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Foreword

The fields of nature conservation and wildlife science have grown and diversified so 
rapidly over the past 50 years, it is hard to imagine how the speed of change could 
get even faster – it has. As artificial intelligence and machine learning is increas-
ingly used in our field, change will accelerate. Grant Humphries, Dawn Magness 
and Falk Huettmann have provided us a book filled with information essential to get 
any wildlife or conservation biologist up to speed with the concepts and application 
of machine learning. They cover historical and conceptual information, plus specific 
case studies and a taste of the future.

Machine learning attempts to extract knowledge from messy data, and it is hard 
to think of a field where the data is messier. While traditional ecological data analy-
sis and well-designed field experiments will always be essential, we need to find 
new tools to interpret the flood of environmental data coming from satellites, drones, 
camera traps, acoustic monitoring devices, tagged animals and more. Machine 
learning is relatively open-minded about the meaning of this data and the relation-
ships between different kinds of data. While at times this is dangerous, it also liber-
ates us to explore new ideas – such as using data on seabird chick weights to make 
predictions about the Southern Oscillation Index (Chap. 13).

The future of conservation will require an open mind. We could be using machine 
learning: for carrying out real-time management of small-scale fisheries, analyzing 
satellite data to make better landscape change models that inform policy, deploying 
drones that can deter poachers, and creating ephemeral protected areas for migra-
tory species. As the authors remind us, we have very little time to avert the extinc-
tion of most of the world’s species and whole-scale reduction in the abundance of 
even common species. We need every discipline and every tool available to effi-
ciently and effectively solve the world’s conservation problems.

As The Nature Conservancy’s Chief Scientist, I can say that we will be increas-
ing our investment in using artificial intelligence to make faster and better conserva-
tion decisions that deliver outcomes on the ground.

Hugh PossinghamThe Chief Scientist of The Nature Conservancy  
Arlington, Virginia, USA
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Preface1

1 The findings and conclusions in this book are those of the authors and do not necessarily represent 
the views of the US Fish and Wildlife Service.

This painting, by Margaret Oliver, depicts Northern Gannet (Morus bassanus) and Northern 
Fulmar (Fulmarus glacialis) near an iceberg. Northern Gannet is a species that can be found breed-
ing in the temperate parts of the North Atlantic and as far south as the Gulf of Mexico during the 
non-breeding season. The Northern Gannet, however, is being found further and further north, with 
6 records in Svalbard, well above the Arctic Circle, between 2000 and 2016. This is likely to con-
tinue and increase as ecosystem shifts push oceanic biomes further north. Icebergs, like the one 
shown in this piece, are another complex seascape feature that can be integrated into machine 
learning models for a holistic understanding of global ecosystems
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We humans are curious animals. While other animals generally live in balance with 
their respective ecosystems, we almost seem to go out of our way to tip that balance 
in our favor to the extreme detriment of everything else. If an alien race were to look 
at us objectively, it is likely they would consider most modern humans a cancer on 
the planet; growing uncontrollably and using resources without much care, limit, or 
reason. But within this destructive framework lie some heroes who have at least 
been able to clearly identify our impacts and are fighting to protect species, habitats, 
and, ultimately, the human race. Some of them are scientists, environmentalists, 
conservationists, ecological economists, and others who only want to see balance 
restored to the planet. This battle is becoming harder to fight as our population 
expands and we compete more and more for our precious resources. To that end, we 
are in desperate need for fast decisions in a conservation context. Unfortunately, we 
often see science efforts get caught up in details like narrow statistical assumptions, 
mechanisms, and parsimony. While this has been interesting perhaps from a certain 
academic perspective, it really fails to build a holistic understanding of our world.

In the many years that we (the editors of this book) have been studying the appli-
cation of machine learning, there have been amazing changes in techniques. I (GH) 
recall starting my master’s degree with a moderate understanding of multivariate 
statistics but having never used a machine learning algorithm before. Within my first 
week, I had run my first model using Salford System’s machine learning software, 
TreeNet (an implementation of boosted regression trees). At the time, I did not real-
ize the path I was about to take and spent the next two years studying the method to 
be able to pull apart and make sense of the science behind the technique. One thing 
I learned was that machine learning and, subsequently, scripting (in R and Python) 
was a rabbit hole. The more I did, the deeper I went (“deep learning,” you could 
say), and the more I wanted to know. But what I soon realized was that it was not 
just that the philosophy was complex and dynamic, but that the methods and tools 
were changing much faster than I could keep up with. Trying to build an under-
standing of a complex suite of tools and techniques while having to study ecology 
(or wildlife biology), take other course work, have a social life, and write was a 
challenging task. This made me realize something that has become abundantly clear 
to me over the last decade: there is a major disconnect between ecology and the 
computational (and quantitative) skills required in today’s job market. This discon-
nect makes it very difficult for applying solutions to complex analytical problems in 
fast and effective ways (to match the changing pace of our world). We (as ecolo-
gists) spend vast amounts of time pouring through obscure and confusing computer 
“lingo” that we just are not used to, and that slows us down. We have to therefore 
raise the question: “How do academics (already tasked with writing grants, teaching 
courses, mentoring students, publishing research, doing admin work, etc…), or gov-
ernment scientists, or other researchers have the time to really understand and apply 
new techniques?” We (GH, FH, and DM) have all experienced this over our careers 
to date in various ways, and it is part of the motivation for compiling this book. We 
want to encourage ecologists at universities and elsewhere to embrace the techno-
logical changes that are coming our way; specifically, powerful machine learning 
algorithms that can be tailored to a number of really interesting scientific questions. 

Preface
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Ideally, this would be done in an open access framework, which would help to make 
the most meaningful impact on progress. The integration of computational science, 
machine learning, and data mining into ecology courses at a very basic level has the 
potential to vastly change how we do science by allowing us to quickly analyze 
complex and peculiar datasets common in wildlife studies. There is still time to 
redefine syllabi, performance evaluations, and job descriptions with an outlook and 
focus on global sustainability.

Machine learning algorithms are being recognized more and more as formidable 
weapons in natural resource management and wildlife biology. This is because the 
methods we elaborate on in this book are able to decipher complex relationships 
between many predictor variables (hundreds or more of the best available) and give 
meaningful and powerful predictions while allowing us to infer relevant mecha-
nisms and good management action. There is somewhat of a stigma in ecology, 
however, which we believe stems from a lack of basic teachings when we are stu-
dents. Firstly, we are not really taught basic data management techniques to help us 
better organize ourselves digitally, which has direct implications in things like data 
mining. Secondly, the details of new algorithms (or how to begin deciphering them) 
are not really taught, which makes them come off as “black boxes.” Thirdly, the 
basic principles of scripting (e.g., R, Python, C++ etc…) are not taught to us and are 
picked up, if at all, through many frustrating nights in front of online tutorials or 
trial and error (mostly error!).

There is hope, however, as university statistics courses are more frequently 
taught in R, which means code can be replicated and explained. But these courses 
are generally pure statistics courses (though exceptions are arising with quantitative 
ecology being taught in some universities now). Also, machine learning algorithms 
and techniques rarely integrated in these courses. Machine learning is an entire suite  
of tools that cannot be ignored as the evidence for their superiority in many aspects 
mounts further. They can help lead us toward a holistic understanding of the planet 
if used correctly and in an ethical framework.

Our book aims to guide you through a series of interesting and new applications 
of machine learning algorithms in wildlife biology, ecology, and natural resource 
management. We hope that as you read through these techniques, you get some 
ideas for your own research and perhaps try a few algorithms yourself. The world is 
changing rapidly, as are the algorithms we use to model it. Despite the ongoing 
decay and policy chaos, we see a bright future ahead for machine learning in ecol-
ogy and our planet.

Fort Augustus, Scotland  Grant R. W. Humphries 
Soldotna, AK, USA  Dawn R. Magness 
Fairbanks, AK, USA  Falk Huettmann 
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showing a colony of gentoo penguins that have integrated rope (possibly left by earlier explorers) 
into their nest. Even in the remote corners of the world, we see the direct impact of humans on 
wildlife



xvii

Contents

Part I  Introduction

 1  Machine Learning in Wildlife Biology: Algorithms, Data Issues  
and Availability, Workflows, Citizen Science, Code Sharing,  
Metadata and a Brief Historical Perspective . . . . . . . . . . . . . . . . . . . .    3
Grant R. W. Humphries and Falk Huettmann

 2  Use of Machine Learning (ML) for Predicting and Analyzing  
Ecological and ‘Presence Only’ Data: An Overview  
of Applications and a Good Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . .   27
Falk Huettmann, Erica H. Craig, Keiko A. Herrick,  
Andrew P. Baltensperger, Grant R. W. Humphries, David J. Lieske, 
Katharine Miller, Timothy C. Mullet, Steffen Oppel,  
Cynthia Resendiz, Imme Rutzen, Moritz S. Schmid,  
Madan K. Suwal, and Brian D. Young

 3  Boosting, Bagging and Ensembles in the Real World:  
An Overview, some Explanations and a Practical Synthesis  
for Holistic Global Wildlife Conservation Applications  
Based on Machine Learning with Decision Trees  . . . . . . . . . . . . . . . .   63
Falk Huettmann

Part II  Predicting Patterns

 4  From Data Mining with Machine Learning to Inference  
in Diverse and Highly Complex Data: Some Shared Experiences, 
Intellectual Reasoning and Analysis Steps for the Real World  
of Science Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   87
Falk Huettmann

 5  Ensembles of Ensembles: Combining the Predictions  
from Multiple Machine Learning Methods  . . . . . . . . . . . . . . . . . . . . .  109
David J. Lieske, Moritz S. Schmid, and Matthew Mahoney



xviii

 6  Machine Learning for Macroscale Ecological Niche Modeling -  
a Multi- Model, Multi- Response Ensemble Technique  
for Tree Species Management Under Climate Change . . . . . . . . . . . .  123
Anantha M. Prasad

 7  Mapping Aboveground Biomass of Trees Using Forest Inventory  
Data and Public Environmental Variables within the Alaskan  
Boreal Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141
Brian D. Young, John Yarie, David Verbyla, Falk Huettmann,  
and F. Stuart Chapin III

Part III  Data Exploration and Hypothesis Generation  
with Machine Learning

 8  ‘Batteries’ in Machine Learning: A First Experimental  
Assessment of Inference for Siberian Crane Breeding Grounds  
in the Russian High Arctic Based on ‘Shaving’ 74 Predictors  . . . . . .  163
Falk Huettmann, Chunrong Mi, and Yumin Guo

 9  Landscape Applications of Machine Learning: Comparing  
Random Forests and Logistic Regression in Multi-Scale  
Optimized Predictive Modeling of American Marten  
Occurrence in Northern Idaho, USA  . . . . . . . . . . . . . . . . . . . . . . . . . .  185
Samuel A. Cushman and Tzeidle N. Wasserman

 10  Using Interactions among Species, Landscapes, and Climate  
to Inform Ecological Niche Models: A Case Study of American  
Marten (Martes americana) Distribution in Alaska . . . . . . . . . . . . . . .  205
Andrew P. Baltensperger

 11  Advanced Data Mining (Cloning) of Predicted Climate-Scapes  
and Their Variances Assessed with Machine Learning:  
An Example from Southern Alaska Shows Topographical  
Biases and Strong Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227
Falk Huettmann

 12  Using TreeNet, a Machine Learning Approach to Better  
Understand Factors that Influence Elevated Blood Lead Levels  
in Wintering Golden Eagles in the Western United States . . . . . . . . .  243
Erica H. Craig, Tim H. Craig, and Mark R. Fuller

Part IV  Novel Applications of Machine Learning Beyond Species 
Distribution Models

 13  Breaking Away from ‘Traditional’ Uses of Machine Learning:  
A Case Study Linking Sooty Shearwaters (Ardenna griseus)  
and Upcoming Changes in the Southern Oscillation Index  . . . . . . . .  263
Grant R. W. Humphries

Contents



xix

 14  Image Recognition in Wildlife Applications . . . . . . . . . . . . . . . . . . . . .  285
Dawn R. Magness

 15  Machine Learning Techniques for Quantifying Geographic  
Variation in Leach’s Storm-Petrel (Hydrobates leucorhous)  
Vocalizations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  295
Grant R. W. Humphries, Rachel T. Buxton, and Ian L. Jones

Part V  Implementing Machine Learning for Resource Management

 16  Machine Learning for ‘Strategic Conservation and Planning’:  
Patterns, Applications, Thoughts and Urgently Needed Global  
Progress for Sustainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  315
Falk Huettmann

 17  How the Internet Can Know What You Want Before You Do:  
Web-Based Machine Learning Applications for Wildlife  
Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  335
Grant R. W. Humphries

 18  Machine Learning and ‘The Cloud’ for Natural Resource  
Applications: Autonomous Online Robots Driving Sustainable 
Conservation Management Worldwide? . . . . . . . . . . . . . . . . . . . . . . . .  353
Grant R. W. Humphries and Falk Huettmann

 19  Assessment of Potential Risks from Renewable Energy  
Development and Other Anthropogenic Factors to Wintering  
Golden Eagles in the Western United States. . . . . . . . . . . . . . . . . . . . .  379
Erica H. Craig, Mark R. Fuller, Tim H. Craig, and Falk Huettmann

Part VI  Conclusions

 20  A Perspective on the Future of Machine Learning: Moving Away  
from ‘Business as Usual’ and Towards a Holistic Approach  
of Global Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  411
Grant R. W. Humphries and Falk Huettmann

 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  431

Contents



xxi

Contributors

Andrew P. Baltensperger National Park Service, Fairbanks, AK, USA

Rachel  T.  Buxton Department of Fish, Wildlife and Conservation Biology, 
Colorado State University, Fort Collins, CO, USA

Erica H. Craig Aquila Environmental, Fairbanks, AK, USA

Tim H. Craig Aquila Environmental, Fairbanks, AK, USA

Samuel  A.  Cushman U.S.  Forest Service, Rocky Mountain Research Station, 
Flagstaff, AZ, USA

Mark R. Fuller Boise State University, Raptor Research Center, Boise, ID, USA

Yumin Guo College of Nature Conservation, Beijing Forestry University, Beijing, 
China

Keiko A. Herrick EWHALE Lab, Biology and Wildlife Department, Institute of 
Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK, USA

Falk Huettmann EWHALE Lab, Biology and Wildlife Department, Institute of 
Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK, USA

Grant R. W. Humphries Black Bawks Data Science Ltd., Fort Augustus, Scotland

Ian L. Jones Department of Biology, Memorial University, St. John’s, NL, Canada

David  J.  Lieske Department of Geography and Environment, Mount Allison 
University, Sackville, NB, Canada

Dawn  R.  Magness U.S. Fish and Wildlife Service, Kenai National Wildlife 
Refuge, Soldotna, AK, USA

Matthew Mahoney Department of Geography and Environment, Mount Allison 
University, Sackville, NB, Canada

Chunrong Mi Institute of Zoology, Chinese Academy of Sciences, Beijing, China

College of Nature Conservation, Beijing Forestry University, Beijing, China



xxii

Katharine  Miller Auke Bay Laboratories, Alaska Fisheries Science Center, 
National Marine Fisheries Service, NOAA, Juneau, AK, USA

Timothy C. Mullet EWHALE Lab, Biology and Wildlife Department, Institute of 
Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK, USA

Steffen  Oppel RSPB Centre for Conservation Science, Royal Society for the 
Protection of Birds, Cambridge, UK

Anantha M. Prasad Research Ecologist, USDA Forest Service, Northern Research 
Station, Delaware, OH, USA

Cynthia Resendiz EWHALE Lab, Biology and Wildlife Department, Institute of 
Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK, USA

Imme  Rutzen EWHALE Lab, Biology and Wildlife Department, Institute of 
Arctic Biology, University of Alaska-Fairbanks, Fairbanks, AK, USA

Moritz  S.  Schmid Hatfield Marine Science Center, Oregon State University, 
Newport, OR, USA

EWHALE Lab, Biology and Wildlife Department, Institute of Arctic Biology, 
University of Alaska-Fairbanks, Fairbanks, AK, USA

CERC in Remote Sensing of Canada’s New Arctic Frontier Université Laval, 
Québec, Canada

F. Stuart Chapin III Institute of Arctic Biology, University of Alaska Fairbanks, 
Fairbanks, AK, USA

Madan  K.  Suwal Department of Geography, University of Bergen, Bergen, 
Norway

David  Verbyla Department of Forest Sciences, University of Alaska Fairbanks, 
Fairbanks, AK, USA

Tzeidle N. Wasserman School of Forestry, Northern Arizona University, Flagstaff, 
AZ, USA

John  Yarie Department of Forest Sciences, University of Alaska Fairbanks, 
Fairbanks, AK, USA

Brian D. Young Department of Natural Sciences, Landmark College, Putney, VT, 
USA

Contributors



xxiii

About the Editors

 Dr. Grant R. W. Humphries is an ecological data 
scientist who has worked on a number of marine and 
terrestrial projects (mostly seabirds) around the world 
where machine learning tools were critical to solving 
complex problems. He has over a decade of experience 
working with machine learning tools and techniques 
and loves applying them in novel and interesting ways. 
He is the founder of Black Bawks Data Science Ltd., a 
small data science company based in the highlands of 
Scotland, where he works on building interactive, web-
based decision support tools that integrate advanced 
modeling. He is also a penguin counter, traveling to 
Antarctica every year to collect data for the Antarctic 
Site Inventory. His spare time is dedicated to music, 
cooking, and spending time with his two daughters, 
River and Dylan, and wife, Alex.

 Dr. Dawn R. Magness is a landscape ecologist inter-
ested in climate change adaptation, landscape plan-
ning, ecological services, and spatial modeling. She 
earned her M.S. in Fish and Wildlife Science at Texas 
A & M University and her Ph.D. in the interdisciplin-
ary Resilience and Adaptation Program at the 
University of Alaska, Fairbanks. Her current projects 
use multiple methods to assess ecosystem vulnerability 
to inform strategic adaptation planning. She has con-
ducted research on songbirds, flying squirrels, and 
American marten.



xxiv

 Dr. Falk Huettmann is a “digital naturalist” linking 
computing and the Internet with natural history 
research for global conservation and sustainability. He 
is a Professor in Wildlife Ecology at the University of 
Alaska Fairbanks (UAF) Biology & Wildlife 
Department and Institute of Arctic Biology, where he 
and many international students run the EWHALE lab. 
In his lab, he pursues biodiversity, land- and seascapes, 
the atmosphere, global governance, ecological eco-
nomics, diseases, and new approaches to global sus-
tainability on a pixel-scale. Most of his 200 publications 
and 7 books are centered on Open Access and Open 
Source, Geographic Information Systems (GIS), and 
data mining/machine learning.

About the Editors



 

“The world is one big data problem.” 
        – Andrew McAfee
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Chapter 1
Machine Learning in Wildlife Biology: 
Algorithms, Data Issues and Availability, 
Workflows, Citizen Science, Code Sharing, 
Metadata and a Brief Historical Perspective

Grant R. W. Humphries and Falk Huettmann

1.1  Introduction

We can all agree that machine learning has come a long way from Alan Turing’s 
original theories in the 1950s. With many new methods and publications arising, we 
are seeing a new statistical culture beginning to form (for natural resource applica-
tions see Hilborn and Mangel 1997; Breiman 2001a; Hochachka et al. 2007; Drew 
et al. 2011). This new culture has granted us access to a major tool box that is handy 
to any practitioner trained in machine learning techniques, frequentist statistics, or 
neither (Hastie et al. 2009; Fernandez-Delgado et al. 2014). Its success across mul-
tiple disciplines and its accessibility means that machine learning as a technique 
should not be ignored. Machine learning methods outperform other algorithms 
when it comes to predictive power (and inference), elegance, and convenience (e.g., 
Elith et  al. 2006; Mi et  al. 2017), particularly when rapid decision making is 
required, as is the case in natural resource management. New algorithms and meth-
ods for looking at complex ecological data are arising fast; unfortunately, faster than 
most scholars or tenured professors (for example) can keep up with.

The adoption of machine learning in the ecological community has been slow. 
Beyond a possible discomfort with unknown methods, perhaps this has also been 
due to lack of communication between natural scientists and the machine learning 
community, the absence of machine learning in natural sciences education, or 
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because there is little communication of examples of machine learning methods 
applied to ecological data (Thessen 2016). However, the literature on applications 
of machine learning in ecology is growing (e.g., Cushman and Huettmann 2010; 
Crisci et  al. 2012; Thessen 2016) and integrating into ecological informatics 
(i.e. the use of modern computational techniques and algorithms on problems of 
ecological interest; Petkos 2003). We aim, through this chapter, to introduce some 
machine learning topics in an ecological context. We hope you keep these in mind 
throughout this book to help guide you towards a better understanding of potential 
applications of machine learning in ecology.

1.2  Some Terminology

Machine learning consists of many algorithms and thus it is a complex and evolv-
ing field. Often the language can be new and unusual for anyone not familiar with 
it. Included here in Table 1.1 is a short glossary of commonly used terms/concepts 
and their brief definitions. Many of the terms (e.g., categorical or continuous data) 
will be familiar to ecologists, but some may be new. These refreshers and addi-
tions to the ecologists’ vocabulary are important because our required skill sets 
are changing; as are the institutions, nations, and publication landscapes that we 
work within.

Table 1.1 A basic glossary of machine learning terms that can be found in ecology. These terms 
will appear throughout the book in various places

Term Definition

AUC (Area under the 
ROC Curve)

An evaluation metric for classification problems that consider a variety 
of classification thresholds. Values greater than 0.8 are considered ‘good’ 
in ecology.

BACK 
PROPAGATION

Mostly used in neural networks for performing gradient descent (see 
below) on neural networks. Basically, predictive error is calculated 
backwards through a neural network graph (the representation of the 
data flow through neural network nodes). See Rumelhart et al. (1986) for 
a good description.

BAGGING Also known as bootstrap aggregating, it is an algorithm designed to 
reduce variance and over-fitting through model averaging. This is the 
meta-algorithm used in any random forests implementation. Many 
decision trees are grown (a forest) and can be over-learned (see 
over-fitting below). Individual trees might have high variance, but low 
bias. Averaging the predictions across the trees reduces the variance and 
thus reduces over-learning across the whole dataset.

BIG DATA A term that describes large structured or un-structured datasets most 
commonly found in business, but extends into ecology through image 
recognition problems, or high resolution spatial modeling.

(continued)
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Table 1.1 (continued)

Term Definition

BOOSTING Boosting is a meta-algorithm used to minimize loss in a machine 
learning algorithm through iterative cross-validation. This is the 
meta-algorithm used in the generalized boosted regression modeling 
method (i.e., boosted regression trees). At each step, the predictive error 
is measured by cross validation, which is then used to inform the next 
step. This removes issues of over-learning because it is constantly testing 
itself to ensure predictive power does not decrease. The best model is 
selected by where the error has been minimized the most over the 
process.

CATEGORICAL 
VARIABLE

A variable with a discrete qualitative value (e.g., names of cities, or 
months of the year). Sometimes, continuous variables can be broken 
down into categories for analysis; however, it is very difficult to create a 
continuous variable from a categorical one.

CLASSIFICATION A category of supervised learning that takes an input and predicts a class 
(i.e. a categorical variable). Mostly used for presence/absence modeling 
in ecology.

CLUSTERING A method associated with unsupervised learning where the inherent 
groupings in a dataset are learned without any a priori input. For 
example, principal component analysis (PCA) is a type of unsupervised 
clustering algorithm.

CONTINUOUS 
VARIABLE

A variable that can have an infinite number of values but within a range 
(e.g., a person’s age is continuous).

DATA MINING The act of extracting useful information from structured or unstructured 
data from various sources. Some people use this as an analogy for 
machine learning, but they are separate, yet related fields. For example, 
using a machine learning algorithm to automatically download 
information from the internet could be considered data mining. 
Unsupervised learning could also be considered data mining, and some 
machine learning algorithms take advantage of this to build models.

DATA SCIENCE The study of data analysis, algorithmic development and technology to 
solve analytical problems. Many ecologists actually classify as data 
scientists (without even knowing it); particularly those with a 
quantitative background and strong programming skills.

DECISION TREE A type of supervised learning that is mostly used in classification 
problems but can be extended to regression. This is also known in the 
ecological literature as CART (classification and regression trees) and is 
the basis for algorithms like generalized boosted regression modeling 
(gbm), TreeNet, or random forests.

DEEP LEARNING Deep learning is advanced machine learning using neural nets for a 
variety of purposes. It uses vast amounts of data but can output highly 
flexible and realistic results for simultaneous model outputs. Although 
not used in ecology yet (save for image recognition), there are vast 
implications for ecosystem modeling.

DEPENDENT 
VARIABLE

The dependent variable is what is measured and is affected by the 
independent variables. Also known as: target variable, or response 
variable.

ENSEMBLE A merger of the predictions from many models through methods like 
averaging.

(continued)
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Table 1.1 (continued)

Term Definition

FREQUENTIST 
STATISTICS

Refers to statistics commonly used in ecology and elsewhere that are 
geared towards hypothesis testing and p-values. They aim to calculate 
the probability of an outcome of an event or experiment occurring again 
under the same conditions.

GRADIENT 
DESCENT

A technique to minimize the loss (e.g., root mean squared error) by 
computing the best combination of weights and biases in an iterative 
fashion. This is the basis for boosting.

HOLDOUT DATA A dataset that is held back independently from the dataset used to build 
the model. Also known as the testing or validation data.

IMPUTATION A technique used for handling missing data by filling in the gaps with 
either statistical metrics (mean or mode) or machine learning. In 
ecology, nearest neighbor observation imputation is sometimes used.

INDEPENDENT 
VARIABLE(S)

This is the variable or set of variables that affects the dependent variable. 
Also known as the predictor variable(s), covariate(s) or the 
explanatory variable(s)

MACHINE 
LEARNING

The core of our book; this refers to the techniques involved in dealing 
with vast and/or complex data by developing and running algorithms that 
learn without a priori knowledge or explicit programming. Machine 
learning methods are often referred to as black box, but we argue that 
this is not the case and that any machine learning algorithm is 
transparent when one takes the time to understand the underlying 
equations.

LOSS The measure of how bad a model is as defined by a loss function. In 
linear regression (for example), the loss function is typically the mean 
squared error.

NEURAL 
NETWORK

A model inspired by the human brain and neural connections. A neuron 
takes multiple input values and outputs a single value that is typically a 
weighted sum of the inputs. This is then passed on to the next neuron in 
the series.

OVER-FITTING This happens when a model matches training data so closely that it 
cannot make correct predictions to new data. We argue that the term 
“over-fitting” is often mis-used in a machine learning context. Fitting 
suggests that an equation is fit to a dataset in order to explain the 
relationship. However, in machine learning, this sort of fitting does not 
occur. Patterns in the data are generally learned by minimizing variance 
in data through splits or data averaging (e.g. regression trees or support 
vector machines). A more appropriate term would be “over-learning” or 
perhaps “over-training” (both used in the machine learning community) 
where functions describe data poorly and result into a poor prediction. 
However, algorithms that use back-propagation and cross-validation 
limit and, in some cases, eliminate over-learning. In species distribution 
modeling (using binary presence/absence data), this can be measured 
using AUC/ROC.

RECURSIVE 
PARTITIONING

This is the technique used to create CARTs (i.e., CART is a type of 
recursive partitioning, but recursive partioning is not CART), and thus 
the offshoot algorithms (e.g., boosted regression trees and random 
forests). The method strives to correctly classify data by splitting it into 
sub-populations based on independent variables. Each sub-population 
can be split an infinite number of times, or until a threshold or criteria is 
reached. See Strobl et al. (2009) for a comprehensive overview.

(continued)
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1.3  A Few Paragraphs on the History of Machine Learning

Machine learning algorithms really had their beginning after the second world war 
when Alan Turing introduced the concept of thinking machines (Turing 1950). He 
envisioned a world when computers would be able to actively learn, and ‘communi-
cate’ new information back to users after that learning process. The ‘Turing test’ 
(i.e., the test that demonstrates whether a machine is learning) became the basis for 
the machine learning discipline that would soon develop. Only a few years after this, 
the first computer learning program, designed to play checkers, was developed, and 
learned as a game progressed. This was inspired by the Turing test (Samuel 1959).

Through the 1960s, there was a boom of interest in machine learning, with neural 
networks (e.g. the ‘Perceptron’) being a topic of great interest (e.g. for enemy/friend 
recognition in radar images). However, computational power limited the forward 
momentum of the subject. This, combined with little to no computational training in 
life sciences, meant that from the 1970s to the 1990s, during the “boom” of ecology, 
machine learning, although having been around for some time, was not something 
really accessible to ecologists. Frequentist statistics and hypothesis testing were the 
primary tools for life scientists, which made sense at the time because machine 
learning algorithms had yet to develop to a point where they could be useful. The 
notion of probabilities, essentially index numbers between 0–1, became globally 
established with linear regression and logistic functions at its core. Being quantita-
tive essentially meant that everything was approximately expressed as a 0 or 1 using 
regression formulas borrowed from theoretical probability theory. It made for the 
mainstay of what is referred to as being scientific and also  for textbook natural 
resource management practices (e.g. Silvy 2012). Although we cannot devalue the 
importance of baseline ecological studies, quantitative practices were moving faster 
than ecologists were able to keep up with (O’Connor 2000).

Stock markets boomed and technology advanced, and soon we were in an era of 
computers and the internet through the 1990s. It was during this time when machine 
learning shifted away from basic pattern learning towards finding algorithms that could 
predict complex behavior (See Mueller and Massaron 2016). Humans were collecting 
vast amounts of data, and traditional statistical techniques were not suited to dealing 
with the problems being faced. More explicitly, the large sample sizes essentially meant 

Term Definition

SUPERVISED 
LEARNING

This type of learning occurs when the algorithm consists of a dependent 
variable which is predicted from a series of independent variables.

TESTING SET See holdout set above. This is used to generate independent validation of 
the model. This can be done iteratively (as in boosting).

TRAINING SET This is the set of data that is used to build the model and is usually 
independent of the testing set. Could also be known as assessment data.

UNSUPERVISED 
LEARNING

The goal of this technique is to model the underlying structure of the 
data in order to learn more about it without having a dependent variable. 
Clustering falls into this category

Table 1.1 (continued)

1 Machine Learning in Wildlife Biology: Algorithms, Data Issues and Availability…
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that hypothesis testing was too challenging as tiny differences could lead to 
“significant” results (p value <0.05), and analysis was computationally expensive.

Through the 2000s, things progressed rapidly with computers getting smaller 
and more powerful. It was during this period when machine learning (primarily 
through a few select algorithms) was picked up in ecology. Algorithms like classifi-
cation and regression trees (CART; Stone 1984) were incorporated early on (De’ath 
and Fabricius 2000). Soon after, these were refined with boosting and bagging 
methods outside of the life sciences, leading to boosted regression trees (Friedman 
2002) and random forests (Breiman 2001b). Currently, many software companies 
and programming languages compete for better and more efficient algorithms (see 
Textbox 1.1 for one such implementation).

A short reference list for wildlife-relevant machine learning methods consists of, 
but is not limited to: Breiman et al. 1984; Verner et al. 1986; Stockwell and Noble 
1992; Stockwell 1994; Boston and Stockwell 1995; Fielding 1999; Phillips and 
Dudik 2008; Hastie et al. 2009; Mueller and Massaron 2016.

Textbox 1.1 Salford Systems: A Brief and Selective Personal History

Dan Steinberg
Salford Systems (A Subsidiary of Minitab, Inc.)
9685 Via Excelencia, Suite 208, San Diego CA 92126

I had the good fortune to be introduced to the work of Leo Breiman and 
Jerome Friedman in 1985 while I was an Assistant Professor of Economics at 
the University of California, San Diego (UCSD). A new UC Berkeley 
Agricultural Economics Ph.D., Richard Carson, had just joined the Economics 
Department and he was enthusiastically encouraging everyone to look at 
CART (Classification and Regression Trees) and MARS (Multiple Adaptive 
Regression Splines), new analytical tools he had studied at Berkeley. He was 
also touting the marvelous advantages of cross-validation for assessing the 
true performance of predictive models.

So far as I know I was the only one in the department who took an interest 
in these radically new methods and I started experimenting mainly with 
CART. I had already founded Salford Systems several years earlier to market 
some statistical and econometric software I had developed while I was a grad-
uate student at Harvard and I was looking for some new tools to expand 
Salford’s offerings. In 1990 I met Leo Breiman at a Joint Statistical Meetings 
of the American Statistical Association. Leo and I spoke about creating a 
PC-based commercial version of the CART software. With this conversation 
began a many-year email correspondence with Leo while I slowly worked my 
way through the 1984 Classification and Regression Tree monograph (by Leo 
Breiman, Jerome Friedman, Richard Olshen, and Charles Stone 1984). This 
correspondence, which also included Richard Olshen 1990–1992, helped me 
write an easy to follow introduction to the methodology and manual to Salford’s 
new version of the CART software. By 1992 we already had a far easier CLI 
(command line interface) developed using commands such as.

G. R. W. Humphries and F. Huettmann
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USE MYFILE
MODEL TARGET
KEEP X1 X2 X3 X4
LIMIT ATOM = 10
CATEGORY TARGET X1
CART GO

with software available for the major commercial UNIX platforms and the 
IBM PC.

During 1993 this product was marketed as a SYSTAT add-on module but 
Salford subsequently took over all responsibility for sales and marketing. We had 
also begun work on a full GUI interface. The first GUI CART with the trademark 
Salford navigator and drill down into nodes and other model details was released 
in 1995. At that time, we began extensive consulting work for three major US 
banks developing a variety of targeted marketing, credit risk, and mortgage 
default models on what were fairly large data sets for the time. We often dealt 
with 100,000 records or more, and typically started with 300 to 2000 predictors 
(and sometimes more!). Our largest training data sets had around three million 
records by 1997. Being early adopters of the DEC Alpha hardware line, we were 
already working with a true 64-bit UNIX 20 years ago, and we made the most of 
the RAM we could fit into our servers. In 1997 one of our banking customers 
subsidized our purchase of huge external disk storage for our servers: 100 2GB 
disk drives plus a number of redundant drives for hot swap replacement of failed 
drives. Our discount price: $225,000! (20 years later in 2017 you can buy this 
storage in a pair of $15 thumb drives). The cabinet was a beauty to behold, and 
it really it looked like it belonged on the space shuttle (Fig. 1.1.1).

Fig. 1.1.1 Salford systems data mining conference, March 2004, San Francisco Bottom 
row: Leo Breiman, Charles Stone, Richard Olshen, Jerome Friedman. Top row: Richard 
Carson, Dan Steinberg, Nicholas Scott Cardell 

1 Machine Learning in Wildlife Biology: Algorithms, Data Issues and Availability…
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Our work for the banks was exciting in what it taught us about model 
building and analytics, and it provided a fantastic stress test bed for our soft-
ware. Between 1990 and 1998, we fixed numerous exotic CART bugs that 
revealed themselves only when dealing with large complex data sets, and we 
thus developed a truly industrial strength product. One of our 1998 projects 
for an automobile manufacturer required us to predict which make and model 
a new car purchaser would select from a menu of some 400 options, and our 
battle-hardened CART had no difficulty handling our 250,000 row by 200 
column data set with a 400 level target. We continually perfected and adapted 
the software in hundreds of ways, for example, to handle text data and optional 
user specified penalties on predictors due to missingness, cardinality, or cost 
of acquisition. The penalties act as inhibitors on the use of the predictors and 
made for better performing and more intuitively acceptable models. Many 
other enhancements were guided by our Director of Research and 
Development, Nicholas Scott Cardell often in close collaboration with 
Breiman and Friedman during the 1990s.

Also, in early 1995 I began a new round of email exchanges with Breiman 
about the ‘bagger’ (bootstrap aggregation of CART trees). Originally, Breiman 
wanted to cross-validate every tree in order to prune them all to the right size. 
I thought that the computational burden was excessive and so I argued for 
using the OOB (out of bag) data for this purpose; Breiman ultimately also 
rejected cross-validation to find right sized trees in favor of using the largest 
possible (unpruned) tree and so the OOB data was leveraged to great advan-
tage in his subsequent work on Random Forests. Salford was the first to 
implement bagging for decision trees in 1996 under the rubric of the 
COMBINE command.

