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Chapter 16
Machine Learning for ‘Strategic 
Conservation and Planning’: Patterns, 
Applications, Thoughts and Urgently Needed 
Global Progress for Sustainability

Falk Huettmann

Arguably, the modern western life-style and culture has dramatically marginalized 
the state of the global environment and its natural resources (Daly and Farley 2011; 
see Czech et al. 2000 for impacts and Walther et al. 2016 for wider implications). It 
comes then to no surprise that - as a global pattern - the environment is by now in a 
state of global crisis (Mace et al. 2010 and Cockburn 2013 for a generic assess-
ment). While humans have used the earth for millennia and made a certain footprint 
(see Groube et al. 1986 for an example of 40,000 years of documented human occu-
pancy and Flannery 2002 for its benign impacts), the specific anthropogenic foot-
print and impact of the last four decades remain unprecedented in terms of extinction 
and global climate change (Rockström et al. 2009, Baltensperger and Huettmann 
2015). It is noteworthy that the predominant governance paradigm during this 
period is globalization, based on Americanization (Czech 2000; Stiglitz 2003). The 
last few decades are arguably the worst managed in human history (Paehlke 2004; 
Alexander 2013). Actually, the history of the earth and universe as we know it has 
not produced such a destruction of life (by non-cosmic events) ever before (Cushman 
and Huettmann 2010); consider the outlook of what will easily be 10 billion people 
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in the next 100 years while global temperatures are also on the rise and most natural 
resources are already used up (Rockström et al. 2009)!

While I leave it here to others to assign that blame and to document impacts in 
great detail (Rich 1994; Czech et al. 2000; Huettmann 2011; Cockburn 2013), a way 
out of this crisis - moving forward in the best-possible fashion - is likely to be pro- 
active (e.g. to avoid problems before they occur) and to be pre-cautionary (e.g. to 
identify problems ahead of time and act carefully; Huettmann 2007a, b). The notion 
of “the need to know impacts ahead of time before they occur” are not new concepts 
in conservation though (Silva 2012), and they are by now mandatory by the U.N. 
and part of ‘best professional practices’ (http://unesdoc.unesco.org/images/0013/ 
001395/139578e.pdf). This is a key ingredient for good governance and for a trusted 
leadership. Machine learning plays a central role in this approach, and for achieving 
the best-possible predictions, to be obtained by the best-available science (Huettmann 
2007a, b) before impacts occur, e.g. for Alaska see Murphy et  al. (2010), 
Baltensperger et al. (2015), Huettmann et al. (2017).

However, it is easy to show that, thus far, Strategic Conservation Planning does 
not use much machine learning (see Ardron et al. 2008 and Moilanen et al. 2009 for 
‘best professional practices’ and textbook). Instead, the Strategic Conservation 
Planning tool has been almost entirely a stand-alone approach not connecting with 
machine learning. Mostly it relies just on optimization algorithms to find the best 
solution, such as for instance the ‘simulated annealing’ algorithm (as employed by 
MARXAN http://www.marxan.org/; Martin et al. 2008). Further, most MARXAN 
applications “do not look much into the future” , e.g. by using future scenarios 
obtained from machine learning and optimizing those ones (see Nielsen et al. 2008 
and Murphy et al. 2010 for an application). Instead, latest developments actually 
deal with optimizing in ‘zones’ - subunits- (http://marxan.net/index.php/ marzone; 
Watts et al. 2009). I find this to be a problem on three accounts: (i) The latest sci-
ence, machine learning, and related potential got ignored. (ii) Breaking down a 
spatial optimization problem into small separate, parsimonious, zones loses the 
overall optimization power, and (iii) relevant progress got somewhat stifled by forc-
ing creative minds and their solutions back into existing administrative boundaries 
and units and thus just re-confirming existing problems and patterns. In this chapter, 
I outline how machine learning has been used and how it could play a larger role in 
Strategic Conservation Planning projects towards true progress beyond circular rea-
soning and traditional mind traps. I am adding relevant perspectives on carrying 
capacity, limits of the earth and global governance to achieve global sustainability.

