

Fig. 5. Effect of the number of nodes in XML hierarchy, with varying CS size

556 K. Ganesh et al.

(a) 8 Nodes requested, Medium CS (b) 8 Nodes requested, Large CS

Fig. 6. Effect of varying k in k-ary trees

4.3 Effect on Real-World XML Hierarchy

XML, since its inception has been used to transfer and store information. Its
hierarchical method of organizing data provides us with a real-world use case
to verify the effectiveness of our locking protocol. We use a real dataset, Tree-
bank hierarchy, publicly available in XML format [16] as the input hierarchy.
The XML hierarchy contains 2,437,666 nodes, over 57% of which are leaf nodes.
Over 37% of all the nodes are at a height of one from the leaf nodes, and the
maximum out-degree among the non-root nodes is 51. This indicates that the
hierarchy is quite bushy towards the bottom. Figure 5 shows the performance
of HiFi against DomLock for varying critical section sizes. We observe that HiFi
performs consistently better than DomLock. Due to the bushy nature of the hier-
archy, the dominator of the requested nodes occurs closer to the root, reducing
concurrency in case of DomLock. DomLock acquires a lock on the dominator, in
this case the root or a node close to the root, thereby blocking concurrent access
to the underlying hierarchy. HiFi, however, acquires locks only on the requested
nodes, improving the concurrency. To summarize, HiFi is better suited when the
concurrent data structure accessed is irregular and has a large fanout.

4.4 Effect of Variation in Fine-Grain Operations

We now study the behavior of HiFi, DomLock and IL for different percentages of
hierarchical versus fine-grained operations. Figure 7 shows the effect for differ-
ent critical section sizes. If all the operations are fine-grained, HiFi is expected

(a) Small critical section (b) Medium critical section (c) Large critical section

Fig. 7. Effect of varying the percentage of fine-grained locks

Multi-granularity Locking in Hierarchies with Synergistic Hierarchical 557

to perform better than IL and DomLock. On the other hand, if all the opera-
tions are hierarchical, then HiFi should ideally be comparable to DomLock, as
both the approaches avoid traversal using intervals. However, a major difference
between HiFi and DomLock is that DomLock acquires a lock on a single dominator
node, while HiFi locks each interval separately. Therefore, for hierarchical-only
operations, DomLock performs better than HiFi, as shown in Figs. 7a and b.
Interestingly, however, for large critical section size (Fig. 7c), HiFi outperforms
DomLock. This is primarily because of the imprecise nature of DomLock which
internally restricts the degree of concurrency.

In a general case of mixed fine-grained and hierarchical operations, we observe
that the performance of HiFi improves as we increase the percentage of fine-
grained operations. IL and DomLock are unaffected by the percentage of fine-
grained operations as all the operations are treated uniformly as hierarchical
operations. We believe that HiFi would offer an attractive alternative for syn-
chronization in hierarchies.

5 Related Work

The idea of MGL was introduced in database systems [7]. Ries and Stone-
braker [14,15] report that there are cases where a coarse-grain-only approach
may not be desired. In particular, if all the transactions requesting access to
the database are randomly requesting small parts of it, then finer granular-
ity is to be preferred. Their work also reported that transactions operating on
more than one percent of the database must use few large locks rather than
many locks of finer granularity. This indicates the need for co-existence of fine-
and coarse-grained locks. Unrau et al. [1] describe a hybrid approach combining
properties of both coarse and fine-grained for four types of access behaviors,
namely, non-concurrent accesses, concurrent accesses to independent data struc-
tures, concurrent read-shared accesses, and concurrent write-shared accesses.
Their method uses coarse-grained locks held for short duration to collectively
lock multiple data structures, and fine-grained locks should the underlying data
be held for longer duration. The method, however, locks one resource only in
one type of mode and does not support co-existence. Golan-Gueta et al. [6]
proposed automatic fine-grain locking for trees, while Chaudhri et al. [2] pro-
posed locking for DAGs and trees. These methods perform sub-graph traversals
to compute lock request intersections thereby giving rise to performance issues
when large number of rows are queried. Liu and Zhang [10] presented fine-grain
locking for hierarchies based on intention locks by applying fine-grain locks on
fields of objects in the hierarchy. The hierarchy under access here is an abstract
object graph which is statically constructed to approximate the runtime object
graph. This method also suffers from the same issues as IL. Recent advances
in automatic lock inferences [3,4,13] for parallel programs also adopted MGL
for efficient lock placements. Cherem et al. [3] use static analysis for extract-
ing points-to information of shared objects and apply MGL locking for avoiding
deadlocks.

558 K. Ganesh et al.

The idea of using logical intervals to capture structural subsumption prop-
erty for hierarchical locking was originally proposed in DomLock [9]. However,
the interval numbering in DomLock does not work with fine-grained locks, let
alone together for fine-grained and hierarchical. HiFi proposes a new indexing
mechanism to support this. The interval labels assigned unique intervals only
to the leaf nodes in the hierarchy, otherwise leaving the internal nodes indistin-
guishable in case of chain like structures within the hierarchy.

The key-range locking [11,12] and predicate queries in semi-structured
databases [5] also use locks as a range of keys in the databases community.
In key-range locking, every lock protects the key value of a record as well as the
keys which are absent during the transaction. The locks on absent keys restrict
the insertion of any phantom record by other parallel transaction. However, the
notion and the purpose of our interval locking is quite different from the key-
range locking.

6 Conclusion

We proposed HiFi, a new locking protocol that allows simultaneous co-existence
of fine-grained and hierarchical locks. The protocol devises a new indexing
scheme for hierarchies, which ensures quick identification of concurrent, over-
lapping lock requests. We illustrated the effectiveness of our approach using
real-world XML hierarchies, and the scalability using synthetic datasets of vary-
ing complexity. We believe HiFi would pave the way for newer locking protocols
in future.

Data Availability Statement and Acknowledgments. We thank all the review-
ers whose comments improved the quality of the paper substantially. The work
is supported by IIT Madras Grants CSE/13- 14/812/NFIG/RUPS and CSE/13-
14/636/NFSC/RUPS and the travel is supported by The Department of CSE, IIT
Madras through Kris Gopalakrishnan Endowment – Student Travel Grant.

The datasets generated during and/or analyzed during the current study are avail-
able in the Figshare repository: https://doi.org/10.6084/m9.figshare.6390554 [8].

References

1. Unrau, R.C., Krieger, O., Gamsa, B., Stumm, M.: Experiences with locking in a
NUMA multiprocessor operating system kernel, November 1994

2. Chaudhri, V.K., Hadzilacos, V.: Safe locking policies for dynamic databases. In:
PODS, pp. 233–244. ACM, New York (1995)

3. Cherem, S., Chilimbi, T., Gulwani, S.: Inferring locks for atomic sections. In:
Proceedings of the 2008 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2008 (2008)

4. Emmi, M., Fischer, J.S., Jhala, R., Majumdar, R.: Lock allocation. In: POPL 2007,
pp. 291–296. ACM (2007). https://doi.org/10.1145/1190216.1190260

5. Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger, I.L.: The notions of consistency
and predicate locks in a database system. Commun. ACM 19(11), 624–633 (1976).
https://doi.org/10.1145/360363.360369

https://doi.org/10.6084/m9.figshare.6390554
https://doi.org/10.1145/1190216.1190260
https://doi.org/10.1145/360363.360369

Multi-granularity Locking in Hierarchies with Synergistic Hierarchical 559

6. Golan-Gueta, G., Bronson, N., Aiken, A., Ramalingam, G., Sagiv, M., Yahav, E.:
Automatic fine-grain locking using shape properties. In: OOPSLA, pp. 225–242.
ACM, New York (2011)

7. Gray, J.N., Lorie, R.A., Putzolu, G.R.: Granularity of locks in a shared data base.
In: VLDB, pp. 428–451. ACM, New York (1975)

8. Kalikar, S., Nasre, R.: Source code and experiment scripts for HiFi hierarchy lock-
ing technique: Euro-Par 2018 artifact (2018). https://doi.org/10.6084/m9.figshare.
6390554

9. Kalikar, S., Nasre, R.: DomLock: a new multi-granularity locking technique for
hierarchies. ACM Trans. Parallel Comput. 4(2), 7:1–7:29 (2017)

10. Liu, P., Zhang, C.: Unleashing concurrency for irregular data structures. In: ICSE,
pp. 480–490. ACM, New York (2014)

11. Lomet, D., Mokbel, M.F.: Locking key ranges with unbundled transaction services.
Proc. VLDB Endow. 2(1), 265–276 (2009)

12. Lomet, D.B.: Key range locking strategies for improved concurrency. In: Proceed-
ings of the 19th International Conference on Very Large Data Bases, VLDB 1993,
pp. 655–664. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1993)

13. McCloskey, B., Zhou, F., Gay, D., Brewer, E.: Autolocker: synchronization infer-
ence for atomic sections. In: Conference Record of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2006, pp.
346–358. ACM, New York (2006). https://doi.org/10.1145/1111037.1111068

14. Ries, D.R., Stonebraker, M.: Effects of locking granularity in a database manage-
ment system. ACM Trans. Datab. Syst. 2(3), 233–246 (1977)

15. Ries, D.R., Stonebraker, M.R.: Locking granularity revisited. ACM Trans. Datab.
Syst. 4(2), 210–227 (1979)

16. Treebank: Xml data repository (2002). http://aiweb.cs.washington.edu/research/
projects/xmltk/xmldata/www/repository.html

https://doi.org/10.6084/m9.figshare.6390554
https://doi.org/10.6084/m9.figshare.6390554
https://doi.org/10.1145/1111037.1111068
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html

Efficient Communication/Computation
Overlap with MPI+OpenMP Runtimes

Collaboration

Marc Sergent1(B), Mario Dagrada1, Patrick Carribault2, Julien Jaeger2(B),
Marc Pérache2, and Guillaume Papauré1

1 Atos Bull Technologies, 38130 Echirolles, France
{marc.sergent,mario.dagrada,guillaume.papaure}@atos.net

2 CEA, DAM, DIF, 91297 Arpajon, France
{patrick.carribault,julien.jaeger,marc.perache}@cea.fr

Abstract. Overlap network communications and computations is a
major requirement to ensure scalability of HPC applications on future
exascale machines. To this purpose the de-facto MPI standard provides
non-blocking routines for asynchronous communication progress. In vari-
ous implementations, a dedicated progress thread (PT) is deployed on the
host CPU to actually achieve this overlap. However, current PT solutions
struggle to find a balance between efficient detection of network events
and minimal impact on the application computations. In this paper we
propose a solution inspired from the PT approach which benefits from
idle time of compute threads to make MPI communication progress in
background. We implement our idea in the context of MPI+OpenMP
collaboration using the OpenMP Tools interface which will be part of
the OpenMP 5.0 standard. Our solution shows an overall performance
gain on unbalanced workloads such as the AMG CORAL benchmark.

Keywords: Parallel computing · Distributed computing · Runtime
systems · Runtime collaboration

1 Introduction

The simultaneous use of networking and computing resources by overlapping
communications with computations has become a major concern in the High
Performance Computing (HPC) domain. This overlap is indeed crucial to achieve
scalability on exascale machines [8]. To this purpose, the de-facto Message Pass-
ing Interface (MPI) standard [14] specifies non-blocking communication routines.
They are meant to make network communications progress in background while
the application continues its computations on local data.

An example of communication/computation overlap is shown in Fig. 1. In
theory, if a process requests to asynchronously receive a piece of data and starts
computations, the matching sender process should be able to actually send the
data through the network without further intervention from the receiver side.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 560–572, 2018.
https://doi.org/10.1007/978-3-319-96983-1_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_40&domain=pdf

Efficient Communication/Computation Overlap with MPI+OpenMP 561

Fig. 1. Example of the communication/computation overlap problem. The left-hand
side shows the ideal case of full overlap case whereas the right-hand side presents the
practical case with almost no overlap.

In practice, with modern interconnect cards the actual reception occurs only
when a call to MPI Wait() or equivalent function is performed, usually at the
end of the computation step. This invalidates any communication/computation
overlap (right panel of Fig. 1). A common solution to this issue is to dedicate
a thread on the host CPU, commonly known as progress thread (PT), to drive
MPI communication progress in background.

In this paper we propose a novel PT method to achieve communica-
tion/computation overlap in hybrid MPI+X applications. Our method leverages
the idle periods of computational threads to progress MPI communications with
minimal overhead on the application execution. This is achieved through a col-
laboration between the thread-based runtime and MPI. We choose the OpenMP
(OMP) model to illustrate our contribution. The paper is organized as follows:
Section 2 details the asynchronous progress problem in MPI and discusses related
work. Section 3 explains our contribution in the context of MPI+OMP appli-
cations and an implementation based on the OMP Tools interface (OMPT).
Section 4 applies our tool on both a dedicated microbenchmark and on two
CORAL proxy applications. Finally Sect. 5 concludes and exposes future work.

2 Related Work

An efficient way to achieve communication/computation overlap with MPI is
by asynchronously progressing network communications. This raises two issues:
(i) the actual progression of communications, and (ii) the completion detection.
As discussed in [5], the MPI-2 standard only defines how the implementation
should address the completion of non-blocking communications (Progress Rules

562 M. Sergent et al.

section) and not how the progress should be performed. This has led to different
implementations of asynchronous progress [6]. Brightwell et al. [5] distinguish
several methods to perform this communication/computation overlap.

Application-Driven Progression. A simple solution consists in manually calling
MPI routines (e.g., MPI Test()) in the application code to force progress. This
is often considered as a good solution for highly optimized codes. However it
leads to error-prone code modifications and it is also hard to assess whether
performance improvements come from actual overlap increase or not [19].

Third-Party Offloading. Alternatively, one can offload all communication pro-
gresses to a third party, thus allowing the host CPU to keep on performing com-
putations. The third party is often a dedicated Network Interface Card (NIC)
designed to independently handle communications. However commercially avail-
able NICs, such as EDR InfiniBand or Cray Aries, either cannot handle critical
parts of the communications protocols, such as message matching, or provide
only a blocking network programming interface [6] on top of which MPI can be
implemented. The Bull eXascale Interconnect (BXI) [7] aims at tackling these
issues by providing full hardware message matching and a non-blocking program-
ming interface based on the Portals4 standard [4]. However BXI is still under
development at the time of writing.

Thread-Based MPI. Another possibility is to consider MPI processes as threads,
which enables the strengths of MPI+X implementations without tampering with
application codes. These implementations are called unified runtimes. A typical
representative example is the MPC framework [16,17]. Within MPC an MPI
task can make communications progress for another task located on the same
physical node.

Progress Threads. Last but not least, asynchronous communications can be
orchestrated by the host CPU which drives NIC operations before going back
to the application compute phase. At the MPI implementation level, the most
popular solution of this kind is based on progress threads (PT) [10] on top of
RDMA-capable networks such as InfiniBand [18]. A PT is a thread dedicated
to make communications progress. PTs are usually spawned next to the com-
pute threads such that the application programmer is unaware of their existence.
However, to meet HPC performance requirements, PT methods must face two
main issues. First, they need to detect network events as close as possible to
actual communication completion. Second, the detection process should be as
lightweight as possible to limit the impact on the application execution. The
tradeoff between these requirements has led to two main PT implementations in
literature:

– The first implementation favors detection reactivity. The thread actively polls
the NIC, thus allowing an almost immediate treatment of new events. This can
however lead to a huge disturbance of compute threads if a careful scheduling
is not performed. Indeed, the Linux kernel scheduler tries not to favor the
computational thread rather than the PT if they share a core during the exe-
cution, leading to relevant perturbation on the execution. That is why many

Efficient Communication/Computation Overlap with MPI+OpenMP 563

MPI+X applications prefer losing available resources by purposely leaving a
free core per MPI process and binding the PT to that core. This often yields
better overlap and better performance than oversubscribing [10].

– The other solution, which favors lightweight detection, is based on network
interruptions. When a message lands on the NIC, an interruption is raised by
the card to the kernel, which reschedules the PT. Since the kernel is involved,
this breaks the OS bypass property of modern interconnects. Moreover, the
PT is simply added to the Linux scheduler run queue. This can delay its
execution up to a kernel time slice (∼4 ms). In general this is hardly acceptable
from an HPC application’s perspective.

In conclusion, it is worth mentioning an alternative PT method implemented
by the PIOMan progress engine [22]. PIOMan is devised to schedule MPI
progress operations when the computing cores are in idle state. CPU idle times
are obtained by querying the current topology mapping (thread binding) or the
kernel (CPU occupation). However, on common HPC workloads retrieving this
information turns out in a non acceptable overhead and practically limits the
application of PIOMan to real-world use cases [21].

3 Contribution: Hybrid Progress

In this section we propose an original PT mechanism for achieving efficient
communication/computation overlap in a hybrid MPI+threads context. We call
our contribution Hybrid Progress (HP). In the first part we detail the general
algorithmic choices and ideas behind our contribution. In the second part we
expose an implementation in the context of MPI+OMP collaboration.

3.1 Hybrid Progress Method

Despite the longstanding efforts, available PT solutions are not yet completely
satisfactory from the application’s perspective. Our HP method aims at cir-
cumventing some drawbacks of current PT methods by tackling the progression
problem from an alternative point of view: efficient communication/computation
overlap is achieved by a dedicated scheduling of MPI progress on existing com-
pute threads. Before detailing our idea it is important to recall that driving MPI
progress to achieve this overlap is effective only if the underlying network proto-
col splits the messages in several fragments processed separately. In most MPI
implementations this is performed by the rendezvous protocol, as opposed to the
eager protocol which sends the whole data as soon as possible. The rendezvous
protocol is usually employed for long messages (i.e., larger than a threshold).

The core idea behind HP method is to finely control the state of application
compute threads. This control allows then to drive MPI communication progress
at the right time thus avoiding perturbations in the computations and at the
same time enabling efficient communication/computation overlap. The main dif-
ference from the PT solutions is that our method does not require to spawn a

564 M. Sergent et al.

dedicated thread for progression. Instead it exploits the compute threads which
have been already created by the application. Thus, it avoids kernel calls and
therefore, it maintains the OS bypass feature of modern interconnects. On the
other hand, similarly to interruption-based PT methods, our contribution aims
at reducing the interference with computation phases. In fact if MPI progress
calls are not performed at the right time, they can lead to strong perturbation
in synchronizations, invalidate cache optimizations and load balancing choices
made by the application developper, and so on. However, whereas interruption-
based PTs identify the right timing by answering to specific network events,
we followed here a different route: the best spot for communication progress is
chosen at the runtime level, i.e., by selecting only the time intervals when the
thread-based runtime is in a waiting state. Our contribution is generally appli-
cable to any thread-based model stacked with MPI. However, the target runtime
should make its idle time accessible to an external tool through a suitable inter-
face.

Fig. 2. Typical behavior of the OMP runtime within a parallel construct with (right)
and without (left) our runtime collaboration.

3.2 Implementation in an MPI+OpenMP Context

In this section we implement our idea in the context of an MPI+OMP pro-
gramming model. Our contribution needs to target OMP threads waiting times
for progressing MPI communications. We identify these idle intervals within
OMP compute parallel regions. A typical example of a parallel-region behavior
is sketched on the left panel of Fig. 2. In particular, an implicit barrier is trig-
gered by the runtime before each join operation. Because of imbalance acquired
when performing computations, compute threads do not reach this barrier at
the same time leading to idle periods. This spot nicely suits our purpose since

Efficient Communication/Computation Overlap with MPI+OpenMP 565

it can be arbitrarily large depending on the thread imbalance generated by the
application. In the worst case (i.e., when all threads are perfectly synchronized)
the largest perturbation introduced by our solution is given by the duration of
one MPI progress call (see right panel of Fig. 2). Therefore, even though perfect
synchronization should not yield to any overlap increase with our method, we
also expect it to introduce a negligible performance loss in this case.

Other approaches in the literature tried to identify idle times in the OMP
runtime in a similar fashion than the one needed here, notably for parallelizing
internal operations of the MPI runtime with OMP nested loop constructs. Due
to lack of space, we refer the reader to [20] for a detailed discussion on how to
characterize thread idle times in the OMP runtime. However, while the prereq-
uisite is the same, we only need here to identify periods of time large enough
to call the progress engine of the MPI runtime. Moreover, we observed in our
experiments that calling the progress engine of the MPI runtime concurrently
from multiple threads can be prohibitive if the implementation does not ensure
a proper handling of concurrent calls to the progress.

To target the waiting times showed in Fig. 2 we need to access the internal
states of the OMP runtime. To this purpose we use the OMP Tools (OMPT)
interface. This API has been added to the most-recent OMP technical draft
released in November 2017 [15] and is expected to be officially released with OMP
5.0. At the time of writing, only the LLVM OMP runtime provides a mature
implementation of this tool interface [3]. All results presented in this paper are
therefore obtained using this runtime. OMPT has been primarly designed for
enabling OMP profiling in tools (e.g., HPCToolkit [13]). It is built upon a simple
idea: each time a thread changes its state (e.g., it enters/exits a parallel region,
waits on a lock or task construct. . .) a specific event is raised by OMPT and
a corresponding callback function is triggered. An external tool can overload
these functions and gather almost realtime information on the probed thread.
An exhaustive list of thread states and events is provided in [15].

The sync region wait event is a perfect fit for our purpose. In fact it notifies
that the probed thread is waiting for synchronization with other workers within
a parallel region, for example before reaching an implicit barrier as shown in
Fig. 2. We thus developed a tool which overloads the callback function of the
sync region wait event, and calls the MPI progress function. Since the current
MPI standard does not provide any function to invoke the message progression,
our tool directly calls the opal progress routine of the OpenMPI [9] imple-
mentation of MPI we used for our experiments. In our implementation only the
first OMP thread entering the waiting state make MPI communication progress,
as depicted in the right panel of Fig. 2. Message progression is then performed
until the last thread encounters the join barrier. On one hand, this avoids con-
current calls to the MPI progress function and makes our tool compatible with
MPI implementations not fully compliant with multithreaded communications.
On the other hand, since only the first thread raising the callback is chosen, it
allows exploiting the thread waiting regions at full length. Thanks to the simplic-
ity of the OMPT interface, our tool is extremely lightweight, with only around

566 M. Sergent et al.

two hundreds lines of C code. Furthermore our library only needs to be loaded
via the LD PRELOAD environment variable without any code recompilation.

4 Experimental Results

This section first presents an experimental study of our contribution against a
naive PT implementation on a handwritten micro-benchmark. We then evaluate
our approach against the state-of-the-art PT approach of the OpenMPI PML
Yalla component, designed by Mellanox, on two CORAL [1] benchmarks.

All experiments have been conducted on the Bull Pluton cluster, located at
Echirolles, France. Each node is composed of an Intel Xeon Phi Knights Landing
(KNL) 7230 64-core processor with 16 GB of MCDRAM configured in flat mode,
and 192 GB of main memory. They are linked together by an InfiniBand EDR
@100 Gb/s 4X interconnect. We use the BTL OpenIB communication component
of the OpenMPI 2.0.2 MPI implementation, and compiled with the Intel 17.0.0
compiler. For the OpenMP model, we use the open-source LLVM OMP runtime
(revision 319448) providing the OMPT interface.

4.1 Micro-benchmark

To evaluate our contribution we implement a bulk-synchronous benchmark [23].
This programming scheme is representative of patterns used in industrial HPC
codes and it can strongly benefit from communication/computation overlap.
Figure 3 presents this benchmark: it is composed of pairs of processes (sender
and receiver) executing 3 steps: initiate non-blocking communications, perform
an OMP parallel region, and collect communications and synchronize.

Fig. 3. Micro-benchmark scenario without (left) and with communica-
tion/computation overlap (right): GET labels usually correspond to several RDMA
Get operations.

Efficient Communication/Computation Overlap with MPI+OpenMP 567

This scenario is designed to force the reception of a communication buffer
during an OMP parallel region, by explicitly delaying the sender MPI Isend.
We focus our attention on a situation where asynchronous progress is necessary
to achieve communication/computation overlap. As aforementioned, this corre-
sponds to a rendezvous protocol as implemented in OpenMPI. If no progress is
performed, the reception happens at the end of the computation step (see left
of Fig. 3). With asynchronous progress of the MPI runtime, we should instead
observe the scenario on the right panel, where the progress happens inside the
OMP parallel region and the time spent in MPI Wait becomes negligible. We com-
pare our HP approach with a naive PT implementation, built on top of OMPT
– similarly to our contribution – in order to make the comparison as fair as pos-
sible. We name this approach Progress Thread (PT) in the following. For each
experiment, we run 10 iterations of our micro-benchmark with 4 sender/receiver
pairs of MPI tasks (i.e. 8 MPI processes). Each pair exchanges 10 buffers per
iteration, each of 4 MB. All the experiments on this micro-benchmark are per-
formed with 2 computing nodes, where all sender MPI processes are bound to
one node and all receiver MPI processes to the other to force inter-node commu-
nications. Finally, each MPI process launches 64 OMP threads, for 512 threads
in total.

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140

T
im

e
sp

en
t i

n
M

P
I_

W
ai

t (
m

s)

Imbalance between OpenMP threads at join time (ms)

No Polling
Hybrid Progress

Progress Thread

Fig. 4. Time spent in MPI Wait in our micro-benchmark depending of the imbalance
between OMP threads. 2 s of sleep per iteration, 10 iterations.

We first investigate how much imbalance between OMP threads is needed for
our approach to achieve efficient communication/computation overlap. Indeed,
since MPI progress is only called at join time of OMP parallel regions, one
can argue that this interval might not be sufficient to achieve a level of overlap
competitive with PT. To do so, we substitute real computations in OMP regions
with a fixed amount of sleeping time – 2 s in the case of our micro-benchmark

568 M. Sergent et al.

– to ensure a perfect balance between OMP threads. We then introduce an
imbalance by making some of the threads randomly sleep a certain amount of
time more than others. In this way we are able to control the level of thread
imbalance in our benchmark. Figure 4 presents the amount of time spent in
MPI Wait, measured with MPI Wtime(), depending on the maximum amount of
imbalance introduced among OMP threads, measured with omp get wtime()
(lower is better). The top straight line is the time spent in MPI Wait without
any communication/computation overlap, and represent the lower bound of this
overlap. The bottom straight line is the time spent in MPI Wait with the PT
approach, and represent the overlap upper bound. We observe that each time
we introduce 20 more milliseconds of imbalance per iteration, the amount of
time spent in MPI Wait reduces of about 200 ms in total. This fits well with
the behavior presented in Sect. 3.1, where the imbalance between OMP threads
directly drives the amount of MPI progress calls, and thus the amount of time
saved in MPI Wait.

However, the cost of calling the MPI progress is often not negligible. As
explained in Sect. 3.1, since our approach targets only overhead times of the OMP
runtime to call the MPI progress, it less likely disturbs the application compu-
tations compared to PT. To prove our claim, we run the same micro-benchmark
replacing sleeps with actual computations. We aim at observing the perturbation
on computations introduced by each approach. The performed computations are
hand-written General Matrix Multiplication (GEMM) kernels on small matrices
(256× 256), shared between OMP threads. We did not use any optimized ver-
sion of GEMM kernels such as the Intel MKL library since our purpose is not
to assess the GEMM performance. Instead we want to study the perturbation
introduced by the PT on computations, i.e. how much time originally dedicated
to the compute phase is assigned to the PT by the OS kernel.

Table 1. Execution time (in seconds) of our micro-benchmark with each approach.
200 GEMM kernel computations per iteration, 10 iterations.

MPI Wait time Computation time Total execution time

No polling 0.9411 s 16.92 s 17.97 s

Hybrid progress 0.0002 s 16.87 s 16.99 s

Progress thread 0.0002 s 27.27 s 27.54 s

Table 1 presents the average execution time of different approaching execut-
ing 200 GEMM kernel computations per iteration, on 10 iterations. The standard
deviation of these runs is negligible on our setup, and thus omitted. We observe
that, while the PT approach strongly disturbs the computation (with an over-
head on computations of ∼63%) the overhead of our HP approach is negligible.
Moreover, the MPI Wait time column shows that common computational work-
loads such as GEMM kernels exhibit enough imbalance among OMP threads
to allow an efficient communication/computation overlap with our contribution.

Efficient Communication/Computation Overlap with MPI+OpenMP 569

This translates in an effective gain in execution time, while the PT approach
heavily slows down the application. This shows that our contribution achieves
the best trade-off between communication/computation overlap and perturba-
tion of computations in this case.

4.2 CORAL Benchmarks

We showed in the previous section that our contribution allows a competitive
communication/computation overlap compared to PT approaches, while having
a negligible overhead on computations. To assess the applicability of our contri-
bution to real-life workloads, this section presents experiments on LULESH and
AMG CORAL benchmarks.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

LULESH 2 threads/core

AMG 2 threads/core

AMG 4 threads/core

R
el

at
iv

e
F

O
M

 (
ba

se
lin

e
B

T
L

O
pe

nI
B

)

BTL OpenIB
BTL OpenIB + HP

PML Yalla

Fig. 5. Relative FOM of LULESH and AMG CORAL hybrid MPI+OMP benchmarks
on 16 Intel KNL nodes. Baseline: BTL OpenIB setup.

As first benchmark we choose LULESH. While being a compute-bound stencil
code for shock hydrodynamics, its numerous fine-grained compute loops allow us
to better assess the overhead of our contribution than our micro-benchmark. The
other benchmark, AMG2013, computes a Conjugate Gradient (CG) sparse lin-
ear solver. The distributed CG algorithm is known to be communication-bound
because of the communication requirements coming from the Sparse Matrix
Vector product (SpMV) [12], and seems to be a good candidate for commu-
nication/computation overlap improvements. We present in Fig. 5 the Figures
of Merit (FOM) of each benchmark – higher is better – relative to the FOM
of the BTL OpenIB standard approach. The PT approach is represented by
the PML Yalla, which is an OpenMPI component maintained by Mellanox and
the state-of-the-art reference of such approaches. We use for these experiments
16 nodes of the Bull Pluton cluster, previously described in Sect. 4.1. The two
benchmarks are launched with the same MPI+OMP distribution, 5 times each.

570 M. Sergent et al.

32 MPI processes per node are used such that each process is bound to a L2
cache on the KNL memory hierarchy. Four OMP threads per MPI process are
spawned, to bind two threads per KNL core and fully exploit their two pipelines.

We observe that the difference between all three approaches on LULESH is
less than 1%. This means that, even with fine-grained OMP loops, the overhead
of our approach is indeed negligible. On AMG2013, we observe a FOM improve-
ment of 35% for both our approach and the PML Yalla PT approach. Indeed,
Issacs et al. explain in [11] that a high differential lateness between MPI pro-
cesses exists in AMG2013, especially in the MPI Waitall routine. This makes
the reduction of the time spent in this routine a critical factor for improving the
performance of the solve phase, thus the FOM. To study more precisely the per-
turbation on computations of each approach, we run the AMG2013 benchmark
with all the computing resources available, i.e. by using all four hyperthreads per
KNL core instead of two. The FOM of each approach is shown on the right hand
side of Fig. 5. While this setup degrades the overall performance of the applica-
tion by ∼26% in the BTL OpenIB case – which is why the relative gain with PT
approaches is higher, but the absolute performance is still lower than the case
with two threads per core – this allows to assess the impact on computations of
each approach. We indeed observe that the PML Yalla degrades the FOM of the
application while our contribution maintain its efficiency. This result confirms
the applicability of our contribution on real-life workloads.

5 Conclusion and Future Work

In this paper we propose an original progress-threads (PT) method for achieving
communication/computation overlap. We implement it within an MPI+OMP
programming model. Based on a fine control over the thread states, we are
able to target thread waiting times within compute regions and use them to
drive MPI communications progress. Our solution does not need any dedicated
thread on the host CPU and it is designed to have minimal perturbation on the
application execution. Through the OMPT interface we easily implement our
idea with few hundreds lines of C code. We devise a micro-benchmark repre-
sentative of a widely used parallel programming scheme for assessing the fea-
tures of our solution. Results on real-world workloads are very encouraging with
up to 35% of performance gain on the AMG CORAL application which strongly
benefits from communication/computation overlap. Our results are comparable
to the PML Yalla from Mellanox, a state-of-the-art PT-based implementation.
Moreover, compute-bound workloads such as the LULESH benchmark are not
impacted in terms of performance. This proves that our tool introduces a negli-
gible overhead in the application compute phases.

In the short term we intend to extend our tool to target idle times outside
parallel regions for MPI progress. This will greatly improve the applicability of
our solution to generic HPC workloads. However OMP implementations usually
keep the threads in an active waiting state outside parallel regions. This makes
harder to efficiently target those idle times. In parallel we plan to test our tool on

Efficient Communication/Computation Overlap with MPI+OpenMP 571

real-life industrial use cases. To this purpose an ongoing collaboration between
Atos Bull and CEA aims at assessing performance and scalability of our solution
up to exascale workloads on the Tera-1000 supercomputer [2].

Finally, while our HP approach can be applied to multiple runtimes, its
concrete applicability is still an open question. As we show in this paper, runtimes
currently lack an API exposing a minimal set of state information (such as idle
periods and suitable progress functions) to allow generic and portable runtime
collaborations. A standardization of such API would also pave the way to new
kinds of collaborations. For instance thread waiting times can be used to prefetch
data to GPU accelerators, other memory spaces or schedule tasks in advance
when coupled with a task-based runtime.

References

1. Collaboration of Oak Ridge, Argonne, and Livermore benchmark codes. https://
asc.llnl.gov/CORAL-benchmarks

2. Tera-1000-2-Part 1 (2017). https://www.top500.org/system/179162
3. OpenMP Tools Interface (2018). https://github.com/OpenMPToolsInterface/

LLVM-openmp
4. Barrett, B.W., et al.: The Portals 4.0 network programming interface. Technical

Report, Sandia National Laboratories, SAND2013-3181 (2013)
5. Brightwell, R., Riesen, R., Underwood, K.D.: Analyzing the impact of overlap,

offload, and independent progress for message passing interface applications. HPCA
J. 19, 103–117 (2005)

6. Cardellini, V., Fanfarillo, A., Filippone, S.: Overlapping communication with com-
putation in MPI applications. Technical Report, Universita di Roma Tor Vergata,
DICII RR-16.09 (2016)

7. Derradji, S., Palfer-Sollier, T., Panziera, J.P., Poudes, A., Atos, F.W.: The BXI
interconnect architecture. IEEE, August 2015

8. Dongarra, J., et al.: The international exascale software project roadmap. HPCA
J. 25, 3–60 (2011)

9. Gabriel, E., et al.: Open MPI: goals, concept, and design of a next genera-
tion MPI implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.)
EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30218-6 19

10. Hoefler, T., Lumsdaine, A.: Message progression in parallel computing - to thread
or not to thread? In: IEEE CLUSTER (2008)

11. Isaacs, K.E., Gamblin, T., Bhatele, A., Schulz, M., Hamann, B., Bremer, P.T.:
Ordering traces logically to identify lateness in message passing programs. IEEE
Trans. Parallel Distrib. Syst. 27, 829–840 (2016)

12. Lewis, J.G., Van de Geijn, R.A.: Distributed memory matrix-vector multiplica-
tion and conjugate gradient algorithms. In: Proceedings of the 1993 ACM/IEEE
Conference on Supercomputing (1993)

13. Mellor-Crummey, J.: Performance Analysis of MPI+OpenMP Programs with
HPCToolkit, March 2015

14. Message Passing Interface Forum: MPI: a message-passing interface standard, ver-
sion 3.1, June 2015

https://asc.llnl.gov/CORAL-benchmarks
https://asc.llnl.gov/CORAL-benchmarks
https://www.top500.org/system/179162
https://github.com/OpenMPToolsInterface/LLVM-openmp
https://github.com/OpenMPToolsInterface/LLVM-openmp
https://doi.org/10.1007/978-3-540-30218-6_19

572 M. Sergent et al.

15. OpenMP Language Working Group: OpenMP R©RTechnical Report 4: Version 5.0
Preview 2. Technical report, The OpenMP Architecture Review Board, November
2017

16. Pérache, M., Carribault, P., Jourdren, H.: MPC-MPI: an MPI implementation
reducing the overall memory consumption. In: Ropo, M., Westerholm, J., Don-
garra, J. (eds.) EuroPVM/MPI 2009. LNCS, vol. 5759, pp. 94–103. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-03770-2 16

17. Pérache, M., Jourdren, H., Namyst, R.: MPC: a unified parallel runtime for clusters
of NUMA machines. In: Luque, E., Margalef, T., Beńıtez, D. (eds.) Euro-Par 2008.
LNCS, vol. 5168, pp. 78–88. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-85451-7 9

18. Pfister, G.F.: An introduction to the InfiniBandTM architecture. In: High Perfor-
mance Mass Storage and Parallel I/O (2001)

19. Rabenseifner, R.: Hybrid parallel programming on HPC platforms. In: Proceedings
of the Fifth European Workshop on OpenMP, EWOMP (2003)

20. Si, M., Pea, A.J., Balaji, P., Takagi, M., Ishikawa, Y.: MT-MPI: multithreaded
MPI for many-core environments. ACM Press (2014)

21. Trahay, F., Brunet, E., Denis, A.: An analysis of the impact of multi-threading on
communication performance. In: IEEE IPDPS (2009)

22. Trahay, F., Denis, A.: A scalable and generic task scheduling system for commu-
nication libraries. In: IEEE CLUSTER (2009)

23. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33,
103–111 (1990)

https://doi.org/10.1007/978-3-642-03770-2_16
https://doi.org/10.1007/978-3-540-85451-7_9
https://doi.org/10.1007/978-3-540-85451-7_9

Multicore and Manycore Methods and
Tools

Efficient Lock-Free Removing and
Compaction for the Cache-Trie Data

Structure

Aleksandar Prokopec(B)

Oracle Labs, Adliswil, Switzerland
aleksandar.prokopec@gmail.com

Abstract. The recently proposed cache-trie data structure improves the
performance of lock-free Ctries by maintaining an auxiliary data struc-
ture called a cache. The cache allows basic operations to run in expected
O(1), instead of the previous O(log n) bound. While earlier work showed
that cache-tries improve inserts and lookups by 1.5–5× on standard work-
loads, the remove operation was not previously examined. One of the
main challenges of remove is to compact the trie – removing the ele-
ments should recycle the unused parts of the data structure.

In this paper, we describe a new non-compacting and two new com-
pacting non-blocking variants of the remove operation for cache-tries.
We ensure that each remove implementation runs in expected O(1) time.
Compared to standard Ctries, performance improvements range between
10% and 35%, depending on the size of the data structure, the parallelism
level and the hardware architecture.

1 Introduction

Cache-tries [28] improve the running time of traditional lock-free hash tries [32]
with a quiescently consistent auxiliary data structure called a cache. While cache-
trie lookup and insert were shown to run in expected O(1) time [26], original
work on cache-tries gives almost no attention to removing elements.

This paper shows that the lock-free cache-trie remove operation also runs in
expected O(1) time. This operation takes care to compact the cache-trie – the
memory management system is allowed to recycle the unused parts of the data
structure. The main idea in compaction is to, after removing, speculatively detect
if the affected node can be compacted, and then freeze it. Freezing facilitates
compaction by atomically preventing subsequent updates to the candidate node.

After summarizing the earlier results and explaining how cache-tries work in
Sect. 2, this paper brings forth the following contributions:

– A description and an implementation of a lock-free remove operation for
cache-tries, both with and without compaction (Sect. 3).

– An optimization that brings a further 5–15% improvement on the expected
execution time (Sect. 3.2).

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 575–589, 2018.
https://doi.org/10.1007/978-3-319-96983-1_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_41&domain=pdf

576 A. Prokopec

Fig. 1. Cache trie data types

– A performance evaluation on two architectures, against three similar concur-
rent data structures. We find that cache-trie removes improve the execution
time of standard lock-free hash tries [34] by 10–35% and that, without com-
paction, removing can additionally be made 30–65% faster (Sect. 4).

Finally, Sect. 5 presents the related work, and Sect. 6 concludes.

2 Overview of Cache-Tries

A lock-free cache-trie [28] is a special type of a hash trie data structure [3,4,32].
A newly created cache-trie consists of a single empty array, which has the length
16, since nodes are 16-way in our implementation1. Inserting a key works similar
to a hash table – the 4 lowest hash code bits are used to determine the position
in the table. Consider the following figure:

In the first figure above, a key with the hash code 110100012 occupies the
index 110. The key with the hash code 001101002 occupies the index 410 in the
second figure. In the third figure, keys 001101002 and 100001002 collide at the
index 410. The collision is resolved by creating another array, and using the higher
hash code bits to map the keys to indices 310 and 810. Collision resolution repeats
recursively until running out of hash bits, and relies on a linked list thereafter.

Data Types. The aforementioned array nodes are
modeled with the ANode type, shown in Fig. 1. ANode
is defined as an array of pointers of Any type. The
SNode type models the leaf nodes. Each leaf holds a
key and the value it is mapped to. Additionally, SNode
objects have a mutable field txn, which is used by the
mutating threads to announce that they are about to
replace the respective SNode.

1 Other arities are possible, but we found 16 to work well, because the node fits into
a 64 byte cache-line when JVM’s compressed object pointers are used.

Efficient Lock-Free Removing and Compaction 577

To insert a key into the cache-trie in a lock-free
manner, a thread finds the appropriate ANode, and
atomically replaces a nil array entry with a new
SNode, using a compare-and-swap (CAS) instruction.
A new SNode has the txn field set to a special value
NoTxn. To replace an existing SNode, a mutation

operation first announces the new value by CASing it into the txn field, as shown
on the left. If the first CAS is successful, the corresponding array entry is replaced
with a second CAS.

Freezing. Mutation operations must sometimes prevent all future modifications
to specific subtries. This is achieved with freezing [6,23], which ensures that all
subsequent CAS invocations on the frozen node fail.

In figure 1© on the right, a thread selects an
ANode that contains an SNode, a nil entry, and
a child ANode. In figure 2©, the thread CASed an
FSNode value into the txn field of the SNode, and
replaced nil with an FVNode value. To freeze the
child ANode, the thread first writes an FNode value
into the corresponding entry, as shown in Figure 3©, and then recursively freezes
the child. Note that, once freezing starts, it eventually completes – the reason is
that a thread that observes an ongoing freeze operation will cooperatively com-
plete the freeze. In addition, any operation that starts after the freeze started
will notice the freeze if it works on the respective subtrie, and ongoing operations
do only finitely many changes. The linearization point is the CAS that freezes the
last non-frozen node in the respective subtrie.

Invariants. All operations maintain the following invariants: (1) If an SNode
with a hash code h is reachable from the cache-trie root, then it is only reachable

with a chain of pointers a0
a0[p0]−→ [u0 −→]a1

a1[p1]−→ [u1 −→] . . .
an[pn]−→ [un −→]sn+1

starting from the a0 = root, such that p0p1 . . . pn is a prefix of h (and parts in
the [·] brackets are optional). Here, each ai is an ANode, si is an SNode, and ui

is any other type of node. (2) If a node is not reachable from the root, then it
is frozen. (3) Once frozen, a node is not subsequently modified.

Cache. Most of the previous description applies to
standard lock-free hash trie variants [1,2,31,32,34].
In these hash tries, the search time grows logarith-
mically with the number of keys in the hash trie. A
cache-trie additionally maintains an auxiliary data
structure called a cache, shown on the left, which

speeds up the node searches. The cache is a list of C arrays, starting with the
field cacheHead. Each array corresponds to a level �, 0 ≤ � < 4 · C, and is
effectively a concatenation of the entries of the ANodes at level � (including any
missing ones). Levels are counted in multiples of 4, i.e. 0, 4, 8, 12, . . . and so on. A
special entry in each array contains a pointer to the next array in this list. The list
is sorted, going from the largest arrays (i.e. deepest trie levels) to the smallest.

578 A. Prokopec

The cache entries are populated lazily, so they do not always precisely match
the trie. However, when they are present, they allow skipping a non-constant
number of cache-trie levels.

Slow Path and Fast Path. Consider how to implement a key lookup. The
slow lookup relies on the aforementioned invariant (1) – it follows the path from
the root to the unique leaf for that key. The fast path lookup attempts to first
find the key in the cache, and then continues the search from some node deep
in the cache-trie. If the cache entry is empty, the search reverts to the slow path
from the root. Similarly, if the cache contains a frozen entry, then the respective
node is potentially unreachable, and must be ignored (recall the invariants (2)
and (3)). The precise pseudocode of lookup was shown in earlier work [28].

When the cache is appropriately positioned and populated, the slow path
runs less frequently. When it does occasionally occur, the slow path updates the
relevant cache entry, and records a miss. When sufficiently many misses occur,
a sampling pass inspects the trie and updates the cache depth if necessary.

Performance. By analyzing the key distribution across levels [26], it was shown
that the expected running time of the lookup and insert operations is O(1).
Performance evaluations on typical sizes (≈1M elements) showed that cache-
trie lookup performance is around 3× better when compared against other
hash tries, and insertion is around 33% faster [28]. Compared to the JDK 8
ConcurrentHashMap [14], cache-tries have faster insertion, but 1.5–2× slower
lookup.

3 Remove Operation

Depending on the implementation, a remove operation may or may not compact
the cache-trie. Compaction recycles the unused parts of the data structure, and
ensures that the memory footprint corresponds to the actual number of keys.
For example, the JDK ConcurrentHashMap implementation [14] does not recycle
memory, so its footprint corresponds to the maximum number of keys present
at any point during its lifetime. As a benefit, removing without compaction is
faster because no time is spent in housekeeping. Next, we will show one non-
compacting lock-free remove operation, and two compacting variants.

3.1 Basic Implementation

The basic remove implementation does not compact the
cache-trie. If the specified key exists, it is atomically removed.
Otherwise, the remove operation leaves the trie intact.

Summary. We first consider the slow path version. At every
step, the search is anchored at an array node cur at level lev
(the parent node prev is at lev-4). The search calculates
the index in cur and reads the respective child pointer. The child is either
non-existing (nil), or another array node, or an SNode. For nil, the search

Efficient Lock-Free Removing and Compaction 579

Fig. 2. Remove operations

terminates, since the key is not present, by invariant (1). For SNode, the search
checks if the keys match, and then attempts to remove the SNode. Otherwise,
the search resumes recursively. If the search sees a frozen node, it restarts by
returning false.

The fast path version aims to start the search from an ANode within the trie,
so it starts by reading the cacheHead field, which points to the deepest trie level.
If the respective entry is not an ANode, this is retried at the next (higher) cache
level, until reaching the root of the cache-trie.

Implementation. The remove subroutine, shown in Fig. 2, implements the slow
path of the remove operation. The subroutine takes the key k, its hash code h,
the current level lev, and the current and previous node cur and prev. The
cLev is the cache level at which the search was entered. The subroutine returns
true if successful, and false if it must be retried.

The array index pos is calculated in line 3, and the child ch is read in line 4.
The nil and the ANode case are as described above. The SNode case first checks
if the cache is misaligned – if the current trie level is sufficiently far away from
cache level cLev (lines 9 and 10), it increments the cache miss counter by calling
the recordMiss subroutine [28]. After that, the subroutine checks if the keys
match, and performs the two-step SNode replacement described in Sect. 2.

By convention, the cache level corre-
sponds to the level of the nodes it points to.
The figure on the left shows three trie lev-
els topLev-8, topLev-4 and topLev. On the
right, the deepest cache level is at topLev,

580 A. Prokopec

and the one above is at topLev-4. Under this convention, the level � of a cache
node is the number of trailing zeros of S − 1, where S is the cache length (note:
the zeroth entry in the cache is a pointer to the next cache level). For example,
the cache with S = 17 elements is at level 4 – note that its pointees are likewise
at level 4. Separately, the index in the cache for the hash code h is determined by
the � lowest bits, i.e. with the expression h� (S − 2), where � is the bitwise-and
operation.

The fastRemove subroutine in Fig. 2 iteratively traverses the cache levels
until a call to remove in line 50 is successful. If the current cache level lev is less
than topLev-4, where topLev is the deepest cache level, a cache miss is recorded
in line 49. Note that using the cache level topLev-4 is not a miss, because the
deepest cache node can point to an SNode, indicating that the corresponding
ANode must be looked up one level above, as shown in the previous figure.

Fig. 3. Adding compaction to remove operations

3.2 Cache-Trie Compaction

Summary. To compact the cache-trie, the
remove operation must ensure that there is
no ANode that has at most one SNode child.
In the figure 1© on the right, the rightmost
SNode must be removed. Removing it in 2©
produces an ANode that has a single SNode child. The slow path remove has
the parent pointer prev, so it can compact the ANode into its parent, as
shown in 3©.

Efficient Lock-Free Removing and Compaction 581

However, the fast path version does not
track the current node’s parent, prevent-
ing it from immediately compacting. To dis-
cover the parent, the fastRemove operation
must read the parent ANode from the cache

nodes at the higher levels if it detects that the current node is compactible.
Consider the first figure on the left, in which the remove subroutine produced

an ANode with a single remaining SNode. This ANode must be compacted, but
the prev parameter is nil, so remove only “sees” the part in the green frame.
In the second figure, the fastRemove operation reads the parent from the next
level of the cache, which allows it to perform the compaction.

Implementation. Figure 3 shows the difference between the non-compacting
and the compacting remove implementation. In the slow path remove subroutine,
after successfully announcing that the SNode will be removed in line 14, the
isCompactible call checks the current ANode, and calls compactNode to compact
the current node if necessary. As we show briefly, compaction introduces a new
node type XNode to mark the compact regions. If any operation observes an
XNode, then it must first help complete the compaction, as shown in line 27.

The fastRemove subroutine checks if the current node is compactible as soon
as its call to remove returns true. If so, the compactUp call in line 52 iteratively
compacts the path to the root until no further compaction is possible.

Figure 4 shows the pseudocode of the different com-
paction operations. Compaction of a single node is done
in compactNode, which starts by replacing the candidate
node with a special XNode value. The XNode contains the
pointer to the parent node prev, the current node cur, the
position ppos of the current node in its parent, and the respective hash code
and the current level. Threads that observe this node are obliged to help com-
paction. The compactNode then calls freeze on the candidate node to prevent
further updates (freezing is described in Sect. 2). Finally, the current ANode can
be replaced in its parent with the compacted version.

Example. In the preceding figure, the thread T1 inserts the XNode and starts
freezing the candidate. Before freezing completes, another thread T2 attempts
to modify the candidate by inserting another SNode. In the first outcome, T1
succeeds in freezing the node before T2 manages to complete its update, and
compaction succeeds. In the second outcome, T2 inserts the key. After freezing,
T1 sees two keys in the candidate node, so it just swaps in a copy of the node.

582 A. Prokopec

The compactUp and compactDown subroutines are used in the fast path.
These operations ascend the cache-trie on a path that corresponds to some hash
code h, and invoke compaction until reaching a non-compactible node.

Counter Optimization. Every successful
remove operation invokes isCompactible to
traverse all the entries in the candidate node,
and check if the node can be potentially com-
pacted. This check can be made more efficient
by adding a counter into each ANode, which tracks the number of non-nil entries.
This counter is updated after the linearization point, as shown in the figure
above, and it is quiescently consistent – its value is guaranteed to be correct
after the operations complete.

3.3 Correctness Discussion

For space reasons, we omit the precise proofs. Instead, we refer to the existing
analysis with a similar structure [26], and we briefly discuss the main points.

Linearizability. To show that the remove is correct and linearizable, we identify
the linearization points, and show that they preserve the invariants. Concretely,
the CAS instruction in line 14 of remove is the linearization point. Other CASes
do not change the state, and neither of them violates the invariants.

Lock-Freedom. We must show that, for any failed CAS, the trie state changes in
a finite number of steps. Consider, for example, the CAS in line 6 of freeze. Fail-
ure implies either a successful CAS in line 14 of remove , indicating concurrent
success, or that another thread froze the entry, indicating local progress.

Complexity. When there is no contention among threads, we claim that the
fast path runs in expected O(1). We note that the expected time spent searching
for the node with the specified key is O(1), by the same arguments as for the
cache-trie lookup operation [26]. The only variable amount of time could be spent
in the compactUp subroutine, whose worst-case is indeed O(log n). However, it
was shown that the pair of levels with ≈87% or more keys is expected to be at
the level of the cache [26], which is O(1) levels away from the key. At that level,
the expected number of entries in the ANode is above 2. Therefore, the number
of compacted levels is expected to be constant, and fastRemove is O(1).

4 Evaluation

We implemented cache-tries in Scala, and compared different remove implemen-
tations against similar data structures: JDK ConcurrentHashMap [14], Scala
standard library Ctries [34], and the concurrent skip list from the JDK [43]. The
single threaded benchmark takes an existing cache-trie and removes all of its
N keys, where N is 100k, 250k, 500k, and 4M . The multithreaded benchmark
alternates the number of concurrent threads that are removing the elements.

Efficient Lock-Free Removing and Compaction 583

Fig. 4. Compaction operations

The benchmarks were executed on two machines. The first is an Intel i7-4900MQ
3.80 GHz quad-core CPU with hyperthreading, dual-channel memory and 32GB
RAM. The second machine is a dual-socket with 2 Intel Xeon E5-2683 3.00 GHz
tetradeca-core CPUs with hyperthreading, quad-channel memory and 32 GB
RAM. We used the ScalaMeter tool to run the benchmarks [22], and we followed
the standard performance evaluation techniques for the JVM [11]. We ran each
benchmark 30 times, reporting the mean and the standard deviation. Our imple-
mentation is available online [30], and integrated into the Reactors framework
[24,25,27,35,40].

584 A. Prokopec

Fig. 5. Single threaded performance comparison between remove implementations

Single Threaded Performance. Figure 5 shows the results of the single
threaded benchmarks on i7 and Xeon. The JDK ConcurrentHashMap does not
compact the underlying hash table, which increases its performance at the cost
of memory footprint. We therefore use the ConcurrentHashMap as a baseline,
since it is unlikely that compacting removes can achieve better performance.

We test three different cache-trie remove variants: basic removes from
Sect. 3.1 (no-compact), removes with compaction from Sect. 3.2 (no-counter),
and the removes with the counter optimization (cache-trie). CHM, ctrie and
skiplist represent JDK concurrent hash maps, Scala Ctries and JDK concurrent
skip lists, respectively. Results show that the cache-trie without compaction is
2–3.5× slower than that ConcurrentHashMap. The reason for this is that the
majority of keys are distributed across two consecutive levels of the cache [26],
so the fast-path needs ≈2 pointer hops, and consequently up to ≈2 cache misses,
to reach the leaf through the cache (unlike the hash table, which undergoes ≈1
pointer hop), and is consistent with earlier findings [28]. Compaction reduces
performance by 1.5–3×, depending on the cache-trie size. The counter optimiza-
tion from Sect. 3.2 improves compaction performance by only around 5–15%.
This is not very surprising – the loop in the isCompactible subroutine (which
the counters help avoid) is not particularly expensive, since (immediately after
a remove) the respective node is usually already in the L1 cache.

Multi Threaded Performance. Figure 6 shows the results of the multi
threaded benchmarks. On the i7, we vary the number of threads from 1 to
8. We test Xeon for 1, 2, 4, 8, 14, 28, 42 and 56 threads. The results are overall
consistent with the single threaded benchmarks, although the performance gap
is lowered at higher parallelism levels. The i7 processor, with is dual-channel
memory, saturates the memory bandwidth before reaching 4 cores. The Xeon
architecture saturates the bandwidth before reaching 14 cores, and exhibits a
slight slowdown at higher parallelism levels. Notably, while skip lists are ≈7–13×
slower in the single threaded benchmarks due to a larger number of pointer hops,
they scale better, and are only ≈4.5× slower at 4 and 14 threads, respectively.

Efficient Lock-Free Removing and Compaction 585

Fig. 6. Multi threaded performance comparison between remove implementations

5 Related Work

Tries were proposed by Briandais [8], and later named by Fredkin [10], as a string
retrieval data structure. Several authors studied the use of tries as a dictionary
for arbitrary data types [3,4,16]. In the recent years, a non-blocking concurrent
hash trie called Ctrie, which supported lock-free insert, lookup and remove oper-
ations, was proposed by Prokopec [31,32]. An atomic two-keys replace operation
was later proposed in the context of Patricia trees [45]. Ctries were extended with
non-blocking snapshots, which, along with along with high-level compiler opti-
mizations [36,48], enabled efficient data-parallel traversal [20,21,33,34,39,42].
Areias and Rocha studied how to improve performance of lock-free hash tries in
the context of concurrent Prolog programs, by specializing hash tries for insert
operations [1,2]. Separately, Joisha showed that non-blocking tries can be made
more efficient when the delete operation is disallowed [13]. Steindorfer studied
techniques for automatically deriving the hash trie with optimal tradeoffs for a
given program [46,47]. Oshman and Shavit were the first to improve complex-
ity of the trie operations from O(log n) to O(log log n) with SkipTries [19], and
cache-tries [26,28] were the first to lower the complexity for trie lookups and
inserts to O(1). The freezing technique used in cache-tries is similar to freezing
used by SnapQueues [23,41], freezing in locality-conscious lists [5], and sealing
in FlowPools [37,38,44] and future values [12].

There are other concurrent data structures that implement the non-blocking
dictionaries. Lea’s ConcurrentHashMap [14], available in the JDK, is loosely
based on Michael’s lock-free hash table description [18]. ConcurrentHashMap
has a highly efficient wait-free lookup operation, it is a flat data structure, and

586 A. Prokopec

it avoids compaction altogether. As such, it is a good baseline for comparison
against tree-like and trie data structures, which generally do compaction and
suffer cache misses due to indirections. Other concurrent hash maps are due to
Liu et al. [17] and Li et al. [15]. The JDK ConcurrentSkipListMap, compared
in Sect. 4, is based on Pugh’s concurrent skip list [43]. Other notable concurrent
trees include Bronson’s SnapTree (a lock-based AVL tree) [7], lock-free binary
trees from Ellen et al. [9], and Braginsky’s lock-free B+-trees [6].

6 Conclusion

We described several novel non-blocking implementations of the remove opera-
tion for the cache-trie data structure. We evaluated a compacting and a non-
compacting variant, and found that the overhead of compaction is around 1.5–
3×, depending on the workload. However, compared to the standard Ctrie imple-
mentation [34], the compacting remove on cache-tries is 10–35% faster.

Although the compacting remove operation exceeds the performance of
Ctries, it does represent a considerable overhead. One way to alleviate these
costs may be to compact lazily, i.e. trigger compaction only after removing a
considerable subset of the keys. We leave these considerations for future work.

7 Data Availability Statement and Acknowledgments

The datasets and code generated during and/or analysed during the current
study are available in the figshare repository [29]:
https://doi.org/10.6084/m9.figshare.6369134

References

1. Areias, M., Rocha, R.: On the correctness and efficiency of lock-free expandable
tries for tabled logic programs. In: Flatt, M., Guo, H.-F. (eds.) PADL 2014. LNCS,
vol. 8324, pp. 168–183. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
04132-2 12

2. Areias, M., Rocha, R.: A lock-free hash trie design for concurrent tabled logic
programs. Int. J. Parallel Program. 44(3), 386–406 (2016)

3. Bagwell, P.: Ideal hash trees (2001)
4. Baskins, D.: The Judy array implementation (2000). http://judy.sourceforge.net/
5. Braginsky, A., Petrank, E.: Locality-conscious lock-free linked lists. In: Aguilera,

M.K., Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds.) ICDCN 2011.
LNCS, vol. 6522, pp. 107–118. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-17679-1 10. http://dl.acm.org/citation.cfm?id=1946143.1946153

6. Braginsky, A., Petrank, E.: A lock-free B+tree. In: Proceedings of the Twenty-
Fourth Annual ACM Symposium on Parallelism in Algorithms and Architectures.
SPAA 2012, pp. 58–67. ACM, New York (2012). https://doi.org/10.1145/2312005.
2312016

https://doi.org/10.6084/m9.figshare.6369134
https://doi.org/10.1007/978-3-319-04132-2_12
https://doi.org/10.1007/978-3-319-04132-2_12
http://judy.sourceforge.net/
https://doi.org/10.1007/978-3-642-17679-1_10
https://doi.org/10.1007/978-3-642-17679-1_10
http://dl.acm.org/citation.cfm?id=1946143.1946153
https://doi.org/10.1145/2312005.2312016
https://doi.org/10.1145/2312005.2312016

Efficient Lock-Free Removing and Compaction 587

7. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A practical concurrent binary
search tree. In: SIGPLAN Not, vol. 45, no. 5, pp. 257–268, January 2010. https://
doi.org/10.1145/1837853.1693488

8. De La Briandais, R.: File searching using variable length keys. In: Papers Presented
at the the March 3–5, 1959, Western Joint Computer Conference. IRE-AIEE-ACM
1959 (Western), pp. 295–298. ACM, New York (1959). https://doi.org/10.1145/
1457838.1457895

9. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search
trees. In: Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Princi-
ples of Distributed Computing. PODC 2010, pp. 131–140. ACM, New York (2010).
https://doi.org/10.1145/1835698.1835736

10. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (1960). https://doi.org/
10.1145/367390.367400

11. Georges, A., Buytaert, D., Eeckhout, L.: Statistically rigorous java perfor-
mance evaluation. SIGPLAN Not. 42(10), 57–76 (2007). https://doi.org/10.1145/
1297105.1297033

12. Haller, P., Prokopec, A., Miller, H., Klang, V., Kuhn, R., Jovanovic, V.: Scala
improvement proposal: futures and promises (SIP-14) (2012). http://docs.scala-
lang.org/sips/pending/futures-promises.html

13. Joisha, P.G.: Sticky tries: fast insertions, fast lookups, no deletions for large key
universes. In: Proceedings of the 2014 International Symposium on Memory Man-
agement. ISMM 2014, pp. 35–46. ACM, New York (2014). https://doi.org/10.1145/
2602988.2602998

14. Lea, D.: Doug Lea’s workstation (2014). http://g.oswego.edu/
15. Li, X., Andersen, D.G., Kaminsky, M., Freedman, M.J.: Algorithmic improvements

for fast concurrent cuckoo hashing. In: Proceedings of the Ninth European Confer-
ence on Computer Systems. EuroSys 2014, pp. 27:1–27:14. ACM, New York (2014).
https://doi.org/10.1145/2592798.2592820

16. Liang, F.M.: Word Hy-phen-a-tion by Com-pu-ter. Ph.D. thesis, Stanford Univer-
sity, Stanford, CA 94305, June 1983. also available as Stanford University, Depart-
ment of Computer Science Report No. STAN-CS-83-977

17. Liu, Y., Zhang, K., Spear, M.: Dynamic-sized nonblocking hash tables. In: Pro-
ceedings of the 2014 ACM Symposium on Principles of Distributed Comput-
ing. PODC 2014, pp. 242–251. ACM, New York (2014). https://doi.org/10.1145/
2611462.2611495

18. Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets.
In: Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms
and Architectures. SPAA 2002, pp. 73–82. ACM, New York (2002). https://doi.
org/10.1145/564870.564881

19. Oshman, R., Shavit, N.: The skipTrie: low-depth concurrent search without rebal-
ancing. In: Proceedings of the 2013 ACM Symposium on Principles of Distributed
Computing. PODC 2013, pp. 23–32. ACM, New York (2013). https://doi.org/10.
1145/2484239.2484270

20. Prokopec, A., Petrashko, D., Odersky, M.: Efficient lock-free work-stealing iterators
for data-parallel collections. In: 2015 23rd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing, pp. 248–252, March 2015

21. Prokopec, A.: Data structures and algorithms for data-parallel computing in a
managed runtime. Ph.D. thesis, IC, Lausanne (2014)

22. Prokopec, A.: Scalameter website (2014). http://scalameter.github.io

https://doi.org/10.1145/1837853.1693488
https://doi.org/10.1145/1837853.1693488
https://doi.org/10.1145/1457838.1457895
https://doi.org/10.1145/1457838.1457895
https://doi.org/10.1145/1835698.1835736
https://doi.org/10.1145/367390.367400
https://doi.org/10.1145/367390.367400
https://doi.org/10.1145/1297105.1297033
https://doi.org/10.1145/1297105.1297033
http://docs.scala-lang.org/sips/pending/futures-promises.html
http://docs.scala-lang.org/sips/pending/futures-promises.html
https://doi.org/10.1145/2602988.2602998
https://doi.org/10.1145/2602988.2602998
http://g.oswego.edu/
https://doi.org/10.1145/2592798.2592820
https://doi.org/10.1145/2611462.2611495
https://doi.org/10.1145/2611462.2611495
https://doi.org/10.1145/564870.564881
https://doi.org/10.1145/564870.564881
https://doi.org/10.1145/2484239.2484270
https://doi.org/10.1145/2484239.2484270
http://scalameter.github.io

588 A. Prokopec

23. Prokopec, A.: SnapQueue: lock-free queue with constant time snapshots. In: Pro-
ceedings of the 6th ACM SIGPLAN Symposium on Scala. SCALA 2015, pp. 1–12.
ACM, New York (2015). https://doi.org/10.1145/2774975.2774976

24. Prokopec, A.: Pluggable scheduling for the reactor programming model. In: Pro-
ceedings of the 6th International Workshop on Programming Based on Actors,
Agents, and Decentralized Control. AGERE 2016, pp. 41–50. ACM, New York
(2016). https://doi.org/10.1145/3001886.3001891

25. Prokopec, A.: Accelerating by idling: how speculative delays improve performance
of message-oriented systems. In: Rivera, F.F., Pena, T.F., Cabaleiro, J.C. (eds.)
Euro-Par 2017. LNCS, vol. 10417, pp. 177–191. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-64203-1 13

26. Prokopec, A.: Analysis of Concurrent Lock-Free Hash Tries with Constant-Time
Operations. ArXiv e-prints, December 2017

27. Prokopec, A.: Encoding the building blocks of communication. In: Proceedings of
the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software. Onward! 2017, pp. 104–118. ACM,
New York (2017). https://doi.org/10.1145/3133850.3133865

28. Prokopec, A.: Cache-tries: concurrent lock-free hash tries with constant-time oper-
ations. In: Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. PPoPP 2018. ACM, New York (2018). https://
doi.org/10.1145/3178487.3178498

29. Prokopec, A.: Efficient lock-free removing and compaction for the cache-trie data
structure (2018). https://doi.org/10.6084/m9.figshare.6369134

30. Prokopec, A.: Reactors.io website (2018). http://reactors.io
31. Prokopec, A., Bagwell, P., Odersky, M.: Cache-aware lock-free concurrent hash

tries. Technical report (2011)
32. Prokopec, A., Bagwell, P., Odersky, M.: Lock-free resizeable concurrent tries. In:

Rajopadhye, S., Mills Strout, M. (eds.) LCPC 2011. LNCS, vol. 7146, pp. 156–170.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36036-7 11

33. Prokopec, A., Bagwell, P., Rompf, T., Odersky, M.: A generic parallel collection
framework. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011. LNCS,
vol. 6853, pp. 136–147. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23397-5 14. http://dl.acm.org/citation.cfm?id=2033408.2033425

34. Prokopec, A., Bronson, N.G., Bagwell, P., Odersky, M.: Concurrent tries with effi-
cient non-blocking snapshots. In: Proceedings of the 17th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming. PPoPP 2012, pp.
151–160. ACM, New York (2012). https://doi.org/10.1145/2145816.2145836

35. Prokopec, A., Haller, P., Odersky, M.: Containers and aggregates, mutators and
isolates for reactive programming. In: Proceedings of the Fifth Annual Scala Work-
shop. SCALA 2014, pp. 51–61. ACM, New York (2014). https://doi.org/10.1145/
2637647.2637656

36. Prokopec, A., Leopoldseder, D., Duboscq, G., Würthinger, T.: Making collection
operations optimal with aggressive JIT compilation. In: Proceedings of the 8th
ACM SIGPLAN International Symposium on Scala. SCALA 2017, pp. 29–40.
ACM, New York (2017). https://doi.org/10.1145/3136000.3136002

37. Prokopec, A., Miller, H., Haller, P., Schlatter, T., Odersky, M.: FlowPools: a lock-
free deterministic concurrent dataflow abstraction, proofs. Technical report (2012)

38. Prokopec, A., Miller, H., Schlatter, T., Haller, P., Odersky, M.: Flowpools: a lock-
free deterministic concurrent dataflow abstraction. In: LCPC, pp. 158–173 (2012)

https://doi.org/10.1145/2774975.2774976
https://doi.org/10.1145/3001886.3001891
https://doi.org/10.1007/978-3-319-64203-1_13
https://doi.org/10.1007/978-3-319-64203-1_13
https://doi.org/10.1145/3133850.3133865
https://doi.org/10.1145/3178487.3178498
https://doi.org/10.1145/3178487.3178498
https://doi.org/10.6084/m9.figshare.6369134
http://reactors.io
https://doi.org/10.1007/978-3-642-36036-7_11
https://doi.org/10.1007/978-3-642-23397-5_14
https://doi.org/10.1007/978-3-642-23397-5_14
http://dl.acm.org/citation.cfm?id=2033408.2033425
https://doi.org/10.1145/2145816.2145836
https://doi.org/10.1145/2637647.2637656
https://doi.org/10.1145/2637647.2637656
https://doi.org/10.1145/3136000.3136002

Efficient Lock-Free Removing and Compaction 589

39. Prokopec, A., Odersky, M.: Near optimal work-stealing tree scheduler for highly
irregular data-parallel workloads. In: Cascaval, C., Montesinos, P. (eds.) Languages
and Compilers for Parallel Computing, pp. 55–86. Springer International Publish-
ing, Cham (2014). https://doi.org/10.1007/978-3-319-09967-5 4

40. Prokopec, A., Odersky, M.: Isolates, channels, and event streams for composable
distributed programming. In: 2015 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (Onward!), pp.
171–182. Onward! 2015. ACM, New York (2015). https://doi.org/10.1145/2814228.
2814245

41. Prokopec, A., Odersky, M.: Conc-trees for functional and parallel programming. In:
Shen, X., Mueller, F., Tuck, J. (eds.) LCPC 2015. LNCS, vol. 9519, pp. 254–268.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29778-1 16

42. Prokopec, A., Petrashko, D., Odersky, M.: On lock-free work-stealing iterators for
parallel data structures, p. 10 (2014)

43. Pugh, W.: Concurrent maintenance of skip lists. Technical report, College Park,
MD, USA (1990)

44. Schlatter, T., Prokopec, A., Miller, H., Haller, P., Odersky, M.: Multi-lane flow-
pools: a detailed look, p. 13 (2012)

45. Shafiei, N.: Non-blocking patricia tries with replace operations. In: 2013 IEEE
33rd International Conference on Distributed Computing Systems, pp. 216–225,
July 2013

46. Steindorfer, M.J., Vinju, J.J.: Optimizing hash-array mapped tries for fast and
lean immutable JVM collections. In: SIGPLAN Not, vol. 50, no. 10, pp. 783–800,
October 2015. https://doi.org/10.1145/2858965.2814312

47. Steindorfer, M.J., Vinju, J.J.: Towards a software product line of trie-based col-
lections. In: Proceedings of the 2016 ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences. GPCE 2016, pp. 168–172.
ACM, New York (2016). https://doi.org/10.1145/2993236.2993251

48. Sujeeth, A.K., et al.: Composition and reuse with compiled domain-specific lan-
guages. In: Castagna, G. (ed.) ECOOP 2013. LNCS, vol. 7920, pp. 52–78. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39038-8 3

https://doi.org/10.1007/978-3-319-09967-5_4
https://doi.org/10.1145/2814228.2814245
https://doi.org/10.1145/2814228.2814245
https://doi.org/10.1007/978-3-319-29778-1_16
https://doi.org/10.1145/2858965.2814312
https://doi.org/10.1145/2993236.2993251
https://doi.org/10.1007/978-3-642-39038-8_3

NUMA Optimizations for Algorithmic
Skeletons

Paul Metzger1(B), Murray Cole1, and Christian Fensch2

1 School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK
{paul.metzger,m.cole}@inf.ed.ac.uk

2 MACS, Heriot-Watt University, Edinburgh EH14 4AS, UK
c.fensch@hw.ac.uk

Abstract. To address NUMA performance anomalies, programmers
often resort to application specific optimizations that are not transferable
to other programs, or to generic optimizations that do not perform well
in all cases. Skeleton based programming models allow NUMA optimiza-
tions to be abstracted on a pattern-by-pattern basis, freeing program-
mers from this complexity. As a case study, we investigate computations
that can be implemented with stencil skeletons. We present an analysis of
the behavior of a range of simple and complex stencil programs from the
NAS and Rodinia benchmark suites, under state-of-the-art NUMA aware
page placement (PP) schemes. We show that even though an application
(or skeleton) may have implemented the correct, intuitive scheduling of
data and work to threads, the resulting performance can be disrupted
by an inappropriate PP scheme. In contrast, we show that a NUMA PP-
aware stencil implementation scheme can achieve speed ups of up to 2x
over a similar scheme which uses the Linux default PP, and that this
works across a set of complex stencil applications. Furthermore, we show
that a supposed PP performance optimization in the Linux kernel never
improves and in some cases degrades stencil performance by up to 0.27x
and should therefore be deactivated by stencil skeleton implementations.
Finally, we show that further speed ups of up to 1.1x can be achieved by
addressing a work imbalance issue caused by poor conventional under-
standing of NUMA PP.

1 Introduction

Modern systems have complex and non-uniform memory organizations to meet
the high bandwidth requirements of increasing core counts. For example, multi-
socket systems feature multiple memory controllers that are spread over sockets
(see Fig. 1). CPUs can access memory that is attached to a remote memory
controller via interconnects. The downside of this is that memory accesses are
non-uniform in terms of latency and bandwidth. Thus, great care must be taken
when choosing the right location for a memory page at a given time during
program execution. These complexities in memory systems of NUMA machines
cause hard to predict performance anomalies [1,2].

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 590–602, 2018.
https://doi.org/10.1007/978-3-319-96983-1_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_42&domain=pdf

NUMA Optimizations for Algorithmic Skeletons 591

Fig. 1. Illustration of a NUMA system with two NUMA nodes.

NUMA aware program optimizations that address this problem are at the
extremes of a spectrum. At one end are generic NUMA page placement (PP)
schemes, such as First-Touch, Interleaved, and the Linux automatic NUMA Bal-
ancing feature which are known to exhibit pathological behavior in hard to pre-
dict situations [3,4]. At the other end of the spectrum are application specific
memory optimizations such as shared variable privatization. However, transfer-
ring these to other applications is a labor-intensive process. Skeleton-based pro-
gramming systems [5–7] have the potential to support a compromise position:
NUMA aware optimizations that are transparently applicable across the class
of computations captured by each skeleton. In support of this hypothesis, we
present a case study for stencil computations. NUMA aware PP optimizations
for other skeletons will be investigated in the future. We conduct an analysis of
the behavior of stencil applications from the NAS-PB and Rodinia benchmark
suites, comparing their performance under state-of-the-art NUMA PP schemes
with performance under a stencil-skeleton-aware NUMA PP scheme, and its
extension with a novel work distribution heuristic. We show that

– the stencil-skeleton-aware NUMA PP scheme has good applicability across
a wide range of stencil computations, well beyond the simple Jacobi-style
stencils which motivate it, offering speed-ups of up to 2x over similar state-
of-the-art schemes.

– automatic NUMA Balancing, a generic optimization in the Linux kernel, is
actively disruptive of stencil performance, diminishing performance by up to
0.27x, and so should be disabled by stencil skeletons.

– our novel work distribution approach further speeds up applications by 1.1x.

The remainder of this paper is structured as follows: Section 2 provides a
motivating example that demonstrates the possible performance benefits of sten-
cil aware PP. Section 3 introduces stencil computations and standard NUMA PP
schemes. Section 4 motivates and describes our stencil aware PP and work dis-
tribution scheme, and provides an overview of the experimental program which
informs and evaluates it. Section 5 describes the experimental set up and Sect. 6
presents experimental results. Finally, Sects. 7 and 8 discuss related work and
conclusions.

2 Motivating Example

As has previously been demonstrated for individual applications [8–11], this
section provides an example which confirms that performance improvements

592 P. Metzger et al.

Fig. 2. (a) Execution times of the NAS-PB ft benchmark with different page placement
(PP) schemes. The letters s, a, b, c indicate the standard problem set sizes in ascending
order. (b) Access latency histogram of ft with the largest input data set.

Fig. 3. Jacobi stencils (a + b), a Gauss-Seidel stencil (c), a stencil with a dynamic
neighborhood (d), a butterfly divide-and-conquer stencil (e) and the multigrid method
(f). (Color figure online)

over state of the art schemes can be achieved by adding application awareness
to the page placement (PP) process. We use the NAS-PB Fourier Transforma-
tion (ft) benchmark as a case-study. Figure 2a shows execution times of ft with
different PP schemes. Stencil Aware PP performs significantly better than the
other schemes in all cases and the maximum speed up is 57%. We sampled the
number of memory accesses that fall into set latency ranges to better understand
the performance benefits (see Fig. 2b). The results indicate that Stencil Aware
and Interleaved PP take pressure from interconnects and memory controllers
compared to First-Touch PP as they use all interconnects and memory con-
trollers evenly (see Sect. 3 for explanations of the state of the art PP schemes).
Stencil Aware PP also minimizes the number of high latency remote memory
accesses and, therefore, performs better than Interleaved PP.

3 Background

3.1 Stencil Computations

Stencil computations update elements in a buffer based on the values in the ele-
ments’ neighborhoods. The neighborhoods are regular and predictable. Figure 3a
illustrates this for a single element (grey) and its neigborhood (green). Updates
are performed in a single sweep or multiple iterations. The remainder of this
subsection discusses different types of stencil computations.

NUMA Optimizations for Algorithmic Skeletons 593

Fig. 4. First-Touch (a) and Interleaved
(b) page placement.

Fig. 5. Illustration of parallelization, col-
location and remote memory access (red)
when stencil aware PP is used. Elements
above the red line are placed on NUMA
node M-1 and elements below are placed
on node M. (Color figure online)

Jacobi stencil computations are conceptually the simplest stencils as their
neighbourhood and input grid have a fixed size and shape. Shape and dimension-
ality of the neighborhood can vary across Jacobi stencils (see, for example, Fig. 3a
and b). Gauss-Seidel stencils use values from the current and the previous itera-
tion. In Fig. 3c elements at the top and the left-hand side are from the current and
the elements at the bottom and right-hand side are from the previous iteration.
Some stencils have a variable neighborhood that changes depending on the input
data. The stencil in Fig. 3d uses either the green or the green and the dark red ele-
ments as input. The red black method arranges the elements in the input buffer
like a checker board. Black elements are updated based on values of neighboring
red elements and vice versa. The Butterfly divide-and-conquer method works in
phases and changes the size of the stencil in each phase. Figure 3e illustrates this
based on the computation of one element. Arrows indicate which elements of the
input buffer are read in each phase. The multigrid method changes the resolution
of the in- and output data dynamically (see Fig. 3f).