Around 1999 I decided that our consulting work was hampering our soft-
ware development and that we would henceforth focus almost exclusively on 
new software development. The timing was good for this as we began work 
on MARS in 1999 and in 2001 we tackled Gradient Boosting (TreeNet). We 
were well aware of Random Forests from its earliest incarnations, but devel-
opment lagged behind due to lack of resources. Although 2001 experienced 
the shocks of the internet bubble crash and September 11th, Salford Systems 
grew throughout the crisis period in part by expanding our sales effort to 
include Australia and New Zealand. During the period 2001 through 2006 I 
toured the world at least 10 times giving lectures and presentations wherever 
I could, focusing mainly on gradient boosting but also on machine learning in 
general. My stops included universities, academic and commercial confer-
ences, research groups in pharmaceutical companies and banks, as well as 
organizations such as the European Central Bank. Much to my surprise, we 
made very little headway persuading people to take gradient boosting seri-
ously. A few large companies did absorb the message though and in conse-
quence profited greatly from being early and well ahead of their competitors.

G. R. W. Humphries and F. Huettmann
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By 2007 we finally started to see a substantial increase in interest in our 
software, particularly by the major banks, and 2008 started to shape up as by 
far our best growth year ever. However, the general financial collapse put a 
stop to many of the contracts we were in the midst of negotiating and this also 
led to a contraction in our business. But internet marketing came to our rescue 
and we engaged in a successful major project to automate the targeted market-
ing of web ads in an ad network. We made major advances in such targeted 
marketing leveraging a highly customized version of CART that included 
extensive within terminal node analysis. Coupled with a dedicated scoring 
engine we were able to rank 1000 potential ads in 6 milliseconds. The models 
were automatically rebuilt every 6 h on learning samples exceeding 1 billion 
impressions.

In 2010 we embarked on another major application adventure building a 
predictive modeling system for a large chain of Latin American grocery 
stores. Working with a network of close to 200 stores and 122,000 products our 
TreeNet models predicted daily and weekly sales for all promoted products. 
The final system was fully automatic, rebuilding and refining models as 
required, and reducing typical sales prediction errors by at least 50%.

After this project we returned to our roots and began developing substan-
tial upgrades to our core learning machines with an even sharper focus on 
model automation and developing Japanese, and Chinese language versions 
of SPM. By the time this history is published we will have released yet another 
major upgrade we are calling SPM8.2 and we will be well on the way to 
SPM9.0 which raises the automation of complex sequences of analyses to our 
highest level ever. 2017 and 2018 should also bring our distributed learning 
machines to market allowing users wanting to analyze data spread out over 
many servers to leverage the power of a cluster of servers working in parallel 
with all of the features and capabilities of CART, TreeNet, RandomForests 
and ensemble model combinations. This latest set of developments is one we 
are especially eager to deliver as it opens up entirely new horizons for our 
26-year research adventure and begins our latest chapter as a subsidiary of 
statistical and quality control software specialist Minitab.

Acknowledgments The full history involves many more events and people than I have had 
room to mention in this abbreviated note. Richard Olshen was a constant source of technical 
advice to us and provided a fabulous overview of Leo Breiman’s work and character in his 
paper in Statistical Science. Charles Stone was instrumental in helping our adventure result 
in real world results as well as always being available to give us sage technical advice. I 
hope others understand that the Salford story is principally bound up with Breiman, 
Friedman, Olshen, and Stone and they remain the principal subject of this brief essay.

1 Machine Learning in Wildlife Biology: Algorithms, Data Issues and Availability…



12

1.4  Machine Learning in Ecology and Wildife  
Biology to Date

In this book, we will present several cases of how machine learning can be used 
effectively in ecological studies. It expands on a growing body of literature demon-
strating how machine learning can help ecologists and natural resource managers 
(e.g., Recknagel 2001; Olden et al. 2008; Crisci et al. 2012; Thessen 2016; Valletta 
et al. 2017), and picks up after Fielding’s seminal book on machine learning in ecol-
ogy when it was still in its infancy in our field (Fielding 1999). We have a good 
understanding of the current state of machine learning in ecology thanks to these 
aforementioned works and can therefore start plotting a course forward in the imple-
mentation of these methods.

In the disciplines of natural resource management, ecology, and conservation biol-
ogy, machine learning remains somewhat absent as evidenced by the lack of discus-
sion on the topic in current textbooks: Primack (2010) for conservation, Miller and 
Spoolman (2012) for environmental studies, Silvy (2012) for wildlife biology, Gill 
(2007) for ornithology and even in animal physiology (Moyes and Schulte 2007). 
Most of the advancements in machine learning in ecology lie in the scientific literature 
(e.g., Elith et al. 2006; Hochachka et al. 2007; Drew et al. 2011). Thus, prior to gradu-
ate studies, machine learning techniques for ecological data are inaccessible to stu-
dents unless they make a point of learning it on their own or take a specialized course. 
Beyond this, it is only recently that computing methods have begun to be taught in 
University courses for ecologists. More and more, “quantitative ecology” courses 
(usually taught with the R programming language), are becoming commonplace. 
However, machine learning methods are not always integrated into these courses, 
and when they are, they are often glossed over with regards to the fine-scale detail of 
their inner-workings.

Further Readings

Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Pacific 
Grove, Wadsworth

Breiman L (1996) Bagging predictors. Mach Learn 24:123–140
Friedman JH (1991) Multivariate adaptive regression splines (with discussion). Ann Stat 19:1–141
Friedman JH (1999) Stochastic gradient boosting. Statistics Department, Stanford University, 

Stanford
Friedman JH (1999) Greedy function approximation: a gradient boosting machine. Statistics 

Department, Stanford University, Stanford
Olshen R (2001) A Conversation with Leo Breiman Stat Sci 16(2):184–198
Steinberg D, Colla P (1995). CART: Tree-structured non-parametric data analysis. Salford 

Systems, San Diego
Seigel E (2016) Predictive analytics: the power to predict who will click, buy, lie, or die, Wiley 

Publisher, New York
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This disconnect between machine learning, computing, ecology and science-
based conservation management has led to missed opportunities in our opinion at a 
time when the environment is facing rapid changes and efficient solutions are 
required. While we press forward with massive resource exploitation for the sake of 
“modernity” (Alexander 2013), biodiversity is being lost at alarming rates. This is 
partly because we have yet to adopt precautionary approaches to management, but 
also possibly because we spend valuable time debating mechanisms and methods 
instead of combining or comparing all available methods for a full understanding of 
our ecosystem. This has led us far away from embracing holistic views of natural 
resource management (Rosales 2008; Sandifer et al. 2015) that may be possible by 
integrating our thinking with machine learning.

Machine learning can easily be used in a huge array of applications (Hastie 
et al. 2009; Mueller and Massaron 2016); the method represents a true paradigm 
shift in statistics, wildlife management and conservation. Data mining, predictions 
and classifications are amongst its most common applications (Hastie et al. 2009); 
specifically, when data are complex, not normally distributed (statistically), and 
‘messy’ (as is typical in ecological and environmental data; McArdle 1988; 
Breiman 2001a). Machine learning also works on big and small datasets, lending 
to their versatility across many fields. The application of machine learning to spa-
tial and global data carries a specific benefit in that it can help to show the lack of 
space and resources available on earth (Wackernagel et  al. 2002; Humphries and 
Huettmann 2014). This could potentially resolve these space and resource conflicts 
with a fast turn-around time (“rapid assessment”, Huettmann 2007; Kandel et al. 2015 
for an example). Whereas, traditional reductionist views have failed to deliver us suc-
cessful solutions in this respect (as is obvious with respect to the state of the environ-
ment, Rockstroem et al. 2009, Mace et al. 2010). A shift in our strategy for wildlife 
management is needed.

Currently, machine learning in ecology is mostly restricted to species distribu-
tion modeling (SDM; Elith et al. 2006, Guisan and Thuiller 2005, and many oth-
ers) where georeferenced occurrences or abundances of species are associated 
with layers of environmental data (e.g., topography, precipitation). Those asso-
ciations are modeled with algorithms like maxent (Phillips et al. 2006), or ran-
dom forests (Breiman 2001b) and then predicted to the spatial and temporal 
extent of those layers of environmental data to determine where species might 
occur in space (and time). This has been boosted by increases in computing 
power, allowing us to model more complex data at higher temporal and spatial 
resolutions (Cushman and Huettmann 2010; Watson et al. 2016). See Textbox 1.2 
for a brief example.

Beyond SDMs, machine learning has been increasingly used in species recogni-
tion applications. These could be audio recognition exercises (Armitage and Ober 
2010; Stowell and Plumbley 2014, Chap. 15), or species recognition from images 
(Goodwin et  al. 2014; Rosa et  al. 2016). Machine learning algorithms have also 
been applied to a lesser degree to animal behavior (e.g., Valletta et al. 2017), and 
population dynamics modeling (e.g., Recknagel et al. 2002). A review of some of 
these and other applications can be found in Thessen (2016).
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Textbox 1.2 Cheer Pheasant predictions in the Hindu-Kush Himalaya: 
What does machine learning bring to the table for wilderness regions, 
endangered species and the future?

Falk Huettmann and co-authors1

EWHALE lab, University of Alaska Fairbanks.
e-mail: fhuettmann@alaska.edu

Wilderness regions of this world are precious for mankind, but they often lack 
protection and support. Still, they are the ultimate goal when it comes to natural 
resource conservation management. Wilderness is nature at its finest, and it 
needs to be assessed and managed for future generations. The state of wilderness 
(untouched habitat by humans) and its global extent reflects how humans man-
age the Anthropocene. But how does that link with machine learning, so far?

Well, while still at its infancy, machine learning has already been used success-
fully in wilderness region management worldwide (Table 1.2.1 for overview).

The Cheer Pheasant (Catreus wallichii)) is a great example of a rare bird 
species of global concern living in the wilderness of the western Hindu Kush 
Himalaya region, at around 3000 m of altitude. Its life history is somewhat 
known (Garson et al. 1992), but probably quite outdated, and its exact distri-
bution lacks a lot of information, with animals being dispersed over many 
countries. Besides new threats such as climate change, this species is strongly 
hunted and poached, and some local cultures see it as a medical cure against 
certain ailments. The global population of the species is declining (BirdLife 
International 2017), and its conservation status is likely to decay.

In an ongoing study (Kandel et al. in prep) we found that machine learning has 
helped to compile all publicly available data for this species, and then sparked the 

1 This work was carried out with the Global Primate Network in Nepal, namely Ganga Ram 
Regmi, Madan Krishna Suwal, Dikpal Krishna Karmacharya, Kamal Kandel and Sonam 
Tashi Lama.

Table 1.2.1 Machine learning applications in wilderness regions and their future

Wilderness Area Application Machine learning citation

Alaska (largest holder of 
protected and wilderness 
areas in the U.S.)

Spatial information, noise impact Ohse et al. (2009)
Mullet et al. (2015)

Ross Sea (one of the most 
remote and pristine 
oceanic areas in the 
world)

Overview of data available, 
Marine Protected Area (MPA) 
decision, biodiversity modeling of 
Southern Ocean

Reygondeau and 
Huettmann 2014
Huettmann et al. (2015)

Antarctica Open access data and models for 
management

Huettmann and Schmid 
(2014a, b)

Amazonia Biodiversity modeling Buermann et al. (2008)
Hindu-Kush Himalaya Red Panda habitat prediction Kandel et al. (2015)
Northern Asia Crane predictions Chunrong et al. (2017)
Chinese steppe and 
farmlands

Future of great bustard subspecies 
and habitats (niche) predictions

Chunrong et al. (2016)

G. R. W. Humphries and F. Huettmann
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interest on the issue of cheer pheasant conservation and put it on the wider agenda. 
Some progress might be made to help bring this species back using some innova-
tive machine learning techniques (e.g., automated occurrence/density sampling in 
space/time, holistic species distribution modeling) The findings from this study 
further support the need for science-based management (Fig. 1.2.1).

It is easy to understand that machine learning provides progress to a subject 
that stalled for over a decade and where the usual set of quantitative analysis 
cannot provide much further progress. The projects and analyses shown in 
Table 1.2.1 do not only provide analytical advances but also emphasize the need 
to improve data collection and management. Perhaps this is one of the biggest 
improvements provided by machine learning. But as Table 1.2.2 shows, machine 
learning has not reached its potential yet and more is to be done, it must, if we 
want to maintain the biodiversity in the globe and its ecological services.

Last but not least, machine learning can be used for future predictions 
(e.g. Chunrong et al. 2016, Suwal et al. in review), but also for adaptive man-
agement progress (Huettmann 2007). We find that, by now, machine learning 
has shown its benefits and applicability in conservation and awaits urgently to 
become the analytical platform of choice, worldwide.

Fig. 1.2.1 Cheer pheasant (Catreus wallichii; left) and its habitat (right) in the Himalayan 

region 

Table 1.2.2 A selection of machine learning applications and steps of future relevance for 
natural resource management applications (for citations and applications see chapters 
throughout this book and references within). These applications can be applied anywhere 
around the world and at any temporal or spatial scale pending data availability

Application topic How done Why needed

Data mining Mining of compiled databases Obtain best available 
information

Species distribution 
modeling (SDM)

Species-habitat models Spatial information as the 
basis of management

Remote sensing-based 
habitat classification

Classification algorithm Detailed habitat management 
requires ‘maps’

Climate models Climate data numerical models Climate as the key topic for 
human well-being

Forecasting Prediction Pre-cautionary management
Impact predictions Prediction Pre-cautionary management

1 Machine Learning in Wildlife Biology: Algorithms, Data Issues and Availability…
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1.5  Algorithms as a Bottleneck for Wildlife Conservation

If simply judged by the use and publications in the wildlife sciences, some of the 
major machine learning algorithms might be maxent (Phillips et al. 2006), GARP 
(Stockwell and Noble 1992; Stockwell 1994; Stockwell 1999) and random forests 
(Elith et al. 2006), all while linear regressions are still ruling the analytical skill set 
of most wildlife conservation practitioners. Bayesian analytics is growing but only 
carries a small share of the market and is rarely used for high-performance predic-
tions (Elith et al. 2006).

But outside of the wildlife and conservation discipline the picture looks very dif-
ferent. Most software companies are using machine learning for business solutions. 
Market analysis is done with machine learning, so are web searches and social 
media analyses to great success (see for example, the Cambridge Analytica scandal 
of 2018 and the 2016 United States general election; arguably won due to the influ-
ence of machine learning targeting advertisements to specific groups of people). 
Thus, the reality is that machine learning as a discipline is much bigger than just 
maxent, GARP or random forests. The discipline of SDM (Guisan and Zimmermann 
2000), widely centered on the maxent algorithm designed for point-and-click usage, 
has been limited by lack of exploration into alternatives (N.B. open source imple-
mentations of maxent are becoming available in the R programming language; 
Phillips et al. 2017). Some overviews and applications of new analytical approaches 
in wildlife conservation include: Elith et al. (2006), Jiao et al. (2016), Hochachka 
et al. (2007), Humphries and Huettmann (2014), Thessen (2016) and Huettmann 
and Ickert-Bond (2017).

There are easily over 100 machine learning algorithms (including their deriva-
tives in various programming languages; Fernandez- Delgado et al. 2014). Therefore, 
it is easy to be quite liberal in the choice of the modeling algorithm and use whatever 
works best (i.e., what gives us the best predictions). We know that each algorithm 
has its pros and cons, and ideally, an entire ensemble of models is to be used to help 
average out any model bias. Here we list several broad categories of machine learn-
ing algorithms that have been applied in wildlife biology and ecology (Table 1.2).

1.6  Data Issues and Availability Related to Data Mining 
and Machine Learning

One of the biggest criticisms that the machine learning community receives is that 
these algorithms are ‘black boxes’ (Craig and Huettmann 2008). This suggests that 
we arbitrarily input data into an algorithm, and then some sort of ‘voodoo magic’ 
occurs, and an output is given. This is an unfortunate misnomer and has led to 
“machine learning” being considered a ‘dirty term’ in some circles. However, we 
posit here that we use ‘black boxes’ all the time (e.g., cars, computers, mobile 
phones, social media, etc.…). The term itself is quite subjective, particularly at a 
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Table 1.2 A selection of machine learning algorithms and associated descriptions most commonly 
used in ecology and wildlife biology

Algorithm Description

MAXIMUM 
ENTROPY

Maxent is a specific software package that has been used almost 
exclusively for species distribution modeling, and the various wrappers for 
this algorithm have been designed as such (Phillips et al. 2006; Phillips 
et al. 2017). The input tends to be a series of presence-only locations and 
environmental covariates. Maxent calculates a set of constraints on the 
environmental covariates and then estimates the probability of presence by 
measuring uncertainty within the set constraints. Maxent works by 
‘thinking’ in terms of covariate space as opposed to geographic space 
(i.e. we guess a species occurs in a certain range of values, say 
temperature, in proportion to the availability of those range of values). 
A full statistical description can be found in Elith et al. (2011).

CLASSIFICATION 
AND 
REGRESSION 
TREES (CART)

This is the earliest of the tree-based methods (Breiman et al. 1984) and 
forms the basis for both boosted regression trees and random forests. 
CART works by randomly selecting variables and splitting the variable 
space (e.g., the x-y plane of dependent vs independent variables). The 
variance of the data on each side of the split is measured and recursive 
partitioning is applied to determine the split that minimizes the variance of 
the two data ‘clouds’. This split forms a sort of ‘if/then’ conditional 
statement (e.g., if a data value of variable x > 2, then go down the left 
branch, or if the data value of variable x < 2 go down the right branch). 
A series of these branches form a tree, which can be queried for the most 
important predictors (independent variables). Predictions to data are made 
by applying the rule set to new data points.

BOOSTED 
REGRESSION 
TREES

This algorithm is derived directly from CART, and is essentially a series of 
iterated trees, where at each iteration the error is minimized through the 
application of a loss function (e.g., root mean squared error). The point of 
this method is to begin with poorly performing variables and trees, and 
re-fit those using the residuals from the previous model. Predictive 
performance is measured at each iteration and when performance starts 
getting worse, the iterating stops. The final tree ends up being a linear 
combination of all the trees and has the lowest amount of error (Friedman 
2002; De'ath 2007). Since many trees are used, it can be seen as a sort of 
ensemble model (although not in the traditional sense in that there is no 
model averaging). There is a clever extension and optimization of this 
approach in some commercial algorithms and can be linked with ‘bagging’ 
techniques (see details below). Those latter concepts tend to be among ‘the 
best’ available (i.e., make the best predictions and are the easiest to 
interpret).

RANDOM 
FORESTS

This method is derived from applying a ‘bagging’ method to CART 
(Breiman 2001b) and is probably the most successful (or most popular) 
machine learning algorithm used in ecology (a list of papers would be too 
extensive but see Cutler et al. 2007 for an introduction to their use in 
ecology). It is an ensemble modeling method based on a specific 
bootstrapping technique. Many large trees (many branches) are constructed 
by sampling with replacement, and the final model ends up being an 
average of all those trees (by votes in classification schemes or averaging in 
regression schemes). Random forests improves on bagging by making the 
splitting process more efficient through the use of out-of-bag data instead 
of computationally expensive k-fold cross-validation. Many 
implementations of random forests exist on varying platforms.

(continued)
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Algorithm Description

GENETIC 
ALGORITHMS

Genetic algorithms are derived from the process of evolution wherein 
competing solutions ‘evolve’ over time until an optimal solution is reached 
(Holland 1975; Olden et al. 2008; Fernández et al. 2010). These have been 
used in ecology to a limited degree under the acronym GARP (genetic 
algorithm for rule set production; Stockwell and Noble 1992). GARP has 
only really be used in ecological niche modeling to date (Elith et al. 2006; 
Peterson et al. 2007) but could be extended to other problem sets. Genetic 
algorithms work by creating a series of random ‘solutions’, which are then 
‘mutated’. The best solutions are selected from these and then recombined 
or re-‘mutated’. However, current implementations of genetic algorithms lag 
behind other machine learning tools and traditional statistical techniques can 
outperform these due to their tendency to over-learn (over-fit) the data 
(Olden et al. 2008).

Bayesian machine 
learning

Based on Bayes’ theorem (Laplace 1986; one of the oldest statistical 
concepts), these methods work by building an understanding of systems 
through the expression of probabilities and updating of those probabilities 
with new evidence. In a machine learning context, Bayesian methods can be 
applied to classification, where the likelihood of membership to each of the 
classes is calculated for each of our data points, and new data are assigned to 
the class with the highest likelihood. This method can give good results with 
few training data (Kotsiantis et al. 2006) as they use “prior” information on 
the parameters of the model, that help inform the outcome. However, a good 
ecological knowledge of the system at hand is not always possible, and the 
choice of prior distributions often require a ‘best guess’.

SUPPORT 
VECTOR 
MACHINES

This method is not commonly used in ecology, but it has some merit for both 
classification and regression. The essence of support vector machines lies in 
x-y planes, where data are separated by straight lines. The lines are created by 
making the margins the largest possible difference between all the points (see 
Fig. 6 in Thessen 2016). Data are classified or predicted based on which side 
of the margin they fall into. These are trained in an iterative fashion and can be 
tuned using other functions in cases where data are ‘messy’ (as in ecological 
data). See Kotsiantis et al. (2006) for a detailed description of support vector 
machines.

ARTIFICIAL 
NEURAL 
NETWORKS

This ‘machine learning algorithm’ is the basis for much of the image and 
vocal recognition software that exists currently, and also the basis for 
many of the artificial intelligence algorithms that currently dominate the 
technological world. With the advent of ‘deep learning’, neural networks 
have taken the center stage in the machine learning community but are 
actually one of the first machine learning methods to gain popularity in the 
1970s and again the early 1990 (backward propagation etc). They work by 
simulating the way the human brain processes information (Recknagel 
2001; Hsieh 2009). Input data are taken into a series of ‘nodes’ in the form 
of the independent variables. These data are weighted in the links between 
nodes and then passed to the next level, where information about those 
data are extracted, weighted, and passed to a next set of nodes. This could 
be viewed as a sort of ‘conveyor belt’, except using back-propagation, 
errors can be corrected. These algorithms are exceptionally difficult to 
program (though this is changing rapidly) and are very efficient for high 
dimensional data. See Hagan et al. (2014) for a detailed description of 
artificial neural networks.

Table 1.2 (continued)
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time when a plethora of easy-to-follow tutorials exist for free on the internet (see for 
instance https://www.r-bloggers.com/in-depth-introduction-to-machine-learning-
in-15-hours-of-expert-videos/ for an in-depth breakdown of machine learning or 
Hastie et al. 2009).

There is no mystery to machine learning algorithms given enough time to study 
their inner workings. They have been programmed by people with a thorough 
understanding of machine learning tools and can be decoded and re-traced. We 
believe the ‘black box’ argument is incorrect as an objective a criticism of machine 
learning. While we appreciate the difficulty in having to decode these methods, 
particularly without the computational training required to do so (we have all been 
there, and continue to learn to this day), a fairer thing to say would be “machine 
learning is a black box to me, and I should strive to learn about it”.

Sometimes, the ‘black box’ argument turns into “where is the code?”. This could 
be turned around to GAMs, GLMs, GLMMs, LMs, and other frequentist methods 
as well. We put inputs in, we read the and interpret the output, but there are few 
people who know the exact inner workings of the code (save for those fluent in 
programming languages). The only difference is that frequentist methods have been 
around for so long, and that the mathematical equations are taught to us as students, 
so we claim to understand them better. This would easily change if the inner work-
ings of machine learning were taught the same way. Either way, this is why trans-
parency is key in the sciences. If a machine learning scientist can show the code 
from input to predictions (from scratch, without using any pre-packaged libraries in 
R, for example), while someone else comes along and simply uses the ‘lm’ (linear 
modeling) function in R, which one is a ‘black box’? The point we strive to make 
here, as stated above, is that the term ‘black box’ is really not objective. Getting past 
the notion of the ‘black box’ as an objective criticism and turning it into a ‘transpar-
ent box’- or at least a grey box - would greatly help ease ecologists into the use of 
machine learning algorithms.

Open access code and data are a must for data mining and machine learning 
work. Not just to get past the stigma of the ‘black box’, but also for scientific trans-
parency. Science operates (or at least, in our opinion, it should) on the tenet that 
another scientist should be able to come along and replicate experiments exactly 
and get the same results. This ensures that our work remains truthful and honest 
(e.g. Zuckerberg et al. 2011). To do this, the entire workflow (i.e. code and data) 
must be available and formatted in a way that someone could come along and easily 
run the analysis. We would recommend that the data sources are adequately refer-
enced and if possible, a datafile (either a database or a flat spreadsheet) with all the 
pertinent data are provided. This is not typically done, however, and certainly not 
with well documented metadata. An argument for this has been out of fear of ‘scoop-
ing’, which is not documented and very rare to occur in ecology.  In some cases 
where data could be used by malevolent members of the public to harm a species, 
there is some argument towards restricting data but making it available to other 
scientists (Tulloch et al. 2018).

The metadata associated with a dataset is the data that describes its format and 
workflow (i.e., the description of how data and code are applied to create the output) 

G. R. W. Humphries and F. Huettmann
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as well as contact information for those involved in its creation (Huettmann 2015). 
Although this concept has been around for more than 10 years, metadata is rarely 
included or mandated upon submission to most journals. Although a somewhat 
painstaking process to some people, it is another important part of science to ensure 
transparency (Huettmann 2007). A smart budget for any project should take this, 
and other data management techniques, into account (i.e., by including salary time 
for preparing metadata and curating code and data sources).

Data management in and of itself requires a whole separate book, and its impor-
tance in ecology is highly under-stated (Zuckerberg et al. 2011; Huettmann 2015). 
Within our field, there is not a ‘best practice’ guide, but it is greatly needed. Good 
data management techniques such as proper computer filing systems, documenting 
code, documenting spreadsheets, metadata, backing up, redundant hard drives, high 
quality software and hardware, etc. ensure long-term survival of data and the sci-
ence we do. It is a form of scientific accounting, which is non-existent in our current 
system.

1.7  Workflows

With the above-said, entire workbenches (i.e., code, or graphic user interfaces for 
running machine learning algorithms) exist, which means that if a scientist docu-
ments which software version is used (and the exact settings) and provides their 
dataset, the work can be repeated (even if we do not have the underlying code). 
A classic workbench for species distribution modeling is OpenModeler (Sutton 
et  al. 2007), which uses data from the Global Biodiversity Information Facility 
(GBIF; Flemons et al. 2007). However, there are others out there (e.g., Maxent, 
Salford’s predictive modeling suite, or AZURE with Microsoft), some of which are 
100% free. However, as we have stated, ensuring all the relevant settings are 
reported is incredibly important for various reasons, e.g. reputation, science accu-
racy, liability and sustainability. We would advocate more for the use of coding 
whenever possible.

When using large datasets or doing computationally heavy calculations, tasks are 
frequently farmed out to distributed networks (the cloud), high performance com-
puters (super computers), or clusters (groups of local computers working together). 
When it comes to workflows, this is where things start to become very complex. The 
cloud is amorphous as it is (Chap. 18), and how it exactly splits computations across 
multiple machines is somewhat mysterious to non-developers. This provides an 
interesting conundrum for us as ecologists because aside from saying “this process 
was run on a super computer”, we are generally at a loss as to the computing details. 
Furthermore, most supercomputers require specialized access, therefore meaning 
that the analysis in question is not easily repeatable. If computations are sent to the 
cloud, for example, the exact method for doing this should be described (e.g., if a 
cloud service that creates a virtual machine is used, the details of that virtual machine 
are important).

1 Machine Learning in Wildlife Biology: Algorithms, Data Issues and Availability…
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1.8  Citizen Science

One of the more common problems in ecology is what to do when data are scarce. 
We argue that we should be looking for any evidence we can get, from anywhere we 
can get it. While citizen science gets widely criticized for its various design issues 
according to classic science, the reality is that it floods web portals (e.g., eBird and 
GBIF). The amount of information in these portals easily classifies as big data, and 
we, as ecologists, are not prepared (quantitatively or philosophically) to deal with 
the quantity of data now presented to us. Citizen science data is extremely complex 
and widely under-analyzed, so much so that the use of machine learning analyses 
(e.g. Artificial Neural Networks) becomes almost a requirement in order to handle 
the challenges in these datasets (sensu Huettmann and Ickert-Bond 2017).

The critics of citizen science are slowly realizing that the collection of data by 
the general public does not take away from traditional scientific methods, but actu-
ally adds to them (see the hashtag #CougarOrNot on Twitter for an example, a 
‘game’ by M LaRue for getting people to identify cougars from cameras by popular 
vote and expert opinion). This is important to note because funding issues are 
becoming increasingly problematic with the rise of Nationalism in developed coun-
tries and other problems. We need to leverage as many data sources as possible for 
more efficient progress of conservation efforts. Although citizen science data has its 
challenges, there is good information to be extracted from it, and a machine learning 
framework can be very helpful in providing good generalizations. The need for 
techniques to handle big data (from citizen science for example) is one of many 
things that is guiding us as ecologists towards new quantitative methods for under-
standing complex ecosystems.

1.9  A Great Future could be around the Corner, Waiting 
for you Online, and in the Wilderness of this World

With that, we would like to invite the reader to browse through the provocative 
chapters that we present, and celebrate machine learning opportunities as applied to 
species and habitat data. We hope the reader finds these examples and techniques as 
exciting as we do and applies them to advance natural resource management and 
sustainability world-wide. As this field is developing quickly we welcome any feed-
back and updates in the light of decaying wilderness and global habitats. As we aim 
to do in this book and its subsequent chapters, we encourage everybody to engage 
and interact with us and the wider global community on the topic of machine learn-
ing, especially towards applications for global wildlife conservation management 
and associated human well-being.
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Chapter 2
Use of Machine Learning (ML) 
for Predicting and Analyzing Ecological 
and ‘Presence Only’ Data: An Overview 
of Applications and a Good Outlook

Falk Huettmann, Erica H. Craig, Keiko A. Herrick, Andrew P. Baltensperger, 
Grant R. W. Humphries, David J. Lieske, Katharine Miller,  
Timothy C. Mullet, Steffen Oppel, Cynthia Resendiz, Imme Rutzen,  
Moritz S. Schmid, Madan K. Suwal, and Brian D. Young

2.1  Introduction

Over a decade ago, Leo Breiman (2001a) wrote: “There are two cultures in the use 
of statistical modeling to reach conclusions from data. One assumes that the data 
are generated by a given stochastic data model. The other uses algorithmic models 
and treats the data mechanism as unknown. The statistical community has been 
committed to the almost exclusive use of data models. This commitment has led to 
irrelevant theory, questionable conclusions, and has kept statisticians from working 
on a large range of interesting current problems. Algorithmic modeling, both in 
theory and practice, has developed rapidly in fields outside statistics.”

“…There is such a thing as being too late. This is no time for 
apathy or complacency…”

Martin Luther King Jr
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Understanding the complex relationships between animal species and their 
habitats, and classifying and predicting the responses of species to existing or novel 
environmental conditions is one of the primary challenges in ecology and conserva-
tion (Wilson 1998; Mac Nally 2000; Strogatz 2001). Machine learning (ML) is 
based on the principle that computers (‘the machine’) are effective tools for detect-
ing patterns in data and making predictions based on those patterns (Hastie et al. 
2009; Strobl et al. 2009). ML consists of many (over 100) algorithms (Fernandez- 
Delgado et al. 2014), which are even more powerful when ‘ensembled’ (Hastie et al. 
2009). The human brain is challenged to grasp the complexities of ecological sys-
tems; it can hardly compete with modern computers and ML algorithms for gaining 
insight into the 1000’s of dimensions these systems encompass. If the learning pro-
cess using data from ecological systems is successful (and well tested), the recog-
nized patterns can be generalized and used for classification, prediction, subsequent 
inference and extrapolation of complex data. These are critical components for 
achieving science-based conservation management (see Figs.  2.1 and 2.2 for an 
example and management schema). This approach can be applied to virtually any 
data and it eliminates the need to specify, a priori, generally untested and poten-
tially biased assumptions regarding the underlying statistical distribution of the data 
(Breiman 2001a); as a consequence, ‘self-fulfilling prophecies’ are avoided by 
design (compare also with Kéry and Schaub 2012). In spite of the fact that available 
data may lack a traditional research design, ML algorithms can be used to model 
and provide insight into the complex, nonlinear relationships that are typical of real 
ecological systems. This presents a paradigm shift affecting not only data treatment 
and analysis (Breiman 2001a; Hastie et al. 2009; Huettmann 2005, 2007a), but also 
monitoring schemes (Magness et al. 2008), specifically the understanding and man-
agement of natural resources (Huettmann 2007b) and the way institutions carry out 
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Fig. 2.1 (a) Photo of the globally endangered Red Panda (Ailurus fulgens; taken by S.  Tashi 
Lama/Global Primate Network-Nepal during 2009 in the Choyatar Community Forest in Eastern 
Nepal at an elevation of ~2400 m asl.). (b) Machine Learning predictions (RandomForest ensem-
ble predictions of Red Panda ecological niche in the Hindu-Kush Himalaya region; Kamel et al. in 
review)

Fig. 2.2 Flow Chart of 
machine learning methods, 
and how it can be used in 
wildlife, biodiversity and 
habitat analysis, using 
‘presence only’ data and 
others
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and support these endeavors (Huettmann 2012). This is a very relevant topic for 
sustainability. Arguably, if one considers the very poor state of the world’s biodiversity 
and habitats (e.g., Mace et al. 2010; Huettmann 2012) it comes as an ethical require-
ment to take advantage of the objectivity and power presented by ML approaches. 
ML is ‘best available’ science! ML approaches have been successfully applied for 
decades in disciplines such as genetics, medicine, engineering industry, finance, and 
in some environmental sciences (Bureau et al. 2005; Cooper et al. 1997; Cutler et al. 
2007; Dhar 1998; Galindo and Tamayo 2000; Goldberg and Holland 1988; Kononenko 
2001; Kubat et al. 1998; Lee et al. 1996; Reich and Barai 1999; Rosten and Drummond 
2006; Shipp et al. 2002), but less so in the wildlife and animal sciences, including 
behavioral research (e.g. primatology).