16.1  How Machine Learning Predictions Feed into Strategic 
Conservation Planning: A Common Sense Workflow 
Still Widely Underused for its Conservation Potential

One of the largest Strategic Conservation Planning projects was designed to make 
recommendations for the marine protected area (MPA) networks. Similar to the ter-
restrial national parks of the world, it is meant to protect the world’s oceans and 
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assure that a fixed percentage (~10%) set aside (Aichi targets for 2020 by the U.N.: 
https://www.cbd.int/sp/targets/)! Strategic Conservation Planning has also been 
applied to terrestrial systems, although many of these earlier approaches were just 
ad hoc and not optimized much for relevant conservation gains (see Table 16.1). 
Global applications that involve wider and holistic concepts such as the atmosphere 
and its protection are still lacking (but see Huettmann 2012 how to include those 
aspects). Arguably though, one cannot achieve sustainable solutions on a small 
scale because all is highly connected and influenced globally.

In the marine world, the Great Barrier Reef, Australia, has one of the longest 
histories of Strategic Conservation Planning (UNESCO Great Barrier Reef Marine 
Park Authority 1981. Fernandes et al. 2005). The task was here to identify the most 
relevant reef locations for human enjoyment in perpetuity (see end of the chapter 
for its outcome, thus far) and much can be learned from that ‘experiment’ and 
exercise.

Widely used software for such Strategic Conservation Planning are MARXAN, 
but also ZONATION (Lehtomäki and Moilanen 2013), and C-Plan (http://www.
edg.org.au/edg-free-resources/cplan.html) as well as many derivatives across oper-
ating systems and software implementations (e.g. https://www.aproposinfosystems.
com/solutions/qmarxan-toolbox/). Such software helps users by finding ‘the opti-
mal’ solution through an approximation for an assumed truth. The underlying theo-
retical differences between software packages is not described here but can be found 
in their respective manuals and URLs, as well as elsewhere in the conservation 
literature.

For being successful and without relevant errors, Strategic Conservation Planning 
projects usually require substantial input of information (data). Ideally, maps of spe-
cies ranges and conservation features for the study area and its planning units are to 
be available. The study area consists of planning units (PUs, which are often ‘bins’ 
e.g. hexagons or pixels). This highly detailed information is widely missing for 
larger study areas, however, conservation decisions must still be made while destruc-
tion is ongoing (Alidina et al. 2008). That is specifically true for a global scale and 
on a macro-ecology perspective (see Forman 1995 for an effective balance using ‘a 
regional scale’). How can we overcome the problem of data gaps fast enough and 
with reliable information so that we can make informed conservation decisions in 
the best way possible for large areas of the globe?

In the past, so-called ad hoc decisions were made with political convenience and 
opportunism driving the agenda (see for instance Huettmann and Hazlett 2010 for 
Alaska). The protected area network for most of the circumpolar Arctic, in Russia 
(Spiridonov et al. 2012 for the Russian arctic) or all of North America reflects just 
that (‘protection of rock and ice’ Scott et al. 2001). Experts got used to identify and 
fill data gaps in Strategic Conservation Planning projects. In addition, scoping meet-
ings are often held with commercial stakeholders. This is widely referred to as a 
delphi process (a non-scientific process that simply banks on agreements and 
 compromises made during a session). The use of experts is known though to be 
biased and has been widely criticized for years and was assessed accordingly (e.g. 
Perera et al. 2012; see Gonzales et al. 2003 for a real-world example). Those plan-
ning efforts may not be representative; and often just the most effluent, vocal or 
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wealthy stakeholders drive the process. The delphi method can easily compromise 
the entire objectivity, fairness, quality and transparency of Strategic Conservation 
Planning and of its science, process and trustworthiness overall.

It is here where machine learning offers help. It can provide a solution to the 
problem of filling data gaps with the delphi method. As shown in Drew et al. (2011) 

Table 16.1 Overview of a global selection of conservation priority areas and conservation 
networks

Project name and citation Location Relevance
Computational tools 
involved

Path of the panther (‘Jaguar 
Trail’;
http://www.ecoreserve.org/
tag/path-of-the-panther/)

Central 
America

Probably the biggest 
initiative for 
connecting North and 
South America in 
ecological terms

None

YtoY (Yellowstone to 
Yukon; https://y2y.net/)

North 
America, 
Rocky 
Mountains

Tries to protect and 
connect areas in the 
Rocky Mountains, 
also relevant for 
major watersheds

None

10% protection of polar 
temperature and associated 
animals (Huettmann 2012)