3.2 Page Placement Schemes

This section presents state of the art PP schemes. First-Touch Page Placement
allocates pages on the same NUMA node as cores that first access them and is the
default scheme of Linux. Figure 4a illustrates this PP policy. All pages are placed
on node zero if the thread that runs on this node accesses them first. First-Touch
PP optimises for data locality if pages are mostly accessed by threads that access
them first. Interleaved Page Placement places pages on NUMA nodes in a round
robin fashion and can be used as an alternative to First-Touch PP (see Fig. 4b).
This scheme distributes memory accesses equally across memory controllers and
interconnects but fails to optimise for data locality. Automatic NUMA Balancing
migrates pages and threads across NUMA nodes, informed by run-time memory
access statistics, to increase data locality. This is known to cause page thrashing
and an extension called Pseudo-Interleaving has been proposed to address this
[3]. Automatic NUMA Balancing is activated by default on Linux systems (i.e.
in addition to First-Touch).

594 P. Metzger et al.

4 Stencil Aware Page Placement and Work Distribution
for NUMA Systems

This section describes our stencil aware page placement (PP) and work distribu-
tion scheme and provides an overview of the experimental program which informs
and evaluates it. We first describe a basic stencil aware NUMA PP scheme, as
motivated in Sect. 2 and explain how this may be vulnerable to disruption by
LinuxNUMA, a phenomenon which we will evaluate in Sect. 6. We then explain
why the basic stencil aware PP scheme may experience performance degrada-
tion due to uneven distribution of remote accesses, and propose a novel work
distribution technique which addresses this. The new PP and work distribution
scheme are evaluated in Sect. 6.

A Basic Stencil Aware Page Placement Scheme. Motivated by previously
reported ad-hoc PP experiments, this scheme places pages on NUMA nodes
that access them most frequently to improve data locality prior to a compu-
tation. Figure 5 illustrates this with a simple 2D Jacobi stencil. Stencil aware
PP collocates thread N with the Nth memory block on NUMA node M, and
so on. Note that in doing so we are going beyond conventional stencil-skeleton
wisdom of simply associating threads with specific data partitions (and hence
work), in order to ensure that this allocation is also respected by the underlying
PP scheme. We also investigate whether this can be achieved for more complex
types of stencil computations than simple Jacobi stencils (see Sect. 3.1).

Performance Degradation Through Automatic NUMA Balancing. NUMA Bal-
ancing is known to cause page thrashing if multiple NUMA nodes access the
same pages in an alternating fashion [4]. NUMA Balancing then migrates pages
back and forth between these nodes. The stencil access pattern causes some
pages to be shared between two NUMA nodes in each iteration of the sten-
cil computation. In our experiments we investigate whether this effect degrades
performance predictably for stencil computations.

Bad Work Distribution and Our NUMA Aware Scheme. The intuitive work dis-
tribution scheme for stencils allocates an equal share of grid points to each
thread. However, this fails to consider the potential for unequal NUMA mem-
ory accesses to impact upon the time it takes to complete the corresponding
work. Figure 5 illustrates this for one element with a simple 2D Jacobi stencil.
Meanwhile, some threads are not penalized by remote memory accesses and so
complete their iteration sooner. These threads must wait on a barrier after each
iteration, potentially creating a significant imbalance in waiting time and signi-
fying a wasted resource. Our experiments investigate the extent to which this
phenomenon occurs.

We propose and evaluate a novel work distribution scheme which aims to
reduce the idle waiting time of threads that do not access remote memory.
This work distribution reflects the different access latencies in NUMA systems.
Threads that are penalized by high latency remote memory accesses are assigned
smaller chunks of input data than threads that access only local memory. Our
experiments evaluate the impact of this new scheme.

NUMA Optimizations for Algorithmic Skeletons 595

5 Experimental Setup

To reduce the complexity of our experiments, we did not use a skeleton library
but implemented the Stencil Aware PP and work distribution schemes, which
could be implemented by a skeleton library, by hand. To enact the basic PP
policy on top of the default OS First-Touch policy we introduce OpenMP code
that creates and fills the stencil buffers with initial values. This parallel code
imitates the memory access patterns of subsequent stencil computations, and
so places pages on NUMA nodes that subsequently access them. In the srad
benchmarks, buffers for precalculated indices are interleaved when Stencil Aware
PP is used as the entire buffers are accessed by all threads. Stencil Aware PP
can only work if the OS cannot migrate threads to another NUMA node, since
otherwise, pages that these migrated threads access would then be on a remote
NUMA node. Therefore, we use thread pinning to prevent this. Finally, the
stencil iterations are implemented with an OpenMP parallel for region, using
the static scheduling.

Table 1 lists details of the test systems. Machine A’s kernel uses Pseudo-
Interleaving (see Sect. 3.2) [3]. Benchmarks are taken from the Rodinia [12] and
NPB-PB [13] suites (see Table 2) and are compiled with ICC 17.0.4 and the -O2
flag. The standard inputs of the benchmark applications are used except for the
largest hotspot input due to very long execution time, and the iteration count
that the Rodinia benchmarks perform are made higher to reduce noise. Five
samples are taken in the access latency experiment in Sect. 2 and at least ten
samples are taken in each of the other experiments. Our timing experiments are
reported with 95% confidence intervals. Our speed ups are reported as the ratio
of the means of the relevant measurements. Spinning time and access latency
related experiments were conducted with Intel V-Tune XE 2017.

Table 1. Hardware details of the test machines.

Machine name Machine A Machine B

CPU Model Xeon L7555 Xeon E5-2697 v2

Sockets 4 2

Cores/Socket 8 12

LLC/Socket 18MB 30MB

Mem. Contr./Socket 1 1

QPI Band./Link 5.86GT/s 8GT/s

Hyperthr. Deactivated Deactivated

Prefetchers Active Active

Linux Kernel 4.4.36 3.10.0

596 P. Metzger et al.

Table 2. Benchmark application details. The letter s to c and numbers 64 to 8192
indicate standard input sizes.

App. Stencil type Source Memory consumption

Srad v1 Jacobi Rod 16MB

Srad v2 Jacobi Rod 122MB

Hotspot Jacobi Rod 64: 10MB; 128: 12MB; 256: 11MB; 512: 15MB; 1024:
19MB; 2048: 54MB; 4096: 202MB; 8192: 800MB

MG Multigrid NPB S: 10MB; A: 619MB; B: 620MB; C: 4,736MB

FT Butterfly D&C NPB S: 21MB; A: 450MB; B: 1,760MB; C: 6,897MB

6 Evaluation

6.1 Stencil Aware Page Placement

To assess the performance of Stencil Aware PP, we compare it in Fig. 6 against
two state of the art PP schemes available on Linux: First-Touch and Interleaved
PP. In most cases, Stencil Aware PP either matches or improves performance
over state of the art PP schemes. Large speed ups over First-Touch PP without
pinning can be observed for very small problem sizes i.e. mg with problem size
s and hotspot with problem sizes 64 to 512. A maximum speed up of 12x has
been achieved with the hotspot benchmark on machine A.

Results with small problem sizes and the standard PP schemes show that
pinning significantly benefits performance. Stencil Aware PP still improves per-
formance by up to 2x over First-Touch PP with pinning, and pinning has a very
small, and in some cases no influence on performance for larger problem sizes.
In only a small number of cases do the standard schemes with pinning perform
slightly better. For example, the standard PP schemes perform better than Sten-
cil Aware PP when we measure the total execution time with hotspot 64, 128
and 256 on machine A. However, Stencil Aware PP performs better in these
cases when we measure the execution time spent in the stencil iterations. This
indicates that Stencil Aware PP still improves the performance of the stencil
computations but that the overhead of the page placement outweighs the per-
formance benefits of Stencil Aware PP in these few instances. In summary, our
results show that Stencil Aware PP is a viable alternative to the current built-in
schemes of Linux and should be used instead.

6.2 Performance Degradation Through NUMA Balancing

To assess the impact of automatic NUMA Balancing (from now referred to as
“LinuxNUMA”) we compare Stencil Aware PP without LinuxNUMA against all
PP schemes with LinuxNUMA in Fig. 7. Most of the applications and schemes
perform worse with LinuxNUMA than Stencil Aware PP without LinuxNUMA.
In the few cases where LinuxNUMA is beneficial the differences are small (max:

NUMA Optimizations for Algorithmic Skeletons 597

Fig. 6. Speed ups over standard implementations without pinning and the standard
Linux First-Touch PP scheme with the total execution time and the execution time
spent in the stencil iterations.

0.09x) and present on only one machine, or the PP schemes already perform
slightly better than our scheme even without LinuxNUMA (see hotspot with
input size 4096 and 8192 in Fig. 6.1) and continue to do so with LinuxNUMA.
It is important to note that LinuxNUMA degrades the performance of Stencil
Aware PP in all cases, by up to 0.27x with mg and input c on machine A. Thus,
in addition to using Stencil Aware PP, LinuxNUMA should be deactivated for
stencil computations (for example, in stencil skeleton libraries).

598 P. Metzger et al.

Fig. 7. Speed up with LinuxNUMA over our Stencil Aware PP without LinuxNUMA.
Most speed ups are below 1.0 i.e. are slow downs indicating the superiority of our
scheme.

6.3 Bad Work Distribution and Stencil Aware Work Distribution

The uneven idle time effect discussed in Sect. 4 is present to varying degrees
across our benchmark suite and machines. The expected variation in idle times
occurs with the srad v2 benchmark on Machine A and B as shown in Fig. 8.
Adjacent cores in Fig. 8 share data and cores that share data with a remote
NUMA node, like core 7 and 8 on machine A have the expected, consistently
lower spinning times which indicate that they are slowed down by remote mem-
ory accesses as discussed in Sect. 4. The expected variations are also visible for
the NAS-PB mg benchmark on Machine A with input size a and b. However,
the idle time differences are very small and statistically insignificant.

In contrast, the effect is not visible in other cases for the following reasons.
For the NAS-PB ft benchmark implementation the stencil has a 2D neighbor-
hood and the input buffer is 3D. The computation is parallelized over the third
dimension of the input buffer and, therefore, the cores do not share data, and
so the idle time imbalance is not present. Meanwhile, the data set of srad v1 fits

NUMA Optimizations for Algorithmic Skeletons 599

Fig. 8. Uneven idle times with srad v2 on Machine A (a + b) and B (c + d).

into the combined LLCs which causes the latency differences between local and
remote memory accesses to the LLCs to be very small and so the variations of
the idle times become too small to report.

6.4 NUMA and Stencil Aware Work Distribution

We compare our work distribution scheme with a range of alternatives, all of
which are extensions of our basic pinned, Stencil Aware PP scheme as intro-
duced in Sect. 4. These are created by selecting different OpenMP schedules
for the stencil iterations. The best work distribution for our scheme was deter-
mined experimentally. Figure 9 shows execution times with OpenMP’s built-in
schedules and with our stencil aware work distribution. “Static” corresponds to
our basic stencil aware PP scheme from Sect. 4. Our new stencil aware work
distribution scheme achieves improved performance of up to 1.1x for srad v2.
In contrast, none of the standard OpenMP schedules can mitigate the negative
effects of the uneven idle time distribution. This shows that our scheme addresses
the work imbalance caused by variable NUMA memory latencies. To make this
applicable within a generic stencil scheme it would be important to predict the
stencil instances for which an improvement is achievable.

600 P. Metzger et al.

Fig. 9. Execution times of srad v2 with OpenMP schedules and with our NUMA and
stencil aware work distribution (a). A direct comparison of the best OpenMP schedule
with the stencil aware work distribution (b). Static, guided, dynamic and auto are
OpenMP schedules. “Static” corresponds to our basic stencil aware PP scheme from
Sect. 4. The stencil aware work distribution reflects the uneven idle times discussed in
Sect. 6.3.

7 Related Work

We first review state of the art page placement schemes, then NUMA stencil opti-
mizations and, lastly, work on NUMA aware schedulers and work distribution.

Carrefour reduces congestion on interconnects and memory controllers via
page collocation, replication and interleaving [14]. It has to monitor memory
accesses to inform the usage of these techniques and cannot, like our approach,
leverage information about the structure of a computation that is available prior
to execution.

Mechanisms for automatic thread and page migration have been developed
for the Linux kernel [3,15–17]. These mechanisms monitor memory accesses and,
therefore, cannot act until sufficient data is collected. This monitoring based app-
roach can result in pathological behavior such as page [18,19] and task bounc-
ing [3,20]. Our scheme can find an optimal task and page placements before a
computation starts.

Stencil aware memory management for NUMA systems has been mentioned
in side notes [21–24]. To the best of our knowledge we are the first to report an
in-depth analysis of stencil aware memory management for NUMA systems with
a broad range of stencil types and problem sizes.

Pilla et al. present a NUMA-Aware scheduler [25]. The scheduler considers
the communication between concurrently executing threads and collocates them
on NUMA nodes to minimize communication across CPU boundaries. This app-
roach suffers from similar problems as other monitoring based approaches (see
above). Chen and Olivier et al. present work stealing for NUMA systems [26,27].
Their approach reschedules work at run time in case work was not distributed
equally. Our approach distributes work equally before a computation starts by
taking the memory system of the target system and stencil specific memory
access patterns into account.

NUMA Optimizations for Algorithmic Skeletons 601

8 Conclusion and Future Work

We argue that NUMA optimizations should be embedded in skeleton implemen-
tations by utilizing implicit knowledge encoded in them. We present a case study
with stencil computations. We evaluate a stencil aware page placement (PP)
scheme that exploits the regular and predictable stencil memory access patterns.
We then investigate two further optimizations that build on Stencil Aware PP.
Firstly, we show that automatic NUMA Balancing, an advanced optimization
technique in the Linux kernel, degrades the performance of stencil computations
when Stencil Aware PP is used. Secondly, we investigate a novel stencil and
NUMA aware work distribution scheme. Stencil Aware PP improves the perfor-
mance of applications by up to 12x over standard PP schemes if they are not
combined with pinning and 2x if they are combined with pinning. Furthermore,
stencil aware PP never degrades performance. NUMA Balancing degrades the
performance of stencil applications by up to 0.27x if stencil aware PP is used
and should be deactivated. Finally, we show that the performance of some sten-
cil computations can be further improved by up to 1.1x with our stencil aware
work distribution. Future work includes a heuristic that predicts whether the
new stencil aware work distribution scheme will be beneficial. We plan to inves-
tigate a model for our NUMA and stencil aware work distribution that is based
on parameters of a given stencil computation and target NUMA architecture.
Furthermore, we will consider the fact that, in multiprogrammed scenarios, the
proposed deactivation of LinuxNUMA has an impact on other applications that
run on the system. Finally, we will investigate NUMA optimizations for further
skeletons.

Acknowledgments. Thanks to Tom Deakin and Simon McIntosh-Smith from
the University of Bristol for giving us access to their machines. Grants EPSRC
EP/L01503X/1 for the University of Edinburgh School of Informatics Centre for Doc-
toral Training in Pervasive Parallelism as well as EPSRC EP/P010946/1 and EPSRC
EP/P022642/1 supported this work.

References

1. Talbot, S.A.M., Kelly, P.H.J.: High performance computing systems and applica-
tions. In: Schaeffer, J. (ed.) Stable Performance for CC-NUMA Using First-Touch
Page Placement and Reactive Proxies. SECS, vol. 478, pp. 251–266. Springer,
Boston (1998). https://doi.org/10.1007/978-1-4615-5611-4 26

2. McCurdy, C., Vetter, J.: Memphis: finding and fixing NUMA-related performance
problems on multi-core platforms. In: Proceedings of ISPASS (2010)

3. van Riel, R., Chegu, V.: Automatic NUMA balancing. In: Red Hat Summit (2014)
4. Gaud, F., et al.: Challenges of memory management on modern NUMA system.

Queue 13(8), 70 (2015)
5. Cole, M.: Bringing skeletons out of the closet: a pragmatic manifesto for skeletal

parallel programming. Parallel Comput. 30(3), 389–406 (2004)
6. González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks: high-

level structured parallel programming enablers. Softw. Pract. Exp. 40(12), 1135–
1160 (2010)

https://doi.org/10.1007/978-1-4615-5611-4_26

602 P. Metzger et al.

7. Enmyren, J., Kessler, C.W.: SkePU: a multi-backend skeleton programming library
for multi-GPU systems. In: Proceedings of HLPP (2010)

8. Ribeiro, C.P., Mehaut, J.F., Carissimi, A., Castro, M., Fernandes, L.G.: Memory
affinity for hierarchical shared memory multiprocessors. In: Proceedings of ICS
(2009)

9. Yang, R., Antony, J., Rendell, A., Robson, D., Strazdins, P.: Profiling directed
NUMA optimization on Linux systems: a case study of the Gaussian computational
chemistry code. In: Proceedings of IPDPS (2011)

10. Bircsak, J., et al.: Extending OpenMP for NUMA machines. In: Proceedings of
ICS (2000)

11. Broquedis, F., Furmento, N., Goglin, B., Wacrenier, P.A., Namyst, R.: Forest-
GOMP: an efficient OpenMP environment for NUMA architectures. Int. J. Parallel
Program. 38(5), 418–439 (2010)

12. Che, S., et al.: Rodinia: a benchmark suite for heterogeneous computing. In: Pro-
ceedings of IISWC (2009)

13. Baily, D., et al.: The NAS parallel benchmarks. Technical report RNR-94-007,
NASA Ames Research Center (1994)

14. Dashti, M., et al.: Traffic management: a holistic approach to memory placement
on NUMA systems. In: ACM SIGPLAN Notices, vol. 48. ACM (2013)

15. Corbet, J.: AutoNUMA: the other approach to NUMA scheduling, March 2012.
https://lwn.net/Articles/488709/

16. Corbet, J.: Toward better NUMA scheduling, March 2012. https://lwn.net/
Articles/486858/

17. Gorman, M.: Foundation for automatic NUMA balancing, November 2012. https://
lwn.net/Articles/523065/

18. Bolosky, W., Fitzgerald, R., Scott, M.: Simple but effective techniques for NUMA
memory management. ACM SIGOPS Operat. Syst. Rev. 23(5), 19–31 (1989)

19. Gaud, F., Lepers, B., Decouchant, J., Fuston, J., Fedorova, A., Quéma, V.: Large
pages may be harmful on NUMA systems. In: Proceedings of USENIX ATC (2014)

20. Gorman, M.: Automatic NUMA balancing V4, November 2012. https://lwn.net/
Articles/526097/

21. Christen, M., Schenk, O., Burkhart, H.: PATUS: a code generation and autotun-
ing framework for parallel iterative stencil computations on modern microarchitec-
tures. In: Proceedings of IPDPS (2011)

22. Kamil, S., Chan, C., Oliker, L., Shalf, J., Williams, S.: An auto-tuning framework
for parallel multicore stencil computations. In: Proceedings of IPDPS (2010)

23. Shaheen, M., Strzodka, R.: NUMA aware iterative stencil computations on many-
core systems. In: Proceedings of IPDPS (2012)

24. Lin, P.-H., Yi, Q., Quinlan, D., Liao, C., Yan, Y.: Automatically optimizing stencil
computations on many-core NUMA architectures. In: Ding, C., Criswell, J., Wu, P.
(eds.) LCPC 2016. LNCS, vol. 10136, pp. 137–152. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-52709-3 12

25. Pilla, L.L., et al.: Improving parallel system performance with a NUMA-aware
load balancer. Technical report TR-JLPC-11-02, INRIA-Illinois Joint Laboratory
on Petascale Computing (2011)

26. Chen, Q., Guo, M., Guan, H.: LAWS: locality-aware work-stealing for multi-socket
multi-core architectures. In: Proceedings of the International Conference on Super-
computing (2014)

27. Olivier, S.L., Porterfield, A.K., Wheeler, K.B., Spiegel, M., Prins, J.F.: OpenMP
task scheduling strategies for multicore NUMA systems. IJHPCA 26(2), 110–124
(2012)

https://lwn.net/Articles/488709/
https://lwn.net/Articles/486858/
https://lwn.net/Articles/486858/
https://lwn.net/Articles/523065/
https://lwn.net/Articles/523065/
https://lwn.net/Articles/526097/
https://lwn.net/Articles/526097/
https://doi.org/10.1007/978-3-319-52709-3_12
https://doi.org/10.1007/978-3-319-52709-3_12

Improving System Turnaround Time
with Intel CAT by Identifying LLC

Critical Applications

Lucia Pons(B), Vicent Selfa, Julio Sahuquillo, Salvador Petit, and Julio Pons

Department of Computer Engineering, Universitat Politècnica de València,
Valencia, Spain

lupones@inf.upv.es

Abstract. Resource sharing is a major concern in current multicore
processors. Among the shared system resources, the Last Level Cache
(LLC) is one of the most critical, since destructive interference between
applications accessing it implies more off-chip accesses to main mem-
ory, which incur long latencies that can severely impact the overall sys-
tem performance. To help alleviate this issue, current processors imple-
ment huge LLCs, but even so, inter-application interference can harm
the performance of a subset of the running applications when executing
multiprogram workloads. For this reason, recent Intel processors feature
Cache Allocation Technologies (CAT) to partition the cache and assign
subsets of cache ways to groups of applications. This paper proposes the
Critical-Aware (CA) LLC partitioning approach, which leverages CAT
and improves the performance of multiprogram workloads, by identifying
and protecting the applications whose performance is more damaged by
LLC sharing. Experimental results show that CA improves turnaround
time on average by 15%, and up to 40% compared to a baseline system
without partitioning.

1 Introduction

Recent processors implement huge Last Level Caches (LLC) and prefetching
mechanisms to hide long main memory access latencies. LLC caches are typically
shared among all applications running in the cores. The LLC is sized according
to the processor core count, and typically takes a few MBs (e.g. 1 to 4) per core,
resulting in an overall cache capacity in the order of tens of MBs. This capacity
is even higher in processors using 3D stacking technologies [1].

Cache sharing yields important problems to the system from a performance
perspective. These problems appear due to inter-application interferences at the
shared cache, making the system become unpredictable. As a consequence, issues
like system throughput [2–4], and fairness [5–8] have been addressed in previous
research.

Most research work on cache sharing during the last decade has been devel-
oped using simulators because hardware in commercial processors did not sup-
port it. Fortunately, some processors manufacturers like Intel and ARM have
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 603–615, 2018.
https://doi.org/10.1007/978-3-319-96983-1_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_43&domain=pdf

604 L. Pons et al.

Fig. 1. Intel CAT example with PIDs associated to two CLOSes.

recently deployed technologies that allow distributing LLC cache ways among
co-running applications. For instance, Intel has deployed Cache Allocation Tech-
nology (CAT) which is being delivered in some recent processors.

These technologies provide a hardware-software interface, which allows the
software to take decisions about the cache distribution. This means that a cache
sharing approach can be more elaborated than if it was entirely implemented in
hardware.

The main focus of this paper is to reduce the turnaround time of a set of
applications running concurrently (mix). This time is defined as the elapsed time
between the mix’s execution start and the instant the last application of the mix
finishes. Turnaround time is especially important in batch based systems, since
improving this performance metric allows the system to transit to a low power
state and helps energy savings. Eyerman and Eeckhout [9] claim that program
turnaround time in general-purpose systems and interactive environments should
be considered one of the primary performance criteria.

In this work we characterize the LLC behavior of applications in isolated
execution, and their dynamic behavior when they are executed with other co-
runners. This study revealed that some applications, namely critical, should be
protected (i.e. exposed to less inter-application interference) by assigning them
exclusive cache ways. On the contrary, other applications, namely non-critical,
present fewer space requirements, hence suffering less from inter-application
interference.

Based on this characterization study we propose the Critical-Aware (CA)
algorithm, a simple and low-overhead LLC partitioning approach, which is the
main contribution of this work. The fact that it is simple and has a minimum cost,
is key to adapt to different execution phases, as fast and frequent decisions are
needed to be taken. CA approach, by design, divides the cache in two partitions
(one for critical and one for non-critical applications) and dynamically assigns
or removes ways to each group, allowing some degree of way sharing between
them. Experimental results show that CA improves turnaround time by up to
40% and system unfairness over 55%, compared to execution under a baseline
system without partitioning.

Improving System Turnaround Time with Intel CAT 605

0 2 4 6 8 10 12 14 16 18 20
Number of ways

0

1

2

3

IP
C

omnetpp xalancbmk

0

3

6

9

12

M
PK

I L
LC

(a) Critical applications

0 2 4 6 8 10 12 14 16 18 20
Number of ways

0

1

2

3

IP
C

bwaves
calculix

dealII
gromacs

leslie3d
sjeng

0

3

6

9

12

M
PK

I L
LC

(b) Non-critical applications

Fig. 2. Example of behavior of critical and non-critical applications in a workload.
Legend: marked lines (with circles) represent IPC and solid lines MPKILLC .

2 Intel Cache Allocation Technology

Intel Cache Allocation Technology allows assigning a given amount of LLC cache
ways to a set of applications. This technology is available in limited models of
processors of the Xeon E5 2600 v3 family and in all processors of the Xeon E5
v4 family. CAT allocates PIDs (Processors Identifiers) or logical cores to Classes
Of Service (CLOSes). In the most recent processors, the maximum number of
CLOSes is 16. For each CLOS, the user has to specify (i) the subset of ways that
can be written, and (ii) which applications or logical cores belong to the CLOS.
The cache ways that can be written by the applications belonging to a CLOS are
defined with a capacity bitmask (CBM). Cache ways are not necessarily private
to a CLOS, as they can be shared with other CLOSes by overlapping the CBMs.

Figure 1 shows an example for a possible CAT configuration using 2 CLOSes
and a cache with 20 ways. In this example, we assign PIDs to the CLOSes instead
of logical cores, a feature available starting with Linux 4.10. Note that CLOS
#0 is special, in the sense that is the one used by default by applications that
have not been assigned to a particular CLOS. Also note that due to hardware
limitations, the ways assigned to a given CLOS have to be consecutive.

3 Application Characterization

In order to design the partitioning algorithm, we performed a characterization of
the applications of the SPEC2006 [10] benchmark suite from the LLC perspec-
tive, illustrating the relationship between cache space and overall performance.
To this end, we executed each application with a cache space from 1 to 20 ways.
After analyzing the results, we concluded that applications can be divided in
two main categories, according to the impact that the cache space has on their
performance: cache critical applications and non-cache critical applications. The
non-cache critical applications do not show significant performance gains as they
have more cache space for a number of ways greater than one. On the other hand,
cache critical applications experience important performance gains as the num-
ber of ways increases. However, these performance gains diminish as the number

606 L. Pons et al.

Table 1. Categorization of SPEC2006 applications.

Critical applications

omnetpp, soplex, sphinx3, xalancbmk, lbm, mcf

Non-critical applications

astar, bwaves, bzip2, cactusADM, calculix,dealII, gamess, gobmk, gromacs, h264ref,
hmmer, leslie3d, libquantum, namd, povray, sjeng, tonto, wrf, zeusmp

of assigned cache ways reaches a given threshold (e.g. 10 or 12). Table 1 classifies
the studied applications in cache critical and non-cache critical.

Figure 2 illustrates both behaviors, showing how the Instructions Per Cycle,
IPC, (dotted line, Y axis scale on the left) and the LLC Misses Per Kilo Instruc-
tions, MPKILLC , (plain line, Y axis scale on the right) change as the number
of ways increases for eight applications running alone. Figure 2a and b show the
results for critical and non-critical applications, respectively. Notice that both
IPC and the MPKILLC are almost constant for non-cache critical applications,
varying only when just one way is available. The reason of this divergent behav-
ior with one way is that this configuration behaves like a direct-mapped cache,
which presents a high number of conflict misses. Notice also that the MPKILLC

in these applications is always below 0.5. In contrast, critical applications, like
omnetpp and xalancbmk exhibit a much higher MPKILLC that decreases with
the number of assigned cache ways, which results in IPC improvements.

We also found that the huge LLC space (20 MB) in our experimental plat-
form, is completely occupied, or close to being so, by any of the studied appli-
cations when running in isolation, regardless being cache critical or not. This
is due to the huge working set that studied applications use considering the
entire execution. Results in Fig. 2b, however, show that the live working set of
non-critical applications for a specific interval of time fits in two cache ways.

This analysis has yielded key observations that are the pillars on which CA
relies: (i) assigning two cache ways to non-critical applications suffices for perfor-
mance, (ii) non-critical applications should have a limited cache space; otherwise,
they will occupy precious cache space that, on the one hand will not result in
individual performance gains, and on the other hand, will prevent critical appli-
cations from using it, indirectly harming their performance, and (iii) critical
applications need to be protected by assigning them a significant fraction of the
cache ways to preserve their performance. To provide further insights into these
claims we performed a dynamic analysis, discussed below.

Dynamic Characterization. To study the impact of sharing the cache with
other co-runners in multicore execution, we characterized a large set of randomly
generated mixes. For illustrative purposes, we used mix #23, composed of the
eight previously studied applications, when running together in a baseline system
without partitioning.

Improving System Turnaround Time with Intel CAT 607

Fig. 3. LLC dynamic occupancy and MPKILLC in mix #23 without partitioning.

To check if a non-partitioning scheme meets the demands of individual appli-
cations, we analyzed the LLC occupancy per application and its MPKILLC . It
can be observed in Fig. 3 that non-critical applications like bwaves occupy almost
all the time between five and seven ways (which represents between one quarter
and one third of the total cache space) in spite of, as shown in the static analy-
sis, barely needing two cache ways to achieve its maximum performance. On the
contrary, xalancbmk which has been identified as a critical application, presents
a much lower cache occupancy than some of the non-critical ones. As a result,
its MPKILLC severely rises (Fig. 3), turning into important IPC drops.

This example supports our three claims mentioned above, which are the basis
of which the CA approach relies.

4 The Critical-Aware Partitioning Approach

This section presents the Critical-Aware Partitioning Approach (CA). The gen-
eral idea behind our proposal is to dynamically determine which applications
present a cache critical behavior and divide the LLC into two partitions, one
larger for the cache critical applications and the other, smaller, for the rest of
applications. Since not all the cache critical applications show the same criti-
cality, CA tries to further refine the partitions, dynamically readjusting their
size, until the number of applications showing critical behavior changes, and
the process is restarted. CA consists of three main phases: cache warm-up and
application classification, partition allocation, and dynamic readjusting of cache
ways, which are discussed next.

4.1 Cache Warm-Up and Application Classification

The first step in this phase is the cache warm-up phase (e.g. 10 intervals of 0.5 s),
at the beginning of the execution, where no data is collected and therefore no
action is taken. After that, the algorithm enters the reset state, in which, using
the hardware counters mem load uops retired.l3 miss and instructions, the
MPKILLC for all the applications is computed.

608 L. Pons et al.

Fig. 4. State diagram of CA algorithm. Acronyms: NCR stands for the number of ways
assigned to the CLOS with non-critical applications and CR stands for the number of
ways assigned to the CLOS with critical applications. (Color figure online)

As concluded in Sect. 3, critical applications experience a much higher
MPKILLC than non-critical ones. Therefore, considering that there are less crit-
ical than non-critical applications (less than 25% in the SPEC2006 suite), it
is expected that critical applications are outliers, with respect to the general
MPKILLC trend. So, following this rationale, the algorithm computes the rolling
mean of the MPKILLC for each application, and then, using the Miller’s crite-
rion [11], all the applications with a MPKILLC greater than three standard devi-
ations from the average of the total rolling MPKILLC , are classified as critical.
We have also tested other methods to detect outliers, like the Median Absolute
Deviation (MAD) [12], but the former approach achieved better results for our
purposes.

4.2 Partition Allocation

After the applications have been classified, the algorithm creates two parti-
tions, whose sizes depend on the number of critical applications detected, and
assigns applications to one or another, depending on their criticality. This stage
is marked in red in Fig. 4. The used partition layouts were empirically determined
based on a depth and thorough study of static configurations, evaluating appli-
cation mixes with different numbers of critical applications, listed in Table 2.

Improving System Turnaround Time with Intel CAT 609

Table 2. Initial cache mask configurations.

Configuration name # of critical appl. CLOS 1 ways CLOS 2 ways

12cr10others 1 12 10

13cr9others 2 13 9

14cr8others 3 14 8

no partitioning 0 or more than 3 20 20

These partitioning layouts are based on the fact that non-critical applications
need an average of 2 cache ways to sustain their performance. The next step
of the algorithm (Dynamic cache way adjustment box in Fig. 4) is devoted to
fine-tune the partitions, iteratively varying their size. While CA could use this
mechanism right from the start to dynamically converge to the best configura-
tion, predefined configurations (Partition Allocation box in Fig. 4) are used as a
starting point to speed up convergence towards it.

Selfa et al. [5] proved that a design with CLOSes having a fraction of the cache
ways shared with other CLOSes results in a better cache utilization. CA takes
this claim into account and grants the CLOS hosting the critical applications
a high number of exclusive cache ways, and a small fraction of shared ways.
The more critical applications detected, the more cache ways are assigned to its
CLOS, except for the workload mixes where a majority or no critical applications
are detected. In these cases, the cache configuration remains untouched (all the
applications have 20 ways), as limiting the space of a dominant number of critical
applications and placing them together does not improve performance.

4.3 Dynamic Adjusting of Partitions

Since there is not an optimal cache configuration that perfectly suits all the
application mixes, CA readjusts the initial configuration dynamically, depend-
ing on its response to the changes performed. To check how good a change in
the actual partitioning is, CA needs to estimate what would have been the per-
formance if such a change was not made. A simple approach is to assume that
the IPC in the next measured interval will remain similar as in the previous one.
This provided us estimates with around 4% Mean Square Error. Other methods,
like using an Exponentially Weighted Moving Average and ARIMA models were
also evaluated, but the reduction in the prediction error did not compensate the
increase in complexity.

The dynamic adjusting (Dynamic cache way adjustment box in Fig. 4) has 4
states, labeled 5, 6, 7 and 8. States 5 and 8 decrease and increase, respectively,
the number of ways of the partition of non-critical applications. On the other
hand, states 6 and 7 decrease and increase, respectively, the number of ways of
the partition that has the critical applications mapped. Transitions can happen
due to four reasons, numbered as they appear in the figure:

610 L. Pons et al.

0. The raw IPC of critical applications or the raw IPC of both groups is worse
than the estimated IPC.

1. The raw IPC of non-critical applications is worse than the estimated IPC.
2. The raw IPC improves the estimated IPC. This causes a transition to the

same state, and no action is taken for 5 intervals.
3. The number of critical applications has changed. We perform a reset in the

partitioning, and depending on the number of critical applications detected,
a new partitioning layout will be applied.

In the case where the raw IPC is worse than the prediction, a deeper study
of the IPC is carried out to analyze where exactly is the source of performance
loss. When the raw IPC of either non-critical or critical applications is lower
than estimated, then a shared cache way becomes exclusive to the CLOS holding
the affected applications. In case the total IPC of both CLOSes is worse than
estimated, the same actions are taken as if only the raw IPC of the critical
applications was worse. Giving more cache space to critical applications will
result in a higher increase in performance than if it is given to the non-critical
applications (see Sect. 3). If any action taken results in a performance loss of the
other CLOS, the action is reverted, i.e. the exclusive way is transformed back
into a shared way.

Since applications have a non-uniform behavior during their execution, the
number of applications detected as outliers can vary considerably along the exe-
cution, which can result in a high number of resets (i.e. transiting to the reset
state), and consequently, in a reduction of the system throughput. To deal with
this fact, if in a given interval an application is not detected as an outlier but
it has been critical during more than 50% of the execution time, it is again
considered as critical.

5 Experimental Framework

The experiments have been conducted in a machine with an Intel Xeon E5-2620
v4 processor, with 8 SMT cores running at 2.20 GHz. It has a 20-way LLC of
size 20 MB (1 MB/way) that supports CAT, having available 16 CLOSes. Only
CLOS #1 and #2 were used in the experiments. We deliberately skipped CLOS
#0 since it is the default CLOS, as explained in Sect. 2, and using it affects all
the processes in the system, including the kernel processes.

To conduct the experiments, we have developed a framework that measures
performance using a library based on Linux perf [13], and partitions the cache
using the primitives provided by the Linux kernel. The results presented in this
paper have been obtained using a vanilla Linux 4.11. Our framework samples
the performance counters every half a second. The information gathered is used
to guide the partitioning policy. When no partitioning is applied, the overhead
of collecting data is around 1%. With our proposal, which collects data and
executes the partitioning algorithm, the overhead is 1.3%. This means that the
overhead caused by the execution of CA is minimal.

Improving System Turnaround Time with Intel CAT 611

Fig. 5. LLC dynamic occupancy and MPKILLC in mix #23 with CA algorithm.

The workload mixes were randomly generated using 25 applications from the
SPEC2006 [10] benchmark suite. To guide their design, we used the insights
presented in Sect. 3, which showed that the number of critical applications is
much lower than the number of non-critical ones. Taking this observation into
account, we generated 34 application mixes, each one with 8 applications, with
the applications randomly selected from the categories shown in Table 1. We
generated 17 mixes (mixes 1 to 17) with 1 critical application, 10 mixes (mixes
18 to 27) with 2 critical applications, and 7 mixes (mixes 29 to 34) with 3 critical
applications.

The experimental methodology followed was to execute each workload until
all the applications completed the same number of instructions they execute
when running alone for 60 s. When an application reached this limit, and it is
not the last one to reach such limit, it is restarted, but only the results of the
first run were considered. Each experiment was repeated 3 times, and the average
was derived.

6 Evaluation

This section evaluates the performance and fairness of the CA approach, against
a baseline system where no partitioning is done, referred to as No partition; but
first, we illustrate how CA achieves its objectives through a case study.

6.1 LLC Dynamic Occupancy and MPKI with the CA Approach

This section illustrates how the proposal properly distributes the cache space,
by assigning it according to the type of application. For this purpose, we use the
same mix example (i.e. mix #23) as in Sect. 3.

Figure 5 shows how the LLC occupancy and MPKILLC of the 8 bench-
marks of mix #23 evolves along time under the CA approach. Compared to
non-partitioned system (see Fig. 3), it can be observed that non-critical appli-
cations (e.g. bwaves) are allowed to use less space, while critical applications

612 L. Pons et al.

Fig. 6. CA vs Linux: Dynamic cumulative MPKILLC and raw IPC in mix #23.

Fig. 7. Turnaround time of CA vs Linux.

(e.g. xalancbmk) are assigned more cache space, which confirms that CA prop-
erly addresses the design objectives. Notice that both compared figures have the
same number of intervals (X axis), however, the mix execution ends, under CA,
around interval 205, which means that the gain in turnaround time is about 22%.
This is achieved by significantly reducing the MPKILLC , clearly appreciated by
comparing the results of each individual application applying CA (see Fig. 5)
with those achieved with Linux reference system (see Fig. 3). Under Linux, criti-
cal applications like xalancbmk suffer a high MPKILLC , exceeding 6 around half
of the execution time.

The previous observations can also be appreciated by presenting the aggre-
gated MPKILLC and IPC values of all the benchmarks that make up the mix, for
both the reference system and CA. This can be seen in Fig. 6. As can be observed,
the aggregated MPKILLC is much better with CA than with a non-partitioned
system, which translates into ending the execution much before, hence improving
system throughput. Regarding raw IPC, it can be appreciated that CA achieves
similar or slightly better (around intervals 190 to 210) raw IPC than the baseline
system.

Improving System Turnaround Time with Intel CAT 613

3 6 9 12 15 18 21 24 27 30 33
Mix number

0.0

0.1

0.2

0.3

0.4

U
nf

ai
rn

es
s

No partition
CA

1 critical
app.

2 critical
apps.

3 critical
apps.

Fig. 8. Comparison of average unfairness value of the workload mixes.

6.2 Performance and Fairness

Performance has been analyzed in terms of turnaround time, which is the main
focus of the CA approach. Figure 7 shows the turnaround times (in intervals of
half a second) of both CA and the reference system across the 34 studied mixes.
As observed, CA reduces the turnaround time of the mixes that have only one
critical application (mixes 1 to 17), on average, by 15%. For mixes with two
critical applications (mixes 18 to 27) the reduction is by around 11.5% and for
mixes with 3 critical applications (mixes 28 to 24) it decreased 13.5%. Note that
for some of the mixes, the turnround time is reduced by more than 40%.

This turnaround time reductions are achieved by allowing slower applications
(i.e. critical) to run faster and by slightly slowing down non-critical applications.
As a result, the execution time of fast and slow applications becomes closer,
hence improving system fairness. A comparison of unfairness values for each
workload using both policies is presented in Fig. 8. Unfairness is calculated as
the standard deviation across all progresses of each individual application over
the average progress, which in turn is calculated as the the total time when
executing alone over the total time taken in multiprogram execution [14]. CA
reduces unfairness, on average, by more than 55%, being this value even larger
on mixes with one critical application, which is the most common case. In these
mixes the percentage gain rises to 75%.

7 Related Work

Heracles [15] and Dirigent [16] focus on improving the performance of latency
sensitive applications, determined a priori, by ensuring the other batch appli-
cations do not interfere with them. While in this work we also use the con-
cept of critical application, we determine them dynamically, by measuring their
cache behavior. Ginseng [17] partitions the LLC into isolated partitions using
a marked-driven auction system. It is focused in environments like the cloud,
where each guest can bid based on the amount of resources it wants to use.
Selfa et al. [5] cluster applications using the k-means algorithm and distribute

614 L. Pons et al.

cache ways between the groups, giving exponentially more space to the applica-
tions suffering more interferences, in order to improve system fairness. El-Sayed
et al. [4] also group applications into clusters, assigning them to different
CLOSes. While it manages to significantly improve throughput in selected work-
loads, it uses a detailed profiling, resulting in a much more complex algorithm
than CA.

Some approaches like UCP [2], ASM [18], Vantage [19] or PriSM [3] modify
the eviction and insertion policies to partition the cache, hence they cannot be
implemented in existing processors. Other approaches like the filter cache [20],
split the cache in different structures to reduce inter-application interferences.

8 Conclusions

Recent cache partitioning approaches implemented in commercial processors
have been shown to be effective addressing fairness and throughput.

This paper has characterized the static and dynamic cache behavior when
multiple applications compete among them for cache space, finding that some
applications need few ways to achieve their maximum performance while some
others require a higher number of ways. Therefore, they should be protected to
avoid performance losses, by allocating them in a separate cache partition with
a greater amount of cache space.

Based on this study, we have proposed CA, a simple and effective cache
partitioning approach that significantly improves the turnaround time of work-
load mixes. Experimental results show that CA improves turnaround time up to
40% and system unfairness over 55%, compared to a baseline system without
partitioning.

Acknowledgment. This work was supported by the Spanish Ministerio de Economı́a
y Competitividad (MINECO) and Plan E funds, under grants TIN2015-66972-C5-1-R
and TIN2017-92139-EXP. It was also supported by the ExaNest project, with funds
from the European Union Horizon 2020 project, with grant agreement No 671553.

References

1. Sodani, A., et al.: Knights landing: second-generation intel xeon phi product. IEEE
Micro 36(2), 34–46 (2016)

2. Qureshi, M.K., Patt, Y.N.: Utility-based cache partitioning: a low-overhead, high-
performance, runtime mechanism to partition shared caches. In: Proceedings of
MICRO, pp. 423–432 (2006)

3. Manikantan, R., Rajan, K., Govindarajan, R.: Probabilistic shared cache manage-
ment (PriSM). In: Proceedings of the 39th Annual International Symposium on
Computer Architecture (ISCA), pp. 428–439 (2012)

4. El-Sayed, N., Mukkara, A., Tsai, P.A., Kasture, H., Ma, X., Sanchez, D.: Kpart:
a hybrid cache partitioning-sharing technique for commodity multicores. In: Pro-
ceedings of HPCA (2018)

Improving System Turnaround Time with Intel CAT 615

5. Selfa, V., Sahuquillo, J., Eeckhout, L., Petit, S., Gómez, M.E.: Application clus-
tering policies to address system fairness with intel’s cache allocation technology.
In: Proceedings of PACT, pp. 194–205 (2017)

6. Feliu, J., Sahuquillo, J., Petit, S., Duato, J.: Addressing fairness in SMT multicores
with a progress-aware scheduler. In: Proceedings of IPDPS, pp. 187–196 (2015)

7. Van Craeynest, K., Akram, S., Heirman, W., Jaleel, A., Eeckhout, L.: Fairness-
aware scheduling on single-ISA heterogeneous multi-cores. In: Proceedings of
PACT, pp. 177–188 (2013)

8. Wu, C., Li, J., Xu, D., Yew, P.C., Li, J., Wang, Z.: FPS: a fair-progress process
scheduling policy on shared-memory multiprocessors. J. Trans. Parallel Distrib.
Syst. 26(2), 444–454 (2015)

9. Eyerman, S., Eeckhout, L.: System-level performance metrics for multiprogram
workloads. IEEE Micro 28(3), 42–53 (2008)

10. Henning, J.L.: SPEC CPU2006 benchmark descriptions. Comput. Archit. News
34(4), 1–17 (2006)

11. Miller, J.: Short report: reaction time analysis with outlier exclusion: bias varies
with sample size. J. Exp. Psychol. 43(4), 907–912 (1991)

12. Leys, C., Ley, C., Klein, O., Bernard, P., Licata, L.: Detecting outliers: do not use
standard deviation around the mean, use absolute deviation around the median.
J. Exp. Soc. Psychol. 49(4), 764–766 (2013)

13. Gleixner, T., Molnar, I.: Performance counters for Linux (2009)
14. Van Craeynest, K., Akram, S., Heirman, W., Jaleel, A., Eeckhout, L.: Fairness-

aware scheduling on single-ISA heterogeneous multi-cores. In: Proceedings of the
22nd International Conference on Parallel Architectures and Compilation Tech-
niques. PACT 2013, Piscataway, NJ, USA, pp. 177–188. IEEE Press (2013)

15. Lo, D., Cheng, L., Govindaraju, R., Ranganathan, P., Kozyrakis, C.: Heracles:
improving resource efficiency at scale. In: Proceedings of ISCA, pp. 450–462 (2015)

16. Zhu, H., Erez, M.: Dirigent: enforcing QoS for latency-critical tasks on shared
multicore systems. In: Proceedings of ASPLOS, pp. 33–47 (2016)

17. Funaro, L., Ben-Yehuda, O.A., Schuster, A.: Ginseng: market-driven LLC alloca-
tion. In: Proceedings of USENIX, pp. 295–308 (2016)

18. Subramanian, L., Seshadri, V., Ghosh, A., Khan, S., Mutlu, O.: The application
slowdown model: quantifying and controlling the impact of inter-application inter-
ference at shared caches and main memory. In: Proceedings of MICRO, pp. 62–75
(2015)

19. Sanchez, D., Kozyrakis, C.: Vantage: scalable and efficient fine-grain cache parti-
tioning. In: Proceedings of ISCA, pp. 57–68 (2011)

20. Sahuquillo, J., Pont, A.: The filter cache: a run-time cache management approach1.
In: 25th EUROMICRO 1999 Conference (1999)

Dynamic Placement of Progress Thread
for Overlapping MPI Non-blocking
Collectives on Manycore Processor

Alexandre Denis1, Julien Jaeger2, Emmanuel Jeannot1, Marc Pérache2,
and Hugo Taboada1,2(B)

1 Inria, LaBRI, Univ. Bordeaux, CNRS, Bordeaux-INP, Bordeaux, France
{alexandre.denis,emmanuel.jeannot,hugo.taboada}@inria.fr

2 CEA, DAM, DIF, 91297 Arpajon, France
{julien.jaeger,marc.perache}@cea.fr

Abstract. To amortize the cost of MPI collective operations, non-
blocking collectives have been proposed so as to allow communications
to be overlapped with computation. Unfortunately, collective communi-
cations are more CPU-hungry than point-to-point communications and
running them in a communication thread on a dedicated CPU core makes
them slow. On the other hand, running collective communications on the
application cores leads to no overlap. To address these issues, we pro-
pose an algorithm for tree-based collective operations that splits the tree
between communication cores and application cores. To get the best of
both worlds, the algorithm runs the short but heavy part of the tree
on application cores, and the long but narrow part of the tree on one
or several communication cores, so as to get a trade-off between overlap
and absolute performance. We provide a model to study and predict its
behavior and to tune its parameters. We implemented it in the MPC
framework, which is a thread-based MPI implementation. We have run
benchmarks on manycore processors such as the KNL and Skylake and
get good results for both performance and overlap.

1 Introduction

MPI is the standard interface for communications in HPC applications. It is
used by applications for inter-node (i.e. network) and intra-node (processes on
the same node) communications. The cost of communications is one of the main
obstacles to get a good speedup for parallel applications. To amortize the cost of
MPI communications, application programmers try to overlap communications
with computation by using non-blocking communication primitives, and let them
progress in background while keeping the CPU busy with computation.

Initially the non-blocking communications were only available for point-to-
point communications. The extension of the non-blocking communications to
collective operations (i.e. primitives that involve more than two nodes, such as
broadcast, reduce, scatter, gather, ...) is an addition of the latest major MPI

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 616–627, 2018.
https://doi.org/10.1007/978-3-319-96983-1_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_44&domain=pdf

Dynamic Placement of Progress Thread 617

version [1]. It opens the door to communication/computation overlap for collec-
tive operations too. However, collective communications are more CPU-hungry
than point-to-point communications, and are therefore it is harder to make them
progress in background.

In this paper, we tackle the problem of overlapping communication and com-
putation for non-blocking collectives on manycore processors. We study the case
of MPI tasks spread on a manycore processor, with one task per core, and how to
improve overlap with cores dedicated to communications. We explore the trade-
off between executing collective communication on dedicated CPU cores versus
using application cores. We restrict ourselves to the case of tree-based collective
operations (broadcast, reduce, scatter, gather, allreduce) because they are the
one where this trade-off has the most impact on the performance as we are able
to tune it dynamically.

In short, this paper makes the following contributions:

– we propose an algorithm that splits the tree of the collective operation, run-
ning parts of the tree on cores dedicated to communication, and parts of the
tree on the application core;

– we propose a model for the above algorithm, so as to demonstrate the improve-
ment of global performance when overlapping communication and computa-
tions, and to tune its parameters;

– we implemented the algorithm in the MPC MPI implementation [2].

The rest of the paper is organized as follows. Section 2 presents related works
about communication/computation overlap in general, and for collective commu-
nication in particular. Section 3 presents our split-tree algorithm for tree-based
collective communications. In Sect. 4, we present a model of the algorithm and
how to tune it for optimal performance. Section 5 describes how the algorithm is
implemented in the MPC software. Section 6 reports experimental results, and
Sect. 7 concludes.

2 Related Works

The topic of communication progression has already been studied for some
aspects in the literature. Several strategies do exist for background progres-
sion of point-to-point communications, such as offloading the communication to
hardware [3,4] and let the hardware do the progression; use of a thread [5] or
process [6] dedicated to communication progression; opportunistic scheduling of
communication tasks [7,8].

MPI non-blocking collective communications are more difficult to make
progress in the background, since not only the data transfer but the collec-
tive algorithm too needs to progress, which makes it harder to rely on hardware.
There is specific work [9] for hardware-assisted progression on Blue Gene, or
offloading shared memory collectives to a kernel module [10] (although authors
only address performance of blocking collectives, not progression of non-blocking
collectives). The reference NBC implementation [11] relies on a progression

618 A. Denis et al.

thread, with some tricks [12] to improve overlap on InfiniBand. This approach
is quite different from ours since it leads to one progression thread per MPI
task, while our approach runs multiple MPI ranks in the same process and the
algorithm for the collectives is shared across all MPI ranks in the same process.

3 A Split-Tree Algorithm for MPI Collective Operations

In this Section, we propose a split tree algorithm for MPI collective communi-
cations which improves communication/computation overlap.

In this paper, we focus on intra-node communications on a manycore
machine, with one MPI task per core. To obtain a good overlap for communica-
tions and computation, they have to run in parallel. On a manycore machine, the
straightforward way to get background progression of communication is to ded-
icate some cores to communications, thus some cores host an MPI rank, we call
them application cores; the remaining cores (one or several) host communication
progression threads, we call them communication cores.

However, collective communication algorithms involve a huge amount of
point-to-point communications, and thus a lot of communication tasks. When
communication cores perform all communications on behalf of all application
cores, the algorithm is folded and communications from a given step of the
collective algorithm may be serialized. As a consequence, when folded on few
communication cores, collective communications get much slower than when
executed as a blocking call on all application cores simultaneously.

There are multiple topologies for collective communications. We restrict our-
selves to tree-based algorithms (reduce, broadcast, gather, scatter, allreduce).
The time steps of such a tree-based collective is depicted in Fig. 1: each level of
the tree is a step in the algorithm, from the root to the leaves. The rank of MPI
tasks participating to each step is represented in the vertices. The left child of
a vertex is the same MPI task; only the right child involves a communication.
When represented as time steps of the algorithm, it is a binary tree, although
when considering the data flow by deduplicating vertices which are the same
task, the algorithm is really a binomial tree.

On such tree-based algorithms, we observe that the amount of work is very
unbalanced in time and space. On the example depicted in Fig. 1 for 16 MPI
tasks, there are 15 communication tasks and the algorithm needs 4 steps. If

Fig. 1. Communication tree for a broadcast collective with 16 MPI tasks. S is the num-
ber of steps (tree levels) running on application cores. Plain edges are communications.
Vertices are the MPI tasks.

Dynamic Placement of Progress Thread 619

we fold these communications on a single communication core, it would need 15
steps which is 4 times slower. Since half of the work is in the last step, represented
as S = 1 with levels numbered from the leaves, we can trade some performance
against some overlap by executing different parts of the tree on different cores.
If only the upper part of the tree is executed on the communication cores, and
the last step S = 1 is executed on the application cores, then the total is twice
as fast as running everything on communication cores, while only a single step
cannot be overlapped with computation.

Our proposed algorithm is a generalization of this principle for a trade-off
between communication performance and overlap: split the communication tree
with the upper part running on communication cores, so as to have full overlap,
and the lower part running on all application cores. Let S the number of steps
(tree levels) running on application cores. S = 0 is equivalent to running all
the communication on communication cores. The algorithm runs S steps of the
tree on application cores as depicted in Fig. 1. When S = 1, the algorithm
runs the short but heavy part of the tree on application cores whereas the long
but narrow part of the tree is running on one or several communication cores.
All the communications running on application cores cannot be overlapped by
computation because they are running on the same cores. However, this part of
the tree is the heaviest and running these communications on few communication
cores would jeopardize communication performance. The part of the tree running
on communication cores benefits of total overlapping of its communications.

If S is increased, the algorithm loses a bit of its ability of being over-
lapped but can increase its absolute performance depending on the communica-
tion/computation ratio. We have to get a trade-off between overlap and absolute
performance.

4 Modeling and Tuning

In this Section, we propose a performance model of the algorithm described in
Sect. 3, so as to show its relevance and to tune its S parameter.

Model for Collective Operations. Let Nproc the total number of cores, and N the
number of cores for the application (i.e. number of MPI ranks), then the number
of dedicated cores for communication is P (N) = Nproc − N .

We consider collective operations as binomial trees only. The proposed model
could be easily extended to N-nomial trees if needed. It applies to operations
such as: reduce, broadcast, gather, scatter; scan and alltoall, not based on a tree
topology, are out of scope. We model communication cost as linear, neglecting
latency and cache effects. We take as unit the point-to-point transfer time of one
buffer of the size of the considered collective operation. We study first operations
with a constant buffer size across the whole tree (reduce, broadcast). We will
extend it to variable-buffer size operations (scatter, gather) in a second step.

620 A. Denis et al.

The height of the tree1 is H(N) = �log2(N)�. In the case of a blocking
operation where communication is performed simultaneously by all application
cores, we get the following execution time:

Tblocking(N) = H(N) = �log2(N)� (1)

Let C(N) the computation time on N nodes. To model computation and
communication overlap, we consider the application programmer tried to reach
perfect overlap and sized computation to have the same duration on all cores as
the blocking collective operation, i.e. C(Nproc) = Tblocking(Nproc). If we assume
computation scales linearly, we have the following time for computation on N
nodes:

C(N) =
N

Nproc
× C(Nproc) (2)

Model for the Proposed Algorithm. We now model the split tree algorithm itself.
As defined in Sect. 3, S is the number of steps running on application cores;
the time to run these steps is the depth of the sub-trees, namely S, unless
the tree height is smaller than S. The algorithm schedules operations from the
upper H(N) − S levels on communication cores, folded on P (N) cores. Let
R(N) = N −2�log2(N)� the number of leaves that are not on the largest complete
binary sub-tree of the tree. Let F (N, i) the number of communications for N
MPI tasks in the level i:

F (N, i) = 2�log2(N)�−(H(N)−i+1) +
⌊
R(N) + 2(H(N)−i)

2(H(N)−i+1)

⌋
(3)

Since each level of the tree contains F (N, i) communications for level i num-
bered from 1 for the root, it takes a time of �F (N, i)/P (N)� once folded on
P (N) communication cores, assuming each level is run in sequence because of
communication dependencies. As a result, the time for a non-blocking collective
with split steps algorithm is Eq. 4 as below:

Tnon−blocking(S,N) = min(S,H(N))︸ ︷︷ ︸
last S steps from leafs

+
max(0,H(N)−S)∑

i=1

⌈
F (N, i)
P (N)

⌉

︸ ︷︷ ︸
upper levels of tree, up to S

(4)

With communication and computation overlap with the same collective oper-
ation, given that the part running on application cores cannot be overlapped and
the part running on communication cores is fully overlapped, we get the result
in Eq. 5 as time for overlapped computation and non-blocking collective with
split tree:

1 We use a binomial tree where the N MPI tasks are leaves. In case of a binary tree,
we will have N vertices and H(N) = �log2(N + 1)� − 1.

Dynamic Placement of Progress Thread 621

Fig. 2. Model of communication cost for operations with constant-size buffer (broad-
cast, reduce) on 64 cores.

Toverlapped(S,N) = min(S,H(N))
︸ ︷︷ ︸

non-overlapable comms

+ max

⎛

⎝C(N),

max(0,H(N)−S)
∑

i=1

⌈

F (N, i)

P (N)

⌉

⎞

⎠

︸ ︷︷ ︸

overlapable communications

(5)

The graph C(N), Tblocking, and Tnon−blocking(N,S) for increasing values for
S and Nproc = 64 is depicted in Fig. 2. We observe that for large values of N (i.e.
small number of communication cores), the communication is huge for S = 0 (all
communication on communication cores). The cost decreases when S increases.

Figure 3 represents the total time of computation overlapped with communi-
cations when using blocking communications (computation and communication
run in sequence) and when using non-blocking communications with split tree
algorithm. We observe that increasing values for S increases the cost for small
values of N (reduces overlap), but this cost is amortized for large values of N
where the total time is dominated by the cost of the communication folded on
few communication cores.

Discussion and Tuning. From observation of Fig. 3, the absolute minimum time
is reached for S = 0 and N = 51. However, it means that 13 cores are dedi-
cated to communications, which may not be desirable for the user since it would
degrade performance of parts of the application without communication. With
7 cores dedicated to communications (N = 57), the optimal is S = 1; for 4 cores
dedicated to communication (N = 60), the optimal is S = 2; and finally S = 3
for N = 62 (2 communication cores).

As a general case, for a given value of N , it is enough to compute the pre-
dicted performance with the model for a few values of S to find the optimal
value. However finding N for the best overall performance depends on applica-
tion scalability and communication/computation ratio and is out of scope for
this paper. We can extend the proposed model for collective operations where

622 A. Denis et al.

Fig. 3. Model of communication/computation overlap for operations constant-size
buffer (broadcast, reduce) on 64 cores.

Fig. 4. Model of communication cost (left) and communication/computation overlap
(right) for operations with increasing buffer size (scatter, gather) on 64 cores.

not all tree edges have the same weight, such as scatter and gather; when going
from leaves to root, data size doubles at each level of the tree. If we modify
the model for such operations, we get the graphs for communication cost and
overlapped time as depicted in Fig. 4, which exhibits a behavior similar to the
previous one.

5 Implementation

In this Section, we present the implementation of the algorithm in MPC [2], our
thread based MPI implementation.

In MPC, MPI tasks are implemented with threads. MPC also implements
POSIX threads and an OpenMP runtime system. MPC has its own scheduler
allowing a fine-grained scheduling of all these threads. Thus, we bypass the
system scheduler. MPC uses a tuned version of libNBC [11] to implement MPI 3

Dynamic Placement of Progress Thread 623

Non-Blocking Collectives. One progress thread is created for each MPI task.
These threads can be bound through different algorithms. In the default behavior
used in our experiments, MPI tasks are bound with a scatter policy and progress
threads are bound to the closest idle cores.

In this implementation, a MPI non-blocking collective is decomposed in MPI
point-to-point non-blocking calls fulfilling the collective algorithm. When a MPI
non-blocking collective is called, each MPI task creates a schedule containing
requests for the point-to point non-blocking calls corresponding to its part of
the collective algorithm, and attach it to its associated progress thread. Thus,
the progress threads handle the communication described by the schedules while
MPI tasks continue to execute computation.

To implement our algorithms, we define the parameter S to be the number
of steps (tree levels) that we want to run on application cores. For all-to-one
algorithms (reduce, gather), we run the S steps on MPI tasks using MPI point-
to-point blocking communication before creating the NBC schedule of H(N)−S
steps. Then, we attach it to its associated progress thread. Thus, the first part of
the algorithm is running on application cores whereas the last part is running on
the cores dedicated to the progress threads. For one-to-all algorithms (broadcast,
scatter), we define the requests of H(N)−S steps and create the NBC schedule
first. We attach it in its associated progress thread. Then we implement the S
steps in the MPI Wait function executed by the MPI tasks. Hence, the first part
is running on the cores dedicated to the progress threads whereas the last part
is running on application cores.

6 Experimental Results

In this Section, we present experimental results of our algorithm implemented
within MPC.

We implemented our own micro-benchmarking tool to evaluate the perfor-
mance of our algorithm. This tool works similarly to the Intel MPI Bench-
marks [13] but with fixed problem size allowing us to have the same compu-
tation workload for different number of MPI tasks. We arbitrary set the buffer
size to 2 MB and sized the computation workload to reach perfect overlap Then,
we reduce the number of MPI tasks while keeping the same global computa-
tion workload. Thus, when we have less MPI tasks, the duration of computation
increases and more idle cores are available for progress threads. This contributes
to decreasing the time of communications and maximize the overlap. When all
cores are used by the MPI tasks, they are no cores left for progress threads. In
this case, the algorithm is the same as for the blocking call. Thus we do not show
these points in the following performance figures.

We ran our benchmark on two different manycore architectures: a 1.4 GHz
Intel Xeon Phi Knights Landing with 64 cores (KNL) and a 2.7 GHz bi-socket
Xeon Platinum Skylake with a total of 48 cores (SKL).

Comparing Split-Tree Algorithm to Default Setup. In our first experiments, we
tested the interest of the split-tree algorithm. As described in Sect. 5, MPC

624 A. Denis et al.

already provides progress threads for communication collectives. The progress
threads are gathered on the available cores. This mapping brings good per-
formances when the number of available cores is high. However, performances
collapse when too many progress threads are gathered on the same core. The
blue lines labeled “Comp + comms, split-tree (S=0)” show this behavior on
KNL for collective Ibcast (Fig. 5) and for collective Ireduce on KNL and Skylake
(Fig. 6). The label “Comp + comms, split-tree (S=0)” means that no level of
the communication tree is done on the MPI tasks, thus all communications are
realized on the progress threads.

Thanks to the split tree algorithm, we were able to balance more efficiently
communications between the MPI tasks and the progress threads. The orange
line labeled “Comp + comms, split-tree (S=1)” (resp. purple line labeled “Comp
+ comms, split-tree (S=2)” and green line labeled “Comp + comms, split-tree
(S=3)”) shows the performance of the same algorithms when 1 (resp. 2 and
3) levels of the communication tree remains on the MPI tasks. If enough cores
are available to correctly handle the progress threads, the split-tree version is
less performant. However, when the number of available cores is shrinking, the
split-tree version is more stable. For each additional level attached to the MPI
tasks, the sudden performance drop is observed with fewer available cores, until
S=3 allows to maintain better performances than the blocking call even in the
least favorable case (only one core available for all progress threads). Hence, it
is possible to select the best split-tree value S depending on the algorithm and
the number of cores hosting progress threads.

Comparing Performance Results to Model. To help select the number of tree
levels to leave on the MPI tasks, we proposed a model in Sect. 4. The model
projection for Ireduce collective on 64 cores is shown in Fig. 3. Comparing this
projection to the result of Ireduce on the 64 cores KNL displayed in Fig. 6, we
can see that the model is really close to the results.

Moreover, the values for switching from a value S in the split-tree to the next
one are the same between the prediction and the measured performance. This
allows us to select the correct number of levels to leave on the MPI tasks by
implementing this model in the MPI runtime system.

Comparing MPI Implementations. We also compare our algorithm with other
MPI implementation such as Intel-MPI and OpenMPI. We ran OpenMPI and
Intel-MPI tests with the same compute workload as for our previous experiments.
We compare these results to our split-tree algorithm with the S value chosen
accordingly to our model. Hence, when the model predicts that an S value is
better than another one, this value is automatically applied. For example, on
KNL, we switch from S=0 to S=1 for 52 MPI tasks, from S=1 to S=2 for 58
MPI tasks, and from S=2 to S=3 for 62 MPI tasks.

The results for all tested MPI implementation, including our MPC model-
based results, are depicted in Fig. 7 for MPI Ireduce.

We observe that our split-tree algorithm, with the selection of the number
of levels left on the MPI tasks based on our model (MPC model-based – green),

Dynamic Placement of Progress Thread 625

Fig. 5. Result of split-tree algorithm with different values of S, for MPI Ibcast with
constant-size buffer of 2 MB on 64 cores (KNL). (Color figure online)

Fig. 6. Result of split-tree algorithm with different values of S, for MPI Ireduce with
constant-size buffer of 2 MB on KNL (left) and Skylake (right) processors. (Color figure
online)

performs well on KNL and Skylake. On KNL, MPC model-based (green lines)
is always better than OpenMPI (purple) and IntelMPI (royalblue). To be
fair, we activated for IntelMPI the flags allowing asynchronous progression
(I MPI ASYNC PROGRESS and and I MPI ASYNC PROGRESS PIN), but
these flags reduced the performances (skyblue and blue lines) instead of improv-
ing them. On Skylake, OpenMPI performs better than on KNL. However, except
for last number of MPI tasks, MPC model-based managed to have better per-
formance thanks to the split-tree algorithm.

Very interestingly, we also see that in this case, the best performance is
obtained with 50 cores for the KNL and 38 cores for the SKL, meaning that the
best trade-off is far from using all the available cores.

626 A. Denis et al.

Fig. 7. Result of multiple MPI implementation for MPI Ireduce with constant-size
buffer of 2 MB on KNL (left) and Skylake (right) processors (Y-axis in log scale).

7 Conclusion and Future Work

Overlapping communications with computation is the key to amortize the cost
of communications, especially for collective communications which are heavier
than point-to-point communications. Approaches for progression relying on a
progression thread per task suffer from competition between communication
and computation, and approaches relying on a pool of cores dedicated to com-
munication exhibit a slowdown in pure communication time when the collective
is folded on few cores.

In this paper, we have proposed a novel algorithm that combines the best of
both worlds. It splits the communication tree so as to execute the narrow part
of the tree, representing most of its depth, on dedicated communication cores;
this part may be fully overlapped with computation. It places the widest part of
the tree, which represents a small part of its depth but a large part of the total
work, on all applications cores to benefit from parallelism.

We have modeled the algorithm to demonstrate its relevance and to tune
its parameter. We have implemented the algorithm in the MPC software and
evaluated its performance on manycore processors (Intel KNL and Skylake).
Thanks to the excellent accuracy of the model we are able to almost always
find the best trade-off between using dedicated CPU cores or application cores
and hence exceed the performance of state-of-the-art competitors. Moreover,
it is important to notice that our solution is not bound to the MPC runtime
system but can be implemented in any MPI library featuring progress threads
for communication.

As future work, we plan to extend the approach of our algorithm to inter-node
communications, which have a different behavior than intra-node communica-
tions considered in this paper. Moreover, we also plan to extend auto-tuning to
choose the number of MPI tasks (parameter N) to optimize the overall perfor-
mance and not only sections with non-blocking collectives.

Dynamic Placement of Progress Thread 627

References

1. MPI Forum: MPI: A Message-Passing Interface Standard Version 3.0, September
2012

2. Pérache, M., Jourdren, H., Namyst, R.: MPC: a unified parallel runtime for clusters
of NUMA machines. In: Luque, E., Margalef, T., Beńıtez, D. (eds.) Euro-Par 2008.
LNCS, vol. 5168, pp. 78–88. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-85451-7 9

3. Sur, S., Jin, H., Chai, L., Panda, D.: RDMA read based rendezvous protocol
for MPI over InfiniBand: design alternatives and benefits. In: Proceedings of the
Eleventh ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, pp. 32–39. ACM, New York (2006)

4. Rashti, M.J., Afsahi, A.: Improving communication progress and overlap in MPI
rendezvous protocol over RDMA-enabled interconnects. In: 2008 22nd Interna-
tional Symposium on High Performance Computing Systems and Applications.
HPCS 2008, pp. 95–101. IEEE (2008)

5. Hoefler, T., Lumsdaine, A.: Message progression in parallel computing - to thread
or not to thread? In: Proceedings of the 2008 IEEE International Conference on
Cluster Computing. IEEE Computer Society, October 2008

6. Lai, P., Balaji, P., Thakur, R., Panda, D.: ProOnE: a general purpose protocol
onload engine for multi- and many-core architectures. Comput. Sci. Res. Dev. 23,
133–142 (2009)

7. Denis, A.: pioman: a pthread-based Multithreaded Communication Engine. In:
Euromicro International Conference on Parallel, Distributed and Network-based
Processing, Turku, Finland, March 2015

8. Si, M., Peña, A., Balaji, P., Takagi, M., Ishikawa, Y.: MT-MPI: multithreaded
MPI for many-core environments. In: Proceedings of the International Conference
on Supercomputing, June 2014

9. Almási, G., et al.: Optimization of MPI collective communication on BlueGene/L
systems. In: Proceedings of the 19th Annual International Conference on Super-
computing. ICS 2005, pp. 253–262. ACM, New York (2005)

10. Ma, T., Bosilca, G., Bouteiller, A., Goglin, B., Squyres, J.M., Dongarra, J.J.: Ker-
nel assisted collective intra-node MPI communication among multi-core and many-
core CPUs. In: IEEE (eds.) 40th International Conference on Parallel Processing
(ICPP-2011), Taipei, Taiwan, September 2011

11. Hoefler, T., Lumsdaine, A., Rehm, W.: Implementation and performance analysis
of non-blocking collective operations for MPI. In: Proceedings of the 2007 Inter-
national Conference on High Performance Computing, Networking, Storage and
Analysis, SC07. IEEE Computer Society/ACM, November 2007

12. Hoefler, T., Lumsdaine, A.: Optimizing non-blocking collective operations for
InfiniBand. In: Proceedings of the 22nd IEEE International Parallel & Distributed
Processing Symposium, CAC 2008 Workshop, April 2008

13. IMB-NBC benchmarks. https://software.intel.com/fr-fr/node/561946. Accessed
10 May 2018

https://doi.org/10.1007/978-3-540-85451-7_9
https://doi.org/10.1007/978-3-540-85451-7_9
https://software.intel.com/fr-fr/node/561946

Efficient Load Balancing Techniques for
Graph Traversal Applications on GPUs

Federico Busato(B) and Nicola Bombieri

Department of Computer Science, University of Verona, Verona, Italy
{federico.busato,nicola.bombieri}@univr.it

Abstract. Efficiently implementing a load balancing technique in graph
traversal applications for GPUs is a critical task. It is a key feature of
GPU applications as it can sensibly impact on the overall application
performance. Different strategies have been proposed to deal with such
an issue. Nevertheless, the efficiency of each of them strongly depends on
the graph characteristics and no one is the best solution for any graph.
This paper presents three different balancing techniques and how they
have been implemented to fully exploit the GPU architecture. It also pro-
poses a set of support strategies that can be modularly applied to the
main balancing techniques to better address the graph characteristics.
The paper presents an analysis and a comparison of the three techniques
and support strategies with the best solutions at the state of the art
over a large dataset of representative graphs. The analysis allows stati-
cally identifying, given graph characteristics and for each of the proposed
techniques, the best combination of supports, and that such a solution
is more efficient than the techniques at the state of the art.

1 Introduction

Graph traversal refers to the process of visiting (i.e., checking or updating) ver-
tices in a graph and is a core feature in many graph algorithms (e.g., BFS, SSSP,
STCON). The high variability of graph characteristics over multiple dimensions
such as, size, diameter, and degree distribution, makes the parallel implementa-
tion of graph traversal for GPUs a very challenging task.

Load balancing is a key aspect to face when implementing parallel graph
traversal algorithms as it can strongly affect the performance of the overall appli-
cation. Different solutions have been proposed to efficiently deal with such an
issue during graph traversal on GPUs [9–11,17,18,21]. Although they provide
good results for specific graph characteristics, no one of them is flexible enough to
be considered the most efficient for any input dataset. This makes each of these
solutions, and in turn the higher level algorithm in which they are included, not
efficient in several circumstances (in some cases, less efficient than the sequential
implementation [16]).

This paper presents three different load balancing techniques for graph traver-
sal applications on GPUs and, in particular, the key details of their architecture-
oriented implementations. The paper also presents a set of features, which we
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 628–641, 2018.
https://doi.org/10.1007/978-3-319-96983-1_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_45&domain=pdf

Efficient Load Balancing Techniques for Graph Traversal Applications 629

call support strategies, which can be statically selected and modularly applied to
the main balancing techniques to better address the graph characteristics.

The paper presents the results obtained by applying the different techniques
to implement a common graph traversal algorithm (i.e., BFS) and how they
impact on the overall performance. The analysis, which has been conducted on
a large set of representative real-world and synthetic graphs, allows understand-
ing the correlation between graph characteristics and load balancing configura-
tions. The paper also shows how the performance of existing and widespread
BFS implementations (Gunrock [21], B40C [18], and BFS-4K [3]) have been
improved by substituting the original load balancing strategy with those pre-
sented in this paper, with and without the support strategies. The results show
that the proposed solutions allow the BFS implementations to reach throughput
up to 11,800 MTEPS on single GPU device, with speedups from 1x to 12.7x
w.r.t. the original implementations.

The paper is organized as follows. Section 2 presents the background and
related work. Section 3 presents the key details of the proposed balancing tech-
niques and support strategies. Section 4 presents the experimental results, while
Sect. 5 is devoted to the concluding remarks.

2 Background and Related Work

Different solutions for GPUs have been proposed in the last decade to improve
load balancing aspects and accelerate graph traversal applications. They can be
organized in three classes depending on the high-level strategy adopted to map
GPU threads to graph vertices/edges.

Vertex-Based Mapping. Harish et al. [9] presented the first balancing solu-
tions for BFS and SSSP applications, which target vertex parallelism to inspect
every vertex in a graph at each frontier iteration [5]. Hong et al. [10] improved
the previous approach by exploiting SIMD features of GPU architectures tar-
geting irregular workloads for different graph applications (BFS, SSSP, and
STCON). Jia et al. [11] evaluated and compared load balancing for vertex and
edge parallelism to accelerate graph traversal in the context of centrality met-
rics (betweenness, graph, stress, and closeness). McLaughlin et al. [17] focused
on the same techniques to accelerate betweenness centrality (BC) computation.
All these balancing approaches do not require to maintain additional data struc-
tures, they involve very simple implementations but, on the other hand, they
perform quadratic work. This makes the parallel implementations asymptoti-
cally slower than the sequential implementations. More recent research focused
on efficient algorithms for linear-work graph traversal. Luo et al. [16] presented
the first work-efficient BFS implementation based on single thread vertex-based
mapping. Busato et al. proposed an advanced technique for BFS [3] and SSSP [4],
which exploits tunable thread group size for vertex-based mapping and dynamic
parallelism to process high-degree vertices.

630 F. Busato and N. Bombieri

Fig. 1. Overview of the load balancing techniques and support strategies.

Differently from all the approaches of this class, our first solution implements
an optimized vertex-based mapping for linear-work graph traversal which relies
on warp shuffle instructions and fully exploits coalesced memory accesses.

Scan-Based Mapping. Merrill et al. [18] presented a high-performance solution
(B40C) which relies on a scan-based thread mapping for low-degree vertices and
two additional techniques to handle mid-degree vertices at warp and block-level.
Wang et al. [21] presented an optimized and flexible GPU graph library (Gun-
rock) that provides a high-level abstraction to reduce the developing effort of
graph primitive programming (Pagerank, SSSP, BC, etc.). The Gunrock library
relies on the same thread mapping strategy adopted in B40C.

Differently from these approaches, our second solution includes an efficient
scan-based technique that fully exploits the GPU shared memory and imple-
ments a low-latency PTX prefix- sum.

Binary Search Mapping. Bisson et al. [2] presented a BFS solution for dis-
tributed multi-node GPU platforms, which exploits a binary search algorithm
to achieve perfect load balancing among all device threads. Khorasani et al. [12]
presented a warp-based binary search strategy for BFS, SSSP, and PageRank.
Davidson et al. [6] described and evaluated a merge-path search strategy1 [8]
at different thread hierarchy levels (i.e., warp, block, and device) in the con-
text of SSSP. Gunrock also implements a device-wide merge-path search as an
alternative load balancing technique.

Our third solution rely on a deeply revisited device-wide binary search map-
ping, which exploits three different and significant optimizations.

Differently from all the approaches in literature, we propose a set of strategies
that can be modularly combined to support and improve any of the balancing
technique.

3 Load Balancing Techniques and Support Strategies

Figure 1 shows an overview of the main load balancing techniques considered and
optimized in this work and the corresponding support strategies. The three main
techniques (i.e., vertex-based mapping with warp shuffle, scan-based mapping with
PTX prefix-sum, and mapping based on device-wide binary search and unordered

1 Merge-path search can be represented as a 2D binary search.

Efficient Load Balancing Techniques for Graph Traversal Applications 631

prefix-sum) can be implemented in a mutual exclusive way in any graph traversal
application to partition the workload and to map work items to the GPU threads.
The support strategies can be applied singularly or combined to the selected load
balancing technique.