Habitat-species/biodiversity relationship modeling is one of the fastest growing 
sub-disciplines in ecology, as judged by rising citations of such publications (e.g. 
Elith et al. 2006). However, wildlife and ecology disciplines currently still choose 
to rely heavily on stochastic data models, with their associated use of p-values and 
the concept of parsimony (Akaike Information Criterion [AIC]), to describe and 
quantify complex systems (Mac Nally 2000; Mogie 2004; Whittingham et al. 2006; 
Breiman 2001a). This has translated to the virtually dogmatic application of AIC for 
inference (e.g. Johnson 1999; Anderson et al. 2000, 2001; Anderson and Burnham 
2002; see Guthery et al. 2001 and Stephens et al. 2007 for a discussion). These tra-
ditional analyses generally avoid ML or use it in a constrained fashion (Braun 2005; 
Hochachka et al. 2007) and almost universally advocate the theoretical development 
of biologically plausible and constrained statistical data models prior to analysis 
(Burnham and Anderson 2002) before the actual confirmatory test has been com-
pleted. It resembles an analysis where the outcome is already known before it was 
tested. Arguably, this approach to modeling requires a level of a priori knowledge that 
is typically absent in real world ecology studies, particularly for broad scale analy-
ses. In practice, many real-world situations involve huge datasets where the number 
of plausible models is not easy to identify, widely unknown or is too large to enu-
merate, and the prior information required to support the formulation of appropriate 
statistical data models is unavailable or weakly understood (Hochachka et al. 2007). 
Even with extensively studied species, previously unknown relationships may be 
identified that change the theoretical framework and interactions, and which 
require completely new models and explanations to be developed. The power of 
ML applications is that they can extract and infer the relevant signals and relation-
ships from complex data without any prior knowledge of the nature and shape of 
those relationships (Breiman 2001a; Hochachka et al. 2007). This trait makes ML 
techniques particularly applicable for data exploration and in a time of increased 
availability of powerful computers (Cushman and Huettmann 2010), e.g. ‘cloud- 
computing’, and with an ever growing supply of data from global online data-
bases. At a minimum, ML applications can intelligently guide the preliminary 
exploration and analysis of vast amounts of data, and they do so in less time and 
with greater efficiency than hitherto possible using traditional statistical approaches 
(see e.g., Huettmann 2007a; Hochachka et  al. 2007; Kampichler et  al. 2010; 
Hochachka et al. 2012).
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2.2  Popular and Widely Available Machine Learning 
Techniques

ML is actually a generic term for a broad array of currently over 20 major algo-
rithms that use different approaches, alone or in combination, to extract information 
from data (Fernandez-Delgado et al. 2014 for a wider technical overview of algo-
rithm software code). In ecology, some of the most widely used ML techniques 
include: Classification and Regression Trees (CARTs; De’ath 2002), random forests 
(Cutler et al. 2007; Hochachka et al. 2007); boosted regression trees (De’ath 2007; 
Elith et al. 2008 [the powerful version following Friedman 2002 is also known as 
stochastic gradient boosting and marketed commercially as TreeNet by Salford 
Systems Inc.]), Maximum entropy (Maxent; Phillips et  al. 2004, 2006; Baldwin 
2009; Elith et  al. 2011) as well as artificial neural networks, genetic algorithms, 
ecological niche factor analysis (ENFA); and support-vector machines (see Hsieh 
2009 and Hegel et al. 2010 for overview). There are a number of excellent introduc-
tory texts and resources that explain the basic underlying principles and advantages 
of these and other ML techniques, and we refer interested readers to these texts 
rather than provide more detail here (Fielding 1999; Recknagel 2001; Olden et al. 
2008; Hsieh 2009; Hegel et al. 2010).

Rapid expansion in knowledge and computing power has led to the evolution 
of ML algorithms. For example, both, boosted regression trees and random for-
ests are powerful modifications and extensions of classification and regression 
tree (CART) analysis (De’ath and Fabricius 2000; De’ath 2002). They work by 
combining hundreds or thousands of individual trees in a single model (the “for-
est”). Development of more powerful algorithms is ongoing, and many tech-
niques have an active development community (see for instance randomForest 
package and documentation in R, https://cran.r-project.org/web/packages/ran-
domForest/randomForest.pdf and en.wikipedia.org/wiki/Random_forest). For 
example, progressive development and extension of the random forests approach 
(Table  2.1) includes a conditional inference framework for improved variable 
selection (implemented in the R package ‘party’; Hothorn et  al. 2006; Strobl 
et  al. 2008), or extensions for survival analysis (Random Survival Forest, 
Ishwaran et al. 2008). Of specific note should be the fact that the settings, fine-
tuning and implementation details of the software code can be key drivers for the 
performance of algorithms, beyond the initial algorithm group they come from. 
ML algorithms are used for imputations and are beginning to be incorporated 
into latent state variable models to account for the imperfect detection process 
that is pervasive in most ecological field data and for an analysis (Hutchinson 
et al. 2011). Several widely used statistics programs now include ML implemen-
tations (e.g. Statistica, SPSS, SAS, MINITAB), and many new ML methods are 
freely available and accessible in the R computing environment (R Core Team 
2016). Two of the ML approaches that are frequently used for predicting the 
distribution of species from opportunistic sightings or museum collections are 
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Maxent and Ecological Niche Factor Analysis (ENFA) (e.g. via the Biomapper 
algorithm: www2.unil.ch/biomapper/). These two techniques are ‘presence-
only’ or ‘location only’ modeling techniques that require only species presence 
records, but no confirmed absence locations as input data (Maxent, e.g., creates 
them internally). The recent establishment of machine learning platforms like 
TensorFlow, which can be easily accessed via R packages such as ‘keras’, ‘greta’ 
or ‘tfestimators’ has facilitated applications to automatically process monitoring 
data (Bruijning et al. 2018; Weinstein 2018) or detect wildlife crimes (Di Minin 
et al. 2018).

We expect to see continued progress in the development and enhancement of ML 
algorithms over the coming years for addressing a wide range of problems. The 
application of several popular ML methods to biological data indicates that ML can 
be regarded as a serious and valid addition to standard statistical analysis methods. 
The adoption of ML is nothing short of a paradigm shift in how we manage the earth 
and its science.

2.3  Applications of Machine Learning in Wildlife Biology

With the rapid development and evolution of increasing numbers of ML algorithms 
worldwide (Hastie et  al. 2009; Fernandez-Delgado et  al. 2014), ML sits at the 
forefront of science for analysis, inference and interpretation of massive datasets. 
It makes for a ‘deep’ and intellectual science subject affecting the globe, society and 
governance (Huettmann 2007b). Beyond the application and management issues, 

Table 2.1 Overview of some codes and different implementations for RandomForests

Citation of 
code Name of code

Software 
platform of 
code Details of code

Breiman and 
Cutler

RandomForest FORTRAN The orginal RF code

Salford 
Systems Ltd.

RandomForest Windows and 
UNIX

An improved version of the RF code and for 
commercial, industrial and research use

Liaw and 
Wiener

RandomForest R An early implementation of the original 
code

Crookston and 
Finley

YAIMPUTE R An extension of RF code for imputations

Hothorn, 
Hornik, and 
Zeileis

Party R An extension of RF code for more accurate 
variable importance metrics for categorical 
predictors

Thuiller et al. 
(2009)

BIOMOD 1 & 
2

R An ensemble of model algorithms, which 
includes RandomForest but also many other 
machine learning algorithms

For more details, please see text, and also check with en.wikipedia.org/wiki/Random_forest

F. Huettmann et al.

www2.unil.ch/biomapper/
en.wikipedia.org/wiki/Random_forest


33

it often involves how to grasp and embrace complex algorithms and data, as well as 
advanced computational applications. This may well be one reason that ML has not 
yet been more widely embraced by ecologists and managers (Hochachka et  al. 
2007; Olden et al. 2008; Drew et al. 2011). Some of the resistance to its wider adop-
tion may further stem from an educational and cultural bias, and the fact that the 
ML approach to classification/prediction is unfamiliar and, hence, gets confused 
(Mac Nally 2000) or perceived as a mysterious unexplored ‘black box‘. However, 
as interest in ML increases, and is being taught in university programs, user-friendly 
software and code are becoming more widely available and more easily applied to 
biological problems (see for instance Elith et al. 2008; Olden et al. 2008; Elith et al. 
2011). To our knowledge, there are three principal applications of ML in ecology: 
(1) data exploration and ‘data mining’ (i.e., the extraction of signals and relation-
ships from data sets and characterization of data structure); (2) identification of 
important variables, classification of patterns, and prediction of patterns and classes 
beyond the data used to construct the model (training data); and (3) as a precursor 
or input into more detailed mathematical analyses or modeling exercises and spe-
cific hypothesis testing. ML can be used for just one or for all of these applications, 
and it can also be used in combination with more traditional analyses including 
algorithm comparisons (Elith et al. 2006; Ritter 2007), variable selection (Murphy 
et al. 2010; Hervias et al. 2013; Buechley and Şekercioğlu 2016), determining the 
number of target groups or behaviours (Guilford et al. 2009; Oppel et al. 2011), as 
an aid in scientific hypothesis generation (Stephens et al. 2007), or as part of an 
improvement loop in a workflow when new data and analysis options become 
available (similar to adaptive management; Huettmann 2007b).

For the biologist, data exploration, identification of important variables, and 
prediction are probably the most appealing uses of ML, and likely sufficient for 
most applications (e.g. see citations in Elith et al. 2006, and in Drew et al. 2011). 
More quantitatively-inclined users who intend to pursue mathematical models (e.g., 
resource selection functions or RSFs, Manly et al. 2002; see Venables and Ripley 
2002; Hastie et al. 2009 for other applications) will also benefit from the ML insights 
regarding underlying patterns in the data (Ritter 2007 for an example). Further, ML 
offers great applications for mixed models, random effects, and even specifically, 
for data cloning (Jiao et al. 2016; Buston and Elith 2011). Advanced users will want 
to take advantage of flexible platforms such as R, SAS or Matlab in order to pro-
gram custom-algorithms. These advanced applications allow the running of multi-
ple simulations, assessment of the sensitivity of models to variation in particular 
parameters, and the linkage of data between model output and spatial (Geographic 
Information System [GIS]) or non-spatial databases.

Many datasets, particularly those collected for global (or large scale) analyses, 
originate all, or in part, from incidental records, or by citizen scientists; they rarely 
satisfy the prerequisites of a valid research design such as the ones mandated and 
outlined by Manly et al. (2002), Braun (2005) and Garton et al. (2005). Because of 
widely implemented imputation algorithms for missing data (Crookston and Finley 
2008 for details and R code), and lower sensitivity to outliers and data gaps (Craig 
and Huettmann 2008), ML can handle these suboptimal data better than classical 
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statistical methods. This then allows for the exploration and analysis of data that 
may provide insights that might otherwise remain unknown and unanalyzed (see 
Ritter 2007 for caribou, Huettmann et al. 2011 for seabirds). ML is a great tool to 
explore data perceived as ‘marginal’ for their information content. This ability to 
utilize all available data may be vital for helping inform decision makers and guide 
future research using ‘best available data’ in a rapidly changing world.

The growing literature involving the application of ML methods indicates that it 
is becoming a rather valuable tool for wildlife science and management (Hochachka 
et al. 2007; Drew et al. 2011); its use in wildlife biology, biodiversity science, and 
conservation management come from projects worldwide and they cover diverse 
applications (see Table  2.2 for examples). Currently, ‘presence-only’ models are 
probably the most widely known case examples of ML in the biological sciences. 
The predictive capabilities of Maxent and other ML algorithms mentioned here per-
form rather well when compared to more traditional modeling approaches (Elith 
et al. 2006; Pittmann and Huettmann 2006; Buchanan et al. 2011; Hardy et al. 2011; 
Oppel et al. 2012). Recent evaluations and some misunderstandings of the generic 
use of ML for modeling presence only data by frequentist mindsets (Royle et al. 
2012; Yackulic et al. 2012) have generated rebuttals and lively discussion in the lit-
erature regarding the appropriate use and statistical interpretation of such models 
(Hastie and Fithian 2013; Phillips and Elith 2013). These interactions also exposed 
many misperceptions and misunderstandings about the use of ML in ecology. 
Overall, ML applications are in line with Braun (2005) and Stephens et al. (2007) 
because they provide a better understanding of the data and issues to be studied and 
addressed; they are the latest and ‘best available’ tools for inference and generaliza-
tion (Breiman 2001a), truly based on ‘best available’ science.

2.4  Strengths and Some Described Weaknesses of Machine 
Learning

Three main strengths of ML algorithms at hand are i) the ability to model complex, 
nonlinear relationships without having to make the a priori assumptions that fre-
quently constrained parametric approaches, ii) the ability to simultaneously use and 
evaluate large or messy data sets, and iii) to achieve this very quickly. ML algo-
rithms overcome several problems that are frequently encountered in ecology and 
which are difficult to solve with conventional parametric data models. Because the 
structure of most ML algorithms automatically incorporates statistical interac-
tions between all predictor variables, there is no need to specify and interpret 
complex interactions a priori. Variable interactions are incorporated because of 
the use of ‘recursive partitioning’, as employed in CART-based methods. That 
way one also retains the ability to model and detect those interactions if they 
exist in the data. In addition, most ML algorithms can cope with missing data by 
either ignoring or imputing missing values. These algorithms are often less 
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Table 2.2 Applications of machine learning algorithm (RandomForests as an example)

Name of application Citation Details of application

‘Presence/location 
only’ modeling for 
wildlife research and 
management

Baldwin (2009) This publication presents a classic prediction 
method for ‘presence only’ data, based on 
Maxent, and it reviews numerous applications and 
for wildlife research and management.

Edrén et al. (2010) This paper uses satellite tracking data to model 
the distribution of a species. Naturally, tracking 
data are presence-only, as they only provide 
information on where the tagged animals were.

Modeling a 
continuous response 
variable

Yen et al. (2004) This publication provides predicted population 
estimates for a seabird of conservation concern in 
the study area, based on relative abundance 
indeces.

Wei et al. (2011) This publication presents the first global 
prediction of benthos biomass distribution.

Humphries (2010) This M.Sc. thesis, and its publications (in review, 
in press) presents global predictions of 
Dimethylsulfat (DMS; a climate change gas) and 
how it links with storm petrels for their olfactorial 
seascapes.

Modeling resource 
selection function 
design

Popp et al. (2007) This study models and infers the resource 
selection of howler monkeys, but not based on a 
proper research design for habitat preferences 
according to Manly et al. (2002).

Modeling species 
distribution via GIS 
without a proper 
resource selection 
function design

Huettmann et al. 
(2011)

This study models and infers the resource 
selection of circumpolar arctic seabirds, based on 
compiled presence only data, and not based on a 
proper research design for habitat preferences 
according to Manly et al. (2002).

Multispecies 
modeling

Lawler et al. (2006, 
2011)

This two studies show the use and assessment of 
climate change models, and when model 
predicting many species at once.

Miller et al. (2014) This study uses many benthos species in complex 
estuaries of Southeast Alaska and with many 
predictors

Open source and open 
access modeling

Ohse et al. (2009) This publication uses compiled, open access 
presence only data for white spruce predictions in 
Alaska and makes them available and for further 
use.

Young (2012) This publication uses compiled, open access 
forest inventory data for boreal forest coverage 
and species diversity predictions in Alaska and 
makes them available and for further use.

Booms et al. (2009) This publication model predicts the distribution of 
a high profile species, based on open access nest 
data and open source code.

(continued)
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Table 2.2 (continued)

Name of application Citation Details of application

Remote sensing and 
landscape forestry 
application

Evans et al. (2011) A terrestrial application for vegetated landscapes, 
using an advanced RandomForest application and 
predictors.

Landscape clustering Murphy et al. 
(2012b)

This application shows how regionalized climate 
data can be clustered into ‘Cliomes’ using 
RandomForest and other approaches, and for 
future predictions.

Rapid assessment Kandel et al. (2015) This study makes use of open access ‘presence 
only’ data for an endangered species (red panda) 
for the entire Hindu Kush-Himalaya (HKH) 
region, covering 11 countries. While this model is 
perhaps not perfect, it represents the first, valid 
and rapid model for this species of global 
conservation concern.

Ensemble models Jones-Farrand et al. 
(2011), Hardy et al. 
(2011), Oppel et al. 
(2012)

Ensemble models are becoming popular, and here 
an approach is shown for commercial fisheries 
and seabird species using ‘averaged’ ensemble 
models across machine learning algorithms.

Forecasting and 
backcasting

Murphy et al. 
(2012a,b)

Climate and Ecological Niche Forecasting for 210 
using regionalized climate data for Alaska and 
northern Canada.

Wickert et al. 
(2010)

Backcasting and re-assembling the historical 
distribution of the ecological niche for White 
Storks in Easten Prussia for 1930s.

Booms et al. (2011) Back- and Forecasting of 200 years for Peregerine 
Falcons and their prey items in space and time for 
Alaska.

Alternative 
comparisons of 
statistical approaches

Ritter (2007) This study assembled for the first time Caribou 
data, and modeled them for a comparison of 
GLMs with CARTs.

Yen et al. (2004), 
Elith et al. (2006), 
Oppel et al. (2012), 
Fox et al. (2017), 
Mi et al. (2017)

These studies all compare species-habitat 
correlations across many methods, e.g. 
correlational, p-value, parsimonial and machine 
learning analysis.

Experimental use of 
machine learning

Wisz et al. (2008) This study tests via modeling the impacts of 
sample size on model prediction performance.

Elith et al. (2006), 
Hardy et al. (2011)

Comparisons are made among machine learning 
algorithms and for multispecies analysis (one 
species at a time).

Data mining Craig and 
Huettmann (2008)

This model assesses data quality issues and in 
telemetry data and for filtering. It uses 
simulations and finds no relevant performance 
loss when data carry noise of up to 30%.

Decision-making 
process and habitat 
selection

Oppel et al. (2009a, 
b)

This study quantifies how animals make 
decisions, mechanistically, and using satellite 
telemetry data.

(continued)
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sensitive to outliers in the data, and some can even detect outliers, as well as track 
the major signals of interest.

Further, ML performs very well for mimicking and classifying existing patterns. 
In our experience, valuable time can be saved when using ML because of the con-
straints imposed by standard frequentist approaches, which are often demanding in 
terms of time, statistical expertise and a priori knowledge. The necessary frequen-
tist steps of formulating valid statistical data models that attempt to approximate the 
complexity of ecological systems, determining whether model assumptions are met, 
testing null hypotheses, and evaluating which set of models receives the most sup-
port can be facilitated by the information provided through ML or even avoided. 
With ML, more attention can be paid to data exploration, investigation of the rele-
vant interpretation and ramifications of results, and improving research designs 
(Hochachka et al. 2007; Huettmann et al. 2007b; see Magness et al. 2008 for moni-
toring programs). This allows investigators to concentrate more on the questions 
that need to be addressed, focus on management and good policy outcomes, con-
sider how a study should be improved, and evaluate what needs to be done to 
advance actual conservation management and science as a whole (Stephens et al. 
2007). It allows for providing a truly science-based leadership of the global society. 
From our experience, the traditional quantitative analysis instead often gets stuck 
for months assessing the adequacy of modeling methodology, model fits and how to 
resolve modeling efforts in a parsimonious fashion based on negotiations and com-
promises rather than focusing on the underlying ecological questions of interest.

ML can be used as a ‘black box‘(i.e. a machine that delivers output through an 
ecological correlation that the user does not necessarily understand yet), as well as 
a mathematical tool at various levels of performance and transparency (turning the 
black box into a ‘grey’ box or making it fully transparent, if wanted). This makes 
ML a great platform for introducing undergraduate and high school students to 
 statistical analysis with increments in understanding the entire process. With ML 

Table 2.2 (continued)

Name of application Citation Details of application

Evolutionary ecology Buston and Elith 
(2011)

This study uses serially autocorrelated data of 
reproductive success and introduces a ML 
approach analogous to random effects in 
conventional generalised linear mixed model 
analyses.

Machine learning and 
research design 
optimization and 
assessment

Magness et al. 
(2008)

This study assesses (and simulates) monitoring 
designs and how to optimize them with a focus on 
predictions for management questions.

Lawler et al. (2011) This study reviews and assesses research designs 
and how to optimize them with predictions in 
mind.

Machine learning 
with direct 
management feed-in 
and applications

Magness et al. 
(2008), Miller et al. 
(2015), Han et al. 
(2018)

The obtained results are to inform directly the 
management of natural resources.
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tools, virtually any decision based on empirical data can be quantified and generally 
assessed, allowing for objective decision-making. Lastly, ML encourages scientists 
to debate the performance of hypothesis testing, linear models and model selection 
in the context of wildlife management and ecology. Considering the current state of 
global biodiversity and the shortage of effective science-based management schemes 
(Mace et  al. 2010), a well-thought-out ML application can quickly contribute to 
urgently needed progress. Who would need or want those tools?

Of course, different ML algorithms have varying strengths and weaknesses. It 
can become a ‘science’ to pick, optimize and employ the right algorithm for the 
application, but rapid assessment methods and ensembles can help (Elith et  al. 
2006; Hardy et  al. 2011; Kandel et  al. 2015). Ultimately, ML is just ‘a tool’ to 
extract the main patterns in data, to find outliers and for predictions and testing. But 
it is the best one to do the job. Usually, ML cannot overcome the basic challenge of 
identifying meaningful and appropriate scientific questions and, like any tool, it can 
be misused and misapplied. ML needs an ethical context (see Huettmann et al. 2011 
for Ecological Economics context of ML applications) and approaches have been 
criticized for several reasons; here we outline the most important criticisms we are 
aware of and offer solutions for minimizing or resolving these problems:

Overfitting (i.e., the model provides an excellent fit to one data set with many predictors, 
but the modeled relationships are not transferrable in time and space and to other data sets): 
Depending on the quality of the algorithm used, most ML algorithms incorporate internal 
cross-validation that is designed to reduce the problem of overfitting (‘over specialization’): 
Maxent, random forests, and boosted regression trees (TreeNet) all allow the user to specify 
a meaningful subset of the data that is withheld from the actual model building process (test 
data), against which the model predictions are tested. ML, especially tree-based algorithms 
such as random forests (bagging) and boosted regression trees, can be implemented to pro-
vide virtually a ‘full fit’ to the data, that fits tree splits at every single data point. Despite the 
widely misunderstood claim of ‘overfitting’ and its definition these ‘full fits’ are not neces-
sarily bad (Why would one exclude valid data points?). Instead they describe the data 
exactly and present a starting point to quantify and to learn the patterns in the data for gen-
eralization. They can easily be pruned back to achieve better transferability, if justifiable. 
These ‘full fit’ models also can be relaxed towards ‘stumps’ (trees with fewer nodes and 
higher sample sizes per node) to investigate the additive nature of the data, interactions, and 
to draw more coarse and generalized conclusions. The use of stumps and their explorations 
within the analysis can be necessary when the signal in the data is weak and singular, as is 
often the case with ‘messy’ data, when ecology is complex, or when data are collected 
without a good research design (e.g., ‘presence only’ data sets compiled from incidental 
field observations), or when data contain errors (as is often the case in social science data, 
or when data loggers provide faulty measurements). However, steps as described here help 
to avoid overfit models in such cases.

 i. The other overfitting situation, where data are fit beyond the actual content and 
data themselves, resulting in non-data fits and artifacts (Venables and Ripley 
2002; Elith et al. 2008) is quite rare in good tree-based algorithms and in well- 
done software implementations. The criticism of overfitting often relates to a 
poor algorithm, a poor implementation, or odd use of ML. Overfitting often 
exposes poor use and understanding of the ML statistics and employment. 
Whereas, such things can easily be checked by simply looking at response 
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variables and the model accuracy metric (e.g., available as a running tally in 
bagging methods such as RandomForest, Stochastic Gradient Boosting and 
Boosted Regression Trees. This type of overfitting can be avoided, or at least 
highly minimized, by the underlying optimization algorithm itself, which sug-
gests a tree cut-off that maximizes the predictive performance in relation to 
tree complexity and predictor numbers to be reduced. It is here where very 
good (usually commercial, e.g., TreeNet by Salford, Inc.) algorithm imple-
mentations eventually outcompete. In some cases, we actually have found that 
this optimization method in tree-based methods undervalues the benefit of 
high-dimensional data. Often, it is even set to be too conservative and parsimo-
nious, i.e., it excessively penalizes more complicated but potentially useful 
models. The best hedging against overfitting is the independent evaluation of 
model predictions with external real- world test data that were not incorporated 
in the model (‘confront models with data’).

 ii. “Machine learning is not parsimonious”: The principle of parsimony aims to 
balance the complexity of a model with its explanatory performance. It penal-
izes models that are so complex that they are likely to fit just a single data set, 
and thus would be biased or spurious (Burnham and Anderson 2002; Braun 
2005; Fig. 2.3 for a visualized example). This principle was adopted in ecol-
ogy because in conventional statistical data models, an excessive number of 
parameters can potentially lead to a so-called overfit model that would be a 
poor representation of general ecological relationships and predictors. 
Burnham and Anderson (2002) used this argument a lot to promote model 
selection via AIC, which can also lead to overfit, bias, being uninformative and 
a ritual (Arnold 2010; Guthery et al. 2005; Guthery 2008; Galipaud et al. 2014; 
Brewer et al. 2016). While it is generally assumed to be undesirable to collect 
and process data that may not have large or direct relevance to the research 
question (e.g., due to financial costs), it is generally not necessary to constrain 
the number of variables in ML models. That is because these techniques are 
specifically designed to handle ‘many’ predictors (e.g., 10 to 100’s), noisy 
datasets, and to optimize results within these conditions. Being non-paramet-
ric, ML does not rely much on pre-determined parameters. The underlying 
algorithms automatically ignore variables that do not explain any variation in 
the data (usually expressed by model prediction performance metrics from the 
confusion matrix and ROC; Boyce et al. 2002; Archer and Kimes 2008; Strobl 
et al. 2008). Because the predictive accuracy of ML models tends to be more 
or less insensitive to the number of variables specified, there is no real need to 
adopt and to worry about the principle of parsimony in ML applications 
(Breiman 2001a, b; Burnham and Anderson 2002; Quinn and Keough 2004). 
Usually, the more relevant variables/predictors that can be included in the 
model the better, as it can aid signal detection, information gain and lead to 
better predictions and generalizations; all relevant features to explain events 
are included. However, this may initially result in diffuse answers when many 
different variables affect a population of interest and no key ‘drivers’ can be 
identified, which is a reflection of the ecological complexity of the real world 
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(e.g. Oppel et al. 2017). But a focus on predictions (not model fit) and infer-
ence from that (Breiman 2001a) resolves that issue. ML predictive modeling is 
in stark contrast to the AIC metric and approach where just the major predic-
tors get included and all else are to be fully excluded. The latter approach can 
not only be very labor intensive, but we actually perceive such concepts as 
exclusive and not-informative; they may be useful perhaps to test well-justified 
hypotheses, but they are not suitable to generate hypotheses, new information 
and tend not to generalize well for a valid inference.

 iii. “Machine learning results do not produce a significance metric”: ML 
approaches are not specifically designed to test statistical hypotheses, applica-
tions to use ML are much bigger. Therefore ML applications cannot and should 
not really generate true probabilities (e.g., p-values) as to whether the data 
conforms to certain underlying theories, distributions and pre-determined 
hypotheses (Murphy and Winkler 1992; Mac Nally 2000). Instead, the purpose 
of ML simply is to isolate the major patterns in the data at hand and to develop 
an algorithm to best describe and predict them. This is not a small feat, and it 
allows data analysis and exploration beyond pre-specified assumptions, which 
can result in major achievements. Identifying a classic null-hypothesis prior to 
prediction is not necessary before implementing a ML model. Provided the 
research objectives involve prediction, there is no need at all to adhere to pre- 
defined statistical theory such as expressed in Zar (2009). Although this proce-
dure described by Zar (2009) presents a constraint of the ML power, many ML 
methods actually produce a pseudo-r2 metric, similar to the variance explained 
in a linear model. This pseudo-r2 can be useful for ranking similar models 
generated by the same ML algorithm and can be particularly helpful in the 
 preliminary stages of model development (e.g., comparing effects of spatial or 

Fig. 2.3 Schema of binary model data, e.g. ‘presence only’ vs. random, modeled with many pre-
dictors: (a) Pattern of training data, and when they can be perfectly modeled with high ROCs, (b) 
the same data as in a) but modeled with a linear regression, (c) the same data as in a) but modeled 
with an incomplete set of just a few predictors, and (d) the same data as in a) but modeled with a 
parsimonious paradigm (=bias)

F. Huettmann et al.



41

temporal variation in the data on model performance and for best inference). 
While most of the authors here do not recommend this evaluation as a final 
step (for instance, the R ‘party’ package applies significance concepts to trees; 
Hothorn et al. 2006), in general, we highly recommend testing the predictive 
performance of ML models using independent test datasets as suggested by 
(Breiman 2001a; Elith et al. 2006; Fielding and Bell 1997; Hernandez et al. 
2006; Manel et al. 2001) rather than focusing on metrics from frequency sta-
tistics. Ideally, those tests and comparable lines of evidence for a match (model 
vs reality) should be repeated several times, all independent of each other. This 
helps to gain confirmation and trust in the findings within a transparent frame-
work overall. With that approach comes a shift in the research design, which 
can then ignore most (parametric) requirements brought by frequency statis-
tics (Magness et al. 2008) but which asks to collect both testing and assess-
ment data in the field. The two-fold approach to research design is a new 
feature we promote. For binary applications (e.g. presence or absence of spe-
cies), predictive accuracy can easily be assessed using sensitivity and specific-
ity metrics and the area under the receiver-operated characteristic curve (AUC), 
a widely used performance criterion (Elith and Leathwick 2009, see also 
Pearce and Ferrier 2000, as well as, Murphy and Winkler 1992). For models 
involving continuous response measures, metrics such as the root mean 
squared error (de Smith et al. 2007) can be employed to assess precision. We 
believe that for many ecological questions these are the preferred, most rele-
vant, and informative predictive performance metrics rather than p- and AIC-
values. However, projects modeling the future still tend to lack a good ‘truth’ 
for comparison, regardless of the modeling approach that is used (Huettmann 
and Gottschalk 2011).

 iv. Potential problems related to autocorrelation in space and time: 
Autocorrelation is a common property of virtually all ecological data (Quinn 
and Keough 2004; Fortin et al. 2010); it is an inherent part of nature. But for 
many frequentist statisticians it is considered to be an undesirable ‘nuisance’. 
Autocorrelation is perceived a problem factor that detracts from the linear 
regression assumption of independence, introduces non-random error and 
biases the estimation of presumed symmetric confidence intervals (Dormann 
et al. 2007). For instance, when traditional linear models are used in spatial 
data analysis (Manly et al. 2002), autocorrelation is perceived to be a problem 
requiring correction prior to subsequent analysis (e.g., through point pro-
cesses). Here we argue that this is an overly simplistic view that disregards the 
underlying ecological reality (Betts et al. 2009 for a review of Dormann et al. 
2007). Organisms not only respond to the dynamic spatial and temporal distri-
butions of their resources, but this interaction is an inherent part of living sys-
tems; organisms also respond to each other through social behavior (e.g., 
territoriality and spacing mechanisms). Life has a social foundation in order to 
exist. For a true assessment, environmental factors do not affect an organism in 
an experimental isolation from other factors. For this reason autocorrelation is 
a natural part of the  evolution of virtually any biological system, and can be 
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used to the advantage of improving ecological understanding (Braun 2005; 
Fortin et al. 2010). Tree- based ML methods can actually benefit from autocor-
relation in the data as their reliance on binary recursive partitioning means that 
such structure can be used to better explain the patterns (De’ath and Fabricius 
2000), and they can also be structured to flexibly model variations in the 
response variable across time and space (Fink et al. 2010; Hochachka et al. 
2012). We illustrate this property using a case example (see below). While 
novel methods exist to account for spatial and temporal autocorrelation 
(Hothorn et al. 2011), ML emphasizes predictive accuracy. Thus it is the pat-
terns, and the ability to predict those patterns, that are most important. 
Meaningful inferences can be drawn from such predictions (Breiman 2001a), 
and appropriate conservation management actions taken (Ritter 2007 for an 
example). Hijmans (2012) suggested calibrating predictions with a null model 
that uses only spatial locations as predictor variables as a method for dealing 
with autocorrelation. It should be noted here that not explicitly accounting for 
autocorrelation can potentially lead to some variance inflation and overestima-
tion of predictive accuracy. But with ML approaches, the inclusion of many 
predictors tends to result in models where autocorrelation naturally becomes 
less relevant or widely disappears (Young 2012 for forest plots). In many 
large-scale applications, such error is likely to be rather small but case studies 
in linear models have reported instances where ~15% of the variance is 
involved. Still, this should not overly deter detection of the ‘main signal’ in 
robust ML applications which are known to buffer fuzzy data through the 
covariates (Craig and Huettmann 2008).

 v. Potential Pseudoreplication: When multiple observations of the same indi-
vidual contribute heavily to a dataset (e.g. as in animal tracking studies), these 
data are not strictly independent or representative for the population and can 
interfere with inference. However, many ML methods do not really require 
independence for predictions (e.g random forests, boosted regression trees and 
ensembles). The use of mixed effects models, which can include for instance a 
random term to overcome the non-independence of individual data points, has 
become very prominent in the traditional linear analyses of such data types 
(Bolker et al. 2009; Gillies et al. 2006). To our knowledge, while there are no 
explicit options for including random effects in ML algorithms, there are no 
theoretical reasons why individuals could not be identified in ML models 
through the inclusion of a variable containing unique identifiers. For conven-
tional frequentist models, relying on this type of “fixed effect” approach would 
normally be far too costly in terms of the number of dummy parameters 
required, degrees of freedom, and for low variances, but this poses no real 
problem for ML methods. ML offers a real solution to this otherwise prohibi-
tive problem, because through a user-specified division of the dataset into 
training and testing subsets for cross-validation, which is inherent in many ML 
algorithms, the natural structure of the data can be retained and the lack of 
independence of data points within individuals somewhat alleviated (Buston 
and Elith 2011). Another effective way to test for model bias due to pseudorep-
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lication, is to apply model results to subsets of the larger dataset (e.g., tracking 
data for each individual animal). Model accuracy when applied to each indi-
vidual provides a measure of whether the model adequately represents all indi-
viduals in the sample population and is useful for inference. Poor model 
performance for any individual indicates a model biased by pseudoreplication 
and good model performance on all data subsets, a relatively unbiased model 
suitable for generalization.

 vi. Poorly defined response index: Most users of frequentist functions expect the 
modeled response variable output to follow a Bernoulli distribution on a 0 to 1 
scale, matching pre-conceived assumptions. Instead, many ML approaches 
can sometimes produce an open-ended and asymmetric ‘index of response’ 
with a relative scale between slightly negative and higher positive numbers 
(which can be converted to a 0 to 1 scale). ML provides a predicted response 
index for both categorical and continuous response variables because that is 
simply what the algorithm can produce as a machine-optimized compromise 
to the data provided. The algorithms are confronted with the data structure and 
from there they produce the best technical and mathematically possible fit and 
classification solution with the lowest error and best predictive performance 
metric. These predictions usually result in highly accurate classifications, but 
the generated index is not necessarily equivalent or proportional to the true 
probability of a binary outcome (Breiman 2001a, b; Royle et al. 2012; Yackulic 
et al. 2012; Murphy and Winkler 1992 for overview). This is simply because 
no probability theory is involved in ML. Also, some data do not contain the 
essential information to estimate probabilities (Phillips and Elith 2013; Hastie 
and Fithian 2013). That is not usually a problem because such cases still tend 
to be very reliable for classifications and predictions (e.g. to identify hotspots 
and coldspots and to gauge the relative difference between them). If wanted, 
such offsets (‘shrinkage’) can simply be regressed back, based on the known 
training cases, or it can be tried to fit probability curves. In most cases, we 
found no reasons for doing that, because most managers are content using an 
accurate index.

 vii. Lack of parameter estimates (“regression coefficients”): As outlined above, 
ML methods do not rely on parameters to specify a model, and thus, naturally, 
the model output will not produce any parameter estimates. The specific out-
puts of the different ML methods vary. However, the quantified relationship 
between response and predictor variables can be captured quantitatively and 
presented visually in partial dependence plots, which show the partial contri-
bution of a given variable considering all other variables at their measured 
values. In tree-based models for example, the binary partitioning rules at every 
node in every tree underlying the entire model can be captured by a set of very 
sophisticated and precise ‘rule sets’ (often expressed in a digital and binary 
format). Because many ML algorithms involve some random features (e.g. 
drawing a random subset of data for building the model, drawing a random 
number of predictor variables for a specific split), the detailed rule sets can vary 
slightly between different model runs. Extensions exist to run multiple 
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bootstrap  iterations of ML algorithms to achieve stable and repeatable results 
(Murphy et al. 2010).

 viii. “Machine learning algorithms are difficult to understand and visualize”: 
While the underlying algorithms of many ML approaches are indeed rather 
complex, the model output can generally be readily accessed and visualized. 
For example, Maxent provides output files that plot the relationship of each 
predictor variable with the response (Elith et al. 2011). Likewise, results of 
tree-based methods can be visualized using partial dependence plots (Elith 
et al. 2008, see also the case example below), and most ML approaches include 
a default output that summarizes the predictive ability of the model. There are 
good methods to track and visualize the relationships and predictions obtained 
by ML. When ensemble models are used, describing ‘the tree’ is overly sim-
plistic and potentially biased, and therefore not meaningful and best avoided. 
The whole concept of ML rests on fully utilizing multi-dimensional complex-
ity, which is best grasped and expressed through the predictions, and subse-
quent inference. The same approach is described by frequentist statisticians for 
visualizing complicated conventional models, for example, those involving 
interaction terms (Harrell 2001). These predictions and the behavior of the 
algorithm in experimental settings can be visualized though, and tends to be 
rather informative (Elith et al. 2005) for inference (this follows the approach 
by Breiman 2001a: predictions for inference).

 ix. “Tree-based models cannot show linear relationships”: Tree-based models 
with discrete cut-offs at each node within a tree will essentially fit step-wise 
functions (the size of the individual step usually is a function of the tree 
size; with stumps being very coarse). However, these stepwise functions 
closely approximate smooth linear functions for large samples and a large 
number of trees (Ishwaran 2007). Tree-based models will therefore readily 
approximate most strictly linear relationships if they exist, especially when 
‘deep trees’ with many nodes and small sample sizes per split are grown 
with recursive partitioning (De’ath and Fabricius 2000; Strobl et al. 2009). 
However, for extremely small sample sizes (n < 20), as with any other sta-
tistical test, care should be exercised when interpreting the step-wise rela-
tionships between predictor and response variables. Still, ML presents a 
major advance given that predictions and inference can be drawn from such 
sample sizes!