Arctic, 
Antarctic and 
Hindu Kush 
Himalaya

The global climate 
chamber, endemic 
species as a world 
heritage

Marxan

Africa’s traditional 
protected areas (e.g. http://
www.critical improv.com/
index.php/surg/article/
view/1987/2670)

Africa African wildlife and 
national parks as a 
world heritage

None

RAMSAR convention 
(http://www.ramsar.org/)

Global Global wetland 
conservation policy

None

Important bird areas (IBAs; 
http://www.birdlife.
org/worldwide/
programmes/
sites-habitats-ibas)

Global Global waterbird 
conservation

None

Great barrier reef (e.g. 
Fernandes et al. 2005)

NW Australia One of the finest coral 
reefs in the world

Marxan

California coastal protected 
zones (http://www.
californiamsf.org/pages/
about/strategicplan.html)

California California as a land 
and coastal area of 
global relevance

Marxan, CALZONE etc.

Circumpolar Arctic Polar A global climate 
chamber, global 
endemism

None (Spiridonov et al. 
2012; but see Huettmann 
2012, Spiridonov et al. 
2017 and Spiridonov et al. 
2017 for Marxan)

Global MPA network 
(http://www.mpatlas.org/)

World-wide The globe’s ocean 
protection

Marxan
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SDMs can be produced with transparent, repeatable methods using open access data 
(see GBIF.org for species data, and worldclim.org for environmental data) with 
open source models (e.g. Openmodeler http://openmodeller.sourceforge.net/om_ 
desktop.html or commercial models (SPM https://www.salford-systems.com/). The 
SDMs with the highest accuracy tend to use machine learning; see Elith et al. 2006 
and Fernandez-Delgado et al. 2014 for a review of the highly performing algorithms 
available.

However, despite the easy access, very few SDMs are actually run for, or used 
by, Strategic Conservation Planning projects (Moilanen et al. 2009; but see Beiring 
2013 for an example how SDMs are employed for Strategic Conservation Planning). 
There are several reasons why that problem still exists, as outlined in Table 16.2.

In my experience, available SDM applications are never really sufficient and not 
truly complete for Strategic Conservation Planning exercises (see Table 16.3 for 
shared experiences). In addition, SDM accuracy is another topic to watch for. That’s 
because SDM accuracies are usually inconsistent across species in a study area, and 
which does not allow then for consistent inference or application. Sometimes SDM 
performances can be too low to be useful or to be employed to larger areas (Aycrigg 
et al. 2015). Overall, I often find that limited and sparse raw data cannot provide 
consistent and year-round spatial estimates of important demographic and ecologi-
cal parameters such as fecundity, winter survival and migration risk for instance. 
SDMs rarely are applied yet to provide demographically relevant spatial estimates 
such as mating places, productivity hotspots and mortality landscapes (often sum-
marized as ‘sources and sinks’; Pulliam 1988). On the one hand, the detail that 
would be ideal and needed is rarely possible to achieve with demographic tools 

Table 16.2 Some reasons for SDMs not being used in strategic conservation planning projects

Reason Implication Fix Comment

SDM does not make 
predictions widely 
available

SDM results are 
just ‘shiny’ and 
not used

Request all SDM 
model files to be 
fully open access 
with ISO metadata

This is a common problem in 
SDM projects, e.g. see Guisan 
and Zimmermann (2000); 
Guisan and Thuiller (2005); 
Franklin and Miller (2009) 
but see Drew et al. (2011)

Strategic conservation 
planning project runs 
out of time

Not all species 
considered and 
some information 
under-utilized

Realistic time 
window needed for 
planning

Many agencies do not have 
adequate resources for all 
planning projects

Strategic conservation 
planning project runs 
out of money

Not all species 
considered and 
some information 
under-utilized

Realistic budget 
planning; cost- 
effective methods 
needed

Many agencies do not have 
adequate resources or 
technical capacity for all 
planning projects

Strategic conservation 
planning project 
ignores ecological 
complexities 
involving ‘all’ species

A reductionist 
and simplistic 
approach gets 
applied

Admission of 
incompleteness; 
focus on multivariate 
approaches

A so-called pragmatic 
a.approach is frequently 
applied

aBeing pragmatic does not solve the initial problem and creates problems of its own
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(Amstrup et al. 2006). On the other hand, conservation decisions are urgent and in 
times of a global conservation crisis (Rockström et al. 2009, Mace et al. 2010). And 
so even basic SDMs, such as species occurrence, help to provide information that is 
useful for the overall Strategic Conservation Planning process. By now, virtually all 
what is not parsimonious (e.g. using Generalized Linear Models (GLMs) and 
Akaike’s Information Criteria (AIC); Arnold 2010) can be achieved as progress 
(Breiman 2001) considering the global environmental crisis mankind is facing.