3.1 The Vertex-Based Mapping with Warp Shuffle

The vertex-based technique partitions the workload by directly mapping groups
of threads to the edges of each frontier vertex. The left-most side of Fig. 2 shows
an example of the standard approach, in which the 8 threads of a thread group
access to the vertex V1 identifier in parallel and, then, each thread calculates the
corresponding edge to be processed. Then, in sequence, the whole thread group
moves to the other frontier vertices. The thread group size is set depending
on the average degree of the graphs (smaller warp sizes for graphs with lower
average degrees). Nevertheless, in case of large thread group sizes, it may lead
to many non-coalesced memory accesses during the frontier loading (8 accesses
in the example), which in turn cause a strong loss of performance.

We propose an optimized version of such a vertex-based technique that
combines warp shuffle instructions to the direct thread-to-edge mapping. The
right-most side of Fig. 2 shows the strategy main idea. Each thread accesses to
a different frontier vertex and broadcasts the vertex identifier to the threads
through warp shuffle. This increases memory coalescing at the cost of a min-
imum overhead involved by the warp-shuffle instructions. As an example, the
memory accesses for the frontier loading in Fig. 2(b) are reduced to 1 coalesced
access.

Fig. 2. Vertex-based mapping.

3.2 The Scan-Based Mapping with PTX Prefix-Sum

The scan-based load balancing technique is an alternative of the vertex-based
mapping. Instead of directly mapping threads to edges, each thread organizes
the own edge offsets in shared memory through scan operations. The proposed

632 F. Busato and N. Bombieri

Algorithm 1. Optimized warp-level binary search
Input: Sequence of values represented by the variable val

of each thread; value to search: searched
Output: lower bound of searched

1: low = 0;
2: #pragma unroll
3: for (i = 1; i ≤ log2(WarpSize); i++) do
4: pos = low + (WarpSize � i); //�: compile time evaluated
5: if (searched ≥ shfl(val, pos)) then
6: low = pos;
7: end
8: return low;

solution implements such scan operations at warp-level through an optimized
prefix-sum2. Since such a procedure involves a large number of condition state-
ments, which cause thread divergence, the proposed solution combines intrinsic
warp shuffle instructions and PTX instructions [20] to implement branch pred-
ication (i.e., <if(predicate) instruction> C statements are replaced with
<@predicate instruction> PTX instructions.

The proposed solution, thanks to the prefix sum result, allows exploiting the
whole shared memory during the frontier propagation phase. It also adopts a
warp-synchronous paradigm [19] to avoid any explicit synchronization.

A further optimization consists of a rewriting of loop iterations to exploit
instruction-level parallelism (ILP). This is possible since the size of the shared
memory is known at compile-time and each warp thread visits the same number
of edges (except for the last iteration). The loops have been reorganized and
unrolled to eliminate branches and iteration dependencies.

3.3 Device-Wide Binary Search with Unordered Prefix-Sum

The third load balancing technique relies on the binary search primitive to map
the workload to the GPU threads. In the standard implementation, it provides
the best load balancing in case of very irregular workloads (i.e., graphs with high
standard deviation). Nevertheless, it involves a significant computation overhead,
which makes the technique itself not suitable in case of regular workloads.

We propose an optimized version of the binary search that minimizes such
an overhead and that fully exploits the GPU shared memory. The algorithm
consists of three main steps:

(1) It computes the prefix-sum of the out-degrees of the frontier vertices. It
executes an optimized binary search to equally partition the workload over
the thread hierarchy, i.e., at warp, block, and device-wide level.

(2) It stores and reorganizes the edge offsets in shared memory.
(3) It processes the shared memory elements in parallel.

2 Given an input sequence a1, a2, . . . , an the prefix-sum procedure computes the output
as a1, (a1 + a2), . . . , (a1 + . . . + an).

Efficient Load Balancing Techniques for Graph Traversal Applications 633

Fig. 3. Overview of the device-wide binary search.

The implementation strategy of the first step and, in particular, of the binary
search over the thread hierarchy, is the key of the proposed technique perfor-
mance. Algorithm 1 shows the pseudo-code of the proposed binary search at
warp-level. The algorithm implements a variant of the standard procedure called
uniform binary search [13], which relies on a lookup table. In our case, such a
lookup table is implicit since the size of our input is a power of two. Thanks to the
organization of the frontier information into shared memory, the binary search
allows the following operations on the edge offsets to be performed through coa-
lesced memory accesses. As for the scan-based technique, we implemented this
technique by adopting the warp-synchronous paradigm to avoid barriers among
warps of the same block.

The binary search at block level is similarly implemented to guarantee load
balancing among threads of the same block.

The device-wide binary search guarantees equal workload among all threads
of the GPU device. Given the prefix-sum of the out-degrees and the edge offsets
of the frontier vertices, such a search consists of three main phases:

(A) A first kernel computes the binary search over the whole workload to uni-
formly partition the frontier edges among the grid blocks. Figure 3(a) shows
an example, where pi are the prefix-sum elements and ci are the equally
sized chunks of elements. The size of a workload chunk (i.e., the number of
edges per chunk) is equal to the available shared memory per block.

(B) A second kernel applies a block-level load partition by following the steps of
the binary search. Each block identifies the corresponding workload chunk

634 F. Busato and N. Bombieri

Fig. 4. The 4-instructions binary prefix-sum

by using the offsets calculated by the first kernel. This step generates the
neighbour frontier starting from the edge offsets (Fig. 3(b)).

(C) A third kernel generates all the information necessary to build the new
frontier (Fig. 3(c)). The kernel procedure executes the status lookup and
update of the frontier elements, it removes previously visited vertices, and
it computes an online unordered prefix-sum. In this particular case, the
online procedure computes the prefix-sum of the out-degrees and of the
number of warp elements at the same time. This allows avoiding double
memory accesses to compute the prefix-sum offline through a specialized
kernel procedure, which must load and store the degrees of the frontier
vertices. The two informations are merged into a single value through the
64-bit atomicAdd instruction. We implemented a second optimization to
discard vertices with out-degree equal to zero (for directed graphs) and
equal to one (for undirected graphs) since they never contribute to the new
frontier generation. Such an optimization is particularly useful in case of
power-law graphs since they present a high number of leaf vertices (up to
20% in some instances).

The basic implementation of the device-wide binary search sets the workload
chunk size proportional to the available shared memory per block. It is suitable
for large frontiers, but it involves inactive threads in case of small frontiers. We
implemented such a technique with a third optimization, which allows dynami-
cally configuring the workload chunk size as follows:

min

⎧
⎨

⎩

⌈
sumofout− degrees

#resident threads

⌉

· block size

shared mem per block

The device-wide binary search is an atomic strategy. Because of its radically
embedded structure, it cannot be combined with any support techniques.

Efficient Load Balancing Techniques for Graph Traversal Applications 635

3.4 Load Balancing Support Strategies

The first support strategy is warp-based gathering, which aims at identifying
heavy frontier vertices (i.e., vertices with out degree greater than a threshold)
and, instead of mapping them to threads by following the main load balancing
technique, it maps each of them to a whole warp of threads. It relies on a low
latency binary prefix-sum, which is implemented by four hardware-implemented
instructions (see Fig. 4). Each warp thread saves the predicate result about the
vertex out degree (1 if degree > threshold, 0 otherwise) in the own register. Each
register value (boolean 0 or 1) is then saved on the register bit corresponding to
the thread id, in each thread register with a ballot instruction. After this step,
all the registers of the same warp threads contain the same 32 bit value. It then
computes the bitwise and between the register value and the thread id lower
mask (e.g., the lower mask of thread 3 is 111). Such a lower mask is efficiently
obtained by reading a special register via a single PTX instruction. Finally, each
thread counts the number of true values of the non-masked bits with the popc
instruction and updates the corresponding register.

The result is a filtered prefix sum that gives information about all vertices
of the frontier that must be processed by whole warps of threads (V1 and V3

in the example of Fig. 4) instead of using the adopted basic mapping technique.
The filtered prefix sum is stored in shared memory and, thus, it is shared by
whole warps of threads, thus minimizing memory accesses. The vertices in the
filtered prefix sum are processed by warps and, then, the remaining vertices of
the original frontier are processed with the basic mapping approach (scan-based
or vertex-based mapping).

The threshold corresponds to the warp size (32 for the NVIDIA GPU devices
adopted in this work) to fully exploit the parallelism at warp level.

The second support strategy is block-based gathering, which is similar to the
warp-based one (with a threshold set to the thread block size), but with a sub-
stantial difference in the prefix-sum implementation. The block-level gathering
relies on an unordered binary prefix-sum, which does not guarantee a strict order-
ing of the output while maintaining monotonic increasing values in the resulting
sequence3. The parallel implementation of such an algorithm at block-level can
take advantage of loose ordering to accelerate the computation. The unordered
prefix-sum applies the same procedure of ordered variant at warp level but relies
on atomic operations among different warps. In particular, each warp atomically
updates a single value in shared memory for block-wide computation with the
total sum of its values and getting back the previously stored value. Thanks to
the hardware-implemented atomic operations in modern GPU architectures (i.e.,
from NVIDIA Maxwell on) the unordered binary prefix-sum allows achieving
performance better than the conventional ordered scan-then-fan algorithm [22].

The third support strategy is supplementary queues, which is applied in
graphs with maximum degree greater than half of the available device threads
(e.g., 16,384 on the GeForce 980 GTX).
3 A possible output of the unordered prefix-sum is a3, (a3+a5), (a3+a5+a1), . . . , (a1+
. . . + an).

636 F. Busato and N. Bombieri

Fig. 5. Example of supplementary queues applied to the kron g500-logn21 graph.

It aims at organizing the high degree vertices (vertices with out degree >
thresholdSQ) of the frontier in different bins. Each bin holds vertices with sizes
of the same (approximate) power of two (see the example of Fig. 5). In particular,
the i-th bin holds vertices with out-degree in the range [2(b+i), 2(b+i+1)], where
2b identifies the base size, and b can be tuned by the user. Such a classification
allows running a single kernel for the different bins, properly configured for the
bin characteristics. In our tests, the total number of grid threads has been set
equal to the lower bound of the bin (2(b+i)) times the number of bin elements.
This is motivated by the fact that the worst case involves at most two memory
accesses among elements in consecutive queues. Finally, the bound value of the
last bin is limited to the maximum number of resident device threads, since no
more parallelism is possible for greater values.

thresholdSQ = total device threads
2 guarantees that at least half threads of

the device are active when this technique is applied and, as confirmed by the
experimental results, it avoids underutilization of threads and useless overhead.

4 Experimental Results

We conducted the analysis and the performance evaluation on a dataset of 19
graphs, which includes both real-world and synthetic graphs from different appli-
cation domains. Table 1 presents the graphs and their characteristics in terms of
structure (directed/undirected), number of vertices (V, in millions), edges (E, in
millions), average degree, standard deviation, Gini coefficient, maximum degree,
and average eccentricity (or BFS depth).

The graphs have been selected to be representative of a wide range of char-
acteristics, including size, diameter, degree distribution (from regular to power-
law). The graphs have been selected from the University of Florida Sparse Matrix
Collection [7], the 10th DIMACS Challenge [1], and the SNAP dataset [15].

We ran the experiments on a NVIDIA GeForce GTX 980 device with CUDA
Toolkit 7.5, AMD Phenom II X6 1055 T 3 GHz host processor, Ubuntu 14.04
O.S., and clang 3.6.2 host compiler with the -O3 flag. We ran all tests 100 times
from random sources to obtain the average execution time tavg. The traversal

Efficient Load Balancing Techniques for Graph Traversal Applications 637

Table 1. Graph dataset.

Graph Category U/D V (M) E (M) Avg.
degree

Std.
deviation

Gini
coeff.

Max
degree

Avg.
eccentricity

asia osm Road
Network

U 12.0 25.4 2.1 0.5 0.08 9 36, 626.7

europe osm Road
Network

U 50.9 108.1 2.1 0.5 0.09 13 19, 738.2

USA-road-
d.USA

Road
Network

U 23.9 58.3 2.4 0.9 0.21 9 6, 418.6

hugebubbles-
00020

Num.
simulation

U 21.2 63.6 3.0 0.0 0.00 3 6, 205.9

rgg n 2 23 s0 Random
Geometric

U 8.4 127.0 15.1 3.9 0.14 40 1, 715.7

delaunay n24 Structural U 16.8 100.7 6.0 1.3 0.12 26 1, 588.3

channel-
500×100x100

Num.
simulation

U 4.8 85.4 17.8 1.0 0.01 18 381.6

ldoor Structural U 1.0 47.5 49.9 11.9 0.13 78 161.4

nlpkkt160 Num.
simulation

U 8.3 237.9 28.5 2.7 0.02 29 145.2

audikw 1 Structural U 0.9 78.6 83.3 42.4 0.23 346 61.8

circuit5M Circuit
simulation

D 5.6 59.5 10.7 772.6 0.52 1,290,501 58.0

FullChip Circuit
simulation

D 3.0 26.6 8.9 23.1 0.35 2,312,481 38.3

cage15 DNA elec-
trophoresis

D 5.2 99.2 19.2 5.7 0.17 47 37.3

indochina-2004 Social
Network

D 7.4 194.1 26.2 215.8 0.74 6,985 31.0

soc-
LiveJournal1

Social
Network

D 4.8 69.0 14.2 36.1 0.72 20,293 14.3

soc-pokec-
relationships

Social
Network

U 1.6 61.2 37.5 59.5 0.62 20,518 10.2

er-fact1.5-
scale23

Erdös-
Rényi

U 8.4 200.6 23.9 4.9 0.12 53 7.8

hollywood-
2009

Social
Network

U 1.1 115.0 100.9 271.9 0.73 11,469 7.6

kron g500-
logn21

Kronecker U 2.1 182.1 86.8 680.1 0.92 213,906 5.1

throughput is computed as E/tavg for all tools and is expressed in MTEPS
(million traversed edges per second).

To evaluate the efficiency of the proposed techniques, we measured how
the performance of the best and most representative BFS implementations for
GPUs at state of the art (Gunrock [21], BFS-4K [3], and B40C [18]) have been
improved by substituting the original load balancing implementations with those
presented in this paper. Figure 6 shows the results.

638 F. Busato and N. Bombieri

Fig. 6. Performance comparison: Gunrock (upper-side), BFS-4K (middle-side), B40C
(bottom-side). WG= warp-based gathering, BG= block-based gathering, SQ= supple-
mentary queues.

The upper side plot compares the performance of the original Gunrock, whose
load balancing is set on a device-wide binary search, with the corresponding
version in which we implemented the proposed device-wide binary search with
unordered prefix-sum (UPS). As explained in Sect. 3.3, it was not possible to
apply any support strategy due to the radically embedded structure of this load

Efficient Load Balancing Techniques for Graph Traversal Applications 639

Table 2. Configuration table.

Load balancing support Rules

Warp-based gathering max. degree > Warp size,

Block-based gathering max. degree > Block size,

Supplementary queues max. degree > Half device threads

balancing technique. However, the results show that applying only the proposed
balancing technique allowed us to improve the BFS performance in all graphs,
with speedups from 1x to 12.7x.

Figure 6 - middle-side - compares the results of BFS-4K, which in the original
version implements a direct vertex-based mapping strategy, with the correspond-
ing version with warp-shuffle. First with no support strategies applied, and then
with the supports applied in graphs satisfying the characteristics reported in
Table 2. We observed that the performance of the proposed optimized technique
are substantially higher than the standard implementation in most cases. In
graphs with very irregular degree distribution, the original BFS-4K is better as
it takes advantage of additional load balancing techniques, such as dynamic par-
allelism, to alleviate the workload unbalancing. However, the proposed strategy
properly combined with the load balancing support strategies selectively enabled
depending on the graph characteristics (reported on the top of the bar), provides
the best results in all graphs (from 1x to 4.2x, and 0.9x in a single case).

Finally, the bottom-side plot compares the results of the original B40C imple-
mentation, which relies on a scan-based mapping strategy, with the correspond-
ing version based on PTX prefix-sum, without and with the proposed supports.
It is important to note that the original tool also implements a support (which is
always enabled) comparable to the warp- and block-level gathering proposed in
this work. The results show that, thanks to the highly optimized prefix-sum and
the instruction-level parallelism technique, the proposed load balancing tech-
nique (with no supports) provides performance almost always better and up to
two times faster than the original B40C implementation. The throughput is fur-
ther improved by enabling the proposed support techniques (right-most bar of
the plot), thus providing speedups from 1x to 9.7x. Such supporting techniques
significantly contribute to the graph traversal performance thanks to their new
algorithms based on binary prefix-sum, which, differently from the standard
version implemented in B40C, it allows avoiding sequential iterations over high-
degree vertices.

5 Conclusions

This paper presented three load balancing techniques for graph traversal appli-
cations on GPUs and the most important details of their architecture-oriented
implementations. The paper presented a set support strategies that can be stat-
ically selected and modularly applied to the main balancing techniques to better

640 F. Busato and N. Bombieri

address the different graph characteristics. Experimental results have been pre-
sented to show how the performance of existing and widespread BFS implemen-
tations have been improved by substituting the original load balancing strategy
with those presented in this paper, with and without the support strategies.

References

1. Bader, D.A., Meyerhenke, H., Sanders, P., Wagner, D.: Graph partitioning and
graph clustering, 10th DIMACS implementation challenge workshop. Contempo-
rary Mathematics 588 (2013)

2. Bisson, M., Bernaschi, M., Mastrostefano, E.: Parallel distributed breadth first
search on the Kepler architecture. IEEE Trans. Parallel Distrib. Syst. 27(7), 2091–
2102 (2015)

3. Busato, F., Bombieri, N.: BFS-4K: an efficient implementation of BFS for Kepler
GPU architectures. IEEE Trans. Parallel Distrib. Syst. 26(7), 1826–1838 (2015)

4. Busato, F., Bombieri, N.: An efficient implementation of the Bellman-Ford algo-
rithm for Kepler GPU architectures. IEEE Trans. Parallel Distrib. Syst. 27(8),
2222–2233 (2016)

5. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT
Press, Cambridge (2009)

6. Davidson, A., Baxter, S., Garland, M., Owens, J.D.: Work-efficient parallel GPU
methods for single-source shortest paths. In: Proceedings of IEEE IPDPS, pp.
349–359 (2014)

7. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. 38(1), 1 (2011)

8. Green, O., McColl, R., Bader, D.A.: GPU merge path: a GPU merging algorithm.
In: Proceedings of ACM SC, pp. 331–340 (2012)

9. Harish, P., Narayanan, P.: Accelerating large graph algorithms on the GPU using
CUDA. In: Proceedings of IEEE HiPC, pp. 197–208 (2007)

10. Hong, S., Kim, S.K., Oguntebi, T., Olukotun, K.: Accelerating CUDA graph algo-
rithms at maximum warp. In: Proceedings of ACM PPoPP, pp. 267–276 (2011)

11. Jia, Y., Lu, V., Hoberock, J., Garland, M., Hart, J.C.: Edge v. node parallelism
for graph centrality metrics. In: GPU Computing Gems 2, pp. 15–30 (2011)

12. Khorasani, F., Rowe, B., Gupta, R., Bhuyan, L.N.: Eliminating intra-warp load
imbalance in irregular nested patterns via collaborative task engagement. In: Pro-
ceedings of IEEE Parallel and Distributed Processing Symposium, pp. 524–533
(2016)

13. Knuth, D.E.: The Art of Computer Programming, vol. 3. Pearson Education, Lon-
don (1997)

14. Kunegis, J., Preusse, J.: Fairness on the web: alternatives to the power law. In:
Proceedings of ACM WebSci, pp. 175–184 (2012)

15. Leskovec, J., et al.: Stanford network analysis project (2010). http://snap.stanford.
edu

16. Luo, L., Wong, M., Hwu, W.M.: An effective GPU implementation of breadth-first
search. In: Proceedings of ACM/IEEE DAC, pp. 52–55 (2010)

17. McLaughlin, A., Bader, D.A.: Scalable and high performance betweenness central-
ity on the GPU. In: Proceedings of the IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 572–583 (2014)

http://snap.stanford.edu
http://snap.stanford.edu

Efficient Load Balancing Techniques for Graph Traversal Applications 641

18. Merrill, D., Garland, M., Grimshaw, A.: Scalable GPU graph traversal. In: Pro-
ceedings of ACM PPoPP, pp. 117–128 (2012)

19. NVidia Corporation: Kepler Tuning Guide (2014). http://docs.nvidia.com/cuda/
kepler-tuning-guide/index.html

20. NVidia Corporation: Parallel Thread Execution ISA (2014). http://docs.nvidia.
com/cuda/parallel-thread-execution/index.html

21. Wang, Y., Davidson, A., Pan, Y., Wu, Y., Riffel, A., Owens, J.D.: Gunrock: a
high-performance graph processing library on the GPU. In: Proceedings of ACM
PPoPP, pp. 265–266 (2016)

22. Wilt, N.: The CUDA Handbook: A Comprehensive Guide to GPU Programming.
Pearson Education, London (2013)

http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
http://docs.nvidia.com/cuda/kepler-tuning-guide/index.html
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html

Energy Efficient Stencil Computations
on the Low-Power Manycore MPPA-256

Processor

Emmanuel Podestá Jr., Bruno Marques do Nascimento,
and Márcio Castro(B)

Graduate Program in Computer Science (PPGCC),
Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
{emmanuel.podesta,bruno.mn}@grad.ufsc.br, marcio.castro@ufsc.br

Abstract. A new class of highly-parallel low-power manycore chips that
cope with energy constraints have been unveiled. Sunway’s SW26010 and
Kalray’s MPPA-256 are examples of them, featuring more than two hun-
dred cores in a single low-power chip. Although they may present bet-
ter energy efficiency than general-purpose multicore processors, architec-
tural characteristics such as their limited amount of distributed on-chip
memory make the development of efficient scientific parallel applications
a challenging task. In this paper we propose and evaluate a new back-
end of PSkel, a framework that provides a single high-level abstraction
for stencil programming on CPUs and GPUs, for the low-power many-
core MPPA-256 processor. This relieves programmers of the burden of
explicitly dealing with communications and the hybrid underlying pro-
gramming model of MPPA-256. Our results showed that the energy con-
sumption of stencil applications running on MPPA-256 is up to 7.34x
and 4.71x lower than on an Intel Xeon E5 multicore and NVIDIA Tesla
K40 GPU, respectively.

Keywords: MPPA-256 · Manycore · PSkel · Energy efficiency

1 Introduction

High Performance Computing (HPC) platforms have been evaluated based
almost exclusively on their raw processing speed. However, their energy efficiency
have become as important as raw performance. Because of that, a new class of
highly-parallel low-power manycore chips that cope with energy constraints was
unveiled. Sunway’s SW26010 [6] and Kalray’s MPPA-256 [5] are examples of

The authors would like to thank CAPES and CNPq for funding this research. This
work was also supported by STIC-AmSud/CAPES scientific cooperation program
under EnergySFE research project grant No. 99999.007556/2015-02. Finally, a spe-
cial thank to Jean-François Méhaut (LIG/CNRS) for giving access to the MPPA-256
platform to the authors.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 642–655, 2018.
https://doi.org/10.1007/978-3-319-96983-1_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_46&domain=pdf
http://orcid.org/0000-0002-9992-8540

Energy Efficient Stencil Computations on MPPA-256 643

such processors, providing more than two hundred low-power autonomous cores
that can be exploited through both data and task parallelism.

Although low-power manycores may present better energy efficiency than
general-purpose multicore processors [5], their particular architectural character-
istics make the development of efficient scientific parallel applications a very chal-
lenging task [2,18]. Processing cores with non-coherent caches are usually dis-
tributed in a clustered architecture that features a hybrid programming model.
On the one hand, cores in the same cluster share a limited amount of directly
addressable memory. On the other hand, distinct clusters must communicate
through the Network-on-Chip (NoC) in a distributed fashion. For that reason,
communication costs between cores may vary significantly, depending on the
location of the communicating cores on the NoC.

One possible approach to ease the development of parallel applications for
low-power manycores is through the use of skeletons [3]. Skeletons allow program-
mers to focus on designing algorithms rather than worrying about synchroniza-
tion issues and task scheduling, which are transparently handled by the skele-
ton framework, thereby speeding up application development and debugging.
Among several existing patterns of parallel skeletons (e.g., map, reduce, pipeline
and scan), the stencil pattern has been used in applications of many important
fields, such as quantum physics, weather forecasting and digital image process-
ing [8]. The stencil pattern operates on n-dimensional data structures, using an
input data value and its neighbors to compute the corresponding output data
element. This process is repeated for every input data value in the n-dimensional
data structure.

Indeed, many frameworks have been proposed to ease the development of par-
allel stencil computations on multicores and Graphics Processing Units (GPUs)
such as PSkel [11], SkePU [16] and SkelCL [15]. In particular, PSkel is a stencil
framework that provides a single high-level abstraction for stencil programming
on heterogeneous CPU-GPU systems, while allowing automatic data partition,
assignment and computation to both CPU and GPU. In this paper, we present
the design, implementation and evaluation of a new back-end of PSkel for the
low-power manycore MPPA-256 processor (PSkel-MPPA). The same high-level,
low overhead and intuitive PSkel code that already ran transparently on GPUs
and multicores is extended to run also on the MPPA-256 architecture. This
relieves programmers of the burden of explicitly dealing with NoC communi-
cations, the hybrid underlying programming model and the absence of cache
coherence on MPPA-256. Our solution uses a trapezoidal tiling technique to
reduce the number of communications and synchronization barriers on MPPA-
256, which improves considerably the overall performance. Our results show that
the energy consumption of stencil applications on MPPA-256 is up to 7.34x and
4.71x lower than on an Intel Xeon E5 multicore and NVIDIA Tesla K40 GPU,
respectively, while presenting competitive performance.

The remainder of this paper is organized as follows. Section 2 presents an
overview of MPPA-256 and PSkel. Next, Sect. 3 describes our proposal (PSkel-
MPPA) as well as its implementation details. Then, Sect. 4 presents the results

644 E. Podestá Jr. et al.

PE0 PE1

PE2 PE3

PE4 PE5

PE6 PE7

PE8 PE9

PE10 PE11

PE12 PE13

PE14 PE15S
h

ar
ed

 M
em

o
ry

 (
2

M
B

)

D-NoC C-NoC

RM RM RMRM

R
M

R
M

R
M

R
M

RM RM RMRM

R
M

R
M

R
M

R
M

Compute Cluster

I/O Cluster

I/O
 C

lu
st

er

I/O Cluster

I/O
 C

lu
st

er

RM

PCIe, DDR, ...

LPDDR3 (2 GB)

Fig. 1. Overview of the low-power MPPA-256 manycore processor.

obtained with PSkel-MPPA, comparing them against reference implementations
of PSkel for multicores and GPUs. Section 5 discusses related work. Finally,
Sect. 6 concludes this paper.

2 Background

2.1 MPPA-256

MPPA-256 is a single-chip low-power manycore processor developed by Kalray
that integrates 256 user cores and 32 system cores in 28 nm CMOS technology
running at 400 MHz. These cores are distributed across 16 compute clusters
and 4 Input/Output (I/O) clusters that communicate through data and control
NoCs. The board used in this paper has one of the I/O clusters connected to
an external Low-Power Double Data Rate 3 (LPDDR3) of 2 GB. Figure 1 shows
an architectural overview of the MPPA-256 processor. Overall, each compute
cluster has the following components:

– 16 cores called Processing Elements (PEs), which are dedicated to run user
threads (one thread per PE) in non-interruptible and non-preemptible mode.
Each PE has private 2-way associative 32 kB instruction and data caches;

– a Resource Manager (RM), which is responsible for running the operating
system and managing communications;

– a low-latency shared memory of 2 MB, which enables a high bandwidth and
throughput between PEs within the same compute cluster; and

– two NoC controllers, one for data and other for control.

The processor features a distributed memory model. Compute clusters and
the I/O clusters have their own address spaces. Applications must use two par-
allel programming libraries to exploit all processor resources: a thread library
(Pthread or OpenMP) and a proprietary library called Asynchronous Opera-
tions Application Programming Interface (Async API). The former is used to
parallelize computations in computing clusters via shared memory. The latter

Energy Efficient Stencil Computations on MPPA-256 645

follows a distributed memory model, and it must be used for cluster-cluster and
cluster-I/O communications through the NoC.

Async API is based on one-sided communications between the compute clus-
ters’ local memory and LPDDR3. The main concepts behind Async API are
execution domains, segments and put/get operations. The execution domain
represents a set of cores sharing a local memory, being isolated from other exe-
cution domains. Considering the MPPA-256 distributed memory model, an exe-
cution domain corresponds to a compute cluster or to an I/O cluster. Memory
that is not directly accessible from the cores of an execution domain can be struc-
tured into segments, which correspond to the entire or part of the local memory of
cores located in another execution domain. Each segment has a unique signature,
which is specified when the segment is created in an execution domain through
the mppa async segment create() function. Then, other execution domains can
reference a previously created segment by passing its unique signature the func-
tion mppa async segment clone(). Once segments are created and referenced
by different execution domains, one should use put/get operations to read data
from a remote segment into the local memory (get operation) or to write local
data to the remote segment (put operation). Different flavors of these operations
are available in Async API, allowing contiguous or spaced data transfers (e.g.,
mppa async put() and mppa async get spaced()) as well as 2D block transfers
(mppa async sget block2d()), which is useful for transferring 2D data blocks.

The execution flow of an MPPA-256 application is the following. The main
process (called master process) runs on an RM of the I/O cluster connected to
the LPDDR3 and is responsible for allocating the input data in its local mem-
ory (LPDDR3) and spawning worker processes (one for each compute cluster)
by calling the mppa power base spawn() function. The necessary data segments
should be created by the master process so it can exchange data with the com-
pute clusters. Finally, the master process should wait all worker processes to
finish by calling the mppa power base waitpid() function. Each worker process
should make references to remote segments allocated in the LPDDR3 to exchange
data during the execution and may create up to 16 threads using Pthreads or
OpenMP (one thread for each PE) to perform computations in parallel. Each PE
has its own private cache memory without any automatic coherence mechanism
among the remaining PEs cache memories. Although this improves the cache
performance, it requires the developer to explicitly flush data when needed.

2.2 Stencil Pattern and PSkel

The stencil computational pattern operates on n-dimensional data structures
and uses a sliding window (a.k.a mask) that scans the entire input data set
and produces output data using a user-defined stencil kernel function. The mask
size corresponds to a specific number of neighbors of each element of the input
data. The stencil application repeats that process on every element of the input
data. Stencil applications can be iterative, which means that the output data
produced after an iteration t is used as the input for an iteration t + 1.

646 E. Podestá Jr. et al.

1 parallel void stencilKernel(Array2D<float > A, Array2D<float > B,
2 struct Arguments args , int x, int y) {
3 B(x,y) = args.alpha*(A(x,y+1)+A(x,y-1)+A(x+1,y)+A(x-1,y)+args.beta);
4 }
5
6 void jacobi(float *A, float *B, int M, int N, float alpha , float beta ,
7 int timesteps) {
8 Array2D<float > input(A,M,N);
9 Array2D<float > output(B,M,N);

10 struct Arguments args(alpha , beta);
11 Stencil2D<Array2D <float >, struct Arguments > stencil(input ,output ,args);
12 stencil.runIterativeGPU(timesteps);
13 }

Fig. 2. Simplified example of a PSkel stencil code.

PSkel is a framework for high-level programming stencil computations, based
on the concept of parallel skeletons, which offers parallel execution support on
CPUs and GPUs [11]. PSkel offers a single programming interface, decoupled
from the runtime back-ends, that releases the programmer from the responsi-
bility of writing boiler-plate code for parallel stencil computation. Instead, the
programmer is responsible for implementing a stencil kernel describing solely
the computation, while the framework translates the abstractions described into
low-level parallel C++ code. Synchronization, memory management and data
transfers are transparently handled by the framework.

Figure 2 shows an example of the Jacobi method for solving matrix equa-
tions [4] written in PSkel. The PSkel Application Programming Interface (API)
provides templates for manipulating input and output data via template classes
for n-dimensional arrays, called Array, Array2D (Fig. 2, lines 8–9) and Array3D.
These abstractions provide methods that encapsulate the data management
procedures, such as memory allocation, memory copy and data transfer (e.g.,
communication between CPU and GPU). Moreover, it provides abstractions for
specifying the stencil kernel and to manage the stencil execution. The stencil
kernel (prototype function stencilKernel()) is the application specific method
that describes the computation that will be performed on each entry of the
input array and its neighbors (Fig. 2, lines 1–4). The stencilKernel() proto-
type function must be implemented by the user of the PSkel. Finally, the API
provides a set of classes for managing the whole execution of the user-defined
number of iterations of the stencil kernel over the input and output data, such
as Stencil, Stencil2D (Fig. 2, line 11) and Stencil3D.

In the given example, the stencilKernel() function will be executed on the
GPU. The runIterativeGPU() method hides from the user all the CUDA code
needed to correctly execute the specified stencil kernel on the GPU.

3 PSkel-MPPA

As previously discussed in Sect. 2.2, PSkel currently supports the execution of
stencil applications on CPUs and GPUs. In this paper, we propose a new back-
end of PSkel for the low-power manycore MPPA-256 processor, which differs

Energy Efficient Stencil Computations on MPPA-256 647

significantly from the CPU and GPU ones due to the intrinsic characteristics of
MPPA-256 discussed in Sect. 2.1, such as: (i) limited amount of on-chip memory;
(ii) clustered architecture with NoC constraints; (iii) processing cores with non-
coherent caches; and (iv) proprietary low-level communication API.

The new back-end, named PSkel-MPPA, supports 2D stencils (Stencil2D
class in PSkel) and adopts the master-worker model. The master process is exe-
cuted in the I/O cluster connected to the LPDDR3 memory, in which the input
and output data (Array2D objects) are allocated, whereas the worker processes
are executed on the compute clusters (one worker process per compute cluster)
to perform the stencil computation in parallel. Given the memory limitation
inside compute clusters (2 MB), the input Array2D is partitioned into tiles of
fixed user-defined size to be sent to them. When tiling stencil computations,
neighborhood dependencies inherent to the stencil parallel pattern must be con-
sidered before partitioning the input data.

We used the trapezoidal tiling technique to handle neighborhood depen-
dencies in PSkel-MPPA, resulting in redundant data and computation per
tile [13]. We use a formal definition to illustrate this technique. Let A be a
2D data matrix, with dimensions dim(A) = (w, h), where w and h are, respec-
tively, its width and height. Using tiles of dimensions (w′, h′) yields � w

w′ �� h
h′ �

possible tiles of A. Let Ai,j be one such tile, where 0 ≤ i < � w
w′ � and

0 ≤ j < � h
h′ �. Ai,j has offset (iw′, jh′) relative to the top left corner of A

and dim(Ai,j) = (min{w′, w − iw′},min{h′, h − jh′}). The offset is an indexing
displacement required for accessing the elements of the tile.

Figure 3 shows a graphical view of this technique. A logical tile (inner solid
line) is contained in a 2D data matrix (outer dashed line) with vertical and
horizontal offsets given by jh′ and iw′. If t iterations of a stencil application
should be executed, it is possible to compute t′ consecutive iterations on Ai,j (t′ ∈
[1, t]) without the need of any data exchange between adjacent tiles (a.k.a inner
iterations). To do so, the logical tile (Ai,j) must be enlarged with a ghost zone
(area between the inner solid line and the outer solid line), which is comprised
of a halo region (the area between the inner solid line and the inner dashed
line). Let r be the most distant displacement required for the neighborhood
defined by the stencil mask. The area of range r comprising the neighborhood
is denominated halo region. The number of adjacent halo regions that compose
the ghost zone is proportional to t′. Thus, the enlarged tile A∗

i,j has offsets
(max{iw′ − rt′, 0},max{jh′ − rt′, 0}) relative to A. Thus, sizing the ghost zones
poses a trade-off between the cost of redundant computations and the reduction
in communication and synchronizations on the NoC when processing iterative
stencil computations on MPPA-256.

The execution flow of PSkel-MPPA follows the one described in Sect. 2.1.
During the initialization phase, the master process running on the I/O cluster
allocates the input and output data in the LPDDR3, and creates a specific seg-
ment for each one of them. Next, it calculates the number of enlarged tiles that
will be produced as well as their dimensions based on: (i) user-defined parame-
ters, such as the input data and logical tile dimensions, the number of compute

648 E. Podestá Jr. et al.

tile
halo region

enlarged tile

2D array

Fig. 3. 2D tiling [13].

enlarged tile

Input/Output Array2D
Compute Cluster (Shared Memory)

tile

Input/Output Array2D
I/O Cluster (LPDDR3)

tile

enlarged tile

Step 3:

Step 2: Computation

Step 1:

thread 0

thread 1

thread 15

Fig. 4. Communications with block2d.

clusters and the number of inner iterations; and (ii) stencil kernel parameters,
such as the mask size. Then, it spawns up to 16 worker processes (one for each
compute cluster) and informs each worker process about the number of enlarged
tiles produced, their dimensions and the subset of tiles it should compute later
on. Finally, the master process waits for all workers to finish. Each worker pro-
cess, on the other hand, allocates data to store the input and output enlarged
tiles in the compute cluster local memory and clones both input and output
remote segments that were already created by the master process to make data
transfers further on. The initialization phase in both master and worker processes
is encapsulated in the Stencil2D class.

The computation phase consists of the execution of the stencil kernel by
the worker processes. The following three main steps are performed to compute
each tile assigned to a worker process: (1) the enlarged tile is extracted from
the input data allocated in LPDDR3 and transferred to compute cluster local
memory to be processed; (2) t′ iterations of the stencil kernel (inner iterations)
are executed by the worker process over the enlarged tile; and (3) the resulting
logical tile is transferred back from the compute cluster local memory to its
corresponding position in the LPDDR3. Once all tiles assigned to each worker
process were successfully computed, all worker processes must synchronize at a
global barrier, since the data computed during t′ iterations will be needed by the
others in the following iteration to solve neighborhood dependencies. We used
the mppa rpc barrier all() function for this purpose. The whole procedure
described before is then repeated until the total number of iterations defined by
the user (t) is reached. The aforementioned steps are depicted in Fig. 4 and they
are described in more detail below:

Step 1. Based on the information given by the master process during the spawn
procedure, the worker process is capable of calculating the coordinates of each
enlarged tile assigned to it with respect to the input data allocated in the
LPDDR3 (iw′ − rt′ and jh′ − rt′ coordinates) without any other intervention
from the master process. The mppa async sget block2d() function takes
such information and the block size as input parameters and it transfers the

Energy Efficient Stencil Computations on MPPA-256 649

enlarged tile to be processed by the worker process from the input remote
segment into the compute cluster local memory through the NoC.

Step 2. The worker process computes t′ iterations of the user-defined stencil
kernel over the enlarged tile. In each t′ iteration, the computation is paral-
lelized by means of an OpenMP parallel region. The parallel region creates
up to 16 threads (one for each PE). Each PE is responsible for executing the
stencil kernel on a subset of the enlarged tile cells.

Step 3. After the stencil kernel computation, the resulting logical tile is trans-
ferred back to the LPDDR3. The mppa async sput block2d() function is
used for this purpose, allowing the logical tile to be extracted from the
enlarged tile in the compute cluster local memory and transferred to its cor-
responding position in the output remote segment.

Fortunately, all complex tasks related to the tiling technique, NoC communi-
cations and adaptations discussed in this section are hidden from the developers,
since they were included in the back-end of PSkel. This means that current appli-
cations developed with the PSkel framework can run seamlessly on MPPA-256
without any source code modifications.

4 Experimental Evaluation

4.1 Platforms, Applications and Inputs

We evaluate the performance and energy consumption of the proposed solution
(PSkel-MPPA) against reference multicore and GPU implementations available
in PSkel. Energy measurements were collected from power and energy sensors
available on MPPA-256, which include all clusters, memory (on-chip memory
and LPDDR3) and NoCs. The reference implementations of PSkel for CPUs and
GPUs were executed on the platforms described bellow. Compilation was done
using GCC 5.4 (MPPA-256 and CPU) and NVCC version 8.0 (GPU) with the
flags -O3 (all platforms), -march=native -mtune=native -ftree-vectorize
(CPU and GPU) and -arch=sm 35 (GPU).

– Xeon E5: a desktop server featuring an Intel Xeon E5-2640 v4 (Broadwell)
processor with 10 physical cores running at 2.4 GHz and 64 GB of RAM.
Energy measurements on this platform are based on Intel’s Running Average
Power Limit (RAPL) interface, which considers the power consumption of
hardware components through hardware counters. We used this approach to
obtain the energy consumption of the CPU (PACKAGE ENERGY) and DRAM
(DRAM ENERGY).

– Tesla K40: a NVIDIA Tesla K40c graphics board featuring 2880 CUDA
parallel-processing cores with a base clock of 745 MHz and 12 GB of GDDR5
GPU memory. Energy measurements on this platform were obtained from
NVIDIA Management Library (NVML). We used the NVML to gather the
power usage for the GPU and its associated circuitry (e.g., internal memory).

650 E. Podestá Jr. et al.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Convolution GoL Jacobi

P
er

fo
rm

an
ce

 d
eg

ra
da

tio
n

re
la

tiv
e

 to
 n

at
iv

e
co

de
 (

%
)

Fig. 5. Performance degradation of
PSkel-MPPA (in percentage) relative
to hand-optimized code for MPPA-256.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P
er

fo
rm

an
ce

 g
ai

n
re

la
tiv

e
to

 t′
 =

 1

Number of inner iterations (t′)

Convolution
Jacobi

GoL

Fig. 6. Empirical study to find the
best value for t′. The best trade-off is
achieved with t′ = 10.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

2048² 4096² 8192² 12288²

E
xe

cu
tio

n
tim

e
(s

)

Tile Size

32x32
64x64

128x128
256x256

(a) Convolution.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

2048² 4096² 8192² 12288²

Tile Size

32x32
64x64

128x128
256x256

(b) GoL.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

2048² 4096² 8192² 12288²

Tile Size

32x32
64x64

128x128
256x256

(c) Jacobi.

Fig. 7. Impact of tile size on the performance of the stencil applications.

We carried out several experiments with three stencil applications1 imple-
mented in PSkel: (i) Convolution, which implements a classical convolution
method used in signal and image processing; (ii) GoL, which is a cellular automa-
ton implementing Conway’s Game of Life; and (iii) Jacobi, which is an iterative
method for solving matrix equations [4]. We also considered four input data sizes
(2048 × 2048, 4096 × 4096, 8192 × 8192 and 12288 × 12288) to evaluate the per-
formance of the aforementioned PSkel applications on MPPA-256, Xeon E5 and
Tesla K40. Moreover, we evaluated the performance impacts of using different
tile sizes (32 × 32, 64 × 64, 128 × 128 and 256 × 256) on MPPA-256, since
input/output data sizes do not fit into compute clusters memory (2 MB). The
maximum input/output and tile sizes were chosen carefully to fill MPPA-256
memories (2 GB of LPDDR3 and 2 MB of local memory in compute clusters).
Finally, we fixed the number of iterations for each application to t = 100 in all
experiments. All results represent averages of 20 runs with a maximum standard
deviation of less than 1%.

1 A detailed description about these PSkel applications is not presented in this paper
due to space constraints but can be found in [11,12].

Energy Efficient Stencil Computations on MPPA-256 651

4.2 Overhead of PSkel

We first analyze the overhead introduced by our new back-end of PSkel (PSkel-
MPPA). Figure 5 shows the performance degradation of all three stencil applica-
tions implemented with PSkel-MPPA compared to hand-optimized ones imple-
mented without PSkel abstractions. As it can be observed, the performance
degradation introduced by PSkel-MPPA is minimal when compared to MPPA-
256 native stencil code (less then 2.6%).

4.3 Sizing the Ghost Zone

In our solution, the trapezoidal tiling technique allows us to easily fine tune the
size of the ghost zone with the t′ parameter. Indeed, this is an important feature
to exploit the low amount of on-chip memory and to make a better use of the NoC
available in low-power manycores. Thus, we carried out an empirical study with
the aforementioned applications to determine the best value for this parameter.
Figure 6 shows the performance gains when varying t′ from 2 to 16 (performance
gains are relative to t′ = 1). As we mentioned earlier, sizing the ghost zone poses
a trade-off between the cost of redundant computations and the reduction in
communication and synchronizations on the NoC. Our empirical study shows
that the best trade-off is achieved when t′ = 10 (performance obtained with
t′ > 16 varied around 4 and were omitted from the figure). Because of that, all
results presented in next sections were carried out with t′ = 10.

4.4 Tile Size vs. Performance

In this section, we analyze the impact of the tile size on the performance of
PSkel applications on MPPA-256. Figure 7 shows the performance of the stencil
applications when varying the input data size and the tile size. Overall, we
observed an average increase in the execution time of the applications between
2x and 3.3x as we double the input size. This behavior is expected since more
communications and synchronizations must be performed for larger data inputs.

Moreover, we observed that the performance of the applications is greatly
improved as we increase the tile size, regardless of the input size. The main reason
for that is twofold. On the one hand, the number of put/get operations and
synchronizations between the I/O and compute clusters on the NoC is greatly
reduced as we increase the tile size. This allows for bigger data transfers per
put/get operation, improving the NoC throughput. On the other hand, bigger
tiles mean higher parallelism inside compute clusters (i.e., OpenMP threads
will have more work to compute), reducing the overhead imposed by OpenMP
parallel regions. When varying the tile size from 32× 32 to 64× 64, we observed
improvements of up to 3x on all applications. The performance gains increase to
at least 6.9x and 10.3x when varying the tile size from 32 × 32 to 128 × 128 and
from 32 × 32 to 256 × 256, respectively.

652 E. Podestá Jr. et al.

0.0

20.0

40.0

60.0

80.0

100.0

120.0

1 2 4 6 8 10 12 14 16

E
xe

cu
tio

n
tim

e
(s

)

Number of clusters

Convolution
Jacobi

GoL

Fig. 8. Scalability.

0

2

4

6

8

10

12

14

Convolution GoL Jacobi

E
xe

cu
tio

n
tim

e
(s

)

MPPA−256
Xeon E5

Tesla K40

0

100

200

300

400

500

600

700

Convolution GoL Jacobi

E
ne

rg
y

(J
)

MPPA−256
Xeon E5

Tesla K40

Fig. 9. Performance and energy comparison.

4.5 Scalability Analysis

Next, we analyze the scalability of PSkel-MPPA. Figure 8 shows the execution
time of each application on MPPA-256 when varying the number of compute
clusters from 1 to 16. For this experiment, we used input data and tiles of
size 12288 × 12288 and 256 × 256, respectively. As it can be noticed, all stencil
applications present a similar behavior and have their execution times reduced
as we increase the number of compute clusters. Overall, we observed a speedup
gain of 15.3x with 16 compute clusters over the execution with a single compute
cluster. This means that our solution is able to exploit all computing resources
and the NoC of MPPA-256.

4.6 Comparison with CPU and GPU: Performance vs. Energy

Finally, we compare the execution time and energy consumption achieved by
PSkel-MPPA against reference implementations of PSkel for CPU and GPU. In
these experiments, we used input data of size 12288 × 12288. Based on the best
performance achieved on Fig. 7, we used tiles of size 256 × 256 on MPPA-256.
To make a fair comparison, we used the best tiling optimizations for Xeon E5
and Tesla K40 that were available in the multicore and GPU back-ends of PSkel,
respectively. Figure 9 presents the results obtained with all stencil applications.

Overall, PSkel-MPPA achieves competitive execution times compared to the
CPU and GPU counterparts. As expected, the best performance was achieved
on the GPU, since it has much more processing power than the other processors.
The execution times of Convolution, GoL and Jacobi on MPPA-256 were
1.52x, 1.93x and 1.67x higher than on CPU, respectively. On the other hand, the
execution times of Convolution, GoL and Jacobi on MPPA-256 were 2.72x,
2.61x and 4.04x higher than on GPU, respectively.

PSkel-MPPA achieved the best results with respect to the energy consump-
tion on all applications. The main reason is that MPPA-256 offers a high par-
allelism and yet has a low power consumption. As we showed in Sect. 4.3, the
trapezoidal tiling technique implemented in PSkel-MPPA was extremely impor-
tant to achieve such energy improvements. We observed that the energy con-
sumption on MPPA-256 was up to 7.34x and 4.71x lower than on the CPU and
GPU, respectively.

Energy Efficient Stencil Computations on MPPA-256 653

5 Related Work

Due to the importance of parallel skeletons, and specifically the stencil paral-
lel pattern, many recent efforts in research sought to improve the performance
and broaden the support of skeletons on manycore processors. Buono et al. [1]
ported a framework based on parallel skeletons, called FastFlow, to the manycore
processor TilePro64. The TILEPro64 has 64 identical processing cores intercon-
nected by a mesh of network-on-chip. Similarly, Thorarensen et al. [16] presented
a new back-end of the SkePU framework for the low-power manycore Myriad2. It
features a heterogeneous architecture, targeting power constrained devices and
mainly computer vision applications. Lutz et al. [9] used tiling techniques in
stencil computations on multi-GPU environments by using the GPU memories
collectively. Similarly, Gysi et al. [7] propose a framework for automatic tiling
optimizations of stencil computations on CPU-GPU hybrid systems.

Recent works studied the performance and/or the energy efficiency of low-
power manycore processors. Totoni et al. [17] compared the power and perfor-
mance of Intel’s Single-Chip Cloud Computer (SCC) to other types of CPUs
and GPUs. Although they showed that there is no single solution that always
achieves the best trade-off between power and performance, the results suggest
that manycores are an opportunity for the future. Morari et al. [10] proposed
an optimized implementation of radix sort for the Tilera TILEPro64 many-
core processor. The results showed that their solution for TILEPro64 provides
much better energy efficiency than an general-purpose multicore processor (Intel
Xeon W5590) and comparable energy efficiency with respect to a GPU NVIDIA
Tesla C2070. Souza et al. [14] proposed a benchmark suite to evaluate MPPA-
256 manycore processor. The benchmark offers diverse applications regarding
parallel patterns, job types, communication intensity and task load strategies,
suitable for a broad understanding of performance and energy consumption of
MPPA-256 and upcoming manycores. Francesquini et al. [5] evaluated three
different classes of applications (CPU-bound, memory-bound and mixed) using
highly-parallel platforms such as MPPA-256 and a 24-node, 192-core NUMA
platform. They showed that manycore architectures can be very competitive,
even if the application is irregular in nature. Using the Adapteva’s Epiphany-IV
low-power manycore, Varghese et al. [18] described how a stencil-based solution
to the anisotropic heat equation using a two-dimensional grid was developed.
This manycore has a low power budged (2 W) and has 64 processing cores.
Similar to MPPA-256, Epiphany-IV has a very limited amount of local memory
available to each core and no automatic prefetching mechanism exists.

To the best of our knowledge, PSkel-MPPA is the first complete implemen-
tation of a parallel stencil framework on MPPA-256. Our solution relieves pro-
grammers of the burden of explicitly dealing with NoC communications, the
hybrid underlying programming model and the absence of cache coherence on
MPPA-256. The trapezoidal tiling technique allows developers to fine tune the
trade-off between the cost of redundant computations and the reduction in com-
munication and synchronizations on the NoC when processing iterative stencil
computations on MPPA-256.

654 E. Podestá Jr. et al.

6 Conclusion

Low-power manycores have emerged as a building block for constructing energy-
efficient HPC platforms. However, the development of efficient parallel appli-
cations is very challenging on these processors because developers must deal
with hybrid programming models, limited amount of directly addressable mem-
ory and NoC constraints. In this paper, we propose to ease the development of
stencil applications on the low-power MPPA-256 manycore processor by means
of parallel skeletons. More precisely, we proposed a new back-end of the PSkel
stencil framework for MPPA-256 named PSkel-MPPA, providing a single high-
level abstraction for stencil programming on CPUs, GPUs and MPPA-256. Our
solution relieves programmers of the burden of explicitly dealing with commu-
nications and the hybrid underlying programming model of MPPA-256.

The trapezoidal tiling technique adopted in our solution was essencial to
exploit the low-power MPPA-256 manycore processor, improving the perfor-
mance of our solution. Our results showed that PSkel-MPPA achieved the best
results with respect to the energy consumption on all applications, being up to
7.34x and 4.71x more energy efficient than on the CPU and GPU considered
in this study, respectively. Moreover, PSkel-MPPA achieved competitive per-
formance on MPPA-256 in comparison to the CPU and GPU reference imple-
mentations. The GPU achieved the best performance, since it has much more
processing power than the other processors.

As future works, we intend to extend our support in PSkel-MPPA for 3D
stencils. In this case, it would be necessary to consider a prefetching scheme
to overlap communications with computations. Moreover, we intend to compare
our results on MPPA-256 against low-power ARM processors, which may also
include a low-power GPU. Finally, we intend to provide similar abstractions for
dealing with other kinds of skeletons.

References

1. Buono, D., Danelutto, M., Lametti, S., Torquati, M.: Parallel patterns for general
purpose many-core. In: 2013 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, pp. 131–139 (2013). https://doi.org/
10.1109/PDP.2013.27

2. Castro, M., Francesquini, E., Dupros, F., Aochi, H., Navaux, P.O., Méhaut, J.F.:
Seismic wave propagation simulations on low-power and performance-centric many-
cores. Parallel Comput. 54, 108–120 (2016). https://doi.org/10.1016/j.parco.2016.
01.011

3. Cole, M.: Bringing skeletons out of the closet: a pragmatic manifesto for skeletal
parallel programming. Parallel Comput. 30(3), 389–406 (2004)

4. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM, Philadelphia (1997)
5. Francesquini, E., et al.: On the energy efficiency and performance of irregular

applications on multicore, NUMA and manycore platforms. J. Parallel Distrib.
Comput. 76, 32–48 (2014). https://doi.org/10.1016/j.jpdc.2014.11.002

6. Fu, H., et al.: The sunway taihulight supercomputer: system and applications. Sci.
China Inf. Sci. 59(7), 1–16 (2016). https://doi.org/10.1007/s11432-016-5588-7

https://doi.org/10.1109/PDP.2013.27
https://doi.org/10.1109/PDP.2013.27
https://doi.org/10.1016/j.parco.2016.01.011
https://doi.org/10.1016/j.parco.2016.01.011
https://doi.org/10.1016/j.jpdc.2014.11.002
https://doi.org/10.1007/s11432-016-5588-7

Energy Efficient Stencil Computations on MPPA-256 655

7. Gysi, T., Grosser, T., Hoefler, T.: MODESTO: data-centric analytic optimization
of complex stencil programs on heterogeneous architectures. In: International Con-
ference on Supercomputing (ICS), pp. 177–186. ACM, Irvine (2015)

8. Holewinski, J., Pouchet, L.N., Sadayappan, P.: High-performance code generation
for stencil computations on GPU architectures. In: International Conference on
Supercomputing (ICS), pp. 311–320. ACM, Venice (2012)

9. Lutz, T., Fensch, C., Cole, M.: PARTANS: an autotuning framework for stencil
computation on multi-GPU systems. ACM Trans. Archit. Code Optim. 9(4), 59:1–
59:24 (2013)

10. Morari, A., Tumeo, A., Villa, O., Secchi, S., Valero, M.: Efficient sorting on the
Tilera manycore architecture. In: International Symposium on Computer Architec-
ture and High Performance Computing (SBAC-PAD), pp. 171–178. IEEE Com-
puter Society, New York (2012)

11. Pereira, A.D., Ramos, L., Góes, L.F.W.: PSkel: a stencil programming framework
for CPU-GPU systems. Concurr. Comput.: Pract. Exp. 27(17), 4938–4953 (2015)

12. Pereira, A.D., Rocha, R.C.O., Castro, M., Goes, L.F.W., Dantas, M.A.R.: Extend-
ing OpenACC for efficient stencil code generation and execution by skeleton frame-
works. In: International Conference on High Performance Computing and Simu-
lation (HPCS), pp. 719–726. IEEE Computer Society, Genoa (2017). https://doi.
org/10.1109/HPCS.2017.110

13. Rocha, R.C.O., Pereira, A.D., Ramos, L., Ges, L.F.W.: TOAST: automatic tiling
for iterative stencil computations on GPUs. Concurr. Comput.: Pract. Exp. 29(8),
1–13 (2017). https://doi.org/10.1002/cpe.4053

14. Souza, M.A., et al.: CAP bench: a benchmark suite for performance and energy
evaluation of low-power many-core processors. Concurr. Comput.: Pract. Exp. 29,
e3892 (2016). https://doi.org/10.1002/cpe.3892

15. Steuwer, M., Kegel, P., Gorlatch, S.: SkelCL - a portable skeleton library for high-
level GPU programming. In: IEEE International Symposium on Parallel and Dis-
tributed Processing Workshops (IPDPSW), pp. 1176–1182. IEEE Computer Soci-
ety, Shanghai (2011)

16. Thorarensen, S., Cuello, R., Kessler, C., Li, L., Barry, B.: Efficient execution
of SkePU skeleton programs on the low-power multicore processor Myriad2. In:
Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing (PDP), pp. 398–402 (2016). https://doi.org/10.1109/PDP.2016.123

17. Totoni, E., Behzad, B., Ghike, S., Torrellas, J.: Comparing the power and per-
formance of intel’s SCC to state-of-the-art CPUs and GPUs. In: IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software (ISPASS),
pp. 78–87. IEEE Computer Society, New Brunswick (2012). https://doi.org/10.
1109/ISPASS.2012.6189208

18. Varghese, A., Edwards, B., Mitra, G., Rendell, A.P.: Programming the adapteva
epiphany 64-core network-on-chip coprocessor. In: International Parallel Dis-
tributed Processing Symposium Workshops (IPDPSW), pp. 984–992. IEEE Com-
puter Society, Phoenix (2014)

https://doi.org/10.1109/HPCS.2017.110
https://doi.org/10.1109/HPCS.2017.110
https://doi.org/10.1002/cpe.4053
https://doi.org/10.1002/cpe.3892
https://doi.org/10.1109/PDP.2016.123
https://doi.org/10.1109/ISPASS.2012.6189208
https://doi.org/10.1109/ISPASS.2012.6189208

Theory and Algorithms for Parallel
Computation and Networking

High-Quality Shared-Memory Graph
Partitioning

Yaroslav Akhremtsev1(B), Peter Sanders1, and Christian Schulz2

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{yaroslav.akhremtsev,peter.sanders}@kit.edu

2 University of Vienna, Vienna, Austria
christian.schulz@univie.ac.at

Abstract. Partitioning graphs into blocks of roughly equal size such
that few edges run between blocks is a frequently needed operation in pro-
cessing graphs. Recently, size, variety, and structural complexity of these
networks has grown dramatically. Unfortunately, previous approaches
to parallel graph partitioning have problems in this context since they
often show a negative trade-off between speed and quality. We present an
approach to multi-level shared-memory parallel graph partitioning that
guarantees balanced solutions, shows high speed-ups for a variety of large
graphs and yields very good quality independently of the number of cores
used. For example, on 31 cores, our algorithm partitions our largest test
instance into 16 blocks cutting less than half the number of edges than
our main competitor when both algorithms are given the same amount of
time. Important ingredients include parallel label propagation, parallel
initial partitioning, a simple yet effective approach to parallel localized
local search, and cache-aware hash tables.

1 Introduction

Partitioning a graph into k blocks of similar size such that few edges are cut is a
fundamental problem with many applications. For example, it often arises when
processing a single graph on k processors.

The graph partitioning problem is NP-hard. Thus, to solve the graph parti-
tioning problem in practice, one needs to use heuristics. A very common app-
roach to partition a graph is the multi-level graph partitioning (MGP) approach.
The main idea is to contract the graph in the coarsening phase until it is small
enough to be partitioned by more sophisticated but slower algorithms in the
initial partitioning phase. Afterwards, in the uncoarsening/local search phase,
the quality of the partition is improved on every level of the computed hierarchy
using a local improvement algorithm.

There is a need for shared-memory parallel graph partitioning algorithms that
efficiently utilize all cores of a machine. This is due to the well-known fact that
CPU technology increasingly provides more cores with relatively low clock rates

This is the short version of the technical report [2].

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 659–671, 2018.
https://doi.org/10.1007/978-3-319-96983-1_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_47&domain=pdf

660 Y. Akhremtsev et al.

in the last years since these are cheaper to produce and run. Moreover, shared-
memory parallel algorithms implemented without message-passing libraries (e.g.
MPI) usually give better speed-ups and running times than its MPI-based coun-
terparts. Shared-memory parallel graph partitioning algorithms can in turn also
be used as a component of a distributed graph partitioner, which distributes
parts of a graph to nodes of a compute cluster and then employs a shared-
memory parallel graph partitioning algorithm to partition the corresponding
part of the graph on a node level.

Contribution: We present a high-quality shared-memory parallel multi-level
graph partitioning algorithm that parallelizes all of the three MGP phases –
coarsening, initial partitioning and refinement – using C++14 multi-threading.
Our approach uses a parallel label propagation algorithm that is able to shrink
large complex networks fast during coarsening. Our parallelization of localized
local search [10] is able to obtain high-quality solutions and guarantee balanced
partitions despite performing most of the work in mostly independent local
searches of individual threads. Using cache-aware hash tables we limit memory
consumption and improve locality. Our approach scales comparatively better
than other parallel partitioners and has considerably higher quality which does
not degrade with increasing number of processors.

After presenting preliminaries and related work in Sect. 2, we explain details
of the multi-level graph partitioning approach and the algorithms that we par-
allelize in Sect. 3. Section 4 presents our approach to parallelization of the multi-
level graph partitioning phases. Extensive experiments are presented in Sect. 5.

2 Preliminaries

2.1 Basic Concepts

Let G = (V = {0, . . . , n−1}, E) be an undirected graph, where n = |V | and m =
|E|. We consider positive, real-valued edge and vertex weight functions ω and
c extending them to sets, e.g., ω(M) :=

∑
x∈M ω(x). N(v) := {u : {v, u} ∈ E}

denotes the neighbors of v. The degree of a vertex v is d(v) := |N(v)|. Δ is the
maximum vertex degree. A vertex is a boundary vertex if it is incident to a vertex
in a different block. We are looking for disjoint blocks of vertices V1,. . . ,Vk that
partition V ; i.e., V1 ∪ · · · ∪ Vk = V . The balancing constraint demands that all
blocks have weight c(Vi) ≤ (1 + ε)� c(V)

k � =: Lmax for some imbalance parameter
ε. We call a block Vi overloaded if its weight exceeds Lmax. The objective is to
minimize the total cut ω(E ∩⋃

i<j Vi ×Vj). We define the gain of a vertex as the
maximum decrease in cut size when moving it to a different block. We denote
the number of processing elements (PEs) as p.

A clustering is also a partition of the vertices. However, k is usually not given
in advance and the balance constraint is removed. A size-constrained clustering
constrains the size of the blocks of a clustering by a given upper bound U .

An abstract view of the partitioned graph is the quotient graph, in which
vertices represent blocks and edges are induced by connectivity between blocks.

High-Quality Shared-Memory Graph Partitioning 661

The weighted version of the quotient graph has vertex weights which are set to
the weight of the corresponding block and edge weights that are equal to the
weight of the edges that run between the respective blocks.

In general, our input graphs G have unit edge weights and vertex weights.
However, even those will be translated into weighted problems in the course of
the multi-level algorithm. In order to avoid a tedious notation, G will denote the
current state of the graph before and after a (un)contraction in the multi-level
scheme throughout this paper.

We analyze algorithms using the concept of total work (the time spent by
one processor) and span; i.e., the time spent using an unlimited number of PEs.

2.2 Related Work

There has been intensive research on graph partitioning so that we refer the
reader to the full version of the paper and a recent overview [2,4]. Here, we
focus on issues closely related to our main contributions. All general-purpose
methods that are able to obtain good partitions for large real-world graphs are
based on the multi-level principle. Well-known software packages based on this
approach include Jostle, KaHIP, Metis and Scotch.

Probably the fastest available distributed memory parallel code is the parallel
version of Metis, ParMetis [5]. This parallelization has problems maintaining the
balance of the blocks since at any particular time, it is difficult to say how many
vertices are assigned to a particular block. In addition, ParMetis only uses very
simple greedy local search algorithms that do not yield high-quality solutions.
Mt-Metis by LaSalle and Karypis [6,7] is a shared-memory parallel version of the
ParMetis graph partitioning framework. LaSalle and Karypis use a hill-climbing
technique during refinement. The local search method is a simplification of k-
way multi-try local search [10] in order to make it fast. The idea is to find a set
of vertices (hill) whose move to another block is beneficial and then to move this
set accordingly. However, it is possible that several PEs move the same vertex.
To handle this, each vertex is assigned a PE, which can move it exclusively.
Other PEs use a message queue to send a request to move this vertex.

Meyerhenke et al. [9] propose ParHIP, to partition large complex networks
on distributed memory parallel machines using label propagation. The resulting
system is more scalable and achieves higher quality than state-of-the-art systems
like ParMetis or PT-Scotch. There are other parallel graph partitioners: PT-
Scotch, KaPPa, and PDiBaP. See details in the full version of the paper [2].

3 Multi-level Graph Partitioning

We now give an in-depth description of the three main phases of a multi-level
graph partitioning algorithm: coarsening, initial partitioning and uncoarsen-
ing/local search. In particular, we give a description of the sequential algorithms
that we parallelize in the following sections. Our starting point here is the KaHIP
framework [10]. For the development of the parallel algorithm, we add the k-way

662 Y. Akhremtsev et al.

multi-try local search scheme which gives higher quality, and improve it to per-
form less work than the original sequential version.

Coarsening. To create a new level of a graph hierarchy, we compute a clustering
and build a coarse graph G′. Each original cluster corresponds to a single vertex
in G′. The weight of this vertex is set to the sum of the weights of all vertices
(in the finer graph) in the cluster. There is an edge between two vertices of G′ if
the corresponding clusters are connected by at least one edge. The weight of this
edge is set to the sum of all edges (in the finer graph) that connect these clusters.
The hierarchy created in this recursive manner is then used by the partitioner.
Note that a partition of the coarse graph corresponds to a partition of the finer
graph with the same cut and balance. We now describe the clustering algorithm
that we parallelize.

Clustering. We denote the set of all clusters as C and the cluster ID of a
vertex v as C[v]. In our framework, we use the label propagation algorithm
by Meyerhenke et al. [8] that creates clusters with constrained size. The size
constrained label propagation algorithm works in iterations; i.e., the algorithm
is repeated � times (� is a tuning parameter). Initially, each vertex is in its own
cluster (C[v] = v) and all vertices are put into a queue Q in increasing order of
their degrees. During each iteration, the algorithm iterates over all vertices in
Q. A neighboring cluster C of a vertex v is called eligible if C will not become
overloaded once v is moved to C. When a vertex v is visited, it is moved to the
eligible cluster C that maximizes ω({(v, u) | u ∈ N(v) ∩ C}). If a vertex changes
its cluster then all its neighbors are added to a queue Q′ for the next iteration. At
the end of an iteration, Q and Q′ are swapped, and the algorithm proceeds with
the next iteration. The sequential running time of one iteration of the algorithm
is O(m + n).

Initial Partitioning. After we have built the coarsest graph G′, we partition it
into k blocks using the algorithms from KaHIP [10]. To get a better solution, the
graph G′ is partitioned into k blocks I times and the best solution is returned.

Uncoarsening/Local Search. After initial partitioning, a local search algo-
rithm is applied on each level of the multi-level hierarchy to decrease the cut
size. There are a variety of local search algorithms: size-constraint label propa-
gation, Fiduccia-Mattheyses k-way local search (FM), max-flow min-cut based
local search, k-way multi-try local search (MLS) [10] Sequential versions of
KaHIP use combinations of those. Since k-way local search is P-complete, we
use a combination of the size-constrained label propagation algorithm and MLS.
MLS achieves higher quality than FM [10] and decomposes the optimization into
many small local searches which is a good basis for parallelization.

We now describe MLS that performs a k-way local searches around a single
boundary vertices. This gives better chances of finding a nontrivial improve-
ments [10]. The algorithm is organized in a nested loop of global and local

High-Quality Shared-Memory Graph Partitioning 663

iterations. In the beginning of a global iteration, we put all boundary vertices
into a todo list T . Initially, all vertices are unmarked. Afterwards, the algorithm
repeatedly chooses and removes a random vertex v ∈ T . If v is not marked then
it performs a k-way local search around v. It marks v and N(v) and inserts
them into the priority queue PQ using gain values as keys. Next, the algorithm
extracts a vertex w with the maximum key in the PQ. If the corresponding
move of w does not produce an overloaded block then it performs the move and
inserts all unmarked neighbors of w into the PQ. The algorithm stops when the
priority queue is empty or an adaptive stopping rule decides to stop. In the end,
the best partition that has been seen during the process is reconstructed. In
one local iteration, this is repeated until the todo list is empty. Afterwards, the
algorithm reinserts moved vertices into T in a random order. If the achieved gain
improvement is larger than a certain percentage (currently 10 %) of the total
improvement during the current global iteration, it continues to perform moves
around the vertices currently in the todo list (next local iteration). This allows
to further decrease the cut size without significant impact to the running time.
When improvements fall below this threshold, the next global iteration is started
that initializes the todo list with all boundary vertices. After a fixed number of
global iterations (currently 3), the MLS algorithm stops. Our experiments show
that 3 global iterations is a fair trade-off between the running time and quality of
the partition. This nested loop of local and global iterations is an improvement
over the original MLS search from [10] since they allow for a better control of
the running time of the algorithm.

The running time of one local iteration is O(n +
∑

v∈V d(v)2). Because each
vertex can be moved only once during a local iteration and we update the gains
of its neighbors using a bucket heap. Since we update the gain of a vertex at
most d(v) times, the d(v)2 term is the total cost to update the gain of a vertex v.
Note, that this is an upper bound for the worst case, usually local search stops
significantly earlier due the stopping rule or an empty priority queue.

4 Parallel Multi-level Graph Partitioning

Profiling the sequential algorithm shows that each of the components of the
multi-level scheme has a significant contribution to the overall algorithm. Our
general approach is to avoid bottlenecks as well as performing independent work
as much as possible.

4.1 Coarsening: Parallel Size-Constraint Label Propagation

To parallelize the size-constraint label propagation algorithm, we adapt a clus-
tering technique by Staudt and Meyerhenke [12]. First, we sort the vertices in
increasing order of their degrees using a parallel sorting Algorithm [3]. Then
we form work packets of vertices and put them into a concurrent queue. We
constraint each packet to contain vertices with a total number of at most

√
m

neighbors. Additionally, we have an empty queue Q′ that stores packets for the

664 Y. Akhremtsev et al.

next iteration. During an iteration, each PE tries to extract a packet from the
queue Q. It chooses a new cluster for each vertex in the currently processed
packet. A vertex is then moved if the cluster size is still feasible to take on the
weight of the vertex. Cluster sizes are updated atomically using a compare and
swap instruction. This is important to guarantee that the size constraint is not
violated. Neighbors of moved vertices are inserted into a packet for the next
iteration. If the sum of vertex degrees in that packet exceeds the work bound√

m then this packet is inserted into queue Q′ and a new packet is created for
subsequent vertices. When the queue Q is empty, the main PE exchanges Q
and Q′ and we proceed with the next iteration. One iteration of the algorithm
can be done with O(n + m) work and O(n+m

p) span.

Coarsening: Parallel Contraction

The contraction algorithm takes a graph G = (V,E) as well as a clustering C
and constructs a coarse graph G′ = (V ′, E′). The contraction process consists
of three phases: the remapping of cluster IDs to a consecutive set of IDs, edge
weight accumulation, and the construction of the coarse graph. The remapping
of cluster IDs assigns new IDs in the range [0, |V ′| − 1] to the clusters by cal-
culating a prefix sum on an array that contains ones in the positions equal to
the current cluster IDs. This phase can be done in O(n) work. Sequentially, the
edge weight accumulation step calculates weights of edges in E′ using hashing.
For each cut edge (v, u) ∈ E, we insert a pair (C[v], C[u]) into a hash table and
accumulate weights for the pair if it is already contained in the table. Due to
hashing cut edges, the expected work of this phase is O(|E′| + m). To construct
the coarse graph, we iterate over all edges E′ contained in the hash table. This
takes O(|V ′|+ |E′|) work. Hence, the total expected work to compute the coarse
graph is O(m + n + |E′|).

The parallel contraction algorithm works as follows. First, we remap the
cluster IDs using parallel prefix sums. Edge weights are accumulated by iterating
over the edges of the original graph in parallel. This uses a concurrent hash table.
The third phase is performed sequentially in the current implementation since
profiling indicates that it is so fast that it is not a bottleneck.

4.2 Initial Partitioning

To improve the quality of the resulting partitioning of the coarsest graph G′ =
(V ′, E′), we partition it into k blocks max(p, I) times instead of I times. Each
PE creates a copy of the coarsest graph and runs KaHIP sequentially on it
using a random seed. Assume that one partitioning can be done in T time. Then
max(p, I) partitions can be built with O(max(p, I) · T + p · (|E′| + |V ′|)) work
and O(max(p,I)·T

p + |E′| + |V ′|) span.

4.3 Uncoarsening/Local Search

Our parallel algorithm first uses size-constraint parallel label propagation to
improve the current partition and afterwards applies our parallel MLS. The idea

High-Quality Shared-Memory Graph Partitioning 665

is that label propagation is easy to parallelize and will do all the easy improve-
ments. Subsequent MLS will then invest considerable work to find nontrivial
improvements. In this combination, only few nodes actually need be moved glob-
ally which makes it easier to parallelize MLS scalably. When using the label
propagation algorithm to improve a partition, we set the upper bound U to
Lmax.

Parallel MLS works in a nested loop of local and global iterations as in the
sequential version. Initialization of a global iteration uses a simplified parallel
shuffling algorithm where each PE shuffles the nodes it considers into a local
bucket and then the queue is made up of these buckets in random order. During
a local iteration, each PE extracts vertices from a producer queue Q. Afterwards,
it performs local moves around it; that is, global block IDs and the sizes of the
blocks remain unchanged. When the producer queue Q is empty, the algorithm
applies the best found sequences of moves to the global data structures and
proceeds with the next local iteration.

Performing Moves. Each PE performs moves in the function PerformMoves.
Starting from a single boundary vertex, each PE performs local moves of vertices
to find a sequence of moves that decreases the cut. That is, moves do not affect
the current global partition – they are stored in the local memory of the PE
performing them. To perform a move, a PE chooses a vertex with maximum
gain and marks it so that other PEs cannot move it. Then, we update the sizes
of the affected blocks and save the move. During the course of the algorithm, we
store the sequence of moves yielding the best cut. We stop if there are no moves
to perform or the adaptive stopping rule signals the algorithm to stop. When a
PE finished, the sequences of moves yielding the smallest cut is returned.

In order to improve scalability, only the array for marking moved vertices is
global. Note that within a local iteration, only bits in this array are set (using
compare and swap instruction) and they are never unset. Hence, the marking
operation can be seen as priority update operation (see Shun et al. [11]) and
thus causes only little contention. The algorithm keeps a local array of block
sizes, a local priority queue, and a local hash table storing changed block IDs
of vertices. Note that since the local hash table is small, it often fits into cache
which is crucial for parallelization due to memory bandwidth limits. When the
call of PerformMoves finishes and the thread executing it notices that the queue
Q is empty, it sets a global variable to signal the other threads to finish the
current call of the function PerformMoves. This way, isolated very long MLS
searches cannot lead to bad load balance.

Let each PE process a set of edges E and a set of vertices V. Since a vertex
can be moved only by one PE and moving it requires to compute gain for its
neighbors, the span of the function PerformMoves is O(

∑
v∈V

∑
u∈N(v) d(u) +

|V|) = O(
∑

v∈V d2(v) + |V|) since the gain of a vertex v is updated at most d(v)
times.

666 Y. Akhremtsev et al.

Applying Moves. Let Mi denote the set of sequences of moves performed
by PE i. We apply moves sequentially in the following order M1,M2, . . . ,Mp.
We can not apply the moves directly in parallel since a move done by one PE
may affect a move done by another PE and the cut size may even increase.
To prevent this, we recalculate the gain of each move in a given sequence and
apply the subsequence of moves that gives the best cut. Finally, we insert all
moved vertices into the queue Q. Let M be the set of all moved vertices during
this procedure. The overall running time is then given by O(

∑
v∈M d(v)). Note

that our initial partitioning algorithm generates balanced solutions. Since moves
are applied sequentially our parallel local search algorithm maintains balanced
solutions.

4.4 Differences to Mt-Metis

We now discuss differences between our algorithm and Mt-Metis. In the coars-
ening phase, we use a cluster contraction while Metis is using a matching-
based scheme. Our approach is especially well suited for networks that have
a pronounced and hierarchical cluster structure. The general initial partitioning
scheme is similar in both algorithms. However, the employed sequential tech-
niques differ because different sequential tools (KaHIP and Metis) are used to
partition the coarsest graphs. In terms of local search, unlike Mt-Metis, our app-
roach guarantees that the updated partition is balanced if the input partition is
balanced and that the cut can only decrease or stay the same. The hill-climbing
technique, however, may increase the cut of the input partition or may compute
an imbalanced partition even if the input partition is balanced. Our algorithm
has these guarantees since each PE performs moves of vertices locally in par-
allel. When all PEs finish, one PE globally applies the best sequences of local
moves computed by all PEs. Usually, the number of applied moves is signifi-
cantly smaller than the number of local moves performed by all PEs, especially
on large graphs. Thus, the main work is still made in parallel. Additionally, we
introduce a cache-aware hash table that we use to store local changes of block
IDs made by each PE. This hash table is more compact than an array and takes
the locality of data into account.

4.5 Further Optimization

In this section, we list further optimization techniques that we use to achieve
better speed-ups and overall speed. More precisely, we use cache-aligned arrays
to mitigate the problem of false-sharing, the TBB scalable allocator [1] for con-
current memory allocations and pin threads to cores to avoid rescheduling over-
heads. Additionally, we use a cache-aware hash table that is described in the full
version of the paper [2]. In contrast to usual hash tables, this hash table allows
us to exploit locality of data and hence to reduce the overall running time of the
algorithm.

High-Quality Shared-Memory Graph Partitioning 667

5 Experiments

We implemented our algorithm Mt-KaHIP (Multi-threaded KaHIP) within the
KaHIP [10] framework using C++ and the C++14 multi-threading library. We plan
to make our program available in the framework. All binaries are built using
g++-5.2.0 with the -O3 flag and 64-bit index data types. We run our experi-
ments on two machines. Machine A is an Intel Xeon E5-2683v2 (2 sockets, 16
cores with Hyper-Threading, 64 threads) running at 2.1 GHz with 512 GB RAM.
Machine B is an Intel Xeon E5-2650v2 (2 sockets, 8 cores with Hyper-Threading,
32 threads) running at 2.6 GHz with 128 GB RAM.