2.5  A Case Example

In the following example we make use of a simulated dataset in order to illustrate 
some of the issues previously discussed. To proceed we created a region of 21 x 21 
unit dimensions, resulting in N = 441 locations, and assumed that the density of our 
hypothetical species corresponds to the combined influence of three habitat 
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variables: x1, x2, and x3. For this “perfectly known” system, average species 
response is defined based on the following linear predictor:

lp = 5.5 + 0.001x1 – 0.92x2 + 3.4x3
2.5

For each of the 441 locations, density was calculated as random normal draws 
from the linear predictor, allowing for random variation in the response. Variable x1 
was generated based on random draws from a Gaussian distribution, x2 based on 
random draws from a Poisson distribution, and x3 from a Gaussian random field 
with a spherical spatial covariance structure (using function grf in the geoR pack-
age, Ribiero and Diggle 2013). As can be seen from the linear predictor equation 
and its associated parameters, variable x1 is scarcely influential (though slightly 
positive in effect), x2 much more influential (though negative in effect), and x3 most 
influential of all. To render this example less trivial, we included a power term of 2.5 
to introduce a measure of non-linearity in the species response.

Figure 2.4 illustrates the species’ response under the influence of these three 
hypothetical habitat factors. Figures 2.5, 2.6, 2.7 indicate the spatial pattern of the 

Fig. 2.4 A visualization of the response variable with respect to location in an exhaustively sam-
pled landscape, i.e., when the response value is known at every location. The strong positive spatial 
autocorrelation is apparent (size of points), resulting in a clear cluster of high magnitude values in 
the north-east quadrant species distribution model (SDM)  using a conventional generalized linear 
model (GLM; McCullagh and Neder 1989)
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individual predictor variables themselves. We then randomly sampled 20% of the 
locations in the region (n = 88) as part of a hypothetical monitoring program and 
used that randomly selected set of observations to construct a species distribution 
model (SDM) using a conventional generalized linear model (GLM) as well as a 
random forests (RF) model. As an added consideration, we constructed the SDMs 
using only the information provided by variables x1 and x2, assuming that vari-
able x3 is either unknown or unmeasured. By convention, to us this constitutes a 
significantly flawed model a priori as a highly important habitat factor has been 
excluded, but this is arguably a common feature with species that are poorly 
studied.

The linear predictor portion of the GLM model was estimated to be: 
19.648–2.213x1–1.299x2. While the negative effect of variable x2 can be inferred 
from this model, the parameter estimate for variable x1 was significantly biased: the 
coefficient should have been close to zero. Figure 2.8 displays the prediction surface 
that results from application of this model to the original N = 441 cells, RMSE was 
18.59, and Moran’s I statistic was 0.53 which confirmed that considerable spatial 
structure remained in the model errors. A quick comparison of Fig. 2.8 with Fig. 2.4 

Fig. 2.5 Spatial variation in the first predictor variable (“x1”), which was assigned a low weight 
in determining the response values. There is no spatial structure in variable x1
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confirms how significant the discrepancy is between the known and predicted species 
distributions.

As stated above, the RF model does not estimate parameters, but instead con-
structs multiple regression trees to build an internal rule set for “voting” on the 
values of new predictions (Liaw and Wiener 2002). Figure 2.9 displays the predic-
tion surface that results from application of this model to the original N = 441 cells. 
RMSE was 19.96, and Moran’s I statistic was 0.17, confirming that while some 
spatial structure in the model errors remained, a considerable portion of spatial 
structure was captured by RF.

Furthermore, and most importantly, a comparison of Fig. 2.9 and Fig. 2.4 dem-
onstrates how a wildlife manager could still use the RF results to make a meaningful 
management decision. Based on the GLM prediction surface (Fig. 2.8), the crucial 
“signal” for the population cluster in the north-east quadrant is invisible, but it can 
be observed in the RF model (Fig. 2.9). While both of these example models are 
“naive” in that they suffer from incomplete knowledge of the factors contributing to 
the distribution of the hypothetical species, the RF approach was more flexible in its 
model construction, still allowing the crucial signal to be detected.

Fig. 2.6 Spatial variation in the second predictor variable (“x2”), which was a moderately impor-
tant determinant of response values. There is no spatial structure in variable x2
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2.6  Machine Learning in Climate Change Models and Other 
Complex Applications

ML is especially appropriate for evaluating the complex ecological changes result-
ing from climate change and its predictors. Both, Maxent and random forests have 
achieved much positive attention in this regard (e.g. Prasad et al. 2009; www.nrs.
fs.fed.us/atlas/, Lawler et  al. 2006; see also Murphy et  al. 2012a). While the 
Intergovernmental Panel on Climate Change (IPCC) and most official climate and 
sea ice modelers have widely ignored ML as a data mining, data cleaning, mod-
eling and clustering method so far, Murphy et  al. (2012b) have successfully 
used random forests for obtaining a distance matrix to cluster climate data into 
‘cliomes’ (climate envelope based biomes) and then project these 100 years into 
the future. The concept of YAIMPUTE (tree-based imputation; Crookston and 
Finley 2008; Ellis et al. 2012) was used for climate models, too. Booms et al. (2011) 
showed similar applications of ML for wildlife-habitat relationships 100  years 

Fig. 2.7 Spatial variation in the third predictor variable (“x3”), which is a very strong influence on 
response values, exhibits spatial structure, and has a non-linear component (the power value of 2.5)
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forward as well as 100 years backwards, and Louzao et al. (2013) assessed the influ-
ence of climate on albatross distributions using a boosting algorithm (Hothorn et al. 
2011). It can be expected that we will continue to see the expanded use of ML for 
analyses that use multi- species models and online databases. It is a tool of choice 
that can be extremely useful for climate change and impact studies worldwide 
(Lawler et al. 2011). The relevance of these approaches can hardly be overstated 
(Cushman and Huettmann 2010).

2.7  Conclusions: Future Outlook and Topics Awaiting 
Research and Application for Machine Learning (ML)

ML has existed already for over 30 years but it awaits its conservation and sustain-
ability applications while ML as a discipline keeps rapidly developing. With the 
advent of cloud computing, global data availability, and increased computational 
speed, the use and applications of ML are likely to expand (see OpenModeler for an 

Fig. 2.8 “Naive” GLM. While this model is comparable to the “naive” RF model in terms of 
RMSE statistic, the underlying spatial structure in the response (stemming from variable “x3”) 
remained undetected. Moran’s I = 0.53 statistic for the raw residual values confirmed that consider-
able unexplained spatial structure remains in the model errors
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example: open-modeling.sourceforge.net/ or TensorFlow: https://www.tensorflow.
org/). Application of ML to a wider range of problems will not only lead to ecologi-
cal and management insights, but will also contribute to a better understanding of 
the role ML methods can play in data exploration, pattern recognition, and robust 
prediction (Jean et al. 2016). The use of ML to model presence only data has already 
received a lot of attention, with interesting applications emerging in the study of 
disease outbreaks (e.g., Herrick et al. 2014 for a global Avian Influenza model pre-
diction) and for reliably assessing conditions in under-sampled regions (Mullet 
et al. 2016 for soundscapes). There are many other research possibilities and direc-
tions for further development of ML, of which demographic modeling, incorpora-
tion of latent variables, ensemble forecasting, tighter integration with GIS software, 
and the distillation of ‘best practices’ will yield important insights.

An important field in ecology that has so far not benefited much from ML 
applications is demographic modeling. Because the analysis of survival and fecun-
dity are at the core of understanding population trajectories, we would welcome 
further developments that integrate powerful ML algorithms in models examining 
the survival probability of animals. Random forests models are beginning to be used 

Fig. 2.9 “Naive” RF. While this model is comparable to the “naive” GLM model in terms of 
RMSE statistic, the underlying spatial structure in the response was well represented. Moran’s 
I = 0.17 indicated that some unexplained spatial structure remained, however
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in survival-based analyses (Ishwaran 2008; see also www.stat. berkeley.
edu/~breiman/RandomForests/), but capture-mark-recapture models with random 
forests do not exist yet. The survival forests that have been developed are not avail-
able for population viability analysis because they focus more on identifying impor-
tant variables affecting survival than on estimating the probability of survival with 
a good prediction as the main goal. The discipline of demography is widely held 
back by a software (MARK and its derivatives and practitioners) originating from 
the 1980s. In ecology, these random survival forests are therefore only useful for 
‘known-fate’ datasets, such as satellite-tracking where the survival state of an ani-
mal is known with certainty. We are not aware of any ML applications to mark-
recapture data that attempt to distinguish between survival and capture probabilities 
in a predictive context, yet.

A similar worthy application field for ML is distance sampling and spatially- 
explicit mark-recapture models, where the model fit (detection curve and function) 
and the spatial predictions are currently not obtained with ML and ensemble meth-
ods. Based on our experience, the use of ML will change, usually improve, many of 
the currently used estimates and the related wildlife management (Huettmann et al. 
2011 and Fox et al. 2017 for pelagic seabirds).

Further, ecological latent variable models are another field that may benefit 
greatly from the incorporation of ML algorithms. These models recognize that 
detection of wildlife is always imperfect, and provide a framework to estimate 
detection probability either from ancillary data (e.g. distance sampling: www.
ruwpa.st-and.ac.uk/distance/) or from repeated visits (e.g. Occupancy analysis: 
Presence software: www.mbr-pwrc.usgs.gov/software/presence.html). Approaches 
to incorporate boosted regression trees into these latent variable models have been 
developed (Hutchinson et  al. 2011), but we would welcome further research to 
make ML techniques more widely accessible for models that address the problem of 
imperfect detection.

In an earlier review, Clemen (1989) pointed out the strengths of combining pre-
dictions from different models, particularly when different forecasting models cap-
ture different aspects of the information available for prediction. For this reason, 
ensemble forecasting is an appealing approach to predict ecological responses in the 
future or at unsurveyed locations. Recent ecological studies (Araujo and New 2007; 
Buisson et al. 2009; Jones-Farrand et al. 2011; Hardy et al. 2011; Oppel et al. 2012; 
Kandel et al. 2015) have usually reaffirmed the performance gains associated with 
ensemble prediction, and they are becoming easier to implement using R packages 
such as ‘ssdm’ (Schmitt et al. 2017). As discussed throughout this paper, ML meth-
ods should be at the center of any ensemble forecast by virtue of their flexibility in 
modeling non-linear relationships, as well as their ability to evaluate large, poten-
tially messy data sets. Ensemble models speak to the simple paradigm in ML “Many 
weak learners make for a strong learner”. The typical hurdles facing frequentist 
techniques, e.g., having to specify a model structure a priori, continually determin-
ing whether model assumptions are met, and evaluating which of a set of candidate 
models make “the most sense”, are widely avoided with ML.  While a blend of 
methods could be a reasonable way to proceed (see e.g., Hothorn et al. 2006, 2011), 

2 Use of Machine Learning (ML) for Predicting and Analyzing Ecological…

http://www.stat
http://www.ruwpa.st-and.ac.uk/distance
http://www.ruwpa.st-and.ac.uk/distance
http://www.mbr-pwrc.usgs.gov/software/presence.html


52

we caution that this may also limit the results that can be obtained (as noted by 
Breiman 2001a), e.g. when poor performers like Linear Models (LMs) are included 
in the ensemble (as in the default settings of the BIOMOD R package). At the very 
least, further research is needed in this area.

Despite the impressive advantages of ML methods, they remain underutilized in 
GIS, modeling, and ecological policy arenas (Huettmann 2007b). In the first and 
second case, easy access to convenient linkages with GIS software may still be 
obstructing wider adoption of these tools. Maxent does have a GIS interface (www.
cs.princeton.edu/~schapire/maxent/; the same is true for BIOMAPPER), however, 
easily implementable and available code with direct and adjustable links between 
ArcGIS and ML (Humphries et  al. unpublished for Maxent) remains elusive for 
random forests (Humphries and Huettmann in prep.). Even if the actual model inter-
face exists, having high-quality GIS layers with high spatial resolution still remains 
a problem (but see Oppel and Huettmann 2010, and Worldclim and similar public 
data sets in Herrick et al. 2014 made available worldwide). Regarding the third issue 
of limited application in the policy arena, we argue that ML techniques may suffer 
from the same difficulties as the more conventional techniques, i.e., a perception 
that they are too complicated to understand or based on unreasonable assumptions. 
The buy-in of mathematical tools is generally not only driven by researchers but by 
the public at large, students and even more so, whether industry and their attorneys, 
lawyers and courts are trained and fluent in such methods and actually use them. 
While future research will help to clarify how research studies can be designed, 
executed and promoted to capitalize on ML strengths (see for instance Magness 
et al. 2008; Lawler et al. 2011), the growing number of impressive ML case studies 
will help to raise awareness of the usefulness of ML techniques and reduce any 
prejudices that may exist. Future research synthesizing ML ‘best practices’, as well 
as relevant ethical issues (Daly 1997; Naess 1997; Czech 2000; Ott 2005), open-
minded statistics (Hilborn and Mangel 1997; Strobl et al. 2007; Kelling et al. 2009; 
Schaub and Kery 2012; Azoulay et al. 2015), data sharing (Bluhm et al. 2010; 
Huettmann 2011; Zuckerberg et al. 2011) and Open Source, education and out-
reach, will help to communicate the ways in which ML empirically identifies the 
key signals in data while simultaneously making no a priori assumptions about the 
data structure.

Ironically, the main ‘shortcoming and failure’ of ML so far is that it is so widely 
underutilized and largely unexplored in the natural sciences. It can be argued that 
this is partially a result of the way philosophy of science, statistics and its relation-
ship to quantitative modeling and with ‘nature’ is taught and awarded in universities 
and society. As Breiman (2001a) so eloquently expressed, this inevitably influences 
all sorts of data-based decision making, ranging from publication policies, peer 
review, and management policy, to courts of law. We encourage high schools, uni-
versities and policy-makers to incorporate ML into their standard lecture and lab 
material for undergraduate and graduate courses to facilitate a better understanding 
and more rapid adoption of these powerful approaches, as well as a knowledge 
of best practices (Hochachka et al. 2012; Cushman and Huettmann 2010; Drew 
et al. 2011).
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In summary, we foresee a significant role and relevance for ML in guiding the 
sustainable science-based management of global biodiversity. It can become the 
computational standard and benchmark against which other analytical methods are 
measured. As stated in Huettmann (2007a, b) and elsewhere, now is the time to 
make the best use of these efficient tools and to share the associated expertise, 
methods, and general philosophy globally. We believe that a wider use of these 
methods will necessarily improve wildlife management frameworks, both locally 
and globally.

Acknowledgements This is a shared MS summarizing work efforts from over 2 decades on inter-
national projects. FH is grateful to all individuals who were open-minded enough to develop and 
try machine learning algorithms and to support them. The late R. O’Connor and A.W. Diamond are 
thanked for introducing us to CARTs early on. J.Liu kindly helped to start a co-authored model 
session at IALE-U.S. in 2007 on such subjects, published with Springer. Salford Systems Ltd., 
D.Steinberg and his great team, are specifically thanked for the long collaboration, for ideas and 
for helpful support using their thoughts and their software in many ways. Most EWHALE students 
heroically supported machine learning projects, either helping to evaluate the paradigms of statis-
tics, or putting themselves out there for the debate and advancement of conservation science and 
management with machine learning; finding new knowledge and information. FH is further grate-
ful to S. Linke, L. Strecker, and to the ArcOD project (B. Bluhm), Alaska GAP project (T. Gotthard), 
SNAP (N.  Fresco et  al.), Antarctic Biogeography Atlas project (B.  Danis, C.  Broyer, Philiippi 
et al.), Red Panda project (G. Regmi, K. Kamal, MS et al), the Chinese Crane and Bustard projects 
(G. Yumin and students like H.  Juang, M. Chunrong, P. Guopanlian), J. Morton, S. Cushman, 
J.  Evans, T.  Hegel, J.  Ritter, D.  Watts, A.  Drew, Y.  Wiersma, W.  Thogmartin, T.  Gottschalk, 
B. Raymond, B. Walther, I. Presse and H. Berrios for general support, publications, replies, and 
advice regarding machine learning implementations and applications. This is EWHALE publica-
tion # 125.

References

Anderson D, Burnham K (2002) Avoiding pitfalls when using information-theoretic methods. 
J Wildl Manag 66:912–918

Anderson D, Burnham K, Thompson W (2000) Null hypothesis testing: problems, prevalence, and 
an alternative. J Wildl Manag 64:912–923

Anderson DR, Link WA, Johnson D, Burnham KP (2001) Suggestions for presenting the results of 
data analysis. USGS Northern Prairie Wildlife Research Center. Paper 227. https://digitalcom-
mons.unl.edu/usgsnpwrc/227

Archer KJ, Kimes RV (2008) Empirical characterization of random forest variable importance 
measures. Comput Stat Data Anal 52:2249–2260

Araujo M, New B (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47
Arnold TW (2010) Uninformative parameters and model selection using Akaike’s information 

criterion. J Wildl Manag 74:1175–1178
Azoulay P, Fons-Rosen C, Zivin JSG (2015) Does science advance one funeral at a time? National 

Bureau of Economic Research Working Paper Series. No. 21788. http://www.nber.org/papers/
w21788

Baldwin RA (2009) Use of maximum entropy modeling in wildlife research. Entropy 11:854–866. 
https://doi.org/10.3390/e11040854

Betts MG, Ganio L, Huso M, Som N, Huettmann F, Bowman J, Wintle BW (2009) Comment on 
“Methods to account for spatial autocorrelation in the analysis of species distributional data: a 
review”. Ecography 32:374–378

2 Use of Machine Learning (ML) for Predicting and Analyzing Ecological…

https://digitalcommons.unl.edu/usgsnpwrc/227
https://digitalcommons.unl.edu/usgsnpwrc/227
http://www.nber.org/papers/w21788
http://www.nber.org/papers/w21788
https://doi.org/10.3390/e11040854


54

Bluhm B, Watts D, Huettmann F (2010) Free database availability, metadata and the internet: 
an example of two high latitude components of the census of marine life. In: Cushman SA, 
Huettmann F (eds) Spatial complexity, informatics and wildlife conservation. Springer, Tokyo, 
pp 233–244

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen J, Stevens MHH, White J-SS (2009) 
Generalized linear mixed models: a practical guide for ecology and evolution. Trends EcolEvol 
24:127–135

Booms T, Huettmann F, Schempf P (2009) Gyrfalcon nest distribution in Alaska based on a predic-
tive GIS model. Pol Biol 33:1602–1612

Booms T, Lindgren M, Huettmann F (2011) Linking Alaska's predicted climate, Gyrfalcon, and 
ptarmigan distributions in space and time: a unique 200-year perspective. In: Watson RT, Cade 
TJ, Fuller M, Hunt G, Potapov E (eds) Gyrfalcons and ptarmigan in a changing world, vol 
I. The Peregrine Fund, Boise, pp 177–190

Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA (2002) Evaluating resource selection func-
tions. Ecol Model 157:281–300

Braun CE (ed) (2005) Techniques for wildlife investigations and management. The Wildlife 
Society (TWS), Bethesda

Breiman L (2001a) Statistical modeling: the two cultures (with comments and a rejoinder by the 
author). Stat Sci 16:199–231

Breiman L (2001b) Random forests. Mach Learn J 45:5–32
Brewer MJ, Butler A, Cooksley SL (2016) The relative performance of AIC, AICC and BIC in the 

presence of unobserved heterogeneity. Meth Ecol Evol 7:679–692
Bruijning M, Visser MD, Hallmann CA, Jongejans E (2018) Trackdem: automated particle 

tracking to obtain population counts and size distributions from videos in R. Meth Ecol Evol 
9:965–973. https://doi.org/10.1111/2041-210X.12975

Buechley ER, Şekercioğlu ÇH (2016) The avian scavenger crisis: looming extinctions, trophic 
cascades, and loss of critical ecosystem functions. Biol Conserv 198:220–228

Buisson L, Thuiller W, Casajus N, Sovan L, Grenouillet G (2009) Uncertainty in ensem-
ble forecasting of species distribution. Glob Chang Biol 16:1145–1157. https://doi.
org/10.1111/j.1365-2486.2009.02000.x

Bureau A, Dupuis J, Falls K, Lunetta KL, Hayward B, Keith TP, Van Eerdewegh P (2005) 
Identifying SNPs predictive of phenotype using random forests. Genet Epidemiol 
28:171–182

Burnham K, Anderson D (2002) Model selection and multimodel inference: a practical information- 
theoretic approach. Springer, New York

Buchanan GM, Lachmann L, Tegetmeyer C, Oppel S, Nelson A, Flade M (2011) Identifying the 
potential wintering sites of the globally threatened Aquatic Warbler Acrocephalus paludicola 
using remote sensing, Ostrich 82:2, 81–85. https://doi.org/10.2989/00306525.2011.603461

Buston PM, Elith J (2011) Determinants of reproductive success in dominant pairs of clownfish: a 
boosted regression tree analysis. J Anim Ecol 80:528–538

Clemen RT (1989) Combining forecasts: a review and annotated bibliography. Int J  Forecast 
5:559–583

Craig E, Huettmann F (2008) Using “blackbox” algorithms such as TreeNet and Random Forests 
for data-mining and for finding meaningful patterns, relationships and outliers in complex eco-
logical data: an overview, an example using golden eagle satellite data and an outlook for a 
promising future. In: Wang H-f (ed) Intelligent data analysis: developing new methodologies 
through pattern discovery and recovery. IGI Global, Hershey, pp 65–84

Cooper GF, Aliferis CF, Ambrosino R, Aronis J, Buchanan BG, Caruana R, Fine MJ, Glymour C, 
Gordon G, Hanusa BH et al (1997) An evaluation of machine-learning methods for predicting 
pneumonia mortality. Artif Intell Med 9:107–138

Crookston NL, Finley AO (2008) yaImpute: an R package for kNN imputation. J  Stat Softw 
23:1–14

Cushman S, Huettmann F (eds) (2010) Spatial complexity, informatics and wildlife conservation. 
Springer, Tokyo

F. Huettmann et al.

https://doi.org/10.1111/2041-210X.12975
https://doi.org/10.1111/j.1365-2486.2009.02000.x
https://doi.org/10.1111/j.1365-2486.2009.02000.x
https://doi.org/10.2989/00306525.2011.603461


55

Cutler DR, Edwards TC Jr, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ (2007) Random 
forests for classification in ecology. Ecology 88:2783–2792

Czech B (2000) Shoveling fuel for a runaway train: errant economists, shameful spenders, and a 
plan to stop them all. University of California Press, Berkeley

Daly H (1997) Beyond growth: the economics of sustainable development. Beacon Press, Boston
Dhar V (1998) Data mining in finance: using counterfactuals to generate knowledge from organi-

zational information systems. Inf Syst 23:423–437
De’ath G, Fabricius K (2000) Classification and regression trees: a powerful yet simple tech-

nique for ecological data analysis. Ecology 81:3178–3192. https://doi.org/10.1890/0012-9658 
(2000)081[3178:CARTAP]2.0.CO;2

De’ath G (2002) Multivariate regression trees: a new technique for modeling species–environment 
relationships. Ecology 83:1105–1117. https://doi.org/10.1890/0012-9658(2002)083[1105:MRT
ANT]2.0.CO;2

De’ath G (2007) Boosted trees for ecological modeling and prediction. Ecology 88:243–251
Di Minin E, Fink C, Tenkanen H, Hiippala T (2018) Machine learning for tracking illegal wildlife 

trade on social media. Nat Ecol Evol 2:406–407. https://doi.org/10.1038/s41559-018-0466-x
Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz 

W, Kissling WD (2007) Methods to account for spatial autocorrelation in the analysis of spe-
cies distributional data: a review. Ecography 30:609–628

Drew CA, Yo W, Huettmann F (eds) (2011) Predictive modeling in landscape ecology. Springer, 
New York

Edrén SMC, Wisz MS, Teilmann J, Dietz R, Söderkvist J (2010) Modelling spatial patterns in har-
bour porpoise satellite telemetry data using maximum entropy. Ecography 33:698–708

Elith J, Graham C, NCEAS working group (2006) Novel methods improve prediction of species’ 
distributions from occurrence data. Ecography 29:129–151

Elith J, Ferrier S, Huettmann F, Leathwick J (2005) The evaluation strip: a new and robust method 
for plotting predicted responses from species distribution models. Ecol Model 186:280–289

Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 
77:802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x

Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction 
across space and time. Ann Rev Ecol Evol Syst 40:677–697

Elith J, Phillips SJ, Hastie T, Dudík M, En Chee Y, Yates CCJ (2011) A statistical explanation of 
MaxEnt for ecologists. Div Distrib 17:43–57

Ellis N, Smith SJ, Pitcher JR (2012) Gradient forests: calculating importance gradients on physical 
predictors. Ecology 93(1):156–168. http://www.esajournals.org/doi/abs/10.1890/0012-9658 
(2002)083%5B1105:MRTANT%5D2.0.CO%3B2

Evans J, Murphy M, Cushman S, Holden Z (2011) Modeling tree distribution and change using 
random forests. In: Drew CA, Wiersma Y, Huettmann F (eds) Predictive wildlife and habitat 
modeling in landscape ecology. Springer Publishers, New York

Fox CH, Huettmann F, Harvey GKA, Morgan KH, Robinson J, Williams R, Paquet PC (2017) 
Predictions from machine learning ensembles: marine bird distribution and density on Canada’s 
Pacific coast. Mar Ecol Prog Ser 566:199–216

Jones-Farrand DT, Fearer TM, Thogmartin WE, Thompson FR 3rd, Nelson MD, Tirpak JM (2011) 
Comparison of statistical and theoretical habitat models for conservation planning: the benefit 
of ensemble prediction. Ecol Appl 21:2269–2282

Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conser-
vation presence/absence models. Environ Conserv 24:38–49

Fernandez-Delgado M, Cernades E, Barro S, Amorim D (2014) Do we need hundreds of classifiers 
to solve real world classification problems? J Mach Learn Res 15:3133–3181

Fielding AH (1999) Machine learning methods for ecological applications. Springer, New York
Fink D, Hochachka WM, Zuckerberg B, Winkle DW, Shaby B, Munson MA, Hooker G, Riedewald 

G, Sheldon D, Kelling S (2010) Spatiotemporal exploratory models for broad-scale survey 
data. Ecol Appl 20:2131–2147

2 Use of Machine Learning (ML) for Predicting and Analyzing Ecological…

https://doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
https://doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
https://doi.org/10.1890/0012-9658(2002)083[1105:MRTANT]2.0.CO;2
https://doi.org/10.1890/0012-9658(2002)083[1105:MRTANT]2.0.CO;2
https://doi.org/10.1038/s41559-018-0466-x
https://doi.org/10.1111/j.1365-2656.2008.01390.x
http://www.esajournals.org/doi/abs/10.1890/0012-9658(2002)083[1105:MRTANT]2.0.CO;2
http://www.esajournals.org/doi/abs/10.1890/0012-9658(2002)083[1105:MRTANT]2.0.CO;2


56

Fortin M-J, Dale MRT, Bertazzon S (2010) Spatial analysis of wildlife distribution and disease 
spread. In: Huettmann F, Cushman S (eds) Spatial complexity, informatics, and wildlife con-
servation. Springer, Tokyo, pp 255–273

Friedman JH (2002) Stochastic gradient boosting. Comp Stat Data Anal 38:367–378
Galindo J, Tamayo P (2000) Credit risk assessment using statistical and machine learning: basic 

methodology and risk modeling applications. Comput Econ 15:107–143
Galipaud M, Gillingham MAF, David M, Dechaume-Moncharmont F-X (2014) Ecologists overes-

timate the importance of predictor variables in model averaging: a plea for cautious interpreta-
tions. Methods Ecol Evol 5:983–991

Garton EO, Ratti JR, Giudice JH (2005) Research and experimental design. In: Braun CE (ed) 
Techniques for wildlife investigations and management. The Wildlife Society, Bethesda, 
pp 43–71

Gillies CS, Hebblewhite M, Nielsen SE, Krawchuk M, Aldridge CL, Frair JL, Saher DJ, Stevens 
CE, Jerde CL (2006) Application of random effects to the study of resource selection by ani-
mals. J Anim Ecol 75:887–898

Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3:95–99
Guilford T, Meade J, Willis J, Phillips RA, Boyle D, Roberts S, Collett M, Freeman R, Perrins, C 

(2009) Migration and stopover in a small pelagic seabird, the Manx shearwater Puffinus puffi-
nus: insights from machine learning. Proc R Soc Lond B Biol Sci: rspb 2008.1577

Guthery FS (2008) Statistical ritual; versus knowledge accrual in wildlife science. J Wildl Manag 
72:1872–1875

Guthery FS, Lusk JJ, Peterson MJ (2001) The fall of the null hypothesis: liabilities and opportuni-
ties. J Wildl Manag 65:379–384

Guthery FS, Brennan LA, Peterson MJ, Lusk LL (2005) Information theory in wildlife science: 
critique and viewpoint. J Wildl Manag 69:457–465

Han X, Huettmann F, Guo Y, Mi C, Wen L (2018) Conservation prioritization with machine learn-
ing predictions for the black-necked crane Grus nigricollis, a flagship species on the Tibetan 
Plateau for 2070. Glob Environ Chang. https://doi.org/10.1007/s10113-018-1336-4

Hardy SM, Lindgren M, Konakanchi H, Huettmann F (2011) Predicting the distribution and eco-
logical niche of unexploited snow crab (Chionoecetesopilio) populations in Alaskan waters: a 
first open-access ensemble model. Integr Comp Biol 51:608–622. https://doi.org/10.1093/icb/
icr102

Harrell FE Jr (2001) Regression modeling strategies: with applications to linear models, logistic 
regression, and survival analysis. Springer, New York

Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, infer-
ence, and prediction, 2nd edn. Springer, New York

Hastie T, Fithian W (2013) Inference from presence-only data; the ongoing controversy. Ecography 
36:864–867

Hegel T, Cushman SA, Evans J, Huettmann F (2010) Chapter 16: Current state of the art for statis-
tical modelling of species distributions. In: Cushman S, Huettmann F (eds) Spatial complexity, 
informatics and wildlife conservation. Springer, Tokyo, pp 273–312

Hernandez PA, Graham CH, Master LL, Albert D (2006) The effect of sample size and species 
characteristics on performance of different species distribution modeling methods. Ecography 
29:773–785

Herrick KA, Huettmann F, Lindgren MA (2014) A global model of avian influenza pre-
diction in wild birds: the importance of northern regions. Vet Res 44:42. https://doi.
org/10.1186/1297-9716-44-42.

Hervías S, Henriques A, Oliveira N, Pipa T, Cowen H, Ramos JA, Nogales M, Geraldes P, Silva 
C, de Ruiz Ybáñez R, Oppel S (2013) Studying the effects of multiple invasive mammals on 
Cory’s shearwater nest survival. Biol Invasions 15:143–155

Hijmans RJ (2012) Cross-validation of species distribution models: removing spatial sorting bias 
and calibration with a null model. Ecology 93:679–688

Hilborn R, Mangel M (1997) The ecological detective: confronting models with data. Princeton 
University Press, Princeton, p 330

F. Huettmann et al.

https://doi.org/10.1007/s10113-018-1336-4
https://doi.org/10.1093/icb/icr102
https://doi.org/10.1093/icb/icr102
https://doi.org/10.1186/1297-9716-44-42.
https://doi.org/10.1186/1297-9716-44-42.