Overall, the use of machine learning for SDM approaches has greatly improved 
Strategic Conservation Planning processes (Table 16.3). These projects are often the 
first of their kind allowing for these methods and approaches to be introduced to 
Strategic Conservation Planning in the region. While data must be available to run 
SDMs (but often are not openly shared in SDM publications, and hardly in webpor-

Table 16.3 Shared experiences for SDM approaches in strategic conservation planning type 
projects

Project SDM application Strength Weakness

Conservation 
assessment for Asian 
passerine migrants 
(Beiring 2013)

Provide species 
range estimates as 
input into 
MARXAN

First models and 
migratory bird 
estimates produced

Lack of good data. Lack of 
stakeholder support. SDM 
accuracy rel. low

Alaska corridors 
(Murphy et al. 2010)

Provide species 
range estimates as 
input into 
MARXAN

First models and 
estimate for 4 
species produced

Legal constraints not allowing 
to address land ownership 
issues and buy-outs or such 
discussions and planning. 
Virtually left unused by 
stakeholders.

Arctic protection 
(Huettmann and 
Hazlett 2010, 
Spiridonov et al. 
2017, Solovyev et al. 
2017)

Suggested to use 
SDMs to start 
strategic 
conservation 
planning

GIS data and model 
discussion starts the 
conservation gap 
and management 
work

Unless designed specifically 
with local knowledge and 
citizen science, it can be too 
much driven by GIS and 
disconnected from 
implementation networks

St. Lucia island, 
Caribbean (Evans 
et al. 2015)

No SDM directly 
applied, but 
employs concepts 
of risk

Allows for 
simulations and to 
test concepts and 
assumptions

No direct species occurrences 
and abundances used

Bears in US/CAN 
(Proctor et al. 2004, 
Singleton et al. 2004)

None (Habitat 
Suitability Analysis 
HSI, Resource 
Selection 
Functions (RSF))

None No quantitative progress; 
potential left unused; 
ambiguous results

Alaska (Semmler 
2010)

Species 
distributions for 
major predators 
and their food 
chains

Overcomes existing 
data gaps

Model assessments for each 
pixel. Not used by agencies 
and deciders

F. Huettmann
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tals like Movebank https://www.movebank.org/) and model outputs could easily be 
improved, these projects then allow for a subsequent machine learning ‘culture’ of 
conservation to be set up, also based on stakeholders in a public forum. It’s rather 
transparent that way; the contribution of GBIF in that context remain unchallenged 
(see for instance Beiring 2013). Beyond data and model accuracies, the actual intro-
duction of such a new conservation culture may be the biggest contribution. The 
need for data models, transparency and stakeholder buy-in is essential for imple-
menting management of natural resources (Clark 2002). Having that awareness and 
accept such a need of wider community buy-in might well present the main contri-
bution in SDMs and Strategic Conservation Planning projects for a global sustain-
able society.

16.2  How Machine Learning Predictions can Also Be Used 
Directly for Strategic Conservation Planning: How it’s 
‘ought to be’ and towards ‘Better’ Solutions

Strategic Conservation Planning is usually employed with an optimization frame-
work; rarely, it is used with forecast scenarios directly. The actual optimization is 
usually based on methods like ‘solvers’, namely the simulated annealing algorithm 
(Ardron et al. 2008), whereas machine learning just provides the input GIS layers 
for describing generic patterns in the landscape. The use of future scenarios is pos-
sible and has been increasingly applied though (see Murphy et al. 2010 for an exam-
ple). SDMs built with explanatory variables that have future forecasts, such as 
downscale global climate models and for 2100 let’s say, can be used to forecast 
future conditions for species. While Population Viability Analysis (PVA) lack much 
of the spatially explicit aspects (e.g. Proctor et al. 2004), a spatial population viabil-
ity analysis (sPVA) offers interesting and relevant possibilities for forecasting future 
conditions for Strategic Conservation Planning (Nielsen et al. 2008 for an example). 
These techniques link demographic PVA approaches with GIS habitat data and 
future scenarios, all based on optimizations from Strategic Conservation Planning. 
It tends to represent the best science available!