We compare ourselves to Mt-Metis 0.6.0 using the default configuration with
hill-climbing being enabled (Mt-Metis) as well as sequential KaHIP 2.0 using the
fast social configuration (KaHIP) and ParHIP 2.0 [9] using the fast social
configuration (ParHIP). According to LaSalle and Karypis [6] Mt-Metis has bet-
ter speed-ups and running times compared to ParMetis and Pt-Scotch. At the
same time, it yields similar solution quality. Hence, we do not perform experi-
ments with ParMetis and Pt-Scotch. Our algorithm consumes 44.3% less mem-
ory than Mt-Metis on the largest graph from our benchmark set for p = 31 on
machine A. For more details, we refer the reader to [2].

Our default value of allowed imbalance is 3%. We call a solution imbalanced
if at least one block exceeds this amount. We perform ten repetitions for every
algorithm using different random seeds for initialization and report the arith-
metic average of computed cut size and running time on a per instance (graph
and number of blocks k) basis. If at least one repetition returns an imbalanced
partition of an instance then we mark this instance imbalanced. Our experiments
focus on the cases k ∈ {16, 64} and p ∈ {1, 16, 31} to save running time.

We use performance plots to present quality comparisons and scatter plots
to present the speed-up and the running time comparisons. A curve in a per-
formance plot for algorithm X is obtained as follows: For each instance (graph
and k), we calculate the normalized value 1 − best

cut
, where best is the best cut

obtained by any of the considered algorithms and cut is the cut of algorithm X.
These values are then sorted. Thus, the result of the best algorithm is in the
bottom of the plot. We set the value for the instance above 1 if an algorithm
builds an imbalanced partition. Hence, it is in the top of the plot.

Any multi-level algorithm has a considerable number of tuning parameters.
We adopt parameters from the coarsening and initial partitioning phases of
KaHIP. Mt-KaHIP uses 10 and 25 label propagation iterations during coarsen-
ing and refinement, respectively, partitions a coarse graph max(p, 4) times in
initial partitioning and uses 3 global iterations of parallel MLS in the refinement
phase.

Instances. We evaluate all algorithms on a benchmark of 24 large graphs and
for k ∈ {16, 64}. This collection consist of different kinds of graphs: numeric
simulations, complex networks (focused on social networks and web graphs),
and random graphs (random geometric graphs, delaunay graphs, and random

668 Y. Akhremtsev et al.

hyperbolic graphs). Details of the benchmark can be found in the full version of
the paper [2].

5.1 Quality Comparison

In this section, we compare our algorithm against competing state-of-the-art
algorithms in terms of quality. The performance plot in Fig. 1 shows the results
of our experiments performed on machine A for all of our benchmark graphs.

Our algorithm gives the best overall quality, usually producing the over-
all best cut. Even in the small fraction of instances where other algorithms
are best, our algorithm is at most 7% off. The overall solution quality does
not heavily depend on the number of PEs used. Indeed, more PEs give
slightly higher partitioning quality. The original fast social configuration of
KaHIP as well as ParHIP produce worse quality than Mt-KaHIP, since par-
allel MLS significantly improves solution quality. Mt-Metis with p = 1 has
worse quality than our algorithm on almost all instances. For Mt-Metis
this is expected since it is considerably faster than our algorithm. However,
Mt-Metis also suffers from deteriorating quality and many imbalanced parti-
tions as the number of PEs goes up. This can also be seen from the geometric
means of the cut sizes over all instances, including the imbalanced solutions.

Fig. 1. Performance plot for the cut size. The num-
ber behind the algorithm name denotes the number
of threads.

For our algorithm they are
727.2K, 713.4K and 710.8K
for p = 1, 16, 31, respec-
tively. For Mt-Metis they are
819.8K, 873.1K and 874.8K
for p = 1, 16, 31, respectively.
For ParHIP they are 809.9K,
809.4K and 809.71K for p =
1, 16, 31, respectively, and for
KaHIP it is 766.2K. For p = 31,
the geometric mean cut size
of Mt-KaHIP is 18.7% smaller
than that of Mt-Metis, 12.2%
smaller than that of ParHIP
and 7.2% smaller than that of
KaHIP.

Additionally, we compare
the effectiveness of our algo-
rithm Mt-KaHIP against com-
petitors. We give the faster
algorithm the same amount of
time as the slower algorithm for additional repetitions that can lead to improved
solutions. The detailed description of these experiments is in the full version
of the paper [2]. Still in 80.4% of the tests Mt-KaHIP has better quality than
Mt-Metis. In the worst-case, Mt-KaHIP has a 5.5% larger cut than Mt-Metis. In
96.5% of the tests, Mt-KaHIP has better quality than ParHIP. In the worst-case,

High-Quality Shared-Memory Graph Partitioning 669

Fig. 2. From left to right for p = 31: (a) full speed-up, (b) full running time per edge
in nanoseconds. Horizontal lines are harmonic and geometric means.

Mt-KaHIP has a 5.4% larger cut than ParHIP. In 98.9% of the tests, Mt-KaHIP
has better quality than KaHIP. In the worst-case, Mt-KaHIP has a 3.5% larger
cut than KaHIP.

5.2 Speed-Up and Running Time Comparison

In this section, we compare the speed-ups and the running times of our algorithm
against competitors. We calculate a relative speed-up of an algorithm as a ratio
between its running time and its running time with p = 1. Figure 2 show scatter
plots with speed-ups and time per edge for a full algorithm execution on machine
A. We calculate the geometric and harmonic means only for instances that were
partitioned in ten repetitions without imbalance. Note that among the top 20
speed-ups of Mt-Metis 60% correspond to imbalanced instances (Mt-Metis 31
imbalanced) thus we believe it is fair to exclude them.

The harmonic mean full speed-up of our algorithm, Mt-Metis and ParHIP for
p = 31 are 9.1, 11.1 and 9.5, respectively. The harmonic mean local search speed-
up of our algorithm, Mt-Metis and ParHIP are 13.5, 6.7 and 7.5, respectively. Our
full speed-ups are comparable to that of Mt-Metis but our local search speed-ups
are significantly better than that of Mt-Metis. The geometric mean full time per
edge of our algorithm, Mt-Metis and ParHIP are 52.3 nanoseconds (ns), 12.4 [ns]
and 121.9 [ns], respectively. The geometric mean local search time per edge of our
algorithm, Mt-Metis and ParHIP are 3.5 [ns], 2.1 [ns] and 16.8 [ns], respectively.
Note that with increasing number of edges, our algorithm has comparable time
per edge to Mt-Metis. Superior speed-ups of parallel MLS are due to minimized
interactions between PEs and using cache-aware hash tables locally. Although
on average, our algorithm is slower than Mt-Metis, we consider this as a fair
trade off between the quality and the running time. We also dominate ParHIP
in terms of quality and running times.

670 Y. Akhremtsev et al.

5.3 Influence of Algorithmic Components

We now analyze how the parallelization of the different components affects the
cut size and present the speed-ups of each phase. We perform experiments on
machine B with configurations of our algorithm in which only one of the compo-
nents (coarsening, initial partitioning, uncoarsening) is parallelized using p = 16.
Running the algorithm with parallel coarsening decreases the geometric mean
of the cut by 0.7%, with parallel initial partitioning decreases the cut by 2.3%
and with parallel local search decreases the cut by 0.02%. Compared to the full
sequential algorithm, we conclude that running the algorithm with any parallel
component either does not affect solution quality or improves the cut slightly
on average. The parallelization of initial partitioning gives better cuts since it
computes more initial partitions than the sequential version.

To show that the parallelization of each phase is important, we consider
instances where one of the phases runs significantly longer than other phases in
the experiments on machine A using p = 31. The coarsening phase may take
up to 91% of the running time and its parallelization gives a speed-up of 13.6
for 31 threads and a full speed-up of 12.4. The initial partitioning phase may
take up to 40% of the running time and its parallelization gives a speed-up
of 6.1 and the overall speed-up is 7.4. The uncoarsening phase may take up to
57% of the running time and its parallelization gives a speed-up of 13.0 and the
overall speed-up is 9.1. The harmonic mean speed-ups of the coarsening phase,
the initial partitioning phase and the uncoarsening phase for p = 31 are 10.6, 2.0
and 8.6, respectively.

6 Conclusion and Future Work

We presented a shared-memory parallel graph partitioner that is able to par-
tition graphs with very good quality as well as guaranteed balance which also
shows good speed-up on a variety of large graphs. Previous approaches show a
negative trade-off between quality and speed. The important parts of our algo-
rithm are parallel label propagation, a simple yet effective approach to parallel
MLS, parallel initial partitioning, and cache-aware hash tables. Considering the
good results of our algorithm, we want to further improve it and release its
implementation. An interesting problem is how to apply moves in Sect. 4.3 in
parallel whose solution will increase the performance of parallel MLS.

References

1. Intel threading building blocks. https://www.threadingbuildingblocks.org/
2. Akhremtsev, Y., Sanders, P., Schulz, C.: High-quality shared-memory graph par-

titioning. CoRR abs/1710.08231 (2017)
3. Axtmann, M., Witt, S., Ferizovic, D., Sanders, P.: In-place parallel super scalar

samplesort (IPSSSSo). In: Proceedings of the 25th ESA, pp. 9:1–9:14 (2017)

https://www.threadingbuildingblocks.org/

High-Quality Shared-Memory Graph Partitioning 671

4. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in
graph partitioning. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering.
LNCS, vol. 9220, pp. 117–158. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49487-6 4

5. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular
graphs. In: Proceedings of the ACM/IEEE Conference on Supercomputing (1996)

6. LaSalle, D., Karypis, G.: Multi-threaded graph partitioning. In: Proceedings of the
27th IPDPS, pp. 225–236 (2013)

7. LaSalle, D., Karypis, G.: A parallel hill-climbing refinement algorithm for graph
partitioning. In: Proceedings of the 45th ICPP, pp. 236–241 (2016)

8. Meyerhenke, H., Sanders, P., Schulz, C.: Partitioning complex networks via size-
constrained clustering. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014.
LNCS, vol. 8504, pp. 351–363. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-07959-2 30

9. Meyerhenke, H., Sanders, P., Schulz, C.: Parallel graph partitioning for complex
networks. In: IEEE Transactions on Parallel and Distributed Systems, pp. 2625–
2638 (2017)

10. Sanders, P., Schulz, C.: Engineering multilevel graph partitioning algorithms. In:
Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 469–480.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23719-5 40

11. Shun, J., Blelloch, G.E., Fineman, J.T., Gibbons, P.B.: Reducing contention
through priority updates. In: Proceedings of the 25th SPAA, pp. 152–163 (2013)

12. Staudt, C.L., Meyerhenke, H.: Engineering parallel algorithms for community
detection in massive networks. IEEE Trans. Parallel Distrib. Syst. 27(1), 171–184
(2016)

https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-07959-2_30
https://doi.org/10.1007/978-3-319-07959-2_30
https://doi.org/10.1007/978-3-642-23719-5_40

Design Principles for Sparse Matrix
Multiplication on the GPU

Carl Yang1,2(B) , Aydın Buluç2,3 , and John D. Owens1,2

1 University of California, Davis, CA 95616, USA
ctcyang@ece.ucdavis.edu

2 Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA

3 University of California, Berkeley,
CA 94720, USA

Abstract. We implement two novel algorithms for sparse-matrix dense-
matrix multiplication (SpMM) on the GPU. Our algorithms expect the
sparse input in the popular compressed-sparse-row (CSR) format and
thus do not require expensive format conversion. While previous SpMM
work concentrates on thread-level parallelism, we additionally focus on
latency hiding with instruction-level parallelism and load-balancing. We
show, both theoretically and experimentally, that the proposed SpMM
is a better fit for the GPU than previous approaches. We identify a
key memory access pattern that allows efficient access into both input
and output matrices that is crucial to getting excellent performance
on SpMM. By combining these two ingredients—(i) merge-based load-
balancing and (ii) row-major coalesced memory access—we demonstrate
a 4.1× peak speedup and a 31.7% geomean speedup over state-of-the-art
SpMM implementations on real-world datasets.

Keywords: Sparse matrix multiplication · Parallel · GPU

1 Introduction

Many algorithms in machine learning, data analysis, and graph analysis can be
organized such that the bulk of the computation is structured as sparse matrix-
dense matrix multiplication (SpMM). Examples include inference on pruned neu-
ral networks [1], graph centrality calculations [2] , all-pairs shortest paths [3],
iterative solvers with multiple righthand sides [4], blocked eigensolvers such as
Blocked Lanczos [5] or Locally Optimal Block Preconditioned Conjugate Gradi-
ent (LOBPCG) [6], sparse matrix precision estimation [7], multi-scale spectral
graph decomposition [8], non-negative matrix factorization [9], and tomographic
reconstruction [10]. SpMM is also one of the possible instantiations of the most
prevalent GraphBLAS primitive, namely the matrix-matrix multiplication oper-
ation on a semiring (GrB mxm) [11], depending on the sparsity of operands.
This is a U.S. government work and its text is not subject to copyright protection
in the United States; however, its text may be subject to foreign copyright protection 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 672–687, 2018.
https://doi.org/10.1007/978-3-319-96983-1_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_48&domain=pdf
http://orcid.org/0000-0002-4357-0906
http://orcid.org/0000-0001-7253-9038
http://orcid.org/0000-0001-6582-8237

Design Principles for Sparse Matrix Multiplication on the GPU 673

Given an m-by-k sparse matrix A and a k-by-n dense matrix B, SpMM
computes an m-by-n dense matrix C = AB. We assume n � m and n � k,
that is to say, SpMM is multiplying a sparse matrix with a tall-skinny dense
matrix. We choose the most common sparse matrix format—compressed sparse
row (CSR)—because we avoid the substantial cost of matrix conversion. How-
ever, CSR results in a challenging problem on the GPU, because the sparse
row can vary significantly in how many nonzeroes there are. We combine recent
advances from the related problem of sparse matrix-dense vector multiplication
(SpMV) [12–14] and a key memory access pattern we identify as critical to
SpMM performance in order to propose and implement two SpMM algorithms
that demonstrate superior performance to state-of-the-art specialized matrix for-
mats and vendor-supplied CSR SpMM implementations.

Our main contributions in this paper are:

1. We generalize two main classes of SpMV algorithms—(1) row splitting and
(2) merge-based—for the SpMM problem and implement them on the GPU.

2. We introduce a simple heuristic that selects between the two kernels with an
accuracy of 99.3% compared to optimal.

3. Using our multi-algorithm and heuristic, we achieve a geomean speed-up of
31.7% and up to a maximum of 4.1x speed-up over state-of-the-art SpMM
implementations over 157 datasets from the SuiteSparse Matrix Collec-
tion [15].

2 Background and Preliminaries

2.1 GPUs

Modern GPUs are throughput-oriented manycore processors that rely on large-
scale multithreading to attain high computational throughput and hide memory
access time. The latest generation of NVIDIA GPUs have up to 80 “stream-
ing multiprocessors” (SMs), each with up to hundreds of arithmetic logic units
(ALUs). GPU programs are called kernels, which run a large number of threads
in parallel in a single-program, multiple-data (SPMD) fashion.

The underlying hardware runs an instruction on each SM on each clock cycle
on a warp of 32 threads in lockstep. The largest parallel unit that can be synchro-
nized within a GPU kernel is called a cooperative thread array (CTA), which is
composed of warps. For problems that require irregular data access, a successful
GPU implementation needs to (1) ensure coalesced memory access to external
memory and efficiently use the memory hierarchy, (2) minimize thread diver-
gence within a warp, and (3) maintain high occupancy, which is a measure of
how many threads are available to run on the implementation on the GPU.

2.2 Sparse Matrix Formats and SpMM

An m × n matrix is often called sparse if its number of nonzeroes nnz is small
enough compared to O(mn) such that it makes sense to take advantage of spar-
sity. The compressed sparse row (CSR) format stores only the column indices

674 C. Yang et al.

and values of nonzeroes within a row. The start and end of each row are then
stored in terms of the column indices and value in a row offsets (or row point-
ers) array. Hence, CSR only requires m + 2nnz memory for storage. We say a
dense matrix is in row-major order when successive elements in the same row
are contiguous in memory. Similarly, we say it is in column-major order when
successive elements in the same column are contiguous in memory.

Similarly to sparse matrix-dense vector multiplication (SpMV), a desire to
achieve good performance on SpMM has inspired innovation in matrix storage
formatting [16–18]. These custom formats and encodings take advantage of the
matrix structure and underlying machine architecture. Even only counting GPU
processors, there exist more than sixty specialized SpMV algorithms and sparse
matrix formats [19].

The vendor-shipped library cuSPARSE library provides two functions csrmm
and csrmm2 for SpMM on CSR-format input matrices [20]. The former expects
a column-major input dense matrix and generates column-major output, while
the latter expects row-major input and generates column-major output. Among
many efforts to define and characterize alternate matrix formats for SpMM are a
variant of ELLPACK called ELLPACK-R [16] and a variant of Sliced ELLPACK
called SELL-P [17]. Hong et al. performs dynamic load-balancing by separating
the sparse matrix into heavy and light rows. The heavy rows are processed by
CSR and the light rows by doubly compressed sparse row (DCSR) in order to
take advantage of tiling [21].

However, there is a real cost to deviating from the standard CSR encoding.
Firstly, the rest of the computation pipeline will need to convert from CSR to
another format to run SpMM and convert back. This process may take longer
than the SpMM operation itself. Secondly, the pipeline will need to reserve valu-
able memory to store multiple copies of the same matrix—one in CSR format,
another in the format used for SpMM.

3 Design Principles

In this section, we discuss two design principles that every irregular problem on
the GPU must follow for good performance. Ideally, we attain full utilization
of the GPU hardware, where a ready warp can be run on every cycle, all com-
putational units are doing useful work on every cycle, and all memory accesses
are coalesced. Our principles for reaching this goal are (1) effective latency-
hiding through a combination of thread- and instruction-level parallelism (TLP
and ILP) and (2) efficient load-balancing. Then we will look at state-of-the-art
SpMM implementations to understand their inefficiencies.

3.1 Latency Hiding with TLP and ILP

Memory operations to a GPU’s main memory take hundreds of clock cycles. The
GPU’s primary technique for hiding the cost of these long-latency operations is
through thread-level parallelism (TLP). Effective use of TLP requires that the

Design Principles for Sparse Matrix Multiplication on the GPU 675

programmer give the GPU enough work so that when a GPU warp of threads
issues a memory request, the GPU scheduler puts that warp to sleep and another
ready warp becomes active. If enough warps are resident on the GPU (if we have
enough TLP), switching between warps can completely hide the cost of a long-
latency operation. We quantify the amount of TLP in a program as occupancy,
the ratio of available (issued) warps to the maximum number of warps that can
be supported by the GPU. Higher occupancy yields better latency-hiding ability,
which allows us to approach full utilization.

Another latency-hiding strategy is exploiting instruction-level parallelism
(ILP) and its ability to take advantage of overlapping the latency of multiple
memory operations within a single thread. Because the GPU’s memory system
is deeply pipelined, a thread can potentially issue multiple independent long-
latency operations before becoming inactive, and those multiple operations will
collectively incur roughly the same latency as a single operation. While this
yields a significant performance advantage, it relies on the programmer exposing
independent memory operations to the hardware. We can achieve this goal by
assigning multiple independent tasks to the same thread (“thread coarsening”).

GPUs have a fixed number of registers. TLP requires many resident warps,
each of which requires registers. ILP increases the work per thread, so each thread
requires more registers. Thus TLP and ILP are in opposition, and attaining full
utilization requires carefully balancing both techniques. While TLP is commonly
used across all of GPU computing, ILP is a less explored area, with prior work
limited to dense linear algebra [22] and microcode optimization [23].

3.2 Load-Balancing

We now turn to the problem of ensuring that all computational units are doing
useful work on every cycle, and that the memory accesses from those warps are
coalesced to ensure peak memory performance. In the context of SpMV and
SpMM, this “load-balancing” problem has two aspects:

1. Load imbalance across warps. Some CTAs or warps may be assigned less work
than others, which may lead to these less-loaded computation units being idle
while the more loaded ones continue to do useful work. In this paper, we term
this “Type 1” load imbalance.

2. Load imbalance within a warp, in two ways, which we collectively call “Type
2” load imbalance. (a) Some warps may not have enough work to occupy all
32 threads in the warp. In this case, thread processors are idle, and we lose
performance. (b) Some warps may assign different tasks to different threads.
In this case, SIMD execution within a thread means that some threads are
idle while other threads are running; moreover, the divergence in execution
across the warp means memory accesses across the entire warp are unlikely
to be coalesced.

For irregular matrices, we claim that SpMV and SpMM are fundamentally
load-balancing problems on the GPU. As evidence, Fig. 1 shows load imbalance

676 C. Yang et al.

(a) SpMV and SpMM (b) Occupancy and warp efficiency

Fig. 1. Synthetic benchmark showing NVIDIA cuSPARSE SpMV and SpMM perfor-
mance as a function of matrix dimensions on a Tesla K40c, and SpMM’s achieved
occupancy and warp efficiency (inverse of divergence).

in a vendor-supplied implementation from a synthetic benchmark. The experi-
mental setup is described in Sect. 5. The right side of the x-axis represents Type
1 load imbalance, where long matrix rows are not divided enough, resulting in
some computation resources on the GPU remaining idle while others are over-
burdened. The left size of the x-axis represents Type 2 load imbalance where too
many computational resources are allocated to each row, so some remain idle.

4 Parallelizations of CSR SpMM

This section reviews three existing parallelizations of SpMV through the lens of
the design principles from Sect. 3. While our implementations of SpMM share
some characteristics with SpMV parallelizations, we also faced several different
design decisions for SpMM, which we discuss below. The three SpMV variants
are illustrated in Fig. 2 and summarized here:

1. Row split [24]: Assigns an equal number of rows to each processor.
2. Merge based: Performs two-phase decomposition—the first kernel divides

work evenly amongst CTAs, then the second kernel processes the work.
(a) Nonzero split [12,13]: Assign an equal number of nonzeroes per processor.

Then do a 1-D (1-dimensional) binary search on row offsets to determine
at which row to start.

(b) Merge path [14]: Assign an equal number of {nonzeroes and rows} per
processor. This is done by doing a 2-D binary search (i.e., on the diagonal
line in Fig. 2(c)) over row offsets and nonzero indices of matrix A.

While row split focuses primarily on ILP and TLP, nonzero split and merge
path focus on load-balancing as well. We consider nonzero split and merge path
to be explicit load-balancing methods, because they rearrange the distribution of
work such that each thread must perform T independent instructions; if T > 1,
then explicit load-balancing creates ILP where there was previously little or
none. Thus load-balance is closely linked with ILP, because if each thread is

Design Principles for Sparse Matrix Multiplication on the GPU 677

(a) Row split (b) Nonzero split (c) Merge path

Fig. 2. The three parallelizations for CSR SpMV and SpMM on matrix A. The orange
markers indicate segment start for each processor (P = 4). (Color figure online)

guaranteed T > 1 units of independent work (ILP), then each thread is doing
the same amount of work (i.e., is load-balanced).

We contend that nonzero split and merge path despite having different struc-
ture possess similar performance characteristics. The binary search being done
in 2-D (i.e. on the diagonal line in Fig. 2(c)) as opposed to 1-D is equivalent
to making an implicit assumption that a write to C has the same cost as a
memory read from A and B. As Merrill and Garland point out, this solves the
pathological case of matrices that have infinitely many empty rows. However,
the merge path is more challenging to implement, so we decide to extend the
Baxter’s nonzero split concept [12] to SpMM under the moniker “merge-based
SpMM”.

4.1 Algorithm I: Row-Splitting SpMM

Row split aims to assign each row to a different thread, warp, or CTA. Figure 3(a)
shows the warp assignment version. The typical SpMV row split is only the left-
most column of matrix B with orange cells replaced by green cells. This gives
SpMV 1 independent instruction and uncoalesced, random accesses into the vec-
tor. Although row-split is a well-known method for SpMV [24], we encountered
three important design decisions when extending it to SpMM:

1. Granularity: Should each row be assigned to a thread, warp, or CTA?
2. Memory access pattern: How should work be divided in fetching B? What is

the impact on ILP and TLP?
3. Shared memory: Can shared memory be used for performance gain?

1. Granularity. We assigned each row to a warp compared to the alternatives of
assigning a thread and a CTA per row. This leads to the simplest design out of the
three options, since it gives us coalesced memory accesses into B. For matrices
with few nonzeroes per row, the thread-per-matrix-row work assignment may be
more efficient. This is borne out by Fig. 4.

678 C. Yang et al.

2. Memory Access Pattern. This design decision had the greatest impact on per-
formance. To our knowledge, this is the first time in literature this novel memory
access strategy has been described. Our thread layout is shown in Fig. 3(c). For
SpMM, we have two approaches we could take: each thread is responsible for
loading a column or a row of the matrix B.

We discovered the first approach is better, because the memory accesses into
B are independent and can be done in a coalesced manner (provided that B is
in row-major order). In contrast, memory accesses into a column-major B would
be independent but uncoalesced. Compared to the SpMV case, each thread now
has 32 independent instructions and coalesced memory accesses into B, which
significantly amortizes the cost of memory accesses compared to accessing a
single vector. However, since we are forcing threads to pass a dummy column
index if they are out of bounds within a row, the effective number of independent
instructions and coalesced memory accesses is sensitive to row lengths that do
not divide 32. For example, if the row length is 33, then we will be doing 64
independent instructions and coalesced memory accesses into B. Whether or not
they divide 32 does not matter for very long rows, because the cost is amortized

Fig. 3. (a) shows the tiling scheme we use. (b), (c), (d) represent the yellow blocks
from (a). Row split SpMM ILP (orange) and TLP (green) are shown using warp 1 with
8 threads per warp. In practice, we use 32 threads per warp and 4 warps per GPU
cooperative thread array (CTA). Matrix A is sparse in CSR format. Matrices B and
C are both dense in row-major format. (Color figure online)

Design Principles for Sparse Matrix Multiplication on the GPU 679

by efficiently processing batches of 32. However, we would expect row split to
be negatively impacted by Type 2 load imbalances. The summary of this ILP
analysis is shown in Table 1.

3. Shared Memory. The key component required is a round of 32 broadcasts
(using the “shuffle” warp intrinsic shfl) by each thread to inform all other
threads in the warp which B row ought to be collectively loaded by the entire
warp. This is required or otherwise each thread would be responsible for loading
its own row, which would result in uncoalesced access. We could have also imple-
mented this using shared memory, but since all threads are within a single warp,
there is no disadvantage to preferring warp intrinsics. That they are within a
single warp is a consequence of our decision to assign each row to a warp rather
than a CTA.

Table 1. This table shows the number of independent instructions per GPU thread for
SpMV and SpMM with default value shown in brackets, as well as the register usage
and the extra number of memory accesses with respect to the row-split algorithm. T
is the number of work items per thread (typically specified as a tuning parameter to
the algorithm). L is the number of nonzeroes modulus 32 in the row of A that we
are computing. B is the CTA size. Typical values for T in SpMV and SpMM are 7
and 1 respectively, while a typical value for B is 128. T cannot be set arbitrarily high,
because high register usage causes lower occupancy. A.nnz is the number of nonzeroes
in the sparse matrix A. B.ncols is the number of columns of the dense matrix B.

SpMV SpMM

Operation Row-split Merge-based Row-split Merge-based

Read A.col ind and A.val 1 T (7) 1 T (1)

Read x/Read B 1 T (7) 0 < L ≤ 32 32T (32)

Write y/Write C 1 T (7) 1 32T (32)

Register usage 2 2T (14) 64 64T (64)

Memory access overhead 0 A.nnz
B×T

0 B.ncols×A.nnz
B×T

(A.nnz
896

) (2A.nnz)

4.2 Algorithm II: Merge-Based SpMM

The essence of merge-based algorithms is to explicitly and evenly distribute the
nonzeroes across parallel processors. It does so by doing a two-phase decomposi-
tion: In the first phase (PartitionSpmm), it divides the work between threads
so that T work is assigned per thread, and based on this assignment deduces
the starting indices of each CTA. Once coordinated thusly, work is done in the
second phase. In theory, this approach should eliminate both Type 1 and Type
2 load imbalances, and performs well in recent SpMV implementations [14]. We
made the following design decisions when generalizing this technique to SpMM:

680 C. Yang et al.

1. Memory access pattern. For fetching B, we adapt the memory access pat-
tern that was successful in row-splitting. However, here, we must first apply
the first phase (i.e., PartitionSpmm, Line 2 of Algorithm 1) to tell us the
rows each CTA ought to look at if we want an equal number of nonzeroes per
CTA. Then, we can apply the broadcast technique to retrieve B values using
coalesced accesses.
2. Register usage. Since we opted for the coalesced memory access pattern
explained in the row-splitting section, we require 32× the number of registers
in order to store the values. Due to this limitation, the number of independent
instructions per thread T is limited to 1, so we see no further latency-hiding
gain from ILP over that of row-split.
3. Memory access overhead. There are two sources of memory access overhead
compared to the row-splitting algorithm: (1) the additional GPU kernel that
determines the starting rows for each block (Line 2), and (2) the write of the
carry-out to global memory for matrix rows of C that cross CTA boundaries
(Line 24). Since the user is unable to synchronize CTAs in CUDA, this is
the only way the user can pass information from one CTA to another. The
first source of additional memory accesses is less of a problem for SpMM
compared to SpMV, because they are amortized by the increased work. The
second source, however, scales with the number of B columns. Thus we face
a trade-off between having more efficient memory access pattern (assign 32
columns per CTA so memory access is coalesced), and having less memory
access overhead (assign 4 columns per CTA so T can be set higher resulting in
fewer CTA boundaries that need to be crossed). The first approach resulted
in better performance.

5 Experimental Results

5.1 Experimental Setup

We ran all experiments in this paper on a Linux workstation with 2× 3.50 GHz
Intel 4-core E5-2637 v2 Xeon CPUs, 256 GB of main memory, and an NVIDIA
K40c GPU with 12 GB on-board memory. The GPU programs were compiled
with NVIDIA’s nvcc compiler (version 8.0.44). The C code was compiled using
gcc 4.9.3. All results ignore transfer time (from disk-to-memory and CPU-to-
GPU). The merge path operation is from the Modern GPU library [12]. The
version of cuSPARSE used was 8.0. The code generated during the current study
are available in the figshare repository 1 and GitHub repository2 [25].

The 157 datasets mentioned in the previous section represent a random
sample from the SuiteSparse sparse matrix collection. The topology of the
datasets varies from small-degree large-diameter (road network) to scale-free. In
the microbenchmark Fig. 1(a), dense matrices (varying from 2 rows with 8.3M

1 https://doi.org/10.6084/m9.figshare.6378764.
2 https://github.com/owensgroup/merge-spmm.

https://doi.org/10.6084/m9.figshare.6378764
https://github.com/owensgroup/merge-spmm

Design Principles for Sparse Matrix Multiplication on the GPU 681

Algorithm 1. The merge-based SpMM algorithm.
Input: Sparse matrix in CSR A ∈ R

m×k and dense matrix B ∈ R
k×n.

Output: C ∈ R
m×n such that C ← AB.

1: procedure SpmmMerge(A,B)
2: limits[] ← PartitionSpmm(A, blockDim.x) � Phase 1: Divide work and run

binary-search
3: for each CTA i in parallel do � Phase 2: Do computation
4: num rows ← limits[i + 1] − limits[i]
5: shared.csr ← GlobalToShared(A.row ptr + limits[i], num rows) � Read

A and store to shared memory
6: end ← min(blockDim.x, A.nnz - blockIdx.x × blockDim.x)
7: if row ind < end then
8: col ind ← A.col ind[row ind] � Read A if matrix not finished
9: valA ← A.values[row ind]

10: else
11: col ind ← 0 � Otherwise do nothing
12: valA ← 0
13: end if
14: for each thread j in parallel do
15: for j = 0, 1, . . . , 31 do � Unroll this loop
16: new ind[j] ← Broadcast(col ind, j) � Each thread broadcasts
17: new val[j] ← Broadcast(valA, j) � col ind and valA
18: valB[j] ← B[col ind][j] × new val[j] � Read B
19: end for
20: end for
21: terms ← PrepareSpmm(shared.csr) � Flatten CSR-to-COO
22: carryout[i] ← ReduceToGlobalSpmm(C, valB, valB) � Compute partial

of C and save carry-outs
23: end for
24: FixCarryout(C, limits, carryout) � Carry-out fix-up (rows spanning across

blocks)
25: return C
26: end procedure

nonzeroes per row to 8.3M rows with 2 nonzeroes per row) used in the micro-
benchmark are generated to be nonzero, and converted to CSR sparse matrix
storage. We then multiply the matrix by a dense vector and a dense matrix
with 64 columns using the vendor-supplied SpMV and SpMM implementations
respectively.

5.2 Algorithm I: Row-Split

Figure 5(a) shows the performance of our row split implementation on 10 SuiteS-
parse datasets with long matrix rows (62.5 nonzeroes per row on average). We
obtain a geomean speed-up of 30.8% over the next fastest implementation and
39% peak improvement.

682 C. Yang et al.

Fig. 4. The performance of our proposed SpMM row split kernel vs. NVIDIA cuS-
PARSE’s SpMM as a function of aspect ratio on a Tesla K40c.

We suspect our performance drop to the left in Fig. 4 comes from the sen-
sitivity to parameter L on row lengths that are significantly less than 32. This
causes divergence and uncoalesced memory accesses. On the right hand side,
we do much better than cuSPARSE. We believe this is due to the additional
occupancy that we can get from superior ILP, which is better at hiding latency.
Using the profiler, we noted a 102% improvement in executed instructions per
cycle for the matrix sized 128-by-131072.

We also tried loading in the transpose configuration, where each thread per-
forms a texture load, and loads a different row of the dense matrix. Then, the
threads could perform a shuffle reduce, which is a common pattern in GPU pro-
gramming. However, we observed that this resulted in poorer performance than
the vendor-supplied library on average. We suspect the reason for this is there
was too much contention amongst different threads for the very limited texture
cache resource.

We tried variants that generate the output in column-major order, because
this is what cuSPARSE csrmm and csrmm2 produces as output. However, we
found that doing such a transpose in the write to global memory causes at most
a loss of 3–4 GFlops in performance. The results track Fig. 5(a) very closely.
Another reason for our performance improvement comes from our use of the
shuffle broadcast technique, where we have all 32 threads take turns in broad-
casting their values to other threads. This saved shared memory (both in capacity
and throughput) which could be put to use elsewhere.

5.3 Algorithm II: Merge-Based

Figure 5(b) shows the performance of our merge-based SpMM kernel on 10
SuiteSparse datasets with short matrix rows (7.92 nonzeroes on average). We
obtain a geomean speed-up of 53% over cuSPARSE csrmm2 and 237% peak

Design Principles for Sparse Matrix Multiplication on the GPU 683

(a) Long rows (62.5 nonzeroes/row) (b) Short rows (7.92 nonzeroes/row)

Fig. 5. Performance comparison between the proposed ILP-centric row split kernel and
other state-of-the-art kernels on matrices with long and short row lengths on Tesla
K40c using single-precision floating-point. cuSPARSE csrmm and csrmm2 are from a
vendor-supplied library [20]. MAGMA SELL-P is by Anzt, Tomov, and Dongarra [17].

improvement. We think the biggest reason that merge path is doing better than
the other methods is because it handles Type 2 load imbalances much bet-
ter. Other methods inevitably encounter warp efficiency degradation due to the
divergence caused by short rows, as shown in Fig. 1(b). However, merge path
can handle these short rows very well by simply allocating more rows to a CTA
if the rows are short.

Another interesting observation to make is that the merge path performance
in Fig. 5(b) all tend to be lower than their row split equivalents. This means
that merge path has more overhead than row split, so it is only worth it to
perfectly load-balance matrices when it is profitable to do so (Sect. 5.4). While
Merrill and Garland found their merge-based solution was better than row split
on SpMV [14], ours did not perform as well on SpMM, as explained in the next
paragraph.

As Table 1 shows, merge path’s advantage in SpMV comes from being able
to obtain T times more ILP per thread than row split, but it enjoys no such
advantage in SpMM, where row splitting gets as much ILP as there are nonzeroes
in the sparse matrix row as long as row split can afford to pay the register cost.
This can be seen in Fig. 3(a). While merge path has the opportunity to obtain
T times more ILP, we discovered that we need to keep T = 1 in order to keep
the register count manageable. In typical merge path SpMV implementations,
T can be as high as 7. The ILP advantage merge-based had in SpMV is not so
assured.

5.4 Heuristic

By comparing the speed-up of row split and merge-based to the fastest vendor-
supplied SpMM on 157 SuiteSparse sparse matrix collection datasets [15] (see
Fig. 6(a)), we show that the two proposed algorithms achieve speed-ups over the

684 C. Yang et al.

SpMM state-of-the-art in separate regions on the spectrum of matrix irregularity.
However, the geomean speed-up is only a 13.2% gain and 21.5% slowdown for
row split and merge-based respectively.

(a) Row split and merge-based sepa-
rately vs. cuSPARSE csrmm2.

(b) Combined row split and merge-based
vs. cuSPARSE csrmm2.

Fig. 6. Performance comparison between proposed row split kernel, proposed merge-
based kernel, and cuSPARSE csrmm2 on 195 non-trivial datasets from the SuiteSparse
sparse matrix collection [15].

Fig. 7. Runtime as a function of the percentage of nonzeroes in the sparse matrix on
Tesla K40c using single-precision floating-point. cuSPARSE csrmm, csrmm2 are sparse-
dense matrix multiplication functions from a vendor-supplied library [20]. cuBLAS
sgemm is a dense-dense matrix multiplication function from a vendor-shipped library.

Therefore, we propose a heuristic for switching between them using an inex-
pensive O(1) calculation d = nnz

n . Our heuristic is simply computing the average
row length for the matrix, and using this value to decide whether to use merge-
based or row split. To pinpoint the transition point, we examine Fig. 6(a). For
our heuristic, we decide that we will use merge-based on datasets whose mean
row length is less than 9.35, and row split otherwise.

Design Principles for Sparse Matrix Multiplication on the GPU 685

Using this heuristic, we obtain an overall 31.7% geomean speed-up, and up to
a peak of 4.1×, over the vendor-supplied library cuSPARSE csrmm2. Over cuS-
PARSE csrmm, we obtain a 2.69× geomean speed-up and 22.4× peak speed-up.
The result is shown in Fig. 6. Using this heuristic as a binary classifier, we get
99.3% accuracy vs. an oracle that perfectly chooses the fastest implementation.

6 Conclusion and Future Work

In this paper we implement two promising algorithms for computing sparse
matrix dense matrix multiplication on the GPU. Our results using SpMM show
considerable performance improvement over the vendor-supplied SpMM on a
wide spectrum of graphs. One of the keys to our high performance is our memory-
access strategy that allows coalesced access into all 3 matrices (see Fig. 3(a)).

In Fig. 7, we generate a 100, 000× 100, 000 random matrix by making a fixed
percentage of elements in each row nonzero by sampling indices between 1 and
100,000 without replacement. Our experiments indicate that when multiplying a
sparse matrix randomly generated thusly with a tall-skinny dense matrix of size
100, 000 × 64, our proposed merge-based SpMM is faster than a dense matrix-
dense matrix (GEMM) multiplication when less than 9% of the sparse matrix is
filled.

Greiner and Jacob have proven theoretically [26] that as the number of nonze-
roes per row exceeds some hardware threshold, namely m

M where m is the num-
ber of rows in the sparse matrix and M is the size of the fast memory of the
device, tiling will become more efficient than the access pattern described in this
paper (i.e. going across the sparse matrix and selecting nonzeroes in the dense
matrix). Indeed, they claim that tiling both the sparse matrix A and B in a
manner akin to tiling dense matrix-matrix multiplication is optimal. In future
work, it would be interesting to find out whether doing this tiling will extend
SpMM’s effectiveness range beyond 9% sparsity.

Our codes only use the popular CSR data structure, hence avoiding the
penalty of sparse matrix format conversions. There are legitimate reasons for
considering other formats. For example, certain iterative algorithms require mul-
tiplication of a sparse matrix (SpMM) as well as its transpose (SpMM T) within
the same code. Compressed Sparse Blocks (CSB) [27] is a format that is specif-
ically designed for this task and it has already been utilized for SpMM and
SpMM T [18] in CPUs. However, achieving high performance with CSB on irreg-
ular matrices requires an efficient load balancer and it is not clear whether GPUs
are suitable for this task.

An interesting future direction for research is designing a library around load-
balancing techniques such as merge path. While merge path is already present
in two libraries–Modern GPU and CUB [12,28]—they are not designed as lay-
ers separated from computation. Similarly in our code, computation and load-
balancing are very tightly knit. It would be interesting to discover how to abstract
out the load balancing from the computation. Ideally, the user would have to
identify the quantities that are desirable for load balancing separately from the

686 C. Yang et al.

computation. Then the load-balancing library would handle the rest making
load-balanced GPU kernels much easier to write. The impact of our improved
SpMM kernels on application codes is also worth investigating in the future. In
particular, we expect a co-design approach to provide more pronounced perfor-
mance benefits to applications compared to drop-down kernel replacement.

Acknowledgments. We appreciate the funding support from the National Science
Foundation (Award # CCF-1629657), the DARPA XDATA program (US Army award
W911QX-12-C-0059), and the DARPA HIVE program. For HIVE support, this mate-
rial is based on research sponsored by Air Force Research Lab (AFRL) and the Defense
Advanced Research Projects Agency (DARPA) under agreement number FA8650-18-
2-7836. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorsements, either expressed
or implied, of Air Force Research Lab (AFRL) and the Defense Advanced Research
Projects Agency (DARPA) or the U.S. Government.

This manuscript has been authored by an author at Lawrence Berkeley National
Laboratory under Contract No. DE-AC02-05CH11231 with the U.S. Department of
Energy. The U.S. Government retains, and the publisher, by accepting the article for
publication, acknowledges, that the U.S. Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for U.S. Government purposes.

This research was supported in part by the Applied Mathematics program of the
DOE Office of Advanced Scientific Computing Research under Contract No. DE-AC02-
05CH11231, and in part the Exascale Computing Project (17-SC-20-SC), a collabora-
tive effort of the U.S. Department of Energy Office of Science and the National Nuclear
Security Administration.

References

1. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and huffman coding. In: International
Conference on Learning Representations (ICLR) (2016)

2. Sarıyüce, A.E., Saule, E., Kaya, K., Çatalyürek, Ü.V.: Regularizing graph central-
ity computations. J. Parallel Distrib. Comput. 76, 106–119 (2015)

3. Tiskin, A.: All-pairs shortest paths computation in the BSP model. In: Orejas, F.,
Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 178–189.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48224-5 15

4. Simoncini, V., Gallopoulos, E.: An iterative method for nonsymmetric systems
with multiple right-hand sides. SIAM J. Sci. Comput. 16(4), 917–933 (1995)

5. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia
(2000)

6. Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal
block preconditioned conjugate gradient method. SIAM SISC 23(2), 517–541
(2001)

7. Wang, H., Banerjee, A., Hsieh, C.J., Ravikumar, P.K., Dhillon, I.S.: Large scale
distributed sparse precision estimation. In: NIPS, pp. 584–592 (2013)

https://doi.org/10.1007/3-540-48224-5_15

Design Principles for Sparse Matrix Multiplication on the GPU 687

8. Si, S., Shin, D., Dhillon, I.S., Parlett, B.N.: Multi-scale spectral decomposition of
massive graphs. In: NIPS, pp. 2798–2806 (2014)

9. Kannan, R., Ballard, G., Park, H.: A high-performance parallel algorithm for non-
negative matrix factorization. In: ACM SIGPLAN, vol. 51. ACM (2016)

10. Vazquez, F., Garzon, E.M., Fernandez, J.J.: A matrix approach to tomographic
reconstruction and its implementation on GPUs. J. Struct. Biol. 170(1), 146–151
(2010)

11. Buluç, A., Mattson, T., McMillan, S., Moreira, J., Yang, C.: Design of the Graph-
BLAS API for C. In: IEEE Workshop on Graph Algorithm Building Blocks,
IPDPSW (2017)

12. Baxter, S.: Modern GPU library (2015). http://nvlabs.github.io/moderngpu/
13. Dalton, S., Olson, L., Bell, N.: Optimizing sparse matrix-matrix multiplication for

the GPU. ACM TOMS 41(4), 25 (2015)
14. Merrill, D., Garland, M.: Merge-based parallel sparse matrix-vector multiplication.

In: Supercomputing 2016, pp. 678–689. IEEE, November 2016
15. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM

TOMS 38(1), 1 (2011)
16. Ortega, G., Vázquez, F., Garćıa, I., Garzón, E.M.: FastSpMM: an efficient library

for sparse matrix matrix product on GPUs. Computer 57(7), 968–979 (2014)
17. Anzt, H., Tomov, S., Dongarra, J.: Accelerating the LOBPCG method on GPUs

using a blocked sparse matrix vector product. In: Proceedings of the Symposium
on High Performance Computing, pp. 75–82 (2015)

18. Aktulga, H.M., Buluç, A., Williams, S., Yang, C.: Optimizing sparse matrix-
multiple vectors multiplication for nuclear configuration interaction calculations.
In: Proceedings of the IPDPS. IEEE Computer Society (2014)

19. Filippone, S., Cardellini, V., Barbieri, D., Fanfarillo, A.: Sparse matrix-vector mul-
tiplication on GPGPUs. ACM TOMS 43(4), 30 (2017)

20. Naumov, M., Chien, L.S., Vandermersch, P., Kapasi, U.: CUSPARSE library: a set
of basic linear algebra subroutines for sparse matrices. In: GTC (2010)

21. Hong, C., et al.: Efficient sparse-matrix multi-vector product on GPUs. In: Pro-
ceedings of the 27th International Symposium on High-Performance Parallel and
Distributed Computing. HPDC 2018, pp. 66–79. ACM, New York (2018)

22. Volkov, V., Demmel, J.W.: Benchmarking GPUs to tune dense linear algebra. In:
Supercomputing 2008, pp. 31:1–31:11, November 2008

23. Jablin, J.A., Jablin, T.B., Mutlu, O., Herlihy, M.: Warp-aware trace scheduling for
GPUs. In: ACM PACT 2014, pp. 163–174 (2014)

24. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In: Supercomputing 2009, pp. 18:1–18:11, Novem-
ber 2009

25. Yang, C., Buluc, A., Owens, J.D.: Supporting data for design principles for sparse
matrix multiplication on the GPU paper at euro-par 2018 (2018). https://doi.org/
10.6084/m9.figshare.6378764

26. Greiner, G., Jacob, R.: The I/O complexity of sparse matrix dense matrix mul-
tiplication. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 143–156.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12200-2 14

27. Buluç, A., Fineman, J.T., Frigo, M., Gilbert, J.R., Leiserson, C.E.: Parallel sparse
matrix-vector and matrix-transpose-vector multiplication using compressed sparse
blocks. In: Proceedings of SPAA (2009)

28. Merrill, D.: CUB library (2015). http://nvlabs.github.io/cub

http://nvlabs.github.io/moderngpu/
https://doi.org/10.6084/m9.figshare.6378764
https://doi.org/10.6084/m9.figshare.6378764
https://doi.org/10.1007/978-3-642-12200-2_14
http://nvlabs.github.io/cub

Distributed Graph Clustering Using
Modularity and Map Equation

Michael Hamann, Ben Strasser, Dorothea Wagner, and Tim Zeitz(B)

Institute of Theoretical Informatics, Karlsruhe Institute of Technology,
Karlsruhe, Germany

{michael.hamann,dorothea.wagner,tim.zeitz}@kit.edu,
academia@ben-strasser.net

Abstract. We study large-scale, distributed graph clustering. Given an
undirected graph, our objective is to partition the nodes into disjoint sets
called clusters. A cluster should contain many internal edges while being
sparsely connected to other clusters. In the context of a social network,
a cluster could be a group of friends. Modularity and map equation are
established formalizations of this internally-dense-externally-sparse prin-
ciple. We present two versions of a simple distributed algorithm to opti-
mize both measures. They are based on Thrill, a distributed big data pro-
cessing framework that implements an extended MapReduce model. The
algorithms for the two measures, DSLM-Mod and DSLM-Map, differ only
slightly. Adapting them for similar quality measures is straight-forward.
We conduct an extensive experimental study on real-world graphs and on
synthetic benchmark graphs with up to 68 billion edges. Our algorithms
are fast while detecting clusterings similar to those detected by other
sequential, parallel and distributed clustering algorithms. Compared to
the distributed GossipMap algorithm, DSLM-Map needs less memory, is
up to an order of magnitude faster and achieves better quality.

1 Introduction

Graph clustering is a well researched topic [8,10] and has many applications,
such as community detection in social networks where users can be modeled as
nodes and friendships as edges between them. These graphs can be huge and may
not fit into the main memory of a single machine. We therefore study distributed
extensions of established single machine clustering algorithms. This enables us
to efficiently compute clusterings in huge graphs.

We consider the problem of clustering a graph into disjoint clusters. While
there is no universally accepted definition of a good clustering, it is commonly
accepted that clusters should be internally densely and externally sparsely con-
nected. Our algorithms optimize two established quality measures that formalize
this concept: modularity [19] and map equation [21]. Other community detec-
tion formalizations have been considered. For example, EgoLP [7] is a distributed
algorithm to find overlapping clusters.

This work was partially supported by the DFG under grants WA654/19-2 and
WA654/22-2. The authors acknowledge support by the state of Baden-Württemberg
through bwHPC.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 688–702, 2018.
https://doi.org/10.1007/978-3-319-96983-1_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_49&domain=pdf

Distributed Graph Clustering Using Modularity and Map Equation 689

1.1 Related Work

Existing distributed approaches follow one of two approaches.
The first is to partition the graph into a subgraph per machine. Each sub-

graph is then clustered independently on one machine. Then, all nodes of each
cluster are merged summing up weights of parallel edges. The resulting coarser
graph is clustered on a single machine. This assumes the coarsened graph fits
in the memory of a single machine. In [25], for the partitioning, the input node
ID range is chunked into equally sized parts. This can work well, but is prob-
lematic if input node IDs do not reflect the graph structure. In [23], the input
graph is partitioned using the non-distributed, parallel graph partitioning algo-
rithm ParMETIS [14]. While this is independent of node IDs, it requires that
the graph fits into the memory of one machine for the partitioning.

The second approach consists of distributing the clustering algorithm itself.
Using MPI, [20] have introduced a distributed extension of the Louvain algo-
rithm [5]. Similarly, [18] have presented an algorithm that uses the GraphX
framework. Another algorithm named GossipMap is presented in [3] which uses
the GraphLab framework. Our algorithms also use this second approach.

All of these related algorithms heuristically optimize modularity except Gos-
sipMap, which optimizes the map equation.

1.2 Contribution

We propose two distributed graph clustering algorithms, DSLM-Mod and DSLM-
Map, that optimize modularity and map equation, respectively. Our algorithms
are the first graph clustering algorithms based on Thrill [4], a distributed big data
processing framework written in C++ that implements an extended MapReduce
model. Our algorithms are easy to extend for optimizing different density-based
quality measures. To evaluate the clustering quality, we compare against ground
truth communities on synthetic LFR [16] graph clustering benchmark graphs with
up to 68 billion edges. Even for these graphs, 32 hosts of a compute cluster are
enough. Our results show that our algorithms scale well and DSLM-Map is bet-
ter at recovering the ground truth than the sequential Infomap algorithm [21].
On real-world graphs, our algorithms perform similarly to non-distributed base-
line algorithms in terms of the quality of the detected clusterings and stability
between different runs. We evaluate both similarities and quality scores, as for
quality scores small changes can result in vastly different clusterings [11].

Similar to most related work, we make implicit assumptions on the structure
of the graph. We assume that all edges incident to nodes in a single cluster fit
into the memory of a single compute node. In practice, this is only a limitation
when a graph has huge clusters. In many scenarios like social networks or web
graphs, this is no limitation as cluster sizes are not that huge. Our algorithms can
be modified to avoid these restrictions, but this would increase running times.

Outline. In the following we introduce our notation and present the quality
measures we optimize. We also give a brief introduction to Thrill. In Sect. 3,
we present our algorithms. In Sect. 4 we present our experimental results. We
conclude in Sect. 5.

690 M. Hamann et al.

2 Preliminaries

Conceptually, our algorithms work on undirected graphs. However, we represent
all graphs G = (V,E, ω) as symmetric, directed, weighted graphs of |V | = n
nodes and |E| = m edges. The pair (u, v) ∈ E represents the edge from u to v.
Unless stated otherwise, there are no multi-edges. We describe our algorithms
for weighted graphs. As our input graphs are unweighted, we set ω(u, v) = 1 for
every edge (u, v) ∈ E.

A cluster C is a node subset. A clustering C is a set of clusters such that each
node is part of exactly one cluster.

The weighted degree deg(x) of a node x is the sum over the weights of all
outgoing edges (x, y) of x. The weight of loop edges is counted twice. The volume
vol(C) of a set of nodes C is the sum of their weighted degrees. The cut cut(C,D)
between two sets of nodes C, D is the sum of the weights of all edges (x, y) such
that x ∈ C and y ∈ D. As a simplification, we write cut(v, C) for cut({v}, C),
cut(C) := cut(C, V \ C) for the cut between C and the rest of the graph.

Many approaches exist to formalize the quality of a clustering. In this work,
we study two popular ones: modularity [19] and map equation [21]. The modu-
larity of a clustering C is defined as

Q(C) :=
∑

C∈C

vol(C) − cut(C)
vol(V)

−
∑

C∈C

vol(C)2

vol(V)2
.

Higher modularity values indicate better clusterings. However, sometimes higher
modularity values can also be achieved by merging small but actually clearly
distinct clusters. This effect is called resolution limit [9]. For the map equation,
this effect is much weaker [15]. Clusterings are better when they have a lower
map equation score. To simplify its definition, we set plogp(x) := x log x. The
definition is

L(C) :=plogp

(
∑

C∈C

cut(C)
vol(V)

)
− 2

∑

C∈C
plogp

(
cut(C)
vol(V)

)

+
∑

C∈C
plogp

(
cut(C) + vol(C)

vol(V)

)
−

∑

v∈V

plogp
(

deg(v)
vol(V)

)
.

The last term is independent of the clustering and therefore does not affect the
optimization. Thus, we omit it in our algorithms. Optimizing modularity is NP-
hard [6] but it can be optimized heuristically in practice [5]. Only heuristic map
equation optimization algorithms are known to us [21].

To compare clusterings, either with ground truth communities or with a
clustering calculated using a different algorithm, we use the adjusted rand index
(ARI) [13]. The maximum value of 1 indicates that both clusterings are equal.
ARI is normalized such that when one of the two clusterings is random, its
expected value is 0. It can also be negative.

Distributed Graph Clustering Using Modularity and Map Equation 691

2.1 Thrill

Thrill [4] is a distributed C++ big data processing framework. It can distribute
the program execution over multiple machines and threads within a machine.
Each thread is called worker. Every worker executes the same program.

If there is not enough main memory available, Thrill can use local storage
such as an SSD as external memory to store parts of the processed data.

Data is maintained in distributed immutable arrays (DIA). Distributed Thrill
operations are applied to the DIAs. For example, Thrill contains a sort operation,
whose input is a DIA and whose output is a new sorted DIA. Similarly, the
zip operation combines two DIAs of the same length into one DIA where each
element is a pair of the two original elements.

Thrill also supports DIAs with elements of non-uniform size, as long as each
element fits into the memory of a worker. This allows elements to be arrays.

Apart from zip and sort, we use the following operations: The map operation
applies a function to each element of a DIA. The return values are the elements
of the new DIA. Flatmap is similar, but the function may emit 0, 1, or more
elements. This is similar to the map operation in the original MapReduce model.

A DIA can be aggregated by a key component. All elements with the same
key are combined and put into an array. This is similar to the reduce operation
in the original MapReduce model. An aggregation is much more efficient if the
keys are consecutive integers. In that case, the result is also automatically sorted
by the keys. We use this optimized variant for all aggregations that are based
on node IDs.

3 Algorithm

The basis of our algorithm is the Louvain algorithm [5], a fast algorithm for
modularity optimization that delivers high-quality results. The original Infomap
algorithm proposed for optimizing the map equation [21] is based on the same
scheme, but introduces additional steps to improve the quality.

Initially, every node is in its own cluster. This is called a singleton clustering.
In the local moving phase, the Louvain algorithm works in rounds. In each

round, it iterates in a random order over all nodes v. For every v, it considers v’s
current cluster and all clusters C such that there is an edge from v to a node of
C. For all these clusters, the difference in quality score Δv,C if v was to be moved
into C is computed. If an improvement is possible, v is moved into a cluster with
maximal Δv,C , resolving ties uniformly at random. The local moving phase stops
when no node is moved in a round or a maximum number of rounds is reached.

After the local moving phase, the contraction phase starts. All nodes inside
a cluster are merged into a single node. The weights of all edges from a cluster
C to D are summed up and added as an edge from the node representing C to
the node representing D. All edge weights within a cluster are summed up and
added as a loop edge. The contraction does not change the quality score. On the
contracted graph, the algorithm is applied recursively. It terminates when the
contraction phase is entered and the clustering is still the singleton clustering.

692 M. Hamann et al.

3.1 Distributed Synchronous Local Moving (DSLM)

In local moving, the i-th move depends on the clustering after the first i − 1
moves are executed. This data dependency makes the parallelization difficult.
We therefore split a round into sub-rounds. Every node picks a random sub-
round in which it is active. In the i-th sub-round, all active nodes are moved
synchronously and in parallel with respect to the clustering after the (i − 1)-th
sub-round. For the first sub-round, this is with respect to the initial clustering.
We call this scheme synchronous local moving. For our distributed synchronous
local moving, a global hash function h maps a tuple of a node ID v, the number
of completed rounds and a global seed onto the sub-round rv in which v is active.
Figure 1 illustrates the data flow of our algorithm.

We represent a graph and its clustering as two DIAs. They have length n
and are stored sorted by their first item, the node ID v. The graph DIA stores
triples (v, 〈ui〉, 〈wi〉), where 〈ui〉 and 〈wi〉 are equally-sized arrays. For every i,
there is an edge (v, ui) with weight wi. The clustering DIA of pairs (v, C) stores
for every node v its cluster ID C.

In DSLM, a sub-round is composed of a bidding and a compare step. In the
bidding step, the clusters place bids for active nodes. In the compare step, every
active node compares its bids and becomes part of the cluster with the best bid.

To allow a node v to compute the change in modularity or map equation
when joining the neighboring cluster C, each bid contains: (a) volume vol(C \v),
(b) cut weight cut(v, C \ v) between C \ v and v, and (c) cut weight cut(C)
between C and the remaining graph.

The bidding step starts by zipping the clustering DIA and graph DIA and
aggregating this zipped DIA by cluster ID. The result is a DIA with one large
element per cluster C. Each element contains all nodes in the cluster C and
the neighborhoods of these nodes. This allows us to compute the measures (a),
(b), and (c) using a non-distributed algorithm inside a worker. Using a flatmap,
our algorithm emits for every cluster C bids for all active nodes inside C and
adjacent to C. It can determine which nodes are active as the hash function h is
globally known. The generated bid DIA consists of quintuples (C, v, vol(C \ v),
cut(v, C \ v), cut(C \ v)). Each quintuple is a bid of cluster C for active node v.

The compare step aggregates the bid DIA by node v. After the aggregation,
the result is zipped with the graph DIA to obtain the nodes’ degree and loop
edge weight. In a map operation, we use this information to compute for every
active node the best bid and return the according cluster. We retrieve the old
cluster ID for non-active nodes by zipping with the original clustering DIA. This
yields the updated clustering DIA, which is the input of the next sub-round.

Distributed Graph Clustering Using Modularity and Map Equation 693

Implementation Details and Optimizations. If modularity is optimized,
our algorithm can be improved in two ways. First, we can omit cut(C \ v) as
it is only needed for the map equation. Second, we can compare bids without
knowing the current cluster. This allows us to use a pairwise reduction instead
of one that first waits for all elements. As we still need the node’s degree, each
worker stores the degree of the nodes that are reduced on that worker in a plain
array. This is possible because we know on which worker each node will end up.

Input GInput C

Zip

Aggregate by C

FlatMap

Aggregate by v

Zip

Map

Output

(v, 〈ui〉, 〈wi〉) :
sorted by v

(v, C) :
sorted by v

(C, v, 〈ui〉, 〈wi〉)

(C, 〈vi, 〈uj〉, 〈wj〉〉)

(C, v, vol(C \ v), cut(v, C \ v), cut(C \ v))

sorted by v :
(v, 〈Ci, vol(Ci \ v), cut(v, Ci \ v), cut(Ci \ v)〉)

sorted by v :
(v, 〈ui〉, 〈wi〉, 〈Ci, vol(Ci \ v), cut(v, Ci \ v), cut(Ci \ v)〉)

sorted by v : (v, C∗)

Calculate and emit cluster
data for active neighbors

Select best cluster

Combined with round input
for clusters of inactive nodes

Fig. 1. DSLM data flow

694 M. Hamann et al.

3.2 Distributed Contraction and Unpacking

The contraction is performed in three steps: (a) obtain consecutive cluster IDs,
(b) replace all node IDs by the cluster IDs, and (c) combine multi-edges.

We first zip the graph and clustering DIAs and aggregate them by cluster
ID. To get consecutive cluster IDs, we replace them with the element positions.
From the result, which contains tuples (C, 〈vi, 〈uj〉, 〈wj〉〉), we derive two DIAs.

The first DIA is a new clustering DIA with consecutive cluster IDs. To obtain
it, we first drop the neighborhood information. We store this intermediate DIA
(C, 〈vi〉) for the unpacking phase. Then, we expand it into pairs (vi, C) of node
and cluster ID using a flatmap operation and sort by node IDs.

The second DIA is the contracted graph DIA. To obtain it, we first emit a
triple (Cu, v, w) for every node v that is a neighbor of a node in Cu in a flatmap
operation. The weight w is the sum of all edge weights from nodes in Cu to v. We
aggregate this DIA by v, zip it with the new clustering DIA and replace v by v’s
cluster ID Cv. We then aggregate by Cv to obtain pairs (Cv, 〈Cu,i, wi〉) containing
the neighboring clusters Cu,i for every Cv. Finally, we sum up the weights wi for
the same neighboring cluster for every cluster Cv in a map operation.

To unpack the clustering calculated in a level, we zip the clustering DIA
(v, Cv) with the intermediate clustering DIA (v, 〈vi〉) of a cluster v and its nodes
〈vi〉 from the previous contraction phase. A flatmap operation assigns the cluster
ID Cv of the contracted node to all original nodes u ∈ 〈vi〉, resulting in a
clustering DIA (u,Cu). After sorting it by node, it is returned to the next level.

4 Experiments

In this section, we present an experimental evaluation of our algorithm DSLM1.
The source code of our implementation is publicly available on GitHub2. We first
describe our experimental setup. Then, we present weak scaling experiments to
evaluate the running time, compare the quality on LFR benchmark graphs [16]
and evaluate the performance on established real-world benchmark data.

All running time experiments were performed on a compute cluster. Each
compute node has two 14-core Intel Xeon E5-2660 v4 processors (Broadwell)
with a default frequency of 2 GHz, 128 GiB RAM and 480 GiB SSD. They are
connected by an InfiniBand 4X FDR Interconnect. We use the TCP back-end of
Thrill due to problems with the combination of multithreading and OpenMPI.
We use Thrill’s default parameters, except for the block size, which determines
the size of data packages sent between the hosts. Preliminary experiments found
that a block size of 128 KiB instead of the default 2 MiB yields the best results.

For our algorithms, we use four sub-rounds as suggested in a preliminary
study [24]. Using less results in problems with the convergence. Using more does

1 This paper only covers parts of our experiments. Under https://github.com/kit-
algo/distributed clustering thrill evaluation you can find additional analyses, links
to our raw data and information on how to explore our data on your own.

2 https://github.com/kit-algo/distributed clustering thrill.

https://github.com/kit-algo/distributed_clustering_thrill_evaluation
https://github.com/kit-algo/distributed_clustering_thrill_evaluation
https://github.com/kit-algo/distributed_clustering_thrill

Distributed Graph Clustering Using Modularity and Map Equation 695

not significantly improve quality but increases running time. In each local moving
phase, we perform at most eight rounds. All experiments were performed with 16
threads per host. More threads do not improve the running times much further.
Preliminary experiments indicate that the performance is RAM bound.

Apart from DSLM-Mod and DSLM-Map that optimize modularity and map
equation, we also evaluate a variant DSLM-Mod w/o Cont. that stops after
the first local moving phase. This significantly decreases the running time and
surprisingly also improves the quality on synthetic instances. We evaluate this
behavior in more detail in Sect. 4.2.

For modularity, we compare against our own implementation of the sequen-
tial Louvain algorithm [5] and the shared-memory parallel PLM [22]. For map
equation, we compare against the sequential Infomap [21], the shared-memory
parallel RelaxMap [2] and the distributed GossipMap [3] implementations.

In a preprocessing step, we remove degree zero nodes, make the ID space
consecutive and randomize the node order. This ensures that our algorithms are
independent of input order and improves load balancing.

All experiments were repeated 10 times with different random seeds. We
report averaged results and standard deviation where possible as error bars.

During the experiments, the meltdown and spectre vulnerabilities became
public and performance impacting patches were applied to the machines. Rerun-
ning some experiments showed a slowdown of up to 1.6 for runs with 32 hosts but
no significant slowdown for runs with a single host. We did not have the resources
to rerun all experiments. Also, we expect the performance of the machines to
change further in the future. Patches with less impact (Retpoline) are available
but have not been rolled out yet. More vulnerabilities have been discovered in
the meantime and it is unclear if fixes for them will have further performance
implications3. At the point of initial patch distribution, most distributed algo-
rithm runs were already done. About half of the GossipMap runs on the real
world graphs were performed afterwards and are excluded from the running time
reports. All runs for non-distributed algorithms were performed with patches
applied, as their performance should not have been affected significantly.

Synthetic Instance Generation. Our synthetic test data is generated using
the established LFR benchmark generation scheme [16]. To generate graphs of
up to 512 million nodes and 67.6 billion (undirected) edges in a reasonable time,
we use the external memory LFR generator implementation of [12].

LFR benchmark graphs feature a ground truth clustering. Node degrees and
cluster sizes are drawn from power law distributions. The mixing parameter μ
determines the fraction of edges that are between different clusters. For details,
we refer the reader to the original description [16]. We set a minimum degree of
50 and a maximum degree of 10 000 with a power law exponent of 2. This leads
to an average degree of approximately 264. For the communities, we set 50 as
minimum and 12 000 as maximum size with a power law exponent of 1. Unless
otherwise noted, we set the mixing parameter μ to 0.4.

3
https://securityaffairs.co/wordpress/72158/hacking/spectre-ng-vulnerabilities.html.

https://securityaffairs.co/wordpress/72158/hacking/spectre-ng-vulnerabilities.html

696 M. Hamann et al.

Fig. 2. Weak scaling: running time of our distributed algorithms and ARI with ground
truth. The DSLM-Mod w/o Cont. ARI line is hidden by the DSLM-Map line.

4.1 Weak Scaling

For the weak scaling experiments, we use LFR graphs with 16, 32, 64, 128, 256
and 512 million nodes. We cluster them on 1, 2, 4, 8, 16, and 32 hosts respectively.
The left part of Fig. 2 shows the running time of our algorithms. Our algorithms
utilize almost the entire available RAM. GossipMap is less memory-efficient and
was unable to cluster the graphs in these configurations and crashed.

With a linear time algorithm and perfect scaling, we would expect that the
running time remains constant as we increase graph size and the number of
nodes. For the variant of DSLM-Mod w/o Cont., the running time actually does
not increase much. The running time of the full DSLM-Mod and DSLM-Map
algorithms increases approximately linearly though as the number of hosts is
scaled exponentially. The reason for this is that LFR graphs get very dense
during contraction and thus in particular larger graphs still have a significant
amount of edges after the contraction. Also, DSLM-Map is approximately a
factor of two slower than DSLM-Mod. This is expected as the optimizations
described at the end of Sect. 3.1 are not applicable to DSLM-Map.

4.2 Quality

First, we evaluate the quality of the clusterings obtained in the weak scaling
experiment. The right part of Fig. 2 depicts the similarities of the clusterings
found by our algorithms and the ground truth. From the plot, we observe that
DSLM-Map finds a clustering very close to the ground truth. DSLM-Mod w/o
Cont. achieves similar results. Unfortunately, DSLM-Mod fails to find a cluster-
ing similar to the ground truth on the larger instances. This shows that after
the contraction, clusters are merged that should not be merged. To verify if the
worse results of DSLM-Mod are due to the resolution limit, we started a sequen-
tial Louvain algorithm on a graph where we contracted the ground truth. This
algorithm indeed merges clusters, showing that the resolution limit is relevant
here. However, the thereby detected clusters are much more similar to the ground
truth than those detected by DSLM-Mod and even the ground truth alone has
higher modularity scores than those found by DSLM-Mod.

Distributed Graph Clustering Using Modularity and Map Equation 697

Fig. 3. Adjusted rand index with ground truth for µ ∈ [0.1, 0.9].

We also use smaller LFR graphs with 1M nodes and varying mixing param-
eter to compare the quality of the communities found by all compared algo-
rithms. Figure 3 shows the adjusted rand index of the detected clusterings with
the ground truth. DSLM-Mod w/o Cont. and DSLM-Map outperform all other
algorithms by a significant margin. On average, DSLM-Mod still outperforms the
other modularity-optimizing algorithms. For all values of μ, the ground truth
has a higher modularity score than the clustering found by the modularity-
optimizing algorithms. Merging clusters of the ground truth again improves the
modularity score but leads to clusterings that still have an ARI of above 0.99
for μ < 0.9. With the algorithms optimizing map equation, the situation is sim-
ilar. For μ < 0.8, the ground truth, which DSLM-Map consistently finds, has a
better map equation score than the clusterings found by all other algorithms.
For μ ≥ 0.8, a singleton clustering yields a better map equation score than the
ground truth clustering. GossipMap finds neither good map equation scores nor
the ground truth for μ > 0.4.

Overall, for these LFR benchmark graphs, DSLM seems to be superior
to sequential local moving. Examining sequential local moving algorithms, we
noticed that high-degree nodes attract many nodes in the first local moving
round. After a few nodes join their cluster, many others follow. In contrast
to that, with DLSM, 25% of the nodes can join the cluster of another node
before any cluster sizes come into play. Apparently, this avoids such accumula-
tion effects.

4.3 Real-World Graphs

To assess whether our results on LFR benchmark graphs are also true for real-
world graphs, we performed experiments on a set of different real-world graphs.
From the Stanford Large Network Dataset Collection [17], we include three
social networks (com-LiveJournal, com-Orkut and com-Friendster). From the
10th DIMACS Implementation challenge [1], we include two web graphs where
nodes represent URLs and edges links between them (uk-2002 and uk-2007-05).

We clustered these graphs both with the sequential baseline algorithms and
our distributed algorithms. Table 1 depicts the sizes of the graphs, the number

698 M. Hamann et al.

Table 1. Average running time in seconds of the algorithms on the real-world graphs.

#
N
od

es

#
E
dg

es

#
H
os
ts

L
ou

va
in

P
L
M

D
SL

M
-M

od
D
SL

M
-M

od
w
/o

C
on

t.

In
fo
m
ap

R
el
ax

M
ap

G
os
si
pM

ap

D
SL

M
-M

ap

LiveJournal 4M 34M 8 99 25 31 14 1329 163 372 49
Orkut 3M 117M 8 170 53 47 34 2405 415 700 84
uk-2002 18M 261M 8 572 142 46 22 6656 240 682 52
Friendster 66M 1806M 16 6002 1755 1047 742 oom oom 13743 1161
uk-2007-05 105M 3302M 16 7993 2520 151 106 oom oom 4211 214

of hosts we used for the distributed algorithms and the running times in sec-
onds. RelaxMap and GossipMap use the directed version of the map equation
that includes a PageRank approximation as preprocessing step. To allow for a
fair comparison, we only report the running time of the actual clustering step
after this preprocessing. As three GossipMap runs on uk-2007-05 crashed, there
are less samples. Unfortunately, both the original Infomap implementation and
RelaxMap were not able to cluster all instances. On the two largest graphs,
128 GB of RAM were not enough memory (oom).

With 8 or 16 hosts, our distributed algorithms are almost always faster than
the sequential and shared-memory parallel algorithms. Note that due to the
randomized node order, PLM is slower in our experiments than reported in [22].
DSLM-Map with 8 hosts is more than a factor of 5, for uk-2002 even a factor of
20 faster than RelaxMap and also a factor of 10 faster than GossipMap. DSLM-
Mod is faster than DSLM-Map, but the difference is less pronounced than in the
weak scaling experiments. This shows the advantage of our algorithmic scheme
in combination with the efficient Thrill framework.

Table 2. Average modularity/undirected map equation scores obtained by the respec-
tive algorithms.

L
ou

va
in

P
L
M

D
SL

M
-M

od

D
SL

M
-M

od
w
/o

C
on

t.

In
fo
m
ap

D
ir
ec
te
d

In
fo
m
ap

R
el
ax

M
ap

G
os
si
pM

ap

D
SL

M
-M

ap

LiveJournal 0.752 0.752 0.749 0.591 9.899 9.900 9.943 9.963 9.981
Orkut 0.664 0.666 0.658 0.524 11.826 11.825 11.849 11.979 11.896
uk-2002 0.990 0.990 0.990 0.879 6.458 6.458 6.476 6.550 6.468
Friendster 0.622 0.627 0.616 0.553 oom oom oom 16.271 14.785
uk-2007-05 0.996 0.996 0.996 0.919 oom oom oom 9.034 8.057

Table 2 shows the average modularity and map equation scores obtained by
the algorithms. We observe that PLM on average finds the best modularity

Distributed Graph Clustering Using Modularity and Map Equation 699

scores with a minor exception on uk-2002 where Louvain finds better values.
DSLM-Mod performs slightly worse, DSLM-Mod w/o Cont. significantly worse.
This shows that DSLM-Mod w/o Cont., which performed really well on the LFR
benchmark graphs, is unsuited for real-world graphs.

The best map equation scores are found by the Infomap algorithm where
it finished the computation. Since RelaxMap and GossipMap use the directed
map equation, we also include the directed Infomap algorithm to evaluate if
using the directed map equations leads to different results. Surprisingly, in some
cases Infomap optimizing the directed map equation finds better clusterings with
respect to the undirected map equation than the undirected Infomap, though the
differences are very small. On the two smallest graphs, RelaxMap finds better
clusterings than the distributed algorithms. On uk-2002, RelaxMap is outper-
formed by DSLM-Map. DSLM-Map finds better clusterings than GossipMap on
all graphs except for LiveJournal, on the two largest graphs by a significant mar-
gin. Since modularity and map equation feature counterintuitive behavior like
the resolution limit, quality scores on their own can be misleading. We therefore
also compare the obtained clusterings in terms of ARI.

Table 3. Average similarities in terms of ARI with best clustering found according to
the respective quality score. Underlined entries indicate the algorithm which found the
clustering with the best score.

L
ou

va
in

P
L
M

D
SL

M
-M

od

D
SL

M
-M

od
w
/o

C
on

t.

In
fo
m
ap

D
ir
ec
te
d

In
fo
m
ap

R
el
ax

M
ap

G
os
si
pM

ap

D
SL

M
-M

ap

LiveJournal 0.571 0.639 0.600 0.179 0.976 0.973 0.376 0.784 0.769
Orkut 0.632 0.625 0.659 0.220 0.919 0.925 0.807 0.491 0.819
uk-2002 0.730 0.724 0.674 0.047 0.986 0.985 0.928 0.698 0.970
Friendster 0.640 0.623 0.569 0.361 oom oom oom 0.013 0.748
uk-2007-05 0.873 0.877 0.816 0.279 oom oom oom 0.132 0.986

Among all algorithms that optimize the same quality score, we determine for
each graph the detected clustering with best score. We use these best cluster-
ings as baselines to which we compare all other detected clusterings that were
detected optimizing the same quality measure. Table 3 shows the average simi-
larity in terms of adjusted rand index and highlights which algorithm detected
the used baseline clustering. In most cases, this is the sequential baseline.

For modularity, this is in contrast to the results from Table 2 where on aver-
age, PLM outperforms Louvain for most graphs. Only on Friendster and uk-2002,
the modularity-optimizing algorithm that found the best clustering also has the
highest average quality scores. We observe that the modularity-optimizing algo-
rithms do not consistently find the same clustering. Clusterings may vary vastly
depending on the random seed. Further, on social networks the adjusted rand

700 M. Hamann et al.

indices are smaller than on web graphs. This is probably due to web graphs hav-
ing a more pronounced community structure. DSLM-Mod produces clusterings
that are less similar, but still much more similar than DSLM-Mod w/o Cont.,
which produces vastly different clusterings. This confirms our observation from
Table 2. Omitting the contraction significantly decreases the quality of cluster-
ings on real world graphs.

Infomap is in general much more stable than Louvain with an adjusted rand
index close to 1. DSLM-Map produces very similar clusterings on uk-2002. On
the LiveJournal and Orkut graphs, the clusterings are slightly less similar. Quite
interestingly, the parallel RelaxMap and the distributed GossipMap algorithms
produce significantly different clusterings in particular for the two social net-
works. As the results of the directed Infomap algorithm shows, this is not due
to optimizing the directed map equation. We conclude that RelaxMap and Gos-
sipMap indeed fail to find similar clusterings reliably.

5 Conclusion

We have introduced two distributed graph clustering algorithms, DSLM-Mod
and DSLM-Map, that optimize modularity and map equation, respectively. They
are based on the Thrill framework. In an extensive experimental evaluation,
we have shown that on LFR benchmark graphs, DSLM-Map achieves excellent
results, even better than the sequential Infomap algorithm. For DSLM-Mod,
we also evaluate a variant without contraction which has great performance on
LFR benchmark graphs. The full DSLM-Mod algorithm with contraction fails to
recover the ground truth on LFR benchmark graphs – similar to the sequential
Louvain algorithm – but significantly outperforms the variant without contrac-
tion on real-world graphs. On real-world graphs, both distributed algorithms
find clusterings only slightly different than the sequential algorithms. Compared
to GossipMap, the state-of-the-art distributed algorithm for optimizing map
equation, DSLM-Map is up to an order of magnitude faster while detecting clus-
terings that have similar or better map equation scores and are more similar to
the clustering with the best map equation score.