57

Hochachka WE, Caruana R, Fink D, Munson A, Riedewald M, Sorokina D, Kelling S (2007) Data- 
mining discovery of pattern and process in ecological systems. J Wildl Manag 71:2427–2437. 
https://doi.org/10.2193/2006-503

Hochachka WM, Fink D, Hutchinson RA, Sheldon D, Wong W-K, Kelling S (2012) Data-intensive 
science applied to broad-scale citizen science. Trends Ecol Evol 27:130–137

Hothorn T, Hornik K, Zeileis K (2006) Party: a laboratory for recursive part(y)itioning. Available 
at: http://CRAN.R-project.org/. Accessed 21 Dec 2008

Hothorn T, Müller J, Schröder B, Kneib T, Brandl R (2011) Decomposing environmental, spatial, 
and spatiotemporal components of species distributions. Ecol Monogr 81:329–347

Hsieh WW (2009) Machine learning methods in the environmental sciences. Cambridge University 
Press, Cambridge

Humphries G (2010) ‘The Ecological Niche of Storm-Petrels in the North Pacific and a Global 
Model of Dimethylsulfide DMS’. Unpublished M.Sc. thesis. University of Alaska-Fairbanks 
USA

Huettmann F (2005) Databases and science-based management in the context of wildlife and habi-
tat: towards a certified ISO standard for objective decision-making for the global community 
by using the internet. J Wildl Manag 69:466–472

Huettmann F (2007a) Constraints, suggested solutions and an outlook towards a new digital cul-
ture for the oceans and beyond: experiences from five predictive GIS models that contribute to 
global management, conservation and study of marine wildlife and habitat. In: VandenBerghe 
E et al (eds) Proceedings of ‘ocean biodiversity informatics’: an international conference on 
marine biodiversity data management Hamburg, Germany, 29 November–1 December, 2004. 
IOC Workshop Report, 202, VLIZ Special Publication 37, pp. 49–61. www.vliz.be/vmdcdata/
imis2/imis.php?module=ref&refid=107201

Huettmann F (2007b) Modern adaptive management: adding digital opportunities towards a sus-
tainable world with new values. Forum Public Policy 3:337–342

Huettmann F (2011) Serving the Global Village through public data sharing as a mandatory para-
digm for seabird biologists and managers: why, what, how, and a call for an efficient action 
plan. Open Ornith J 4:1–11

Huettmann F (2012) Protection of the three poles. Springer, Tokyo
Huettmann F, Gottschalk T (2011) Simplicity, model fit, complexity and uncertainty in spatial 

prediction models applied over time: we are quite sure, aren’t we? In: Drew CA, Wiersma YF, 
Huettmann F (eds) Predictive species and habitat modeling in landscape ecology, pp 189–208. 
https://doi.org/10.1007/978-1-4419-7390-0_10

Huettmann F, Artukhin Y, Gilg O, Humphries G (2011) Predictions of 27 Arctic pelagic seabird 
distributions using public environmental variables, assessed with colony data: a first digital IPY 
and GBIF open access synthesis platform. Mar Biodivers 41:141–179. https://doi.org/10.1007/
s12526-011-0083-2

Hutchinson RA, Liu L-P, Dietterich TG (2011) Incorporating boosted regression trees into eco-
logical latent variable models. In: 25th AAAI conference on artificial intelligence. Association 
for the Advancement of Artificial Intelligence, San Francisco

Ishwaran H (2007) Variable importance in binary regression trees and forests. Electron J  Stat 
1:519–537

Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS (2008) Random survival forests. Ann Appl 
Stat 2:841–860

Jean N, Burke M, Xie M, Davis WM, Lobell DB, Ermon S (2016) Combining satellite imagery and 
machine learning to predict poverty. Science 353:790–794

Jiao S, Huettmann F, Guo Y, Li Y, Ouyang Y (2016) Advanced long-term bird banding and climate 
data mining in spring confirm passerine population declines for the Northeast Chinese-Russian 
flyway. Glob Planet Chang. https://doi.org/10.1016/j.gloplacha.2016.06.015

Johnson DH (1999) The insignificance of statistical significance testing. J Wildl Manag 63:763–772
Kampichler C, Wieland R, Calmé S, Weissenberger H, Arriaga-Weiss S (2010) Classification in 

conservation biology: a comparison of five machine-learning methods. Eco Inform 5:441–450

2 Use of Machine Learning (ML) for Predicting and Analyzing Ecological…

https://doi.org/10.2193/2006-503
http://cran.r-project.org/
http://www.vliz.be/vmdcdata/imis2/imis.php?module=ref&refid=107201
http://www.vliz.be/vmdcdata/imis2/imis.php?module=ref&refid=107201
https://doi.org/10.1007/978-1-4419-7390-0_10
https://doi.org/10.1007/s12526-011-0083-2
https://doi.org/10.1007/s12526-011-0083-2
https://doi.org/10.1016/j.gloplacha.2016.06.015


58

Kandel K, Huettmann F, Suwal MK, Regmi RG, Nijman V, Nekaris KAI, Lama ST, Thapa A, 
Sharma HP, Subedi TR (2015) Rapid multi-nation distribution assessment of a charismatic 
conservation species using open access ensemble model GIS predictions: red panda (Ailurus 
fulgens) in the Hindu-Kush Himalaya region. Biol Conserv 181:150–161

Kelling S, Hochachka WM, Fink D, Riedewald M, Caruana R, Ballard G, Hooker G (2009) Data- 
intensive science: a new paradigm for biodiversity studies. Bioscience 59:613–620 www.jstor.
org/stable/10.1525/bio.2009.59.7.12

Kéry M, Schaub M (2012) Bayesian population analysis using WinBUGS. Academic Press, Oxford
Kononenko I (2001) Machine learning for medical diagnosis: history, state of the art and perspec-

tive. Artif Intell Med 23:89–109
Kubat M, Holte RC, Matwin S (1998) Machine learning for the detection of oil spills in satellite 

radar images. Mach Learn 30:195–215
Lawler JJ, White D, Neilson RP, Blaustein AR (2006) Predicting climate-induced range-shifts: 

model differences and model reliability. Glob Chang Biol 12:1568–1584
Lawler JJ, Yo W, Huettmann F (2011) Chapter 5: Designing predictive models for increased util-

ity: using species distribution models for conservation planning, forecasting, and risk assess-
ment. In: Drew CA, Wiersma Y, Huettmann F (eds) Predictive modeling in landscape ecology. 
Springer, New York, pp 271–290

Lee KC, Han I, Kwon Y (1996) Hybrid neural network models for bankruptcy predictions. Decis 
Support Syst 18:63–72

Liaw A, Wiener M (2002) Classification and regression by randomforests. R News 2(3):18
Louzao M, Aumont O, Hothorn T, Wiegand T, Weimerskirch H (2013) Foraging in a chang-

ing environment: habitat shifts of an oceanic predator over the last half century. Ecography 
36:057–067. https://doi.org/10.1111/j.1600-0587.2012.07587.x

Mace G, Cramer W, Diaz S, Faith DP, Larigauderie A, Le Prestre P, Palmer M, Perrings C, Scholes 
RJ, Walpole M, Walter BA, Watson JEM, Mooney HA (2010) Biodiversity targets after 2010. 
Environ Sustain 2:3–8

Mac Nally R (2000) Regression and model-building in conservation biology, biogeography and 
ecology: the distinction between – and reconciliation of – ‘predictive’ and ‘explanatory’ mod-
els. Biodivers Conserv 6:655–671

Magness DR, Huettmann F, Morton JM (2008) Using random forests to provide predicted species 
distribution maps as a metric for ecological inventory & monitoring programs. In: Smolinski 
TG, Milanova MG, Hassanien AE (eds) Applications of computational intelligence in biology: 
current trends and open problems, studies in computational intelligence, vol 122. Springer, 
Berlin/Heidelberg, pp 209–229

Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence–absence models in ecology: the 
need to account for prevalence. J Appl Ecol 38:921–931

Manly BF, McDonald L, Thomas DL, McDonald TL, Erickson WP (2002) Resource selection by 
animals: statistical design and analysis for field studies. Springer, Dordrecht

McCullagh P, Nelder J (1989) Generalized linear models. Chapman and Hall, London
Mi C, Huettmann F, Guo Y, Han X, Wen L (2017) Why to choose random forest to predict rare 

species distribution with few samples in large undersampled areas? Three Asian crane species 
models provide supporting evidence. PeerJ. https://doi.org/10.7717/peerj.2849

Miller K, Huettmann F, Norcross B, Lorenz M (2014) Multivariate random forest models of 
estuarine- associated fish and invertebrate communities. MEPS 500:159–174

Miller K, Huettmann F, Norcross B (2015) Efficient spatial models for predicting the occur-
rence of subarctic estuarine-associated fishes: implications for management. Fish Manag Ecol 
22:501–517

Mogie M (2004) In support of null hypothesis significance testing. Proc R Soc Lond B 271:S82–S84
Mullet TC, Gage SH, Morton JM, Huettmann F (2016) Temporal and spatial variation of a winter 

soundscape in Alaska. Landsc Ecol 31:1117–1137
Murphy AH, Winkler RL (1992) Diagnostic verification of probability forecasts. Int J Forecast 

7:435–455

F. Huettmann et al.

http://www.jstor.org/stable/10.1525/bio.2009.59.7.12
http://www.jstor.org/stable/10.1525/bio.2009.59.7.12
https://doi.org/10.1111/j.1600-0587.2012.07587.x
https://doi.org/10.7717/peerj.2849


59

Murphy MA, Evans JS, Storfer A (2010) Quantifying Bufo boreas connectivity in Yellowstone 
National Park with landscape genetics. Ecology 91:252–261

Murphy K, Huettmann F, Fresco N, Morton JM (2012a) Connecting Alaska landscapes into the 
future. U.S. Fish and Wildlife Service, And the University of Alaska. Prepared by the Scenarios 
Network for Arctic Planning (SNAP). www.snap.uaf.edu/attachments/SNAP-connectivity-
2010-complete.pdf

Murphy K, Reynolds J, Whitten E, Fresco N, Lindgren M, Huettmann F (2012b) Predicting 
future potential climate-biomes for the Yukon, northwest territories, and Alaska: a climate- 
linked cluster analysis approach to analyzing possible ecological refugia and areas of greatest 
change. Prepared by the Scenarios Network for Arctic Planning (SNAP) and the EWHALE lab, 
University of Alaska-Fairbanks on behalf of The Nature Conservancy Canada, Government 
Northwest Territories. www.snap.uaf.edu/attachments/Cliomes-FINAL.pdf

Næss A (1997) Ecology, community and lifestyle: outline of an ecosophy (trans: D. Rothenberg). 
Cambridge University Press, Cambridge

Ohse B, Huettmann F, Ickert-Bond S, Juday G (2009) Modeling the distribution of white spruce 
(Picea glauca) for Alaska with high accuracy: an open access role-model for predicting tree 
species in last remaining wilderness areas. Pol Biol 32:1717–1724

Olden JD, Lawler JJ, Poff NJ (2008) Machine learning without tears: a practical primer for ecolo-
gists. Q Rev Biol 83:171–193

Oppel S, Huettmann F (2010) Chapter 8: Using a random forests moedel and public data to predict 
the distribution of prey for marine wildlife management. In: Cushman S, Huettmann F (eds) 
Spatial complexity, informatics and wildlife conservation. Springer, Tokyo, pp 151–164

Oppel S, Pain DJ, Lindsell J, Lachmann L, Diop I, Tegetmeyer C, Donald PF, Anderson G, Bowden 
CGR, Tanneberger F, Flade M (2011) High variation reduces the value of feather stable isotope 
ratios in identifying new wintering areas for aquatic warblers in West Africa. J Avian Biol 
42:342–354

Oppel S, Strobl C, Huettmann F (2009a) Alternative methods to quantify variable importance 
in ecology. Technical Report Number 65, Department of Statistics, University of Munich, 
Germany

Oppel S, Powell AN, Dickson DL (2009b) Using an algorithmic model toreveal individually variable 
movement decisions in a wintering sea duck. J Anim Ecol 78:524–531

Oppel S, Meirinho A, Ramírez I, Gardner B, O’Connell A, Miller PI, Louzao M (2012) Comparison 
of five modelling techniques to predict the spatial distribution and abundance of seabirds. Biol 
Conserv 156:94–104

Oppel S et  al (2017) Landscape factors affecting territory occupancy and breeding success of 
Egyptian Vultures on the Balkan Peninsula. J Ornithol 158:443–457

Ott R (2005) Sound truth & corporate myth: the legacy of the Exxon Valdez oil spill. Dragonfly 
Sisters Press, Cordova

Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed 
using logistic regression. Ecol Model 133:225–245

Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution 
modeling. In: Proceedings of the 21st international conference on machine learning. ACM 
Press, New York, pp 655–662

Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic 
distributions. Ecol Model 190:231–259

Phillips SJ, Elith J  (2013) On estimating probability of presence from use–availability or pres-
ence–background data. Ecology 94:1409–1419

Pittmann S, Huettmann F (2006) Chapter 4: Seabird distribution and diversity. An ecological char-
acterization of the Stellwagen Bank national marine sanctuary region: oceanographic, biogeo-
graphic, and contaminants assessment. In: Battista T, Clark R, Pittmann S (eds) Prepared by 
NCCOS’s Biogeography Team in cooperation with the National Marine Sanctuary Program. 
Silver Spring, MD. NOAA Technical Memorandum NCCOS 45

Popp J, Neubauer D, Huettmann F (2007) Using TreeNet for identifying management thresholds 
of mantled howling monkeys’ habitat preferences on Ometepe Island, Nicaragua, on a tree 

2 Use of Machine Learning (ML) for Predicting and Analyzing Ecological…

http://www.snap.uaf.edu/attachments/SNAP-connectivity-2010-complete.pdf
http://www.snap.uaf.edu/attachments/SNAP-connectivity-2010-complete.pdf
http://www.snap.uaf.edu/attachments/Cliomes-FINAL.pdf


60

and home range scale. J  Med Biol Sci 1(2):1–14 www.scientificjournals.org/journals2007/
articles/1096.pdf

Prasad A, Iverson L, Matthews S, Peters M (2009) Atlases of tree and bird species habitats for 
current and future climates. Ecol Restor 27:260–263

Quinn G, Keough Q (2004) Experimental design and data analysis for biologists. Cambridge 
University Press, Cambridge

Core Team R. (2016) R: a language and environment for statistical computing. R foundation for 
statistical computing. www.r-project.org

Recknagel F (2001) Applications of machine learning to ecological modelling. Ecol Model 
146:303–310

Reich Y, Barai SV (1999) Evaluating machine learning models for engineering problems. Artif 
Intell Eng 13:257–272

Ribiero Jr., P J., Diggle PJ (2013) Package ‘geoR’. www.leg.ufpr.br/geoR
Ritter J  (2007) Species distribution models for Denali national park and preserve, Alaska. 

Unpublished M.Sc. thesis, University of Alaska-Fairbanks (UAF), Alaska
Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. In: European 

conference on computer vision. Springer, pp 430–443
Royle JA, Chandler RB, Yackulic C, J  D N (2012) Likelihood analysis of species occurrence 

probability from presence-only data for modelling species distributions. Methods Ecol Evol 
3:545–554

Schaub M, Kery M (2012) Combining information in hierarchical models improves inferences in 
population ecology and demographic population analyses. Anim Conserv 15:125–126. https://
doi.org/10.1111/j.1469-1795.2012.00531.x

Schmitt S, Pouteau R, Justeau D, Boissieu F, Birnbaum P (2017) ssdm: An r package to predict 
distribution of species richness and composition based on stacked species distribution models. 
Methods Ecol Evol 8:1795–1803. https://doi.org/10.1111/2041-210X.12841

Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasenbeek M, Angelo M, 
Reich M, Pinkus GS et al (2002) Diffuse large B-cell lymphoma outcome prediction by gene- 
expression profiling and supervised machine learning. Nat Med 8:68–74

de Smith MJ, Goodchild MF, Longley PA (2007) Geospatial analysis: a comprehensive guide to 
principles, techniques, and software tools. Troubadour Publishing, Ltd., Leicester

Stephens PA, Buskirk SW, Hayward GD, Martinez del Rio C (2007) A call for statistical pluralism 
answered. J Appl Ecol 44:461–463. https://doi.org/10.1111/j.1365–2664.2007.01302.x

Strobl C, Boulesteix A-L, Zeileis A, Hothorn T (2007) Bias in random forests variable importance 
measures: illustrations, sources and a solution. Research Report Series/Department of Statistics 
and Mathematics, 40. Department of Statistics and Mathematics, WU Vienna University of 
Economics and Business, Vienna

Strobl C, Boulesteix A-L, Kneib T, Augustin T, Zeileis A (2008) Conditional variable importance 
for random forests. Bioinformatics 9:307. https://doi.org/10.1186/1471-2105-9-307

Strobl C, Malley J, Tutz G (2009) An introduction to recursive partitioning: Rationale, application, 
and characteristics of classification and regression trees, bagging, and random forests. Psychol 
Methods 14:323–348. https://doi.org/10.1037/a0016973

Strogatz SH (2001) Exploring complex networks. Nature 410:268–276
Thuiller WB, Lafourcade R, Engler J, Araujo MB (2009) BIOMOD a platform for 

ensemble forecasting of species distributions. Ecography 32:369–373. https://doi.
org/10.1111/j.1600-0587.2008.05742.x

Venables WN, Ripley BD (2002) Modern applied statistical analysis, 4th edn. Springer, New York
Wei C et al (15 co-authors) (2011) A global analysis of marine benthos biomass using random 

forests. Public Libr Sci 5:e15323
Weinstein BG (2018) A computer vision for animal ecology. J Anim Ecol 87:533–545. https://doi.

org/10.1111/1365-2656.12780
Wickert C, Wallschlaeger D, Huettmann F (2010) Spatially predictive habitat modeling of a white 

stork (Ciconiaciconia) population in former East Prussia in 1939. Open Ornithol 3:1–12
Wilson EO (1998) Consilience: the unity of knowledge. Alfred A Knopf, Inc., New York

F. Huettmann et al.

http://www.scientificjournals.org/journals2007/articles/1096.pdf
http://www.scientificjournals.org/journals2007/articles/1096.pdf
http://www.r-project.org
http://www.leg.ufpr.br/geoR
https://doi.org/10.1111/j.1469-1795.2012.00531.x
https://doi.org/10.1111/j.1469-1795.2012.00531.x
https://doi.org/10.1111/2041-210X.12841
https://doi.org/10.1111/j.1365–2664.2007.01302.x
https://doi.org/10.1186/1471-2105-9-307
https://doi.org/10.1037/a0016973
https://doi.org/10.1111/j.1600-0587.2008.05742.x
https://doi.org/10.1111/j.1600-0587.2008.05742.x
https://doi.org/10.1111/1365-2656.12780
https://doi.org/10.1111/1365-2656.12780


61

Wisz MS, Hijmans RJ, Peterson AT, Graham CT, Guisan A, NCEAS Predicting Species 
Distributions Working Group (2008) Effects ofsample size on the performance of species 
distribution models. Divers Distrib 14:763–773

Whittingham MJ, Stephens PA, Bradbury RB, Freckleton RB (2006) Why do we still use stepwise 
modelling in ecology and behaviour? J Anim Ecol 75:1182–1189

Yackulic CB, Chandler R, Zipkin EF, Royle JA, Nichols JD, Campbell Grant EH, Veran S (2012) 
Presence-only modeling using MAXENT: when can we trust the inferences? Methods Ecol 
Evol 4:236–243

Yen P, Huettmann F, Cooke F (2004) Modeling abundance and distribution of Marbled Murrelets 
(Brachyramphusmarmoratus) using GIS, marine data and advanced multivariate statistics. 
Ecol Model 171:395–413

Young B (2012) Diversity in the boreal forest of Alaska: distribution and impacts on ecosystem 
services. Unpublished PhD thesis. University of Alaska-Fairbanks (UAF), Fairbanks

Zar JH (2009) Biostatistical analysis, 5th edn. Prentice Hall, Upper Saddle River
Zuckerberg B, Huettmann F, Frair J (2011) Data management as a scientific foundation for reliable 

predictive modeling. In: Drew A, Wiersma Y, Huettmann F (eds) Predictive modeling in landscape 
ecology. Springer, New York

2 Use of Machine Learning (ML) for Predicting and Analyzing Ecological…



63© Springer Nature Switzerland AG 2018 
G. R. W. Humphries et al. (eds.), Machine Learning for Ecology and Sustainable Natural 
Resource Management, https://doi.org/10.1007/978-3-319-96978-7_3

Chapter 3
Boosting, Bagging and Ensembles 
in the Real World: An Overview, some 
Explanations and a Practical Synthesis 
for Holistic Global Wildlife Conservation 
Applications Based on Machine Learning 
with Decision Trees

Falk Huettmann

3.1  Introduction

Machine Learning offers a very different mindset than the traditional analysis (e.g. 
Zar 2010). It is not based on just one constrained single approach and algorithm 
(e.g. linear regression, normal distribution and other parametric assumptions; 
Harrell 2001, Reinhart 2015), but it extends Bayesian approaches (Hobbs and 
Hooten 2015) and easily consists of over 100 algorithms (Hastie et  al. 2009; 
Ferandez-Delgado et al. 2014). That number of algorithm tools is still growing, and 
new concepts, implementations and approaches are still developed and open up for 
many platforms and disciplines (Witten et al. 2011, Aggarwal 2015; see for updates 
here https://en.wikipedia. org/ wiki/ Machine_learning). This represents a major 
paradigm shift in the sciences, in quantitative analysis and how to do business on 
earth, for conservation, policy making and global well-being. The earlier notion of 
employing just one binding algorithm, parsimony, reductionism and a mandatory use 
of information- theoretic concepts by the government in charge - as promoted before 
for resource management (see Verner et al. 1986, Silva  2012 and Zar 2010) - now 
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fades out quickly, and rightly so (Loftus 1996): the reductionistic approach 
(Burnham and Anderson 2002) does not perform well for nature and natural 
resources, and never really has! (Naess 1989; Liu et al. 2018) It violates most what 
Aldo Leopold and good conservation stands for (Leopold and Meine 2013; http://
www.steadystate.org/brian-czech/). From the vast quantitative analysis landscape 
that we see ahead of us, now most of it is in shambles (Alexander 2013; Cockburn 
2013) and so is their conservation (Kurt 1982; Mace et  al. 2010). It’s the 
Anthropocene that is causing this disruption in conservation and the decay in quan-
titative analysis (Smith and Zeder 2013).

For a new approach and an urgently needed re-start (Breiman 2001a) in science- 
based natural resource conservation management, here I will focus on three domi-
nant tree-based algorithms and their combinations: boosting, bagging and ensembles. 
While those algorithms are a somewhat arbitrary and convenient choice from all the 
Machine Learning algorithms available they have not only been already introduced 
early (O’Connor et al. 1996; Fielding 1999) but also perform very highly (Kampichler 
et al. 2010, Elith et al. 2006, Chunrong et al. 2017) and can be useful for progressing 
a wide variety of applications (e.g. Yen et al. 2004, Drew et al. 2011, Kandel et al. 
2015; see for instance Reich and Barai 1999 for engineering, Kononenko 2001 for 
medicine and Dhar 1998 for economics). At minimum, those methods add to the 
tool box that otherwise is fully discriminated against when using Machine Learning 
(see Romesburg 1989, Anderson et al. 2000, Burnham and Anderson 2002 or Silva 
2012 for examples), or what just employs maxent (Phillips and Dudik 2008) or 
worse (e.g. maxlike, Merow and Silander 2014; see Oppel et al. 2012 for low per-
formance). As referred to in this text, boosting and bagging are usually based on 
recursive partitioning and they essentially represent optimized extensions of clas-
sification and regression trees (CARTs; Breiman et al. 1984, https://www.salford-
systems.com/support/spm-user-guide/help). Based on the paradigm in Machine 
Learning that ‘many weak learners make for a very strong learner’ (Schapire 1990, 
1992; Schapire and Singer 1999; Hastie et al. 2009), it is probably rather suitable to 
perceive the methods of boosting and bagging all as ensembles in their own right. 
Arguably, much is still to be learned about those methods (Mueller and Massaron 
2016) and their applications (Hochachka et  al. 2007) and potentials. While still 
growing these methods and situations demand for a new ethics in regard to conser-
vation-based analysis in many of their aspects. However, a maturity was reached 
that makes it difficult to deny them their participation, if not even their monopoly 
and a lead in the global management arena of natural resources. Some of those 
details will be shown next.

3.2  A Quick Refresher on Linear Models (LMs), Parsimony 
and Classification and Regression Trees (CARTs)

Although using linear models (LMs) or classification and regression trees (CARTs) 
are not a base-requirement for boosting and bagging as a concept, they tend to play 
a big role in the overall discussion and application for these methods. For generic 
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concepts and history, these methods are very well treated elsewhere (see for instance 
Hilborn and Mangel 1997, Venables and Ripley 2002 and MacNally 2000 for LMs, 
Burnham and Anderson 2002 for parsimony and Breiman et al. 1984, 2001a and 
De’ath and Fabricius 2000 for CARTs). In the following I will simply refer to the 
major characteristics of boosting and bagging and put them in context with infer-
ence and their applications.

I have heard people making reference to linear models (LMs) as being part of 
Machine Learning; but one must beg to differ (see Hegel et al. 2010 for overview in 
wildlife conservation; see Elith et  al. 2006 and Oppel et  al. 2012 for the perfor-
mance of LMs). While Machine Learning represents a really big ‘family’ of algo-
rithms (Ferandez-Delgado et  al. 2014), methods that employ binary recursive 
partitioning tend to be consistently on the forefront of performance (Mueller and 
Massaron 2016; see Oppel et  al. 2012 and Chunrong et  al. 2017 for real-world 
applications). That is not to say that other methods and concepts, e.g. splines, 
neural networks, support vector machines, entropy or others are less relevant or not 
powerful; far from it (Hastie et al. 2009, Mueller and Massaron 2016). But here I 
simply focus on tree (CART)-based methods because they are already widely tested 
and discussed, are robust, offer good software implementations, and are still widely 
underused, even mis-understood, in the ‘community’ of natural resource managers 
(see for their wide absence in Verner et al. 1986, Romesburg 1989, Silva 2012). 
CARTs are convenient and readily available models to exemplify the power of 
Machine Learning overall, including boosting and bagging! In the near-future the 
concept of Machine Learning will obviously grow further (Aggarwal 2015). It is 
worthwhile to agree here that the generic concept of linear regression is actually 
part of some internal and initial CART optimizations (Breiman et al. 1984; De’ath 
and Fabricius 2000). Secondly, I found that leaving linear regressions ‘uncon-
strained’ and applying them without parametric assumptions can, and sometimes 
does, lead to suitable predictions (but they are usually topped by more sophisticated 
algorithms; see for instance in the BIOMOD2 package in R). However, this means 
to apply LMs in the sense of Breiman (2001a; prediction used for inference) uncon-
strained, but not like suggested by Burnham and Anderson (2002) with parsimony 
and hypothesis testing. Clearly, the wider failure of LMs really comes to show when 
they are assumed to be strict parametric tools and when using them with parsimony 
and for ‘inference only’ in a reductionistic mindset (as promoted by Manly et al.  
2002 and Burnham and Anderson 2002, Johnson et al. 2008, for instance). An even 
higher level of error is introduced when using them with assumed (but not well-
tested) distributions such as poisson and logistic link functions (Keating and Cherry 
2004 for performance); those assumptions are very often not well met and just 
theoretical mathematical ones without a good sense of reality (sensu McArdle 
1988). Most of those latter LMs applications cannot compete much with the usual 
Machine Learning applications, e.g. Elith et al. (2006), Oppel et al. (2012), see Fox 
et al. (2017) for an applied example. Consequently, one will not see them used and 
published much in modern data mining and prediction projects. Machine Learning 
dominates there in the wide absence and ignorance of practitioners as shown in their 
textbooks (Verner et al. 1986; Romesburg 1989; Silva 2012).
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66

3.3  Boosting

3.3.1  What Boosting is in a Nutshell

Boosting refers essentially to a sequence of algorithms, each explaining the left- 
over variance of the previous model (This is inherent in the notion of ‘many weak 
learners make for a strong learner’ which is described further below in detail). 
Boosting is essentially a fine-tuned sequence, or chain, of model runs. The more 
often this concept is applied, the more variance gets ‘explained down’ each time and 
eventually the model explains ‘most’ of the variance in the system (as represented 
in the initial data cube to be modeled). So a system of high variance becomes 
explained through the repetitive use of an algorithm to capture and explain it. The 
name of ‘boosting’ refers to a solution that must boost the low accuracy of a weak 
learner to the high accuracy of a strong learner (Schapire 1990). Essentially this 
concept is maximizing (=‘boosting’) the variance explained using individual steps 
(Freund and Schapire 1997; see also Breiman 1998 for variations and De'ath 2007 
for applications). Similar to deep learning, this method is by now a mainstay in 
Machine Learning (Hastie et al. 2009; Mueller and Massaron 2016).

The concept of ‘boosting’ can essentially be applied to any algorithm, it’s not 
just limited to ‘binary recursive partitioning’ and CARTs as such (see Drucker et al. 
1993 for neural networks for instance). Boosting of linear regressions for instance 
can lead to rather interesting and eye-opening insights, e.g. when compared to the 
flawed AIC log linear regressions as mandated by federal governmental agencies 
(Akaike 1974, Burnham and Anderson 2002; see for Guthery et al. 2005 and Arnold 
2010 for an assessment). However, boosting with tree-algorithms proved to be very 
successful as a combination. One reason is that ‘trees’ break virtually any linear 
dependencies in the data, as they are otherwise known as a requirement from linear 
regressions (which makes them part of parametric statistics; Hastie et  al. 2009). 
Being able to break those linearities is due to the fact of binary partitioning and it 
being ‘recursive’ (Breiman et al. 1984). Thus, a binary splitting rule can be used 
again and again throughout the entire ‘tree’ and dataset. This allows to make good 
use of the many dimensions in a data set. Correlations in the data can then actually 
be used for explaining data and for predictions and such type of inference (Breiman 
2001a, https://www.salford-systems.com/news/salford-systems-introduces-cart). 
Belonging to the group of non-parametric methods (Hastie et al. 2009), this makes 
for a new concept that many scientists and conservationists still need to wrap their 
head around and which needs to be taught, e.g. Silva (2012). It opens up many new 
avenues and also makes existing analysis paths stronger. Further, boosting became 
‘stochastic boosting’ (Friedman 2001) as a specific and very powerful variation. It 
is stochastic because a random element gets introduced in the data analysis (e.g. 
Breiman 1998, Friedman 2001) and for what makes the testing and the internal 
assessment data. That way, the entire data set gets ‘ploughed’ through for its infor-
mation and for a meaningful optimum to be found in the data analysis. There are 
many variations how boosting is implemented, and those  fine-tuning settings can 
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make a major change in the performance overall (see Table 3.1). Arguably, boosting 
as such is not automatically a guarantee for a good model per se, and other settings 
also play a role and can overrule. However, if the ‘boosting machine’ is applied right 
it makes for one of the best solutions for classification, regression and prediction 
available to mankind. Boosting can indeed create a great ‘Learner’.

3.3.2  Short History of ‘Boosting’

‘Boosting’ started with several algorithms such as ADABOOST (Freund and Schapire 
1997). A major step forward was presented by Friedman (2001, 2002) leading eventu-
ally to the commercial TreeNet implementation with Salford Systems Ltd. (SPM8, 
https://www.salford-systems.com/). Along this way many other variations of boosting 
were pursued, developed and exist (e.g. LogitBoost, GentleAdaBoost, CoBoosting, 
BrownBoosting etc.; Hastie et al. 2009) and more are developed still (see online http://
www.boosting.org/) exemplifying the magnitude and depth of this approach. Fielding 
(1999) is among the first to introduce such methods for conservation and ecology. By 
now, boosting enjoys a wide set of applications (see for instance Drew et al. 2011 and 
Cai et al. 2014 for wildlife conservation).

Table 3.1 A selection of fine tuning parameters that make boosting and bagging so powerful, 
beyond just the underlying algorithm as sucha

Fine-tuning 
parameter How done Why it matters

Software 
and 
reference

Weighting Puts a well-balanced 
weight on specific 
samples, e.g. to predict 
‘best’.

Allows for imbalanced 
samples and for ‘finding a 
needle in the hay stack’ (=data 
mining)

SPM8

Random draw Draw columns and rows 
in a specific fashion (e.g. 
weighted)

Allows improved performance 
of the bootstrap aspect

SPM8, 
Breiman 
(1998)

mtry (bagging) Select a specific number 
of subsetted predictors

Allows to find the best size of 
interactions in a complex data 
cube

SPM8

Prediction metric 
(ROC, Gains, 
Entropy, LL 
Average)

Choose the most powerful 
metric to express 
prediction performance

Better optimization for 
predictions

SPM8

Focus on predictions Optimize models based 
on predictive performance 
(not model fit)

Allows for best possible 
inference (Breiman 2001a, b)

SPM8

aMany of those fine-tunings are the recipe for the great performance of boosting and bagging and 
thus the guarantee of business success. Those are virtually not shared and thus not really available 
in R and similar packages and codes
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3.3.3  Why is Boosting so Powerful?

The notion of sequential approaches to variances explained is not really new. Linear 
regressions have been tried, but they are limited in that a linear regression does not 
bring anything new to the data once employed and when re-employed. Once their 
variance gets explained down, nothing more can usually be done with linear models 
(LMs) because they are ‘static’. As long as one stays in the classic mindset (Zar 
2010) it’s a dead end with them. But in tree-based methods new options exist to look 
at remaining variances each time (that’s due to recursive partitioning, and specifi-
cally in stochastic approaches). Boosting, in general, does not really focus on the 
predictive performance for optimization. But if that is achieved (like done in 
TreeNet; Friedman 2000) then it becomes very sophisticated. The latter is an 
approach that is fully in line with Leo Breiman (2001a, b; predictions as the goal) 
and thus it makes it for a very powerful approach to inference, like also done in 
bagging (see next section, Breiman 2001b).

3.4  Bagging

3.4.1  What Bagging is in a Nutshell

Like with boosting, bagging is usually based on ‘trees’, binary recursive partition-
ing. Also, it is a technique that summarizes many ‘trees’ (which classifies it per se 
as an ensemble; Breiman 2001b). But bagging, as a scheme, the same as it is done 
in boosting, could be applied with many algorithms. Bagging differs from boosting 
in two parts: i) it subsets rows as well as columns (similar to bootstrapping), and 
ii) it has a specific procedure to average out the trees for ‘the best’ result. Both of 
these steps are sophisticated and are reasons for why bagging is such a success. 
The performance sits once more in how those details are really implemented 
(Table 3.1). Breiman (1996, 2001b) presented a version of bagging, called random 
forests and which seems to be among the top classifiers, world-wide (Ferandez-
Delgado et al. 2014). A base version was released online (https://www.stat.berke-
ley.edu/~breiman/RandomForests/) and subsequently in R (by A.  Liaw https://
cran.r-project.org/web/packages/randomForest/randomForest.pdf), and a com-
mercial version was implemented by Salford Systems Ltd. Details are provided 
below in the next section.

3.4.2  Short History of Bagging

Bagging in ‘trees’ is credited to the work by Leo Breiman (1996, 2001a, b) and his 
former PhD student Adele Cutler (https://www.stat.berkeley.edu/~breiman/
RandomForests/; see also Cutler et al. 2007). However, previous work is based on 
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CARTs, by Leo Breiman et al. (1984). Many of the publicly available random 
forests algorithms use the code presented by Breiman and Cutler (Breiman 
2001a, b). Publicly made available packages in R and Python are essentially just 
wrappers of that code but which leave the relevant questions of fine-tuning and 
ultimate inference to the coder and user (Table 3.1). This is a big flaw in those public 
implementations of random forests because most users lack the testing and under-
standing and thus, it leaves out much of the award-winning performance that is 
found in random forests. Consequently, several random forests implementations 
and applications can be found in the literature that are substandard, see Table 3.2 for 
a discussion.

3.4.3  Why Bagging is so Powerful

Bagging involves drawing random (re-sampling) samples from rows (bootstrap-
ping), which is a relatively simple and old procedure as such (Efron and Tibshirani 
1993). Trees get build from each of those subsamples and then summarized. 
Whereas the real innovative part is in the random draw of columns (=predictors). 
Users usually did not do that because they pre-selected and then ‘hugged’ their 
predictors at all costs and wanted to keep all of them for outermost inference. But 
instead, when ‘bootstrapping predictors’ one obtains more robust information from 
them! That way, random forests ‘rarely overfits a model (that means, it always uses 
a lower amount of predictors than what the data allow). Thus, always just a subset 
of the predictors is used, and then, the best tree gets inferred from that eventually. 
All of it is fine-tuned for optimization. There is another ‘trick’ in bagging, and that 
is, it gets optimized for the best prediction. Whereas linear regressions, as an exam-
ple, do not work that way. Their optimization essentially is a) relatively primitive 
(based on the ‘least squares’, at best (an approach that is over a century old), and b) 
based on minimizing the variance (r2, Zar 2010). Whereas in bagging, an overall 
optimization on the predictions (=metrics of ROC/AUC; Fielding and Bell 1997) 
allows for a higher level of generalization, and thus, robust inference (Breiman 
2001a). The emphasis is thus put on prediction for inference and that is where the 
power sits; whereas r2 values have less meaning and relevance in that discussion (the 
author knows of models that have a relatively low r2 but a high ROC/AUC and thus 
perform rather well when tested with alternative evidence). The often-demanded 
practice to compute a pseudo- r2 in Machine Learning should be dismissed because 
r2 is derived from a linear concept (Zar 2010) and virtually impossible to mimic in 
Machine Learning algorithms, e.g. for Neural Networks. It thus should be left alone 
and just be used for linear regressions (which tend to perform low anyways and thus 
not a real option) (Textbox 3.1).
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Textbox 3.1 On the suggested ‘best’ use of competing landcover, altitude 
and climate layers for better inference with Machine Learning: Being 
inclusive beats being exclusive and parsimony (The ‘Kitchen Sink’ 
model tends to win)

There is a wide range of habitat information to pick from these days. Often, 
those layers are competing with each other to be picked and used. A classic 
human approach is ‘to select the best’ and throw out any other layers as infe-
rior and dismiss them from ‘science’. But with Machin Learning - boosting 
and bagging- better approaches now exist and to obtain robust inferences by 
using all data at hand in an optimized fashion for the benefit of a best possible 
inference, and subsequent conservation.

The way to approach such problems in Machine Learning is to allow cor-
relations and to understand that some data have strengths in some areas, and 
weaknesses in other areas of the data space. If tree-based algorithms are used, 
correlations can be powerful to use, interactions can be addressed, and best 
options for a given case can be found and used in such a Machine Learning 
analysis. Binary re-cursive partitioning allows for a new approach, often a 
better one than done in previous times.

What is proposed here is to keep many layers, similar sounding by name 
but different in the detail, and let the Machine Learning handle it to find the 
best prediction, and inference. One may refer to it as ‘the kitchen-sink model. 
That is, all data available get thrown in at first, and if adjustments are to be 
made, then one may act accordingly, but should do only very reluctantly and 
always to keep in mind to focus on best predictive metrics, less so r2. It’s the 
‘smart’ algorithm that tries to sort things out and to optimize the best possible 
prediction for inference.