Often, sPVAs themselves fall short on some of the principles of Strategic 
Conservation Planning, or leave them unaddressed (Table  16.4), such as lack of 
optimization and not comparing several scenarios in parallel but just favoring singu-
larity and reductionism. However, the strengths of sPVAs linked with scenario 
 planning (Peterson et al. 2003) are that they can be much better and directly applied 
and tested for specific management questions, including demographic sensitivities 
and outlooks. The use of well-thought out scenarios provide policy alternatives (e.g. 
Gonzales et al. 2003; Nielsen et al. 2008) as compared to the narrow, singular and 
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traditionally used Strategic Conservation Planning solution (which often consist of 
just ‘one’ solution wiping all other thoughts off the agenda). Computationally, and 
for all work that includes machine learning, this can easily be achieved. However, 
the sPVA option and when applied with scenarios is not yet widely employed in 
wildlife management and it is not required by law (see Huettmann et  al. 2005; 
Nielsen et al. 2008) but it can come rather close to the ideal of adaptive wildlife 
management (Walters 1986; Huettmann 2007a; b). In the meantime, scenario- 
planning starts to become more common (Peterson et  al. 2003). e.g. for climate 
change outlooks (IPCC; http://www.ipcc.ch/). The use of scenarios is widely known 
in the social sciences but so far less common in the traditional North American 
Model of wildlife management (Organ et al. 2012; Silva 2012), or in most other 
natural resource management schemes in the world. Clearly, such work is computa-
tional intense, and the role of coding and linking tools and codes across operating 
platforms becomes a power tool to achieve such conservation solutions! It’s all part 
of machine learning either way!

Table 16.4 Some principles of conservation planning and protected area design (as per Martin 
et al. 2008, Moilanen et al. 2009)

Principle Meaning Relevance

Efficiency The process and protected area 
includes no ‘waste’ of effort

Conservation is time 
critical

Compactness and/or 
connectedness

The trade-off in the spatial 
arrangement is clear and 
correctly implemented

Species dispersal and 
gene flow

Flexibility Alternative options exist to 
achieve the goal still

Reaching the goal 
regardless of obstacles

Complementarity The process and solution 
matches the context

Taking into account 
ongoing and other efforts

Selection frequency vs 
irreplaceability

Unique sites are considered 
appropriately

Endemic hotspots vs. 
generalists

Representativeness The protected area represents 
the wider landscape and all of 
its components

The solution is complete 
and meaningful, unbiased

Adequacy The process and protected area 
is sufficient to achieve 
meaningful goals

Adequate effort and 
outcome

Optimizations based on decision- 
theory and mathematical 
programming

The best solution is found 
using best-available science

Best solution that humans 
can achieve, an ethical 
mandate

Best-available data used The process and result is based 
on best-available information

An ethical mandate to find 
the best-available solution

F. Huettmann
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IMPUTATION: More Ways with Machine Learning to Fill Data Gaps 
and Smooth–Out Predictors with Information Gain for an Effective 
Science–Based Conservation Management
Most statistical analysis default on data gaps. It’s a ‘no go’ zone for modern 
science and it tends to result in statements of convenience such as ‘no evidence 
exist.’ So what to do when your data set is gappy, missing records and gets 
labeled ‘no go’ zone? This seemingly old question remains a ‘hot button’ 
item, and becomes now a key bottleneck to overcome for progress. This prob-
lem actually made it to the forefront of modern data analysis (e.g. Graham 
2009). Many reasons can be envisioned why data gaps occur. But if that can 
be resolved, then new insights can be won, and a subject can be moved for-
ward (see Kenward 2013 for health applications). Thus, finding methods to 
substitute and fill data gaps make for a classic but very relevant and modern 
problem that data miners and machine learners have to deal with. It’s a typical 
case in conservation that data are gappy while decisions are to be made though.

Reason for data gap Detail of the data gap Comment

Predictor has a data 
gap

Data column is incomplete This is a common problem.

Response has a data 
gap

Data column is incomplete In times of open access data this 
probably the biggest problem.