In the first local moving phase, synchronous local moving seems to be supe-
rior to sequential local moving. Further research is needed to see if this is a
phenomenon particular to the LFR graphs we studied or if synchronous local
moving could be a way to avoid local maxima when optimizing such quality
functions. After the contraction, more careful local moving strategies should be
developed though to avoid the problems we see in particular on LFR graphs.
Therefore, further research on different local moving strategies seems to be a
promising direction.

Distributed Graph Clustering Using Modularity and Map Equation 701

References

1. Bader, D.A., Meyerhenke, H., Sanders, P., Schulz, C., Kappes, A., Wagner, D.:
Benchmarking for graph clustering and partitioning. In: Rokne, J., Alhajj, R. (eds.)
Encyclopedia of Social Network Analysis and Mining, pp. 73–82. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-1-4614-6170-8

2. Bae, S., Halperin, D., West, J.D., Rosvall, M., Howe, B.: Scalable and efficient
flow-based community detection for large-scale graph analysis. ACM Trans. Knowl.
Disc. Data 11(3), 32:1–32:30 (2017)

3. Bae, S., Howe, B.: GossipMap: a distributed community detection algorithm for
billion-edge directed graphs. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 27:1–27:12.
ACM Press (2015)

4. Bingmann, T., et al.: Thrill: high-performance algorithmic distributed batch data
processing with C++. Technical report, arXiv arXiv:1608.05634 (2016)

5. Blondel, V., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. J. Stat. Mech. Theory Exp. 2008(10) (2008)

6. Brandes, U., et al.: On modularity clustering. IEEE Trans. Knowl. Data Eng.
20(2), 172–188 (2008)

7. Buzun, N., et al.: EgoLP: fast and distributed community detection in billion-node
social networks. In: Proceedings of the 2014 IEEE International Conference on
Data Mining Workshops, pp. 533–540. IEEE Computer Society (2014)

8. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
9. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc.

Natl. Acad. Sci. U.S.A. 104(1), 36–41 (2007)
10. Fortunato, S., Hric, D.: Community detection in networks: a user guide. Phys. Rep.

659, 1–44 (2016)
11. Good, B.H., de Montjoye, Y.A., Clauset, A.: Performance of modularity maximiza-

tion in practical contexts. Phys. Rev. E 81, 046106 (2010)
12. Hamann, M., Meyer, U., Penschuck, M., Wagner, D.: I/O-efficient generation of

massive graphs following the LFR benchmark. In: Proceedings of the 19th Meeting
on Algorithm Engineering and Experiments (ALENEX 2017). SIAM (2017)

13. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)
14. Karypis, G., Kumar, V.: A parallel algorithm for multilevel graph partitioning and

sparse matrix ordering. J. Parallel Distrib. Comput. 48, 71–95 (1998)
15. Kawamoto, T., Rosvall, M.: Estimating the resolution limit of the map equation

in community detection. Phys. Rev. E 91, 012809 (2015)
16. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-

munity detection algorithms. Phys. Rev. E 78(4), 046110 (2008)
17. Leskovec, J., Krevl, A.: SNAP datasets: stanford large network dataset collection,

June 2014. http://snap.stanford.edu/data
18. Ling, X., Yang, J., Wang, D., Chen, J., Li, L.: Fast community detection in large

weighted networks using graphx in the cloud. In: 18th IEEE International Confer-
ence on High Performance Computing and Communications, pp. 1–8. IEEE (2016)

19. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(026113), 1–16 (2004)

20. Que, X., Checconi, F., Petrini, F., Gunnels, J.A.: Scalable community detection
with the louvain algorithm. In: 29th International Parallel and Distributed Pro-
cessing Symposium (IPDPS 2015), pp. 28–37. IEEE Computer Society (2015)

https://doi.org/10.1007/978-1-4614-6170-8
http://arxiv.org/abs/1608.05634
http://snap.stanford.edu/data

702 M. Hamann et al.

21. Rosvall, M., Axelsson, D., Bergstrom, C.T.: The map equation. The Eur. Phys. J.
Spec. Top. 178(1), 13–23 (2009)

22. Staudt, C., Meyerhenke, H.: Engineering parallel algorithms for community detec-
tion in massive networks. IEEE Trans. Parallel Distrib. Syst. 27(1), 171–184 (2016)

23. Wickramaarachchi, C., Frincu, M., Small, P., Prasanna, V.K.: Fast parallel algo-
rithm for unfolding of communities in large graphs. In: Proceedings of the 2014
IEEE High Performance Extreme Computing Conference, pp. 1–6. IEEE (2014)

24. Zeitz, T.: Engineering distributed graph clustering using MapReduce. Master’s
thesis, Karlsruhe Institute of Technology (2017)

25. Zeng, J., Yu, H.: A study of graph partitioning schemes for parallel graph commu-
nity detection. Parallel Comput. 58, 131–139 (2016)

Improved Distributed Algorithm
for Graph Truss Decomposition

Venkatesan T. Chakaravarthy1(B), Aashish Goyal2, Prakash Murali3,
Shivmaran S. Pandian1, and Yogish Sabharwal1

1 IBM Research, Bangalore, India
{vechakra,shivmaran,ysabharwal}@in.ibm.com

2 Indian Institute of Technology - Delhi, New Delhi, India
aashishgoyal01@gmail.com

3 Princeton University, Princeton, USA
pmurali@cs.princeton.edu

Abstract. The truss decomposition provides a popular model for dis-
covering cohesive communities in a given network (graph). The problem
has been well studied in sequential, shared memory and MapReduce set-
tings. We study the problem on distributed memory systems. Our work
builds on two prior algorithms. The first algorithm is optimized in terms
of the computational load and communication volume, but it involves a
large number of iterations, leading to high load imbalance and synchro-
nization costs. The second algorithm significantly reduces the number
of iterations, but at the cost of increasing the load and the volume. We
design an algorithm that offers a tradeoff between the two extremes, with
the number of iterations being close to that of the second algorithm and
load/volume being close to that of the first. We develop an efficient dis-
tributed (MPI) implementation based on the new algorithm. We present
an experimental evaluation on large real-world graphs. The evaluation
shows that the new algorithm outperforms the two prior algorithms on
large system sizes with the performance gain ranging up to 2x.

1 Introduction

Discovering cohesive subgraphs or communities in a given graph is an important
problem arising in diverse domains ranging from social networks to biological
processes. Different models have been proposed for this purpose, among which
the truss decomposition [1] is a prominent model. Apart from ensuring that the
entities (vertices) in the subgraph are strongly connected among one another,
the model also focuses on the strength of the connections (edges). The model
is based on the intuition that the edge between two vertices can be considered
strong, if they share many common neighboring entities, or alternatively, the
edges are included in many triangles. For instance, in a social network, we can
say that more common friends two people have, the stronger is their connection.

Given a graph G and an integer k, the k-truss is defined as the largest sub-
graph, in which every edge is included in at least (k − 2) triangles within the
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 703–717, 2018.
https://doi.org/10.1007/978-3-319-96983-1_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_50&domain=pdf

704 V. T. Chakaravarthy et al.

subgraph. The model provides a hierarchical decomposition of the graph. The
whole graph G is the 2-truss, and for k ≥ 3, the k-truss is contained within the
(k−1)-truss. For an edge e, the truss number τ(e) is defined as the largest k such
that e belongs to the k-truss. The truss decomposition problem is to compute
the truss numbers of all the edges.

The truss decomposition model is useful in applications such as community
detection [2], visualization of large networks [3], and discovering cohesive struc-
tures containing a given set of entities [4]. The truss decomposition model builds
on the prior k-core formulation [5] and the recently proposed nucleus decomposi-
tion [6] generalizes both the concepts by considering higher order cliques in place
of triangles. Given the utility of the model, the truss computation is included
as part of the recently proposed Graph Challenge benchmark effort (https://
graphchallenge.mit.edu/).

Cohen [1] introduced the truss decomposition model and presented a polyno-
mial time algorithm for constructing the decomposition. Building on the above
work, Wang and Cheng [7] described an I/O efficient implementation. Rossi [8],
Smith et al. [9], Kabir and Madduri [10,11] and Voegele et al. [12] proposed
algorithms for the shared memory and GPU settings. Green et al. evaluated
truss computation under GPU setting [13]. Zhang and Parthasarathy [14] inde-
pendently described the model and used it as a preprocessing step for finding
cliques and other dense structures. Chen et al. [15], Cohen [16] and Shao et al.
[17] studied the problem on MapReduce setting.

Shared memory systems and GPUs have limitations in terms of the number
of cores and/or memory availability, leading to impediments in enhancing the
performance further. For instance, on a popular social network graph named
friendster (1.8 billion edges, 4.2 billion triangles), the execution time achieved
in shared memory setting (with 24 cores) is about 25 min [10]. Prior work has also
considered MapReduce framework [16], but the execution times are significantly
higher, due to framework overheads. Our aim is to achieve execution times of
about one minute on graphs of the above size. Towards that goal, we study the
problem on distributed memory systems using MPI.

We build on two prior procedures (which we adapt to the MPI setting) and
study the problem from an algorithmic perspective. The first procedure, due to
Cohen [1], lies at the heart of most prior implementations. While the algorithm
is optimized in terms of the computational load, it takes a large number of
iteration to converge. In a distributed setting the slow convergence leads to
high synchronization costs and load imbalance. Working within the MapReduce
framework, Chen et al. [15] proposed an algorithm which takes much lesser
number of iterations, at the cost of increased computational load. We denote the
two algorithms as MinTruss and PropTruss, respectively. Our main contribution
is a new algorithm that offers a tradeoff between the prior algorithms in terms
of the two fundamental metrics of number of iterations and load.

Truss computation is performed in two steps: a first phase that enumerates
triangles and a second phase that computes the truss numbers of the edges. Tri-
angle enumeration is a well-studied problem and efficient algorithms have been

https://graphchallenge.mit.edu/
https://graphchallenge.mit.edu/

Improved Distributed Algorithm for Graph Truss Decomposition 705

developed (e.g., [18]). We focus on the second phase of truss computation. The
second phase is iterative. In each iteration, we need to find the triangles incident
on some of the edges. The prior work considers two different implementation
settings. The first setting (e.g., [15,17]) explicitly stores the list of triangles enu-
merated in the first phase and reuses the list in the second phase, whereas the
second (e.g., [8,10]) does not store the list of triangles and recomputes. The first
setting has higher memory usage due to the presence of large number of triangles,
but it facilitates efficient implementation of the second phase. Our implemen-
tation is based on the setting of explicitly storing the triangles. In contrast to
shared memory systems, we can afford to store the list of triangles, as sufficient
memory is available under the distributed memory setting.

Our Contributions

– We propose a new algorithm, denoted Hybrid, that offers a tradeoff between
the prior algorithms on the two performance metrics: iterations close to
PropTruss and load close to MinTruss. We present an efficient distributed
memory (MPI) implementation based on the above algorithm.

– We present an experimental evaluation involving large real-world graphs (hav-
ing up to 4 billion triangles). The results show that PropTruss performs the
best in terms of the number of iterations. Relative to PropTruss, Hybrid is
higher by at most 16x factor, whereas MinTruss is as high as 76x. In terms of
load, MinTruss performs the best. Relative to MinTruss, Hybrid is higher by
at most 2.3x factor, whereas PropTruss is as high as 17x.

– In terms of the execution time (truss number computation), Hybrid achieves
better performance on large system sizes. On the largest system size in our
study (512 MPI ranks), it outperforms MinTruss and PropTruss by up to
2x and 3.4x factors, respectively. Over the different benchmark graphs, it
outperforms the best of the prior algorithms by a factor of up to 2x. The
implementation is able to solve graphs having more than billion edges and 4
billion triangles in about a minute.

2 Preliminaries

Let G = (V,E) be an undirected graph. A triple of vertices u, v and w is said to
form a triangle, if 〈u, v〉, 〈u,w〉 and 〈v, w〉 are edges in G. We denote the triangle
as Δ(u, v, w). The three edges are said to be incident on the triangle and vice
versa. Two edges e and e′ are called neighbors, if they are incident on a common
triangle. Let γ(G) denote the number triangles in G and for an edge e, let γ(e)
denote the number of triangles incident on e.

By a subgraph, we refer to a graph H = (V ′, E′) such that V ′ ⊆ V and
E′ ⊆ (V ′ × V ′) ∩ E; we denote this as H ⊆ G. The size of a subgraph H is
measured by the number of edges in it. For a subgraph H and an edge e found
in H, the support of e within H, denoted suppH(e), is defined as the number of
triangles in H incident on e. For an integer k ≥ 2, the k-truss of G is defined as
the largest subgraph H ⊆ G such that every edge e in H has suppH(e) ≥ k − 2
(the k-truss may not be connected). The k-truss of a graph is unique.

706 V. T. Chakaravarthy et al.

)b(scirteM)a(MinTruss profile

(c) PropTruss profile

Fig. 1. Analysis of prior algorithms

Let κ be the largest value such that the κ-truss is non-empty. The 2-truss
is simply the whole graph G. The k-trusses, for k ≥ 2, form a hierarchical
decomposition: G = 2-truss ⊇ 3-truss ⊇ 4-truss ⊇ · · · ⊇ κ-truss. For an edge e,
the truss number of e, denoted τ(e), is defined as the largest value k such that
e is found in the k-truss. Given a graph G, the truss decomposition problem is
to construct the hierarchical decomposition; equivalently, the goal is to compute
the truss number τ(e) for all the edges.

3 Prior Algorithms

In this section, we present an outline of the two prior algorithms MinTruss [1]
and PropTruss [15]. Both the algorithms involve a preprocessing phase, where
they compute the suppG(e) for all the edges via enumerating triangles of the
input graph G. Triangle enumeration is a well-studied problem and efficient
techniques have been developed (e.g., [18]). We describe the algorithms assuming
that the supports have already been computed. For the clarity of exposition, we
present the algorithms at a conceptual level, deferring distributed aspects and
other implementations details to Sect. 5. A brief discussion on the preprocessing
procedure can also be found in the same section.

Algorithm MinTruss: For each edge e, the algorithm maintains an upperbound
τ̂(e) on the true truss number τ(e); it is initialized as τ̂(e) = suppG(e) + 2.
The algorithm marks all edges as not settled and proceeds iteratively. In each
iteration, among the edges not settled, select the edges with the least truss

Improved Distributed Algorithm for Graph Truss Decomposition 707

value and declare them to be settled. We then update the truss values of their
neighbors in the following manner. Let e = 〈u, v〉 be a selected edge. For each
triangle Δ(u, v, w) incident on e, if both 〈u,w〉 and 〈v, w〉 are not settled already,
then decrement the truss values τ̂(u,w) and τ̂(v, w) by one. Proceed in the above
manner till all the edges are settled.

Intuitively, imagine that the settled edges are deleted from the graph. The
deletion of an edge e destroys the triangles incident on it. When a triangle is
destroyed, the other two edges lose the support of the triangle. So, we decrement
their truss values, provided e is the first edge to be deleted among the three
edges. We can show that for each edge e, the truss value τ̂(e) gets decremented
monotonically and becomes the true truss number τ(e) before termination.

Algorithm PropTruss: In each iteration of the MinTruss algorithm, only the
neighbors of the edges with the least truss value get updated. As a result, the
algorithm incurs a large number of iterations and converges slowly. Chen et al.
[15] proposed an algorithm that exhibits better parallelism by taking much lesser
number of iterations. We denote the algorithm as PropTruss. We rephrase and
present a sketch of the algorithm.

The core idea is to select every edge e whose truss value changed in the prior
iteration and propagate its new truss value to its neighbors. Since edges having
various truss values propagate simultaneously, the update operation becomes
more intricate, as against the simple decrement operation under the MinTruss
algorithm. For a triangle Δ(u, v, w), define the truss number of the triangle as
τ(u, v, w) = min{τ(u, v), τ(u,w), τ(v, w)}. The new update operation is based on
the following proposition. The truss numbers can be seen as stationary solutions
satisfying the condition given by the proposition.

Proposition 1. For any edge e = 〈u, v〉, we have that

τ(e) = max{j : |{Δ(u, v, x) : τ(u, v, x) ≥ j}| ≥ j − 2}

For each triangle Δ(u, v, w), the algorithm maintains an upperbound
τ̂(u, v, w) ≥ min{τ̂(u, v), τ̂(u,w), τ̂(v, w)}. These are initialized to ∞. We ensure
that for any edge e = 〈u, v〉, a condition analogous to the proposition is true
throughout the execution of the algorithm:

τ̂(e) = max{j : |{Δ(u, v, x) : τ̂(u, v, x) ≥ j}| ≥ j − 2} (1)

The PropTruss algorithm can be summarized as follows. In each iteration,
consider all the edges e = 〈u, v〉 whose truss value changed in the prior iteration.
For each triangle Δ(u, v, w) incident on e, if τ̂(e) < τ̂(u, v, w), then we update
the truss value of the triangle to τ̂(e). As a result, the truss values of the edges
〈u,w〉 and 〈v, w〉 may no longer satisfy condition (1). So, for both the edges,
we recompute the right hand side and update their truss values accordingly. We
proceed in this manner, until a stable solution is reached, wherein the truss value
of none of the edges changes. In the first iteration, all the edges get selected and
perform the above propagate operation.

708 V. T. Chakaravarthy et al.

Comparison of MinTruss and PropTruss: We compare the algorithms using
two fundamental metrics: (i) number of iterations; (ii) load - the total number of
updates (one update is counted whenever an edge changes the truss value of a
triangle and propagates to the other two edges of the triangle). In a distributed
setting, higher number of iterations leads to higher synchronization cost and
load imbalance. The second metric determines the computational load and the
communication volume.

The PropTruss algorithm is superior on the first metric, because edges from
multiple truss levels propagate their truss value simultaneously leading to faster
convergence. On the other hand, the MinTruss algorithm is better in terms of
load. The reason is that any edge e propagates its truss value only once during
the entire execution (when its truss value τ̂(e) settles to the true truss number
τ(e)), whereas the same edge may propagate multiple times under PropTruss.

Figure 1(a) illustrates the above tradeoff by providing the two metrics on four
sample graphs drawn from our experimental evaluation (properties are graphs
can be found in Sect. 6). We can see that PropTruss involves significantly lesser
number of iterations, but MinTruss is superior on load.

4 Algorithm Hybrid

In this section, we present a new algorithm, denoted Hybrid, that strikes a tradeoff
between the two prior algorithms. It aims at achieving load close to MinTruss
and the number of iterations close to PropTruss.

The new algorithm is motivated from an analysis of prior algorithms in terms
of their load profiles, a plot that shows the load incurred in each iteration of
the algorithm. As an illustration, Fig. 1(b) and (c) provide the load profiles
of the two algorithms on the pokec graph. We can see that PropTruss incurs
the maximum load in the first iteration and the load monotonically decreases
until the algorithm converges. On the other hand, in the case of MinTruss, the
iterations are grouped into many blocks; within each block the load is maximum
in the initial iteration and then decreases monotonically. Each block corresponds
a truss value k and all the edges with the truss number τ(e) = k settle in the
successive iterations of the block. While the MinTruss algorithm involves a large
number of iterations, most of the iterations incur very little load. The core idea
behind the Hybrid algorithm is to eliminate the low-load iterations, without
compromising much on the overall load incurred.

Algorithm Hybrid: Like the prior algorithms, we maintain an upperbound τ̂(e)
on the true truss number τ(e), for all edges e, and initialize it to suppG(e)+2. Let
kmin and kmax denote the minimum and the maximum truss value τ̂(e) among
all the edges e. We imagine that each truss value is a bucket and each edge
e resides in the bucket corresponding to its truss value τ̂(e). As the algorithm
proceeds, whenever τ̂(e) decreases, we visualize that the edge moves from its
current bucket to a lower bucket. We maintain a set of edges called the active
set, denoted Act. The edges in the set would propagate their truss values in each
iteration. The edges belonging to the active set are drawn from a window of

Improved Distributed Algorithm for Graph Truss Decomposition 709

Fig. 2. Algorithm Hybrid

buckets, denoted W . To start with, the window consists of only the bucket kmin,
i.e., W = [kmin, kmin]. In each iteration, we construct the active set by including
all edges e such that τ̂(e) changed in the prior iteration and e belongs to one of
the buckets in the window.

In the next and the crucial step, we use an appropriate heuristic to estimate
whether the current active set would result in the load being too low. In this
case, we expand the window by including the next bucket, and add all the edges
in the bucket to the active set. We repeat the above process until the heuristic
determines that the load would be sufficiently high.

We proceed in the above manner until all the buckets have been added and
the window becomes the complete range [kmin, kmax]. At this stage, we continue
with the iterations until the active set becomes empty; namely, the truss value
does not change for any of the edges. A pseudocode for Hybrid is given in Fig. 2.

710 V. T. Chakaravarthy et al.

Window Expansion Heuristic: We develop a heuristic for window expansion
by estimating the load to be incurred on the current active set Act. Let e = 〈u, v〉
be an edge in Act. For each triangle Δ(u, v, w) incident on e, we update the two
neighboring edges provided τ̂(u, v) < τ̂(u, v, w); let γ̃(e) denote the number
of such triangles. The exact load under Act is the sum of γ̃(e) for all edges
e ∈ Act. Unfortunately, γ̃(e) changes dynamically and its computation requires
an expensive scan of the triangles incident on e. We avoid the scan by using the
upperbound γ(e) (the number of triangles incident on e). In contrast to γ̃(e),
the quantity γ(e) is static and can be computed as part of the preprocessing
stage. Define γ(Act) =

∑

e∈Act γ(e). We take γ(Act) as an estimate on the load
incurred by the set Act.

We determine if the above estimate is high enough by comparing against the
maximum number of triangles encountered in the prior iterations. Meaning, let
Actj denote the active set in a prior iteration j and let γ(Actj) denote aggregate
number of triangles incident on the edges in Actj . We keep track of the quantity
γmax = maxj γ(Actj). The heuristic estimates that the load on Act would be low,
if the ratio of γ(Act) to γmax is below a threshold δ. In this case, we expand the
window by including the next bucket. The process is repeated until the estimate
on the load becomes sufficiently high. In the above procedure, δ is a tunable
parameter. Pseudocode for the procedure can be found in Fig. 2.

Update Operation: As in the case of the PropTruss algorithm, our update
operation is also based on Proposition 1. Recall that in the PropTruss algorithm,
whenever an edge e = 〈u, v〉 updates the truss value τ̂(u, v, w) for a triangle
Δ(u, v, w), the truss values are recomputed for the other two edges 〈u,w〉 and
〈v, w〉 via evaluating the right hand side of condition (1). We develop a more effi-
cient method that avoids the expensive recomputation by maintaining suitable
histograms, as described below.

Consider any edge e = 〈u, v〉. We group the triangles incident on e based
on their truss values and maintain a histogram consisting of two components,
he(·) and ge. For j < τ̂(e), he(j) stores the number of triangles with truss value
exactly j, whereas ge keeps track of the number of triangles with the truss values
at least τ̂(e). Namely:

∀j < τ̂(e) : he(j) = |{Δ(u, v, x) : τ̂(u, v, x) = j}| (2)

and ge = |{Δ(u, v, x) : τ̂(u, v, x) ≥ τ̂(e)}| (3)

For each triangle Δ(u, v, w), we initialize τ̂(u, v, w) = ∞. For each edge e, the
histogram is initialized as ge = τ̂(e) − 2 and for all j < τ̂(e), he(j) = 0.

The iterations are executed as follows. Consider each edge 〈u, v〉 found in
the active set. For each triangle Δ(u, v, w) incident on e, if τ̂(e) < τ̂(u, v, w),
we update τ̂(u, v, w) = τ̂(e). Let valold denote the value of τ̂(u, v, w) before the
update was performed and valnew be the new value (= τ̂(e)). We update the
histogram and τ̂(·) value for the other two edges 〈u,w〉 and 〈v, w〉 in such a
manner that the conditions (1), (2) and (3) continue to be satisfied.

Improved Distributed Algorithm for Graph Truss Decomposition 711

Let e′ be one of other two edges. Before the update, the triangle is counted as
part of g(e′), if valold ≥ τ̂(e′) and as part of he′(valold), if valold < τ̂(e′). Similarly,
after the update the triangle is counted as part of g(e′), if valnew ≥ τ̂(e′) and
as part of he′(valnew), if valnew < τ̂(e′). Thus, based on the value of valold and
valnew, we adjust (increment/decrement) g(e′), he′(valold) and he′(valnew); see
Fig. 2. We then decrement τ̂(e′), if ge′ < τ̂(e′) − 2. Furthermore, in this case,
he′(τ̂(e′)) must now be counted as part of ge′ and we add he′(τ̂(e′)) to ge′ . Our
implementation of PropTruss also uses the above histogram strategy.

Discussion: The two prior algorithms can be realized by modifying the win-
dow expansion heuristic: PropTruss via initializing the window to include all the
buckets; MinTruss via expanding the window with the next bucket only when
the active set becomes empty. By tuning the parameter δ, we get a spectrum of
algorithms offering tradeoff between the two extremes. On one hand, restricting
the active set to a window of buckets leads to lesser load than PropTruss. On
the other hand, ensuring that the load is high enough in each iteration leads to
faster convergence and lesser number of iterations than MinTruss. We can prove
the following tradeoff for any value of δ ∈ [0, 1]:

Number of iterations : PropTruss ≤ Hybrid ≤ MinTruss

Load : MinTruss ≤ Hybrid ≤ PropTruss

Figure 1(c) shows the load profile for the pokec graph with δ = 0.1. We can
see that the number of iterations is close to PropTruss and the load is close
to MinTruss. The profile also exhibits a blocked behavior, but the load in any
iteration is sufficiently high.

At a high level, computing the truss decomposition shares similarities with
the single source shortest path problem (SSSP). Similar to truss computation,
prior algorithms for SSSP maintain an upperbound on the shortest distances
which get iteratively refined. Here, we can draw parallels between edges and the
truss numbers on one hand, and the vertices and the shortest distances on the
other. Viewed from this perspective, the MinTruss and the PropTruss algorithms
are analogous to the well-known Dijkstra’s and the Bellman-Ford algorithms,
respectively. The Hybrid algorithm is inspired by the Δ-stepping algorithm [19].

5 Distributed Implementation

Graph Distribution: We distribute the input graph G = (V,E) among the
processors (MPI ranks) using a degree-based ordering proposed in prior work
in the context of efficient triangle counting (e.g., [18]). For a vertex u, let
deg(u) denote its degree. Arrange the vertices in the increasing order of degrees,
breaking ties via lexicographic identifiers. Namely, we say that u ≺ v, if either
deg(u) < deg(v), or deg(u) = deg(v) and id(u) < id(v). Let deg+(u) be the
number of neighbors of u with v u.

We assign each vertex u to a processor chosen uniformly at random, called
the owner of u. We also assign ownership for each edge e = 〈u, v〉: assign e to

712 V. T. Chakaravarthy et al.

the owner of u, if u ≺ v, and to the owner of v, if v ≺ u. Let V (p) and E(p)
denote the set of vertices and edges owned by a processor p.

For a processor p, let γ(p) denote the aggregate number of triangles incident
on the edges owned by p, i.e., γ(p) =

∑

e∈E(p) γ(e). The quantity γ(p) is an
indicator of the number of updates performed by the processor during the truss
computation. We can derive a bound on γ(p) follows. For each vertex u ∈ V (p),
the processor owns deg+(u) edges incident on u; each of these edges can be inci-
dent on at most deg(u) triangles. Hence, γ(p) is at most

∑

u∈V (p) deg(u)deg+(u).
Intuitively, if u is a low-degree vertex, then deg+(u) is also low, whereas if u is a
high-degree vertex, then it cannot have too many neighbors succeeding it in the
ordering and so, deg+(u) is again low. As a result, the above distribution helps
in achieving good load balance.

Preprocessing - Triangle Enumeration: All the three algorithms involve a
preprocessing stage of computing the support of the edges, via triangle enumer-
ation. For this purpose, we adopt an efficient strategy proposed in prior work
(e.g., [18]). We say that a pair of edges 〈u, v〉 and 〈u,w〉 is a monotone wedge,
v u and w u. The strategy is to enumerate all the monotone wedges 〈u, v〉
and 〈u,w〉 and test whether 〈v, w〉 is also an edge. The advantage with this
approach is that the number of wedges considered is only

∑

u∈V deg2+(u).
In our distributed implementation, each processor p builds a hash table over

edges E(p) owned by it. For each vertex u ∈ V (p), the processor p enumerates all
monotone wedges 〈u, v〉 and 〈u,w〉, and sends the triple (u, v, w) to the processor
owning v, say q. Using its hash table, the processor q checks if the pair 〈v, w〉 is
an edge in G and if so, the triangle Δ(u, v, w) has been discovered. In this case,
q increments suppG(v, w) and sends the triple (u, v, w) back to p, upon receiving
which p increments both suppG(u, v) and suppG(u,w). In the above process, for
each edge e, its owner stores the list of triangles incident on e.

Truss Computation: The algorithms are implemented under the bulk syn-
chronous parallel model. For each edge e = 〈u, v〉, the owner of e maintains τ̂(e),
histogram he(·) and ge. In addition, for each triangle Δ(u, v, w) incident on e,
the processor also stores a local copy of τ̂(u, v, w). In each iteration, for each edge
e = 〈u, v〉 ∈ Act, the owner of e propagates the new truss value τ̂(e), as follows.
For each triangle Δ(u, v, w) with τ̂(e) < τ̂(u, v, w), p sends update messages to
the owners of the edges 〈u,w〉 and 〈v, w〉, wherein the message consists of the
identification of the triangle Δ(u, v, w), as well as the new value of τ̂(u, v, w).
The messages are exchanged using the MPI Alltoallv primitive. Each processor
executes the update procedure on the received messages, updating the edge truss
values, histograms, as well as the local copies of the triangle truss values. The
buckets and the active sets are stored in a distributed manner: each processor p
maintains the buckets and active sets restricted to the edges owned by it.

6 Experimental Evaluation

Experimental Setup: The experiments were conducted on a cluster of Power-8
nodes (20 physical cores, 512 GB memory, 4 GHz) connected via InfiniBand in

Improved Distributed Algorithm for Graph Truss Decomposition 713

Fig. 3. Graph properties: number of vertices (n), edges (m) and triangles (Δ), all in
millions. The maximum truss number κ is also shown.

Fig. 4. Basic metrics

a fat-tree topology. We launch 16 MPI ranks per node, each mapped to a core.
We use 2 to 32 nodes, leading to a total of 32 to 512 MPI ranks.

The dataset consists of eight representative real-world graphs obtained from
the SNAP repository1, the Koblenz network collection2 and the University of
SuiteSparse Matrix Collection3; the uk-2002 and hollywood-2009 graphs are
based on the prior work [20]. Four of the graphs are medium-sized with more
than 100 million triangles, and the other four are large graphs with more than
billion triangles. Figure 3 shows the properties of the graphs, including the small
pokec graph used as a case study in earlier discussion (the graphs are sorted by
the number of triangles).

Prior work has presented efficient shared memory implementations for truss
computation [10,13]. These are based on the MinTruss algorithm and provide
optimizations for the above setting. Our objective is to study the two extremes
of MinTruss and PropTruss, and the effect of the tradeoff offered by Hybrid under
distributed memory setting. Towards the objective, our experimental evaluation
focuses on the three algorithms.

Recall that Hybrid offers a tradeoff between MinTruss and PropTruss, con-
trolled by δ. We experimented with different values of the parameter on different
graphs and system sizes, and found that setting δ = 0.1 offers the best tradeoff.
All the experiments discussed below use the above setting of the parameter.

Basic Metrics: We first evaluate the algorithms on the two basic metrics:
number of iterations and load (number of updates). We normalize the load by
γ(G), the number of triangles in the graph. An ideal value for normalized load

1 http://snap.stanford.edu/data.
2 http://konect.uni-koblenz.de/.
3 https://sparse.tamu.edu/.

http://snap.stanford.edu/data
http://konect.uni-koblenz.de/
https://sparse.tamu.edu/

714 V. T. Chakaravarthy et al.

is one unit, which is attained when an algorithm performs only a single update
per triangle.

The results, shown in Fig. 4, confirm our earlier analysis (Sect. 3). We can
see that MinTruss incurs a large number of iterations, whereas PropTruss takes
much lesser number of iterations, with the reduction being as high as 76x (on
hollywood). The above trend is reversed on the metric of load. The MinTruss
algorithm performs the best with near-ideal load, whereas the quantity is as
high as 22 units for PropTruss. The Hybrid algorithm strikes a balance between
the two algorithms. In terms of the number of iterations, relative to PropTruss,
Hybrid is higher by at most 16x factor (whereas MinTruss is as high as 76x).
In terms of load, relative to MinTruss, Hybrid is higher by at most 2.3x factor
(whereas PropTruss is as high as 17x).

Another metric of importance is the max-load, which quantifies the load
balance characteristics. We compute the max-load by finding the maximum load
among the processors in each iteration and summing up across all the iterations.
An ideal value of the metric is γ(G)/P , where P is the number of processors; We
normalize the max-load by this quantity. Figure 4 presents the normalized max-
load at P = 512 (the largest system size in our study). In spite of achieving near-
ideal load, the MinTruss algorithm incurs the highest max-load in most cases. The
reason is that the load gets spread over the large number of iterations, leading to
load imbalance. The PropTruss and the Hybrid algorithms involve lesser number
of iterations and perform comparatively better.

Fig. 5. Execution time (seconds) on the benchmark graphs on ranks from 32 to 512.
The best running times are highlighted.

Truss Computation: Execution Time: We next evaluate the truss compu-
tation time of the algorithms on different systems sizes (32 to 512 ranks). The
results are shown in Fig. 5 (the running times are for a single run of the algo-
rithms). The best execution time is highlighted for each configuration. The figure
also includes the preprocessing time (triangle enumeration), which is common
for all the algorithms.

We can observe that the MinTruss algorithm performs the best on small
system sizes. However, as the system size increases, the algorithm suffers from

Improved Distributed Algorithm for Graph Truss Decomposition 715

Fig. 6. Speedup of Hybrid over MinTruss and PropTruss. The average speedup on the
eight graphs at different ranks are also shown.

Fig. 7. Truss computation time(s) at 512 ranks

synchronization costs and load imbalance arising out of the large number of
iterations, resulting in degradation of the performance. Except friendster, the
Hybrid algorithm outperforms both the prior algorithms on larger systems sizes.

The friendster graph is one of the largest in terms of the number of trian-
gles. However, the maximum truss number κ is comparatively smaller leading to
lesser number of iterations for MinTruss. Consequently, the synchronization cost
and load imbalance are lesser, and so, MinTruss outperforms Hybrid on all the
system sizes in the study. We expect Hybrid to outperform MinTruss at system
sizes larger than 512 ranks.

Figure 6 provides the speedup of Hybrid over MinTruss and PropTruss on the
different graphs, as the number of ranks is varied from 32 to 512. The speedup is
measured as a ratio of the running time of the competing algorithm (MinTruss or
PropTruss) to that of Hybrid. The figure also provides the average speedup over
the eight benchmark graphs across 32 to 512 ranks. With respect to MinTruss,
the speedup is less than one on small systems sizes (since MinTruss is superior).
On the largest system size of 512, Hybrid outperforms MinTruss, with the speedup
ranging up to 2x with the average being 1.6x. With respect to PropTruss, Hybrid
achieves better speedup at smaller ranks. As the number of ranks increases, the
speedup decreases because of increase in synchronization cost and load imbalance

716 V. T. Chakaravarthy et al.

under Hybrid. Nevertheless, we see that on the largest system size of 512, the
speedup is up to 4.2x with the average being 2.4x.

Figure 7 compares the execution times on the largest system size of 512 ranks.
We can see that Hybrid outperforms MinTruss and PropTruss by factors of up to
2x (on stackoverflow) and 4x (on orkut), respectively. Taking the best of the
prior algorithms in each case, the performance gain is up to a factor of 2x (on
stackoverflow).

7 Conclusions

We presented a new distributed algorithm for truss decomposition that offers
a tradeoff between two prior procedures in terms of the metrics of number of
iterations and the number updates. Our experimental study shows that the algo-
rithm outperforms the prior procedures on large system sizes by a factor of up to
2x. Improving the scalability of the algorithm and exploring Hybrid algorithm
on shared memory systems are useful avenues for future work.

References

1. Cohen, J.: Trusses: cohesive subgraphs for social network analysis. Technical report,
National Security Agency (2008)

2. Saito, K., Yamada, T., Kazama, K.: Extracting communities from complex net-
works by the k-dense method. IEICE Trans. Fundam. Electron. Commun. Comput.
Sci. 91(11), 3304–3311 (2008)

3. Alvarez-Hamelin, J., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks
fingerprinting and visualization using the k-core decomposition. In: NIPS (2005)

4. Huang, X., Lakshmanan, L., Yu, J., Cheng, H.: Approximate closest community
search in networks. Proc. VLDB Endow. 9(4), 276–287 (2015)

5. Seidman, S.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287
(1983)

6. Sariyuce, A., Seshadhri, C., Pinar, A., Catalyurek, U.: Finding the hierarchy of
dense subgraphs using nucleus decompositions. In: WWW (2015)

7. Wang, J., Cheng, J.: Truss decomposition in massive networks. Proc. VLDB
Endow. 5(9), 812–823 (2012)

8. Rossi, R.A.: Fast triangle core decomposition for mining large graphs. In: Tseng,
V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014. LNCS
(LNAI), vol. 8443, pp. 310–322. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06608-0 26

9. Smith, S., Liu, X., Ahmed, N., Tom, A., Petrini, F., Karypis, G.: Truss decompo-
sitions on shared-memory parallel systems. In: HPEC (2017)

10. Kabir, H., Madduri, K.: Shared-memory graph truss decomposition. In: HiPC
(2017)

11. Kabir, H., Madduri, K.: Parallel k-truss decomposition on multicore systems. In:
HPEC (2017)

12. Voegele, C., Lu, Y., Pai, S., Pingali, K.: Parallel triangle counting and k-truss
identification using graph-centric methods. In: HPEC (2017)

13. Green, O., et al.: Quickly finding a truss in a haystack. In: HPEC (2017)

https://doi.org/10.1007/978-3-319-06608-0_26
https://doi.org/10.1007/978-3-319-06608-0_26

Improved Distributed Algorithm for Graph Truss Decomposition 717

14. Zhang, Y., Parthasarathy, S.: Extracting analyzing and visualizing triangle k-core
motifs within networks. In: ICDE (2012)

15. Chen, P., Chou, C., Chen, M.: Distributed algorithms for k-truss decomposition.
In: IEEE International Conference on Big Data (2014)

16. Cohen, J.: Graph twiddling in a MapReduce world. Comput. Sci. Eng. 11(4), 29–41
(2009)

17. Shao, Y., Chen, L., Cui, B.: Efficient cohesive subgraphs detection in parallel. In:
SIGMOD (2014)

18. Kolda, T., Pinar, A., Plantenga, T., Seshadhri, C., Task, C.: Counting triangles in
massive graphs with MapReduce. SIAM J. Sci. Comput. 36(5), S48–S77 (2014)

19. Meyer, U., Sandersr, P.: Δ-stepping: a parallelizable shortest path algorithm. J.
Algorithms 49(1), 114–152 (2003)

20. Boldi, P., Vigna, S.: The webgraph framework i: compression techniques. In: WWW
(2004)

Parallel Numerical Methods and
Applications

Exploiting Data Sparsity for Large-Scale
Matrix Computations

Kadir Akbudak1 , Hatem Ltaief1 , Aleksandr Mikhalev1(B) ,
Ali Charara1 , Aniello Esposito2, and David Keyes1

1 Extreme Computing Research Center,
Division of Computer, Electrical,

and Mathematical Sciences and Engineering,
King Abdullah University of Science

and Technology, Thuwal Jeddah 23955,
Kingdom of Saudi Arabia

{kadir.akbudak,hatem.ltaief,
aleksandr.mikhalev,ali.charara,david.keyes}@kaust.edu.sa

2 Cray EMEA Research Lab, Bristol, UK
esposito@cray.com

Abstract. Exploiting data sparsity in dense matrices is an algorithmic
bridge between architectures that are increasingly memory-austere on
a per-core basis and extreme-scale applications. In this work, we lever-
age the Hierarchical matrix Computations on Manycore Architectures
(HiCMA) library in order to tackle this challenging problem by achiev-
ing significant reductions in time to solution and memory footprint,
while preserving a specified accuracy requirement of the application.
We have extended HiCMA to provide a high-performance implementation
on distributed-memory systems of one of the most widely used matrix
factorization in large-scale scientific applications, i.e., the Cholesky fac-
torization. It employs the tile low-rank data format to compress the
dense data-sparse off-diagonal tiles of the matrix. It then decomposes
the matrix computations into interdependent tasks and relies on the
dynamic runtime system StarPU for asynchronous out-of-order schedul-
ing, while allowing high user productivity. Performance comparisons and
memory footprint on matrix dimensions up to eleven million show a per-
formance gain and memory saving of more than an order of magnitude for
both metrics on thousands of cores, against state-of-the-art open-source
and vendor optimized numerical libraries. This represents an important
milestone in enabling large-scale matrix computations toward solving
big data problems in geospatial statistics for climate/weather forecast-
ing applications.

1 Introduction

State-of-the-art dense linear algebra libraries are confronting memory capacity
limits and/or are not able to produce solutions in reasonable times, when per-
forming dense computations (e.g., matrix factorizations and solutions) on large
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 721–734, 2018.
https://doi.org/10.1007/978-3-319-96983-1_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_51&domain=pdf
http://orcid.org/0000-0002-1057-1590
http://orcid.org/0000-0002-6897-1095
http://orcid.org/0000-0002-9274-7237
http://orcid.org/0000-0002-9509-7794
http://orcid.org/0000-0002-4052-7224

722 K. Akbudak et al.

matrix of size n, with n in the billions. The current trend of hardware over-
provisioning in terms of floating-point units (e.g., with wide SIMD implemen-
tations) and the increase of memory capacity (e.g., with new fast non-volatile
memory layer) are not sufficient to cope with the emergence of big data problems
involving dense matrices due to the prohibitive cubic algorithmic complexity
O(n3) and the expensive quadratic memory footprint O(n2). To overcome both
challenges, matrix approximations may be considered as an effective remedy, as
long as the numerical fidelity of the original problem is preserved.

This paper introduces the Hierarchical matrix Computations on Manycore
Architectures (HiCMA) library, which exploits the data sparsity structure of dense
matrices on shared and shared to distributed-memory systems. In particular,
the class of covariance-based matrices emerges from various scientific big data
applications in environmental applications, including geospatial statistics for cli-
mate/weather forecasting [29,30]. Under such an apparently dense matrix rep-
resentation lies a family of sparse representations. HiCMA currently employs a
tile low-rank (TLR) data format, which leverages the data descriptor behind the
traditional dense/plain tile format [1,2,13]. The idea consists in compressing the
off-diagonal tiles, and retaining the most significant singular values with their
associated singular vectors up to an application-dependent accuracy threshold.
HiCMA can then perform matrix operations on these compressed tiles. A dynamic
runtime system StarPU [10] orchestrates the various computational tasks rep-
resenting the nodes of a directed acyclic graph, and asynchronously schedules
them on the available processing units in an out-of-order fashion, while care-
fully tracking their data dependencies. This systematic approach enhances the
productivity for the library development, while facilitating the code deployment
from shared to distributed-memory systems [4].

We assess the numerical robustness and parallel performance of HiCMA using
two matrix kernels. The first one is a synthetic matrix kernel, and has been
inspired from wave-based frequency domain matrix equation problems. It gives
a useful flexibility, since it permits to generate customized matrices with various
rank sizes and accuracy thresholds. This flexibility can be employed to avoid
stressing the solver infrastructure. The second kernel corresponds to a realistic
application coming from the family of parametrizable Matérn covariance func-
tion [22], and represents the state-of-the-art in modeling geostatistics and spa-
tial statistics [16]. The resulting covariance matrices for both aforementioned
kernels are symmetric and positive-definite. The Cholesky factorization is the
core operation when solving linear systems of equations for the former or calcu-
lating the matrix determinant for the latter. The Cholesky factorization reduces
a symmetric positive-definite matrix into lower or upper triangular form and is
usually used as a pre-processing step toward solving dense linear system of equa-
tions. Thanks to the resulting low arithmetic intensity of the numerical kernels,
HiCMA is able to translate the original dense compute-bound application into a
data-sparse communication-bound on distributed-memory systems. While time
to solution is significantly reduced, the bottlenecks are shifted and data traffic
reduction may rapidly become central in strong scaling mode of operation, as
usually observed for sparse computations.

Exploiting Data Sparsity for Large-Scale Matrix Computations 723

We report performance comparisons and memory footprint on matrix dimen-
sions up to eleven million and 16, 000 cores. We show a gain of more than an
order of magnitude for both metrics against state-of-the-art open-source and
vendor optimized numerical libraries, when applicable. In these experiments,
we employ a threshold which preserves the specific accuracy requirement of the
application while removing the irrelevant information data from the matrix. We
also provide a comprehensive profiling and tracing results to identify current per-
formance bottlenecks in HiCMA. Last but not least, we show preliminary power
profiling results to study the impact of the numerical accuracy on the overall
energy consumption. The energy consumption stands as a new critical metric to
monitor and optimize, especially when solving big data problems in geospatial
statistics for climate/weather forecasting applications.

The remainder of the paper is organized as follows. Section 2 provides a bib-
liography in hierarchical low-rank matrix computations and our research con-
tributions. Section 3 introduces and describes the HiCMA software infrastructure
for solving large-scale data-sparse problems. Section 4 defines the kernels for
synthetic matrix generations and real world applications from climate/weather
forecasting applications based on a geospatial statistics approach. Section 5 gives
implementation details of the tile low-rank Cholesky, which relies on the StarPU
dynamic runtime system. Section 6 presents the results and a comprehensive
performance analysis. It compares our implementation against existing state-of-
the-art implementations on distributed-memory system. We conclude in Sect. 7.

2 Related Work

Discovered around two decades ago [17–19,21,31], hierarchical low-rank matrix
approximations are currently a leading algorithmic trend in the scientific commu-
nity to solve large-scale data-sparse problems. Based on recursive formulations,
they exploit the data sparsity of the matrix by compressing the low-rank off-
diagonal blocks using an adequate data storage format such as HODLR [6,9],
H [20], HSS [5,27] and H2 [12]. The aforementioned data compression formats
are characterized by linear and log linear upper bounds for their algorithmic
complexities. The resulting low arithmetic intensity of the kernel in addition to
the recursive formulation impede their parallel performance. They turn out to be
difficult to implement, and not amenable to effectively map on manycore shared
and distributed-memory systems, due to their fork-join paradigm.

More recently, with the emergence of asynchronous task-based programming
models, these hierarchical low-rank matrix approximations algorithms have been
revisited by flattening their recursions and exposing them to task-based run-
time systems such as Intel Threading Building Blocks (Intel TBB) [24] and
OpenMP [4]. While these dynamic runtimes permit to mitigate the overhead
from the bus bandwidth saturation on single shared-memory nodes, they do not
support distributed-memory systems. Moreover, the authors in [14] have also
demonstrated the importance of flattening the recursion during the compres-
sion of H2-matrices, when targeting massively parallel GPU accelerators. Since

724 K. Akbudak et al.

memory is a scarce resource on the GPU, porting the H2-matrix approximation
kernel to multiple GPUs appears mandatory but seems to be a very tedious
exercise, due to the complex handmade memory management across GPUs.

Another data compression format has been introduced [7], i.e., the block low-
rank data format, which is a subset of the H-matrix class of data-sparse approx-
imation. It consists of splitting the dense matrix into blocks and to perform
low-rank matrix computations, while compressing the final results on-the-fly.
Although distributed-memory systems do not appear as a hostile environment
anymore with this new format in the context of sparse direct solvers [8], there
may be still two main limitations: the lack of a systematic approach to schedule
the computational tasks onto resources and the high memory footprint, since
the matrix is not compressed initially, but rather gets compressed as the com-
putation goes.

This paper introduces the HiCMA library, the first implementation of task-
based tile low-rank Cholesky factorization on distributed-memory systems. Com-
pared to the initial implementation on shared-memory environment [4] based
on OpenMP, this paper uses instead the StarPU [10] dynamic runtime system
to asynchronously schedule computational tasks across interconnected remote
nodes. This highly productive association of task-based programming model with
dynamic runtime systems permits to tackle in a systematic way advanced hard-
ware systems by abstracting their complexity from the numerical library devel-
opers. This separation of concerns between hardware and software facilitates in
solving large-scale simulations and allows porting HiCMA onto large resources and
large problems sizes, i.e., 16, 000 cores and 11 million, respectively. We have also
conducted performance and power profiling analysis to provide further insights
when scheduling this new class of algorithms for hierarchical low-rank matrix
computations. The HiCMA software library1 has been released and is freely avail-
able for public download under the open-source modified BSD license.

3 The HiCMA Software Library

The HiCMA software library provides a high-performance implementation of
the Cholesky factorization for symmetric positive-definite matrices with a data
sparse structure. A complete list of HiCMA features can be found at https://
github.com/ecrc/hicma. HiCMA is rooted in tile algorithms for dense linear alge-
bra [2], which split the matrix into dense tiles. HiCMA leverages the tile data
descriptor in order to support the new tile low-rank (TLR) compression format.
While this data descriptor is paramount to expose parallelism, it is also criti-
cal for the data management in distributed-memory environment [1,13]. HiCMA
adopts a flattened algorithmic design to bring to the fore the task parallelism,
as opposed to plain recursive approach, which has constituted the basis for per-
formance of previous H-matrix libraries [18,19,21].

1 https://github.com/ecrc/hicma.

https://github.com/ecrc/hicma
https://github.com/ecrc/hicma
https://github.com/ecrc/hicma

Exploiting Data Sparsity for Large-Scale Matrix Computations 725

Once the matrix has been divided into tiles, HiCMA relies on the STARS-H
library 2, a high performance H-matrix market, to generate and compress each
tile independently. This allows to create the TLR matrix in compressed format,
without having a global dense representation, and therefore, opens opportunities
to solve large-scale applications, thanks to a low memory footprint. This may
eventually become cumbersome even for sparse solvers [7], when dealing with
high dimensional problems, since the global intermediate dense matrices are
explicitly generated. Figure 3(b) in [4] sketches the TLR matrix after compress-
ing on-the-fly each tile with a specific application-dependent fixed accuracy. This
may result into low-rank tiles with non-uniform ranks to maintain the overall
expected accuracy. Although the scope of HiCMA described in this paper focuses
on dense covariance-based scientific applications, it may have a broader impact.
Indeed, as previously mentioned, it can also service sparse direct solvers, i.e.,
supernodal [23,28] and multifrontal numerical methods [8,26], during the low-
rank Schur complement calculations on the fronts/supernodes, which are the
crux of sparse computations. Furthermore, the fixed rank feature of HiCMA, as
shown in Fig. 3(a) in [4], allows to generate TLR matrices with uniform ranks
across all low-rank tiles. This rough approximations may be of high interest
for speeding up sparse preconditioners (e.g., incomplete Cholesky/LU factoriza-
tions) during iterative solvers, since important a priori assumptions can be made
to optimize and improve parallel performance.

4 Definition of Matrix Kernels

The matrix kernel is a function that generates matrix entries, i.e., Aij = f(xi, yj),
from two sets {xi} and {yj}. Typically, the matrix kernel function f(x, y) calcu-
lates the interaction between two objects x and y, using a distance-based formu-
lation. Although some matrix kernels may lead to sparse matrices, we investigate
matrix kernels that translate into dense matrices.

Synthetic Matrix Kernel. The first matrix kernel is a synthetic one, inspired
from the core matrix kernel of wave-based matrix equations, as in electrodynam-
ics, electromagnetic and acoustic applications. The matrix kernel can be defined
as f(x, y) = sin(λr(x,y))

r(x,y) , where λ is a wave number and r(x, y) is an Euclidian
distance between x and y. In fact, this corresponds to the imaginary part of
a fundamental solution eiλr

r of the Helmholtz equation. This modified function
is very convenient, since the wave number has a direct impact of the rank dis-
tribution on the TLR matrix. This permits to test the numerical robustness of
HiCMA with a large number of rank configurations. Figures 1(a)-(d) depict the
rank distribution for various wave numbers λ on a matrix of size 2500 × 2500
with an accuracy threshold set to 10−9. It shows a homogeneity among rank
sizes of the off-diagonal tiles for a given λ, while it displays rank growth as λ
increases.
2 https://github.com/ecrc/stars-h.

https://github.com/ecrc/stars-h

726 K. Akbudak et al.

Fig. 1. Rank distributions for the synthetic matrix kernel with different wave numbers
λ and acc=10−9 (a)-(d). Rank distributions the spatial statistics applications with
acc=10−8 (e). Distribution of normalized singular values for both matrix kernels on
the bottom-left off-diagonal tile (f). Matrix size N = 2500.

Matérn Matrix Kernel for Covariance Problems. The Matérn matrix
kernel is at the core of spatial statistics and is used as the state-of-the-art model
to drive climate/weather forecasting applications [22]. We have implemented
the square exponential variant of this Matérn matrix kernel to demonstrate the
effectiveness of our TLR approach for solving real world applications. The square

exponential kernel can be defined as f(r) = e− r2

2l2 , where r is a distance between
spatial points and l is a correlation length. For the experiments presented in
the paper, we set the correlation length to 0.1. The resulting TLR covariance
matrix is then used to evaluate the maximum likelihood function during an
optimization and iterative procedure, as explained in [4]. Each iteration requires
the calculation of the matrix determinant involving the Cholesky factorization,
which is the most time-consuming phase. Figure 1(e) shows the rank distributions
on a matrix of size 2500×2500 with tile size 250 for the square exponential kernel.
The ranks are not too disparate for the corresponding accuracy of 10−8.

The singular value distributions for the tile located at the bottom-left of the
TLR matrix generated from each type of matrix kernels is depicted in Fig. 1(f).
Their distributions highlight an exponential decay, and therefore, reveal the
data sparsity structure of such matrices. It is also clear that, given these rank
heatmaps, data compression formats with weak admissibility conditions (i.e.,
HODLR and HSS) may not be appropriate for this application, due to nested
dissection, which operates only for diagonal super tiles. The off-diagonal super

Exploiting Data Sparsity for Large-Scale Matrix Computations 727

tiles may then engender excessive larger ranks after compression, which may
eventually have a negative impact on performance and memory footprint.

5 Implementation Details

This section provides insights into two main ingredients for porting the HiCMA
library to distributed-memory systems: the data descriptor and the StarPU
dynamic runtime system.

The Data Descriptor. The data descriptor defines the backbone of HiCMA, as
it dictates how the data management takes place across the distributed-memory
computational nodes. Originally developed for ScaLAPACK [11] and inspired later
DPLASMA’s [13], the descriptor draws how the data is scattered among processing
units following the classical two-dimensional block cyclic distribution to ensure
load balancing between nodes. HiCMA leverages this single descriptor for dense
matrices and creates three descriptors to carry on computations over the com-
pressed bases of each tile, calculated by using the randomized SVD compression
algorithm from the STARS-H library. These bases, i.e., U and V, are of sizes nb-
by-k and k-by-nb, respectively, with nb the tile size and k the tile rank. The
first descriptor stitches the rectangular bases U and VT of each tile together.
Since k is not known a priori, we define a maximum rank (maxrk), which can be
tuned for memory footprint as well as performance. The second descriptor con-
tains the actual ranks of each tile after compression and gets updated during the
computation accordingly. The last descriptor store information about the dense
diagonal tiles. The main challenge with these descriptors is that they enforce
each data structure they inherently describe to be homogeneous across all tiles.
While the rank and dense diagonal tiles descriptors are obviously important
to maintain for numerical correctness, the descriptor for the off-diagonal tiles
has a direct impact on the overall communication volume. Therefore, tuning
the maxrk parameter is mandatory. However, dense data-sparse matrices with a
large disparity in the ranks of the off-diagonal tiles may encounter performance
bottlenecks, due to excessive remote data transfers. One possible remedy is to
implement a fine-grained descriptor for each single tile, as explained in [25].

The StarPU Dynamic Runtime System. The StarPU dynamic runtime sys-
tem [10] maps a sequential task-based application onto a complex underlying
parallel shared and/or distributed-memory systems. This allows endusers to
focus on getting correctness from their sequential implementations and leave the
challenging part of porting their codes to parallel environment to the runtime.
The pseudo-code for the task-based TLR Cholesky factorizations is presented in
Algorithm 1. We refer readers to [4] for the full description of the sequen-
tial kernels. The Insert Task API encapsulates the task, its parameters with
their data directions, i.e., read and/or write (STARPU R, STARPU W and
STARPU RW). Not only does StarPU execute its tasks asynchronously within

728 K. Akbudak et al.

Algorithm 1. hicma dpotrf (HicmaLower, D, U, V, N, nb, rank, acc)
p = N / nb
for k = 1 to p do

StarPU Insert Task(hcore dpotrf, HicmaLower, STARPU R, D(k), rank, acc)
for i = k+1 to p do

StarPU Insert Task(hcore dtrsm, STARPU RW, V(i,k), STARPU R, D(k,k))
end for
for j = k+1 to p do

StarPU Insert Task(hcore dsyrk, STARPU RW, D(j), STARPU R, U(j,k), STARPU R, V(j,k))
for i = j+1 to p do

StarPU Insert Task(hcore dgemm, STARPU R, U(i,k), V(i,k), STARPU R, U(j,k), STARPU R, V(j,k),
STARPU RW, U(i,j), STARPU RW, V(i,j), rank, acc)

end for
end for

end for

each node in an out-of-order fashion, but it also performs remote non-blocking
point-to-point MPI communications to mitigate the data movement overhead by
overlapping it with computations.

6 Performance Results

Our experiments have been conducted on two Cray systems. The first one,
codenamed Shaheen-2, is a Cray XC40 system with the Cray Aries network
interconnect, which implements a Dragonfly network topology. It has 6174 com-
pute nodes, each with two-socket 16-core Intel Haswell running at 2.30 GHz
and 128 GB of DDR3 main memory. The second system, codenamed Cray-SKL,
has roughly 300 nodes with mixed stock keeping units (SKUs) The majority
of nodes has at least two-socket 20-core Intel Skylake and at least 192GB of
DDR4 memory, where the base frequency of the different SKUs varies between
2.1 GHz and 2.4 GHz. HiCMA and StarPU have been compiled with Intel compiler
suites v16.3.3.210 and v17.0.4.196 on Shaheen-2 and Cray-SKL, respectively.
Calculations have been performed in double precision arithmetic and the best
performance after three runs is reported.

(a) Synthetic (λ = 100). (b) Statistics.

Fig. 2. Time to solution of Intel MKL’s dense dpotrf and hicma dpotrf for both
matrix kernels on Sandy Bridge, Haswell, and Skylake shared-memory systems.

Exploiting Data Sparsity for Large-Scale Matrix Computations 729

Figure 2 shows the performance of the dense and TLR Cholesky factorizations
from Intel MKL and HiCMA Cholesky factorizations, respectively, on shared-
memory systems. We compare against various Intel chip generations, i.e., Sandy
Bridge, Haswell and Skylake, for both matrix kernels. Not only can HiCMA solve
larger problems than Intel MKL and with a much lower slope when scaling up,
the obtained performance gain is also between one and two orders of magnitude
for the synthetic and the square exponential matrix kernels, respectively.

Figure 3 shows the memory footprint for various accuracy thresholds of dense
(calculated) and TLR (measured) Cholesky factorizations on a million covari-
ance matrix size from the synthetic and real world application matrix kernel, as
introduced in Sect. 4. As seen in the figure, the TLR-based compression scheme
exhibits more than an order of magnitude memory footprint saving with respect
to naive dense Cholesky factorization from ScaLAPACK for both matrix kernels.
We refer the readers to [4] for the TLR algorithmic complexity study. Fur-
thermore, the geospatial statistics matrix kernel can not support high accuracy
thresholds, since the overall matrix looses its positive definiteness. However, the
fixed accuracy of 10−8 is used for the latter matrix kernel, as required by the
original application.

Fig. 3. Memory footprint of ScaLAPACK
and hicma dpotrf on 1M matrix size.

Fig. 4. Runtimes of ScaLAPACK’s
pdpotrf and hicma dpotrf on
Shaheen-2. Synthetic λ = 100.

Figure 4 shows performance comparisons of HiCMA against Intel ScaLAPACK
for the TLR and dense Cholesky factorization on Shaheen-2 distributed-memory
system using both matrix kernels (including generation and compression). Since
ScaLAPACK performs brute force computations, it is agnostic to the matrix kernel
applications. HiCMA outperforms ScaLAPACK by using only 16 nodes as opposed
to 256 nodes, up to half a million matrix size.

Figure 5 shows the time breakdown spent in generation and compression
versus computation for HiCMA and ScaLAPACK Cholesky factorization on both

730 K. Akbudak et al.

(a) ScaLAPACK. (b) HiCMA, synthetic. (c) HiCMA, statistics.

Fig. 5. Time breakdown of ScaLAPACK’s pdpotrf and hicma dpotrf on Shaheen-2 for
both matrix kernels. λ = 100 for the synthetic application.

Fig. 6. Runtimes of hicma dpotrf for
different accuracy thresholds on 64
nodes of Shaheen-2. Matrix size n =
1M and nb = 2700. Synthetic λ = 200.

Fig. 7. Power profiling and energy con-
sumption of hicma dpotrf for differ-
ent accuracy thresholds on 64 nodes of
Cray-SKL. Matrix size n = 1M and
nb = 2700. Synthetic λ = 200.

matrix kernels. The cost of generating the dense matrix for ScaLAPACK is negli-
gible compared to the computational time. However, the time to generate and
compress is noticeable for HiCMA and counts around 25% of the elapsed time, on
matrix sizes up to half a million.

Figure 6 highlights the performance impact of various accuracy thresholds for
both matrix kernels. The curves have expected trends, although varying accuracy
threshold does not seem to impact the performance of the square exponential
matrix kernel. This is due to maxrk, which stays relatively the same across the
accuracy thresholds.

Exploiting Data Sparsity for Large-Scale Matrix Computations 731

Figure 7 show some preliminary results of power profiling and energy con-
sumption for HiCMA TLR Cholesky factorization with various accuracy thresholds
on both matrix kernels using Perftools from Cray-SKL. The energy consumption
saving is commensurate to the performance gain in time. The recorded power
offset of HiCMA compared to running HPL corresponds the under-utilized CPUs,
due to low arithmetic intensity kernels.

(a) Synthetic, λ=50, Shaheen-2. (b) Synthetic, λ=100, Shaheen-2.

(c) Statistics, Shaheen-2. (d) Statistics, Cray-SKL.

Fig. 8. Elapsed time of hicma dpotrf for larger matrices (up to 11 million) for both
matrix kernels on Shaheen-2 and Cray-SKL.

Figure 8 depicts the strong scaling of HiCMA on both systems for the two
matrix kernels. The synthetic matrix kernel is indeed important since it permits
to show the performance bottleneck of the HiCMA’s data descriptor supporting
homogeneous ranks for large-scale problem sizes. Due to a large disparity of
the ranks, maxrk has to be set to the actual maximum rank for all low-rank
tiles, which engenders excessive data movement. The computation is, however,

732 K. Akbudak et al.

only applied on the eligible data. For the square exponential matrix kernel, the
obtained scalability is decent on both systems, considering the low arithmetic
intensity of the kernels.

(a) Dense dpotrf time=18.120s (b) Data-sparse dpotrf time=1.761s

Fig. 9. Execution traces of Chameleon’s dpotrf (a) and hicma dpotrf (b) on 4 nodes
of Shaheen-2 with a matrix size of 54K. (Color figure online)

Figure 9 presents the execution traces of dense and TLR Cholesky factor-
izations, as implemented in task-based Chameleon [1] and HiCMA, respectively.
These traces highlight the CPU idle time (red color) in HiCMA, since StarPU is
not able to compensate the data movement overhead with the tasks’ computa-
tions (green color). Nevertheless, there is an order of magnitude in performance
between both libraries.

7 Conclusion

This paper introduces the HiCMA numerical library on distributed-memory sys-
tems. HiCMA implements a task-based tile low-rank algorithm for the Cholesky
factorization. It relies on the StarPU dynamic runtime system to asynchronously
schedule computational and communication tasks. HiCMA outperforms state-of-
the-art dense Cholesky implementations by more than an order of magnitude in
performance and saves memory footprint by the same ratio while still preserv-
ing the specific accuracy requirement of the application. The numerical robust-
ness and high performance of HiCMA are demonstrated at scale using synthetic
and real world matrix kernels. In particular, HiCMA stands as a pathfinder for
approximating and effectively solving geospatial statistics applications. Future
work includes using a more flexible data descriptor to better handle situations
with disparate ranks, porting HiCMA to hardware accelerators, introducing batch
processing [15] and integrating HiCMA into existing sparse direct solvers for the
Schur complement calculations.

Data Availability Statement and Acknowledgments. The datasets and code
generated during and analysed during the current study are available in the figshare
repository: https://doi.org/10.6084/m9.figshare.6388202 [3] The authors would like to

https://doi.org/10.6084/m9.figshare.6388202

Exploiting Data Sparsity for Large-Scale Matrix Computations 733

thank the StarPU team at INRIA, France. This work has been partially funded by
the Intel Parallel Computing Center Award. For computer time, this research used
the resources from KAUST Supercomputing Laboratory for Shaheen-2 core hours
allocation.

References

1. Agullo, E., et al.: Achieving high performance on supercomputers with a sequential
task-based programming model. In: IEEE TPDS (2017)

2. Agullo, E., et al.: Numerical linear algebra on emerging architectures: the PLASMA
and MAGMA projects. J. Phys.: Conf. Ser. 180, 12–37 (2009)

3. Akbudak, K., Ltaief, H., Mikhalev, A., Charara, A., Esposito, A., Keyes, D.:
HiCMA (Hierarchical Computations on Manycore Architectures) library. Pre-
sented in Euro-Par 2018 paper. Figshare. Code (2018). https://doi.org/10.6084/
m9.figshare.6388202

4. Akbudak, K., Ltaief, H., Mikhalev, A., Keyes, D.: Tile low rank cholesky factor-
ization for climate/weather modeling applications on manycore architectures. In:
Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC 2017. LNCS, vol. 10266,
pp. 22–40. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58667-0 2

5. Ambikasaran, S., Darve, E.: An O(N log N) fast direct solver for partial HSS matri-
ces. J. Sci. Comput. 57(3), 477–501 (2013)

6. Ambikasaran, S., Foreman-Mackey, D., Greengard, L., Hogg, D.W., O’Neil, M.:
Fast direct methods for Gaussian processes. IEEE Trans. Pattern Anal. Mach.
Intell. 38(2), 252–265 (2016)

7. Amestoy, P., Ashcraft, C., Boiteau, O., Buttari, A., L’Excellent, J.Y., Weisbecker,
C.: Improving multifrontal methods by means of block low-rank representations.
SIAM J. Sci. Comput. 37(3), A1451–A1474 (2015)

8. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y.: Multifrontal parallel distributed sym-
metric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184(2), 501–
520 (2000)

9. Aminfar, A., Ambikasaran, S., Darve, E.: A fast block low-rank dense solver with
applications to finite-element matrices. J. Comput. Phys. 304, 170–188 (2016)

10. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurr. Com-
put.: Pract. Exp. 23(2), 187–198 (2011)

11. Blackford, L.S., et al.: ScaLAPACK Users’ Guide. SIAM, Philadelphia (1997)
12. Börm, S.: Efficient Numerical Methods for Non-local Operators: H2-Matrix Com-

pression, Algorithms and analysis. EMS Tracts in Mathematics, vol. 14. European
Mathematical Society (2010)

13. Bosilca, G., et al.: Flexible development of dense linear algebra algorithms on
massively parallel architectures with DPLASMA. In: IPDPS Workshops, pp. 1432–
1441. IEEE (2011)

14. Boukaram, W.H., Turkiyyah, G., Ltaief, H., Keyes, D.E.: Batched QR and SVD
algorithms on GPUs with applications in hierarchical matrix compression. Parallel
Comput. 74, 19–33 (2017)

15. Charara, A., Keyes, D.E., Ltaief, H.: Tile Low-Rank GEMM Using Batched Oper-
ations on GPUs. In: Aldinucci, M., et al. (eds.) Euro-Par 2018. LNCS, vol. 11014,
pp. xx–yy. Springer, Cham (2018)

16. Chiles, J.P., Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty, vol. 497.
Wiley, Hoboken (2009)

https://doi.org/10.6084/m9.figshare.6388202
https://doi.org/10.6084/m9.figshare.6388202
https://doi.org/10.1007/978-3-319-58667-0_2

734 K. Akbudak et al.

17. Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. part i: introduc-
tion to H-matrices. Computing 62(2), 89–108 (1999)

18. Hackbusch, W., Börm, S.: Data-sparse approximation by adaptive H2-matrices.
Computing 69(1), 1–35 (2002)

19. Hackbusch, W., Khoromskij, B., Sauter, S.: On H2-matrices. In: Bungartz, H.J.,
Hoppe, R., Zenger, C. (eds.) Lectures on Applied Mathematics, pp. 9–29. Springer,
Heidelberg (2000). https://doi.org/10.1007/978-3-642-59709-1 2

20. Hackbusch, W.: Hierarchical matrices: Algorithms and analysis, vol. 49. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47324-5

21. Hackbusch, W., Börm, S., Grasedyck, L.: HLib 1.4 (1999–2012), Max-Planck-
Institut, Leipzig

22. Handcock, M.S., Stein, M.L.: A Bayesian analysis of kriging. Technometrics 35,
403–410 (1993)

23. Hénon, P., Ramet, P., Roman, J.: Pastix: a high-performance parallel direct solver
for sparse symmetric positive definite systems. ParCo 28(2), 301–321 (2002)

24. Kriemann, R.: H-LU factorization on many-core systems. Comput. Vis. Sci. 16(3),
105–117 (2013)

25. Kurzak, J., et al.: Designing slate: software for linear algebra targeting exascale.
SLATE Working Notes 3, ICL-UT-17-06, University of Tennessee (10–2017 2017)

26. Li, X.S., Demmel, J.W.: SuperLU DIST: a scalable distributed-memory sparse
direct solver for unsymmetric linear systems. ACM TOMS 29, 110–140 (2003)

27. Rouet, F.H., Li, X.S., Ghysels, P., Napov, A.: A distributed-memory package
for dense hierarchically semi-separable matrix computations using randomization.
ACM TOMS 42(4), 27:1–27:35 (2016)

28. SuiteSparse: A suite of sparse matrix software (2017). http://faculty.cse.tamu.edu/
davis/SuiteSparse/

29. Sun, Y., Li, B., Genton, M.G.: Geostatistics for large datasets. In: Porcu, M., Mon-
tero, J.M., Schlather, M. (eds.) Space-Time Processes and Challenges Related to
Environmental Problems. Lecture Notes in Statistics, vol. 207, pp. 55–77. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-17086-7 3

30. Sun, Y., Stein, M.L.: Statistically and computationally efficient estimating equa-
tions for large spatial datasets. J. Comput. Graph. Stat. 25(1), 187–208 (2016)

31. Tyrtyshnikov, E.E.: Mosaic-skeleton approximations. Calcolo 33(1), 47–57 (1996)

https://doi.org/10.1007/978-3-642-59709-1_2
https://doi.org/10.1007/978-3-662-47324-5
http://faculty.cse.tamu.edu/davis/SuiteSparse/
http://faculty.cse.tamu.edu/davis/SuiteSparse/
https://doi.org/10.1007/978-3-642-17086-7_3

Hybrid Parallelization and Performance
Optimization of the FLEUR Code: New
Possibilities for All-Electron Density

Functional Theory

Uliana Alekseeva(B), Gregor Michalicek, Daniel Wortmann, and Stefan Blügel

Institute for Advanced Simulation and Peter Grünberg Institut,
Forschungszentrum Jülich and JARA, 52425 Jülich, Germany

{u.alekseeva,g.michalicek,d.wortmanm,s.bluegel}@fz-juelich.de
http://www.fz-juelich.de/pgi

Abstract. A hybrid MPI+OpenMP parallelization strategy has been
implemented into the density functional theory code FLEUR. Based on
the full-potential linearized augmented plane-wave (FLAPW) method,
FLEUR is a well-established all-electron code specialized on the sim-
ulation of materials properties of crystalline bulk solids and surfaces
with significant electronic and magnetic complexity. Developed in over 30
years the Fortran implementation included two layers of MPI-based dis-
tributed memory parallelization that serves as a reference for our work.
The revised code version shows superior performance, improved scalabil-
ity and thereby opens the path to exploit current and future high per-
formance computing architectures efficiently. Multiple threads per MPI
process can be utilized by interfacing with optimized linear algebra sub-
routines from the BLAS and LAPACK libraries as well as in code sec-
tions with explicit OpenMP statements. We demonstrate that the addi-
tional multithreading helps to avoid the communication induced scala-
bility limit of the pure-MPI version and simultaneously boosts the single
node-performance on current multi-core systems. This enables FLEUR
calculations for unit cells with over 1000 atoms to simulate extended
defects, surfaces and disordered solids.

Keywords: DFT · FLAPW · Hybrid parallelization

1 Introduction

Over the last decades density functional theory (DFT) calculations [10] have
become an indispensable tool for the simulation of material properties and the
prediction of new materials showing novel functionality. The increasing computa-
tional resources together with algorithmic advances and methodological develop-
ments make the calculation of more and more properties for more and more com-
plex materials feasible. Due to the large variety of properties, physical effects and

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 735–748, 2018.
https://doi.org/10.1007/978-3-319-96983-1_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_52&domain=pdf

736 U. Alekseeva et al.

the difference in the computational challenges that arise, many established DFT-
codes have been developed [4] that typically implement different algorithms.

The increase in computational resources, however, also comes with a change
of the hardware architectures. Decades ago a typical mainframe computer fea-
tured a small number of computational cores and parallelism utilized few of these
single-core nodes with distributed memory. Nowadays HPC machines typically
are cluster systems consisting of many shared memory nodes connected through a
communication network and featuring several multi-core CPUs each. The addi-
tional parallelization layers in such architectures together with the larger but
also shared memory capacity on each node entail the requirement to adapt the
software parallelization strategies.

We perform this adaption for the FLEUR [2] code developed at the
Research Center Jülich. This is a full-potential linearized augmented-plane-
wave (FLAPW) [5,11,18,19] implementation of DFT. Being an all-electron code
FLEUR is employable to perform highly precise simulations for solids, surfaces
and molecular systems consisting of arbitrary compositions of chemical elements
and it has its particular strength in the simulation of magnetism and relativistic
effects.

To utilize modern hierarchical architectures efficiently, a “hierarchical”,
hybrid parallelization is implemented, i.e. the distributed memory paradigm
(MPI) and a multi-threaded shared memory paradigm are combined. The aim
of the new hybrid parallelization scheme presented here is not only to make the
intra-node CPU usage effective, but also to enable simulations of big unit cells
using many nodes. To achieve this, the “top-down” approach [17] was applied, i.e.
for a given test case, first the efficiency of MPI parallelization was investigated
and improved when needed, then multi-threading was added, either as calls to
external multi-threaded libraries or as direct implementation of OpenMP prag-
mas. We show that we obtained significant performance and scalability enhance-
ments pushing the limit of applicability of the code to simulations with over 1000
atoms.

While we implemented many improvements throughout the code, we will
concentrate the discussion on the setup of the matrices and the subsequent
matrix diagonalization. The latter part can efficiently be solved using standard
libraries for dense generalized eigenvalue problems. The first of these two most
time consuming parts of the code other authors also discussed before in detail [14,
16]. While we agree with those works in the aspect of stressing the benefit of using
standard matrix operations, we use a significantly different algorithm exploiting
in addition the analytic properties of the problem and thereby reducing the
number of computations needed. We tested our approach against simpler schemes
and found it to show superior performance and scaling.

In the next chapter we introduce the FLAPW algorithm. In Sect. 3 we discuss
the parallelization and optimization performed to achieve the benchmark results
presented in Sect. 4, Sect. 5 concludes the paper.

Hybrid Parallelization of FLEUR 737

2 Density Functional Theory and the FLAPW Method

According to density functional theory [9,12], the total energy of a system of
interacting atoms and electrons is a functional of its electron density n(r). Hence,
the Hamiltonian (the energy operator) of the system

Ĥ[n(r)] = T̂ + Veff[n(r)], (1)

which is the sum of the kinetic energy operator T̂ and the effective potential Veff,
depends directly on the electron density. The electron density can be expressed
in terms of Nocc occupied single-particle orbitals ψν(r):

n(r) =
Nocc∑

ν

|ψν(r)|2, (2)

where ν labels the states. The single-particle orbitals ψν(r) are the solutions of
the Kohn-Sham equations, an eigenvalue problem with eigenvalues εν :

Ĥ[n(r)]ψν(r) = ενψν(r). (3)

Since the Hamiltonian in the equation depends on its solution, this is a self-
consistency problem which has to be solved iteratively: starting with an initial
guess the ground-state density is therefore obtained in an iterative scheme that
produces a new density in each iteration. The new input density is obtained by a
mixing procedure from the old input density, the output density, and optionally
further densities related to earlier iterations of this self-consistency cycle. The
final ground-state density is self-consistent with respect to this procedure.

We solve the Kohn-Sham equations for crystalline solids described by a unit
cell with a finite number of atoms, which is repeated indefinitely in all three
spatial dimensions to fill up the whole space. For such solids the Hamiltonian
matrix can be block-diagonalized and each block provides an independent eigen-
value problem. Each block is indexed by the so called Bloch vector k , hence in
the following the matrices, their eigenvalues and eigenvectors feature an extra
k -index [7].