Like it initially appeared to be with ensembles (Elder 2003) and when 
‘many weak learners can create a superior learner’ (Friedman 2001, 2002), 
this is another example where the analysis approach in Machine Learning 
might at first appear counter-intuitive, and where the human wish to always 
‘select for the best and for the superior’ and ‘to narrow things down’ so that it 
all gets very easy fails and makes things less informative. But unless tested 
and shown, this concept pf narrowing things down is not always the best 
option, nor is Ecology easy ad simple (Naess 1989) or parsimonious (as 
demanded claimed by Burnham and Anderson 2002).

Table 3.1.1 shows examples of competing climate layers, elevation and 
landcover data analysis. Figure 3.1.1 shows a concept on how to run such an 
analysis, and how to interpret them, and for drawing ‘the best possible’ 
inference.
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Table 3.1.1 Example of repetitive-content datasets that should be used for SDM, habitat 
analysis and data mining with Machine Learning for best-available inference of data 
available

Topic Data set Reference Comment

Climate IPCC www.ipcc.ch Many sources (modeled 
data) exist within.

NCAR climatedataguide.ucar.edu/ A complex and leading 3D 
climate data set (modeled).

CRU www.cru.org A somewhat coarser but 
widely used climate dataset 
from UK.

Worldclim www.worldclim.org A standard by now, See 
version 2 for update.

CHELSA www.chelsa-climate.org This dataset claims 
superiority over Worldclim 
but Suwal et al. (submitted) 
shows otherwise for 
mountain areas in Asia.

Landcover GLC2000 https://ec.europa.eu/jrc/en/
scientific-tool/
global-land-cover

All landcover maps are far 
from perfect, vary in their 
legends and are usually not 
up-to-date (A lag time of 
+10 years is common).

Maryland 
Landcover

http://glcf.umd.edu/research/
portal/geocover/

GlobeCover 
V2.2

https://earth.esa.int/web/
guest/-/
globcover-v22-land-cover-
product-now-available-5999

Elevationa WorldClim www.worldclim.org A standard for many 
applications, e.g. food 
security and species 
distribution models 
(SDMs).

ETOPO2 https://www.ngdc.noaa.gov/
mgg/global/etopo2.Html

Old elevation data now 
superseded by ETOPO1.

ETOPO1 https://www.ngdc.noaa.gov/
mgg/global/global.html

One of the best elevation 
data sources (also for 
oceans).

GMTED2010 https://topotools.cr.usgs.gov/
gmted_viewer/

An elevation data source by 
USGS.

aIt must be stated here that elevation is often a core data set in natural resource models, and 
also the base source for slope, aspect and ruggedness. Clearly, those data sets are far from 
error-free and thus create many subsequent errors in the inference, especially when ‘only’ 
model fits are used without further and alternative evidence tests
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3.5  Ensemble Models

3.5.1  What is an Ensemble Model?

In generic terms, ensemble models simply consist of many models underneath and 
combine them into one single output. The actual definition of what ensemble mod-
els really are, and how combined into one, is not so precise though. Random forest 
qualifies as an ensemble model, and in a way, and so can boosting be called an 
ensemble model (that’s because they are built on, and derived from, many models 
and then summarize into a single model overall; Elder 2003, Hastie et al. 2009). 
However, in most applications, ensembles consist of many algorithms and can be 
much more complex than just bagging and boosting. While the actual definition of 

The concept proposed here works is almost opposite to what is usually 
done and suggested. So why does that work ? Several answers can be given. 
As long as tree-based analysis using boosting and bagging is used - as part of 
Machine Learning  - one data point can help to inform and better interpret 
another data point and towards a better response and model prediction overall. 
The inference is then done through the prediction itself. Secondly, theory and 
education has just not caught up with reality.

Whatever the reasons are, it is highly suggested to test those concepts and 
compare, in order to find best possible solutions and inferences to advance 
conservation, worldwide. The proof sits in the pudding, clearly.

Fig. 3.1.1 Recursive binary partitioning
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ensembles remains open-minded, so is the actual procedure on how to obtain the 
best, final, model. Often in an ensemble model many of the underlying models are 
just run in parallel, and the best result is selected from those models (instead of just 
one merged model overall). Development is still going on, but arguably, ensemble 
models are among the best classifiers and predictors possible by now (Elder 2003; 
Ferandez-Delgado et al. 2014; Mueller and Massaron 2016).

3.5.2  History of Ensemble Models

Ensemble models are already widely used for many years, but they became popular 
and a global success in recent climate and financial models. The IPCC is using such 
methods for climate predictions for over a decade already (http://www.ipcc-data.
org/). Araujo and New (2007) provided a summary for species distributions, but also 
Yen et al. (2004) and Hardy et al. (2011) showed their use for model predictions and 
natural resource contexts. Biomod2 and SPM8 (details see Table 3.2) are software 
packages that easily allow to run model algorithms in parallel and to then to select 
‘the best’ result from it (SPM8 extends them to the use of ‘batteries’; see Chap. 8 
this publication). However, in the Machine Learning discipline, ensemble models 
are nothing new really and have been used for a long time in various forms and 
concepts (Hastie et al. 2009; Mueller and Massaron 2016). It should be stressed that 
random forests, and even many boosting algorithms are essentially ensemble mod-
els. By now, ensemble models became a global standard when predictions are the 
goal.

3.5.3  Why Ensemble Models are so Powerful

According to theory (e.g. Zar 2010 and Burnham and Anderson 2002), model fitting 
practices and following the paradigm ‘garbage in garbage out’ (GIGO) ensemble 
models are not to work well. Their success is therefore commonly referred to as a 
‘paradox’ (Elder 2003) and not so easy to explain when following the classic wis-
dom of statistics and western science. But ensemble models offer several advan-
tages over the classic approach to just fitting data in a parsimonious fashion.

 (i) A key scheme in the success of ensembles might be the diversity of algorithms 
applied to a data problem. That way, always ‘the best’ model algorithm gets 
used and applied for a certain section of the data. It matches the best ability of 
algorithms in the ensemble with suitable data subsets. A whole plethora of 
algorithms can be applied in parallel, and only the best models remain and are 
used, e.g. optimized for predictions. This is a powerful approach because often 
the exact data details, and the best-possible model suiting the data, remains 
unknown before the model is actually run. It can be surprising for the practitio-
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ner what makes the best model for a dataset. Using ensembles offers many 
model algorithms to be optimized during the analysis run, just as the data 
allow. It’s therefore inherently non-parametric (Hastie et al. 2009).

 (ii) The actual models, optimized in their subsequent own runs, can get averaged 
and further optimized by a model-weighted model contribution (aka ‘ensemble 
of an ensemble’), creating a form of synergy that simple and singular model 
algorithms can usually not achieve.

 (iii) Because the ‘correct’ data fit, nor such models are really known ahead of the 
analysis, errors and biases caused by a pre-perceived model and algorithm 
choice (=human expert error) are kept to the bare minimum.

 (iv) If the prediction metric is optimized for, it allows for the best prediction as well 
as for the best inference all in one run, based on ‘the best’ algorithms employed.

 (v) For very complex data and model applications it might well be that statistical 
theory has not well kept up with those complexities (e.g. Zar 2010), and thus 
these cases cannot be fit nor explained well simply for those reasons, yet the 
model performs well regardless of the theory and their institutions and experts 
lagging behind! The science of chaos and percolation theories are good exam-
ples for that (see Forman 1995 for real-world landscapes examples). And more 
of those cases are likely to exist and to be discovered the more models are run 
on very diverse data situations. Our statistical theory is widely behind the data 
complexities in nature, but it must never hold us back for good progress in 
conservation management!

As a matter of fact, ensemble models are currently the best-possible inference for 
mankind on the data, if the best algorithms are used underneath and combined 
appropriately. Arguably, the better and the more meaningful the data are, the better 
will ensemble models, any model, perform! While the data are widely incomplete 
(as it is specifically the case in nature and in natural resource management), ensem-
bles remain the analysis path of choice. Ignoring or avoiding them - knowingly - is 
not only poor science, it actually harms the natural resource. The implications for 
science and education, as well as for governance and real-life, are tremendous and 
not even really fathomed yet, which makes for a rather scary situation.

3.6  Model Applications and Inference

3.6.1  Boosting Experiences and Applications

Stochastic gradient boosting is a rather strong concept per se and allows for a wide 
range of applications (see for instance De'ath 2007 for Ecology). I use it daily for 
rapid assessments, first error checks and pattern detections in data to gauge further 
analysis. It is specifically used for data mining, variance reduction and pattern 
detections in data across disciplines. Using it for predictions, and when optimized, 
becomes really strong for inference. I noticed a few atypical cases where boosting 
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can be erroneous for overfitting (=where a good model cannot be achieved, even 
when fine-tuned and with good predictors that achieve well in other algorithms). 
In those cases -rare though - I tend to use ‘stumps’ (very simple split trees) and cut 
back on predictors and node depths.

Using the R implementations of boosting often asks for known distributions of 
data to be analyzed; I found this a question impossible to answer in complex data 
mining applications beforehand, and thus, I see it as a major drawback in the impli-
cation (R). In my own work, primarily with SPM8, I use boosting for instance to 
explore data and to mine data for their initial patterns. Once those ‘signals’ in the 
data are found and become clear, I then follow up with other tools for a test, and 
whether those patterns can even improve further (often not the case though and thus 
I remain with the initial analysis!).

3.6.2  Bagging Experiences and Applications

Bagging is popular in several ways. By now, it is among the most widely used high- 
performance classifier out there (Ferandez-Delgado et al. 2014). It’s the method of 
choice for many remote sensing classification and modeling problems (e.g. Evans and 
Cushman 2009; Evans et al. 2010; Chunrong et al. 2017; see Cutler et al. 2007 for 
Ecology). Myself, I see it as the prime prediction machine for many species model 
applications (Drew et al. 2011; see Yen et al. 2004; Kandel et al. 2015; Chunrong 
et  al. 2017 for a test and application with species of high conservation profile). 
Using random forests with regression problems can prove less successful for the 
unexperienced user. Ensembles models are suggested in such cases.

Unfortunately, the vast implications of random forests in order to change, 
improve and progress science in itself have not been fully realized by the natural 
resource conservation management community. First steps have been done, but 
arguably, many large ones are to come still, e.g. to use RandomForest as the base 
approach for obtaining a robust ‘Learner.’ One way or another, this will move the 
conservation management of natural resources into computer-aided decision- 
making, for instance, beyond also having many other impacts, e.g. job descriptions, 
publications, ethics, business models and education and institutions. Textbooks may 
be re-written and are to be extended accordingly.

3.6.3  Ensembles

The global discussion on climate change - arguably the major scheme of our time 
and certainly for natural resource management as we know it - is driven by a set of 
ensemble models (IPPC). There is no need to stress the relevance of this approach, 
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and of its underlying algorithms, e.g. Baltensperger and Huettmann (2015). While 
bagging is on the rise, so are ensemble models even more so (see Elder 2003, for an 
application: Jiao et al. 2014).

3.6.4  Precautionary, Pro–Active, and Predictive Models 
for Better Resource Conservation Management

Applications that involve predictions for natural resource management are not only 
mature established, but for globally relevant ones they now become the norm 
(Table 3.3 for overview). In addition, the true relevance of those approaches is still 
not widely embraced, nor is climate change and how to manage natural resources in 
a predictive fashion (e.g. see in Silva 2012; but see O’Connor et al. 1996, Nielsen 
et al. 2008 and Chunrong et al. 2016 for examples). As long as man-made climate 
change is not accepted as a key problem, one cannot go ahead much with a mean-
ingful approach to predictions used for policy. We are thus in true violation of the 
UN Agreement on Pre-cautionary, Pro-Active Management Principles. One can 
only be pro-active, in the best available fashion, when being predictive. And best 
predictions are only possible when using best-available approaches (See Tables 3.2 
& 3.4) That is what Leo Breiman (2001a, b) and others offer, but that is widely 
missing from the textbooks on conservation and natural resource management 
(Verner et al. 1986; Romesburg 1989; Silva 2012). Table 3.4 shows some disciplines 
where Machine Learning still needs to be established further for progress.

Table 3.3 A small selection of application fields of CARTs, boosting, bagging and ensembles for 
wildlife conservation worldwide

Application Algorithm Detail of progress achieved Citation

Climate 
prediction

Ensembles Global progress of climate for 
sustainable decision-making

IPCC (https://www.ipcc.ch)

Species 
forecast

Ensembles First-time forecast of the species 
niche for an endemic subspecies

Lawler et al. (2006, 2011), 
Hardy et al. (2011), 
Chunrong et al. (2016)

Human 
health

CART First-time connection on a 
national scale between avian 
diversity and human health

O’Connor et al. (1996)

Boosting & 
Bagging

First-time global model for 
influenza

Herrick et al. (2013)

Rapid 
assessment

Boosting & 
Bagging

First-time model for that species 
over large areas

Kandel et al. (2015), Regmi 
et al. (2018)
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3.7  A Commonly Heard Criticism and Misunderstanding 
of Machine Learning, and Characteristics of Man–Made 
Science and Conservation Driven by Reductionism

Arguably, tree-based methods are highly performing, but also are slow in the imple-
mentation with the sciences, specifically when it comes to conservation manage-
ment of natural resources, and policy worldwide (Table 3.4). So how can it be that 
the best-available conservation science paradigm has not resulted in a faster use of 
Machine Learning while we face an unprecedented global conservation crisis? Do 
we not need better methods, better policy, better actors or all together? Arguably, 
human systems, the dominating cultures and their institutions are way too slow to 
acknowledge and to implement good research, and relevant research for progress. 
This is specifically true for conservation and environmental issues (see Berthold 
2016 for a real-world example), which get marginalized in our current scheme of 
economy and globalization for over five decades (e.g. Czech et al. 2000). Perhaps 
the current governance has an affiliation with destruction (e.g. Alexander 2013; 
Cockburn 2013)?

While virtually all relevant industries and online services are heavily driven by 
Machine Learning and data mining (Mueller and Massaron 2016) -the sciences, 
specifically conservation of natural resource management as well as the humanities 
have not made yet much strides to use those tools. In conservation management, we 
are over 40 years behind, and subsequently lost the battle against the industries that 
are harming the wilderness thus far. Our legal guidance and Massive long-term flaws 
hit much the notion that ecology is complex (Naess 1989, and as described already 
by Aldo Leopold and others 100 years ago; Silva 2012) and thus, any approach of 
simplification must be biased, missing relevant bits and pieces. The discussion 
about p-values, hypothesis testing and AIC show that simplification, ignorance and 
bias rule, all driven by the science view of reductionism (parsimony) and not making 

Table 3.4 A small selection of application fields for Machine Learning-driven wildlife 
conservation worldwide but currently still left open and not used to the full potential overall

Application Justification and explanation

Wildlife and landscape ethics How machines can make ‘the best’ decision for mankind 
and for the earth.

Definition of ‘the best’ decision Inclusion of human and wildlife welfare as well as global 
sustainability for the next millennium, e.g. through metrics 
and feedback.

Definition of ‘the best’ method 
and algorithm

Selection of ‘the best’ approach overall.

Oversight of the process How implemented in a democratic process, e.g. 
co-management.

Alternative information to assess 
quality from machine-driven 
decisions

Comparison and controls are required.
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good use of available tools (Cushman and Huettmann 2007; Drew et al. 2011). 
This situation shows the massive flaws of a so-called science-driven management 
western style-, and when it gets truly confronted with the state of global conserva-
tion (Mace et al. 2010). Arguably, a reductionist view just relates to the concept of 
singling out factors ‘at will’ and to manage or resolve them (conveniently) by a 
narrowly targeted effort and done through money and/or law. Instead, ‘the problem 
is more complicated than we had thought’, and this approach is not only biased and 
seriously limited, it is in violation of what Aldo Leopold suggested (Leopold and 
Meine 2013). It widely failed us and is to be replaced with a more holistic scheme, 
as expressed in a multivariate framework of thought. Machine Learning can achieve 
exactly that, and in a fast way. So it must be on the agenda as the method of choice 
and in an open access and open source fashion.

3.8  Synthesis and Outlook

Machine Learning is a wide field offering hundreds of variations, if not thousands 
of algorithms and their implementations to tackle a conservation problem in a holistic 
fashion for good progress. Tree-based methods like boosting, bagging and ensem-
bles are a big part of this approach; and they are known to be extremely powerful, 
certainly convenient.

What will the future hold for those methods and for the Earth? Arguably, we are 
all moving with Machine Learning and Data Mining into Artificial Intelligence (AI) 
and Deep Learning, that’s specifically true for robots and associated drone 
 applications and inferences. In conservation and resource management, the institu-
tion and people are meant to be at the core of the decision-making process. This is 
achieved when the people and institutions decide with democratic principles on 
resource management and conservation planning with the assistance of computing 
and up-to date decision making tools  - including considerate ethics -, instead of 
using expert’s opinion that are not based on the latest up to date tools.

However, the people are assisted by computing and aided through decision- 
making tools, all while we see increasingly the failure of traditional experts (Perera 
et  al. 2010). It is here where Machine Learning can help in a good way (e.g. 
Huettmann 2007). While not perfect, boosting and bagging has reached a level of 
maturity, and accuracies of over 80%, and sometimes way over 95% accuracies 
have been observed for global models. How much of an accuracy do we really 
need? It is unlikely that major changes will occur in boosting and bagging any time 
soon. The methods are there, mature and stable! However, a few things are increas-
ingly developing: a better embedding and workflow, rise in computing power, more 
applications overall, and an emphasis on decision-making process that has Machine 
Learning, Deep Learning and Artificial Intelligence, at its core.

Our current conservation problem is not so much defined anymore really by 
which (single) algorithm and model to choose, but to be on the Machine Learning 
platform overall, online,with all data freely available, free open-access robust softwares, 
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and then to implement the obtained predictions in a pro-active fashion before more 
damage occurs on earth and its atmosphere. While the Machine Learning methods 
are perfected further, the real culprit is by now, policy, governance, the human 
aspect and its role on sustainable management of the earth and universe. Apart from 
major ethical questions that’s where the biggest effort is to be placed by now for 
conservation management of natural resources worldwide. Boosting and bagging 
are here to stay and thus to be embraced for the best-possible global sustainable 
outcomes.
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Chapter 4
From Data Mining with Machine Learning 
to Inference in Diverse and Highly Complex 
Data: Some Shared Experiences, Intellectual 
Reasoning and Analysis Steps for the Real 
World of Science Applications

Falk Huettmann

4.1  Introduction

For a long time, scientists had limited data and they applied experiments in isolation 
to test and forward knowledge on a given subject (Salsburg 2001 and Conner 2005 
for overview). It’s a western tradition that then became applied to modern questions. 
It is from this perspective that frequentist statistics evolved (Chamberlin 1890; 
Berkson 1942), its methods became established and promoted (Popper 1945) then 
widely taught as a ‘good practice’ (Zar 2010) with many specific statistical tests that 
could be carried out (e.g. Table 4.1 and references within). It culminated in a study 
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Table 4.1 Overview of some basic statistical tests for common data problems

Data situation Recommended test Reference Comments

Normal distribution Goodness of fit tests 
(Z scores, Shapiro–
Wilk, Kolmogorov–
Smirnov 
Goodness- of-Fit 
Test, Lilliefors and 
Anderson–Darling 
tests)

Filliben 
(1975), Zar 
(2010), 
Razali and 
Wah (2011)

Nature is virtually never 
normally distributed. 
Consequentially, those tests are 
purely theoretical without any 
relevant meaning for real life 
and conservation management 
applications (McArdle 1988).

Parametric: Test for 
differences among 
samples and 
experiments

Chi-square test (one 
way, or two way 
contingency table); 
widely used

Quinn and 
Keough 
(2004), Zar 
(2010)

Should only be done with a valid 
hypothesis testing framework. 
However, this assumes the 
underlying theory is correct and 
statistically met. It is possible to 
use a GLM as well (see below as 
well). There are many references 
that question the validity of the 
threshold (e.g. 0.05%) and 
others ague to “euthanize” 
p-values all together (Anderson 
et al. 2000, Anderson and 
Burnham 2002, Concato and 
Hartigan 2016, Stang et al. 2010 
for tyranny of p-values).

Regression slope Linear Regression 
Model (LM) (e.g. Zar 
2010)

Zar (2010), 
McArdle 
(1988)

The existence of a slope is often 
seen as an ‘effect’, e.g. when 
compared to a flat line (no 
slope). However, these details 
are widely discussed. Usually 
LMs require a normal 
distribution of the errors and 
thus, they are not so realistic for 
natural processes.

Non-parametric: Test 
for differences among 
ordinal samples and 
experiments

Median Test, 
Mann- Whitney 
U-test, Kruskal- 
Wallis test, 
Wilcoxon- signed 
rank test

Venables and 
Ripley 
(2002)

There is a wider debate about 
the power of those tests. 
Arguably, they are more 
powerful than the parametric 
tests, but their predictive 
performance tends to be poor. 
And consequently, so is the 
inference, according to Breiman 
(2001a).

Interval/ratio data T-test, ANOVA 
(F-test)

Thompson 
(2004)

One of the most frequently used 
statistical test procedures. 
However, its predictive 
performance is rather low, and 
so is the inference according to 
Breiman (2001a).

(continued)
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Table 4.1 (continued)

Data situation Recommended test Reference Comments

Multiple comparison 
tests

Bonferroni, Tukey, 
Scheffe

Quinn and  
Keough 
(2004)

There is a wide debate about the 
validity of those tests. See 
Rothman (1990) and Perneger 
(1998) for what’s wrong with 
Bonferroni tests.

Advanced difference 
tests

MANOVA, 
ANCOVA, 
MANCOVA

Hillborn and 
Mangel 
(1997)

Those complicated tests rarely 
meet the real-world assumptions, 
unless data match the required 
research design and are free of 
interactions etc. (Nature is 
virtually never free of 
interactions and lacks such a 
research design)

Normal distribution of 
errors 
(Heteroscedasticity)

White test, modified 
Beusch-Pragan test

Quinn and 
Keough 
(2004), Zar 
(2010)

There should be no 
heteroscedasticity (i.e., variance 
of residuals should not increase 
with values fitted of response 
variable) and error bias in linear 
regressions. Often it gets 
rectified through Box Cox 
transformation (but which 
affects the original data for 
inference)

Confidence Intervals Confidence intervals 
and/or standard error

Gardner and 
Altman 
(1986), 
Fidler and 
Loftus  
(2009)

Unless confidence intervals are 
truly assessed with alternative 
data, they contribute more to 
unproven claims (so-called 
confidence trick; Salsburg 2001, 
Reinhart 2015)

Power of a test and 
effect size

Alpha and beta 
levels, simulations

Greenland 
et al. (2016)

A key question in experimental 
testing, for sample sizes required 
and sensitivity setting of a valid 
inference

Multiple Regressions 
(many predictors)

Generalized Linear 
Models (GLM)

Hillborn and 
Mangel 
(1997), 
Venables and 
Ripley 
(2002),
Quinn and  
Keough 
(2004)

The ‘workhorse’ for many 
statistical applications and in 
model selection studies. Usually 
applied in a logistic and 
parsimonious setting (Burnham 
and Anderson 2002, Manly et al. 
2002). However, GLMs and 
GAMs are known to predict 
poorly (Elith et al. 2006), and 
they have very strong 
assumptions

Autocorrelation Moran’s I, Ripley’s 
K

Venables and 
Ripley 
(2002)

There is a lot of debate about 
autocorrelation, e.g. to correct it 
or use it as a description 
(Swihart and Stade 1985; Betts 
et al. 2009).

4 From Data Mining with Machine Learning to Inference in Diverse and Highly…
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template used for simplicity (Anderson et al. 2000; Burnham and Anderson 2002). 
Whereas, similar to good detective work (e.g. Hilborn and Mangel 1997) reflection 
should still sit at the core of human inquiry and knowledge, specifically for ecology 
and natural resource management (Naess 1989; Romesburg 1991; Dodds 2001; 
Stephens et  al. 2007; Silva 2012; Stanton-Geddes et al. 2014) especially where 
modern computing now allows for more than just ‘simplicity/parsimony’. Instead, 
this enables us to carry out powerful predictions (Venables and Ripley 2002) for a 
more holistic approach (McGarical et al. 2000; Drew et al. 2011) to tackle man-
kind’s problems.

But complex real-world data situations are unknown and difficult for us to com-
prehend; much can be accomplished within those vast datasets and data cube 
(McGarical et  al. 2000). This is an inherent characteristic of data from nature 
(McArdle 1988). It applies even more to multivariate problems when many predic-
tors are employed (McGarigal et al. 2000; Drew et al. 2011). Despite many claims 
made (Zar 2010; see also Anderson and Burnham 2002; Manly et al. 2002; Silva 
2012 or even Chamberlin 1890; Berkson 1942 and Popper 1945), there are no good 
and standard rules to generalize multivariate problems because every data set tends 
to be different and unique, requiring powerful analytical approaches instead. 
Reflection is required. Nature is not symmetrical, not linear and not normal distrib-
uted; and that reality applies to ecology and natural resources, which has been 
known and expressed for decades (e.g. Naess 1989; Yoccoz 1991; Dodds 2001). In 
human medicine and psychology those details are also well known and have been 
discussed for long time (e.g. Salsburg 1985; Loftus 1996; Lambdin 2012; Rinehart 
2015). This is also true in education (Thompson 2004; Ziliak and McCloskey 2009). 
As early as 1988, McArdle (1988) had already stated clearly that “in the I-wish-it- 
were-so land of theoretical statistics …the data cannot be made to conform to the 
assumptions…” Thus, violations and surprises can easily occur in biological data 
sets (Elith et al. 2006; Hastie et al. 2009), and those data defy many other assump-
tions, theory and untested expectations such as parametric ones (Zar 2010). Making 
those data cases all equal, parametric, and putting them through the same analysis 
steps - without much reflection in a study template (as promoted by Burnham and 
Anderson 2002) - does them no good justice nor the many cases and realities they 
are representing. The peculiarities of the data records can be easily lost that way. 
But on the bright side, if one manages to resolve those peculiarities, with accepted 
methods that lead to a valid generalization, then the inventors of those methods are 
likely to end up in permanent positions (for life!). This is what data miners are doing 
for a living (Breiman 2001a, b; Mueller and Massaron 2016) and likely why data 
science is the ‘hottest’ job of the early 21st century: it’s a profession to turn marginal 
data into defendable information (i.e., extracting the signal from a very complex set 
of information). See Chap. 1 in this book for the evolution and historic details of this 
concept of machine learning.

In the following, I will elaborate on the task of data mining in real life applica-
tions and contrast it with the usual approach that is still taught in virtually all uni-
versities as the gold standard (Ziliak and McCloskey 2009; Zar 2010; for natural 
resource management textbook see for instance in Silva 2012) (Fig. 4.1).
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4.2  Model Selection with Many Predictors as an Analysis 
Scheme and as a Major Platform for Statistical Testing, 
Prediction and Inference

Moving forward from linear regression - described above- is multiple regression; 
it’s old in concept (Chamberlin 1890) and comes in various shapes and forms, e.g. 
generalized linear models (GLMs), general additive models (GAMs), mixed models 
and polynomial regressions (e.g. Venables and Ripley 2002). Those are usually per-
ceived as a ‘higher art’ and conceptually they can interpret deeper complexities in 
datasets, but many of which those methods cannot really handle by design (paramet-
ric, linear).

In mathematics and statistics, model selection is not well resolved; no mutual 
agreement exists on how to do it, and what methods and metrics to really use 
(Stephens et  al. 2007; Arnold 2010). Mathematical models are not finite (e.g. 
McArdle 1988) and can potentially contradict each other, even on the same ques-
tions and their data (a classic example here is the question whether light consists 
either of particles or rays; both can be shown mathematically; details found in any 
Physics textbook). For unresolved model selection ambiguities, this is true numeri-
cally, biologically, for management and philosophically (see Stephens et al. 2007 
and Strobl et al. 2007 for examples). It must therefore come as a big surprise to 
see how frequently model selection is taught and presented as a finite answer to a 
problem. It is usually done with a statistical template (Gigerenzer 2004), as it 
would be adding up 1-by-1 (where all predictors and their variances act without 
interactions and no synthesis) and with parsimony being finite and having ‘cer-
tainty’ (Burnham and Anderson 2002). All of this is to be carried without a concep-
tual and philosophical awareness (Guthery et  al. 2001, 2005) without reflection 

Fig. 4.1 Some views of statistics and how an analysis is to be done in a so-called rigorous 
fashion
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(Stephens et  al. 2007) and often even using stepwise methods (see Whittingham 
et al. 2006 for a review and critique). It’s like a ritual (Gelman 2008) which shuffles 
all concerns aside (Bandura 2007). Of particular concern must be the statement 
made in those works about having found ‘the best’ model and its explanatory vari-
ables (Burnham and Anderson 2002). Due to correlations, interactions and repressor 
variables (unusually and disproportionally dominant variables in the set of predic-
tors that reduce and outcompete other predictors resulting into a skew and bias in 
model selection, Strobl et al. 2007; Oppel et al. 2009), the exercise of model selec-
tion as a scheme can quickly turn into deep philosophy and how to approach sci-
ence, sampling and its data (see Conner 2005 and Rosales 2008 for real-world 
implications). I think it should definitely be treated as a philosophical and ethical 
question for a valid inference and justification of the scientific process. Without 
such an approach, the concept of valid inference must fail, nor will it ever be scien-
tific, impartial and objective (Popper 1945). As the last reference shows, statistics 
and quantitative analysis was never to be done without philosophy (Dodds 2001). 
This can easily be seen in the PhD degree given for such analysis: a Doctorate of 
Philosophy. Clear guidance and readings exist to follow and to consider - e.g. Dodds 
(2001), Czech (2002), Bandura (2007), Daley and Farley (2010)  - but they are 
widely ignored (as can easily be seen in the lack of such citations in most statistical 
and model selection publications in Ecology and Natural Resource Management). 
In the next section I will show how this conundrum can be addressed, and somewhat 
resolved with new tools and approaches at hand, namely machine learning and its 
wider applications (Table 4.2).

4.3  Confront Models with Data: Moving 
towards an Evidence–Based Analysis

Although rarely done in natural resource management, arguably, all data can be 
expressed and summarized as a (quantitative) model. Thus, the data then turn into a 
single formula (which essentially is a set of rules!) that basically ‘clones’/mimics 
the training data, It represents an entire experimental setting, or an ecosystem (for 
example). This is the act of creating a ‘learner’! (Schapire 1990, 1992; Freund and 
Schapire 1997; Schapire and Singer 1999; Friedman 2002). The beauty here obvi-
ously is that now you have captured the data and can express them (i.e., an entire 
ecological situation) as a formula with metrics to modify them; all done in software 
on your computer! But while virtually any linear regression application is doing just 
that, an even better summary can be achieved with non-linear methods provided 
through machine learning (Elith et  al. 2006; Hastie et  al. 2009; Mi et  al. 2017). 
Often, this does not work out precisely, and it comes home to an approximation of 
the data set, and the mismatch is shown as the variance unexplained. Fig. 4.2 shows 
it in two examples (Fig. 4.3).
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Table 4.2 A few methods used to choose ‘the best’ model (and its predictors) [Arguably, ‘the 
best’ is a subjective term, but in modeling it can be presented well when using performance 
metrics, e.g. Pearce and Ferrier (2000)]

Model selection 
Method + Ref Pros + Ref Cons +Ref Comments

Visual 
(eye-balling)

None, but many 
applications of pure 
eye-balling exist, 
e.g. Manly et al. 
(2002), Johnson and 
Seip (2008).

Reinhart (2015) Eye-balling is widely 
done and even approved 
of, whereas it is not 
precise and flips the 
entire reason and concept 
of working quantitatively
(for more details see 
Reinhart 2015).

Univariate It’s fast and appears 
simple (Zar 2010).

Misses reality (McGarical 
et al. 2000).

Widely applied, although  
ecology and nature are 
known to be multi- 
variate, e.g. Naess 
(1989), McGarical et al. 
(2000).

p-values Shows ‘significant’ 
explanations and 
predictors.

Significant-itis (Chia 
1997) to be ‘euthanized’
(Anderson and Burnham 
2002, Burnham and 
Anderson 2002).

Arguably, still the 
dominant approach in 
the sciences, e.g. Quinn 
and Keough (2004).

AIC
(Burnham and 
Anderson 2002)

Finds ‘one’ (or the 
best) strong 
predictor. It implies 
due diligence and 
‘science well done’.

Overfit, biased, poor 
prediction (Arnold 2010, 
Guthery et al. 2005, 
Guthery 2008).

The performance metric 
of AIC has no biological 
nor mathemat-ical 
justify-cation. It is 
arbitrary.

Stepwise
(Venables and 
Ripley 2002)

Fast; implies an 
exhaustive approach.

Misses reality 
Whittingham et al. (2006).
Forward and backward 
approaches are not in 
good agreement with each 
other (Venables and 
Ripley 2002).

This is essentially a first, 
simplistic and naïve 
version of data mining 
but using the wrong 
(linear) methods.

Bayesian * Use of priors 
(informed and 
uninformed ones), 
WinBugs algorithm 
etc. e.g. Hobbs and 
Hooten (2015)

Automated inference and 
subjective, e.g. Gelman 
(2008)

An alternative to 
frequency statistics and 
its inference, but poor 
predictions and such 
inference overall.

Maxent a Fast, reliable (Elith 
et al. 2006),

Tends to be point-and- 
click, low skill and 
expertise needed; often 
outperformed (e.g. Mi 
et al. 2017). For inference 
discussion see Yackulic 
et al. (2012)

Among the best 
prediction, classification 
and inference tools. A 
prediction and machine 
learning approach.

(continued)
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Table 4.2 (continued)

Model selection 
Method + Ref Pros + Ref Cons +Ref Comments

Machine 
Learning: CART a

Fast, alternative to 
liner regressions; 
new insights 
(Breiman et al. 
1984); De’ath and 
Fabricius (2000)

Usually outperformed by 
boosting and bagging. 
(Breiman 2001b, Elith 
et al. 2006).

A strong method from 
the 1980s. Breaks 
linearities in data. Often 
the basis for a great 
‘Learner.’

Machine 
Learning: 
Random Forest 
(bagging) a

Fast, very reliable 
(Mi et al. 2017), 
achieving high. 
Breiman (2001b; 
Cutler et al. 2007)

Often ignored or not 
known or favored by 
investigators and funders. 
Strobl et al. (2007) reports 
bias.

Among the best 
prediction, classification 
and inference tools, often 
used in ensembles.

Machine 
Learning: 
Boost-ing a

Fast, very reliable 
(Elith et al. 2006).

Often ignored or not 
known or favored by 
investigators and funders.

Among the best 
prediction, classification 
and inference tools; , 
often used in ensembles

Machine learning 
algorithms, e.g. 
Hastie et al. 
(2009), 
Fernandez- 
Delgado et al. 
(2014).

Powerful and 
flexible

Often ignored or not 
known or favored by 
investigators and funders.