Missing data per se Entire absence of information Probably the biggest issue for 
holding us back for making 
inference

Lacking data due to 
research design 
problems

Entire lack of a specific 
information

The ‘best’ research design is 
usually not known ahead of the 
study. At minimum, research 
design can always be improved 
in hindsight.

Wrong entries Entry is not correct Depending on the term ‘wrong’ 
and its definitions some datasets 
are said to feature 50% of such 
‘errors’ and ‘wrong’ entries.

Entries got erased by 
accident

Hole in the data set This has been observed quite a 
lot and when data are modified, 
re-formatted and sorted in spread 
sheets for instance, or when they 
get operated by inexperienced 
people.

Entries had to be 
removed due to 
uncertainties

Hole in the data set This is a common problem, e.g. 
when metadata are missing and 
with older data. Doubts about 
geo-referencing, taxonomy and 
collection times are typical 
examples. Arguably, it’s better to 
keep weak data than having none.
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Reason for data gap Detail of the data gap Comment

Entries had to be 
removed due to 
copyrights

Hole in the data set This is also a common problem 
when data are not shared.

Error simulations Based on certain assumed 
backgrounds, some data might 
be acceptable whereas under 
other assumptions might make 
this data set viable

For advanced inference, data 
error simulation can provide new 
insights. While this can present 
questions for high-end data 
mining, it can be a relevant 
feature for high-end information 
gain and inference.

One can easily envision a situation where these ‘real world’ data gaps 
occur, and then, where they ‘magically’ could be overcome! So why not sim-
ply imputing them? 1 Conceptually, imputation means to replace data holes 
and to fill (substitute) them (Enders 2010). In reality that means they are to be 
modeled! It usually makes use of existing, neighboring, associated and sur-
rounding attributes and data points. Based on those relationships in the data, 
data gaps can get filled. With the help of advanced computing and data sci-
ence, it is less a question ‘whether’ that can be done (no problem really to do 
so). Instead, the issue is more ‘how good’ is the accuracy obtained for a cer-
tain purpose (many applications are happy to have a 75% modeled accuracy 
when compared to no data at all)? In a way, imputation is a specific method to 
model-predict data gaps. And this can be done, all with a certain estimation 
accuracy. A 100% prediction accuracy can probably not be achieved, but often 
it is not needed even. Instead, one can fill errors in a decent way, the models 
do not default, and which helps to move the overall process and progress for-
ward for an analysis topic.

By now, imputation, as a statistical discipline, is evolving fast and many 
methods exist (see also for updates at the Wikipedia site https://en.wikipedia.
org/wiki/Imputation_(statistics). Major techniques are for instance single 
imputations such as hot-deck, cold-deck, mean-substitution, regression. 
Multiple imputations are other powerful techniques. Often, these methods are 

1 It should be emphasized here that many other methods exist to overcome data gaps, includ-
ing data cloning to stabilize models on poor data or to extend the data (Lele et al. 2007; Jiao 
et al. 2016 for machine learning application). The other, and equally exciting approach for 
overcoming data gaps is to explain why data gaps actually occur (forensics), often based on 
‘common sense’. It tends to work nicely because most data gaps have a reason for their 
existence! For instance, some field research data gaps are due to bad weather (rain), or inac-
cessibility of steep slope elevations. Those factors, data gaps, can then serve as explanations 
for the absence of certain events in the data. Tree-based models, and specifically the work 
from Friedman (2002), make use of such approaches with good success.
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linked with sampling and re-sampling approaches. Of particular relevance are 
the geo-imputation methods as they allow interpolations in geographic infor-
mation systems (GIS), linked with the discipline and tools from Spatial 
Statistics. Those are popular in forestry, canopy, remote sensing and image 
analysis too. Entire textbooks and journals are devoted to that topic, e.g. 
https://www.journals.elsevier.com/spatial-statistics.

There are several software approaches possible that allow to run imputa-
tions; see for instance Enders (2010). Similarly, Salford Systems Ltd. offers in 
TreeNet (stochastic gradient boosting) options to run analysis with ‘gappy 
data’ (Friedman 1999, Salford Systems Ltd. https://www.salford-systems.
com/products/treenet)). In the R language, YAImpute is one of those packages 
that can ‘impute’ data based on using nearest neighbor observations (kNN; 
Crookston and Finley (2008; https://cran.r-project.org/web/ packages/ yaIm-
pute/ index.html). See also applications of such R code by J. Evans (http://
evansmurphy.wixsite.com/evansspatial).