2.1 FLAPW Method

A common approach to solving Eq. (3) is to expand the wave functions in terms
of a set of basis functions

{
φG
k

}
as

ψν,k (r) =
∑

G

cGν,kφ
G
k (r). (4)

By this the Hamiltonian becomes a Hermitian matrix and the eigenvalue prob-
lem is solved by a matrix diagonalization. Equation (3) becomes the generalized
eigenvalue problem

∑

G′
Hk

G,G′cG
′

ν,k = εν,k

∑

G′
Sk
G,G′cG

′
ν,k , (5)

738 U. Alekseeva et al.

where
Hk

G,G′ =
∫

(φG
k)∗ĤφG′

k dr and Sk
G,G′ =

∫
(φG

k)∗φG′
k dr (6)

are the Hamiltonian matrix and the overlap matrix.
In the all-electron full-potential linearized augmented-plane-wave method

(FLAPW) [5,11,18,19] the basis functions are linearized augmented-plane-waves
(LAPWs) which are based on a partitioning of space into non-overlapping but
nearly touching muffin-tin (MT) spheres centered at each atom and an intersti-
tial region (INT) in between the spheres. Formally a LAPW is given by

φG
k (r) =

⎧
⎪⎨

⎪⎩

1√
Ω

ei(k+G)r in INT
∑
α

lαmax∑
L

∑
p

ak ,G,p
L,α up

l,α(rα)YL(r̂α) in MTα

, (7)

where G is a reciprocal lattice vector used to index the LAPW, Ω is the volume
of the unit cell, and rα = r − τα is the position vector relative to atom α at
τα. The MT part of the function is a linear combination of radial functions up

l,α

times spherical harmonics YL, where p ∈ {0, 1} is an index to select one of the
radial functions. The coefficients ak ,G,p

L,α are determined by matching the MT
part of the LAPW in value and slope to the plane wave in the interstitial region.
The set of LAPW basis functions is defined by the reciprocal plane wave cutoff
parameter Kmax = |K |max = |k +G|max and its MT representation is bounded
by the angular momentum cutoffs lαmax for the sum over the composite index
L = (l,m). Typically one needs about 100 basis functions per atom and an lαmax

between 8 and 12 to obtain converged FLAPW results.
Besides the basis functions, the representations of the density and the poten-

tial are FLAPW specific and their constructions are important parts of an
FLAPW program. However, the runtime of an FLAPW calculation is typically
strongly dominated by the setup and solving of the generalized eigenvalue prob-
lem. In the following we therefore focus on the computation of the Hamiltonian
and overlap matrices.

2.2 Hamiltonian and Overlap Matrices

After integrating (Eq. 6) over the LAPWs (Eq. 7), the Hamiltonian and overlap
matrices are given as sums over the MT contributions from each atom and the
INT contribution as

Hk
G,G′ = Hk ,INT

G,G′ +
∑

α

Hk ,MTα

G,G′ = Hk ,INT
G,G′ +

∑

α

Hk ,α,sph
G,G′ + Hk ,α,nsph

G,G′ (8)

and
Sk
G,G′ = Sk ,INT

G,G′ +
∑

α

Sk ,α
G,G′ , (9)

where we also distinguish for each MT sphere between the spherical contributions
to the Hamiltonian matrix Hk ,α,sph

G,G′ and those due to the non-spherical part of

the potential Hk ,α,nsph
G,G′ .

Hybrid Parallelization of FLEUR 739

Since an interstitial LAPW is a plane wave the calculation of the related
matrix contributions is fast. Its time requirements only scale quadratically with
the system size. We discuss the more challenging MT setup.

The MT contributions to the Hamiltonian are given as

Hk ,α
G,G′ =

∑

L,L′

∑

p,p′

(
ak ,G,p

L,α

)∗
tα,p,p′
L,L′ ak ,G′,p′

L′,α (10)

in which tα,p,p′
L,L′ denotes the local Hamiltonian matrix for the respective atom in

the basis of the radial functions times spherical harmonics. The calculation of
Hk ,α

G,G′ is computationally expensive and in comparision to a simple implemen-
tation we use several measures to reduce these computational demands.

The first of these makes use of analytical calculations that can be performed
for the spherical contributions, by making use of the addition theorem for spher-
ical harmonics [6]. One obtains

Hk ,α,sph
G,G′ =

∑

L

∑

σ

(
ak ,G,σ

L,α

)∗ ∑

σ′
tα,σ,σ′
L,L ak ,G′,σ′

L,α

=
lαmax∑

l=0

2l + 1
4π

Pl

(
KK ′

|KK ′|
) [

∑

σ

(
ak ,G,σ

l,α

)∗ ∑

σ′
tα,σ,σ′
l,l ak ,G′,σ′

l,α

]
(11)

in which Pl denotes the Legendre polynomial of degree l. An analogous expres-
sion is obtained for the MT contributions to the overlap matrix Sk ,α

G,G′ which
is computed as a byproduct. Note that the analytic m summation reduces the
computational demands for these matrix elements by a factor of about 10.

The remaining Hamiltonian matrix contributions due to the non-spherical
part of the potential are

Hk ,α,nsph
G,G′ =

∑

L

∑

σ

(
ak ,G,σ

L,α

)∗
⎛

⎝
∑

L′ �=L

∑

σ′
tα,σ,σ′
L,L′ ak ,G′,σ′

L′,α

⎞

⎠ . (12)

The last measure to reduce the required computational effort is based on
the realization that in comparison to Eq. (11), Eq. (12) has lower demands with
respect to the cutoff of the L sums. Therefore in practice one uses a new cutoff
lαnsph ≈ min(8, lαmax − 2) for the L and L′ sums in this equation. This provides
another reduction of the time requirements for these calculations by 30 to 50%.
However, calculating the non-spherical contributions remains the most time-
consuming step in the setup of the matrices.

2.3 Scaling and Time Requirements

Of course, the computational demands of the different steps of an FLAPW calcu-
lation feature different scaling behaviors with respect to the system size defined
by the number of atoms Nat. Table 1 shows these different behaviors depending

740 U. Alekseeva et al.

Table 1. Scaling of the most time-consuming parts of an FLAPW self-consistency
iteration

Computational task Scaling vs. numerical parameters Scaling vs. system size

Potential generation O
(∑

α
(lαmax + 1)2NG +NG log(NG)

)
O (

N2
at

)

Matrix setup O
(
Nk

∑
α
(lαmax + 1)2NG

2

)
O (

N3
at

)
Diagonalization O (

NkNG
3
) O (

N3
at

)
Charge density generation O

(
Nk

∑
α
(lαmax + 1)2NGNocc

)
O (

N3
at

)

on Nat but also more explicitely on the number of LAPW basis functions NG ,
the angular momentum cutoff lαmax, the number of k -points Nk , and the number
of occupied eigenstates Nocc (see sum over ν in Eq. (2)).

All of these parameters are system-dependent but only NG and Nocc are
proportional to the number of atoms, while lαmax is independent of Nat and Nk is
reciprocal to Nat in each direction but at least 1. Overall this implies a cubical
scaling of the time requirements with respect to the number of atoms.

Typical time requirements for the different steps in a single iteration of the
self-consistency loop are shown in Table 2. The run time dominance of the matrix
setup and the diagonalization step are clearly visible for all problem sizes. For
larger numbers of atoms this dominance becomes even more pronounced.

Table 2. Run time measurements of the FLEUR code (MaX Release 2.0) for three
test unit cells: NaCl (64 atoms), AuAg (108 atoms) and CuAg (256 atoms). All sim-
ulations are performed on the CLAIX computing cluster with one k -point, for one
self-consistency iteration. The measurements are provided in seconds (left side) as well
as relative percentage values (right side).

Test system NaCl AuAg CuAg

Number of atoms 64 108 256

Potential generation 3.5 12.5% 12.4 3.9% 47.2 4.8%

Matrix setup 8.1 29.0% 127.7 40.4% 455.2 46.3%

Diagonalization 10.6 38.2% 145.5 46.0% 384.2 39.1%

New charge density generation 2.9 10.4% 22.5 7.1% 78.6 8.0%

Total time 27.8 100% 316.3 100% 982.4 100%

3 Parallelization and Optimization

Since different parts of the code have different algorithms and scaling behaviour,
there is no single parallelization strategy which is applicable to the whole code.

Hybrid Parallelization of FLEUR 741

Figure 1(left) summarizes how the computational load is distributed for each
section of the code on every parallelization level. There are two layers of MPI
parallelization for the most time-consuming parts, matrix setup, the diagonaliza-
tion and for the new charge density generation part. To make the code suitable
for modern HPC architectures with their hierarchical structure of parallelism, it
has been extended with multi-threading and SIMD parallelization schemes.

Fig. 1. Left Side: The schematic summary of parallelization strategies used for different
parts of the code. Right Side: Week scaling over k -points for test unit cell DyTiO3. The
number of k -points is proportional to the number of MPI processes. The red points
show the run times for calculations with 1, 2, 4, 6, 8, and 12 k -points distributed over
1, 2, 4, 6, 8, and 12 MPI processes correspondingly. The green and blue points show
the run times for test cases with 2 and 4 k -points per MPI process. Run time is scaled
to the run time of the test case with 1 k -point on 1 node (94 s for one self-consistency
iteration). The horizontal lines are theoretical predictions. Simulations are done on the
RWTH Bull Cluster, one MPI process per node. (Color figure online)

3.1 MPI Parallelization

The MPI parallelization relies on two levels of parallelism. On the first level,
the different k-points for which the Kohn-Sham Eq. (3) have to be solved are
distributed. As these are independent problems only the final results of the diag-
onalization has to be communicated and hence this parallelization is extremely
efficient with nearly ideal scaling. Figure 1(right) demonstrates and confirms
this perfect weak scaling. While this level of parallelization is very efficient in
terms of distributing the computational load, it has two shortcomings. First, in
large systems the number of k-points to be considered is small and hence this
parallelization is very limited. Second, as the diagonalization part of the code
corresponds to peak memory usage, the k-point parallelization does not reduce
memory requirements per node.

The second level of MPI parallelization implements the distribution of the
matrices and hence additionally distributes the computation of the matrix setup,
the diagonalization and some critical parts of the charge generation routines. We
will discuss details of the distributed matrix setup of the new version in the next
section. The distributed memory parallelization was very performant at the time

742 U. Alekseeva et al.

of its implementation [8], it worked excellent for machines like the CRAY T3E
(512 CPUs).

The new code version (FLEUR version 0.27 MaX Release 2.0) reported in
this work extends the existing MPI parallelization into further code parts and
hence pushes the scalability limit as set by Amdahl’s law. The old optimization
(FLEUR version 0.26) for a small memory footprint also affected the quadrat-
ically scaling storage of the eigenvectors and the linearly scaling storage of the
potential and the density. To reduce the memory consumption these were sequen-
tially written to Fortran direct access files on disc whenever they were not needed
and later read from disc again. However for large scale parallelization this app-
roach becomes a bottleneck that was overcome by additional alternative storage
schemes for the eigenvectors. On the one hand it is now possible to keep them
entirely in working memory and communicate them by one-sided MPI commu-
nication and on the other hand if memory consumption still is a problem they
can be stored on disc in terms of HDF5 files with parallel IO. The potential
and density are now always kept in memory and communicated via MPI broad-
casts. Overall the reduction of disc IO measurably increases the parallelization
scalability.

3.2 Hybrid Parallelization and Optimized Matrix Setup

One of the main optimization targets was the matrix setup. In the old ver-
sion, it was heavily optimized to reduce memory footprint. For example, several
matrix-matrix multiplications were unrolled to enable the calculation of matrix
elements on the fly without storing the whole matrix. In all of the matrix setup
routines the second level of MPI parallelization utilizes a cyclic row distribu-
tion [1] of the matrices. This ensures good load-balancing and effective re-use
of calculated quantities. The interstitial contribution can be easily calculated,
does not take much time and allows for a straightforward MPI and an additional
OpenMP parallelization over the matrix rows. It scales almost perfectly due to
the independence of the computations and the absence of communication.

As discussed above, the matrix setup in the MT spheres is the most com-
putationally relevant part of the matrix setup. In the old (version 0.26) imple-
mentation of FLEUR, spherical contributions to the H and S matrices and non-
spherical contribution to the H matrix were calculated in a single subroutine
which contained more than 1500 lines of code. This coarse-grained modularity
of the code is beneficial if the heavy reduction of the memory footprint is aspired.
Nowadays modularity in routines in which the main computational effort is per-
formed by the lowest kernels is more advantageous. It is less error-prone and
improves readability and maintainability of the code. Besides that, in case these
low kernels perform some common mathematical operation such as linear algebra
operations or Fourier transforms, external libraries can be used which are usually
highly optimized for a given hardware. Hence, the first step was to increase the
modularity of the code. The huge initial subroutine was split to several smaller
ones.

Hybrid Parallelization of FLEUR 743

The most important code split reflected the separation of the spherical and
non-spherical contributions. In the routines for the spherical MT contribution
the parallelization over the basis vectors on the MPI-level shows close to ideal
scaling. To further distribute the computations in this code section, a layer of
OpenMP parallelization over the atoms of the system has been added.

The non-spherical contributions to the Hamiltonian are now calculated by
first explicitly constructing the matrices Ak

α = [ak ,G,σ
L,α] and Tα = [tα,σ,σ′

L,L′] such
that the sums over L,L′, σ, σ′ can now be performed as matrix multiplications.
Hence the algorithm in this part basically consists of the construction of the
A-matrices, a first matrix-matrix multiplication

Ck
α = Tα ∗ Ak

α (13)

and a second multiplication

Hk ,nsph
α =

(
Ak

α

)H ∗ Ck
α. (14)

These two different matrix computations scale significantly different with sys-
tem size. The first is an O (

(lαmax + 1)4NG

)
operation, the second scales as

O (
(lαmax + 1)2NG

2
)

and hence is most relevant for large systems. As the first of
these matrix multiplications has to be performed on all MPI-ranks, it is simply
mapped onto a standard matrix-matrix multiplication that enables us to exploit
highly optimized BLAS-3 libraries for this operation.

For the second matrix multiplication, the MPI-distribution over rows and
the property of the Hamiltonian should be considered. The algorithm we imple-
mented here is a trade-off of the two contradictory conditions. On the one hand,
it is determined by the fact that the final matrix is Hermitian and only one
half of it has to be calculated and stored. On the other hand, we wish to use
again optimized, vendor supplied BLAS3 (matrix-matrix multiply) routines to
increase the efficiency. Hk ,nsph

α is distributed between MPI processes in cyclic
row distribution: if there are M processes, the line i of the matrix can be found
on the process with the number mod(i,M). That means, each MPI process pos-
sess data from a rectangular matrix with size (NG/M) × NG. Note that line i
only has i elements. The matrix is stored as a packed storage vector. To be able
to use BLAS3 routines, the matrix Hk ,nsph

α is divided into blocks (Fig. 2). Each
block is calculated as matrix-matrix multiplication, then the values from the
block are copied to the packed storage vector. Here we had to find a trade-off
between a small block-size that exploits the fact that the final result is Hermi-
tian most effectively, and a larger block-size that leads to better performance
of the matrix-matrix multiplication. We found a value of about 64–128 most
suitable on the machines we considered. As a final point we should stress, that
our scheme has the important advantage that all operations performed in the
matrix setup are local for each MPI-process. No communication is required as the
MPI-distributed matrix elements are obtained independently for each process.

Besides the matrix-setup the second time consuming part is the diago-
nalization of the matrices. Here we rely on standard libraries. The old code

744 U. Alekseeva et al.

Fig. 2. Example of parallel data layout distributed between 3 MPI processes (red,
yellow and green). Matrix H is distributed among MPI processes in line-wise fashion,
so that each MPI process has data from a rectangular matrix with size (NG/M)×NG.
To be able to use BLAS3 routines, the matrix Hk,nsph

α is divided into blocks (pink).
Each block is calculated as matrix-matrix multiplication, then the values from the
block are copied to the packed storage vector. (Color figure online)

implemented an interface to the ScaLAPACK [1] for this purpose. To obtain
reasonable performance this requires a redistribution of the matrix from the
simple row cyclic scheme used in the matrix setup to a two-dimensional block-
cyclic scheme. While this imposes a communication overhead in theory, such
a redistribution turns out to be fast enough that it does not impose a rele-
vant restriction in practice. We furthermore implemented additional interfaces
to external hybrid-parallel libraries (ELPA [13], Elemental [15]). It turns out
that the ELPA library outperforms ScaLAPACK significantly and also has the
additional benefit of delivering much more consistent performance for different
levels of MPI and OpenMP parallelism resulting in different processor grids.

With substantial parallelization, also other parts of the code start to play
substantial roles: for example, the potential generation could not be left sequen-
tial any more. In the other parts of the code either the usage of multi-threaded
libraries or the explicit implementation of OpenMP pragmas provided the needed
scaling on top of the existing MPI parallelization.

4 Benchmarks

We demonstrate the performance and scalability of the code by showing some
exemplary cases. As we have already shown that the additional k -point paral-
lelization leads to ideal scaling behaviour we restrict the presentation to calcula-
tions using a single k -point, in realistic simulations one would have an additional
parallelization allowing to use a factor 3–20 (depending on system size) more
computational cores effectively. In addition we only consider a single iteration.
As the code usually has to perform approximately 20–50 iterations sequentially,
the total runtime would increase accordingly.

Hybrid Parallelization of FLEUR 745

4.1 Computational Environment

We have parallelized and optimized the FLEUR code for typical architectures
found in HPC today: compute clusters with several levels of parallelism: inter-
node with distributed memory, intra-node with shared memory and SIMD inside
the core. The concrete specifications of the compute clusters used for the per-
formance evaluations in this work are given in Table 3.

Table 3. Hardware systems used to perform the benchmark calculations.

CPU Cores per
node

Node per-
formance

Memory Mem. bandwidth

RWTH Bull
Cluster

Intel X5675 12 147
GFlops

24GB 40 GB/s

CLAIX Intel E5-2650v4 24 840
GFlops

128GB 120 GB/s

4.2 Efficient Usage of a Single Node

To investigate the behaviour of FLEUR on a single node we use a small test case:
NaCl with 64 atoms. The intranode scaling of the whole code and its main parts
are shown in Fig. 3. Only parts of the code whose running time is more than 1%
of the total time are considered. We see that the most time-consuming parts are
the matrix setup and the diagonalization. The potential generation and the new
charge generation do not contribute much to the run time on one core, but as
we try to distribute the workload among all cores on this node, their negative
influence on the overall efficiency becomes more important.

Most significant in these plots is the limited scalability of the matrix setup
in the old, MPI only version. Here we can see that the MPI parallelization
shows scalability limits as soon as the workload per MPI process becomes too
small. This is not a communication based bottleneck as the matrix setup is
local, but a limitation induced by the underlying algorithm with its complex
loop structure being heavy on memory access tasks. The new version shows
significant improvements not only on the scaling but also on the sequential run-
time. This leads to a difference in wall-clock time for the utilization of a full node
between the old version requiring 198 s versus 97 s for the new version. Tests on
Intel Knights Landing processors (Xeon Phi 7210) showed comparable results
indicating performance portability of the new implementation.

4.3 Internode Hybrid Scaling

To investigate the full scaling of the hybrid code we studied two setups (Fig. 4):
A smaller system on the RWTH Bull Cluster and a larger system on the more

746 U. Alekseeva et al.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12

Sp
ee

du
p

(o
ne

 c
or

e:
 1

4
m

in
)

Number of cores

NaCl (64 atoms), FLEUR version 0.26

Ideal
Potential, 4.40%

Matrix setup, 46.30%
Diagonalization, 45.12%

New charge, 3.12%
Total

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 4 6 8 10 12

Sp
ee

du
p(

on
e

co
re

: 1
2

m
in

)

Number of cores

NaCl (64 atoms), FLEUR MaX Release 2.0

Ideal
Potential, 4.73%

Matrix setup, 29.09%
Diagonalization, 49.62%

New charge, 9.16%
Total

Fig. 3. Intranode scaling of the FLEUR code in total (red) as well as of its most
relevant parts (time requirements are given as percentage of the total runtime for a
single core (14 min/12 min)), before (MPI-only version 0.26, left side) and after (hybrid
version MaX Release 2.0, right side) optimization. For the optimized version: up to 4
cores - only MPI processes, on 8 und 12 cores - hybrid parallelization. The simulations
were performed on the RWTH Bull Cluster. (Color figure online)

modern CLAIX machine. Here we not only compared to the pure MPI paralleliza-
tion of the older code version but we also studied the effect of shifting resources
between the MPI- and the multithreaded parallelization. In all cases we utilized
all cores of the node, but with a different number of MPI ranks per node and a
resulting change in mutlithreading. Both systems on both machines show similar
behavior. While the pure MPI parallelization is still efficient for small numbers of
MPI-ranks, it becomes less favorable with increasing parallelization. Notably, in
an intermediate range of parallelization there is little difference between the two
approaches demonstrating that both implementations have a similar efficiency.

 128

 256

 512

 1024

 1 2 4 8 16

Ex
ec

ut
io

n
tim

e,
 s

ec

Number of nodes, 12 cores each

AuAg (108 atoms), RWTH Bull Cluster

Version 0.26
Pure MPI

Hybrid, 2 threads
Hybrid, 6 threads

Ideal slope
 64

 128

 256

 512

 1024

 1 2 4 8 16 32

Ex
ec

ut
io

n
tim

e,
 s

ec

Number of nodes, 24 cores each

CuAg (256 atoms), CLAIX

Version 0.26
Pure MPI

Hybrid,2 threads
Hybrid,6 threads

Ideal slope

Fig. 4. Internode scaling of the FLEUR code, before (MPI-only version 0.26) and after
(hybrid version MaX Release 2.0) optimization. For the hybrid version different hybrid
setups are shown: pure MPI, i.e. 1 thread per MPI process (green), 2 threads per MPI
process (blue) and 6 threads per MPI process (magenta). (Color figure online)

As a final test we also show (Fig. 5) that the new version of the code enables
the simulation of significantly larger setups utilizing stronger parallelization.

Hybrid Parallelization of FLEUR 747

Here we stress that the hybrid approach also is required as a pure MPI par-
allelization over 24 ranks per node will fail for larger setups due to memory
constraints.

32 64 128 256 512 1024 2048 4096
Number of cores (24 per node)

128

256

512

1024

2048

4096

Ex
ec

ut
io

n
tim

e
[s

]

32 64 128 256
 Nodes256 atoms, basis 24k, 2816 el. (CuAg)

512 atoms, basis 60K, 7168 el. (GaAs)
1078 atoms, basis 105K, 8628 el. (TiO2)

slope of ideal scaling

Fig. 5. Comparison of the scaling of the FLEUR code for three systems with different
number of atoms, basis functions and electrons. The smallest system is the one dis-
cussed in Fig. 4, the largest system contains more than 1000 atoms. Due to the higher
computational demand, the scaling for the larger systems extends to more nodes. (MaX
Release 2.0, CLAIX compute cluster)

5 Conclusions

We demonstrated that the hybrid MPI+OpenMP parallelization of the large
legacy DFT code FLEUR enables the efficient use of modern computer architec-
tures to perform simulations of large unit-cells. The two most performance rele-
vant parts, the matrix setup and the matrix diagonalization show improved scal-
ing and performance by implementing interfaces to optimized standard libraries
and by implementing an additional layer of OpenMP parallelization on top of
the MPI parallelization. The possibility to shift computational resources between
these different parallelization approaches not only shows the effectiveness of the
hybrid scheme but also enables the adaptation to different hardware.

The new FLEUR version is able to treat setups with more than 1000 atoms.
While this limit imposes an important milestone in itself, this also paves the
way for the investigation of effects in heterogeneous multilayer structures, recon-
structed surfaces, adsorbates on surfaces, defects and extended defects in solids,
complex magnetic superstructures or simply large bulk superstructures.

Acknowledgments. This work has been supported by a JARA-HPC seed-fund
project and by the MaX Center of Excellence [3] funded by the EU through the H2020-
EINFRA-2015-1 project: GA 676598. The authors gratefully acknowledge the comput-
ing time granted by the JARA-HPC Vergabegremium on the RWTH supercomputer.

748 U. Alekseeva et al.

References

1. ScaLAPACK users’ guide (1997). http://www.netlib.org/scalapack/slug
2. The Jülich FLEUR project (2018). http://www.flapw.de
3. MaX Centre of Excellence - Materials Design at the Exascale (2018). http://www.

max-centre.eu
4. Psi-k: software codes (2018). http://psi-k.net/software
5. Andersen, O.K.: Linear methods in band theory. Phys. Rev. B 12, 3060–3083

(1975)
6. Arfken, G.: The Addition Theorem for Spherical Harmonics, pp. 693–695. Aca-

demic Press, Orlando (1985)
7. Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Holt, Rinehart and Winston,

New York (1976)
8. Blügel, S., Bihlmayer, G.: Full-potential linearized augmented planewave method.

In: Grotendorst, J., Blüel, S., Marx, D. (eds.) Computational Nanoscience: Do It
Yourself! NIC Series. vol. 31, pp. 85–129. John von Neumann Institute for Com-
puting, Jülich (2006)

9. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864–
B871 (1964)

10. Jones, R.O.: Density functional theory: its origins, rise to prominence, and future.
Rev. Mod. Phys. 8, 897–923 (2015)

11. Koelling, D.D., Arbman, G.O.: Use of energy derivative of the radial solution in
an augmented plane wave method: application to copper. J. Phys. F: Metal Phys.
5, 2041–2054 (1975)

12. Kohn, W., Sham, L.: Self-consistent equations including exchange and correlation
effects. Phys. Rev. 140, A1133–A1138 (1965)

13. Marek, A., et al.: The ELPA library: scalable parallel eigenvalue solutions for
electronic structure theory and computational science. J. Phys.: Condens. Matter
26, 213201 (2014)

14. Napoli, E.D., et al.: High-performance generation of the hamiltonian and overlap
matrices in FLAPW methods. Comput. Phys. Commun. 211, 61–72 (2017)

15. Poulson, J., et al.: Elemental: a new framework for distributed memory dense
matrix computations. ACM Trans. Math. Soft. 39, 1–24 (2013)

16. Solca, R., et al.: Efficient implementation of quantum materials simulations on
distributed CPU-GPU systems. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, Texas, pp.
1–12 (2015)

17. Supalov, A., Semin, A., Klemm, M., Dahnken, C.: Optimizing HPC Applications
with Intel Cluster Tools. Apress Media, Berkely (2014)

18. Weinert, M., Wimmer, E., Freeman, A.: Total-energy all-electron density functional
method for bulk solids and surfaces. Phys. Rev. B 26, 4571–4578 (1982)

19. Wimmer, E., Krakauer, H., Weinert, M., Freeman, A.J.: Full-potential self-
consistent linearized-augmented-plane-wave method for calculating the electronic-
structure of molecules and surfaces - O2 molecule. Phys. Rev. B 24, 864–875 (1981)

http://www.netlib.org/scalapack/slug
http://www.flapw.de
http://www.max-centre.eu
http://www.max-centre.eu
http://psi-k.net/software

Efficient Strict-Binning Particle-in-Cell
Algorithm for Multi-core SIMD

Processors

Yann Barsamian1,2(B) , Arthur Charguéraud1,2 ,
Sever A. Hirstoaga2,3, and Michel Mehrenberger2,3

1 Université de Strasbourg, CNRS, ICube UMR 7357,
Strasbourg, France

ybarsamian@unistra.fr
2 Inria, Nancy, France

{arthur.chargueraud,sever.hirstoaga}@inria.fr
3 Université de Strasbourg,

CNRS, IRMA UMR 7501, Strasbourg, France
mehrenbe@math.unistra.fr

Abstract. Particle-in-Cell (PIC) codes are widely used for plasma sim-
ulations. On recent multi-core hardware, performance of these codes is
often limited by memory bandwidth. We describe a multi-core PIC algo-
rithm that achieves close-to-minimal number of memory transfers with
the main memory, while at the same time exploiting SIMD instructions
for numerical computations and exhibiting a high degree of OpenMP-
level parallelism. Our algorithm keeps particles sorted by cell at every
time step, and represents particles from a same cell using a linked list
of fixed-capacity arrays, called chunks. Chunks support either sequential
or atomic insertions, the latter being used to handle fast-moving parti-
cles. To validate our code, called Pic-Vert, we consider a 3d electrostatic
Landau-damping simulation as well as a 2d3v transverse instability of
magnetized electron holes. Performance results on a 24-core Intel Sky-
lake hardware confirm the effectiveness of our algorithm, in particular
its high throughput and its ability to cope with fast moving particles.

Keywords: Particle-in-Cell · Plasma physics · Multi-core
SIMD architecture · Shared memory · Chunks · Strict binning
Magnetized electron holes

1 Introduction

The Particle-in-Cell (PIC) method enables large-scale simulations of plasma
physics. PIC simulations are, for example, key to the design of ITER fusion
reactor, and they also apply to other domains, e.g., astrophysics. As of 2018,
PIC simulations accommodate at the order of 1013 particles, involving the hun-
dreds of thousands of cores available on the world’s top super-computers.
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 749–763, 2018.
https://doi.org/10.1007/978-3-319-96983-1_53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_53&domain=pdf
http://orcid.org/0000-0001-6602-0547
http://orcid.org/0000-0001-7764-4507
http://orcid.org/0000-0001-6376-409X

750 Y. Barsamian et al.

To reach such a scale, state-of-the-art PIC codes exploit parallelism avail-
able at three levels: inter-node parallelism using, e.g., MPI; shared-memory
multi-threading using, e.g., OpenMP, and register-level parallelism using SIMD
instructions. A number of implementations also leverage GPUs or MICs.
Implementations include EMSES [17], GTC-P [20], ORB5 [12], OSIRIS [8],
PICADOR [19], PIConGPU [5], PSC [10], VPIC [4].

A recent paper [20] studied GTC-P performances in details, and points out
that: “metrics such as flop/s or percentage-of-peak are less relevant for the pre-
dominantly memory-bound gyrokinetic PIC methods.” The authors then present
a model able to predict execution time as a function of data transfers. Most pre-
dominant is the intra-node operations on the shared memory (60% to 80% of the
execution time). Their cost is decomposed between in-cache accesses, contigu-
ous accesses, and random accesses—the latter being the most costly. This study
shows that, to improve the performance of multi-core (intra-node) processing in
PIC simulations, we must decrease the amount of costly memory accesses. Of
course, we must do so by preserving the OpenMP-level parallelism as well as the
crucial use of SIMD instructions.

The strict-binning approach to implementing the PIC method enables signif-
icant reduction in the number of random accesses and cache misses [1,7,17,21]:
at every time step, particles that fall in the same cell are stored together. Doing
so brings two main benefits. First, the electric field values can be read only once
per cell, avoiding numerous cache misses and allowing SIMD computations when
updating particle velocities. Second, the representation saves the need to store
a cell index for each particle, thereby saving memory loads and stores.

A central challenge with the strict-binning approach is the representation of
the dynamically-sized bins storing the particles. A state-of-the-art proposal by
Nakashima et al. [17] organizes particles in a big array, ordering them according
to their cell index, and leaving variable-size gaps between the groups of particles
associated with each cell. Yet, this approach suffers from two important limita-
tions. First, as particles move, maintaining the variable-size gaps requires costly
operations for shifting particles. Second, the algorithm, which uses a coloring
scheme [13] to avoid data races when processing the cells in parallel, does not
handle well fast-moving particles (particles moving more than a couple cells away
at a given time step): it resorts to sequential processing for these particles.

These two limitations are exacerbated when the percentage of crossing parti-
cles (particles changing cells at each time step) increases, to the point of possibly
becoming a major bottleneck. For example, in a parallel execution using 64 cores,
having as little as 0.5% of fast-moving particles can result in a 32% slowdown
on the total execution time due to the sequential processing of these particles.1

We propose an algorithm implementing strict-binning for the PIC method
that addresses the aforementioned limitations, while still supporting efficient
OpenMP/SIMD parallelization of all critical loops. Our algorithm leverages the
use of chunk bags, i.e. linked lists of fixed-capacity arrays, to achieve SIMD-

1 Let t denote the single-core execution time. Assume 0.5% of sequential execution, and
99.5% using 64 cores. The parallel execution time is: 0.005t + 0.995t/64 = 1.32t/64.

Efficient Strict-Binning PIC Algorithm for Multi-core SIMD Processors 751

friendly storage of particles with limited memory overheads. These chunk bags
are furthermore devised to support atomic push operations, which are used to
handle fast-moving particles within the main parallel loop. Our algorithm mini-
mizes the amount of memory transfers: at each time step, each particle gets read
from and written to memory exactly once. In particular, no further move or
reordering is ever required, regardless of the percentage of fast-moving particles.

This algorithm is efficient provided that the average number of particles
per cell exceeds a couple hundreds. Although laser-driven particle acceleration
simulations can use as few as 30 particles per cell [5], large-scale, high-precision
simulations may involve hundreds to thousands of particles per cell [4,10,21].

Through the rest of this paper, we describe our algorithm, comment on its
theoretical properties (space usage, parallelization of critical loops, amount of
memory transfers), discuss performance results (bandwidth usage, impact of
fast-moving particles), numerical results (simulation of Landau-damping and of
transverse instability of magnetized electron holes), and related work.

Fig. 1. High-level description of the Particle-in-Cell (PIC) method.

2 An Efficient, Strict-Binning, Multicore PIC Algorithm

Figure 1 describes the PIC method, applied to the resolution of the Vlasov-
Poisson system, which models the time evolution of the distribution function of
charged particles in a plasma. Following the Cloud-in-Cell model [3, Sect. 2.6.],
we interpolate the electric field and accumulate the charges linearly from/to the
eight corners of the grid cell where each particle lies. The Poisson solver takes
less than 5% of the execution time, we thus focus our attention on the particle
loop.

Our implementation performs all computations in double precision, with the
exception of positions, which are stored using the “index plus offset” represen-
tation [4, III.E.], whereby the position of a particle is described relative to the
corner of the cell containing the particle, using 3 float values, yielding suffi-
cient precision. In the strict binning approach, the index of the containing cell
is implicit. Thus, each particle admits a 36-byte representation.

752 Y. Barsamian et al.

Particles are stored in fixed-capacity arrays (chunks, e.g., [1]). Several chunks
might be needed to store all the particles contained in a same cell. Each cell is
thus described by a linked list of chunks (a chunk bag). The number of particles
in a chunk, denoted by K thereafter, should enable efficient vectorization (K is
a multiple of 16 for 512-bit registers), and at the same time be large enough to
tame the cost of following a pointer from a chunk to the next (e.g., 128 or 256).

Benchmarking on the hardware considered reveals that the structure of arrays
(SoA) layout, which enables better vectorization, improves performance com-
pared with the array of structures (AoS) layout. The memory layout we use for
the particles is summarized on the next page. (Arrays should be aligned.)

struct chunk { struct chunk* next; int size; // 0 <= size <= K
float dx[K], dy[K], dz[K];
double vx[K], vy[K], vz[K]; } chunk;

struct { chunk* front, back; } bag; // linked list of chunks

The chunk bag data structure supports O(1) insertion of a particle (adding
a fresh chunk if needed), O(1) merge of two bags thanks to the back field (note
that chunk compaction is not needed), and O(n) iteration over the contents, all
with excellent constant factors. Furthermore, unlike chunks introduced by prior
work [1], our chunk bags are devised to support a thread-safe atomic insertion
operation. Atomic insertions are central to the handling of fast-moving particles.
Atomic insertion uses a fetch-and-add instruction to reserve a slot in the chunk
for the particle. If a thread attempts to reserve the one-past-the-end slot, it
acquires responsibility to extend the bag with a fresh chunk, in which case it
sets the next pointer of the fresh chunk to the current front pointer of the bag,
and sets the front pointer of the bag to the address of the fresh chunk.

When processing a chunk of particles, the algorithm first updates velocities
and positions, then migrates the particles to different chunks, depending on the
cell associated with their new position. Once all particles from the chunk are
processed, the chunk is stored into a (per-core) free list, so as to be subsequently
reused to extend a bag whose last chunk becomes full. Our algorithm preserves
the following invariant: at the beginning of a time step, all the particles are
stored in at most �N/K� + 2 · nbCells chunks, where N denotes the total number
of particles, and K denotes the number of particles per chunk.

To dispatch particles according to their target cells, we associate two bags
with each cell: a private bag, accessed at most by one thread at a time; and a
shared bag, accessed concurrently, to handle fast-moving particles. To initialize
these two bags, we need an additional 2 ·nbCells empty chunks. In total, we need
�N/K� + 4 · nbCells chunks. We have proved that this number of chunk suffices
at any point of a simulation, regardless of how particles move. Thus, the space
used by our algorithm, in addition to the minimal amount of memory needed to
represent the particles, grows in proportion with 4K · nbCells · sizeof(particle).2
2 In practice, we allocate a dozen extra chunks per core, giving some slack and avoiding

dynamic load balancing of free chunks. Note that it is very unlikely for these chunks
to ever be needed, because cores free chunks at a faster rate than they fill chunks.

Efficient Strict-Binning PIC Algorithm for Multi-core SIMD Processors 753

In order to maximize the number of insertions into private bags while pre-
serving a high degree of OpenMP parallelism, we follow the coloring scheme
proposed by Kong et al. [13], and generalized from 2d to 3d by Nakashima et
al. [17]. The idea is to fill the space with tiles, of size 2 x 2 x 2 (or more), in a
regular manner. Tiles are colored using 8 different colors in such a way that two
adjacent tiles have distinct colors. At each of the 8 color phases, 1

8 of the tiles are
processed, in parallel by nbCores threads.3 Because cells processed in parallel by
distinct threads are at least 2 cells away from each other, all the particles that
move, at a given time step, no more than one cell away (no more than half a tile
away, in general) can be pushed into private bags, in a thread-safe manner.

The pseudo-code of our algorithm appears in Fig. 2. Particles from a same
cell are processed sequentially by a same thread. To benefit from SIMD per-
formance, we split the loop over each chunk. (If one chunk does not fit into L1
cache, additional splitting is needed.) First, our code updates velocities (line 12).
Second, it computes the new positions (line 14), introducing an auxiliary array
for storing the new cell indices. Third, it sequentially pushes each particle into
the chunk associated with its target cell. If the target cell lies in the current tile,
or lies in the closer half of an immediate neighboring tile, a non-atomic inser-
tion is performed on a private bag (line 19). Otherwise, an atomic insertion is
performed on a shared bag (line 21). Note that the boolean condition involved
can be evaluated using a simple arithmetic test.

Once all the particles are processed, the algorithm merges, for each cell, its
private bag with its shared bag (line 26). No chunk compaction is performed at
this point; as a result, the bag associated with one cell may contain up to 2 non-
full chunks. Thus, there are at most �N/K� + 2 · nbCells nonempty chunks at the
beginning of the next time step. It follows that at least 2 · nbCells empty chunks
must have been freed during the current time step. This number corresponds
exactly to the number of chunks needed to initialize the private and the shared
bags for the next time step. Our algorithm performs this initialization efficiently
in parallel (using a prefix sum array, based on the sizes of the per-core free lists).

We next describe the treatment of the charge density and the electric field
(ρ and E). When processing particles from one cell, the algorithm first reads from
memory the values of the electric field on the 8 corners of that cell (line 9). Impor-
tantly, thanks to the strict-binning approach, this data needs only be loaded
once from memory. As particles are processed and moved to their target cells,
the charge of each particle is accumulated (line 22) into the array ρNext, which,
at the end of the time step, is used to update E for the next iteration. We exploit
a recently-proposed, ingenious technique allowing to accumulate the charge on
the 8 corners using SIMD instructions [22]. Concretely, the array ρNext involves
some amount of redundancy: for each cell, 8 values are stored adjacently in mem-
ory, describing the charge on the 8 corners of that cell. At the end of a time step,

3 For a 2 x 2 x 2 tiling, at the i-th coloring phase, the algorithm processes cells whose
coordinates satisfy: ((x/2)mod 2) + 2 · ((y/2)mod 2) + 4 · ((z/2)mod 2) = i. Using
larger tiles is possible but greatly reduces the number of tiles processed in parallel.

754 Y. Barsamian et al.

Fig. 2. Our parallel algorithm for the PIC method on multicore architectures.

the charge at a grid point is computed by summing the values associated with
the 8 cells that have this grid point as one of their corners (line 32).

We considered two different possibilities for updating ρNext. The first pos-
sibility is to decompose ρNext into a private array and a shared array, just like
we do for bags of particles. In this approach, only the deposit of the charge of
fast-moving particles triggers atomic operations; for all others particles, we can
use SIMD operations. The second possibility is to decompose ρNext into nbCores
arrays. In this approach, each core has exclusive access to its charge array, so all
accesses use SIMD operations. The downside is a slight increase in the memory
footprint, and in the time needed to sum up the values. However, under our
assumption of a reasonably large number of particles per cell, these additional
costs are tiny in front of the gains. Thus, we opted for the latter approach.

Efficient Strict-Binning PIC Algorithm for Multi-core SIMD Processors 755

Under the assumption of (at least) hundreds of particles per cell in average,
the operations for manipulating chunks (following pointers, pushing/popping
in free lists) and for manipulating per-cell information are all well amortized.
Overall, our algorithm is not far from optimal in terms of memory transfers.

Optimization When Particles Move at Most One Cell per Time Step.
For simulations whose physical parameters ensure that movement is restricted
to immediate neighboring cells (e.g., [4,10]), we can optimize our algorithm by
removing the shared bags altogether. In this case, we require only �N/K� +
2 · nbCells + nbCores chunks, and do not need any atomic insertion operation.
Likewise, ρNext can be stored in a single array (indexed by cells and by corners).

3 Performance Results

To assess correctness and performance of our code, which is called Pic-Vert, we
considered two classical test cases: a 3d Landau-damping simulation and a 2d3v
electron hole simulation. Section 4 presents details on these experiments, and
argues that the numerical results produced by our simulation match the expected
results. In the remaining of this section, we discuss performance results.

Experimental hardware is an Intel Xeon Platinum 8160 @ 2.1 GHz (Skylake),
with 96 GB of RAM, 6 memory channels, and 24 cores. Our C code was compiled
using Intel C Compiler 17.0.4, and the FFTW3 library [9] for the Poisson solver.

The algorithm depends on two parameters. First, we use tiles of size 2 x 2 x 2
for the coloring. Tiles of size 4 x 4 x 4 lead to similarly good performances. Using
larger tiles degrades performance. Second, we use K = 256 for the chunk capacity.
Larger values of K increase the space usage and do not reduce the execution time.
Smaller values of K increase the execution time overheads: +12% for K = 128,
and +52% for K = 64. Note that, for K = 256, the memory “slack”, which is equal
to 4 · nbCells · sizeof(chunk), represents in the Landau-damping simulation only
13% of the amount of memory strictly required for representing the particles.

Achieved Throughput. For the end-user of a simulation, the metric that
matters is the number of particles processed per second. The Pic-Vert code
achieves:

– 740 million particles per second (30.8 m/s/core) in the 3d Landau-damping
simulation, where 31% of the particles change cell at each iteration;

– 910 million particles per second (37.9 m/s/core) in the 2d3v electron hole
simulation, where 32% of the particles change cell at each iteration.

Analysis in the Roofline Performance Model. As argued in Sect. 2, our
algorithm performs not far from the minimal number of memory operations—
a key feature for PIC simulations hit by the memory bandwidth bottleneck.

756 Y. Barsamian et al.

26

27

28

29

210

211

20 21 22 23 24 25 26 27 28 29 210
Operational Intensity (Flops/Byte)

A
tt
ai
na

bl
e
G
F
lo
ps
/s

Peak floating-point performance (1.612 TFlops/s)

Th
eo
re
tic
al
pe
ak

m
em

or
y
ba
nd
wi
dt
h:

12
8
G
B/
s

St
re
am

pe
ak

m
em

or
y
ba
nd
wi
dt
h:

98
.2
G
B/
s

3d Landau damping155

2.9

2d3v Electron hole104

1.8

Fig. 3. Analysis of performances in the roofline model.

With this property in mind, it is interesting to compare the memory band-
width achieved by our algorithm against the capacity of the hardware. Con-
sider the Landau-damping simulation. The memory bandwidth achieved is
53.6 GB/s.4 The theoretical peak advertised by the manufacturer is 127.99 GB/s.
The Stream benchmark [15], which aims at evaluating the practical peak using a
few microbenchmark programs, and which is commonly used as a baseline, pro-
vides the measure 98.2 GB/s. Our algorithm thus achieves 42% of the theoretical
peak and 55% of the practical peak bandwidth. Reaching higher percentage in
a PIC simulation appears to be very challenging.

Our algorithm is memory bound. In general, an algorithm may be compute
bound (i.e. limited by the number of floating-point operations per second) or
memory bound (i.e. limited by the number of bytes per second transfered from
main memory) depending on its operational intensity, defined as the number of
operations performed divided by the number of bytes moved from or to the main
memory. We computed the operational intensity of the 3d code by counting the
number of floating point operations per particle (79 operations in single-precision
and 65 in double-precision, which leads to 209 operations when normalized to
single-precision), and counting the number of bytes used to represent a particle
(36 bytes, plus 0.25 byte to account for chunk headers). We thus derive that our

4 The bandwidth is obtained by multiplying the size of a particle (36 bytes, plus
64
K

bytes to account for chunk headers) by the number of particle processed per
second (740 million), and by a factor 2 (one read plus one write). It would be very
interesting to compare with other algorithms. Unfortunately, such numbers are rarely
advertised, and comparisons are often hazardous due to differences in hardware, in
particle representation (e.g., float vs double), in numerical schemes, etc.

Efficient Strict-Binning PIC Algorithm for Multi-core SIMD Processors 757

3d code has an operational intensity equal to 209/(2 · 36.25) ≈ 2.9. Similarly, we
computed the operation intensity for the 2d3v code to be 114/(2 · 32.25) ≈ 1.8.

Figure 3 represents the bounds on computation and memory bandwidth, in a
chart showing the operational intensity on the x-axis, and the computation per-
formance on the y-axis [23]. Note that both axes are log-scale. The computation
bound is an horizontal line, at 1,612 GFlops/s (billion floating-point operations
per second), a figure provided by the hardware manufacturer. The theoretical
and practical memory bounds (bytes/s) are diagonal lines, because the bound in
performance (flop/s) is equal to the operational intensity (flop/byte) multiplied
by the memory bandwidth (bytes/s). Each diagonal line meets the horizontal
line at the point of break-even between memory bound and compute bound.

Efficient Processing of Fast-Moving Particles. In addition to being mem-
ory efficient, our algorithm also benefits from another key feature not found
in prior strict-binning algorithms: fast-moving particles are handled efficiently
within the main parallel loop. For a particle moving more than half a tile away,
we require only one extra atomic operation. Moreover, the contention associated
with this atomic operation is relatively limited. Indeed, for two atomic operations
to be issued on the same memory cell at the “same time” (i.e., close enough in
time for a race on the cache line to occur), it must be the case that two particles
taken from two distinct tiles spaced away by at least one full tile are moving
towards the same cell of a third tile, at the “same time”. Thus, the performance
of our algorithm should be relatively independent form the heat.

To empirically evaluate the impact of fast-moving particles, we consider a
simulation in which we artificially varied the initial distribution of particle veloc-
ities. To that end, we manually tuned these distributions in such a way as to
obtain several test cases with increasing number of fast-moving particles.5 Each
test case is reflected by a column from Table 1. More specifically, the three first
rows show the percentage of particles that move away from 1, 2 or 3 cells from
their current grid cell at each time step (no particle move further away).

Table 1. Impact on performance of increasing the percentage of fast particles.

Particles that move 1 cell away 8.0% 8.0% 8.0% 8.0% 8.0% 8.0% 8.0%

Particles that move 2 cells away 0 0.7% 1.9% 3.1% 4.3% 5.6% 4.4%

Particles that move 3 cells away 0 0 0 0 0 0.2% 1.4%

Particles pushed atomically (line 21) 0.0% 0.4% 1.0% 1.6% 2.2% 3.1% 3.7%

Slowdown w.r.t. first column 0 0.0% 0.9% 3.8% 4.4% 4.2% 7.0%

By instrumenting the code, we measured the number of push operations that
trigger an atomic write (line 21 from Fig. 2). These numbers, relative to the total

5 Particle velocities in the experiment of Table 1 follow the sum of two Gaussian dis-
tributions, like in the bump-on-tail instability. Details may be found in [2].

758 Y. Barsamian et al.

number of particles, appear in the fourth line of the table: they vary from 0%
to 3.7%. The last row of Table 1 gives the corresponding slowdown on the total
execution time. Figures show that even when the percentage of particles whose
move require an atomic operation is as high as 3.7%, the cost of processing
these fast moving particles remains fairly limited: +7.0%. In comparison, any
alternative algorithm that sequentially processes 3.7% of the particles in a 24-
core execution would suffer at least from a +85% slowdown (recall Sect. 1).

Scaling. Although inter-node parallelism is orthogonal to the focus of the
present paper, we used particle decomposition to scale our algorithm on 128 Sky-
lake sockets (each with 24 cores, 12.3 TB of RAM in total), using one MPI process
per socket. We simulated Landau-damping with 256 billion particles, achieving
a throughput of 89.6 billion particles per second: 123x speedup w.r.t. one socket.

4 Numerical Results

3d3v Landau-Damping. We consider a classical Landau-damping test case [3,
11], simulating 2 billion particles on a 64 × 64 × 64 grid, for 500 time steps.
We use the same parameters as in [18]: time step of 0.05, periodic boundary
conditions on spatial domain Ω = [0, 22]3 and initial distribution function:

f0(x, y, z,v) = 1
(2π)3/2

e−|v|2/2L(x)L(y)L(z) with L(w) = 1 + 0.05 cos(πw/11).

Figure 4 represents the evolution of electric energy. It shows that the decay slope
in our simulation is in accordance with the theoretical value γ = −0.008466
obtained from the dispersion analysis.

2d3v Electron Hole. We consider a more complex test case proposed by
Muschietti et al. [16]. We simulate 64 billion particles on a 512 × 512 grid (on

0.01

0.1

1

10

100

1000

0 5 10 15 20 25

E
ne

rg
y
=

0.
5

∫
E

2 x
+

E
2 y
+

E
2 z

)

Time

Simulated
Theory, first time mode

Fig. 4. Time evolution of electric energy in the Landau damping simulation.

Efficient Strict-Binning PIC Algorithm for Multi-core SIMD Processors 759

Fig. 5. Time evolution of ρ(t, x, y) in the electron hole simulation, at t = 20 and t = 40.

32 Skylake sockets). Time step is 0.1 and spatial domain is [0, L]2, with L = 32.
The initial function is f(x, y, v) = F1(v2

1 − 2φ(x, y))e−50(v2
2+v2

3) with potential

φ(x, y) = e−0.5((x−L/2)/Δ‖−0.3 cos(0.39y))2 , with Δ‖ = 3 and F1 defined as:

F1(w) =

⎧
⎨

⎩

√−w
πΔ2

‖

(
1 + 2ln(ψ

−2w)
)

+ 6+(
√
2+

√−w)(1−w)
√−w

π(
√
2+

√−w)(4−2w+w2)
, for − 2ψ ≤ w < 0,

6
√
2

π(8+w3) , for w > 0.

The external magnetic field is aligned with x and has amplitude B0 = 0.2.
Figure 5 shows the charge density ρ(t, x, y) = 1 − ∫

f(t, x, y, v)dv, on the left
at time t = 20, and on the right at time t = 40. These results are qualitatively
similar to those from Muschietti et al. [16].

In addition, we studied the convergence of the simulation with respect to the
number of particles and to the grid size. To that end, we compare, for different
settings of these two parameters, the time evolution of a quantity representative
of the instability.6 Results appear in Fig. 6. They show that using a small 32 × 32
grid with 200 million particles as considered by Muschietti et al. exhibits the
correct qualitative behavior up to t = 50, but diverges beyond this point.

For a quick simulation, it appears preferable to use a 64 × 64 grid with only
20 million particles, as it gives quantitatively accurate results up to t = 50. For
longer simulations, our results show that using a 128 × 128 or a 256 × 256 grid
with 200 million particles suffices to give accurate results up to t = 100. Indeed,
the two corresponding curves are close to that of our large-scale simulation, which
uses a 512 × 512 grid with 64 billion particles (the top-most curve at t = 100).

6 This quantity, which we call “y part of electric field norm”, is defined as half of
the square root of the electric energy

∫
(E2

x + E2
y) minus the part of that energy

corresponding to the modes in x (here, the first 20 modes).

760 Y. Barsamian et al.

Fig. 6. Time evolution of the y part of electric field norm in the electron hole simulation,
for different values of the number of particles and of the grid size.

5 Technical Comparison to Related Work

We organize the discussion of related work by focusing on three main criteria:
strict or non-strict binning, representation of particles, and treatment of data
races arising when two threads push data onto a same target cell.

To ensure efficient accesses to the electric field and charge arrays, locality
is essential in PIC simulations. In numerous algorithms, particles are stored in
an array and ordered by their cell index. Yet, because particles move in the
grid, their locality in the array decreases at each time step. Thus, reordering
operations must be performed: either at every time step, to maximize locality
(e.g., [12]), or at some lower frequency, reducing locality but mitigating the cost
of re-sorting (e.g., [4,10]). Depending on the option, performances suffer either
from numerous costly random accesses or from suboptimal locality.

Rather than sorting, other algorithms rely on coarse-grained binning [5,19,
20,22]. Particles are organized in super-cells (of size, e.g., 10 x 10 x 10), and
a dynamically-sized data structure is used to represent particles from a same
super-cell. For example, attribute tiles [5] have been used to store particles on
GPU using doubly linked lists of fixed-capacity arrays. Unlike with our chunks,
particles in an attribute tile are processed in place. If a particle moves to a differ-
ent super-cell, it is migrated to a transfer buffer, and its slot is marked as a hole
in an auxiliary bitmap. Subsequently, holes are filled with particles incoming
from neighboring super-cells. Remaining holes, if any, are filled using particles
taken from the end of the attribute tile. In contrast, in our algorithm, particles
are directly moved to their target bin—they get moved exactly once per time
step.

While strict binning overcomes several of the aforementioned limitations, it
is nontrivial to implement efficiently. Representing each cell by a single fixed-
capacity array [6,21] is space inefficient, and falls short outside of specific scenar-
ios where uniform particle density can be assumed. Linked lists [11, Sect. 8.4.]
lead to tremendous overheads both in terms of space (to represent list cells)

Efficient Strict-Binning PIC Algorithm for Multi-core SIMD Processors 761

and time (to follow indirections). Vectors, a.k.a. resizable arrays, suffer from a
prohibitive 2x space overhead and involve costly resize operations.

Packed Memory Arrays (PMAs) [7] have been proposed as a specialized data
structure for keeping particles sorted by their cell index. This data structure
stores particles in a large array that also contains a fraction of unused cells, called
gaps (a.k.a. holes). The width of the gaps may increase or decrease as particles
move cells. When a gap closes, rebalancing operations involving backward or
forward shifting of the particles must be performed to restore balanced gaps.

Nakashima et al. [17] propose a data structure that we view as a parallelism-
friendly version of PMAs. To tame the frequency of rebalancing operations,
the authors introduce thread-local overflow buffers. However, as the authors
acknowledge [17, III.D.], these buffers come at the cost of increased complexity
in the code, of additional space usage, and of slower processing of the overflow
buffers, on which SIMD operations do not apply.

In Nakashima et al.’s work [17], most data races are eliminated thanks to the
use of a 8-color scheme [13], which we also use. For the remaining data races,
which are associated with fast-moving particles, their algorithm processes them
in a separate sequential loop, which induces a major sequential bottleneck as
soon as the percentage of fast-moving particles exceeds a fraction of a percent.
In contrast, we are able to integrate the processing of these particles within the
main parallel loop, using an atomic operation.

Furthermore, unlike prior work exploiting PMAs, our approach relies on a
general-purpose bag representation, based on chunks. We only customize the
bag implementation to accommodate SoA layout. Our data structure does not
involve any shifting of data nor any overflow buffer. This has two main benefits.
First, we save numerous memory operations. Second, the performance of our
algorithm is robust to an increase in the percentage of fast-moving particles.

6 Future Work

In this work, we focused on multicore and SIMD parallelism. In future work, it
would be great to extend our algorithm with a layer of domain decomposition,
using MPI communications. We speculate that chunks could be used as buffers
for emission and reception of particles reaching the cells at the frontier of a
domain. These chunks could then be merged, at the end of the time step, with the
locally-processed chunks. The flexibility offered by chunks might be helpful for
dealing with dynamically-sized domains. Furthermore, it would be interesting to
adapt our algorithm to target architectures with larger number of cores, such as
GPUs or MICs. We think that the organization in chunks could help addressing
the issue of load balancing, which is critical on these architectures (e.g., [14]).

Data Availability Statement. The datasets and code generated during
and/or analyzed during the current study are available in the figshare repos-
itory [2].

762 Y. Barsamian et al.

Acknowledgments. We would like to thank the anonymous reviewers for their valu-
able suggestions and comments. This work has been carried out within the framework
of the EUROfusion Consortium and has received funding from the Euratom Research
and Training Program 2014–2018 under Grant Agreement No. 633053. Simulations
were run on the EUROfusion Marconi supercomputer, in the context of the Selavlas
project led by K. Kormann. The views and opinions expressed herein do not necessarily
reflect those of the European Commission.

References

1. Barsamian, Y., Charguéraud, A., Ketterlin, A.: A space and bandwidth efficient
multicore algorithm for the particle-in-cell method. In: Wyrzykowski, R., Dongarra,
J., Deelman, E., Karczewski, K. (eds.) PPAM 2017. LNCS, vol. 10777, pp. 133–144.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78024-5 13

2. Barsamian, Y., Charguéraud, A., Hirstoaga, S.A., Mehrenberger, M.: Software arti-
facts for Euro-Par 2018 paper: “Efficient Strict-Binning Particle-in-Cell Algorithm
forMulti-Core SIMD Processors”. In: Figshare (2018). https://doi.org/10.6084/m9.
figshare.6391796

3. Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. McGraw-
Hill, New York (1985)

4. Bowers, K.J., Albright, B.J., Yin, L., Bergen, B., Kwan, T.J.T.: Ultrahigh per-
formance three-dimensional electromagnetic relativistic kinetic plasma simulation.
Phys. Plasmas 15(5), 055703 (2008). https://doi.org/10.1063/1.2840133

5. Bussmann, M., Burau, H., Cowan, T.E., Debus, A., Huebl, A., Juckeland, G.,
Kluge, T., Nagel, W.E., Pausch, R., Schmitt, F., Schramm, U., Schuchart, J.,
Widera, R.: Radiative signatures of the relativistic Kelvin-Helmholtz instability. In:
International Conference on High Performance Computing, Networking, Storage
and Analysis (SC), pp. 5:1–5:12 (2013). https://doi.org/10.1145/2503210.2504564

6. Decyk, V.K., Singh, T.V.: Particle-in-Cell algorithms for emerging computer archi-
tectures. Comput. Phys. Commun. 185(3), 708–719 (2014). https://doi.org/10.
1016/j.cpc.2013.10.013

7. Durand, M., Raffin, B., Faure, F.: A packed memory array to keep moving parti-
cles sorted. In: Workshop on Virtual Reality Interaction and Physical Simulation
(VRIPHYS) (2012). https://doi.org/10.2312/PE/vriphys/vriphys12/069-077

8. Fonseca, R.A., Vieira, J., Fiuza, F., Davidson, A., Tsung, F.S., Mori, W.B., Silva,
L.O.: Exploiting multi-scale parallelism for large scale numerical modelling of
laser wakefield accelerators. Plasma Phys. Control. Fusion 55(12), 124011 (2013).
https://doi.org/10.1088/0741-3335/55/12/124011

9. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3.
Proc. IEEE 93(2), 216–231 (2005). https://doi.org/10.1109/JPROC.2004.840301.
http://www.fftw.org

10. Germaschewski, K., Fox, W., Abbott, S., Ahmadi, N., Maynard, K., Wang, L.,
Ruhl, H., Bhattacharjee, A.: The plasma simulation code: a modern particle-in-
cell code with patch-based load-balancing. J. Comput. Phys. 318, 305–326 (2016).
https://doi.org/10.1016/j.jcp.2016.05.013

11. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. Institute
of Physics, Philadelphia (1988). https://doi.org/10.1201/9781439822050

https://doi.org/10.1007/978-3-319-78024-5_13
https://doi.org/10.6084/m9.figshare.6391796
https://doi.org/10.6084/m9.figshare.6391796
https://doi.org/10.1063/1.2840133
https://doi.org/10.1145/2503210.2504564
https://doi.org/10.1016/j.cpc.2013.10.013
https://doi.org/10.1016/j.cpc.2013.10.013
https://doi.org/10.2312/PE/vriphys/vriphys12/069-077
https://doi.org/10.1088/0741-3335/55/12/124011
https://doi.org/10.1109/JPROC.2004.840301
http://www.fftw.org
https://doi.org/10.1016/j.jcp.2016.05.013
https://doi.org/10.1201/9781439822050

Efficient Strict-Binning PIC Algorithm for Multi-core SIMD Processors 763

12. Jocksch, A., Hariri, F., Tran, T.-M., Brunner, S., Gheller, C., Villard, L.: A
bucket sort algorithm for the particle-in-cell method on manycore architectures.
In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J.,
Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9573, pp. 43–52. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-32149-3 5

13. Kong, X., Huang, M.C., Ren, C., Decyk, V.K.: Particle-in-cell simulations with
charge-conserving current deposition on graphic processing units. J. Comput. Phys.
230(4), 1676–1685 (2011). https://doi.org/10.1016/j.jcp.2010.11.032

14. Larin, A., Bastrakov, S., Bashinov, A., Efimenko, E., Surmin, I., Gonoskov, A.,
Meyerov, I.: Load balancing for particle-in-cell plasma simulation on multi-core
systems. In: 12th Internationall Conference Parallel Processing and Applied Math-
ematics (PPAM), pp. 145–155 (2018). https://doi.org/10.1007/978-3-319-78024-
5 14

15. McCalpin, J.D.: Memory bandwidth and machine balance in current high per-
formance computers. In: IEEE Technical Committee on Computer Architecture
Newsletter (TCCA), pp. 19–25 (1995). https://www.cs.virginia.edu/stream/

16. Muschietti, L., Roth, I., Carlson, C.W., Ergun, R.E.: Transverse instability of
magnetized electron holes. Phys. Rev. Lett. 85(1), 94–97 (2000). https://doi.org/
10.1103/PhysRevLett.85.94

17. Nakashima, H., Summura, Y., Kikura, K., Miyake, Y.: Large scale manycore-aware
PIC simulation with efficient particle binning. In: IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 202–212 (2017). https://doi.org/
10.1109/IPDPS.2017.65

18. Ricketson, L.F., Cerfon, A.J.: Sparse grid techniques for particle-in-cell schemes.
Plasma Phys. Control. Fusion 59(2), 024002 (2017). https://doi.org/10.1088/1361-
6587/59/2/024002

19. Surmin, I., Bastrakov, S., Matveev, Z., Efimenko, E., Gonoskov, A., Meyerov, I.:
Co-design of a particle-in-cell plasma simulation code for Intel Xeon Phi: a first
look at knights landing. In: Carretero, J., et al. (eds.) ICA3PP 2016. LNCS, vol.
10049, pp. 319–329. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
49956-7 25

20. Tang, W., Wang, B., Ethier, S., Kwasniewski, G., Hoefler, T., Ibrahim, K.Z., Mad-
duri, K., Williams, S., Oliker, L., Rosales-Fernandez, C., Williams, T.: Extreme
scale plasma turbulence simulations on top supercomputers world-wide. In: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (SC), pp. 502–513 (2016). https://doi.org/10.1109/SC.2016.42

21. Tskhakaya, D., Schneider, R.: Optimization of PIC codes by improved memory
management. J. Comput. Phys. 225(1), 829–839 (2007). https://doi.org/10.1016/
j.jcp.2007.01.002

22. Vincenti, H., Lobet, M., Lehe, R., Sasanka, R., Vay, J.-L.: An efficient and portable
SIMD algorithm for charge/current deposition in particle-in-cell codes. Comput.
Phys. Commun. 210, 145–154 (2016). https://doi.org/10.1016/j.cpc.2016.08.023

23. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009).
https://doi.org/10.1145/1498765.1498785

https://doi.org/10.1007/978-3-319-32149-3_5
https://doi.org/10.1016/j.jcp.2010.11.032
https://doi.org/10.1007/978-3-319-78024-5_14
https://doi.org/10.1007/978-3-319-78024-5_14
https://www.cs.virginia.edu/stream/
https://doi.org/10.1103/PhysRevLett.85.94
https://doi.org/10.1103/PhysRevLett.85.94
https://doi.org/10.1109/IPDPS.2017.65
https://doi.org/10.1109/IPDPS.2017.65
https://doi.org/10.1088/1361-6587/59/2/024002
https://doi.org/10.1088/1361-6587/59/2/024002
https://doi.org/10.1007/978-3-319-49956-7_25
https://doi.org/10.1007/978-3-319-49956-7_25
https://doi.org/10.1109/SC.2016.42
https://doi.org/10.1016/j.jcp.2007.01.002
https://doi.org/10.1016/j.jcp.2007.01.002
https://doi.org/10.1016/j.cpc.2016.08.023
https://doi.org/10.1145/1498765.1498785

Task-Based Programming on Emerging
Parallel Architectures for
Finite-Differences Seismic

Numerical Kernel

Salli Moustafa1(B), Wilfried Kirschenmann1,
Fabrice Dupros2, and Hideo Aochi2

1 ANEO, Boulogne-Billancourt, France
{s.moustafa,w.kirschenmann}@aneo.fr

2 BRGM, Orléans, France
{f.dupros,h.aochi}@brgm.fr

Abstract. In recent years, heterogeneous hardware have generalized
in almost all supercomputer nodes, requiring a profound shift on the
way numerical applications are implemented. This paper, illustrates the
design and implementation of a seismic wave propagation simulator,
based on the finite-differences numerical scheme, and specifically tai-
lored for such massively parallel hardware infrastructures. The applica-
tion data-flow is built on top of PaRSEC, a generic task-based runtime
system. The numerical kernels, designed for maximizing data reuse can
efficiently leverage large SIMD units available in modern CPU cores. A
strong scalability study on a cluster of Intel KNL processors illustrates
the application performances.

Keywords: High-performance computing
C++ generic programming · SIMD · Task-based runtime system
PaRSEC · Seismic wave propagation

1 Introduction

Since the advent of multicore processor at the beginning of 2000’s, the compute
power is not more driven by the clock frequency [1], but instead, by the number
of functional units into multi/many-core processors featuring large SIMD units
or in accelerators such as GPUs. The combination of these computing devices
lead to highly heterogeneous hardware infrastructures. Hence, maximizing appli-
cation performance on such systems is a major challenge [2–4]. Indeed, for cop-
ing with these systems, application developers use to mix several programming
paradigms, following the now classical MPI+X approach. MPI manages commu-
nication through the network interconnect and is completed by OpenMP, Intel
TBB, CUDA or OpenCL for addressing each node.

Task-based approach coupled with a generic runtime system is an emerging
programming paradigm that greatly improves programmer productivity, leaving

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 764–777, 2018.
https://doi.org/10.1007/978-3-319-96983-1_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_54&domain=pdf

Task-Based Programming on Emerging Parallel Architectures 765

him to focus on the algorithm and computational kernels implementation. From
this perspective, building high-performance codes require fine-tuned kernels. As
the main bottleneck on modern platforms is the memory bandwidth [5], those
kernels must ensure a good data locality. In addition, the kernels have to leverage
the SIMD units available on modern processors. To achieve both performances
and portability across various architectures, the kernel must use generic high-
level concepts (like a DSL1) encapsulating these specific optimizations [6].

In this work, we conducted a study on the above mentioned challenges
through the linear seismic wave propagation problem. Seismic wave propagation
from an earthquake in the Earth has been always numerical challenge, because
of its dimension, resolution and medium complexity with respect to the geo-
scientific knowledge and engineering requirements (e.g. [7,8]). Basic problem is
well formulated in the framework of elasto-dynamic equations and linear elastic-
ity. Finite difference method has been applied since 1970-80’s (e.g. [9]), suitable
for structural discretization of continuous medium. In particular, the 4th order
approximation in space on staggered grids is the most popular option because
of its efficiency and stability (e.g. [10,11]).

As reported in several recent research papers (e.g. [12,13]), explicit parallel
elastodynamics application usually exhibits very good weak and strong scal-
ing up to several tens of thousands of cores. Significant works have been made
to extend this parallel results on heterogeneous and low-power processor (e.g.
[14,15]). For instance the efforts to benefits from modern architecture with large
vector unit is described in [16] where the use of explicit intrinsics appears manda-
tory to squeeze the maximum performance out of the underlying architecture.

One major contributions of this paper is the design and implementation of a
fully task-based model for the seismic wave propagation into the SeWaS appli-
cation [17]. To the best of our knowledge, this is the first end-to-end task-based
implementation of the seismic wave model including the time-step dependency
and efficient vectorization. We validate our results with the Ondes3D [18] pro-
duction code. We consider Intel KNL manycore platforms for our experiments
because of the complexity of such architecture and its capability to deliver both
high memory bandwidth level and high peak floating point performance thanks
to its AVX-512 units.

This paper is organized as follows. Section 2 provides the numerical back-
ground on seismic wave propagation. The task-based algorithm is described in
Sect. 3 and its implementation in Sect. 4. Finally, we discuss the parallel perfor-
mances in Sects. 5 and 6 concludes this paper.

2 Numerical Background and Classical Implementation

2.1 Numerical Scheme

Let us recall that elasto-dynamic equations allow for evaluating the three com-
ponents of the velocity (Vx, Vy, Vz) and stress field (σxx, σyy, σzz, σxy, σxz, σyz)

1 Domain Specific Language.

766 S. Moustafa et al.

Table 1. Notations used to define tasks.

Parameter Definition Possible values

ds Spatial discretization step (km) > 0

(lx, ly , lz) Size of the global domain (km) (> 0, > 0, > 0)

(nx, ny , nz) Total number of grid points (lx/ds, ly/ds, lz/ds)

Tmax Duration of the simulation (s) > 0

dt Time step (s) > 0

Nt Number of time-steps 2 ∗ Tmax/dt

(cx, cy , cz) Number of grid points per tile (> 0, > 0, > 0)

(nxx,nyy ,nzz) Total number of tiles per axis (nx/cx, ny/cy , nz/cz)

t Time-step index {1, · · · , Nt − 1}
l Location of the halo within a tile {0, · · · , 5}
d Velocity component {0, 1, 2}
s Stress field component {0, · · · , 5}
(ii, jj, kk) Coordinates of a tile �0, nxx − 1� × �0, nyy − 1� × �0, nzz − 1�

(i, j, k) Coordinates of a cell within a tile �0, nx − 1� × �0, ny − 1� × �0, nz − 1�

of the seismic wave. Fully discretized forms of these quantities as given in [10].
For instance, the discretized form of Vx is given in (1).

V
t+ 1

2
x (i+

1
2
, j, k) = V

t− 1
2

x (i+
1
2
, j, k)+(Dxσxx+Dyσxy+Dzσxz)t(i+

1
2
, j, k) (1)

Dx is the 4th order central finite difference operator defined in (2).

Dxf(x, y, z) = c1 ∗ f(x + Δ1, y, z) + c2 ∗ f(x − Δ2, y, z)
+ c3 ∗ f(x + Δ3, y, z) + c4 ∗ f(x − Δ4, y, z),

(2)

where ci and Δi, i = 1, · · · , 4, are constant numerical coefficients depending on
the discretization scheme. Dy and Dz are defined similarly. We considered this
numerical scheme as a basis for building our seismic wave simulator for modern
architectures. In particular, we designed a novel task-based implementation of
the seismic wave propagation and implemented generic performance-portable
numerical kernels.

2.2 Standard Implementation

In the remaining of the paper, we assume the notations defined in Table 1. The
general algorithm describing the seismic wave propagation is given in Algo-
rithm1. The model takes as input the velocities of the compression and shear
waves, Vp and Vs, defined for every layer contained within the computational
domain; the density ρ and the seismic sources. Given the inputs, the algorithm
iterates over all time-steps and successively computes the velocity components
(Line 7) and stress field components (Line 10) for every spatial grid point.

Task-Based Programming on Emerging Parallel Architectures 767

Algorithm 1. Linear seismic wave propagation
In : Vp, Vs, ρ, sources
Out: Global Velocity and Stress of the seismic wave

1 for t ∈ {0, 2, · · · , Nt − 2} do
2 for i ∈ {0, · · · , nx − 1} do
3 for j ∈ {0, · · · , ny − 1} do
4 for k ∈ {0, · · · , nz − 1} do
5 � Compute Vx, Vy and Vz

6 for d ∈ {x, y, z} do
7 ComputeVelocity(d, t, i, j, k);

8 � Compute Sxx, Syy, Szz, Sxy, Sxz and Syz

9 for s ∈ {xx, yy, zz, xy, xz, yz} do
10 ComputeStress(s, t + 1, i, j, k);

Fig. 1. Stencil for Vx computation (2D) and halo exchange between subdomains. Each
subdomain, delimited by dashed boxes, is enlarged with the additional points for con-
taining the halo. Computing the velocity at the blue colored grid point requires com-
puting the stress fields at the red colored grid points. (Color figure online)

The velocity and the stress fields are evaluated at grid points separated by
half of the discretization step. This is coming from the implementation of the
staggered grid described for instance in [9]. Velocity computation at time step
t depends on some computed values of the stress field at time step t − 1, as
shown in (1). These dependencies represent the stencil for the computation of
the velocity and are illustrated in Fig. 1. Similarly, the computation of the stress
field depends on some previously computed values of the velocity. Nevertheless,
computing the different velocity components are independent and the same for
all the stress field components. Hence, each of the loops at Line 6 and Line 9
can be evaluated in parallel.

The parallelization of this algorithm on this distributed memory computers
has been extensively studied, relying mainly on MPI and OpenMP. Typically,
the time-step loop (Line 1) is considered as sequential and the parallelization is
achieved by regularly splitting the spatial domain among all the workers. Each
MPI process will handle (nx/P) × (ny/Q) cells, where P and Q are the total
number of MPI processes along the x and y axes. Within each MPI process, a
team of OpenMP threads is spawned to perform the computations on the local
cells. At the end of each time-step, each MPI process exchanges its boundaries

768 S. Moustafa et al.

with neighboring processes as depicted in Fig. 1. For instance, a classical imple-
mentation is described in [18]. However, there are three main concerns with this
approach: explicit synchronization required when exchanging the halo at the
end of each time-step; serialization of the time-step loop and the lack of explicit
vectorization.

3 A Fully Task-Based Model of the Linear Seismic Kernel

We considered the Algorithm 1 as a basis, and we made several optimizations
on it, with the goal of making it scalable at high core count: we redesigned the
algorithm into a fully task-based version including the time-step loop. Through-
out this process, we considered different constraints: scalability, communication
overlap, data locality, and vectorization efficiency.

Scalability: A task is an independent unit of work that will be processed by a
thread. For instance, the computation of the x component of the velocity (rest.
stress field) at time t and on the cell (i, j, k) is a task. To scale at high-core count,
the algorithm must expose a large number of such tasks that can be processed
concurrently. To that end, we need to define dependencies that are going to be
used by a runtime system. It will schedule the tasks as soon as they become
ready among all available computing resources. An important point to note is
that the runtime system introduces some scheduling overhead due to calculations
required for selecting the task to execute. To enhance the scalability of our model,
by minimizing the former overhead, we partitioned the global domain into a set
of 3D tiles defined by a contiguous collection of cells, on which the tasks are
going to work, rather than on a single cell. In the following, we will omit the
prefix 3D when referring to a tile, and we will use the index (ii, jj, kk) for its
coordinates. Due to the nature of the stencil computation scheme, each tile will
be enlarged to contain the halo retrieved from neighboring tiles, as in Fig. 1.

Instead of performing the extraction and update of the halo, we add two new
tasks dedicated to these actions: ExtractVelocityHalo and UpdateVelocity with
the advantage of increasing the amount of available parallelism. This is required
to maximize the parallel efficiency on modern distributed computing platforms.
In summary, our task-based algorithm contains six types of tasks:

1. ComputeVelocity(d, t, ii, jj, kk) computes the d component of the velocity on
tile (ii, jj, kk) at time-step t. It depends on UpdateStress(s, t − 1, ii, jj, kk).

2. ExtractVelocityHalo(d, t, ii, jj, kk) first extracts all the boundaries of the d-
component of the velocity on the tile (ii, jj, kk). The extracted boundaries
are placed in temporary buffers and sent to the UpdateVelocity tasks on
neighboring tiles. It depends on ComputeVelocity(t, d, ii, jj, kk).

3. UpdateVelocity(d, t, ii, jj, kk) receives the velocity halo from neighbouring
ExtractVelocityHalo tasks and update the tile (ii, jj, kk). It depends on
ExtractVelocityHalo(d, t, ii, jj, kk).

4. ComputeStress(s, t, ii, jj, kk) defined similarly as ComputeVelocity.

Task-Based Programming on Emerging Parallel Architectures 769

Algorithm 2. Task-based algorithm for the seismic wave propagation
In : Vp, Vs, ρ
Out: Global Velocity and Stress of the seismic wave

1 forall t ∈ {0, 2, · · · , Nt − 2} do
2 � Compute Vx, Vy and Vz

3 forall d ∈ {x, y, z} do
4 forall ii ∈ {0, · · · , nxx − 1} do
5 forall jj ∈ {0, · · · , nyy − 1} do
6 forall kk ∈ {0, · · · , nzz − 1} do
7 ComputeVelocity(d, t, ii, jj, kk);
8 ExtractVelocityHalo(d, t, ii, jj, kk);
9 UpdateVelocity(d, t, ii, jj, kk);

10 � Compute Sxx, Syy, Szz, Sxy, Sxz and Syz

11 forall s ∈ {xx, yy, zz, xy, xz, yz} do
12 forall ii ∈ {0, · · · , nxx − 1} do
13 forall jj ∈ {0, · · · , nyy − 1} do
14 forall kk ∈ {0, · · · , nzz − 1} do
15 ComputeStress(s, t + 1, ii, jj, kk);
16 ExtractStressHalo(s, t + 1, ii, jj, kk);
17 UpdateStress(s, t + 1, ii, jj, kk);

Fig. 2. Data-flow for the task-based linear seismic wave model (case of Vx computa-
tion). CV, EV and UV designate ComputeVelocity, ExtractVelocityHalo and Updat-
eVelocity. A similar definition holds for CS, ES and US.

5. ExtractStressHalo(s, t, ii, jj, kk) defined similarly as ExtractVelocityHalo.
6. UpdateStress(s, t, ii, jj, kk) defined similarly as UpdateVelocity.

The fully task-based version of the linear seismic wave propagation is pre-
sented in Algorithm 2. In Fig. 2, we give the data-flow corresponding to this
algorithm. On the same tile, and for a fixed d and t, the tasks ComputeVelocity,
ExtractVelocityHalo and UpdateVelocity are serialized. As we will see in Sect. 5,
combining the time-step loop with the spatial cells when defining tasks allows
overlapping computations of different time-steps, hence reducing the execution
time.