A large field waiting to 
be explored further for 
progress.

aWhile these are concepts and algorithms as such they have inherent metrics and approaches to 
model selection, and are frequently used to rank, find and compare model selections. Eventually, 
any model selection is a function of the metric and concept/algorithm used

Fig. 4.2 “The Experiment”, the real world, sampling and application
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In modern terms, that unexplained ‘noise’ or variance (deviance, depending on 
the underlying distribution) is captured as the entropy (i.e., unexplained structure, 
chaos in the data). One may easily become more engaged in this discussion (see 
Georgescu-Roege 1971 for entropy), but for this section here we simply stick with 
the notion of a model that is fitting the data, and ‘the rest’ as unexplained. This ‘rest’ 
is a function of what the algorithm is able to capture from the data. Good algorithms 
capture more, if not almost all the data; whereas bad algorithms do not capture the 
data well, and others might add explanations that are not ‘true to the data’. The latter 
case is generically referred to as overfitting, but which machine learning algorithms 
can optimize (see Hastie et al. 2009 and Mueller and Massaron 2016 for identifying 
local optima and best fitting approaches for best-possible generalizations from ‘a 
learner’). These components are the essence of good algorithms and why there is 
such a chase in finding ‘the best’ ones (Fernando-Delgado et al. 2014). Now, ‘the 
best’ is usually explained as fitting the data, that is a mainstay of traditional forms 
of statistics (Hillborn and Mangel 1997; Zar 2010). But beyond the training data, 
better seems to be fitting the data for the best possible prediction, which only then 
allows for best-possible inference and generalization (sensu Breiman 2001a, b). The 
focus on best-predictions allows us to generalize from real-world situations, instead 
of just fitting in a narrow and traditional way some data onto a pre-defined theoreti-
cal model assumption creating bias (McArdle 1988; Zar 2010). Machine learning 
leads the way in this regard, whereas linear regression is shown to be less powerful 
and usually is widely dismissed if it comes to ecological multivariate interpretations 
(McGarical et al. 2000, for tests and applications see Elith et al. 2006; Oppel et al. 
2012) and high-performance applications such as predictions (Fox et al. 2017; Han 
et al. 2018). When re-arranging, combining, optimizing or linking machine learning 
algorithms with each other (i.e., ensembles), one can even get higher performance 

Fig. 4.3 Linear regression data summary vs machine learning summary
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(Araujo and New 2007, or boosting or bagging (essentially a specific form of 
ensembles; Hastie et al. 2009). Ensembles offer great opportunities due to being less 
biased due to their ability to make good use of many predictors across algorithms in 
a powerful way of computing (Elder 2003) (Fig. 4.4).

But any model that can capture data in ‘good’ terms is helpful for predictions, 
and we then tend to use it. Again, the prediction is the focus, not the algorithm 
per se. And why not? One would be ill-advised to ignore such an algorithm that 
provides progress.

Therefore, any model, any algorithm that provides progress is used, and others 
are usually dismissed (unless one finds value and insight for a comparison, let’s 
say). What really matters now is to show that the evidence provided is true and gen-
eralizable. That is usually done by confronting the model with other data, alterna-
tive data and evidence (Hilborn and Mangel 1997). If those match, two lines of 
evidence are similar and overall progress is provided. It is very difficult to reject 
such a case and such logic due to its evidence. Ideally, more evidence is located and 
the model gets compared with it. Multiple lines of evidence is ideal and widely 
done, see for instance Huettmann et al. (2011) with 5 lines of evidence and Kandel 
et al. (2015) with 7 lines of evidence. All of those lines of independent evidence are 
in good agreement with each other supporting the prediction and thus generaliza-
tion, and the method overall outlined here. The model should be used and inter-
preted then, but only then. This approach nicely follows a meta-analysis scheme 
(Schmidt and Hunter 2014) and proves to be rather successful for synthesis. That’s 
because all existing and available information is used and interpreted. This means 
that no other evidence is left to show different results than those presented, and hence 
the argument is difficult to reject because it is based on ‘best available’ science. 
If that is all carried out in an open access framework, this form of reasoning is not 
only repeatable (Savalei and Dunn 2015) and transparent, but it also provides its 
products used for latest reasoning available as building blocks for people to use and 

Fig. 4.4 Some simplistic and pragmatic reasoning like 1+1 = 2 cannot really be applied to ecology 
and natural resource management questions
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to work from (Zuckerberg et al. 2011; Greenland 2012). Often, this consists of the 
best-available data and maps, let’s say. That way, science truly did its due diligence 
and decisions are made from it. While well-known (e.g. Huettmann 2007), unfortu-
nately this concept is not applied much, and the prime bottleneck still sits in the 
policy arena (Magness et al. 2008, 2011)! (Fig. 4.5)

4.4  A Real–World Data and Analysis Workflow Example

In the following I present a typical task, a common data problem and job description 
one might come across and encounter as a scientist in the Natural Resource arena. 
Also, it’s common business for data miners and machine learning professionals:

4.4.1  Pre–Assumption (as Experienced in Real World 
Examples)

A data set that does not follow normal distribution, where errors are not distributed 
as you wish, samples are not really representative nor independent, but due to com-
munication errors you have many of those types of (non-parameteric) samples …

Suggestion 1: Map the Data in Time and Space 

Justification: Before any analysis can start one needs to see what the data are, and 
what they look like, (i.e., what shape and form they have).

Fig. 4.5 Inference through a prediction machine (Learner)
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Suggestion 2: Mine the data through in full detail (i.e., data exploration) 

Justification: This first data mining exercise is less about an analysis and a quanti-
tative understanding, but rather to get familiar with the data format and to see and 
find where the (technical) ‘speed bumps’ are. Learning how to handle data obtained, 
and how to do it efficiently is a key procedure and for effective data analysis (and 
associated time and budgeting to get the project completed). Often, those steps need 
to be repeated and the more one can do it, probably the better.

Suggestion 3: Understand the data, each column (i.e., covariate) and each combi-
nation you can test and assess 

Justification: Many data are not clean and need to be understood first. Often what 
looks clean is not clean and needs a test and run first; this applies to columns and 
their content. That is especially the case with large data sets, and where not all 
content can be overlooked right away but shows as an odd result instead.

Suggestion 4: Talk to the initial data collector and read all documentation 
available

Justification: Ideally, such a communication should occur when the data are handed 
over. However, communication with the data are more effective after one is ‘into’ the 
dataset and knows them intimately. Arguably, a good head start on data can be 
helpful, but most data miners can figure out data sets on their own first. The real 
crucial content questions come afterwards and continue once the entire data set is 
analyzed.

Suggestion 5: Address all NAs and data errors. 

Justification: According to the public wisdom, wrong data tends to produce wrong 
results. Cleaning data -technically and scientifically - is an essential but big task; 
there are different philosophies involved in how to approach it. It can determine the 
success and failure of such projects. Arguably, one wants ‘good’ data to run models. 
But ‘life’ is not always clean, and an alternative but effective and often not so prob-
lematic approach is to initially ignore the errors - use the raw data - and run the 
analysis and compare the findings subsequently. In machine learning, ‘majority vot-
ing’ can for instance overcome data errors. And different model runs from data 
cleaned at several levels should be done for comparison. If that cannot be done on 
the entire data set, it’s worthwhile to run it on a subset of the data, or on a certain 
percentage of the data. The goal here obviously is to find patterns in the data, 
explain them, and how it all relates to NAs and errors, and what the impacts are on 
‘cleaning’, e.g. to avoid running a self-fulfilling hypothesis with no new Information 
coming from the data analysis.

Suggestion 6: Predict the data onto themselves (create a great ‘learner’) 

Justification: This step is an essential piece in understanding the inference, the data 
and the content. Usually, the more the training data can be ‘mimicked’ the better. 
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It allows to generalize beyond the data. An essential question is what algorithm to 
use to predict data onto themselves, what methods to use to describe outliers, and 
how to measure the variance. While these questions are covered elsewhere (e.g. 
Fernandez-Delgado et al. 2014), it is suggested to employ different algorithms for a 
comparison. I highly suggest creating a great ‘Learner’ (as per Breiman 2001a, b; 
Friedman 2002) instead of a model fitting mindset (Zar 2010).

Suggestion 7: Re-run the models without taking out all NAs and data errors (Step 4). 

Justification: As mentioned in step 4, most data carry errors, and many cannot 
really be fixed in large data sets, especially when the data carry a legacy and with 
many people involved. However, to get a sensitivity test done on the real impacts of 
cleaning efforts, we suggest running a raw data model, and to see how bad the 
errors and bugs really are. We found that to be usually a very informative task to do, 
also defining where to put time and efforts for a cleanup of data and how this pres-
ents an effective gain. Doing such runs helps to set priorities. In large data sets, this 
is not a trivial task because based on our experience ~10% of errors tend to be part 
of the process in large data holdings and where many owners occur; fuzziness 
becomes part of the game.

Suggestion 8 Think very hard about hypothesis and whether and what it brings to 
the discussion and to new information 

Justification: No doubt, conceptually, hypothesis testing can provide progress and if 
done well and applied where suitable (Cushman and Huettmann 2010; Reinhart 
2015). Hypotheses make for a great narrative, appear very sound, and are very 
appealing to communicate. But it applies primarily to experimental and theoretical 
settings. However, for nature and reality it shows us different (McArdle 1988; 
Reinhart 2015). In complex multivariate situations of nature, those theoretical con-
cepts are very difficult to apply so that all statistical assumptions are correctly met. 
Alternatives exist, and we outline a good step forward (see below).This matters 
essentially for any applied conservation management question.

Suggestion 9: In complex multiple regressions and with many predictors, hypoth-
esis probably do not bring much progress, and there are other, better ways to 
inference. 

Justification: Traditionally, the widely used approaches in such cases are p-values, 
AIC, and perhaps Bayesian approaches. All of them are known to fail on various 
grounds (as published by Anderson et al. 2000; Guthery et  al. 2005; 2008; 
Whittingham et al. 2006 etc.) Authors like Breiman (2001a, b) and Hastie et al. 
(2009) showed already powerful ways forward. See also Fig. 4.4, Strobl et al. 2007 
and Drew et al. 2011. The key here is not to apply just a techno-fix but to break out 
of existing limitations and to embrace new and exciting ways to discover knowledge. 
Fernandez-Delgado et al. (2014) shows options to explore, however there are many 
more options and new ones exist and found online.
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Suggestion 10 Explore any statistical tools and approaches you can get hold of and 
know and test them in parallel. 

Justification: There are many ways to carry out an analysis and to get to a conclusion. 
Many software platforms exist and should be tested and run in parallel. This is not 
only insightful for the own learning but presents a ‘test’ and how robust current 
findings and knowledge are. Even more so, many algorithms have different versions 
and software implementations. For instance, a random generator in one software 
easily differs from another software which can affect outcomes. Even for simple and 
well-known implementations like ordinary least square regressions many ways exist 
to make it happen numerically. And not many agree with each other when bench-
marked (Sawitzki 1994a, b). Looking then at disciplines like Demography and ones 
that use Distance Sampling, and Resource Selection Functions (RSFs) the diversity 
of tools used remains extremely narrow and not allowing diversity to be tested and 
to evolve. One should consider that much discussion exist already on dubious infer-
ence in those disciplines (Yoccoz 1991; Rexstad et al. 1988; Stephens et al. 2007; 
Arnold 2010).

Suggestion 11: Leo Breiman (2001a, b) offers a valid philosophy, an insightful and 
robust approach to be used and investigated by all means. 

Justification: As we promote in this chapter, the works by Breiman (2001a, b) are 
very thorough, deep and progressive. That holds to this very day, more options 
exist and are developing. While progress is not well made in the field of natural 
resource management, by now, this work is well published and offers good soft-
ware tools to be employed. It has reached a great foundation to work from.A key 
concept here is to assess and model data (as outlined in steps above), create a 
prediction, and have alternative data handy to assess the prediction for perfor-
mance, and then infer accordingly. Ideally it requires a research design with 
training and testing data. That will help to overcome many of the problems 
described here.

Suggestion 12: Exposing all steps, raw data, raw code and details as metadata 
and ‘in the open’ supports the buy-in and transparency by the users and the 
public. 

Justification: Since science is to be repeatable and transparent, this suggestion 
should not come as a surprise, but we find, it often is fully ignored. As Carlson (2011, 
2013) and others found, data and project files are not shared, even less so, the actual 
underlying code (despite the wide use of R, Distance Sampling and MARK software 
packages easily allowing for it). Making code publicly available allows for feedback 
and improvements, and it helps others in their work. It should be seen as a collegial 
task and for serving the wider public good and being a scientist. For any of this, good 
metadata formats exist (Huettmann 2005, 2009).
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4.5  Real World Tools and Minimum Approaches to Start 
Data Mining and Predictions

In this section, some basic tools are shown that can be easily used by an investigator 
who wants to pursue a data mining approach. Those are listed in a good sequence 
and order:

 – import data into some of your favorite software packages, e.g. work sheet, SQL 
database, open source and commercial tools

 – map coordinates in a worksheet or any other tool that can plot x and y. Ideally, 
map the data in a Geographic Information System (GIS) such as QGIS, R or 
similar.

 – run a pairs plot (e.g. in R; https://www.r-project.org/)
 – run a data summary (e.g. in R)
 – run a data summary (e.g. in SPM Salford Systems Ltd; https://www.salford- 

systems.com/)
 – run varclust (in R)
 – repeat your analysis in several statistical analysis platform to assess their perfor-

mance and outcomes. Easy software packages could be, but are not limited to, R, 
S+, SPSS, SAS, MATLAB and partly, Open Office, MS EXCEL (but see 
McCullough and Wilson 1999 for bench- marking)

 – in a data table setting: run a prediction in a lm (in R), glm (in R), machine learn-
ing (R) and SPM and compare the outcome and what is learned.

 – for autocorrelation, and with spatial data, SDMs and ecological niche models, or 
in any analysis where proxy-predictors are used, run ‘re-cursive partitioning’ 
(binary classification and regression trees) as they can overcome traditional auto-
correlation problems, are robust on those issues, and tend to give a less inflated 
variance

 – in an ecological niche analysis: run a ‘global kitchen sink’ model of all data, and 
predict it onto itself and to a lattice point grid

 – re-run the latter analysis and steps with a smaller subset to compare.

4.6  A Set of Commonly Heard Criticisms and Comments 
for these Data Mining Steps and How to Answer them 
from a Machine Learning Aspect for Best inferences

Argument: “Data analysis is to be hypothesis driven and uninformed by knowl-
edge of what the data hold!”

Reply: Not really; many ways exist to carry out science and to get to the 
solution of a problem. Data mining, and entering the actual analysis 
well informed is a key step for a good inference and part of textbooks 
and best professional practice. Data are to be pre-screened and 
assessed rapidly for those reasons.
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Argument: “This is data dredging!”
Reply: No, it is data mining, based on latest science, and with much theory, 

justification and reasoning. It’s a good thing and a professional 
requirement. Actually there is nothing wrong with data dredging per 
se, and if done in a data mining and prediction framework. This pro-
vides reliable information not to be dismissed either way.

Argument: “You are just looking for a pattern!”
Reply: Yes, exactly. Finding robust patterns in complex data is essential 

information and highly needed (Hochachka et al. 2007). It’s creating 
a ‘Learner’. We try to find the robust signal in complex data, in any 
data. It is the obtained signal that can be described, predicted and 
elaborated on further.

Argument: “This is all new to me and I am not trained on this”
Reply: Sure, it’s time to get at this new method to progress science. Unless 

shown otherwise, there are no other good solutions we know of to get 
at best-possible predictions and for inference. Being fluent on 
research methods is a job requirement (one must not hide behind 
ignorance or methods from decades ago, as trained back then. 
Science moves1)

Argument: “My funder, supervisor and committee told me to do the other, old 
method”

Reply: Suggest to review your understanding of science, progress, ethics, 
and assess analytical alternatives for scientific progress. Ask funder, 
supervisor and committee why still entrenched in old methods while 
new ones exist to produce new insights as progress, as per aims of 
science (Popper 1945; Fryell and Caughley 2014; Silva 2012)

Argument: “I tested it, and it flipped my expected results. So I did not continue it 
further”

Reply: Suggest you may report yourself to the ethics and science integrity 
department.

Argument: “It’s just too much work and my deadline is coming up”
Reply: Suggest you may report yourself to the ethics and science integrity 

department, again.

1 Changes in the current science concept - as run by the western world - are known to take app. 
20 years or longer (e.g. Connner 2005). While this is way too long for relevant and effective con-
servation management, it’s often caused by generic inertia, institutional setup and tenure + funding 
concepts. In reality, most changes in science are only achieved when earlier researchers retire and 
new minds and new generations enter the scene. Arguably, many of the ‘new/fresh’ minds got 
trained by earlier minds and thus, just little changes truly occur. Examples of this pattern can be 
found in most western and science nations, e.g. in Academies of Science, many established 
Journals and Nobel Prize committees.
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4.7  On ‘Best Professional Practices’, Professional Bias, 
Ignorance, Misconduct, Professional Societies, Education 
and Culture: What is a Lie and Punishable Intent when 
underlying Methods Problems are well-known but are 
ignored?

This elaboration has presented and outlined the many problems that are found in 
the sciences, across disciplines and practitioners, specifically in quantitative 
approaches and where inference is supposed to be most precise. Nowadays where 
‘everything is digital’, there is little meaningful resistance to working open access 
and open source (e.g. Zuckerberg et al. 2011; Greenland 2012). Those problems 
are far from new (Popper 1945), but why do they remain unsolved, and are still 
educated and promoted by so-called professional societies and found in their 
internationally (!) peer-reviewed publications, with editors, reviewers and pub-
lishers pushing those concepts? Why is there no drive for improvement while 
conservation management and natural resources are decaying, globally, and cli-
mate change is on the rise?

This question might require a multi-dimensional analysis, and is beyond the 
scope of this text. However, a few facts should be captured here:

 – frequency statistics is widely criticized for its validity
 – alternatives to frequency statistics and its institutions are known for well over 

30 years
 – to this very day frequency statistics has the lion-share of all research 

publications
 – university education, experts and global leadership by governments still center 

around frequency statistics
 – science-based ecology and natural resource management centers around fre-

quency statistics
 – -the majority of data and analysis codes used in the sciences are widely not 

shared nor documented with metadata
 – professional societies do virtually nothing to change this situation

Virtually all of those ‘facts’ hint towards a crisis in the sciences, as we know them. 
It also shows a crisis in institutions, education, leadership, for ecology and natural 
resource management, as for the globe and human-wellbeing and society 
overall.

From a legal perspective, in the western world, if one knows that a certain prac-
tice has a bad outcome, this is punishable and thus should be avoided. It might equal 
an ‘intent’ and therefore is a serious violation in western law, policy and ethics. This 
remains the paradox of our time why there is so little progress and change to make 
it better, for ourselves and future generations.
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4.8  Conclusion

Complex data warrant many approaches to extract the strongest and relevant signal. 
Eventually, it’s not a widely used or accepted analysis template that counts but the 
evidence that convinces. As part of a good science paradigm, every data record and 
information tends to matter and carries relevant information. A simple template 
approach - as promoted with p-values (Zar 2010) or AIC (Anderson and Burnham 
2002) - is not so informative (Arnold 2010) nor even defendable and meaningful. 
It’s ‘me too’ research (O’Connor 2000) and lacks reflection and debate, and thus is 
no good progress. While model selection is not well resolved at all, here it is shown 
how this can be addressed in the framework of Leo Breiman (2001a, b), with 
machine learning, with (spatial) predictions and when comparing the predictions 
with several alternative lines of evidence. While pragmatic and parsimonious 
approaches do not solve the initial problem but create new ones, I believe that here 
is presented a good and holistic way forward and it helps conservation management 
and can progress the wider global well- being. Although the methods of machine 
learning are relatively simple to run in a free and readily available R software and 
with other publicly available packages, for over 20 years it urgently awaits its wider 
implementation for the wider benefit of natural resource management. Here I pres-
ent some first and powerful steps to reach progress instead of ignoring and margin-
alizing it.
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“Predictive learning is an important aspect of data mining … 
However, it is seldom known in advance which procedure will 
perform best or even well for any given problem.”

Hastie et al. 2001: 312

5.1  Introduction

The quotation at the start of this article underscores two problems that perpetually 
plague predictive modeling: (1) with so many available model methods/algorithms, 
which is the most appropriate for the problem at hand? and (2) what is the best way 
to make use of predictive models, i.e., achieve high predictive accuracy while at the 
same time minimizing the impact of overfitting (loss of generalizability)?

With regards to the difficulty in determining the most appropriate prediction 
algorithm, many comparative analyses of performance have been conducted, but 
they typically draw different conclusions (e.g., Franklin 1995; Elith and Burgman 
2002; Caruana and Niculescu-Mizil 2006; Elith et  al. 2006; Moisen et  al. 2006; 
Elith and Graham 2009; Marmion et al. 2009a). This has resulted in a somewhat 
confusing body of evidence. Diversity in performance is at least partially attribut-
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able to differences in the choice of tuning parameters (e.g., degree of freedom of 
smoothing functions, specification of interaction terms) and the fact that predictions 
from, for example, tree-based methods, rely on some form of random partitioning. 
Because of this, tree-based classifiers exhibit a degree of stochastic variation in 
performance, though this is reduced by constructing and aggregating multiple trees 
such as done by bagging, etc. (see James et al. 2013: 316). According to Domingos 
(2012), the number of algorithms to choose from numbers in the thousands, with 
hundreds added each year, rendering the identification and selection of a single 
“best” algorithm a provisional choice at best. At the end of the day the question of 
which method is most generally appropriate remains elusive, though it should be 
noted that tree-based machine-learning (ML) techniques performed quite well in the 
comparative studies previously cited.

Random forests (RF, Breiman 2001) and boosted regression trees (BRT, Friedman 
2001) are prominent tree-based techniques which employ binary recursive parti-
tioning to generate predictions. They do not require the a priori specification of a 
functional form for the predictors, they are very flexible in handling missing data, 
and they can capture complex, non-linear interactions (De’ath and Fabricius 2000; 
Harrell 2001; Cutler et al. 2007; Hochachka et al. 2007). In fact, James et al. (2013, 
299) describe boosting as “one of the most powerful learning ideas introduced in the 
last 10 years”. For this reason they are first-choice modeling methods for a wide 
range of applications.

Tree-based ML techniques, however, can be vulnerable to the second common 
problem limiting the generalizability of predictive models: overfitting (Harrell 
2001; Caruana and Niculescu-Mizil 2006, and Elith et al. 2008). Harrell (2001, 60) 
succinctly defined the problem, and articulated its consequence: “When a model is 
fitted that is too complex, that is it [sic] has too many free parameters to estimate for 
the amount of information in the data, the worth of the model (e.g., R2) will be exag-
gerated and future observed values will not agree with predicted values. In this situ-
ation, overfitting is said to be present, and some of the findings of the analysis come 
from fitting noise or finding spurious assocations between X and Y″. The question 
becomes one of how to make maximum use of the most powerful ML techniques 
while, at the same time, reducing the potential impact of overfitting so as to achieve 
the most generally applicable model predictions. We argue that the forecasting lit-
erature has already offered a solution to this problem.

Prediction, or forecasting, is a common procedure in many applied fields, and 
has resulted in the general observation that the combination of multiple predictions 
leads to increased accuracy (see Clemen 1989for a dated though extensive review 
across many fields). The combined prediction is usually referred to as an “ensem-
ble” or “consensus“prediction. Such a solution is pragmatic, easy to implement, and 
makes it possible to capitalize on the way in which different algorithms capture 
different aspects of the information available for prediction (Clemen 1989). As a 
side effect, this approach offers a practical way to produce predictions that balance 
predictive accuracy with generalizability, while at the same time reducing the 
reliance of predictions on a single technique. The utility of this type of approach 
is made clear when one considers how many different methods/algorithms are in 
existence (Fernández-Delgado et al. 2014).

D. J. Lieske et al.
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So, how does an ensemble or consensus approach offer a solution to the prob-
lems discussed here? According to Clemen (1989), merely averaging predictions 
can dramatically improve overall predictive accuracy - the so called “concensus” or 
“committee averaging“technique (Heikkinen et  al. 2006; Araújo and New 2007; 
Das et al. 2008). Other aggregation methods are possible, though Marmion et al. 
(2009b) determined that other aggregation measures (e.g., the median) performed 
about the same or worse than committee averaging. Depending upon the choice of 
prediction aggregation method, weightings can be introduced to dampen the 
influence of overly-optimistic methods in the final ensemble prediction. Lieske 
et al. (2014), for instance, employed a weighted mean of three different algorithms 
(negative binomial regression, hurdle models, and RF), where the weighting was 
determined by the r2 values of each algorithm corrected for over-fitting. A similar 
method was employed by Oppel et al. (2012) and Renner et al. (2013).

We illustrate an ensemble prediction approach using an example data set involv-
ing satellite-derived marine vessel traffic information, and applied two techniques 
based on classification and regression trees: random forests (RF) and boosted 
regression trees (BRT). We also combined the RF and BRT predictions to produce 
an ensemble (ENS) prediction. Along the way we also considered the influence of 
the key tuning parameters governing the behaviour of RF and BRT algorithms.

5.2  Methods

5.2.1  Data Set

Marine traffic data was obtained for the Scotian shelf offshore region of Nova 
Scotia, originating as hourly automatic identification system (AIS) tracking posi-
tions recorded between June 22, 2014 and June 22, 2015. All vessels large than 500 
tons are required to transmit AIS signals, although many smaller vessels are also 
equipped with the technology to support rescue in an emergency response situation. 
An automated procedure was employed to construct vessel tracks from point loca-
tion data when gaps between successive positions were less than 4 h in duration, 
otherwise vessel locations were modelled as isolated positions not part of a continu-
ous cruise (Brawn 2016). For the purposes of this study, analysis was limited to 
vessels of type “fishing”, and for the third quarters (Q3) of the 2014–2015 period. 
Using a 20-km grid cell size, which corresponded approximately to the 90th percen-
tile of nearest-neighbour distance for points on a cruise track, line (scLineDensity) 
and point (scPointDensity) densities were calculated and scaled relative to the maxi-
mum density over the entire surface (Fig.  5.1). As complete vessel tracks were 
deemed more informative than solitary point positions, the two vessel density mea-
sures were averaged to form a single measure called “scCombined” with a weight-
ing of 80% assigned to line information and 20% to point information.

Environmental data consisted of physical and oceanographic variables with the 
potential to identify areas of high marine productivity and, therefore, areas likely to 

5 Ensembles of Ensembles: Combining the Predictions from Multiple Machine…



112

be exploited by fishing vessels (Table  5.1). This data was combined within a 
 geodatabase and aggregated to the level of 20-km grid cells to maintain consistency 
with the vessel traffic response data.

5.2.2  Accuracy Assessment

Model construction was conducted 500 times for each combination of tuning 
parameter (see Tables 5.2, 5.3). For each of the 500 iterations, we randomly selected 
50% of the data for model training purposes, and passed this on to the BRT and RF 
algorithms. Mean squared error (MSE) was employed to cross-validate predictive 
accuracy using the withheld testing data. It should be noted, however, that the RF 
method has its own internal procedure for randomly selecting a portion of the data 
for model training, and reserving a portion for model testing (the so-called “OOB”, 
or out-of-bag portion of the data; see Modeling Algorithms). The data and R-code 
developed for this study is online accessible at https://doi.org/10.5281/
zenodo.1318352 (Lieske et al. 2018) and serves as a documentation of methods and 
results.

Fig. 5.1 Relative intensity of fishing-vessel traffic for the Scotian shelf region, based on automatic 
identification system (AIS) tracking data for the third quarters of the period 22 June 2014 to 22 
June 2015

D. J. Lieske et al.
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Table 5.1 Summary of the thirteen predictor variables used in the analysis, as well as the data 
sources

Layer group
Resolution/
scale Source Description

CHLA_xxxx 4 km, 
monthly

MODISa Concentration of the photosynthetic pigment 
Chlorophyll a (mg m-2), where xxxx indicates the 
month and year of summary: July 2014, 2015; 
August 2014, 2015; September 2014.

SST_xxxx 4 km, 
monthly

MODISa Sea surface temperature derived from long-wave 
(11–12 μm) thermal radiation, where xxxx 
indicates the month and year of summary: July 
2014, 2015; August 2014, 2015; September 2014.

WIND_yyyy 10 × 10 QuikSCATb Surface wind (m s-1), August 1999–October 2009, 
where yyyy indicates the month averaged over the 
entire time series: July, August, and September.

DISTCOAST 4 km GMLc Distance to coast (km).
DISTPORT 4 km GMLc Distance to closest marina and/or port (km).
DEPTH 4 km GMLc Seadepth (m), derived from ETOPO2v2 2006 

productd

RUGGED 3 nearest 
neighbours

GMLc Seafloor ruggedness, derived using Benthic 
Terrain Modeler Extensione

aNASA OceanColor Web (http://oceancolor.gsfc.nasa.gov/cms/), downloaded 1 September 2016.
bQuickSCAT (https://podaac.jpl.nasa.gov/QuikSCAT), downloaded 1 September 2016.
cMount Allison University Geospatial Modelling Lab (GML, http://arcgis.mta.ca).
dNational Geophysical Data Center. 2006. 2-minute gridded global relief data (ETOPO2) v2. 
National Geophysical Data Center, NOAA.
eWright, D.J., M. Pendleton, J. Boulware, S. Walbridge, B. Gerlt, D. Eslinger, D. Sampson, and 
E. Huntley. 2012. ArcGIS Benthic Terrain Modeler (BTM), v. 3.0, Environmental Systems Research 
Institute, NOAA Coastal Services Center, Massachussetts Office of Coastal Zone Management. 
https://www.arcgis.com/home/item.html?id=b0d0be66fd33440d97e8c83d220e7926, downloaded 8 
April 2016.

Table 5.2 Key tuning parameters for the random forests (RF) method, as implemented in the R 
package of Liaw and Wiener (2002)

Random forestsa

Parameter
Software-specific 
implementation Typical Values Comment

Number of iterations, 
T

ntree 5,000b

Size of predictor 
subset, m

mtry
Classification: p1 2/ ; 
regression: p

3

m = p (the number of 
predictors) equivalent to 
bagging.

Number of 
observations in 
terminal node

nodesize Default: 5 for 
regression, 1 for 
classification

aPackage randomForest (Liaw and Wiener 2002); Note: p = the number of predictor variables 
(covariates).
bBreiman (2002)

5 Ensembles of Ensembles: Combining the Predictions from Multiple Machine…

http://oceancolor.gsfc.nasa.gov/cms/
https://podaac.jpl.nasa.gov/QuikSCAT
https://www.arcgis.com/home/item.html?id=b0d0be66fd33440d97e8c83d220e7926


114

5.2.3  Modeling Algorithms

Random forests (RF, Breiman 2001) is, in itself, a form of ensemble technique that 
generates continuous-value predictions by averaging the expectations from multi-
ple regression trees. Stochasticity is introduced into the learning procedure by: (1) 
bootstrapping 63% of the data (with replacement) for training purposes, reserving 
the remainder for model testing (referred to as the “out of bag” results, or OOB), 
and (2) randomly selecting a subset of the predictor variables at each step, thereby 
“decorrelating“ the trees and ensuring that the resulting average is less variable and 
of higher predictive accuracy (Hegel et al. 2010; James et al. 2013). RF was imple-
mented using the randomForest R package of Liaw and Wiener (2002). 
Important tuning parameters for this package are described in Table 5.2. It should 
be noted that other implementations are available for RF, for example, Salford 
Systems’ (2016) RandomForests package. Our analysis focused on the more 
readily- available open source version of Liaw and Wiener (2002), but we acknowl-
edge that different software implementations may yield different results from 
those reported here.

The boosted regression tree algorithm (BRT, Friedman 2001) can be described as 
a “slow learning” technique where predictions are constructed additively, sequen-
tially, and incrementally (Elith et al. 2008; James et al. 2013). Data is not bootstrap 
sampled nor is the response variable directly modelled, rather the attention of the 
model-fitting procedure is focused on the residual or unexplained variation (James 
et al. 2013). The weight of each tree in the final prediction is controlled by the learn-
ing rate parameter (λ, Table 5.3), which ensures slow improvements in the model in 
the areas of the response “space” where predictions are poor (James et al. 2013). 
BRT was implemented using the gbm R package of Ridgeway (2012), though it 
should be noted that alternative commercial boosting packages are available 
(e.g., Salford Systems 2016).

Table 5.3 Key tuning parameters for the boosted regression tree (BRT) method, as implemented 
in the R Package of Ridgeway (2012)

Boosted regression treea

Parameter
Software-specific 
implementation Typical Values Comment

Number of iterations, 
T

n.trees 3,000 to 10,000

Shrinkage  
(learning rate), λ

shrinkage 0.01 to 0.001 Elith et al. (2008) 
recommend ↓λ with ↑K

Number of splits 
(depth of each tree), K

interaction.depth 1 to number of 
variables in dataset

Subsampling rate, p bag.fraction 0.5 (recommended) Controls the level of 
stochasticity in model 
selection.

apackage gbm (Ridgeway 2012)
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Tuning parameter settings (Tables 5.2 and 5.3) were varied systematically for 
both algorithms. For RF, the size of the predictor subset (m, Table 5.2) was allowed 
to vary from 1 to the total number of available predictor variables. Simultaneously, 
the number of iterations varied from 500 to 8000 (T, Table 5.2). In the case of BRT, 
the learning (or shrinkage) rate (λ) took on a value of either 0.01 or 0.001; interac-
tion depth (or the number of splits, K) was allowed to vary from 1 to the total num-
ber of available predictor variables; and the number of iterations was varied from 
500 to 8000 (T, Table 5.3).

Ensemble (ENS) predictions were generated, at each iteration of model construc-
tion, by calculating a weighted average of the predictions from RF and BRT. The 
weightings were based on model performance using the cross-validation data, and 
were defined as the inverse of the MSE (MSE−1).

5.3  Results and Discussion

Figures 5.2–5.3 present some interesting consequences of varying the combinations 
of tuning parameters when applied to the fishing traffic dataset. Comparing perfor-
mance for BRT, RF, and ENS when a faster “burn in” (shrinkage, or λ) rate of 0.01 
was defined for BRT yielded some clear patterns (Fig. 5.2). First, RF seemed largely 
unaffected by the number of iterations/trees constructed, and yielded a consistent 
error pattern. Mean error rate was 0.000836 ± SE 3.58 x 10−6 across all combina-
tions of predictor variable size (m) and numbers of trees. BRT, on the other hand, 
yielded less accurate predictions with larger numbers of trees, particularly beyond 
about 2000 trees. Overall BRT mean error rate was 0.000863 ± SE 5.52 x 10−6. 
Predictions from the ENS method showed a relatively consistent error pattern across 
varying numbers of trees, similar to RF, and yielded the lowest overall mean error 
rate of 0.000818 ± SE 2.467 x 10−6. Variation in the number of variables used in a 
single iteration – the tree depth parameter of BRT or the size of predictor subset 
parameter of RF – had a particularly strong impact on RF error rates. RF perfor-
mance degraded linearly with increasing predictor subset size. BRT and ENS algo-
rithms yielded the lowest cross-validated error rates when tree depth was set to 1, 
but after an initial rise at a tree depth = 2, performance was consistent across higher 
depth settings. Use of the function tuneRF confirms the cross-validated accuracy 
assessment (Fig. 5.4) in that for this data set, lower mtry settings yielded the lowest 
error rate.

Comparing performance for BRT, RF, and ENS using a slower “burn in” (shrink-
age) rate of 0.001 showed consistently superior performance by BRT with a mean 
error rate of 0.000758 ± SE 3.24 x 10−6 (Fig. 5.3). ENS predictive accuracy closely 
tracked that of BRT, especially for larger numbers of trees (≥ 3000). While exhibit-
ing a slightly higher mean error rate of 0.000772, there was greater consistency in 
ENS performance as evidenced by the lower standard error of 2.34 x 10−6. Choice of 
the number of trees used to train BRT models was less influential on BRT accuracy 
under this lower shrinkage setting.

5 Ensembles of Ensembles: Combining the Predictions from Multiple Machine…
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Fig. 5.2 Comparative performance of random forests (RF), boosted regression tree (BRT), and 
ensemble (ENS) predictions, as measured using cross-validated mean square prediction error 
(MSE). Tree size was allowed to vary from 500 to 8000 trees (T = 8000 not shown), and tree depth/
size of predictor subset was set from 1 to 13. In the case of BRT, a shrinkage (λ) value of 0.01 was 
used
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Fig. 5.3 Comparative performance of random forests (RF), boosted regression tree (BRT), and 
ensemble (ENS) predictions, as measured using cross-validated mean square prediction error 
(MSE). Tree size was allowed to vary from 500 to 8000 trees (T = 8000 not shown), and tree depth/
size of predictor subset was set from 1 to 13. In the case of BRT, a shrinkage (λ) value of 0.001 was 
used
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All algorithms experienced highest cross-validated accuracies when lower numbers 
of covariates were specified - either in terms of the number of splits permissible to 
BRT trees (K) or the size of the predictor subset (m) for RF. Other authors have 
reported similar findings. For example, while Prasad et al. 2006 employed a MARS 
algorithm (Friedman 1991), they reported limitations in the portability of MARS 
predictions to future climate when more interaction terms were introduced in the 
model training stage, describing them as more “wild” (Prasad et al. 2006: 197). 
The BRT and RF equivalent to increasing interaction terms is by increasing m (RF) 
or K (BRT). Elith et al. (2008, 807) suggest that larger data sets benefit more from 
this increased complexity, but we demonstrate that this can come at the price of 
increased prediction bias. As a final note, James et al. (2013, 320) argued that lower 
values of m are warranted when there is strong correlation amongst the covariates.