While this is all pretty exciting, developing and moving forward fast, the 
sad news is that in wildlife conservation management, and for many natural 
resource applications, imputation convinces in the pure absence. The main-
stream literature is extremely poor on making use of those methods and for 
advancing fields like conservation remote sensing, geo-locators, telemetry, 
wildlife surveys, disease outbreaks and citizen science. Two notable excep-
tions can be found though, namely climate as well as some forest work 
(Eskelson et al. 2009).
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16.3  A Wider Perspective against the Local Techno-Fix: 
Good Ethics and Ecological Governance Foundations 
to Achieve a Conservation Break–Through with Open 
Access Machine Learning and Strategic Conservation 
Planning Carrying a Global Perspective for Mankind

An honest assessment of the environment, and the strategy needed for its conserva-
tion will expose nothing but a crisis, which is footed on a failed management and 
leadership in an overall destructive global framework (Ostrom 2015). We are run-
ning out of space while most relevant species and habitats are not protected, or at 
least not protected well or optimal! (Table 16.5).

Table 16.5 Selected examples for lack of achievement with National Park concepts for conserving 
species effectively

Species Status
Habitat area protection through 
National Parks

Snow leopard Vulnerable (or endangered, as 
per recent debate)

Found widely outside of protected 
areas

Songbirds, virtually 
worldwide

Large declines Found widely outside of protected 
areas, e.g. Beiring (2013), Jiao et al. 
(2016)

Shorebirds Large declines, e.g. for arctic 
species

Found widely outside of protected 
areas

Tree Kangaroo Large declines (several species; 
Australia and Papua New 
Guinea)

Found widely outside of protected 
areas (FH unpublished)

Langures Large declines Found widely outside of protected 
areas (FH unpublished

Red panda Globally threatened Found widely outside of protected 
areas, e.g. Kandel et al. (2015)

Great panda Vulnerable (1,000 individuals in 
the wild)

Not well protected within the 
protected area (Xu et al. 2014)

Black-necked cranes Vulnerable Found widely outside of protected 
areas (Xuesong et al. 2017)

Grizzly Bear (Canada) Species at risk, partly extinct Not well protected within protected 
area (Gallus 2010)

Atlantic Puffin Vulnerable Almost no marine protected areas 
(MPA), e.g. Huettmann et al. (2016)

Sharks Widely declining Almost no marine protected areas 
(MPA)

Commercial food fish 
species worldwide

Widely declining Almost no marine protected areas 
(MPA; no take-zones)

Gharial Critically endangered Not well protected within protected 
area and outside

F. Huettmann
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The New World Order, and starting with Bretton Woods in 1944, The World 
Bank and its subsequent institutions such as IUCN and UNEP show us nothing but 
that (Rich 1994). All too often we then just get presented a techno fix used to present 
us with progress when there actually is none (Czech et al. 2000; Cockburn 2013); 
even basic principles of strategic conservation are consistently violated (Table 16.4). 
By now, the list of those technical ‘innovations’ and fixes are very long, almost 
comical if it were not that tragic. It is easy to see that machine learning, or optimiza-
tion algorithms from strategic conservation planning could fall into that category. 
The challenge now remains to show that it is not and to apply them in a good eco-
logical setting. On the one hand machine learning cannot really break out of the 
techno-trail. It’s a technological high-end application. It also requires energy and 
resources as input, eventually. Some of the stakeholder workshops also leave a big 
financial and carbon footprint, for instance. However, on the good side, the outcome 
is more than its individual pieces. That is nowhere so true than in machine learning: 
just consider what the phrase ‘many weak learners make for a strong learner’ 
(Schapire 1990) means in real life.

So, while we are easily trapped in our institutions and minds with certain techno- 
arguments and its neoliberal world, there can be a decent output for the better, and 
hopefully with a good life- balance to be found eventually. Tables 16.4 and 16.6 
show some of the core components of Strategic Conservation Planning projects to 
be successful, but which are widely missing in real world applications still 
(Huettmann 2007a, b, 2008a, b for projects and related data and publications). 
Table 16.7 shows known failures and a mis-use of Strategic Conservation Planning.