Communication Overlap: by delegating extraction and update of the halo per
tile to dedicated tasks, we enforce the potential of overlapping communications
with computations. Indeed, once a ComputeVelocity task is completed, we can

770 S. Moustafa et al.

start extracting and sending its boundaries to UpdateVelocity tasks associated
to neighboring tiles, while another ComputeVelocity task is in progress.

Data Locality: to maximize cached data reuse, we considered a hierarchical rep-
resentation of the manipulated data structures, typically V and S, as following:

– V (x|y|z)(ii, jj, kk)(i, j, k)
– S(xx|yy|zz|xy|xz|yz)(ii, jj, kk)(i, j, k)

V (x) is a column-major 3D tensor whose elements are 3D tiles. Each 3D tile,
V (x)(ii, jj, kk), is stored as a row-major 2D tensor whose elements are 1D
arrays of floating point values, oriented according the z-axis. The tile object
implements an operator() (const int i, const int j) for extracting the
z-vector indexed by i and j. The velocities are block-wise computed, where each
block is a z-vector of coordinates (i, j) within the considered tile. Prior computa-
tions, each thread will load a z-vector of their respective tiles into the L1 cache of
the core on which it is bound. Hence, with an appropriate tile size, for all (i0, j0)
and (i1, j1), the z-vectors V (x)(ii, jj, kk)(i0, j0) and V (x)(ii + 1, jj, kk)(i1, j1)
will never be on the same cache line. Consequently, the proposed approach min-
imizes the probability of false-sharing during execution. Moreover, by appro-
priately adjusting the tile size, all its data can fit into cache, hence increasing
the arithmetic intensity of the computation, required for a better vectorization
efficiency.

Vectorization Efficiency: computing V on a single tile involves a series of partial
derivatives of S along the three spatial dimensions. Along both x and y dimen-
sions, the computations are similar across all cells for a fixed (i, j), and can
thus be performed in parallel. To leverage this fine-grained parallelism, the data
layout has been designed so that each tile is a 2D grid of 1D vectors along the
z-axis. For instance, V (x)(ii, jj, kk)(i, j) is a 1D vector, eventually padded with
additional cells to match the SIMD width on the target architecture. This strat-
egy allows us for explicitly computing the derivatives using SIMD instructions.
The same analysis holds for the computation of S.

4 A Hierarchical Implementation Tailored for Modern
Architectures

4.1 Implementation on Top of PaRSEC

Emergence of Task Scheduling Engines: The past years have witnessed the emer-
gence of generic task-based runtime systems [19–21]. These systems were intro-
duced to cope with the application development issues arising since the advent of
massively parallel and heterogeneous computing. Such a system offers a unified
view of the underlying hardware and let the developer focus on the algorithm,
described as Directed Acyclic Graph (DAG) of tasks. The runtime system will
then manage all data transfers and synchronizations between computing devices

Task-Based Programming on Emerging Parallel Architectures 771

Listing 1.1. ComputeVelocity task in the JDF language.
1 ComputeVelocity(d, t, ii , jj, kk)

2 d = 0 .. dim -1

3 t = 2 .. nt -2 .. 2

4 /* ii , jj , kk from 0 to nxx -1, nyy -1, nzz -1 */

5

6 : ddesc(ii , jj, kk)

7

8 CTL SxxH <- (d==X && t > 2) ? SxxH UpdateStress(XX, t-1, ii , jj , kk)

9 CTL SxyH <- ((d==X || d==Y) && t > 2) ? SxyH UpdateStress(XY, t-1, ii , jj , kk)

10 CTL SxzH <- ((d==X || d==Z) && t > 2) ? SxzH UpdateStress(XZ, t-1, ii , jj , kk)

11

12 BODY

13 {

14 computeVelocity(d, t, ii , jj , kk);

15 }

16 END

(CPUs/GPUs/MICs) and the scheduling of tasks among available computing
resources. Hence, these frameworks allow for the separation of major concerns
in HPC: design of the algorithm, creating a data distribution and developing
computational kernels.

While the general principle of the runtime systems is similar for all, two
major tendencies exist and differ according to the DAG of tasks construction:
Parametrized Task Graph (PTG) [22] and Dynamic Task Graph (DTG) mod-
els [23]. In the PTG approach, the DAG is constructed as a problem size inde-
pendent symbolic representation of the algorithm and can thus be generated at
compile time. Hence, the instantiation of new tasks is performed during exe-
cution through a closed formula depending on the task parameters. Such an
approach is implemented by the PaRSEC [21] framework, offering a specific
annotation-based language, the Job Data Flow (JDF), for describing the DAG of
tasks according to their INPUT and OUTPUT data. Conversely, with the DTG
approach, the DAG of tasks is fully constructed and kept in memory, which the
runtime system is going to explore during execution for discovering and schedul-
ing ready tasks. Thus, the DAG memory occupation grows with the problem
size. Nevertheless, DTG frameworks (e.g. StarSS [19] and StarPU [20]) usu-
ally allow to customize a window of visible tasks for avoiding the full generation
of the DAG of tasks at runtime. An appropriate window size can therefore help
reducing the memory footprint with a minimal performance penalty. Given the
regular pattern of the spatial mesh we considered in this study, we choose to
implement our data flow on top of the PTG-based framework PaRSEC.

Implementation: Building an application on top of PaRSEC requires to define
the algorithm data-flow using the JDF language and a data distribution that will
be used by the runtime system for tasks placement on the target architecture.
The Listing 1.1 shows a simplified version of the JDF implementation of the
ComputeVelocity task. There are four main parts in the task description.

1. The execution space (Line 2 to Line 4) is defined by a valid range, for each
of the task parameters, determining the total number of similar tasks.

772 S. Moustafa et al.

Listing 1.2. UpdateStress task in the JDF language.
1 UpdateStress(s, t, ii , jj , kk)

2 s = 0 .. nsc -1

3 t = 1 .. nt -3 .. 2

4 /* ii , jj , kk from 0 to nxx -1, nyy -1, nzz -1 */

5

6 : ddesc(ii , jj , kk)

7

8 READ SLeft <- (ii >0 && t>1) ? SRight ExtractStressH(s, t, ii -1, jj , kk)

9 READ SRight <- (ii<nxx -1 && t>1) ? SLeft ExtractStressH(s, t, ii+1, jj , kk)

10

11 CTL SxxH -> (s==XX && t>1) ? SxxH ComputeVelocity(X, t+1, ii , jj , kk)

12 CTL SxyH -> (s==XY && t>1) ? SxyH ComputeVelocity(X, t+1, ii , jj , kk)

13 CTL SxzH -> (s==XZ && t>1) ? SxzH ComputeVelocity(X, t+1, ii , jj , kk)

14

15 BODY

16 {

17 updateStress(LEFT , s, t, ii, jj , kk , SLeft);

18 updateStress(RIGHT , s, t, ii, jj , kk , SRight);

19 }

20 END

2. The parallel partitioning (Line 6) is a symbolic reference to a data element
that is going to be used by the runtime system to execute the task according
to the owner compute rule. Basically, the task will be scheduled on the node
where the data element is located.

3. Task data-flow (Line 8 to Line 10) defines the input and output dependencies
of the task, eventually conditioned by a C-style ternary operator. Here, the
keyword CTL (Control flow) is used as a counter by the runtime system (not
a real data transfer). For instance, computing Vx requires the reception of
three controls: Line 8, Line 9 and Line 10, notifying the completion of Updat-
eStress task on respectively xx, xy and xz components of the stress field.
In Listing 1.2, we can see the matching control flows sent by UpdateStress
task at Line 11, Line 12 and Line 13. Also, UpdateStress has an input data
dependency as indicated on Line 11. This line specifies that UpdateStress will
create a temporary read-only (READ keyword) buffer SLeft where an output
data SRight sent by ExtractStressH will be stored.

4. The task body between BODY and END keywords contains the code executed
by the task. Here, the body is given at Line 14 as a function call to our
implementation of the velocity computation on a single tile.

This JDF is complemented with a data distribution implementation, through two
PaRSEC provided functions, evaluated by all processes: data of and rank of.
The former returns the pointer to the actual data described by ddesc(ii, jj,
kk) and the latter returns the rank of the MPI process holding that data. The
combination of the JDF and the data distribution will be used by PaRSEC to
schedule and execute tasks, according to the provided computational kernels.

Task-Based Programming on Emerging Parallel Architectures 773

Listing 1.3. Computation of Vx on a single tile.
1 for (int i=iStart; i<iEnd; i++){

2 for (int j=jStart; j<jEnd; j++){

3 vX(i,j) +=(fdo_.apply <SWS::X>(sigmaXX , i, j)

4 + fdo_.apply <SWS::Y>(sigmaXY , i, j)

5 + fdo_.apply <SWS::Z>(sigmaXZ , i, j))*dt*bx(i,j);

6 }

7 }

Table 2. Characteristics of TestA and TestB benchmarks.

Tmax dt Nt lx ly lz ds nx ny nz

TestA 1.6 0.008 200 20 20 10 0.1 200 200 100

TestB 20 0.2 2000 650 1000 50 0.5 1300 2000 100

4.2 Building Generic Optimized Computational Kernels

To build the kernels, we considered three metrics: expressivity, performance and
performance portability across various architectures. In the following, we demon-
strate how our implementation managed to maximize these metrics.

Expressivity: We adopted the C++ language that allows for building complex
and meaningful expressions, close to the mathematical formulations used in an
algorithm. Let us consider the Vx computation as given in Listing 1.3. The code
shows a tile traversal in the (x, y) plane. For each position (i, j), velocities of all
cells along the z axis are computed at Line 3, according to block-wise evaluations.
fdo is an object of type CentralFDOperator, a class implementing the 4th order
central finite-differences scheme through the member function apply, templated
with the derived direction. We can notice the similarity between expression on
Line 3 with the numerical formulation of Vx as shown in (1).

Performance and Performance Portability: Using Expression Templates to build
our containers on top of the generic C++ Eigen library [24] avoids the creation
of temporary 1D vectors for each call to the apply() method on Line 3 of
Listing 1.3. In addition, Eigen supports explicit vectorization with various SIMD
extensions, including SSE2, AVX2, AVX-512, and ARM NEON allowing the
application to be portable across a large number of architectures.

5 Experiments

We conducted strong scalability studies on the Frioul supercomputer from GEN-
CI/CINES2, based on Intel KNL 7250, comprising 68 cores running at 1.4 GHz.
There is 16 GB of MCDRAM on-chip memory per node and 192 GB of DDR4 off-
chip memory. The computing nodes are interconnected through an InfiniBand
2 https://www.cines.fr/le-supercalculateur-frioul/.

https://www.cines.fr/le-supercalculateur-frioul/

774 S. Moustafa et al.

 10

 100

 1000

(5
,5

,5
0)

(5
,5

,1
00

)
(1

0,
10

,2
5)

(1
0,

10
,5

0)
(1

0,
10

,1
00

)
(2

0,
20

,2
5)

(2
0,

20
,5

0)
(2

0,
20

,1
00

)
(4

0,
40

,2
5)

(4
0,

40
,5

0)
(4

0,
40

,1
00

)
(5

0,
50

,2
5)

(5
0,

50
,5

0)
(5

0,
50

,1
00

)
(1

00
,1

00
,2

5)
(1

00
,1

00
,5

0)
(1

00
,1

00
,1

00
)

(2
00

,2
00

,2
5)

(2
00

,2
00

,5
0)

(2
00

,2
00

,1
00

)

T = 11.957 sE
la

ps
ed

 T
im

e
(s

)

Tile Size (cx,cy,cz)

SeWaS

Fig. 3. Evaluation of the best tile size running TestA in single precision.

 10

 100

 1000

 1 2 4 8 16 32 64

E
la

ps
ed

 T
im

e
(s

)

Core Count

DP/cache
DP/flat
SP/flat

(a) TestA

 100

 1000

 10000

 1 2 4 8
 1

 10

E
la

ps
ed

 T
im

e
(s

)

S
pe

ed
-u

p

Node Count

Elapsed Time (s)
Speed-up

(b) TestB

Fig. 4. SeWaS strong scaling. The left curve shows the single-node performance using
TestA. It compares the performances of single and double precisions for both KNL con-
figurations (cache and flat modes). The right curve shows the multi-node performance
using TestB where all nodes are configured on flat mode.

EDR fabric, providing a theoretical bandwidth of 100 Gb/s. All the experiments
have been carried out using two test cases: TestA and TestB (see Table 2). The
former is a small test case and the latter, representing a real earthquake, is
larger. In the following, both SeWaS and Ondes3D applications are compiled
using Intel compiler version 18.0.1 and Intel MPI version 5.1.3.

5.1 Tuning Single Node Performances

As mentioned in Sect. 3, the performances of the application is strongly depen-
dent of the tile size. To evaluate the best size, we considered the TestA bench-
mark and compared the computation time of SeWaS for different configurations
of (cx, cy, cz) on a single 64-cores node. The results are presented in Fig. 3. For
the considered test case, the absolute discrepancy compared to the double pre-
cision results is an order of 10−4 which is acceptable for the purposes of our
experiments.

We found that the best computation time (11.957 s) is obtained with a tile
of size (40, 40, 100). For this size, the total number of tasks is 67500, that is
1054 tasks per thread. We can also notice that for a fixed cx and cy, the best
computation time is obtained when using cz is 100. This result is justified by the
fact the computations are vectorized along the z axis, and thus the performances

Task-Based Programming on Emerging Parallel Architectures 775

Table 3. Illustration of time-steps overlapping.

Tmax (s) 1 2 4 8 16 20

Nt 100 200 400 800 1600 2000

Computation time (s) 108.3 117.6 136.7 175.4 252.6 291.5

tend to be better when cz is large enough to fit the SIMD units. In the following,
all the presented results were obtained using the determined best tile size.

Figure 4a presents a single-node strong scalability study of SeWaS using
TestA benchmark. It shows that the run with flat mode is slightly faster than
with cache mode.

In double precision, SeWaS computation time on 64 cores is 14.9 s, whereas
Ondes3D takes 56.9 s. This difference is due to the explicit vectorization used
in SeWaS and a better data locality. Even if Ondes3D is a more generalistic
application and does implement other features that are not present in SeWaS,
such as absorbing boundary condition, we expect that this comparison will give
to the reader an order of magnitude of how SeWaS compares to Ondes3D. In
the following, all results are obtained in single precision and using the flat mode.

5.2 Distributed Memory Scaling

We consider the TestB benchmark. This test case contains 1300 cells along the
x dimension. As it is not divisible by 40, we will be using the (50, 50, 100) tile
size whose performance are very close.

Strong Scaling: The Fig. 4b presents SeWaS strong scaling using TestB bench-
mark on 8 nodes. The benchmark runs in 2589.7 s on a single node, and 291.8 s
using 8 nodes, corresponding to a speed-up of 8.8. The super linear scalability
observed is due to the fact the computation on a single node requires around
40 GB of memory which is larger than the size of the on-chip MCDRAM. Indeed,
on a single node, 24 GB of data will be allocated in DDR4. Starting from 4 nodes,
all data can fit in the MCDRAM, and thus the performances are improved.

Impact of Time-Steps Overlapping: We conducted an experiment to study the
behavior of computations overlap for successive time-steps in SeWaS. We mea-
sured the computation time for several values of Tmax from 2 s to 20 s. The results
are presented in Table 3. We observe that the computation time increases with
Tmax, following a linear trend experimentally determined as:

Computation Time ≈ Tinit + 9.7 ∗ Tmax,

where Tinit ≈ 98.6 s is the time spent to initialize the computations. Let us
first consider the core simulation time, that is the computation time without
the initialization. We notice that the ratio of the core simulation time between
Tmax = 20 s and Tmax = 2 s is 7.8 representing an overlap ratio of 22%. This is

776 S. Moustafa et al.

a remarkable result as it shows a high overlapping rate for the computations of
different time-steps. A preliminary experiment showed that the initialization can
be fully parallelized allowing to mitigate its impact on the computation time.

6 Conclusion

In this paper, we presented the design and implementation of SeWaS, a lin-
ear seismic wave propagation code, adapted for modern computing platforms.
We studied the main challenges related to the development of efficient and scal-
able computation code on these platforms. A fully task-based model has been
designed and its implementation combines the state-of-the-art frameworks and
libraries PaRSEC and Eigen. Performance studies conducted on a cluster of
Intel KNL processors showed that the application exhibits a good strong scala-
bility up to 8 nodes. The proposed approach demonstrated a clear path toward
code modernization required to take advantage of computing power brought by
current and coming Exascale systems. In the future, we will extend our compu-
tational kernels for GPUs to cope with highly heterogeneous systems.

Data Availability Statement and Acknowledgments. The datasets generated
during and/or analyzed during the current study are available in the Figshare repos-
itory: https://doi.org/10.6084/m9.figshare.6387743. We would like to thank GENCI
and CINES for providing us computing facilities to perform our experiments.

References

1. Ross, P.E.: Why CPU frequency stalled. IEEE Spectr. 45(4), 72 (2008)
2. Moustafa, S., Faverge, M., Plagne, L., Ramet, P.: 3D cartesian transport sweep

for massively parallel architectures with PaRSEC. In: IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pp. 581–590. IEEE (2015)

3. Taylor, R.A., Jeong, J., White, M., Arnold, J.G.: Code modernization and mod-
ularization of APEX and SWAT watershed simulation models. Int. J. Agric. Biol.
Eng. 8(3), 81–94 (2015)

4. Jundt, A., Tiwari, A., Ward Jr, W.A., Campbell, R., Carrington, L.: Optimizing
codes on the Xeon Phi: a case-study with LAMMPS. In: Proceedings of the 2015
XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyberinfras-
tructure, p. 28. ACM (2015)

5. McKee, S.A.: Reflections on the memory wall. In: Proceedings of the 1st Conference
on Computing Frontiers, p. 162. ACM (2004)

6. Kirschenmann, W., Plagne, L., Vialle, S.: Multi-target C++ implementation of par-
allel skeletons. In: Proceedings of the 8th Workshop on Parallel/High-Performance
Object-Oriented Scientific Computing, p. 7. ACM (2009)

7. Furumura, T., Chen, L.: Large scale parallel simulation and visualization of 3D
seismic wavefield using the Earth Simulator. Comput. Model. Eng. Sci. 6, 153–168
(2004)

8. Aochi, H., Ulrich, T., Ducellier, A., Dupros, F., Michea, D.: Finite difference simu-
lations of seismic wave propagation for understanding earthquake physics and pre-
dicting ground motions: advances and challenges. J. Phys: Conf. Ser. 454, 012010
(2013)

https://doi.org/10.6084/m9.figshare.6387743

Task-Based Programming on Emerging Parallel Architectures 777

9. Virieux, J., Madariaga, R.: Dynamic faulting studied by a finite difference method.
Bull. Seismol. Soc. Am. 72(2), 345–369 (1982)

10. Graves, R.W.: Simulating seismic wave propagation in 3D elastic media using
staggered-grid finite differences. Bull. Seismol. Soc. Am. 86(4), 1091–1106 (1996)

11. Kristek, J., Moczo, P.: Seismic-wave propagation in viscoelastic media with mate-
rial discontinuities: a 3D fourth-order staggered-grid finite-difference modeling.
Bull. Seismol. Soc. Am. 93(5), 2273–2280 (2003)

12. Roten, D., et al.: High-frequency nonlinear earthquake simulations on petascale
heterogeneous supercomputers. In: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC 2016,
Salt Lake City, UT, USA, 13–18 November 2016, pp. 957–968 (2016)

13. Breuer, A., Heinecke, A., Bader, M.: Petascale local time stepping for the ADER-
DG finite element method. In: 2016 IEEE International Parallel and Distributed
Processing Symposium, IPDPS 2016, Chicago, IL, USA, 23–27 May 2016, pp. 854–
863 (2016)

14. Göddeke, D., Komatitsch, D., Geveler, M., Ribbrock, D., Rajovic, N., Puzovic, N.,
Ramı́rez, A.: Energy efficiency vs. performance of the numerical solution of PDEs:
an application study on a low-power ARM-based cluster. J. Comput. Phys. 237,
132–150 (2013)

15. Castro, M., Francesquini, E., Dupros, F., Aochi, H., Navaux, P.O.A., Méhaut,
J.: Seismic wave propagation simulations on low-power and performance-centric
manycores. Parallel Comput. 54, 108–120 (2016)

16. Sornet, G., Dupros, F., Jubertie, S.: A multi-level optimization strategy to improve
the performance of stencil computation. Procedia Comput. Sci. 108, 1083–1092
(2017)

17. Moustafa, S., Kirschenmann, W., Dupros, F., Aochi, H.: Code and input data for
SeWaS: Seismic Wave Simulator: Euro-par 2018 artifact. figshare. Code (2018).
https://doi.org/10.6084/m9.figshare.6387743

18. Dupros, F., Aochi, H., Ducellier, A., Komatitsch, D., Roman, J.: Exploiting inten-
sive multithreading for the efficient simulation of 3D seismic wave propagation. In:
11th IEEE International Conference on Computational Science and Engineering,
CSE 2008, pp. 253–260. IEEE (2008)

19. Planas, J., Badia, R.M., Ayguadé, E., Labarta, J.: Hierarchical task-based pro-
gramming with StarSs. Int. J. High Perform. Comput. Appl. 23(3), 284–299 (2009)

20. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concur. Com-
put.: Pract. Exp. 23(2), 187–198 (2011)

21. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Dongarra,
J.: DAGuE: a generic distributed DAG engine for high performance computing.
Parallel Comput. 38(1), 37–51 (2012)

22. Danalis, A., Bosilca, G., Bouteiller, A., Herault, T., Dongarra, J.: PTG: an abstrac-
tion for unhindered parallelism. In: Proceedings of the Fourth International Work-
shop on Domain-Specific Languages and High-Level Frameworks for High Perfor-
mance Computing, pp. 21–30. IEEE Press (2014)

23. Advea, V., Sakellariou, R.: Compiler synthesis of task graphs for parallel program
performance prediction. In: Midkiff, S.P., et al. (eds.) LCPC 2000. LNCS, vol. 2017,
pp. 208–226. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45574-
4 14

24. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org

https://doi.org/10.6084/m9.figshare.6387743
https://doi.org/10.1007/3-540-45574-4_14
https://doi.org/10.1007/3-540-45574-4_14
http://eigen.tuxfamily.org

Accelerator Computing for Advanced
Applications

CEML: a Coordinated Runtime System
for Efficient Machine Learning on

Heterogeneous Computing Systems

Jihoon Hyun, Jinsu Park, Kyu Yeun Kim, Seongdae Yu, and Woongki Baek(B)

School of ECE, UNIST, Ulsan, Republic of Korea
{jhyun0812,jinsupark,kyuyeunk,sd3392,wbaek}@unist.ac.kr

Abstract. Heterogeneous computing is rapidly emerging as a promising
solution for efficient machine learning. Despite the extensive prior works,
system software support for efficient machine learning still remains unex-
plored in the context of heterogeneous computing. To bridge this gap,
we propose CEML, a coordinated runtime system for efficient machine
learning on heterogeneous computing systems. CEML dynamically ana-
lyzes the performance and power characteristics of the target machine-
learning application and robustly adapts the system state to enhance its
efficiency on heterogeneous computing systems. Our quantitative evalu-
ation demonstrates that CEML significantly improves the efficiency of
machine-learning applications on a full heterogeneous computing system.

1 Introduction

Heterogeneous computing is a promising solution for efficient machine learn-
ing [7]. Heterogeneous computing systems can effectively improve the efficiency of
the target machine-learning application by concurrently executing its operations
across the heterogeneous computing devices that exhibit different performance
and power characteristics.

Prior works have extensively investigated the system software [4,7,9] and
architectural support [5,6,10,16] for efficient machine learning. While insightful,
the prior works have limitations in that they lack the runtime support for con-
trolling all the heterogeneous computing devices in a coordinated manner [4,7,9]
and/or require intrusive hardware modifications, making it difficult to apply
them to existing commodity computer systems [5,6,10,16].

To bridge this gap, this work proposes CEML, a coordinated runtime sys-
tem for efficient machine learning. CEML dynamically analyzes the performance
and power characteristics of the target machine-learning application and gen-
erates the accurate performance and power estimators without requiring any
per-application offline profiling. Guided by its performance and power estima-
tors, CEML robustly finds the efficient system state and accordingly configures
the underlying heterogeneous computing system to significantly improve the effi-
ciency of the target application.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 781–795, 2018.
https://doi.org/10.1007/978-3-319-96983-1_55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_55&domain=pdf

782 J. Hyun et al.

Specifically, this paper makes the following contributions:

– We propose CEML, a coordinated runtime system for efficient machine learn-
ing on heterogeneous computing systems. CEML consists of the estimators
that accurately estimate the performance and power consumption of the tar-
get machine-learning application for a system state of interest. The runtime
manager of CEML explores the system state space, determines the efficient
system state, and runs the target application with the efficient system state
to significantly improve its efficiency in terms of the user-specified optimiza-
tion metric (e.g., energy optimization, performance maximization under the
power limit). To the best of our knowledge, CEML is the first runtime system
that holistically controls all the heterogeneous computing devices for efficient
machine learning.

– We implement a prototype of CEML. Since the CEML prototype is imple-
mented as a user-level runtime system, it requires no modification to the
underlying OS kernel or GPU device driver. The CEML prototype implements
two search algorithms (i.e., the local and exhaustive search algorithms), each
of which explores the system state space with different coverage and runtime
overheads.

– We quantify the effectiveness of CEML using various machine-learning appli-
cations on a full heterogeneous computing system. Through quantitative eval-
uation, we demonstrate that CEML consumes significantly less energy (e.g.,
30.8% less on average) than the baseline version that uses the maximum
device frequencies, which is a commonly-used configuration in heterogeneous
computing. We also show that the energy efficiency of CEML is comparable
with the static best version, which requires extensive offline profiling across
the applications.

2 Background and Motivation

2.1 Heterogeneous Computing

A heterogeneous computing system comprises multiple computing devices that
show functional and performance/power heterogeneity. Heterogeneous comput-
ing devices exhibit the functional heterogeneity in the sense that they implement
different instruction-set architectures and the performance/power heterogeneity
in that they have different performance and power characteristics.

In this work, we assume that the underlying heterogeneous computing system
is equipped with a single-chip heterogeneous application processor that consists
of a multi-core CPU and a multi/many-core GPU. We also assume that the
CPU and GPU communicate through the main memory. This architectural con-
figuration is widely used in various computing domains including the embedded
computing domain [1,2].

We assume that the CPU, GPU, and memory in the underlying hetero-
geneous computing system provide NfC , NfG , and NfM voltage and frequency
(V/F) levels. The V/F level of each device can be dynamically controlled in soft-
ware, similarly to commodity embedded systems [1]. A system state is defined

CEML: a Coordinated Runtime System for Efficient Machine Learning 783

as a tuple of the device frequencies (i.e., (fC , fG, fM)). The system state space
is then defined as the set of all the possible system states.

2.2 The TensorFlow Machine-Learning System

TensorFlow is a widely-used machine-learning system [4]. TensorFlow allows for
programmers to express their machine-learning algorithms as dataflow graphs.
A dataflow graph mainly consists of tensors and operations. Tensors are multi-
dimensional arrays, whose elements have one of the basic primitive data types
such as int32 or float32. An operation takes zero or more input tensors and
produces zero or more output tensors [4].

When all the input tensors for an operation are produced, the operation
becomes ready to be executed. The TensorFlow scheduler schedules the opera-
tion on one of the computing devices in the underlying heterogeneous computing
system. The scheduling decision is made based on various factors such as the
computational complexity of the operation, the utilization of each computing
device, and the scheduling hint provided by the programmer [4]. Independent
operations can be executed across the computing devices in a concurrent man-
ner. One of the main design goals of the TensorFlow scheduler is to maximize
the utilization of all the computing devices by concurrently executing as many
independent operations as possible across the computing devices.

In this work, we focus on the efficiency optimization of the training phase
of machine-learning applications. In each training epoch (or epoch), a machine-
learning application iterates all the training data to train its model. In each
training step (or step), the machine-learning application processes a batch of the
training data. For instance, if 20,000 images are used as the training data and a
batch size of 10 is used, an epoch consists of 2,000 steps.

We assume that the target machine-learning application is implemented as a
TensorFlow application. While we evaluate the effectiveness of CEML using Ten-
sorFlow, we believe that the design of CEML is sufficiently generic to be readily
applicable to other widely-used machine-learning platforms such as Caffe [9].

We have implemented a user-level, low-overhead API similar to the Appli-
cation Heartbeats API [8] and instrumented each of the evaluated benchmarks
(Sect. 3) with the API to make it generate a heartbeat every time it finishes a
predefined number of steps. CEML employs the heartbeat data to dynamically
track the current performance of the target machine-learning application.

2.3 Need for Coordinated Runtime Support

Machine-learning applications exhibit widely different performance and power
characteristics on heterogeneous computing systems. To illustrate this, Figs. 1
and 2 show the performance and power characteristics of the seven machine-
learning benchmarks (i.e., CF, IN, LR, MN, RB, VP, and WD) on the target hetero-
geneous computing system evaluated in this work (see Sect. 3 for details). We
observe the following data trends.

784 J. Hyun et al.

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

0.8 1.1 1.4 1.7 2.0

N
or

m
. P

er
f.

CPU Frequency (GHz)

CF
IN
LR
MN
RB
VP
WD

(a) CPU frequency

1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

0.4 0.7 1.0 1.3

N
or

m
. P

er
f.

GPU Frequency (GHz)

CF
IN
LR
MN
RB
VP
WD

(b) GPU frequency

1.0

1.2

1.4

1.6

1.8

0.7 1.0 1.3 1.6 1.9

N
or

m
. P

er
f.

Memory Frequency (GHz)

CF
IN
LR
MN
RB
VP
WD

(c) Memory frequency

Fig. 1. Performance characteristics of the machine-learning applications

0.0

0.2

0.4

0.6

0.8

1.0

CF IN LR MN RB VP WD

N
or

m
al

iz
ed

 P
ow

er

CPU GPU Memory

Fig. 2. Power characteristics at the maximum device frequencies

First, the performance sensitivity of each benchmark is widely different to
device frequencies. For instance, the performance of CF is highly sensitive to
the GPU frequency but insensitive to the CPU frequency, whereas the perfor-
mance of WD is highly sensitive to the CPU frequency but insensitive to the GPU
frequency.

Second, the power consumption of each device in the heterogeneous comput-
ing is widely different across the evaluated benchmarks. For example, the GPU
consumes significantly more power than the other devices with CF. In contrast,
with WD, the CPU is the device that consumes the highest power among the
three devices (i.e., CPU, GPU, and memory).

These data trends show that static approaches require the offline perfor-
mance and power profile data for every application to achieve high efficiency,
which is nearly infeasible. To summarize, this case study clearly demonstrates
the need for a coordinated runtime system that efficiently analyzes the per-
formance and power characteristics of the target machine-learning application
at runtime, robustly generates the accurate performance and power estimation
models, and effectively manages all the devices in the underlying heterogeneous
computing system to significantly enhance the overall efficiency without exten-
sive per-application offline profiling.

3 Experimental Methodology

For all the experiments performed in this work, we use a full heterogeneous com-
puting system, the NVIDIA Jetson TX2 embedded development board [1]. In this
work, we employ the dual-core Denver processor based on the ARMv8-A archi-
tecture and the 256-core NVIDIA Pascal GPU equipped in the heterogeneous

CEML: a Coordinated Runtime System for Efficient Machine Learning 785

Heterogeneous Computing System

Machine-Learning Application

Runtime
Manager

Power
Estimator

Performance
Estimator

Candidate
Sys. States

Est. Perf.
Data

Candidate
Sys. States

Est. Power
Data

Heartbeat

Best System State

CEML

Fig. 3. Overall architecture of CEML

0.0

0.2

0.4

0.6

0.8

1.0

CF IN LR MN VP

Pe
rf

. S
en

si
tiv

ity
 (Δ

Pe
rf

/Δ
f_

G
)

Maximum Memory Freq. Minimum Memory Freq.

Fig. 4. Performance interaction
between GPU and memory

computing system. The evaluated frequency ranges of the CPU, GPU, and mem-
ory are 0.81–2 GHz, 0.42–1.3 GHz, and 0.67–1.87 GHz, respectively. The hetero-
geneous computing system includes sensors, each of which periodically samples
the power consumption of the CPU, GPU, or memory. We use the sensor data to
generate the power estimation model of CEML and measure the power consump-
tion of the target machine-learning application. The heterogeneous computing
system is installed with Ubuntu 16.04 and Linux kernel 4.4.38.

We use seven machine-learning benchmarks (i.e., CIFAR-10 (CF), ImageNet
(IN), Learning to Remember Rare Events (LR), MNIST (MN), REBAR (RB),
Video Prediction (VP), and Wide & Deep (WD)), which are available in the official
TensorFlow code repository [3]. We configure CF, IN, LR, MN, RB, VP, and WD to
run 4000, 2000, 1000, 30000, 10136, 1000, and 32550 training steps, respectively.

4 Design and Implementation

CEML comprises the three main components – (1) the performance estimator,
(2) the power estimator, and (3) the runtime manager. Figure 3 illustrates the
overall architecture of CEML.

The main design principles applied to CEML are as follows. First, CEML
controls the V/F level of each device in the underlying heterogeneous comput-
ing system in a coordinated manner to significantly improve the efficiency of
the target machine-learning application. Second, CEML is designed as a versa-
tile system in that it can support various optimization scenarios (e.g., energy
optimization, performance maximization under the power limit). Third, CEML
eliminates the need for per-application offline profiling. Fourth, the online pro-
filing and adaptation functionalities of CEML are designed and implemented in
a lightweight manner to minimize the potential runtime overheads.

4.1 Performance Estimator

The performance estimator estimates the performance of the target machine-
learning application for a system state of interest. Specifically, the performance of
the target machine-learning application is defined as the training steps performed
per second.

786 J. Hyun et al.

We first investigate the performance sensitivity of various machine-learning
applications to device frequencies to guide the design of the performance esti-
mator. As shown in Fig. 1, the performance of machine-learning applications is
(largely) linearly proportional to the frequency of each device when the frequen-
cies of other devices are fixed (at the maximum frequency), which is intuitive.

Further, the performance sensitivity to the frequency of a device varies when
the frequencies of the other devices change. For instance, as shown in Fig. 4,
the performance of the GPU-intensive benchmarks becomes less sensitive to
the GPU frequency with the decreasing memory frequency because the memory
gradually becomes the overall performance bottleneck as its frequency decreases.
This indicates that there is performance interaction between devices.

Based on the aforementioned observations, the performance estimator
employs Eq. 1 to estimate the performance of the target application for a sys-
tem state of interest (i.e., (fC , fG, fM)). Equation 1 has a linear term for each
device frequency to model the linear relationship between the performance and
the device frequency. Equation 1 also has an interaction term for each device
pair (e.g., αC,G for fC and fG) to model the performance interaction between
the pair of devices.

Perf =αC · fC + αG · fG + αM · fM + αC,G · fC · fG+
αG,M · fG · fM + αM,C · fM · fC + β (1)

To compute the coefficients in Eq. 1, seven performance data samples are
required because there are seven unknown coefficients. Each performance data
sample is collected with a different system state. Section 4.3 discusses how CEML
collects the performance data samples to generate the performance estimation
model at runtime.

4.2 Power Estimator

The power estimator estimates the power consumption of the target machine-
learning application for a system state of interest. In line with prior works, the
power estimator assumes that the power consumption of each device is propor-
tional to the device utilization because it is simple and accurate [14,17].

Specifically, CEML employs Eq. 2 to estimate the power consumption of the
device D (i.e., CPU, GPU, or memory) when the device frequency is set to fD.
We experimentally determine the regression coefficients (i.e., εD,fD and ζD,fD)
for each device based on the offline profiling using the stress benchmarks that
we have developed. Each of the stress benchmarks is designed and implemented
to stress the CPU, GPU, or memory.

PD,fD = εD,fD · UD + ζD,fD (2)

To estimate the power consumption of the target machine-learning applica-
tion for a system state of interest, the power estimator estimates the utilization
of each device. We first investigate the device utilization sensitivity to the device
frequencies. Our experimental results show the following data trends.

CEML: a Coordinated Runtime System for Efficient Machine Learning 787

0
20
40
60
80

100

0.8 1.1 1.4 1.7 2.0

C
PU

 U
til

. (
%

)

CPU Frequency (GHz)

CF
IN
LR
MN
RB
VP
WD

(a) CPU frequency

0
20
40
60
80

100

0.4 0.7 1.0 1.3

G
PU

 U
til

. (
%

)

GPU Frequency (GHz)

CF
IN
LR
MN
RB
VP
WD

(b) GPU frequency

0
20
40
60
80

100

0.7 1.0 1.3 1.6 1.9

M
em

or
y

U
til

. (
%

)

Memory Frequency (GHz)

CF
IN
LR
MN
RB
VP
WD

(c) Memory frequency

Fig. 5. Device utilization sensitivity to its frequency

0
20
40
60
80

100

0.4 0.7 1.0 1.3C
PU

 U
til

iz
at

io
n

(%
)

GPU Frequency (GHz)

CF
IN
LR
MN
RB
VP
WD

(a) CPU util. vs. GPU freq.

0
20
40
60
80

100

0.8 1.1 1.4 1.7 2.0G
PU

 U
til

iz
at

io
n

(%
)

CPU Frequency (GHz)

CF
IN
LR
MN
RB
VP
WD

(b) GPU util. vs. CPU freq.

Fig. 6. Device utilization sensitivity to the other device frequency

First, as shown in Fig. 5, the utilization of each device is (largely) linearly
proportional to the device frequency when the frequencies of the other devices
are fixed (at the maximum frequency). This is mainly because the device stays
active for a shorter (or longer) time duration at higher (or lower) frequency by
processing the assigned work faster (or slower).

Second, as shown in Fig. 6, the utilization of each device is (largely) linearly
proportional to the frequency of the frequencies of the other devices. When the
other devices run faster (or slower), they produce more (or less) data to be
processed by the device per unit time, making its utilization higher (or lower).

We now discuss how the power estimator estimates the utilization of each
device. For instance, the power estimator uses Eq. 3 to estimate the CPU uti-
lization for a system state of interest (i.e., (fC , fG, fM)).1 In Eq. 3, the first-order
and interaction terms are used to model the individual effect of each device and
the interaction between devices, respectively.

UC =γC,C · fC + γC,G · fG + γC,M · fM + γC,CG · fC · fG+
γC,GM · fG · fM + γC,MC · fM · fC + δC (3)

To compute the coefficients in Eq. 3, seven utilization data samples are
required because there are seven unknown coefficients. Section 4.3 discusses how
CEML collects the utilization data samples to generate the power estimation
model at runtime. Finally, the power estimator estimates the total power con-
sumption of the underlying heterogeneous computing system by summing the
estimated power consumption of all the devices (i.e., P = PC + PG + PM).

1 While omitted, the power estimator employs the equations similar to Eq. 3 to esti-
mate the GPU and memory utilization.

788 J. Hyun et al.

Phase 1:
Profiling

Estimation
Models Phase 2:

Exploration
Phase 3:

Idle

Best System
State

|ΔPtotal_budget| > 0 or |ΔPerftarget| > 0Program Phase Change

Fig. 7. Overall execution flow of the runtime manager

4.3 Runtime Manager

The runtime manager of CEML dynamically profiles the performance and power
consumption data samples. It then builds the performance and power estimation
models and determines the efficient system state that significantly enhances the
efficiency of the target machine-learning application by exploring the system
state space based on the estimation models.

The runtime manager mainly comprises the three phases – (1) profiling, (2)
exploration, and (3) idle phases. Figure 7 shows its overall execution flow.

During the profiling phase, the runtime manager executes a small portion
of the total training steps of the target machine-learning application with the
following seven system states that cover a wide range of the device frequencies (in
GHz) – (2, 1.3, 1.87), (1.42, 0.83, 0.67), (1.42, 0.42, 1.33), (0.81, 0.83, 1.33), (0.81,
0.42, 1.06), (0.81, 0.62, 0.67), and (1.11, 0.42, 0.67). Specifically, the runtime
manager starts with the initial system state. When the runtime manager collects
N heartbeats2 generated by the target application, it stores the performance
and utilization data, configures the system with the next one among the seven
system states, and repeats the data collection process. When the performance
and utilization data is collected with all the seven system states, the runtime
manager proceeds with the exploration phase.

During the exploration phase, the runtime manager constructs the perfor-
mance and power estimation models using the data collected during the profil-
ing phase. Specifically, it computes all the coefficients in Eqs. 1 and 3 using the
efficient equation solver that we have developed.

The runtime manager then explores the system state space to determine the
system state, which is estimated to significantly improve the efficiency3 of the
target machine-learning application. We propose two search algorithms, each
of which explores the system state space with different coverage and runtime
overheads.

The first algorithm is the exhaustive search algorithm shown in Algorithm1.
It explores all the feasible system states in an exhaustive manner and selects

2 In this work, N heartbeats contain the performance and utilization data collected
during the execution of 1% of the total training steps for each benchmark.

3 We use the generic term “efficiency” because CEML can be extended to perform
optimizations using the metrics (e.g., energy-delay product) other than energy (i.e.,

Power
Performance

(Joules per training step)) by customizing the estimateScore function
in Algorithms 1 and 2.

CEML: a Coordinated Runtime System for Efficient Machine Learning 789

Algorithm 1. The exhaustive search function
1: procedure exploreWithExhaustiveSearch
2: bestState ← getInitialState()
3: bestScore ← estimateScore(bestState)
4: for fC ∈ FC

5: for fG ∈ FG

6: for fM ∈ FM

7: cState ← (fC , fG, fM)
8: cScore ← estimateScore(cState)
9: if cScore > bestScore ∧ checkConstraint(cState)

10: bestState ← cState
11: bestScore ← cScore
12: end if
13: end for
14: end for
15: end for
16: setSystemState(bestState)
17: end procedure

the best system state, which is estimated to maximize the efficiency of the tar-
get machine-learning application without violating the user-specified constraint4

such as the total power budget (Line 9). The time complexity of the exhaustive
search algorithm is O(NfC · NfG · NfM).

While the time complexity of the exhaustive search algorithm is rather high,
it may be still practically used for commodity heterogeneous computing systems.
For example, the system state parameters of the heterogeneous computing sys-
tem evaluated in this work are NfC = 9, NfG = 10, and NfM = 6. In this case,
the total number of the candidate system states is 540, which can be explored
in 176.4 microseconds (on average) on the evaluated heterogeneous computing
system.

Since the exhaustive search algorithm has high time complexity, we also
propose a local search algorithm that explores the system state space using a
variant of the hill-climbing algorithm (Algorithm2). Specifically, the local search
algorithm starts with the initial system state. It estimates the efficiency of all
the neighbor system states and selects the system state, which is estimated to
achieve the maximum efficiency without violating the user-specified constraint
(Line 5).5 If the best neighbor state is estimated to be more efficient than the
current state, it selects the best neighbor state as the next system state to

4 We assume that there are one or more system states (in the system state space) that
satisfy the user-specified constraint. The getInitialState function returns one of
such system states.

5 If there is no neighbor state that satisfies the user-specified constraint, the
getBestNeighborState function returns invalidState. If the input parameter is
set to invalidState, the estimateScore function returns the minimum score.

790 J. Hyun et al.

Algorithm 2. The local search function
1: procedure exploreWithLocalSearch
2: bestState ← getInitialState()
3: bestScore ← estimateScore(bestState)
4: while true
5: cState ← getBestNeighborState(bestState)
6: cScore ← estimateScore(cState)
7: if cScore > bestScore
8: bestState ← cState
9: bestScore ← cScore

10: else
11: break
12: end if
13: end while
14: setSystemState(bestState)
15: end procedure

transition and continues the search process (Lines 7–9). Otherwise, it terminates
the search process (Line 11).

Once the best system state is selected by the search algorithm, the runtime
manager accordingly configures the system to significantly enhance the efficiency
of the target machine-learning application (Line 16 in Algorithm1 and Line 14
in Algorithm 2). The runtime manager then transitions into the idle phase.

During the idle phase, CEML keeps monitoring the target machine-learning
application to detect its phase changes without performing any adaptation activ-
ities. Specifically, CEML periodically collects the heartbeats from the target
application and computes the differences between consecutive data samples to
detect a program phase change. When detecting a program phase change, CEML
terminates the idle phase and re-triggers the adaptation process to determine a
new efficient system state.

Further, CEML keeps monitoring the underlying system to detect any change
in the total power budget or performance target. When detecting a change,
CEML immediately triggers the re-adaptation process to discover an efficient
system state for the new constraint.

5 Evaluation

We quantify the effectiveness of CEML. Specifically, we aim to investigate the
following – (1) the estimation accuracy, (2) the energy efficiency, (3) the effec-
tiveness of re-adaptation, and (4) the performance overheads.

We first investigate the accuracy of the performance and power estimators of
CEML. To quantify the accuracy of the estimators, we generate 25 test datasets
for each benchmark by executing each benchmark with 25 different system states
and compute the average estimation error across all the test datasets.

CEML: a Coordinated Runtime System for Efficient Machine Learning 791

0
2
4
6
8

10
12
14

CF IN LR MN RB VP WD AVG

Es
tim

at
io

n
Er

ro
r (

%
)

Performance Power

Fig. 8. Accuracy of the estimators

0.0

0.2

0.4

0.6

0.8

1.0

CF IN LR MN RB VP WD AVG

N
or

m
al

iz
ed

 E
ne

rg
y

Baseline Static Best CEML-L CEML-E

Fig. 9. Energy consumption

Figure 8 shows the average performance and power estimation errors. We
observe that the performance and power estimators achieve high estimation accu-
racy. Specifically, the average estimation errors of the performance and power
estimators are 5.4% and 8.8% across all the benchmarks. The use of the first-
order and interaction terms in the performance and power estimators effectively
models the linear and interactive effects of each device in the underlying hetero-
geneous computing system, achieving high estimation accuracy.

We now investigate the effectiveness of CEML in terms of energy consumption
(i.e., Joules per training step). We evaluate four versions for each benchmark.
The baseline version executes each benchmark at the maximum device frequen-
cies. The static best version selects the best frequency of each device based on
the extensive offline experiments (i.e., 32 system states for each benchmark).
The CEML-L and CEML-E versions are managed by CEML using the local and
exhaustive search algorithms, respectively.

Figure 9 shows the energy consumption of each version of the benchmarks,
normalized to the baseline version. The rightmost bar shows the geometric mean
of each version.

First, the CEML versions significantly reduce the energy consumption across
all the evaluated machine-learning benchmarks. For instance, CEML-E consumes
30.8% less energy (on average) than the baseline version. The baseline version
achieves low energy efficiency because it executes the target machine-learning
application at the maximum device frequencies without considering the perfor-
mance and power characteristics of the target machine-learning application. In
contrast, CEML robustly finds the efficient system state based on its perfor-
mance and power estimators and accordingly configures the system, consuming
significantly less energy than the baseline version.

Second, the CEML versions achieve the energy efficiency similar to the static
best version. For instance, the energy consumption of CEML-E is 2.9% higher
(on average) than the static best version. The CEML versions consume slightly
more energy than the static best version because it executes the target machine-
learning application with suboptimal system states during the profiling phase
(e.g., RB) and finds a slightly less efficient system state due to the estimation
errors with some of the evaluated benchmarks (e.g., IN and LR). Nevertheless, our
experimental results demonstrate the effectiveness of CEML in that the CEML

792 J. Hyun et al.

0.0

0.2

0.4

0.6

0.8

400 600 800 1000Tr
ai

ni
ng

 S
te

ps
/s

ec
Time (s)

(a) Performance

0
2
4
6
8

10

400 600 800 1000

Po
w

er
 (W

)

Time (s)

(b) Power consumption

Fig. 10. Effectiveness of re-adaptation

versions achieve the energy efficiency comparable with the static best version
without requiring any extensive per-application offline profiling.

Third, CEML-E achieves slightly higher energy efficiency than the CEML-L (i.e.,
2.6% on average). This is mainly because the local search algorithm of CEML-L
may converge to a less efficient state (e.g., MN). However, CEML-L achieves the
energy efficiency comparable with CEML-E across all the evaluated benchmarks,
demonstrating the potential for CEML-L in that its local search algorithm has
significantly lower average-case time complexity than the exhaustive search algo-
rithm of CEML-E.

To investigate the effectiveness of the re-adaptation functionality of CEML,
we design a case study in which the total power budget allocated to the under-
lying heterogeneous computing system changes during the execution of the LR
benchmark with CEML. In this case study, CEML is configured to maximize
the performance of LR while satisfying the power constraint.

Figure 10 shows the runtime behavior of CEML. Initially, the benchmark
runs with a high power budget. Since the power budget is sufficient, CEML runs
the benchmark at the maximum device frequencies while satisfying the power
constraint. At t = 600.1, the total power budget changes to a low power budget.
CEML robustly detects the total power budget change and adapts to the new
system state that is efficient (i.e., similar performance to the static best version)
for the low power budget, guided by its performance and power estimators. At
t = 760.1, the total power budget changes back to the high power budget. Again,
CEML robustly detects the total power budget change and accordingly performs
adaptations to find the efficient system state for the new total power budget.

Finally, we quantify the performance overheads of CEML. Our experimen-
tal results demonstrate that CEML incurs insignificant performance overheads.
Specifically, the CPU utilization of CEML is 1.0% on average, which is low.
In addition, the system state exploration times with the CEML-L and CEML-E
versions are 7.2 and 176.4 microseconds on average, which are insignificant.

In summary, our quantitative evaluation shows that CEML is effective in
the sense that it consumes significantly less energy than the baseline version,
achieves the energy efficiency similar to the static best version, robustly adapts
to the external events such as total power budget changes, and incurs small
performance overheads.

CEML: a Coordinated Runtime System for Efficient Machine Learning 793

6 Related Work

Prior works have extensively investigated the architectural and system software
techniques to improve the efficiency of heterogeneous computing systems [11–
15,17]. While insightful, the prior works manage a subset of heterogeneous com-
puting devices (i.e., CPU [11,13,17], CPU and GPU [12,14], GPU and mem-
ory [15]) with multithreaded and gaming workloads.

Our work significantly differs in that it investigates the performance and
power characteristics of machine-learning applications with various device fre-
quencies, presents the accurate performance and power estimators, proposes a
coordinated runtime system that robustly controls all the devices (i.e., CPU,
GPU, memory) in the underlying heterogeneous computing system, and demon-
strates the effectiveness of CEML using a full heterogeneous computing system.

Prior works have proposed the system software support for efficient machine
learning [4,7,9]. The prior works mainly focus on the design and implemen-
tation of parallel and distributed programming platforms for machine learning
with support for task scheduling [4,7,9]. In contrast, our work investigates the
coordinated runtime support that robustly manages the hardware resources in
heterogeneous computing systems for efficient machine learning.

Prior works have investigated the design and implementation of hardware
accelerators for machine learning [5,6,10,16]. While effective, the prior works
cannot be directly applied to existing commodity systems because they require
intrusive hardware modifications. Our work differs in that CEML is designed
and implemented as a coordinated runtime system to enable efficient machine
learning on commodity heterogeneous computing systems. When the hardware
accelerators for machine learning become widely available in upcoming commod-
ity systems, coordinated runtime systems such as CEML can be effectively used
to robustly manage a variety of heterogeneous computing devices including the
hardware accelerators.

7 Conclusions

In this paper, we propose CEML, a coordinated runtime system for efficient
machine-learning on heterogeneous computing systems. CEML dynamically ana-
lyzes the performance and power characteristics of the target machine-learning
application and adapts the system state to enhance its efficiency on heteroge-
neous computing systems. Our experimental results demonstrate that CEML
consumes significantly less energy than the baseline version that employs the
maximum device frequencies and achieves the energy efficiency comparable with
the static best version that requires extensive per-application offline profiling. As
future work, we plan to apply and extend our proposed techniques for efficient
machine learning in heterogeneous distributed computing environments.

Acknowledgements. This research was partly supported by the National Research
Foundation of Korea (NRF-2016M3C4A7952587, PF Class Heterogeneous High Perfor-
mance Computer Development), Basic Science Research Program through the National

794 J. Hyun et al.

Research Foundation of Korea (NRF-2018R1C1B6005961), and Institute for Informa-
tion & Communications Technology Promotion (IITP) grant funded by the Korea gov-
ernment (MSIP) (No. R0190-16-2012, High Performance Big Data Analytics Platform
Performance Acceleration Technologies Development).

References

1. http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
2. http://www.samsung.com/semiconductor/products/exynos-solution/application-

processor/EXYNOS-5-OCTA-5422
3. https://github.com/tensorflow/models
4. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th

USENIX Symposium on Operating Systems Design and Implementation (OSDI
2016) (2016)

5. Chen, Y.-H., Emer, J., Sze, V.: Eyeriss: a spatial architecture for energy-efficient
dataflow for convolutional neural networks. In: Proceedings of the 43rd Interna-
tional Symposium on Computer Architecture (2016)

6. Han, S., et al.: EIE: efficient inference engine on compressed deep neural network.
In: Proceedings of the 43rd International Symposium on Computer Architecture
(2016)

7. Hauswald, J., et al.: DjiNN and Tonic: DNN as a service and its implications for
future warehouse scale computers. In: Proceedings of the 42nd Annual Interna-
tional Symposium on Computer Architecture (2015)

8. Hoffmann, H., Eastep, J., Santambrogio, M.D., Miller, J.E., Agarwal, A.: Applica-
tion heartbeats: a generic interface for specifying program performance and goals
in autonomous computing environments. In: Proceedings of the 7th International
Conference on Autonomic Computing (2010)

9. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:
Proceedings of the 22nd ACM International Conference on Multimedia (2014)

10. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing
unit. In: Proceedings of the 44th Annual International Symposium on Computer
Architecture (2017)

11. Muthukaruppan, T.S., Pricopi, M., Venkataramani, V., Mitra, T., Vishin, S.: Hier-
archical power management for asymmetric multi-core in dark silicon era. In: Pro-
ceedings of the 50th Annual Design Automation Conference (2013)

12. Park, J., Baek, W.: RCHC: a holistic runtime system for concurrent heterogeneous
computing. In: 2016 45th International Conference on Parallel Processing (ICPP)
(2016)

13. Park, J., Baek, W.: HAP: a heterogeneity-conscious runtime system for adaptive
pipeline parallelism. In: Dutot, P.-F., Trystram, D. (eds.) Euro-Par 2016. LNCS,
vol. 9833, pp. 518–530. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
43659-3 38

14. Pathania, A., Irimiea, A.E., Prakash, A., Mitra, T.: Power-performance modelling
of mobile gaming workloads on heterogeneous MPSoCs. In: Proceedings of the
52nd Annual Design Automation Conference (2015)

15. Sethia, A., Mahlke, S.: Equalizer: dynamic tuning of GPU resources for efficient
execution. In: Proceedings of the 47th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (2014)

http://www.nvidia.com/object/embedded-systems-dev-kits-modules.html
http://www.samsung.com/semiconductor/products/exynos-solution/application-processor/EXYNOS-5-OCTA-5422
http://www.samsung.com/semiconductor/products/exynos-solution/application-processor/EXYNOS-5-OCTA-5422
https://github.com/tensorflow/models
https://doi.org/10.1007/978-3-319-43659-3_38
https://doi.org/10.1007/978-3-319-43659-3_38

CEML: a Coordinated Runtime System for Efficient Machine Learning 795

16. Song, L., Wang, Y., Han, Y., Zhao, X., Liu, B., Li, X.: C-brain: a deep learning
accelerator that tames the diversity of CNNs through adaptive data-level par-
allelization. In: Proceedings of the 53rd Annual Design Automation Conference
(2016)

17. Yun, J., Park, J., Baek, W.: HARS: a heterogeneity-aware runtime system for self-
adaptive multithreaded applications. In: Proceedings of the 52nd Annual Design
Automation Conference (2015)

Stream Processing on Hybrid
CPU/Intel R© Xeon Phi

TM

Systems

Paulo Ferrão, Hélder Marques, and Hervé Paulino(B)

NOVA Laboratory for Computer Science and Informatics,
Departamento de Informática, Faculdade de Ciências e Tecnologia,

Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
{p.ferrao,hd.marques}@campus.fct.unl.pt,

herve.paulino@fct.unl.pt

Abstract. Stream processing is currently central to handle large vol-
umes of data generated at high rates. However, the efficient processing
of such quantity of data demands massively parallel hardware. The usual
approach is to rely on clusters of multi-processors, where network com-
munication may become a bottleneck. Some work has also been done in
the GPU computing field. Yet, the GPUs’ programming complexity and
the existence of synchronization-related overheads, when the streaming
graph scales, have hampered the integration of GPUs in the Big Data
streaming frameworks. In this paper we explore the unique characteristics
of the Intel Xeon Phi processor to develop a stream processing frame-
work for hybrid CPU/Intel Xeon Phi systems. We built atop the Intel
Threading Building Blocks library and the Marrow algorithmic skele-
ton framework to offer an easily programmable high performance sys-
tem. Our experimental results show that offloading the computationally
heavy nodes of a streaming graph to the Xeon Phi may earn considerable
speed-ups. Furthermore, additional gains may be obtained by sharing the
processing load between the CPU(s) and the Xeon Phi processor(s).

Keywords: Stream processing · Parallel computing · Intel Xeon Phi
Algorithmic skeletons

1 Introduction

Stream processing is currently paramount to handle large volumes of data that
are generated at high rates and, thus, must be processed swiftly. To accomplish
such endeavour, stream processing systems require massively parallel hardware.
The most common approach is to resort to distributed computing on clusters,
typically virtual clusters running in some computation cloud. Popular distributed
stream processing frameworks include Spark Streaming [17], Flink Streaming [4]
and Storm [2]. In such systems, computing resource scaling implies more nodes.
However, as the data processing stages are spread among this increasing number

This work was partially supported by NOVA LINCS (Ref. UID/CEC/04516/2013).

c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 796–810, 2018.
https://doi.org/10.1007/978-3-319-96983-1_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_56&domain=pdf
http://orcid.org/0000-0001-7958-9740

Stream Processing on Hybrid CPU/IntelR© Xeon Phi
TM

Systems 797

of nodes, communication latency becomes a bottleneck when large amounts of
data have to be communicated across the network.

Accelerators are a rather economic way to boost the computing power of
individual nodes, and, with that, reduce a cluster’s dimension and, consequently,
mitigate network communication. Accordingly, there has been some work on the
use of Graphics Processing Units (GPUs) [11,15,16,18]. There are, however,
some limitations that have to be considered: 1. code written for the CPU is
usually not portable to the GPU; in fact, the GPU programming model dif-
fers considerably from the one of conventional CPUs, requiring knowledge of
parallel programming and even computer architecture, and 2. GPUs do not sup-
port global synchronization, the scope of thread synchronization is restricted to
thread blocks (or work-groups, using the OpenCL nomenclature). Consequently,
a global barrier may only be performed by handing control back to the host,
which means that applying a sequence of stages upon a set of data implies a
kernel execution per stage. There has been some work on kernel fusion [7,13] to
reduce the number of global barriers. However, applicability is still limited.

In this paper, we propose to explore the unique characteristics of the Intel
Xeon Phi co-processor to provide a high performance stream processing frame-
work that leverages on hybrid CPU(s)/Intel Xeon Phi nodes. The most well
known of these characteristics is Intel’s Many Integrated Core (MIC) architec-
ture, which combines many Intel x86 cores, and hence may be programmed with
standard C, C++ or FORTRAN. Therefore, code developed for the CPU may
run almost unmodified on the Xeon Phi. One other advantage (specially over
GPUs) is that it supports global barriers. Therefore, a streaming graph may run
entirely on the Xeon Phi, without requiring control transfers to the host.

Our approach is to build upon the widely used Intel Threading Building
Blocks (TBB) library [12], namely on its Flow Graph interface [9]. Being a
C++ template library, TBB Flow Graph (TBB FG) already provides the means
for programming computations that run exclusively on the Xeon Phi, via the
native execution mode. There is, however, no support for hybrid CPU/Xeon Phi
execution, where part(s) of the graph run on the host and others run on one
(or more) Xeon Phi processors, and with that leverage the best each type of
processor has to offer. The contributions of our work are thus:

1. Marrow Streaming, a framework that enables the use of the TBB FG interface
to process streams on hybrid CPU/Xeon Phi nodes (Sect. 2).

2. The use of the Marrow algorithmic skeleton framework [1,10] to transparently
manage all host � Xeon Phi communication, and to simplify the program-
ming of the data processing nodes, ensuring vectorization on both the Xeon
Phi and the host’s CPUs by design (Sect. 2).

3. The characterization of the computations (graphs) whose execution may be
boosted by the use of hybrid CPU/Xeon Phi systems (Sect. 3).

2 The Marrow Streaming Framework

Intel’s SDK for the Xeon Phi enables the execution of TBB FG computations
natively on the co-processor (Fig. 1a), where flow graphs are launched and exe-

798 P. Ferrão et al.

Fig. 1. Currently possible graph execution models

Fig. 2. Graph configuration examples with Marrow Streaming

cute on the Xeon Phi with no communication with the host. It also enables
the offloading of one node at a time (Fig. 1b), resulting in an execution model
with control transfers between the host and the co-processor, similarly to what
is possible to implement on GPUs (due to the absence of global barriers). It is,
however, not possible to deploy graphs with nodes running on the CPU and on
a MIC card (Xeon Phi). Moreover, data transfers must be explicitly managed
and only occur at the beginning or end of an offload operation.

The Marrow Streaming framework exports the same set of operations as
TBB FG, but with a significant difference: nodes in the data-flow graph may
be placed either on the host (be it single or multi-CPU) or on one (or more)
MIC cards, such as an Xeon Phi processor. The motivation is to allow for the
offload of sub-graphs, rather than single nodes. The host may execute the nodes
that perform input/output operations and interface with distributed stream pro-
cessing systems, while some, or all, of the remaining nodes execute on the MIC
cards. Figure 2 illustrates several possible configurations for the execution of a

Stream Processing on Hybrid CPU/IntelR© Xeon Phi
TM

Systems 799

using namespace marrow;
using namespace marrow::streaming;
typedef std::tuple< vector< int >*, vector< int >* > out_tuple;

graph g;
source_node<vector< int >*> source (g, source_f())
function_node<vector< int >*, vector< int >*, MIC> node1 (g, unlimited, f1());
function_node<vector< int >*, vector< int >*, MIC> node2 (g, unlimited, f2());
function_node<vector< int >*, vector< int >*, MIC> node3 (g, unlimited, f3());
function_node<vector< int >*, vector< int >*> node4 (g, unlimited, f4());
join<out_tuple> node5 (g, f5());
function_node<out_tuple, vector< int >*> sink (g, unlimited, sink_f());

make_edge(source, node1);
make_edge(node1, node2);
make_edge(node2, node3);
make_edge(node2, node4);
make_edge(node3, input_port<0>(node5));
make_edge(node4, input_port<1>(node5));
make_edge(node5, sink);

Listing 1. Implementation of the example of Fig. 2c

graph with a single source, a single sink and five intermediate nodes, in a system
with a single Xeon Phi. To be noted that on Fig. 2d the graph’s intermediate
nodes are deployed on both the host and the Xeon Phi. The source node must
then split the stream among both sub-graphs—by using a push strategy with a
round-robin policy or have both Nodes 1 pull the data—and, with that, leverage
the processing power of both host and co-processor.

2.1 Programming Model

The programming model extends the one of TBB FG with the node location
indication ∈ {Host, MICi}, where i denotes the number of the MIC processor:
MIC0 may also be referred to as simply MIC. Graphs are, hence, represented
by instances of a TBB-equivalent graph class, upon which many kinds of nodes
may be attached to. Prominent examples are:

source node that generates a stream of data items of the given data-type;
function node that applies a computation to an input stream, producing an

output stream that is broadcast to all of the node’s successors;
split node that applies a computation to a input stream of tuples, producing

an output stream for each element of the tuple;
join node that joins multiple input streams into a single stream of tuples,

composed of one element from each input stream.

Listing 1 illustrates how the example from Fig. 2d may be programmed, when
assuming a stream of integer vectors. As intended, the code is very close to the
equivalent implementation in TBB FG, differing from the latter in just three
details:

(a) the use of the marrow::streaming name space, rather than the original
tbb::flow, to commute between implementations.

800 P. Ferrão et al.

(b) the explicit indication that nodes 1, 2 and 3 are to the executed on the Xeon
Phi (MIC) co-processor. Note that, by default, nodes execute on the host,
making the code for example in Fig. 2a the same for marrow::streaming
and tbb::flow.

(c) the use of container marrow::vector, which automatically manages all
data transfers between the host and the Xeon Phi.

Host � Xeon Phi Communication: The addressing spaces of the host and of
a Xeon Phi co-processor are disjoint, which implies transferring data to and from
the co-processor, when needed. Marrow provides its own versions of the C++
STL’s array and vector containers. These versions allow for the creation
of clones of themselves, either on the same or on another addressing space,
namely on GPUs and/or the Xeon Phi. Updates to the original container and
its clones are done automatically without programmer intervention, rendering all
host � Xeon Phi communication transparent.

Lastly, the construction of the graph’s edges is left unchanged from TBB.
The use of C++ templates deduces specifications of the make edge function
for all possible scenarios in {Host, MIC0, ..., MICn} × {Host, MIC0, ..., MICn}.

Node Behavior Implementation: The procedure for node behavior imple-
mentation in Marrow Streaming is identical to the one for TBB FG, i.e. indis-
criminate code supplied as a C++ functor. However, good performance on the
Xeon Phi is tightly bound to the ability to explore the vectorization capabilities
of each individual core. As a result, the use of the co-processor is specially advan-
tageous when running nodes that perform multiple data-independent operations,
such as many operations over vectors.

The programmer must then reason about which kind of nodes to place on
the co-processor, and the vectorization properties of a particular node’s code. In
this section we will focus on the second of these concerns, leaving the first for
future work discussion (Sect. 5).

A mandatory requirement for vectorization is data alignment. This is auto-
matically handled by Marrow’s array and vector container implementations,
but must be explicitly handled when using other data structures. Additionally,
in TBB, values are passed by copy from node to node. Thus, the use of point-
ers1 is recommended when passing large objects along the stream. This raises
a new problem for code vectorization, because it may not be easy to guarantee
that memory accesses do not overlap. The usual approach is to aid the compiler
by qualifying pointers with the restrict keyword (or equivalent), whenever
the memory accessible from a given pointer may only be accessed by that same
pointer in the current scope.

In order to remove these concerns from the programmer’s mind, we have built
upon previous knowledge on skeletal programming, acquired in the development
of the Marrow framework [10,14]. Accordingly, we devised a MIC-directed imple-
mentation of some of Marrow’s skeletons, namely map, reduce and loop. Map and
1 References are not fully supported.

Stream Processing on Hybrid CPU/IntelR© Xeon Phi
TM

Systems 801

reduce were designed to be data-independent and, hence, have been vectorized
by design. With regard to loop, no restrictions are imposed on the code of its
body. Hence, all behaviors are allowed, including not vectorizable ones. Never-
theless, if the loop’s body is programmed only by combining Marrow skeletons,
these build on the concept of expression template to generate a compile time
abstract syntax tree that may be analysed for data-dependency detection, and
provide useful hints to the programmer. This is, however, ongoing work.

Listing 2 showcases the use of Marrow skeletons to implement the behavior
of a node, concretely of node 1 from Listing 1. The map skeleton applies functor
clean filter that zeros (in place) all values below a given threshold.
template <typename T, typename U> s t ruc t clean_filter {

void operator() (T& result, const U& threshold) const {
i f (result < threshold) result = 0;

}
};

s t ruc t f1 {
marrow::vector< int >* operator() (marrow::vector< int >* v) {

marrow:map<clean_filter< int >>() (*v, 10);
return v;

}
};

Listing 2. A simple filter implementation in Marrow

2.2 Execution Model

A graph spread across the host and Xeon Phi co-processors is internally sup-
ported by multiple TBB FG sub-graphs, denoted, respectively, by graphhost and
graphmici , where i is the number of the MIC card. Naturally, nodes to execute on
the host are attached to graphhost, while the others are attached to the respective
graphmic.

Given that the whole graph is built on the host (see Listing 1), to attach
nodes to a graphmic we have to offload the creation and the connection of the
nodes to the target MIC processor. So, rather than offloading the execution of
the nodes as in Fig. 1b, we offload the construction of the graph and, once the
graph is built, its edges behave as plain TBB FG edges. To achieve this goal,
some offload blocks need to refer to graphs and nodes created on previous offload
operations. However, the compiler-generated address translation mechanism that
enables the access of data, allocated in the host, inside offload blocks is only valid
while such block executes. This clashes with our need. To bypass the restriction
we take advantage of the fact that address translation is not performed for void
pointers2. Hence, building an edge between two nodes located on a MIC takes
the nodes’ surrogates on the host, retrieves the address of the original node on
the target MIC, and offloads the edge construction to that same MIC card.

Lastly, given that the co-processor version of the Xeon Phi is currently avail-
able as an add-on PCIe card, edges that (on the original graph) connect nodes
2 We acquired this information from experience. To the best of our knowledge it is

not reported.

802 P. Ferrão et al.

Fig. 3. Wormholes that connect graphs running on the host and on the Xeon Phi

running on different locations require communication over the PCIe bus. To that
end, we resort to the Symmetric Communication InterFace (SCIF): a library
included in the Intel Manycore Platform Software Stack (MPSS) [8] to provide
a socket-like API for communicating with Xeon Phi cards over such bus.

To seamlessly combine SCIF-based communication with TBB FG, we devel-
oped a wormhole that transfers a data stream between graphs. This wormhole
is created and deployed automatically when function make edge is called to
connect two nodes running on different locations. The wormhole is supported
by a pair interconnected nodes, named Entry and Exit, being that (as expected)
data send to the wormhole’s entry end disappears from the current graph, sur-
facing at wormhole’s exit. Entry is implemented as a TBB FG function node
that sends the incoming data stream to a pre-established SCIF communication
socket. Conversely, Exit is a TBB FG source node that reads the stream from
such socket and writes it to the edge that connects the node to the rest of the
graph. Hence, calling make edge upon two nodes n1 and n2 – running on the
aforementioned different locations – connects n1 to the wormhole’s Entry node,
and the associated Exit node to n2. Figure 3 illustrates the procedure applied to
the graph of Fig. 2b.

Communicating Marrow Containers: Marrow containers allocate, and
manage, data residing on the addressing space of the location where they were
created. When they are first sent through a wormhole to another location, a
clone is then created there (i.e. the necessary memory is allocated on the new
location and the current contents of the container copied). Subsequent trans-
missions over wormholes cause the contents of the host and Xeon Phi clones to
be updated. Looking once again to Fig. 3, the sending of a container created on
the host through the wormhole that connects node Source to Node 1, causes a
clone to be created on the Xeon Phi. In turn, the sending of a container through
the wormhole that connects Node 5 to the Sink node, may result in one of the
following two behaviors: (a) if the container was created on the host and its
contents have been modified on the Xeon Phi, the modified contents are copied
to the host; (b) if, on the other hand, the vector was created on the Xeon Phi,

Stream Processing on Hybrid CPU/IntelR© Xeon Phi
TM

Systems 803

Table 1. Benchmark configuration parameters

Parameter Experimented values Impact

Where is the graph executed Host (Fig. 2a); MIC0
(Fig. 2b); Both (Fig. 2d)

Number of images (vectors)
to process

4; 60; 120 Inter-core parallelism

The images’ size 720p (3.3 MB); 1080p
(7.6 MB); 1440p (13.2 MB)

Communication and
Vectorization

Number of intermediate
nodes

10; 40; 80 Inter-core parallelism

Operation applied by each
node

Integer (addition);
Floating-point (power)

Type of computation
to each vector element

Number of operations
applied per node

50; 100; 400 Vectorization

by one of the nodes running there, a clone must then be created on the host.
When a container goes out of scope, all clones are automatically deleted.

3 Experimental Results

The goal of our evaluation is to characterize the scenarios where it is beneficial
to use hybrid CPU/Xeon Phi nodes to process a data-flow graph, and quantify
such gains.

Benchmark: We implemented a synthetic benchmark that deploys a graph with
a single source, a single sink and a parametrizable number of intermediate nodes.
The latter apply the same computation, a given number of times, to a stream
of marrow::vectors, which in this case contain images in Portable Gray Map
(PGM) format. This benchmark is highly customizable through the parameters
presented in Table 1. The nodes are configured to use the TBB FG unlimited
concurrency strategy, meaning that any node activation may spawn a new task.

Setup: Experiments have been performed on a machine with an Intel Xeon E5-
2603 CPU (quad-core, hyper-threading, 1.80 GHz, 15 GB RAM, 10 MB Cache)
and one Intel Xeon Phi 5110P (60 cores, 1.05 GHz, 8 GB GDDR5 2.5 GHz RAM,
30 MB L2 cache). The source code was compiled with Intel Composer version
17.0.1, and run with MPSS driver version 3.6.1-1.

All reported measurements are the mean of 20 experiments, and account the
time elapsed between the instant the first image is received by the Source node,
and the instant the last one is processed by the Sink node.

804 P. Ferrão et al.

Fig. 4. Speed-up of MIC0 versus Host: Integer

Fig. 5. Speed-up of MIC0 versus Host: Floating-point

Fig. 6. Speed-up of MIC0 versus Host: Floating-point

Stream Processing on Hybrid CPU/IntelR© Xeon Phi
TM

Systems 805

Fig. 7. Speed-up - Parameter sensitivity analysis. The values represent the average of
the results for all configurations with the parameter under analysis fixed.

Xeon Phi (MIC0) Versus Host: For this first experiment we executed the
Host and MIC0 benchmark configurations over all possible values for the remain-
der parameters. The results, depicted on Figs. 4 and 5, show that the gains are
much higher when floating-point operations are into play. In fact, for integer
processing, speed-ups are only observed in scenarios with either: (a) 40, or more,
computationally heavy (400 operations per image pixel) intermediate nodes –
with speed-ups attaining ≈4 for 60 images and ≈5 for 120 images, for all con-
figurations, or (b) 80 nodes executing 100 operations – with speed-ups reaching
up to 3.11 for 60 images and 3.22 for 120. The less work generating configu-
rations do not take enough advantage of the Xeon Phi’s parallel hardware to
compensate the PCIe communication overhead and the higher computing power
of the CPU’s cores. This is mostly observable in the 4 image configurations, with
a bottom speed-up of 0.2 (slow-down of ≈5).

On the other hand, all floating-point configurations yield positive speed-ups
from 1.04 to 14.49 (Figs. 5 and 6). From 40 nodes upward, all configurations
achieve a speed-up of, at least, ≈ 5. This renders the Xeon Phi particularly
interesting for floating-point heavy stream applications.

Conducting a parameter sensitivity analysis, we conclude that both inter- and
intra-core parallelism are important to attain the reported speed-ups. Regarding
the first, thread-level parallelism is necessary to make use of Xeon Phi’s many
cores. In this context, increasing either, or both, the number of graph nodes
(Fig. 7b) and the number of data items (images) to process (Fig. 7c) increases
the number of concurrent tasks3, and hence boost parallelism. The results do
not significantly differ for both parameters, since the side-effects are the same:
more node activations. However, given that the number of nodes is application-
dependent, having a steady flow of images becomes essential to obtain the nec-
essary volume of core-level parallelism, and also to mask the overhead of PCIe
communication by overlapping it with computation on the Xeon Phi.

Regarding intra-core parallelism, granularity, bound firstly to the number of
operations executed per node and secondly to the size of the images, is key for
leveraging the vectorization capabilities of the Xeon Phi. The chart of Fig. 7a

3 Due to the use of the unlimited concurrency strategy.

806 P. Ferrão et al.

Fig. 8. Speed-up of both (Host + MIC0) versus Host

Fig. 9. Speed-up of both (Host + MIC0)versus MIC0

Fig. 10. Speed-up of both (Host + MIC0) versus MIC0

shows that speed-up increases considerable and consistently with the number of
operations. In opposition, analysing the 3 charts, we conclude that the impact
of image size is negative. This happens because, although boosting granularity,
bigger image sizes also implies more communication from/to the host to/from

Stream Processing on Hybrid CPU/IntelR© Xeon Phi
TM

Systems 807

the Xeon Phi, and more inter-graph-node communication in the Xeon Phi (via
shared memory and the L2 cache).

Collaborative Graph Execution: In this second experiment, we want to
assess if there are considerable gains in sharing the load between the Xeon Phi
and the host by duplicating the graph on both processors (the Both version),
when compared with placing all intermediate nodes on the Xeon Phi (the MIC0
version). We confine the discussion to the floating-point benchmark, being that
the conclusions for the integer counterpart are generally the same. Figure 8 illus-
trates the speed-up against the host-only execution. The values range from 1.41
for configuration 〈720p images, 10 intermediate nodes, 4 images, 50 operations〉
to 24.09 for configuration 〈720p images, 80 intermediate nodes, 120 images, 400
operations〉. These results represent a boost relatively to the MIC0 version. In
fact, we observed this speed-up boost for all configurations, as depicted in Figs. 9
and 10.

As expected, these gains are minimal for the 4 image configurations, given
that the execution on both locations is pretty much on a par (see Fig. 10).
Regarding the others, the CPU is more effective when the number of nodes
is small. With the increase of thread parallelism, the CPU’s four cores are not
able to sustain the same throughput level, and hence the percentage of the work
they are capable to process decreases.

Discussion: Offloading computationally heavy nodes of a dataflow graph to the
Xeon Phi, while keeping the I/O bound nodes in the CPU, may yield considerable
speed-ups. In the proposed framework, these gains are particularly noticeable
for floating operations, for which we consistently observed speed-ups close to 10.
Equivalent gains were also observed when increasing the load, i.e., the number
of items flowing in the graph.

The Both configuration is particularly useful when the load is high, but
the combined computational weight of the nodes to execute on both types of
processors is not. In such settings, the latency of processing individual data
items on the CPU and on the Xeon Phi is closer, and so, the CPU’s contribution
has more impact. For many of such configurations we obtained speed-ups of 20
against the host-only execution. This latency gap (between the execution on both
processors) is, in fact, inversely proportional to the usefulness of processing data
items on the CPU. So, as the gap increases, the ideal configuration will likely
be to duplicate only part of the graph, which raises the challenge of knowing
which sub-graph(s) to duplicate. Automating such decisions is not trivial and
may require profiling and code inspection.

4 Related Work

As mentioned in the beginning of Sect. 2, to the best of our knowledge, there
is no system that distributed nodes of a data-flow graphs among the host and

808 P. Ferrão et al.

Xeon Phi co-processors. There are nonetheless other relevant works that take
advantage of hybrid CPU/Xeon Phi systems.