Table 16.6 Components to further improve Strategic Conservation Planning with a ‘good’ 
machine learning component

Wider topic Justification
Example and 
citation

Status in strategic conservation 
planning projects

Best 
predictions

Best predictions SPM8 (https://
www.salford-
systems.com/)

Not fully employed, yet

Use of best 
data

Best information 
assures best 
inference

Open access, e.g. 
Freedom of 
information act 
(https://www.foia.
gov/)

Not used to the full potential yet

Make final 
project data 
available

Repeatable and 
transparent 
conclusions

Kandel et al. (2015) Almost never achieved

Ethics Avoid mis-use and 
destructive 
science

Weaver (1996), 
Bandura (2007), 
Daly and Farley 
(2011)
Steady state 
economy mother 
earth

Virtually ignored

(continued)
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Table 16.7 Known failures of strategic conservation planning projects and their suggested fixes

Strategic 
conservation 
planning project

Known failure in the 
goal Effective fix Outlook

Great barrier reef Overruled by political 
and global forces, e.g. 
Indian mining 
concessions in the 
wider watershed

Implement a better 
global governance

It is currently not realistic 
to assume a global 
governance that puts 
harmony and 
environmental balance at 
its core serving the wider 
public good

Terrestrial 
national parks

10% protection level 
too small for being 
effective or 
meaningful, Marxan 
not well used

30% protection levels, 
implement a better 
global governance

Unlikely to happen any 
time soon in ecological 
relevant terms

Global MPA 
ocean network

Most of the MPAs are 
usually not ‘No Take’ 
zones, lacking 
enforcement either 
way, greatly improve 
coverage

30% protection levels, 
implement a better and 
realistic global 
governance and 
enforcement

Unlikely to happen any 
time soon in ecological 
relevant terms

OSPAR (https://
www.ospar.org/
work-areas/bdc/
marine-protected-
areas)

Use of a MPA far 
offshore to mitigate 
climate change. Put 
MPAs where the 
diversity actually sits

Reduce industrial 
consumption as the 
underlying cause of 
climate change, 
improve ocean 
protection and 
management

Unlikely to happen any 
time soon in ecological 
relevant terms

Russian Arctic 
MPAs (Spiridonov 
et al. 2017, 
Solovyev et al. 
2017)

Climate change 
futures not included

Re-run with climate 
change future outlook

Unlikely to happen any 
time soon in ecological 
relevant terms

Wider topic Justification
Example and 
citation

Status in strategic conservation 
planning projects

Dynamic 
re-runs

MPA conditions 
change and need 
to be constantly 
adjusted

Dynamic MPAs at 
sea that reflect 
ocean currents and 
climate change 
(Murphy et al. 
2010)

Discussed for the marine 
environment but virtually left without 
implementation, e.g. for terrestrial 
applications

Enforcement 
and policy link

Laws are only as 
good as their 
enforcement 
culture and related 
budget

Legal theory Virtually ignored (see for missing 
links in wildlife management, 
conservation biology and strategic 
conservation planning textbooks, e.g. 
Bolen and Robinson (2002), Silva 
(2012), Primack (2016), Ardron et al. 
(2008)

Ecological 
economics

The only known 
economy to 
achieve a ‘steady 
state’

Czech (2000), Daly 
and Farley (2011)

Rarely considered, yet.

Table 16.6 (continued)
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In a way, I hope, machine learning, e.g. for Strategic Conservation Planning, can 
at least help to strike that balance better reaching a steady-state (Daly and Farley 
2011). We can actually afford to spend some energy, as long it is sustainable and not 
excessive, on machine learning with Strategic Conservation Planning and for good 
decision-making reaching sustainability on a global level. As a matter of fact, if we 
have any energy, or effort for that matter handy, it should be invested into great 
decision-making, achieved with machine learning-aided Strategic Conservation 
Planning making good use of those techniques available to mankind. This can even-
tually lead to a global society respecting ‘mother earth’. For global sustainability to 
become real, wider questions come to play, including universe ones, belief systems, 
spirituality, governance structures, distribution of wealth and the balance of life 
(Weaver 1996; Stiglitz 2003). But one way or another, machine learning is available 
and involved by now, and all one can ask for then is to make good and best-suitable 
use of this method; all done with good ethics and outcome for the wider public, 
global good. Anything that is not destructive science would be progress in that 
regard. Now, who would not agree?
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