HyPhi [5] is task-based library that also extends Intel TBB with the purpose
of executing tasks on hybrid CPU/Xeon Phi systems. The purpose and appli-
cability of this work is different from ours: it is a batch processing system that
offers operations such as hybrid parallel loops and hybrid map/reduce, which
are closer to Marrow’s original skeletons than to the contributions of this paper.
As in our work, communication (in this case thread synchronization) within a
running hybrid computation is accomplished through the SCIF library.

StarPU [3] is a library for task scheduling and data management on hetero-
geneous systems, including the CPUs and the Intel Xeon Phi. It is work at a
much lower-level than ours that also operates at a much finer grain. They offload
tasks to the Xeon Phi, while we offload data-flow graphs.

MAGMA [6] is linear algebra library that leverages hybrid CPU/Xeon Phi
execution. It provides MIC-accelerated implementations of Cholesky, QR and
LU factorizations by executing some operations (trailing matrix update) on the
Xeon Phi and others (panel factorization) on the CPU.

5 Conclusion and Future Work

We proposed a solution to efficiently run TBB FG computations on hybrid
CPU/Xeon Phi systems, with minor modifications to the source code. To devi-
ate the data flow to the Xeon Phi and back to the host, the programmer simply
has to augment his program with the indication of which nodes to run on the
co-processor(s). To collaboratively use both the host and the co-processor, the
programmer has to precede the sub-graphs to run on both locations with a
node that splits the stream among them, and succeed it with a node that gath-
ers the results. Both nodes are straightforward to implement in TBB FG, and
future work will address its automatic generation via a new specification of the
make edge function.

The experimental results show that for some loads it is possible to obtain high
speed-ups (close to 15) by offloading a (sub)graph to the Xeon Phi, and close
to 25 when using both the host and the co-processor to process the (sub)graph.
Given these promising results, future work will focus on (a) the use of heuristics
for automating the placing of the nodes, removing from the programmer’s mind
the burden of reasoning about which nodes to place where, (b) the interface
with Apache Spark or Storm to enable the seamless integration of the Xeon
Phi in distributed stream processing systems, and (c) the application to real-life
scenarios.

Stream Processing on Hybrid CPU/IntelR© Xeon Phi
TM

Systems 809

References

1. Alexandre, F., Marqués, R., Paulino, H.: On the support of task-parallel algorith-
mic skeletons for multi-GPU computing. In: Symposium on Applied Computing,
SAC 2014, Gyeongju, Republic of Korea, 24–28 March 2014, pp. 880–885. ACM
(2014)

2. Apache Software Foundation.: Apache Storm. https://storm.apache.org. Accessed
Feb 2018

3. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures. In: Sips,
H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03869-3 80

4. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache flinkTM: stream and batch processing in a single engine. IEEE Data Eng.
Bull. 38(4), 28–38 (2015)

5. Dokulil, J., Bajrovic, E., Benkner, S., Sandrieser, M., Bachmayer, B.: HyPHI - task
based hybrid execution C++ library for the Intel Xeon Phi coprocessor. In: 2013
42nd International Conference on Parallel Processing (ICPP), pp. 280–289 (2013)

6. Dongarra, J.J., et al.: HPC programming on Intel many-integrated-core hardware
with MAGMA port to Xeon Phi. Sci. Program. 2015, 502593:1–502593:11 (2015)

7. Huynh, H.P., Hagiescu, A., Wong, W., Goh, R.S.M.: Scalable framework for map-
ping streaming applications onto multi-GPU systems. In: 17th Symposium on Prin-
ciples and Practice of Parallel Programming, PPOPP 2012, pp. 1–10. ACM (2012)

8. IntelR© Corporation: Manycore Platform Software Stack (IntelR© MPSS). https://
software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss.
Accessed Feb 2018

9. Intel R© Corporation: Intel R© Threading Building Blocks – tutorial: Flow graph.
https://www.threadingbuildingblocks.org/tutorial-intel-tbb-flow-graph. Accessed
Feb 2018

10. Marques, R., Paulino, H., Alexandre, F., Medeiros, P.D.: Algorithmic skeleton
framework for the orchestration of GPU computations. In: Wolf, F., Mohr, B., an
Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 874–885. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40047-6 86

11. Pinnecke, M., Broneske, D., Saake, G.: Toward GPU accelerated data stream pro-
cessing. In: Proceedings of the 27th GI-Workshop Grundlagen von Datenbanken,
vol. 1366, pp. 78–83. CEUR-WS.org (2015)

12. Reinders, J.: Intel Threading Building Blocks, 1st edn. O’Reilly & Associates Inc.,
Sebastopol (2007)

13. Sato, S., Iwasaki, H.: A skeletal parallel framework with fusion optimizer for
GPGPU programming. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 79–94.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10672-9 8

14. Soldado, F., Alexandre, F., Paulino, H.: Execution of compound multi-kernel
opencl computations in multi-CPU/multi-GPU environments. Concurr. Comput.:
Pract. Exp. 28(3), 768–787 (2016)

15. Udupa, A., Govindarajan, R., Thazhuthaveetil, M.J.: Software pipelined execution
of stream programs on GPUs. In: The Seventh International Symposium on Code
Generation and Optimization, CGO 2009, pp. 200–209. IEEE Computer Society
(2009)

16. Verner, U., Schuster, A., Silberstein, M., Mendelson, A.: Scheduling processing of
real-time data streams on heterogeneous multi-GPU systems. In: The 5th Annual
International Systems and Storage Conference, SYSTOR 2012, p. 7. ACM (2012)

https://storm.apache.org
https://doi.org/10.1007/978-3-642-03869-3_80
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
https://software.intel.com/en-us/articles/intel-manycore-platform-software-stack-mpss
https://www.threadingbuildingblocks.org/tutorial-intel-tbb-flow-graph
https://doi.org/10.1007/978-3-642-40047-6_86
https://doi.org/10.1007/978-3-642-10672-9_8

810 P. Ferrão et al.

17. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams:
fault-tolerant streaming computation at scale. In: ACM SIGOPS 24th Symposium
on Operating Systems Principles, SOSP 2013, pp. 423–438. ACM (2013)

18. Zhang, Y., Mueller, F.: GStream: a general-purpose data streaming framework on
GPU clusters. In: International Conference on Parallel Processing, ICPP 2011, pp.
245–254. IEEE Computer Society (2011)

Tile Low-Rank GEMM Using Batched
Operations on GPUs

Ali Charara(B) , David Keyes ,
and Hatem Ltaief

Extreme Computing Research Center, Division of Computer, Electrical,
and Mathematical Sciences and Engineering, King Abdullah University of Science

and Technology, Thuwal Jeddah 23955, Kingdom of Saudi Arabia
{Ali.Charara,David.Keyes,Hatem.Ltaief}@kaust.edu.sa

Abstract. Dense General Matrix-Matrix (GEMM) multiplication is a core
operation of the Basic Linear Algebra Subroutines (BLAS) library, and
therefore, often resides at the bottom of the traditional software stack for
many scientific applications. In fact, chip manufacturers give a special
attention to the GEMM kernel implementation since this is exactly where
most of the high-performance software libraries extract hardware per-
formance. With the emergence of big data applications involving large
data-sparse, hierarchically low-rank matrices, the off-diagonal tiles can
be compressed to reduce the algorithmic complexity and the memory
footprint. The resulting tile low-rank (TLR) data format is composed of
small data structures, which retain the most significant information for
each tile. However, to operate on low-rank tiles, a new GEMM operation
and its corresponding API have to be designed on GPUs so that the
data sparsity structure of the matrix can be exploited while leveraging
the underlying TLR compression format. The main idea consists of aggre-
gating all operations into a single kernel launch to compensate for their
low arithmetic intensities and to mitigate the data transfer overhead on
GPUs. The new TLR-GEMM kernel outperforms the cuBLAS dense batched
GEMM by more than an order of magnitude and creates new opportunities
for TLR advanced algorithms.

Keywords: Hierarchical low-rank matrix computations
Matrix multiplication - GEMM · High performance computing
GPU Computing · KBLAS

1 Introduction

With the convergence of the third and fourth paradigms (i.e., simulation and
big data), large-scale scientific applications, such as climate/weather forecast-
ing [31], require a profound redesign to reduce the memory footprint as well as
the overall algorithmic complexity. When considering multi-dimensional prob-
lems, with a large number of unknowns, n, the resulting covariance matrix may
c© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, pp. 811–825, 2018.
https://doi.org/10.1007/978-3-319-96983-1_57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_57&domain=pdf
http://orcid.org/0000-0002-9509-7794
http://orcid.org/0000-0002-4052-7224
http://orcid.org/0000-0002-6897-1095

812 A. Charara et al.

render its structure fully dense. To overcome the curse of dimensionality with-
out violating the fidelity of the physical model, application developers rely on
approximation methods, which drastically reduce the constraints on the mem-
ory footprint and the algorithmic complexity. For instance, hierarchical matrices
or H -matrices have been recently resurrected for high-performance comput-
ing [29,32] as a potential algorithmic solution to tackle the aforementioned chal-
lenge. Because of their inherent recursive formulations, they are not amenable
to massively parallel hardware systems such as GPUs.

We have designed, investigated, and implemented, on x86 shared-memory
systems within the HiCMA library, an approximation method that exploits the
natural data sparsity of the off-diagonal tiles while exposing parallelism to the
fore [8]. Based on the tile low-rank (TLR) data format, the off-diagonal tiles of
a dense covariance matrix are compressed up to a specific accuracy threshold,
without compromising the model fidelity. The resulting data structure, much
smaller than the original dense tiles, represents the new building blocks to pur-
sue the matrix computations. Since main memory is a scarce resource on GPUs,
TLR should enable solving even larger GPU-resident problems and eventually
fall back to out-of-core algorithms. Although this TLR scenario may look utterly
GPU friendly and more compliant, there are still some lingering performance
bottlenecks. Indeed, decomposing an off-diagonal low-rank matrix problem into
tasks may lead to a computational mismatch between the granularity of the task
and the computational power of the underlying hardware. In particular, heavily
multi-threaded accelerators such as NVIDIA GPUs need to maintain high occu-
pancy and would require developers to move away from the current model, where
tasks occupy all hardware computing elements, and, instead, simultaneously exe-
cute multiple smaller tasks, each spanning across a subset of hardware resources.
This mode of operation, called batched execution [19], executes many smaller
operations in parallel to make efficient use of the hardware and its instruction-
level parallelism. To our knowledge, this work introduces the first TLR general
matrix-matrix multiplication (TLR-GEMM) operating on data sparse matrix struc-
tures using GPU hardware accelerators. Our research contribution lies at the
intersection of two concurrent and independent efforts happening in the scien-
tific community: H -matrix and batched operations for BLAS/LAPACK. Our
TLR-GEMM leverages the current batched execution kernels in BLAS and LAPACK
to support the matrix-matrix multiplication operation, which is perhaps one of
the most important operations for high-performance numerical libraries, in TLR
data format. In this paper, we focus on compressing data-sparse matrices and
operating on them with uniform rank sub-blocks. Non-uniform rank compres-
sion and operation is a subject under investigation and beyond the scope of this
paper. Our TLR-GEMM implementation is available in the open source KBLAS
library maintained at https://github.com/ecrc/kblas-gpu.

The remainder of the paper is organized as follows: Sect. 2 presents related
work and details our research contributions; Sect. 3 recalls the batched linear
algebra community effort and gives a general overview of the hierarchical low-
rank matrix approximation; Sect. 4 introduces the new TLR-GEMM and its vari-

https://github.com/ecrc/kblas-gpu

TLR GEMM on GPUs 813

ants; the implementation details of the various TLR-GEMM kernels are given in
Sect. 5; Sect. 6 assesses the accuracy and performance of TLR-GEMM on the lat-
est NVIDIA GPU hardware generation and compares it to the state-of-the-art
high-performance batched dense GEMM, as implemented in [2]; we conclude in
Sect. 7.

2 Related Work

The general matrix-matrix multiplication (GEMM) operation is the primitive ker-
nel for a large spectrum of scientific applications and numerical libraries. GEMM
has been optimized on various hardware vendors for large matrix sizes and con-
stitutes the basic reference for Level-3 BLAS [18] operations and their usage in
dense linear algebra algorithms. With the need to solve multicomponent partial
differential equations, the resulting sparse matrix may have a dense block struc-
ture. The block size is relatively small and corresponds to the number of degrees
of freedom per mesh element. The blocks are usually stored in a compressed
block column/row data format. Matrix computations are then performed on
these independent blocks by means of batched operations. For instance, batched
dense matrix-vector multiplication is employed in sparse iterative solvers for
reservoir simulations [6], while batched dense LAPACK factorizations [15] are
required in sparse direct solvers for the Poisson equation using cyclic reduc-
tion [17]. Moreover, with the emergence of artificial intelligence, batched dense
GEMM of even smaller sizes are needed in tensor contractions [4,5,33] and in deep
learning frameworks [3,27,28]. To facilitate the adoption of all these efforts, a
new standard has been proposed to homogenize the various batched API [19].
While the literature is rich in leveraging batched executions for dense and sparse
linear algebra operations on x86 and hardware accelerators [4–6,14,15,19], this
trend has faced challenges and has not penetrated data-sparse applications yet,
involving large hierarchically low-rank matrices (i.e., H -matrices). In fact, there
are three points to consider when designing batched operations for H -matrices.
First, there should be an efficient batched compression operation for H -matrices
on x86 and on hardware accelerators. Second, the inherent recursive formulation
of H -matrix resulting from nested dissections should be replaced, since it is not
compliant with batched operations. Third, strong support is eventually required
to handle batched matrix operations on the data-sparse compressed format, such
as H 2, Hierarchically Semi-Separable representation (HSS), and the Hierarchi-
cal Off-Diagonal Low-Rank (HODLR) matrix. More recently, a block/tile low-
rank (TLR) compressed format has been introduced on x86 [8,11], which further
exposes parallelism by flattening the recursion trees. The TLR data format may
engender new opportunities and challenges for batched matrix compression and
operation kernels on advanced SIMD architectures. Moreover, an effective imple-
mentation of the randomized SVD [26] for H 2 matrix compression has been
ported to hardware accelerators [14]. The aforementioned three bottlenecks may
now be relieved to deploy TLR matrix computations on GPUs.

814 A. Charara et al.

3 Background

Batched Dense Linear Algebra. GPUs are massively parallel devices optimized
for high SIMD throughput. Numerical kernels with low arithmetic intensity may
still take advantage of the high memory bandwidth, provided they operate on
large data structures to saturate the bus bandwidth. When operating on rela-
tively small workloads on GPUs, the GPU overheads are twofold: (1) the over-
head of moving the data from the CPU to the GPU memory through the thin
PCIe pipe may be not worthwhile, and (2) the overhead of launching the ker-
nels is not compensated by the low computation complexity. High-performance
frameworks for batched operations [1,2,15] attempt to overcome both challenges
by stitching together multiple operations occurring on independent data struc-
tures. This batched mode of execution increases hardware occupancy to attain
higher sustained peak bandwidth while launching a single kernel to remove the
kernel launch overheads all together. Figure 1(a) sketches batched operations of
small dense GEMM operations C + = A×B. Following the same community effort
for the legacy BLAS, a community call for standardizing the batched API [19]
has been initiated, gathering hardware vendors and researchers. This standard-
ization effort enhances software development productivity, while the batched
API gains maturity in the scientific community.

Fig. 1. Consolidating batched operations and H -matrix through TLR data format.
(Color figure online)

Hierarchical Low-Rank Matrix Computations. The hierarchically low-rank
matrix, or H -matrix [21,23–25,34] is a low-rank block approximation of a dense
(sub)matrix, whose off-diagonal blocks may be each represented by an outer
product of rectangular bases obtained from compression, e.g., via orthogonal
transformations with singular value decomposition. An H -matrix captures the
most significant singular values and their corresponding singular vectors up to an
application-dependent accuracy threshold for each block. Figure 1(b) highlights
the structure of an H -matrix resulting from a boundary element method. Each
off-diagonal green block has been approximated to a similar rank up to 9. The
red blocks are dense blocks and are mostly located around the diagonal struc-
ture of the matrix. This data sparse structure may be exposed by performing

TLR GEMM on GPUs 815

nested dissection after proper reordering and partitioning. This recursive for-
mulation allows traversing low-rank off-diagonal blocks and compressing them
using an adequate data storage format such as H [29], Hierarchical Off-Diagonal
Low-Rank (HODLR) [12], H [22], Hierarchically Semi-Separable representation
(HSS) [10,32], and H 2 [13]. All these data compression formats belong to the
family of H -matrices and can be differentiated by the type of their bases i.e.,
nested (HSS and H 2) or non-nested (H and HODLR), in addition to the type
of admissibility conditions, i.e., strong (H and H 2) or weak (HODLR and
HSS). Each of these compression data formats exhibits different algorithmic
complexities and memory footprint theoretical upper-bounds. The tile low-rank
(TLR) [8,11] data format is another case of the H data format with non-nested
bases and strong admissibility conditions. The matrix is logically split into tiles,
similar to the tile algorithms from the PLASMA library [7]. The off-diagonal
tiles may then be compressed using the rank-revealing QR once the whole dense
matrix has been generated [11] or on-the-fly using the randomized singular value
decomposition [26] while performing the matrix computations [8]. Figure 1(c)
shows an illustration of such a TLR matrix composed of an 8 × 8 logical tile.
Owing to its simplicity, TLR permits flattening the inherent recursive formu-
lation. Although TLR may not provide such optimal theoretical bounds as for
the nested-basis data formats, regarding algorithmic complexities and memory
footprint, it is very amenable to advanced performance implementations and
optimizations.

The main objective of this paper is to consolidate the three messages con-
veyed by the sketches of Fig. 1, i.e., batched operations (including matrix com-
pression and computations), H -matrix applications and TLR data format. This
consolidation is the crux of the TLR-GEMM implementation on GPUs.

4 Design of Tile Low-Rank GEMM Kernels

This section describes the design of the TLR-GEMM kernel and identifies its variants
using a bottom-up approach: from the single GEMM kernel operating on low-rank
data format to the corresponding batched operations, and then all the way up to
the actual TLR-GEMM driver.

Low-Rank Data Format. Low-rank approximation consists of compressing a
dense matrix X of dimensions m-rows and n-columns and representing it as
the product of two tall and skinny matrices, such that X = Xu × XT

v , with
Xu and Xv of dimensions (m-rows, k-columns) and (n-rows, k-columns), respec-
tively, and k the rank of X. The choice for the compression algorithms is typically
Rank-Revealing QR (RRQR), adaptive cross-approximation (ACA), or (randomized)
singular value decomposition (SVD), etc. The randomized Jacobi-based SVD [26]
maps well on SIMD architectures because it does not involve pivoting nor ele-
ment sweeping, as in the RRQR and ACA methods, respectively. It is perhaps the
most optimized compression algorithm on GPUs, as implemented in [14].

816 A. Charara et al.

Fig. 2. Illustrating single and batched low-rank GEMM variants.

Low-Rank GEMM Variants. We identify four possible variants, based on the
input data format of the involved matrices A,B, and C. We use the following
notation: GEMM−TATBTC is the GEMM kernel for a given input type (Dense or Low-
rank) for the matrices A,B, and C. The variants are as follows: (1) either of A or
B in low-rank format, C in dense format: GEMM-DLD, or GEMM-LDD, (2) either of A
or B in low-rank format, C in low-rank format: GEMM-DLL, or GEMM-LDL, (3) A and
B in low-rank format, C in dense format: GEMM-LLD, as illustrated in Fig. 2(a),
and, (4) A, B and C in low-rank format: GEMM-LLL, as illustrated in Fig. 2(b). We
focus solely on the last two variants in this paper, i.e., GEMM-LLD and GEMM-LLL,
since they are the bases for supporting the Schur complement calculation and for
matrix factorization, in the context of sparse direct solvers [11] and data-sparse
matrix solvers [8], respectively. In fact, the other possible variants, i.e., when
both A and B are in dense format and C in dense (GEMM-DDD) or in low-rank
format (GEMM-DDL), are not considered because the first is the actual legacy GEMM
operation, and the second is more expensive than regular GEMM in terms of flops.

Batched Low-Rank GEMM. We can then derive the batched low-rank GEMM rou-
tines from their corresponding single low-rank GEMM routines. The new batched
low-rank GEMM kernels are now defined as single kernels, i.e., Batched-GEMM-LLD
and Batched-GEMM-LLL, which simultaneously execute independent GEMM-LLD
and GEMM-LLL operations, as demonstrated in Fig. 2(c) and (d), respectively.
This batched kernel is used as a building block for the main driver performing
the TLR-GEMM on large TLR matrices, as described in the following paragraph.

TLR-GEMM (driver). In the driver of the TLR-GEMM operation, the data-sparse
matrices A,B, and C are subdivided into a grid of tiles, where each tile may indi-
vidually be compressed into low-rank data form, as illustrated in Fig. 3. Indeed,
Fig. 3(a) and (b) represent the TLR-GEMM operation, when TC is tile dense or tile
low-rank, respectively. In a standard GEMM operation, each tile of the matrix
C is updated by an inner-product composed of a sequence of pair-wise GEMM
operations of its corresponding row of tiles from matrix A and column of tiles
from matrix B. However, when dealing with TLR data format, since the work-
load of each low-rank tile is too small to saturate a modern GPU with sufficient
work, concurrent processing of these independent low-rank tiles inner-products
is necessary to increase the GPU occupancy. To overcome this challenge, we
need to process these inner-product low-rank GEMM calls in a batched mode.

TLR GEMM on GPUs 817

However, available batched GEMM routines assume the batched operation is a
primitive CUDA kernel rather than a sequence of calls; thus, we re-formulate
the set of inner-products into a set of successive outer-products by means of
loop re-ordering. Each outer-product is a call to batched GEMM-LLD or GEMM-LLL
routine which updates all tiles of matrix C in parallel. This process is repeated
nt times, nt being the number of tiles in a row of matrix A or a column of matrix
B, as illustrated in Fig. 3 for both variants of TLR-GEMM.

Fig. 3. Processing TLR-GEMM as a series of nt outer-products using batched GEMM-LLD

or GEMM-LLL kernels.

5 Implementation Details

Update Dense C: GEMM-LLD. This operation is performed as a sequence of three
small GEMM calls. Assuming matrices C and A are of m-rows, C and B of n-
columns, A and B of k-columns and k-rows respectively, and A and B are of
ranks ra, and rb, respectively, the operation C = αA × B + βC is equivalent to
C = αAu × AT

v × Bu × BT
v + βC.

Update Low-Rank C: GEMM-LLL. We describe the second variant of the low-rank
GEMM operation when updating C in low-rank format, as outlined in the cor-
responding Algorithm1. In fact, this algorithm corresponds to the randomized
SVD, as described in [26]. We assume the non-transpose case for both matrices
A and B. The matrix-matrix multiplication C = αA × B + βC involves two
sub-stages, where matrices A,B, and C are represented by their low-rank for-
mat (Au, Av), (Bu, Bv), and (Cu, Cv), respectively. The first stage consists of
the multiplication of low-rank matrices A and B, as shown in steps 2 − 3 of
Algorithm 1. The second stage highlights the final addition of the intermedi-
ate matrix with the low-rank matrix C, as demonstrated in steps 4 − 6. This
second stage produces low-rank Ċ = Ċu × Ċv with bloated rank ṙc. As such,

818 A. Charara et al.

Algorithm 1. GEMM-LLL(m,n, k, α,Au, Av, ra, Bu, Bv, rb, β, Cu, Cv, rc,Wa,Wb).
Input: Au, Av , Bu, Bv , Cu, and Cv are m × ra, k × ra, k × rb, n × rb, m × rc, and

n × rc matrices, respectively. Wa and Wb are workspaces of size ra × rb and

ra × n respectively.

1 Setup work-space buffer.;

2 //Multiply A and B;

3 GEMM(Trans, noTrans, ra, rb, k, α, Av , Bu, 0, Wa): Wa ← αAT
v × Bu;

4 GEMM(noTrans, Trans, ra, n, rb, 1, Wa, Bv , 0, Wb): Wb ← Wa × BT
v ;

5 //Add to C ṙc ← rc + ra;

6 Ċu ← Cu|Au ; // Concat Cu and Au into one buffer

7 Ċv ← β(Cv|Wb) ; // Concat Cv and Wb into one buffer, and scale by β

8 //Recompression of Ċu and Ċv ;

9 GEQRF(m, ṙc, Ċu, τu): C̈u ← QR(Ċu) ; // factorize Ċu

10 GEQRF(n, ṙc, Ċv , τv): C̈v ← QR(Ċv) ; // factorize Ċv

11 Ru = upper triangular of C̈u;

12 Rv = upper triangular of C̈v ;

13 GEMM(noTrans, Trans, ṙc, ṙc, ṙc, 1, Ru, Rv , 0, R): R = Ru × RT
v ;

14 GESVD(ṙc, ṙc, R, S, Ṙu, Ṙv);

15 Pick r̈c based on threshold of accuracy or maximum rank.;

16 Scale Ṙv by S;

17 ORGQR(m, ṙc, C̈u, τu) ; // extract Q factors

18 ORGQR(n, ṙc, C̈v , τv) ; // extract Q factors

19 GEMM(noTrans, noTrans, m, r̈c, ṙc, 1, C̈u, Ṙu, 0, Cu): Cu = Ċu × R̈u ; // final Cu

20 GEMM(noTrans, noTrans, n, r̈c, ṙc, 1, C̈v , Ṙv , 0, Cv): Cv = Ċv × R̈v ; // final Cv

21 return;

low-rank matrix addition, as described by Grasedyck [20], requires a process of
recompression based on QR factorization to restore a minimal rank for the prod-
uct matrix as well as the orthogonality of its components. This recompression
is achieved by reforming the product Ċu × Ċv in terms of its SVD represen-
tation, i.e., its singular values and their corresponding right and left singular
vectors. By factorizing Ċu = Qu×Ru, and Ċv = Qv×Rv, we can then represent
Ċ = Qu×Ru×(Qv×Rv)T = Qu×(Ru×RT

v)×QT
v , as the SVD of Ċ. Recompress-

ing the result of the tiny product Ru×RT
v using SVD or ACA, enables restoration

of the rank of Ċ to a minimum value based on a predetermined fixed accuracy
threshold or fixed rank truncation. This process of re-compression is described
in steps 7–18 of Algorithm 1. The implementation of this variant leverages the
randomized SVD on GPUs from [14], in the context of matrix compression for
H2 data format, to the TLR data format.

Batched Low-Rank GEMM. For batching the two GEMM-LLD and GEMM-LLL vari-
ants, the challenges are quite different. Batched GEMM-LLD is straightforward to
implement on GPUs (and even on x86), due to existing fast batched GEMM imple-
mentations on small sizes [2,27]. The task is far more complex for GEMM-LLL,
since the recompression involves numerical kernels (GEQRF, ORGQR and GESVD),
which are not as regular as standard GEMMs, e.g., in terms of memory accesses.

TLR GEMM on GPUs 819

The support from vendor numerical libraries for batched versions of these rou-
tines is limited with poorly performing or simply inexistent implementations. We
have further leveraged the batched GEQRF and ORGQR from [14] and integrated
this into the batched GEMM-LLL. For the batched GESVD on the tiny k×k matrix,
there are two options. The first is again based on the randomized SVD itself,
while the second uses a novel ACA implementation on GPUs. Although ACA may
require an expensive element sweeping procedure, this overhead is mitigated by
the small matrix size. The resulting algorithm for batched low-rank is very sim-
ilar to Algorithm 1, except that each call is now performed in a batched mode
of execution.

TLR-GEMM (driver). Putting all previous standard and batched kernels
together, we present TLR-GEMM on GPUs. We leverage the batched low-rank
GEMM and operate on TLR matrices. This modular approach allows assessing the
performance of each component, while enhancing software development produc-
tivity. The algorithm for TLR-GEMM driver consists of a single loop of nt successive
outer-products, each corresponding to a batched GEMM-LLD or GEMM-LLL call, as
depicted in Fig. 3. Compared to a GEMM operation on matrices with non-TLR data
formats (involving recursion and tree traversals), TLR proves to be a simple yet
effective approach, especially when considering hardware accelerators. For the
algorithmic complexity of each variant, it is obvious that TLR-GEMM based on
GEMM-LLL is more expensive than the one based on GEMM-LLD, because of the
recompression stage.

6 Experimental Results

The benchmarking system is a two-socket 20-core Intel Broadwell running at
2.20 GHz with 512 GB of main memory, equipped with an NVIDIA GPU Volta
V100 with 16 GB of main memory and PCIe 16x. We use a data-sparse matrix
kernel (i.e., Hilbert) with singular values following an exponential decay. In fact,
such decay in singular values is frequently observed in many matrix kernels in
covariance-based scientific applications, such as climate/weather forecasting sim-
ulations [9]. All calculations are performed in double precision arithmetics. The
reported performance numbers are compared to cuBLAS batched dense GEMM.
Figure 4 illustrates the singular value distribution and the numerical accuracy
assessment. The singular values of the Hilbert matrix kernel exponentially decay,
as seen in Fig. 4(a). Approximately the first 30 are the most significant, while the
remainder are close to machine precision and can be safely ignored. Figure 4(b)
demonstrates the numerical robustness of the single GEMM-LLD and GEMM-LLL
kernel variants using the same Hilbert matrix operator. GEMM-LLD approaches
expected accuracy for rank smaller than GEMM-LLL, due to the rounding errors
introduced by the additional floating-point operations from the recompression
stage. Otherwise, both variants show correctness when truncating at ranks close
to the accuracy threshold shown in Fig. 4(a).

Figure 5 highlights the speedups of batched GEMM-LLD and GEMM-LLL, against
cuBLAS batch dense GEMM considering various ranks and a fixed batch size of

820 A. Charara et al.

Fig. 4. Singular value distribution and accuracy assessment of the Hilbert matrix
kernel.

1000. Figure 5(a) and (b) illustrate the speedups of batched GEMM-LLD with and
without compression overhead, respectively. Similarly, Fig. 5(c) and (d) illus-
trate the speedups of batched GEMM-LLL with and without compression overhead,
respectively. Obviously, compression may turn out to be an expensive operation,
which may slow down the the performance of batched GEMM-LLD (Fig. 5(a)) and
batched GEMM-LLL (Fig. 5(c)); however, this overhead is usually occurring once,
since the compressed form of the corresponding matrices may be used repeatedly
(see TLR-GEMM in Fig. 5(b) and (d)). The speedups recorded for batched GEMM-LLD
are higher than those for GEMM-LLL, when comparing to the cuBLAS batch dense
GEMM, because of the recompression step. While speedups are obtained for all
ranks for batched GEMM-LLD (Fig. 5(b)), batched GEMM-LLL (Fig. 5(d)) records
speedups only for relatively small rank sizes. Although the Hilbert matrix kernel
has an exponential singular value decay, we also assess performance for larger
ranks. These extra flops, although unnecessary, allow stretching of the batched
kernels and observing when the crossover point occurs. For instance, in Fig. 5(b),
the batched GEMM-LLD with rank 128 runs out of memory, due to the dense stor-
age of the matrix C, while still outperforming the cuBLAS batch dense GEMM. In
Fig. 5(d), the batched GEMM-LLL with rank 128 runs out of memory, due to the
temporary memory space required by the recompression stage, while not being
able to outperform the cuBLAS batch dense GEMM.

Figure 6 shows the speedups for batched GEMM-LLD and GEMM-LLL, with vary-
ing batch count, against cuBLAS batch dense GEMM, when using the ranks at
which numerical accuracy is reached from Fig. 4(b), i.e., 16 and 32, respectively.
The performance speedup increase as the batch count rises reveals how the device
becomes overwhelmed due to high occupancy.

Figure 7 presents the elapsed time of TLR-GEMM based on batched GEMM-LLD,
named TLR-GEMM-LLD (Fig. 7(a) and (b)), and based on batched GEMM-LLL,
named TLR-GEMM-LLL (Fig. 7(c) and (d)), considering various ranks, against
cuBLAS dense GEMM. TLR-GEMM-LLD (solid line plots) outperforms cuBLAS dense
GEMM (double line plot) by more than an order of magnitude when A and B are
already compressed, as shown in Fig. 7(a). When the matrices A and B are

TLR GEMM on GPUs 821

Fig. 5. Speedups of batched GEMM-LLD and GEMM-LLL against batched dense cuBLAS
GEMM, with batch size 1000.

Fig. 6. Speedups of batched GEMM-LLD and GEMM-LLL against batched dense cuBLAS
GEMM, with varying batch count, while fixing ranks to 16 and 32, respectively.

not compressed, the performance speedup slightly drops to eightfold, as seen
in Fig. 7(b). Indeed, the expensive compression of matrices A and B is only
performed once, followed by successive outer-products, in the form of batched
GEMM-LLD calls. This allows to mitigate the compression overhead, discussed ear-
lier in the section. TLR-GEMM-LLL (solid line plots) outperforms cuBLAS dense
GEMM (double line plot) by more than an order of magnitude when A and B
are already compressed, as shown in Fig. 7(c). When the matrices A and B
are not compressed, the performance speedup remains almost the same, since

822 A. Charara et al.

Fig. 7. Elapsed time of TLR-GEMM-LLD and TLR-GEMM-LLL with various ranks.

Fig. 8. Elapsed time of TLR-GEMM-LLD and TLR-GEMM-LLL with rank 16 and 32, respec-
tively, with tile size 1024, compared to elapsed time of cuBLAS dense GEMM.

the (re)compression is the most time consuming part of the batched GEMM-LLL
operations (Fig. 7(d)).

Figure 8 highlights the performance enhancements when using the Hilbert
matrix kernel to perform TLR-GEMM with appropriate ranks for GEMM-LLD and
GEMM-LLL, 16 and 32, respectively. Although the number of floating-point oper-
ations varies, the objective is to achieve the expected numerical accuracy.
TLR-GEMM-LLD and TLR-GEMM-LLL kernels (solid line plots) score a speedup of
more than an order of magnitude and fourfold, respectively, against cuBLAS
dense GEMM (double line plot).

TLR GEMM on GPUs 823

7 Conclusions and Future Work

This paper presents a novel batched tile low-rank (TLR) GEMM kernel on GPUs,
which is a core operation of large-scale data sparse applications. Results demon-
strate the numerical robustness and manyfold performance speedups against
cuBLAS batched dense GEMM on the latest NVIDIA V100 GPU generation. This
work represents a pathfinder toward enabling advanced hierarchical matrix com-
putations on GPUs. Moreover, owing to its simplicity and modularity, the TLR
data format may facilitate the port to multiple GPUs of batched low-rank matrix
operations. Future work includes supporting non-uniform ranks for compression
and operations to further reduce the memory footprint and flop count cost, in
addition to supporting the other BLAS routines. We would like also to integrate
the TLR compression and the TLR-GEMM operation in the Multi-Object Adaptive
Optics application [30] in the context of computational astronomy and assess its
real-time performance impact.

Data Availability Statement and Acknowledgments. The datasets and code
generated during and/or analysed during the current study are available in the
figshare repository: https://doi.org/10.6084/m9.figshare.6387623 [16]. We would like
to acknowledge Paris Observatory (LESIA, France) for giving us remote access to
their Volta-based system, sponsored through a grant from project #671662 (Green
Flash), funded by European Commission under program H2020-EU.1.2.2 coordinated
in H2020-FETHPC-2014.

References

1. Matrix Algebra on GPU and Multicore Architectures. Innovative Computing Lab-
oratory, University of Tennessee. http://icl.cs.utk.edu/magma/

2. The NVIDIA CUDA Basic Linear Algebra Subroutines (CUBLAS). http://
developer.nvidia.com/cublas

3. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., et al.: TensorFlow: large-
scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467 (2016)

4. Abdelfattah, A., et al.: High-performance tensor contractions for GPUs. Proce-
dia Comput. Sci. 80, 108–118 (2016). International Conference on Computational
Science 2016, ICCS 2016, San Diego, California, USA, 6–8 June 2016

5. Abdelfattah, A., Haidar, A., Tomov, S., Dongarra, J.: Performance, design, and
autotuning of batched GEMM for GPUs. In: Kunkel, J.M., Balaji, P., Dongarra,
J. (eds.) ISC High Performance 2016. LNCS, vol. 9697, pp. 21–38. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-41321-1 2

6. Abdelfattah, A., Ltaief, H., Keyes, D.E., Dongarra, J.J.: Performance optimiza-
tion of sparse matrix-vector multiplication for multi-component PDE-based appli-
cations using GPUs. Concurr. Comput.: Pract. Exp. 28(12), 3447–3465 (2016)

7. Agullo, E., et al.: Numerical linear algebra on emerging architectures: the PLASMA
and MAGMA projects. J. Phys: Conf. Ser. 180(1), 012037 (2009)

8. Akbudak, K., Ltaief, H., Mikhalev, A., Keyes, D.: Tile low rank cholesky factor-
ization for climate/weather modeling applications on manycore architectures. In:
Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC 2017. LNCS, vol. 10266,
pp. 22–40. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58667-0 2

https://doi.org/10.6084/m9.figshare.6387623
http://icl.cs.utk.edu/magma/
http://developer.nvidia.com/cublas
http://developer.nvidia.com/cublas
http://arxiv.org/abs/1603.04467
https://doi.org/10.1007/978-3-319-41321-1_2
https://doi.org/10.1007/978-3-319-58667-0_2

824 A. Charara et al.

9. Akbudak, K., Ltaief, H., Mikhalev, A., Charara, A., Keyes, D.: Exploiting data
sparsity for large-scale matrix computations. In: Aldinucci, M., et al. (eds.) Euro-
Par 2018. LNCS, vol. 11014, pp. xx–yy. Springer, Cham (2018)

10. Ambikasaran, S., Darve, E.: An O(N logN) fast direct solver for partial hierarchi-
cally semiseparable matrices. J. Sci. Comput. 57(3), 477–501 (2013)

11. Amestoy, P.R., Ashcraft, C., Boiteau, O., Buttari, A., L’Excellent, J.Y., Weis-
becker, C.: Improving multifrontal methods by means of block low-rank represen-
tations. SIAM J. Sci. Comput. 37(3), A1451–A1474 (2015). https://doi.org/10.
1137/120903476

12. Aminfar, A., Darve, E.: A fast sparse solver for Finite-Element matrices.
arXiv:1403.5337 [cs.NA], pp. 1–25 (2014)

13. Börm, S.: Efficient numerical methods for non-local operators: H 2-Matrix com-
pression, algorithms and analysis. EMS Tracts in Mathematics, vol. 14. European
Mathematical Society (2010)

14. Boukaram, W.H., Turkiyyah, G., Ltaief, H., Keyes, D.E.: Batched QR and SVD
algorithms on GPUs with applications in hierarchical matrix compression. Parallel
Comput. 74, 19–33 (2017)

15. Charara, A., Keyes, D., Ltaief, H.: Batched triangular dense linear algebra kernels
for very small matrix sizes on GPUs. ACM Trans. Math. Softw. (2017, submitted).
(under review, http://hdl.handle.net/10754/622975)

16. Charara, A., Keyes, D., Ltaief, H.: Software artifact for Euro-Par 2018: Tile Low-
Rank GEMM Using Batched Operations on GPUs. figshare. Code. (2018). https://
doi.org/10.6084/m9.figshare.6387623

17. Chávez, G., Turkiyyah, G., Zampini, S., Ltaief, H., Keyes, D.: Accelerated cyclic
reduction: a distributed-memory fast solver for structured linear systems. Parallel
Comput. 74, 65–83 (2017)

18. Dongarra, J., Du Croz, J., Hammarling, S., Hanson, R.J.: An extended set of
Fortran basic linear algebra subprograms. ACM Trans. Math. Softw. 14, 1–17
(1988)

19. Dongarra, J., et al.: A proposed API for batched basic linear algebra subprograms.
Mims preprint, University of Manchester (2016). http://eprints.maths.manchester.
ac.uk/id/eprint/2464

20. Grasedyck, L., Hackbusch, W.: Construction and arithmetics of H -matrices. Com-
puting 70(4), 295–334 (2003). https://doi.org/10.1007/s00607-003-0019-1

21. Hackbusch, W.: A sparse matrix arithmetic based on H -matrices. part i: introduc-
tion to H -matrices. Computing 62(2), 89–108 (1999). https://doi.org/10.1007/
s006070050015

22. Hackbusch, W.: Hierarchical Matrices: Algorithms and Analysis. Springer Series
in Computational Mathematics, vol. 49. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-47324-5

23. Hackbusch, W., Börm, S.: Data-sparse approximation by adaptive H 2-matrices.
Computing 69(1), 1–35 (2002). https://doi.org/10.1007/s00607-002-1450-4

24. Hackbusch, W., Börm, S., Grasedyck, L.: HLib 1.4. Max-Planck-Institut, Leipzig
(2012)

25. Hackbusch, W., Khoromskij, B., Sauter, S.: On H 2-matrices. In: Bungartz, H.J.,
Hoppe, R.H.W., Zenger, C. (eds.) Lectures on Applied Mathematics, pp. 9–29.
Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-59709-1 2

26. Halko, N., Martinsson, P.G., Tropp, J.A.: Finding structure with randomness:
probabilistic algorithms for constructing approximate matrix decompositions.
SIAM Rev. 53(2), 217–288 (2011). https://doi.org/10.1137/090771806

https://doi.org/10.1137/120903476
https://doi.org/10.1137/120903476
http://arxiv.org/abs/1403.5337
http://hdl.handle.net/10754/622975
https://doi.org/10.6084/m9.figshare.6387623
https://doi.org/10.6084/m9.figshare.6387623
http://eprints.maths.manchester.ac.uk/id/eprint/2464
http://eprints.maths.manchester.ac.uk/id/eprint/2464
https://doi.org/10.1007/s00607-003-0019-1
https://doi.org/10.1007/s006070050015
https://doi.org/10.1007/s006070050015
https://doi.org/10.1007/978-3-662-47324-5
https://doi.org/10.1007/978-3-662-47324-5
https://doi.org/10.1007/s00607-002-1450-4
https://doi.org/10.1007/978-3-642-59709-1_2
https://doi.org/10.1137/090771806

TLR GEMM on GPUs 825

27. Heinecke, A., Henry, G., Hutchinson, M., Pabst, H.: LIBXSMM: accelerating small
matrix multiplications by runtime code generation. In: 0001, J.W., Pancake, C.M.
(eds.) Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC 2016, Salt Lake City, UT, USA, 13–18
November 2016, p. 84. ACM (2016)

28. Kim, K., et al.: Designing vector-friendly compact BLAS and LAPACK kernels.
In: Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC 2017, pp. 55:1–55:12. ACM, New York
(2017). https://doi.org/10.1145/3126908.3126941

29. Kriemann, R.: LU factorization on many-core systems. Comput. Vis. Sci. 16(3),
105–117 (2013). https://doi.org/10.1007/s00791-014-0226-7

30. Ltaief, H., et al.: Real-time massively distributed multi-object adaptive optics sim-
ulations for the european extremely large telescope. In: 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), accepted, May 2018

31. North, G.R., Wang, J., Genton, M.G.: Correlation models for temperature fields.
J. Clim. 24, 5850–5862 (2011)

32. Rouet, F.H., Li, X.S., Ghysels, P., Napov, A.: A distributed-memory package
for dense hierarchically semi-separable matrix computations using randomization.
ACM Trans. Math. Softw. 42(4), 27:1–27:35 (2016)

33. Shi, Y., Niranjan, U.N., Anandkumar, A., Cecka, C.: Tensor contractions with
extended BLAS kernels on CPU and GPU. In: HiPC, pp. 193–202. IEEE Computer
Society (2016)

34. Tyrtyshnikov, E.: Mosaic-skeleton approximations. Calcolo 33(1), 47–57 (1996)

https://doi.org/10.1145/3126908.3126941
https://doi.org/10.1007/s00791-014-0226-7

Correction to: Early Termination of Failed
HPC Jobs Through Machine and Deep

Learning

Michał Zasadziński, Victor Muntés-Mulero, Marc Solé,
David Carrera, and Thomas Ludwig

Correction to:
Chapter “Early Termination of Failed HPC Jobs Through
Machine and Deep Learning” in: M. Aldinucci et al. (Eds.):
Euro-Par 2018: Parallel Processing, LNCS 11014,
https://doi.org/10.1007/978-3-319-96983-1_12

In the original version of the paper, in page 168, section 4.1, the sentence starting “(…)
that has 10% of jobs (samples), and the test set with 10% of jobs. (…)” was inad-
vertently published with an error. It has been corrected to “(…) that has 10% of jobs
(samples), and the test set with 20% of jobs. (…)”.

The updated online version of this chapter can be found at
https://doi.org/10.1007/978-3-319-96983-1_12

© Springer International Publishing AG, part of Springer Nature 2018
M. Aldinucci et al. (Eds.): Euro-Par 2018, LNCS 11014, p. E1, 2018.
https://doi.org/10.1007/978-3-319-96983-1_58

https://doi.org/10.1007/978-3-319-96983-1_12
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_58&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_58&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96983-1_58&domain=pdf
https://doi.org/10.1007/978-3-319-96983-1_12

Author Index

Aderholdt, Ferrol 533
Akbarinia, Reza 281
Akbudak, Kadir 721
Akhremtsev, Yaroslav 659
Akkoorath, Deepthi 492
Alekseeva, Uliana 735
Anantpur, Jayvant 77
Aochi, Hideo 764
Asifuzzaman, Kazi 135
Ates, Emre 92
Ayguadé, Eduard 135

Badiger, Shreyas 309
Baek, Woongki 781
Baheti, Shrey 309
Banerjee, Sarbartha 120
Bannink, Tom 519
Baquero, Carlos 492
Barik, Rajkishore 265
Barsamian, Yann 749
Baruah, Sanjoy 218
Bertot, Luke 404
Bieniusa, Annette 492
Bilas, Angelos 352
Bisseling, Rob H. 519
Bleuse, Raphaël 205
Blügel, Stefan 735
Bombieri, Nicola 628
Brandão, José 492
Brandt, Jim 92
Bridges, Patrick G. 480
Brown, Trevor 465
Buluç, Aydın 672
Busato, Federico 628
Buurlage, Jan-Willem 519

Calheiros, Rodrigo N. 325
Candel, Francisco 235
Canon, Louis-Claude 192
Carpenter, Paul 135
Carrera, David 163

Carribault, Patrick 560
Castro, Márcio 642
Caux, Stephane 339
Chakaravarthy, Venkatesan T. 703
Charara, Ali 721, 811
Charguéraud, Arthur 749
Cheng, Long 293
Chimeh, Mozhgan Kabiri 505
Chrysos, Nikolaos 352
Cole, Murray 590
Cordasco, Gennaro 505
Cosenza, Biagio 505
Coskun, Ayse K. 92
Coti, Camille 432

Dagrada, Mario 560
Danner, Gábor 447
Dathathri, Roshan 249
de Laat, Cees 365
Denis, Alexandre 616
do Nascimento, Bruno Marques 642
Dogeas, Konstantinos 205
Dokulil, Jiri 3
Dosanjh, Matthew G. F. 480
Dupros, Fabrice 764

Egele, Manuel 92
Esposito, Aniello 721
Etsion, Yoav 465
Evangelista, Sami 432

Fensch, Christian 590
Ferrão, Paulo 796

Ganesh, K. 546
Ganti, Karthik 392
Genaud, Stéphane 404
Gilad, Eran 465
Gill, Gurbinder 249
Gossa, Julien 404
Goyal, Aashish 703

Gramoli, Vincent 178
Grant, Ryan E. 480
Gudu, Diana 378

Hamann, Michael 688
Hao, Chunliang 293
Hardt, Marcus 378
Herold, Christian 16
Hirstoaga, Sever A. 749
Hoang, Loc 249
Hu, Yang 365
Hyun, Jihoon 781

Incerto, Emilio 147

Jaeger, Julien 560, 616
Jatala, Vishwesh 77
Javadi, Bahman 325
Jeannot, Emmanuel 616
Jelasity, Márk 447
John, Lizy Kurian 120
Juurlink, Ben 505

Kalikar, Saurabh 546
Kanellou, Eleni 352
Karkare, Amey 77
Katreniakova, Jana 3
Kermarrec, Anne-Marie 419
Keyes, David 721, 811
Khandelwal, Yash 392
Khelghatdoust, Mansour 178
Kim, Kyu Yeun 781
Kirschenmann, Wilfried 764

Lenharth, Andrew 249
Leung, Vitus J. 92
Liu, Qingzhi 293
Ltaief, Hatem 721, 811
Lucarelli, Giorgio 205
Ludwig, Thomas 163

Mahboubi, Sakina 281
Mandal, Ankush 265
Marchal, Loris 192
Marques, Hélder 796
Matar, Hassan Salehe 31
Matawie, Kenan M. 325
Mavridis, Stelios 352
Mehrenberger, Michel 749

Metzger, Paul 590
Michalicek, Gregor 735
Mikhalev, Aleksandr 721
Mounié, Grégory 205
Moustafa, Salli 764
Muddukrishna, Ananya 106
Müller, Matthias 46
Muntés-Mulero, Victor 163
Murali, Prakash 703
Murphy, John 293

Nachiappan, Rekha 325
Nasre, Rupesh 546

Oskin, Mark 465
Owens, John D. 672

Pandian, Shivmaran S. 703
Papauré, Guillaume 560
Parchman, Zachary W. 533
Park, Jinsu 781
Paulino, Hervé 796
Pérache, Marc 560, 616
Petit, Salvador 235, 603
Petrucci, Laure 432
Pingali, Keshav 249
Podestá Jr., Emmanuel 642
Pons, Julio 603
Pons, Lucia 603
Popov, Nikita 505
Prokopec, Aleksandar 575
Purini, Suresh 392

Radojković, Petar 135
Radulovic, Milan 135
Reddy, Puduru V. 392
Reissmann, Nico 106
Renaud-Goud, Paul 339
Richmond, Paul 505
Rostirolla, Gustavo 339
Ruas, Olivier 419

Sabharwal, Yogish 703
Sahuquillo, Julio 235, 603
Sanders, Peter 659
Sarkar, Vivek 59, 265
Scarano, Vittorio 505
Schonbein, Whit 480
Schulz, Christian 659

828 Author Index

Selfa, Vicent 603
Sergent, Marc 560
Sfakianakis, Yannis 352
Shah, Aamer 46
Simmhan, Yogesh 309
Simon, Bertrand 192
Solé, Marc 163
Spagnuolo, Carmine 505
Stolf, Patricia 339
Strasser, Ben 688
Streit, Achim 378

Taboada, Hugo 616
Taïani, François 419
Theodoropoulos, Georgios 293
Tribastone, Mirco 147
Trubiani, Catia 147
Trystram, Denis 205
Tschüter, Ronny 16
Tuncer, Ozan 92
Turk, Ata 92

Unat, Didem 31

Valduriez, Patrick 281
Valero, Alejandro 235
Venkata, Manjunath Gorentla 533
Vivien, Frédéric 192

Wagner, Dorothea 688
Weber, Matthias 16
Wesarg, Bert 16
Wolf, Felix 46
Wortmann, Daniel 735

Yang, Carl 672
Yu, Lechen 59
Yu, Seongdae 781

Zasadziński, Michał 163
Zeitz, Tim 688
Zhao, Zhiming 365
Zhou, Huan 365

Author Index 829

	Preface
	Organization
	Euro-Par 2018 Invited Talks
	ALGORAND: A Better Distributed Ledger
	Algorithmic Adaptations to Extreme Scale Computing
	Datacenters for the Post-Moore Era
	Euro-Par 2018 Topics Overview
	Topic 1: Support Tools and Environments
	Topic 2: Performance and Power Modeling, Prediction and Evaluation
	Topic 3: Scheduling and Load Balancing
	Topic 4: High Performance Architectures and Compilers
	Topic 5: Parallel and Distributed Data Management and Analytics
	Topic 6: Cluster and Cloud Computing
	Topic 7: Distributed Systems and Algorithms
	Topic 8: Parallel and Distributed Programming, Interfaces, and Languages
	Topic 9: Multicore and Manycore Methods and Tools
	Topic 10: Theory and Algorithms for Parallel Computation and Networking
	Topic 11: Parallel Numerical Methods and Applications
	Topic 12: Accelerator Computing for Advanced Applications
	Contents
	Support Tools and Environments
	Automatic Detection of Synchronization Errors in Codes that Target the Open Community Runtime
	1 Introduction
	2 Related Work
	3 OCR and Synchronization
	3.1 Event Driven Synchronization
	3.2 State of OCR Objects
	3.3 The happens-before Relation

	4 Automatic Checking of OCR Programs
	4.1 OCR Application Tracing and Trace Analyzer
	4.2 The happens-before Graph
	4.3 Error Detection Rules

	5 Examples
	5.1 Late Dependence Definition
	5.2 Conflicting Operations in Parallel Tasks
	5.3 SPMD Application – Synchronization Using Data Blocks
	5.4 Performance

	6 Conclusion and Future Work
	References

	A Methodology for Performance Analysis of Applications Using Multi-layer I/O
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Definitions
	3.2 Events

	4 Implementation
	5 Case Study
	6 Conclusions
	7 Future Work
	References

	Runtime Determinacy Race Detection for OpenMP Tasks
	1 Introduction
	2 Background in OpenMP Tasks
	3 Determinacy Race Detection
	3.1 Definition and Motivating Example
	3.2 Formalizing Task Operations
	3.3 Happens-Before Relations Between Task Operations
	3.4 Determinacy Race Detection Algorithm

	4 Implementation
	5 Results
	5.1 Precision Evaluation of TaskSanitizer
	5.2 Comparing Detection with Archer
	5.3 Overhead Evaluation

	6 Related Work
	7 Conclusion
	References

	Estimating the Impact of External Interference on Application Performance
	1 Introduction
	2 Approach
	3 Evaluation
	4 Related Work
	5 Conclusion
	References

	GT-Race: Graph Traversal Based Data Race Detection for Asynchronous Many-Task Parallelism
	1 Introduction
	2 GT-Race
	2.1 Computation Graph and Data Races
	2.2 Overview
	2.3 Epoch Adjacency List: A Compressed Representation for Computation Graph
	2.4 Optimization: Reachability Cache
	2.5 Optimization: Depth Filtering
	2.6 Optimization: Bounded Race Detection

	3 Implementation
	4 Performance Evaluation
	4.1 Environment and Benchmarks
	4.2 Space Overhead of GT-Race
	4.3 Performance of GT-Race

	5 Related Work
	6 Conclusion and Future Work
	References

	Performance and Power Modeling, Prediction and Evaluation
	Reducing GPU Register File Energy
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Background
	3 GReEneR
	3.1 Compiler Analysis
	3.2 Encoding Power States
	3.3 Run-Time Optimization

	4 Experimental Analysis
	5 Related Work
	6 Conclusions and Future Work
	References

	Taxonomist: Application Detection Through Rich Monitoring Data
	1 Introduction
	2 Related Work
	3 Motivation
	4 Taxonomist: A Technique for Identifying Applications
	4.1 Monitoring
	4.2 Statistical Feature Extraction
	4.3 Classification
	4.4 Operation of Taxonomist

	5 Experimental Methodology
	5.1 Platform
	5.2 Applications
	5.3 Baseline Technique

	6 Evaluation
	7 Conclusion
	References

	Diagnosing Highly-Parallel OpenMP Programs with Aggregated Grain Graphs
	1 Introduction
	2 Background on Grain Graphs
	2.1 Structure
	2.2 Diagnosing Problems

	3 Grain Graph Aggregation Method
	3.1 Reduction
	3.2 Normalization
	3.3 Propagation
	3.4 Separation
	3.5 Navigation

	4 Prototype Implementation
	5 Evaluation
	5.1 Visible Node Count
	5.2 Reducing Distractions
	5.3 Similarity Across Runs

	6 Related Work
	7 Conclusion
	References

	Characterization of Smartphone Governor Strategies
	Abstract
	1 Introduction
	2 Background
	2.1 Governors
	2.2 DVFS Points
	2.3 Quality of Service

	3 Experimental Setup
	4 Applications and Benchmarks
	5 Results
	6 Benchmark and Application Classification
	6.1 CPU Intensive Workloads
	6.2 Intermittent CPU Workloads with I/O Operation
	6.3 Application Requiring Other Blocks in the SoC

	7 Observations
	8 Related Work
	8.1 Race-to-Idle vs Pace-to-Idle Schemes
	8.2 Governor Design Based on Runtime Phase Behavior and QoS Deadline
	8.3 Power Sharing Among Different Resources
	8.4 Reducing DVFS Switch Time

	9 Conclusion
	Acknowledgement
	References

	HPC Benchmarking: Scaling Right and Looking Beyond the Average
	1 Introduction
	2 Experimental Environment
	2.1 Experimental Platform
	2.2 Workloads

	3 Results
	3.1 Floating-Point Performance Analysis
	3.2 Memory Bandwidth Analysis
	3.3 Discussion

	4 Related Work
	5 Conclusions
	References

	Combined Vertical and Horizontal Autoscaling Through Model Predictive Control
	1 Introduction
	2 Combined Vertical and Horizontal Autoscaling
	3 Numerical Evaluation
	4 Conclusion
	References

	Scheduling and Load Balancing
	Early Termination of Failed HPC Jobs Through Machine and Deep Learning
	1 Introduction
	2 Related Work
	3 Mistral Supercomputer Dataset
	3.1 Job Scheduler History
	3.2 Time Series Data Analysis
	3.3 Dataset Split

	4 Failed Job Analysis
	4.1 Most Meaningful Features for Prediction of Job States
	4.2 Node-Power Analysis

	5 Prevention of Failures
	5.1 Convolutional Neural Networks
	5.2 Evaluation – Static and Dynamic Job-Killing Policies

	6 Conclusions and Future Work
	References

	Peacock: Probe-Based Scheduling of Jobs by Rotating Between Elastic Queues
	1 Introduction
	2 The Peacock Scheduler
	2.1 Probe Rotation
	2.2 Probes Reordering

	3 Evaluation Methodology
	4 Experimental Results
	5 Related Work
	6 Conclusion
	References

	Online Scheduling of Task Graphs on Hybrid Platforms
	1 Introduction
	2 Related Work
	3 Lower Bound on Competitive Algorithms
	4 Competitive Algorithms
	4.1 The Quick Allocation (QA) Algorithm
	4.2 A Competitive Algorithm that Performs Well in Practice

	5 Simulations
	5.1 Baseline Heuristics
	5.2 Experimental Setup
	5.3 Results

	6 Conclusion
	References

	Interference-Aware Scheduling Using Geometric Constraints
	1 Introduction
	2 Problem Setting
	3 Related Work
	4 Pinned I/O
	4.1 Complexity
	4.2 Approximation Algorithm

	5 Unpinned I/O
	5.1 Complexity
	5.2 An Approximation Algorithm for Equidistant I/O Nodes

	6 Conclusions
	References

	Resource-Efficient Execution of Conditional Parallel Real-Time Tasks
	1 Introduction
	2 Conditional Sporadic DAG tasks BBM2015,Melani:2015
	3 Some Prior Results on Scheduling DAG Tasks
	4 Our Proposed Scheduling Approach
	4.1 Computing mN and S N

	5 Context and Summary
	References

	High Performance Architectures and Compilers
	Improving GPU Cache Hierarchy Performance with a Fetch and Replacement Cache
	1 Introduction
	2 Background
	3 Motivation
	4 FRC Approach
	5 Experimental Evaluation
	5.1 Performance Analysis
	5.2 Analysis of Memory Subsystem Metrics

	6 Related Work
	7 Conclusions
	References

	Abelian: A Compiler for Graph Analytics on Distributed, Heterogeneous Platforms
	1 Introduction
	2 Programming Model
	3 Abelian Compiler
	3.1 Graph-Data Access Analysis
	3.2 Restructuring Computation
	3.3 Inserting Communication
	3.4 Device-Specific Compilers

	4 Experimental Results
	4.1 Comparison with the State-of-the-Art
	4.2 Impact of Communication Optimizations

	5 Related Work
	6 Conclusions
	References

	Using Dynamic Compilation to Achieve Ninja Performance for CNN Training on Many-Core Processors
	1 Introduction
	2 Background
	3 Overview of Our Approach
	4 Runtime Code Specialization
	5 Optimizations for KNL Many-Core Architecture
	5.1 Key Features to Consider for Code Optimization
	5.2 Fine-Grain Parallelism and Related Optimizations
	5.3 Thread-Level Parallelism and Optimizations

	6 Performance Evaluation
	6.1 Comparison with GEMM-Based Method
	6.2 Comparison with State-of-the-Art Libraries
	6.3 Overhead of JIT Code Generation

	7 Conclusion
	References

	Parallel and Distributed Data Management and Analytics
	Privacy-Preserving Top-k Query Processing in Distributed Systems
	1 Introduction
	2 Problem Definition
	2.1 Top-k Queries
	2.2 Distributed System and Adversary Model
	2.3 Problem Statement

	3 SD-TOPK System
	3.1 System Architecture
	3.2 Data Encryption and Outsourcing
	3.3 Top-k Query Processing Algorithm

	4 Performance Evaluation
	4.1 Setup
	4.2 Effect of Database Size
	4.3 Effect of the Number of Lists
	4.4 Effect of k
	4.5 Effect of Bucket Size
	4.6 Communication Cost
	4.7 Filtering Rate

	5 Related Work
	6 Conclusion
	References

	Minimizing Network Traffic for Distributed Joins Using Lightweight Locality-Aware Scheduling
	1 Introduction
	2 Background
	2.1 Basic Approaches
	2.2 Skew Handling Methods
	2.3 The State-of-the-art

	3 Our Approach
	3.1 The LAS Method
	3.2 Comparison with Current Approaches
	3.3 Parallel Implementation

	4 Experimental Evaluation
	4.1 Experiment Setup
	4.2 Experimental Results

	5 Related Work
	6 Conclusions
	References

	Cluster and Cloud Computing
	VIoLET: A Large-Scale Virtual Environment for Internet of Things
	1 Introduction
	2 Design Requirements
	3 Architecture
	3.1 Compute Resources
	3.2 Network Topology
	3.3 Sensors and Virtual Observation Streams
	3.4 Resource Mapping and Deployment

	4 Evaluation
	4.1 Results for D105 and D408
	4.2 Analysis of Network Behavior

	5 Related Work
	6 Conclusions and Future Work
	References

	Adaptive Bandwidth-Efficient Recovery Techniques in Erasure-Coded Cloud Storage
	1 Introduction
	2 Background and Motivation
	3 Related Work
	4 The Proposed Cloud Storage System
	4.1 Architecture and Design
	4.2 Recovery Approach

	5 Performance Analysis
	5.1 Bandwidth Analysis
	5.2 Storage Overhead Analysis

	6 Performance Evaluation
	6.1 Results and Discussions
	6.2 Sensitivity Analysis

	7 Conclusions and Future Work
	References

	IT Optimization for Datacenters Under Renewable Power Constraint
	1 Introduction
	2 Related Work
	3 Core Problem Formulation
	3.1 The Principles of the RECO Module
	3.2 IT Management Model
	3.3 Objective

	4 Core Problem Resolution
	5 Evaluation Methodology and Results
	5.1 Methodology
	5.2 Results Evaluation

	6 Conclusion
	References

	GPU Provisioning: The 80 - 20 Rule
	1 Introduction
	2 Conceptual Datacenter Model
	3 Deciding How Many Accelerators to Deploy
	4 Exploring the 80-20 Rule
	5 Related Work
	6 Conclusion
	References

	ECSched: Efficient Container Scheduling on Heterogeneous Clusters
	1 Introduction
	2 Problem Formulation
	2.1 Model Description
	2.2 Deployment Requirements

	3 ECSched Approach
	3.1 Minimum Cost Flow Problem
	3.2 Flow Network Structure
	3.3 Encoding Deployment Requirements
	3.4 MCFP Algorithms

	4 Evaluation
	4.1 Comparison of Placement Quality
	4.2 Overheads Evaluation

	5 Related Work
	6 Conclusion
	References

	Combinatorial Auction Algorithm Selection for Cloud Resource Allocation Using Machine Learning
	1 Introduction
	2 Related Work
	3 Formal Problem Definition
	4 Algorithm Selection
	4.1 Algorithm Portfolio
	4.2 Features
	4.3 Cost Model
	4.4 Evaluation Metrics

	5 Evaluation
	5.1 Dataset Analysis
	5.2 Classification Evaluation

	6 Conclusions
	References

	Cloud Federation Formation in Oligopolistic Markets
	1 Introduction
	2 Background
	2.1 Cooperative Game Theory
	2.2 Linear Production Games

	3 Federation Formation and Payoff Distribution Using Linear Production Games
	3.1 Federation Formation Model
	3.2 Payoff Distribution

	4 Intervention of an Oligopolist in Federation Formation
	4.1 Core Allocation for Subgames
	4.2 Influence of the Oligopolist
	4.3 Finding a Stable Coalition Structure

	5 Experimental Results
	6 Related Work
	7 Conclusions
	References

	Improving Cloud Simulation Using the Monte-Carlo Method
	1 Introduction
	2 Related Work
	3 Work Context
	4 Proposal: An Enriched Simulation Framework
	4.1 Simulation Process
	4.2 Real Observations
	4.3 Input Modeling

	5 Evaluation
	6 Perspectives
	7 Conclusion
	References

	Distributed Systems and Algorithms
	Nobody Cares if You Liked Star Wars: KNN Graph Construction on the Cheap
	1 Introduction
	2 Problem Statement: Reduce KNN Computation Time
	2.1 System Model and Problem
	2.2 Gance's Napoléon tells us more than Lucas's Star Wars
	2.3 Our Approach: Constant-Size Least Popular Sampling (LP)

	3 Experimental Setup
	3.1 Baseline Algorithms and Competitors
	3.2 Datasets
	3.3 Evaluation Metrics
	3.4 Experimental Setup

	4 Experimentations
	4.1 Reduction in Computing Time, and Quality/Speed Trade-Off
	4.2 Preprocessing Overhead
	4.3 Influence of LP at the User's Level
	4.4 Recommendations

	5 Related Work
	6 Conclusion
	References

	One-Sided Communications for More Efficient Parallel State Space Exploration over RDMA Clusters
	1 Introduction
	2 Background
	3 RDMA Architectures and the OpenSHMEM Specification
	3.1 RDMA and One-Sided Communications
	3.2 The OpenSHMEM Communication and Memory Model

	4 Distributed Reachability Analysis with One-Sided Communications
	5 Experiments
	5.1 Experimental Environment
	5.2 Implementation Details
	5.3 Scalability
	5.4 Process Workload
	5.5 Comparison with the DiVinE Model Checker

	6 Conclusion and Perspectives
	References

	Robust Decentralized Mean Estimation with Limited Communication
	1 Introduction
	2 System Model
	3 Proposed Algorithms
	3.1 Codec Basics
	3.2 Pivot Codec
	3.3 Robust Push-Pull Averaging
	3.4 Compressed Push-Pull Averaging
	3.5 Flow Compensation

	4 Simulation Results
	4.1 Experimental Setup
	4.2 Results

	5 Conclusions
	References

	Parallel and Distributed Programming, Interfaces, and Languages
	Snapshot-Based Synchronization: A Fast Replacement for Hand-over-Hand Locking
	1 Introduction
	1.1 Snapshot-Based Synchronization

	2 Snapshot-Based Synchronization Design
	2.1 Interface and Algorithms
	2.2 Locking Granularity

	3 Optimized Implementation
	3.1 Copying Snapshots
	3.2 Deferring Snapshot Creation by Trailing
	3.3 NUMA Awareness
	3.4 Reader Synchronization
	3.5 Putting it All Together

	4 Evaluation
	4.1 Experimental Setup
	4.2 Scalability
	4.3 Effect of Data Structure Size
	4.4 Effect of Read-Write Ratio
	4.5 Entrance Bottleneck Analysis

	5 Related Work
	6 Conclusions
	References

	Measuring Multithreaded Message Matching Misery
	1 Introduction
	2 Background
	2.1 Message Matching
	2.2 Multithreaded MPI

	3 Analysis of Stencil Decomposition
	3.1 9 Point Stencil
	3.2 27 Point Stencil

	4 Experimental Results
	4.1 Methods
	4.2 Results
	4.3 Discussion

	5 Related Work
	6 Conclusions
	References

	Global-Local View: Scalable Consistency for Concurrent Data Types
	1 Introduction
	2 Related Work
	3 Global-Local View Model
	4 Data Types
	4.1 Specification
	4.2 Implementation

	5 Applications
	6 Evaluation
	7 Conclusion
	References

	OpenABL: A Domain-Specific Language for Parallel and Distributed Agent-Based Simulations
	1 Introduction
	2 Background
	3 Language Design
	4 Implementation
	5 Experimental Evaluation
	6 Conclusion
	References

	Bulk: A Modern C++ Interface for Bulk-Synchronous Parallel Programs
	1 Introduction
	2 The Bulk Library
	3 Applications
	3.1 Parallel Regular Sample Sort
	3.2 Fast Fourier Transform

	4 Results
	4.1 Bulk vs. BSPlib

	5 Conclusion
	References

	SharP Unified Memory Allocator: An Intent-Based Memory Allocator for Extreme-Scale Systems
	1 Introduction
	2 Related Work
	3 Capturing User Intent
	4 SharP Unified Memory Allocator
	4.1 Unified Memory Allocator's Interface

	5 Extending Existing Programming Model Implementations
	5.1 Extending Open MPI
	5.2 Extending OpenSHMEM-X

	6 Experimental Evaluation
	6.1 Performance
	6.2 Correctness
	6.3 Graph500

	7 Conclusion
	References

	Multi-granularity Locking in Hierarchies with Synergistic Hierarchical and Fine-Grained Locks
	1 Introduction
	2 Background and Motivation
	2.1 Hierarchical Locking

	3 Our Proposal: HiFi
	3.1 Compatibility in HiFi
	3.2 Numbering Algorithm
	3.3 Main Algorithm

	4 Experimental Evaluation
	4.1 Effect of Number of Nodes
	4.2 Effect of Critical Section Size
	4.3 Effect on Real-World XML Hierarchy
	4.4 Effect of Variation in Fine-Grain Operations

	5 Related Work
	6 Conclusion
	References

	Efficient Communication/Computation Overlap with MPI+OpenMP Runtimes Collaboration
	1 Introduction
	2 Related Work
	3 Contribution: Hybrid Progress
	3.1 Hybrid Progress Method
	3.2 Implementation in an MPI+OpenMP Context

	4 Experimental Results
	4.1 Micro-benchmark
	4.2 CORAL Benchmarks

	5 Conclusion and Future Work
	References

	Multicore and Manycore Methods and Tools
	Efficient Lock-Free Removing and Compaction for the Cache-Trie Data Structure
	1 Introduction
	2 Overview of Cache-Tries
	3 Remove Operation
	3.1 Basic Implementation
	3.2 Cache-Trie Compaction
	3.3 Correctness Discussion

	4 Evaluation
	5 Related Work
	6 Conclusion
	7 Data Availability Statement and Acknowledgments
	References

	NUMA Optimizations for Algorithmic Skeletons
	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Stencil Computations
	3.2 Page Placement Schemes

	4 Stencil Aware Page Placement and Work Distribution for NUMA Systems
	5 Experimental Setup
	6 Evaluation
	6.1 Stencil Aware Page Placement
	6.2 Performance Degradation Through NUMA Balancing
	6.3 Bad Work Distribution and Stencil Aware Work Distribution
	6.4 NUMA and Stencil Aware Work Distribution

	7 Related Work
	8 Conclusion and Future Work
	References

	Improving System Turnaround Time with Intel CAT by Identifying LLC Critical Applications
	1 Introduction
	2 Intel Cache Allocation Technology
	3 Application Characterization
	4 The Critical-Aware Partitioning Approach
	4.1 Cache Warm-Up and Application Classification
	4.2 Partition Allocation
	4.3 Dynamic Adjusting of Partitions

	5 Experimental Framework
	6 Evaluation
	6.1 LLC Dynamic Occupancy and MPKI with the CA Approach
	6.2 Performance and Fairness

	7 Related Work
	8 Conclusions
	References

	Dynamic Placement of Progress Thread for Overlapping MPI Non-blocking Collectives on Manycore Processor
	1 Introduction
	2 Related Works
	3 A Split-Tree Algorithm for MPI Collective Operations
	4 Modeling and Tuning
	5 Implementation
	6 Experimental Results
	7 Conclusion and Future Work
	References

	Efficient Load Balancing Techniques for Graph Traversal Applications on GPUs
	1 Introduction
	2 Background and Related Work
	3 Load Balancing Techniques and Support Strategies
	3.1 The Vertex-Based Mapping with Warp Shuffle
	3.2 The Scan-Based Mapping with PTX Prefix-Sum
	3.3 Device-Wide Binary Search with Unordered Prefix-Sum
	3.4 Load Balancing Support Strategies

	4 Experimental Results
	5 Conclusions
	References

	Energy Efficient Stencil Computations on the Low-Power Manycore MPPA-256 Processor
	1 Introduction
	2 Background
	2.1 MPPA-256
	2.2 Stencil Pattern and PSkel

	3 PSkel-MPPA
	4 Experimental Evaluation
	4.1 Platforms, Applications and Inputs
	4.2 Overhead of PSkel
	4.3 Sizing the Ghost Zone
	4.4 Tile Size vs. Performance
	4.5 Scalability Analysis
	4.6 Comparison with CPU and GPU: Performance vs. Energy

	5 Related Work
	6 Conclusion
	References

	Theory and Algorithms for Parallel Computation and Networking
	High-Quality Shared-Memory Graph Partitioning
	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts
	2.2 Related Work

	3 Multi-level Graph Partitioning
	4 Parallel Multi-level Graph Partitioning
	4.1 Coarsening: Parallel Size-Constraint Label Propagation
	4.2 Initial Partitioning
	4.3 Uncoarsening/Local Search
	4.4 Differences to Mt-Metis
	4.5 Further Optimization

	5 Experiments
	5.1 Quality Comparison
	5.2 Speed-Up and Running Time Comparison
	5.3 Influence of Algorithmic Components

	6 Conclusion and Future Work
	References

	Design Principles for Sparse Matrix Multiplication on the GPU
	1 Introduction
	2 Background and Preliminaries
	2.1 GPUs
	2.2 Sparse Matrix Formats and SpMM

	3 Design Principles
	3.1 Latency Hiding with TLP and ILP
	3.2 Load-Balancing

	4 Parallelizations of CSR SpMM
	4.1 Algorithm I: Row-Splitting SpMM
	4.2 Algorithm II: Merge-Based SpMM

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Algorithm I: Row-Split
	5.3 Algorithm II: Merge-Based
	5.4 Heuristic

	6 Conclusion and Future Work
	References

	Distributed Graph Clustering Using Modularity and Map Equation
	1 Introduction
	1.1 Related Work
	1.2 Contribution

	2 Preliminaries
	2.1 Thrill

	3 Algorithm
	3.1 Distributed Synchronous Local Moving (DSLM)
	3.2 Distributed Contraction and Unpacking

	4 Experiments
	4.1 Weak Scaling
	4.2 Quality
	4.3 Real-World Graphs

	5 Conclusion
	References

	Improved Distributed Algorithm for Graph Truss Decomposition
	1 Introduction
	2 Preliminaries
	3 Prior Algorithms
	4 Algorithm Hybrid
	5 Distributed Implementation
	6 Experimental Evaluation
	7 Conclusions
	References

	Parallel Numerical Methods and Applications
	Exploiting Data Sparsity for Large-Scale Matrix Computations
	1 Introduction
	2 Related Work
	3 The HiCMA Software Library
	4 Definition of Matrix Kernels
	5 Implementation Details
	6 Performance Results
	7 Conclusion
	References

	Hybrid Parallelization and Performance Optimization of the FLEUR Code: New Possibilities for All-Electron Density Functional Theory
	1 Introduction
	2 Density Functional Theory and the FLAPW Method
	2.1 FLAPW Method
	2.2 Hamiltonian and Overlap Matrices
	2.3 Scaling and Time Requirements

	3 Parallelization and Optimization
	3.1 MPI Parallelization
	3.2 Hybrid Parallelization and Optimized Matrix Setup

	4 Benchmarks
	4.1 Computational Environment
	4.2 Efficient Usage of a Single Node
	4.3 Internode Hybrid Scaling

	5 Conclusions
	References

	Efficient Strict-Binning Particle-in-Cell Algorithm for Multi-core SIMD Processors
	1 Introduction
	2 An Efficient, Strict-Binning, Multicore PIC Algorithm
	3 Performance Results
	4 Numerical Results
	5 Technical Comparison to Related Work
	6 Future Work
	References

	Task-Based Programming on Emerging Parallel Architectures for Finite-Differences Seismic Numerical Kernel
	1 Introduction
	2 Numerical Background and Classical Implementation
	2.1 Numerical Scheme
	2.2 Standard Implementation

	3 A Fully Task-Based Model of the Linear Seismic Kernel
	4 A Hierarchical Implementation Tailored for Modern Architectures
	4.1 Implementation on Top of PaRSEC
	4.2 Building Generic Optimized Computational Kernels

	5 Experiments
	5.1 Tuning Single Node Performances
	5.2 Distributed Memory Scaling

	6 Conclusion
	References

	Accelerator Computing for Advanced Applications
	CEML: a Coordinated Runtime System for Efficient Machine Learning on Heterogeneous Computing Systems
	1 Introduction
	2 Background and Motivation
	2.1 Heterogeneous Computing
	2.2 The TensorFlow Machine-Learning System
	2.3 Need for Coordinated Runtime Support

	3 Experimental Methodology
	4 Design and Implementation
	4.1 Performance Estimator
	4.2 Power Estimator
	4.3 Runtime Manager

	5 Evaluation
	6 Related Work
	7 Conclusions
	References

	Stream Processing on Hybrid CPU/Intel® Xeon Phi™ Systems
	1 Introduction
	2 The Marrow Streaming Framework
	2.1 Programming Model
	2.2 Execution Model

	3 Experimental Results
	4 Related Work
	5 Conclusion and Future Work
	References

	Tile Low-Rank GEMM Using Batched Operations on GPUs
	1 Introduction
	2 Related Work
	3 Background
	4 Design of Tile Low-Rank GEMM Kernels
	5 Implementation Details
	6 Experimental Results
	7 Conclusions and Future Work
	References

	Correction to: Early Termination of Failed HPC Jobs Through Machine and Deep Learning
	Correction to: Chapter “Early Termination of Failed HPC Jobs Through Machine and Deep Learning” in: M. Aldinucci et al. (Eds.):Euro-Par 2018: Parallel Processing, LNCS 11014, https://doi.org/10.1007/978-3-319-96983-1_12

	Author Index