The effect of varying the numbers of constructed trees (T) differed depending 
upon the algorithm; in the case of BRT, cross-validated accuracy tended to be opti-
mal for intermediate numbers of trees (i.e., T ≤ 3000) whereas it seemed less impor-
tant for RF provided that m was set to one. By virtue of the additive nature in which 
BRT fits trees to increasingly smaller portions of residual variation (James et al. 
2013), the judicious choice of parameter settings seems particularly important in 
order to prevent overfitting.

Fig. 5.4 Results for random forests out-of-bag (OOB) error assessment, as a function of the size 
of the predictor subset (m, or mtry in package randomForest of Liaw and Wiener 2002). 
A commonly cited decision rule is based on the square-root of the number of predictor variables 
which, in this case, would be 3.6 (~4)

D. J. Lieske et al.
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Our results demonstrate that for at least part of the “parameter space”, ensemble 
predictions yielded the lowest prediction error and, at worst, tended to track BRT 
performance with less variation in performance. In general, variation in the number 
of trees used to train RF models seemed unimportant, but for this particular dataset, 
cross-validated error was lowest when tree depth was set to low values. We propose 
that the strengths of the two be merged using an “ensemble of ensembles” such as 
we have done here. The impact of producing an “ensemble of ensembles” was 
three-fold: improved predictive accuracy, particularly when comparing ensemble 
predictions to those based on RF; somewhat of a dampening of variation in perfor-
mance from iteration-to-iteration; and lower prediction bias under a range of condi-
tions, as evidenced by the narrowing of the gap between optimistic and crossvalidated 
accuracy assessments.

A pertinent question to ask is why, despite a growing body of applications of ML 
methods in the ecohydrological (Peters et al. 2007), marine (Leathwick et al. 2006; 
Pinkerton et al. 2010; Huettmann et al. 2011; Huettmann and Schmid 2015; Schmid 
et  al. 2016) and terrestrial (Cutler et  al. 2007; Jiao et  al. 2014; Mi et  al. 2014; 
Baltensperger and Huettmann 2015) ecological literature, are ML techniques not more 
widely used by ecologists? It may be a result of less familiarity (Olden et al. 2008), or 
perhaps they are perceived as “black boxes” that are harder to interpret (Elith et al. 
2008). We hope that these examples, along with our analysis, will continue to make a 
case for routine use of ML methods such as BRT and RF under the proviso that 
idiosyncrasies of particular data sets may render it difficult to determine, in advance, 
the optimal set of tuning parameters to guide the model building process.

Given the complexity of real-world ecological problems, and the difficulty in 
assessing, a priori, appropriate model structures to test or make predictions means 
that ML methods should be routinely used. They can be used to explore patterns, 
evaluate the impact of different predictor variables, and provide predictions in a 
standalone form or as part of an ensemble of other predictions. They are ideally 
suited for “mining” large, complex data sets, especially when little prior knowledge 
about the system exists (Hochachka et al. 2007). Our results demonstrate that the 
combination of predictions from multiple algorithms, to form ensemble or consen-
sus predictions, is straightforward to implement and can result in higher predictive 
accuracy than the results from single algorithms alone. Ensemble predictions have 
the added benefit of reducing the reliance on single techniques and allowing a wider 
range of potentially useful algorithms to be employed.
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Chapter 6
Machine Learning for Macroscale 
Ecological Niche Modeling - a Multi-Model, 
Multi- Response Ensemble Technique 
for Tree Species Management Under 
Climate Change

Anantha M. Prasad

6.1  Introduction

Machine learning has come a long way in recent decades due to huge increases in 
computing power and the availability of robust public platforms for statistical analy-
sis (e.g., R Core Team 2016). Machine learning techniques have benefited from 
advances in statistical learning and vice versa (Hastie et al. 2009; Slavakis et al. 
2014), resulting in impressive applications of big data in imaging, astronomy, medi-
cine, finance and to a lesser extent in ecology (Van Horn and Toga 2014; Zhang and 
Zhao 2015; Belle et al. 2015; Hussain and Prieto 2016; Hampton et al. 2013). A 
healthy relationship with computer science and engineering has invigorated the 
field even more, resulting in a variety of techniques suitable for diverse applications. 
One successful and frequently used method is ensemble learning, where learning 
algorithms independently construct a set of classifiers or regression-estimates and 
classify or regress newer data points by either taking a weighted vote (classifiers) or 
an average (regression) of their predictions (Zhou 2012).

A majority of the ensemble learning problems deal with classification due to the 
binary, or in some cases multinomial, response that is of interest. However, in the 
field of ecology, and especially in tree species abundance modeling, we have access 
to continuous data thanks to the Forest Inventory Analysis (FIA) in the United States 
(Woudenberg et al. 2010) that lends itself to a regression approach. Valuable infor-
mation can be lost if the continuous data are classified a priori into classes. 
Therefore, it is best to solve the problem in a regression context, and classify the 
results later to retain most of the information in the response. I will choose the 
regression approach for this reason and also to highlight this less used aspect of 
statistical learning.
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Modeling the abundance response of trees under current and future climates is an 
exercise fraught with assumptions and uncertainties due to the dynamic nature of 
the species’ range boundaries. We are essentially capturing a slice in the eco- 
evolutionary history of the species and trying to project it into future climatic space 
as forecast by the general circulation models (GCMs; McGuffie and Henderson- 
Sellers 2014). Of the many uncertainties, the non-equilibrium nature of the tree 
species (they could still be expanding their ranges and not yet have achieved cli-
matic equilibria) (Garcia-Valdes et al. 2013), and inability to capture biotic interac-
tions (Belmaker et al. 2015) are cited most often. These limitations, however, are 
often due to the scale of analysis; a macroscale analysis will typically include biotic 
interactions as an emergent phenomenon. Only finer scale analysis can deal with 
biotic interactions in a more fundamental way. However, the question of species 
non-equilibrium also affects macroscale studies because of the historical nature of 
eco-evolutionary processes and can be addressed to some extent by comparing vari-
ous studies as slices in time (Prasad 2015).

Of the many techniques that have emerged in recent years (Iverson et al. 2016), 
ensemble techniques based on decision trees have become the most popular among 
ecologists modeling niche related phenomena (Galelli and Castelletti 2013; Hill 
et al. 2017; Vincenzia et al. 2011). The transition from more parametric analysis like 
generalized linear and additive models (glm, gam and shrinkage based regression) 
to decision tree based techniques has to do mainly with the nature of ecological 
systems. They tend to be high dimensional and nonlinear with many embedded 
interactions; all of which are handled well by decision tree based techniques (Guisan 
et  al. 2002; Guisan and Thuiller 2005). Hence a multitude of techniques have 
evolved, each appropriate for a subset of problems and dealing mostly with various 
shortcomings arising from more conventional decision-tree based techniques like 
bagging, randomized trees and boosting (Elith et al. 2010).

As datasets have become larger and easier to acquire (large scale inventories, digi-
tal elevation models, satellite imagery, demographic financial data, to name a few) 
with a corresponding increase in computing power, there has been a movement away 
from more parametric forms of analysis towards computationally intensive machine 
learning, such as non-parametric methods that are flexible and data-driven. While 
older constraints based on limited data and computing power have relaxed, newer 
ones have emerged because the analysis has moved more into the “prediction” space 
(e.g., models that overfit because of non-optimal variance-bias ratio). These newer 
challenges are being addressed via increasingly sophisticated algorithms that com-
bine flexible models with resampling, permuting, shrinkage and regularization tech-
niques (Tibshirani 1996; Zou and Hastie 2005; Hastie et al. 2009).

The focus of this chapter is to show how to tackle these issues when modeling the 
abundance of tree species at a macroscale (20 km resolution) in the eastern United 
States (where we have sufficiently large predictor and response data), and also, how 
to address the problems of model reliability and prediction confidence while inter-
preting the results. Towards this goal, I develop a multi-response,  multi- model 
ensemble technique that addresses problems of bias, variance and output noise – 
resulting in more reliable prediction.
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6.2  Controlling Bias and Variance

Some ecological projects are fortunate to have large amounts of data at their dis-
posal while other studies fall into the category of designed experiments where data 
collection can be cumbersome and costly. Large Data projects are typically those 
that use datasets that are large and complex, of fairly coarse resolution, and are 
already available (e.g., remotely sensed topography and land-use, climate, soils, 
national forest inventory plots and bird surveys). Niche based analyses of these data 
lend themselves well to statistical machine learning techniques, unlike studies that 
require formal experimental design, which may be more appropriate for parametric 
statistical analyses. The existence of Large Data begs for a data-driven approach 
with complex and flexible models that capture nonlinearities and interactions well 
and can screen out less important predictors. However, this flexibility can result in 
overfitting and attendant variance; the models may fit the training data well, but not 
generalize well to newer prediction space (Domingos 2012; Merow et al. 2014). In 
statistical terms, these models have low bias (good) but high variance (not good). If 
bias is too high, the models are less likely to fit the underlying data (think straight 
line fitting curvilinear data), but if we lower bias too much, we risk overfitting and 
increased variance, making the models poor predictors of newer data (Dietterich 
and Kong 1995). To understand this a little better, imagine that we are training a 
flexible model with a data set that yields low training mean square error (MSE). If 
we use this same model with data set aside for testing, the test MSE will be much 
higher because it is picking up too many patterns associated with random noise 
(Hastie et al. 2009). A less flexible model (say a linear model) would have showed 
lower MSE with the test data even though the training MSE would be higher than 
the flexible model because it approximates nonlinearity with a linear fit. The quest 
in statistical learning is to optimize models to achieve a favorable bias-variance 
ratio, i.e., to simultaneously achieve low bias and low variance (Hastie et al. 2009).

6.3  Ensemble Learning Via Decision Trees

The basic idea of ensemble learning is to construct a mapping function y = F(x), 
based on the training data {(x1,y1), ……, (xn,yn)}, where

 
F x a a f xo m m( ) = + ( )

=
∑
m

M

1  

Where M is the size of the ensemble and {fm(x)} is an ensemble of functions called 
base learners (Friedman and Popescu 2008). The base learners are chosen from a 
function class of predictor variables and can vary with the ensemble methods used. 
An algorithmic procedure is specified to pick functions and also to obtain linear 
combination of the parameters {am}0 M based on the minimization of some cost 
function. This procedure generalizes the framework of ensemble learning to include 
algorithms like bagging, Random Forests, boosting, RuleFit etc.
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The fundamental component of all ensemble learning algorithms that use 
“ensemble of decision trees” algorithms is the individual decision tree (Breiman 
et al. 1984). Decision tree is a recursive partitioning algorithm that partitions the 
response into subsets (left and right child nodes) based on splitting rules of the form 
xj < k, where xj is the splitting variable (predictor) and k is the splitting value. The 
left node gets all the observations (response) that satisfy the splitting rule and the 
right node gets the rest. The algorithm evaluates all possible splitting rules (for all 
the predictors) based on the response and selects the one that minimizes a statistical 
criterion (usually lowest MSE for regression). The observations in the resulting left 
and right nodes are again subject to the same partitioning scheme, and this goes on 
recursively until a stopping rule is satisfied (usually, minimum number of observa-
tions in the node, or the maximum depth of the tree or some other cost parameter). 
The end result of the recursive partitioning procedure is a decision tree with split-
ting rules and fitted values for terminal nodes (for regression, the average of the 
observations that fall into the terminal node).

Decision trees are intuitive, easy to interpret, capture nonlinearities and interac-
tions very well and are very useful for high dimensional data. These properties 
make them very attractive for many ecological problems that exhibit these behav-
iors (Loh 2011; Rokach and Maimon 2015; Iverson and Prasad 1998). However, 
individual decision trees exhibit high variance and have poor prediction ability. 
Yet, they are very good building blocks in an ensemble setting where they can be 
used to build more complex models to achieve good variance bias tradeoffs 
(Dietterich 2000).

6.4  Ensemble Models

6.4.1  Bagging, Random Forest and Extreme Random Forests

Bagging is a way of reducing variance of decision trees via bootstrapping and 
aggregation of an ensemble of trees (Breiman 1996). In bagging, a number of deci-
sion trees are grown without pruning with a bootstrapped sample (sampling with 
replacement) and the resulting prediction rules averaged. It is based on the principle 
that if a single regressor has high variance, an aggregated regressor has smaller vari-
ance than the original one (Breiman 1996).

Random forests (RF) is a modification of bagging by taking a step further and 
randomizing even the predictor space. If along with the bootstrap sample, the pre-
dictors are also sampled randomly at each node and the results averaged, it results 
in further reducing variance (Prasad et al. 2006). This is the technique used in RF 
(randomForest package in R), where both datasets and predictors are perturbed to 
slightly increase the independence of each tree and then averaged to reduce variance 
(Breiman 2001). In RF, because a random subset of predictors are chosen at each 
split, many dominant predictors may not be present to define a split. This results in 

A. M. Prasad



127

more local features defining the split instead of the dominant ones. When a large 
number of such trees are averaged, this can result in good balance between bias and 
variance and result in extremely reliable predictions. Another innovation in RF is 
that instead of computationally costly cross-validation or a separate test set to get 
unbiased error estimates, the observations not used in the training sample (usually 
one-third of the observations in the bootstrap sample), called “out-of-bag” (OOB), 
are used to obtain forecasts from the tree fitted to the remaining two-thirds (Liaw 
and Wiener 2002).

Extremely randomized trees (ERF) takes RF one step further in randomization 
(extraTrees package in R). While RF chooses the ‘best’ split at each node, ERF cre-
ates p splits randomly (i.e., independently of the response variable, p being the 
subset of predictors randomly chosen in each node) and then the split with the best 
gain (MSE for regression) is chosen. The rationale for ERF is that by randomizing 
the selection of split, the variance is reduced even further compared to the 
RF. However, ERF typically uses the entire learning sample instead of the boot-
strapped sample to grow the trees in order to reduce bias (Geurts et al. 2006). Bias 
reduction becomes more important with this form of extreme randomization, 
because randomization increases bias when the splits are chosen independent of the 
response (Galelli and Castelletti 2013). ERF can be useful as a robust predictor after 
initially screening for irrelevant predictors. For example we can use RF to select a 
parsimonious, but ecologically meaningful set of predictors, and then use this set to 
predict with ERF.

6.4.2  Boosting Decision Trees

Boosting is a method of iteratively converting weak learners to stronger ones (in our 
case, using decision trees). Boosting initially builds a base learner after examining 
the data and then reweights observations that have higher errors. Stochastic gradient 
boosting (gbm package in R) is a form of optimization algorithm of a loss function 
with added tools to reduce variance by shrinkage and stochasticity (Ridgeway 1999; 
Friedman 2002). It optimizes a loss function over function space (as opposed to 
parameter space in ordinary regression problems) by estimating gradient directions 
of steepest descent (negative partial derivatives of the loss function called the 
pseudo-residuals) such that each iteration learns from previous errors (pseudo- 
residuals) and improves on them

 
F x F x h xm m m m( ) = ( ) + ( )−1 ν γ·

 

At every stage of gradient boosting 1 < m ≤ M, the weak model Fm is slowly con-
verted to a stronger one by improving on the previous iteration Fm-1 by adding an 
estimator. The value hm(x) is the decision tree (at the m-th step) with J terminal 
nodes (the tree partitions the predictor space into J disjoint regions). The goal is to 
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minimize γm as a loss function (typically mean square error for regression), which 
has its own separate value for each of the J terminal nodes. The depth of the trees 
(i.e., the number of terminal nodes) J, defines the level of interaction and usually 
works best between 4 and 8. The shrinkage parameter ν (0 < ν ≤ 1) controls the 
learning rate of the boosting algorithm. If the number of boosting iterations (number 
of trees grown) is too large, it can lead to overfitting - ν therefore is usually chosen 
via cross-validation after finding the shrinkage parameter (values between 0.01 to 
0.001 works best). In addition, the base learner, instead of using the entire training 
set, randomly subsamples without replacement (usually set to 50% of the training 
set), which adds stochasticity and leads to increased accuracy (Friedman 2002).

There is another slightly different approach to boosting that differs in the way the 
objective function is optimized with separate terms for training loss and regulariza-
tion (Friedman 2001) called xgboost (Chen and Guestrin 2016). This method 
(xgboost package in R) differs from gbm in the way regularization is implemented 
when boosting, improving on its ability to control overfitting. It also handles tree 
pruning differently; gbm would stop splitting a node if it encounters a negative loss 
while xgboost splits to the maximum depth specified and then prunes the tree back-
wards to remove splits with no positive gain. Although boosting with carefully 
selected parameters can outperform RF, it can overfit noisy datasets due to the itera-
tive learning process and has to be used with caution, or by using algorithms that 
automatically control overfitting with internal mechanisms (Opitz and Maclin 1999; 
Hastie et al. 2009).

6.4.3  RuleFit

RuleFit also uses decision tree ensembles to derive rules - however, these rules are 
used to fit regularized linear models in a flexible way that captures interactions 
(Friedman and Popescu 2008). It is similar to stochastic gradient boosting in that it 
combines base learners (decision tree rules) via a memory function with shrinkage 
to form a strong predictor. A large number of trees are generated from random sub-
sets of the data and numerous rules assembled from a specified subset of terminal 
nodes. The predictor variables from these nodes allow for the estimation of linear 
functions where in addition to the rule-based base learner, linear basis functions are 
included in the predictive model. This is a useful feature because linearity from 
decision trees are hard to approximate. The large number of rules formed in the 
rule-generation phase, along with the linear basis functions are then minimized 
using regularized regression using lasso penalty (Tibshirani 1996; Zou and Hastie 
2005). In regularized regression (ridge, lasso or elastic net) an additional penalty is 
imposed on the coefficients while minimizing the loss function. The final ensemble 
formed by regularized regression, results in rules, variables and linear coefficients 
sorted by importance. In contrast with other ensemble methods, RuleFit outputs 
coefficients in addition to prediction rules, which can be interpreted as regular linear 
coefficients.
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6.5  Multiple Abundances – Habitat Suitability

The response, which in our case is an assessment of the habitat quality of white oak, 
is typically a measure of species abundance as reflected by its dominance and den-
sity (McNaughton and Wolf 1970). Dominance and density together capture many 
aspects of habitat quality. The measure that we used traditionally (Iverson et  al. 
2008; Prasad et al. 2016) is the importance value (IV) which captures the relative 
abundance weighted by other species present in the FIA plot (Woudenberg et al. 
2010) as follows for each species X in a FIA plot:

 

IV x
BA x

BA i

NS x

NS i
i

( ) = ( )
( )

+
( )
( )= =∑ ∑

50 50

1 1
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BA is basal area, NS is number of stems (summed for overstory and understory 
trees) and N is the total number of species in the plot. This measure, which is a blend 
of dominance and density, reflects the biotic pressure that accounts for the interac-
tion with other species and hence can reflect the realized niche better.

Another measure of species abundance that is proposed here is called mature 
average diameter (MAD). This dominance measure is derived by averaging the 
mean diameter of all trees of the target species in the plot after discounting the con-
tribution of juveniles; juveniles are considered ephemeral because their contribution 
is negligible for this application. Juveniles were defined as: (min (avg-
dia) + q1(avgdia))/2; where avgdia is the average diameter, min is the minimum and 
q1 is the first quartile average diameter of all the FIA plots with white oak. This 
measure of dominance captures the absolute abundance of the species in contrast to 
the relative importance value (IV).

To capture the density of the species better, I propose another measure of abun-
dance, mature species density (MNT), as the total number of trees of the species in 
the plot after discounting the juveniles. This measure of abundance denotes how 
well the species has colonized a site.

All three forms of abundance measures (IV, MAD, and MNT) in FIA plots were 
aggregated to 20 km cells and scaled from 0–100 (Fig. 6.1). They reflect different 

Fig. 6.1 The current maps of abundance for white oak - the importance value (IV), mature average 
diameter (MAD) and mature number of trees (MNT) per FIA plot aggregated to 20 km cells. The 
abundance values have been reclassified in the legend for illustrative purposes
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aspects of habitat quality and should be modelled separately, with the overall effect 
spatially summarized similar to the multi-stage ensemble models (Anderson et al. 
2012). I expect this approach to provide a better estimate of how the species would 
respond to climate change at a macro-scale compared to a single measure of abun-
dance. Plurality of outputs and methods are important in gauging the overall 
response of the species, which has a complex nonlinear relationship with the 
environment under changing climates (Bowman et al. 2015).

6.6  Explanatory Variables (Predictors)

The explanatory variables represented a blend of climate, soil and topographic vari-
ables that were deemed most ecologically relevant after repeated tests (Table 6.1). 
For sources and other details, refer to Prasad et al. (2016). The current climate data 
are for the period 1981–2010 (Daly et al. 2008), and the future climate is Hadley 
Global Environment Model [HAD, Jones et al. 2011] for the greenhouse concentra-
tion pathway of RCP 8.5 (Representative Concentration Pathways; Moss et  al. 
2008) which represents the high emission future scenario (Meinshausen et al. 2011). 
The future RCP 8.5 climate scenario represents equilibrium conditions of the 
general circulation model (GCM; McGuffie and Henderson-Sellers 2014) for 
approximately 2100.

Table 6.1 The explanatory variables (predictors) used in the five models for white oak. These are 
a parsimonious set of ecologically relevant variables screen selected after repeated modeling

Climate

tjan Mean January temperature (°C)
tmaysep Mean May–September temperature (°C)
pmaysep May–September precipitation (mm)
gsai Growing season aridity index (ratio of May–September precipitation by  

May–September evapotranspiration index)
Elevation
elvmax Maximum elevation (m)
elvsd Elevation standard deviation
Soil
clay Percent clay (< 0.002 mm)
om Organic matter content (% by weight)
ph Soil pH
sieve10 Percent passing sieve no. 10 (coarse)
sieve200 Percent passing sieve no. 200 (fine)

Climate: Data for the period 1981–2010 from (PRISM Climate Group), GCM data from NEX-
DCP30 (Thrasher et al. 2013).
Elevation: From the NASA’s Shuttle Radar Topography Mission provided at a resolution of 3” 
(Guth 2006). We calculated the maximum value and standard deviation at 10 and 20 km2 grids.
Soil: From Natural Resource Conservation Service’s County Soil Survey Geographic (SSURGO) 
database (NRCS 2009). Data was processed by (Peters et al. 2013) and aggregated to 10 and 
20 km2 grids
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6.7  Multi-Model Ensemble Approach

To achieve good bias-variance tradeoff, I used an ‘ensemble-of-trees’ via aggrega-
tion, randomization, boosting (randomForest, extraTrees, gbm, xgboost packages in 
R) and the ruleFit module (http://statweb.stanford.edu/~jhf/R_RuleFit.html). All 
these five approaches have their strengths and weaknesses depending on the training 
set. RandomForest and extraTrees have the least number of parameters to manipu-
late but cannot outperform the carefully tuned gbm and xgboost models. The gbm 
and xgboost algorithms, however, have more parameters to manipulate although the 
default settings often perform well. RuleFit in addition to robust prediction, gives 
linear coefficients and rule-sets. Multi-model ensemble approaches have been used 
where prediction uncertainty needs to be stabilized to yield more robust predictions 
(Jones and Cheung 2015; Martre et al. 2015). For the multi-model approach to work 
well, the models should be based on a similar framework (in this case decision 
trees) but should adopt structurally different approaches so that the final ensemble 
averages these heterogeneous approaches (Tebaldi and Knutti 2007). My approach 
consists of combining the five models (ensemble of models) to obtain two types of 
predictions: a) where output of all models are averaged (AVGMOD), and b) where 
they are averaged but only those cells common to these five models (an AND opera-
tion) make it to the final model (CAVGMOD). This procedure treats these models 
as a committee of experts and uses their average and common averaged prediction, 
improving prediction of single models by averaging out the errors. The overall 
thrust of the predictions are better captured by this approach for future climates. For 
this to work most effectively, the parameters for each of these five models need to 
be optimized via a repeated cross-validation approach in order to obtain a model 
with the most favorable bias-variance ratio. To do this, I used the caret package in R 
and repeated the ten-fold cross-validation, five times and chose the parameters with 
the lowest error (Kuhn 2008).

The multi-model, multi-response ensemble approach for the high emission future 
climate is illustrated for white oak using the three measures of abundance (IV, MAD 
and MNT) for the average model (AVGMOD), and the common average model 
(CAVGMOD) (Fig. 6.2). The CAVGMOD retains all the important habitats, while 
smoothing out the lower abundance values compared to AVGMOD and is therefore 
preferred in situations where reducing noise is desirable.

6.8  Results and Interpretation

One of the main goals while modeling future climate habitats of tree species is the 
need to gauge both model reliability and prediction confidence.
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Fig. 6.2 The multi-model predictions for the three responses (importance value (IV), mature aver-
age diameter (MAD) and mature number of trees (MNT)) for the future harsh (Hadley, RCP 8.5) 
climate scenario for white oak. The AVGMOD is the average response across the five models, the 
CAVGMOD is the average response across the five models restricted to values common to all 
models. The abundance values have been reclassified in the legend for illustrative purposes
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6.8.1  Model Reliability

Model reliability, which measures how well the models fit the data, reflects the 
vagaries of the training data, depending on whether the tree species is habitat spe-
cific, sparse, or a generalist. The sparser species have poor fit due to lack of training 
data and generally have poor model reliability. The habitat specific trees have the 
best model fit due to a better correlation with the environmental variables, with 
higher confidence in future predicted habitats. The model fit of generalists can vary 
depending on how widely and sparsely the species are distributed spatially. These 
species-specific vagaries affecting model reliability can be roughly measured via 
R-square-like measures via OOB, cross-validation or through a separate training 
and test dataset. For example, the R-square for the IV response of the RF model for 
the habitat-specific loblolly pine (Pinus taeda) was 0.79. In comparison, the 
R-square measure for our generalist species example of white oak (for the five mod-
els and three responses) averaged ~ 0.47.

6.8.2  Prediction Confidence

Even for species with good model reliability, the spatial configuration of the habitat 
quality in the predicted output (as measured via abundance values) can vary. For 
example, in Fig. 6.2, the classes 1–3 and 4–7 figure prominently even in CAVGMOD, 
and are of lower habitat quality than the higher classes. Because we can take advan-
tage of the continuous distribution via regression models (after rescaling the abun-
dances to values between 0 and 100), we have the ability to interpret the predicted 
habitats in terms of “prediction confidence” by reclassifying the results. The multi- 
model ensemble method helps mitigate the effects of spurious model artifacts (what 
can be termed “fuzzy values”) at the low end of the abundance spectrum. The 
CAVGMOD approach further helps us identify only those prediction signals that 
have been strong in all five of the model predictions. Further, continuous predictions 
do not lend themselves to easy interpretation. Therefore, reclassifying them with the 
purpose of identifying the core regions where we have the highest confidence (based 
on abundance values) becomes useful for interpretation.

6.8.3  Combined Habitat Quality and Prediction Confidence

Using the CAVGMOD approach, we can average the predicted abundances of IV, 
MAD and MNT to capture the important future habitats as reflected by these three 
aspects of abundance and then reclassify the output to highlight the prediction con-
fidence of the averaged response (Fig. 6.3). I have classified the future habitats to 
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five confidence zones based on the predicted abundance: (1) Very low (1–3); 
(2) Low (4–7); (3) High (8–15); (4) Higher (16–25); (5) Highest (26–100). Class 1 
(Very low) would include many model artifacts (for example values close to zero 
that were regressed as 1–3) that are of dubious habitats that can be discarded as 
unreliable. Class 2 (Low) may also contain some regions with dubious habitats and 
some with low habitat suitability and should be treated with caution. Confidence in 
the habitat suitability classes increase steadily from Class 3 onwards (High, Higher 
and Highest).

Compared to the three CAVGMOD responses (Fig. 6.2), the single combined 
response (Fig. 6.3) highlights those areas (High and Higher classes) where we have 
the most confidence in the habitat quality of future habitats based on all three aspects 
of the abundances. For white oak, these areas (green and dark green) are predomi-
nantly in the north-east, north-central and south-central regions.

6.8.4  Predictor Importance

The importance of the predictors for each of the responses (IV, MAD and MNT) 
varied among the five models for white oak, although the first three were similar for 
all five models. These were recorded and averaged across the five models for the 
three responses (Table 6.2). For IV and MAD, the three most important variables 
are ph, tmaysep and tjan (Table 6.1), which explain 47.5% (IV) and 48.2% (MAD) 
of the variation for white oak. For MNT, the order varies with sieve10 and clay 
becoming important, but the same three variables (ph, tmaysep and tjan) still explain 
40.1% of the variation. The predictor importance of the final combined response of 
the multi-model ensemble is the average for the three individual responses (IV, 
MAD and MNT) (Table 6.3). Again, the three most important variables (ph, tmay-
sep and tjan) explain 46.5% of the total variation. Because white oak is a generalist 

Fig. 6.3 The average of 
the three predictions 
(importance value (IV), 
mature average diameter 
(MAD) and mature number 
of trees (MNT)) for 
CVAGMOD (Fig. 6.2), 
with values common to the 
three predictions for white 
oak
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species occupying a vast swath of the eastern US, ph captures variation from east 
to west, while tjan and tmaysep are more important in capturing the north-south 
variation, and hence figures prominently in the final response.

6.9  Discussion

The main goal of the multi-model, multi-response approach developed here is to 
produce more reliable and ecologically interpretable models that can be used to help 
decision makers in managing tree species (Bell and Schlaepfer 2016). Tree species 
ranges are dynamic by nature and the additional impact of anthropogenic climate 
change makes it harder to predict distribution for future climates irrespective of the 

Table 6.2 The predictor importance of white oak averaged across the five models for importance 
value (IV), mature average diameter (MAD) and mature number of trees (MNT). The Percent Gain 
reflects the proportion of variance explained by the variable

IV MAD MNT
Variables Percent gain Variables Percent gain Variables Percent gain

ph 16.7 ph 22.1 ph 17.2
tmaysep 16.6 tmaysep 16.5 sieve10 12.9
tjan 14.2 tjan 10.6 tmaysep 12.3
sieve10 10.2 elvmax 7.3 clay 10.8
clay 7.9 pmaysep 7.0 tjan 10.6
gsai 6.5 om 6.9 sieve200 8.1
elvmax 6.1 sieve10 6.7 elvsd 7.7
pmaysep 6.1 elvsd 6.4 pmaysep 5.6
om 5.5 gsai 6.3 om 5.5
elvsd 5.3 sieve200 6.0 gsai 5.3
sieve200 5.0 clay 4.2 elvmax 4.0

Table 6.3 The average 
predictor importance of the 
five models for white oak 
averaged across the three 
responses (IV, MAD and 
MNT in Table 6.2) and sorted 
by the Percent Gain

AVG
Variables Percent gain

ph 18.7
tmaysep 15.1
tjan 11.8
sieve10 9.9
clay 7.6
elvsd 6.5
sieve200 6.4
pmaysep 6.2
gsai 6.0
om 6.0
elvmax 5.8
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modeling approaches used (Zurell et al. 2016). However, managers need to be able 
to target specific areas for facilitating species conservation and other multiple-use 
management objectives. The first step in accomplishing these goals is to explore 
where the most probable future suitable habitats will occur. The multi-model, multi- 
response approach addresses the inherent complexity in tree species response in a 
systematic and statistically defensible manner. It also provides maps of regions 
where we have high confidence in the future suitable habitats for tree species that 
exhibit good model reliability (Hannemann et al. 2015). The tree species that exhibit 
high model reliability are typically species that are habitat specific, although gener-
alists like white oak can also be adequately modelled. The tree species that typically 
have poor model reliability are those that are sparse (both closely and widely dis-
tributed), which for eco-evolutionary and biogeographic reasons have not extended 
their range. Models for these species should be treated with caution because their 
habitats are difficult to predict with environmental variables; biogeographic and 
eco-evolutionary variables are not easy to incorporate without extensive Gene X 
Environment studies.

The multi-model, multi-response model I present as an example, demonstrates 
that suitable future habitats for white oak are most likely to be in the north-east, 
north-central and south-central regions of the eastern United States (Fig. 6.3). This 
type of information is important for resource managers dealing with uncertainty and 
mandates to incorporate climate change in their management portfolios. While suit-
able habitats lack information on the likelihood of colonization, these can be 
assessed at a later stage via dispersal models (Prasad et al. 2016). However, to assess 
the probability of establishment of colonized sites involves finer scale process- based 
models that account for biotic interactions.

Another challenge when modeling tree species habitats under current and future 
climates lies in the transfer of ecological space (the niche of the species) to eco- 
geographic space (the mapped niche), which results in spatial autocorrelation 
effects. The problem of spatial autocorrelation can become acute with conventional 
parametric techniques and, while less problematic with non-parametric statistical 
learning methods, can still manifest in residual errors (Hawkins 2012; Kühn and 
Dormann 2012). In this study, there was negligible global residual spatial autocor-
relation, although local ones were present. However in niche-based spatial model-
ing, some residual spatially auto-correlated errors have to be tolerated, and 
interpreted with caution. The alternative is extremely complex, autoregressive, para-
metric models that in many cases defeat the purpose of a more flexible modeling 
approach (Merow et al. 2014).

6.10  Conclusion

Predicting habitat quality is the first stage in the analysis of future distribution of 
tree species because dispersal and site-specific constraints will prevent colonization 
and establishment in all available suitable habitats (Prasad et al. 2016). Predicting 
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these suitable habitats using robust modeling techniques is the essential first step 
and I present the multi-model and multi-response ensemble technique as a method for 
modeling tree species dynamics for better management under changing climates.
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Chapter 7
Mapping Aboveground Biomass of Trees 
Using Forest Inventory Data and Public 
Environmental Variables within the Alaskan 
Boreal Forest

Brian D. Young, John Yarie, David Verbyla, Falk Huettmann, 
and F. Stuart Chapin III

7.1  Introduction

Forest biomass, the aboveground dry mass portion of live trees within a given area 
(Bonnor 1985), is of interest for both ecological and economic reasons. Forest soils 
and biomass hold most of the carbon in the Earth’s terrestrial biomes (Houghton 
2005) and significantly contribute to the overall global carbon exchange (Schimel 
et al. 2001). Within the boreal forest, the largest terrestrial biome, little is known 
about the quantity of woody biomass at spatial scales useful to forest practitioners 
(~ 1m2 to 3.0 km2) (Niemelä 1999; O’Neill et al. 1997). In previous investigations 
of aboveground forest biomass in the boreal region (see for instance Blackard et al. 
2008; Botkin and Simpson 1990; Harrell et al. 1995; Yarie and Billings 2002; Yarie 
and Mead 1982), the spatial scales have either been rather course (Botkin and 
Simpson 1990; Yarie and Billings 2002) or the predictions lacked precision due to 
limited ground-truthing.

Within the boreal region, an increased interest in biomass as a possible fuel 
source has led to the need for a clearer understanding of the quantities of biomass 
that are available at an operational scale (Fresco 2006; GAO 2005; Loeffler et al. 2010). 
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As of 2015, nine wood biomass energy facilities have been built in Interior Alaska 
with another ten under construction, and more than eleven are in design or feasibil-
ity status (AEA 2015). Energy demands for woody biomass are both expanding 
total forest harvest and changing the conventional forest management paradigm 
from production of large-dimension white spruce timber to a slowly expanding har-
vest of other species and size classes.

The boreal forest of Alaska extends from the Bering Sea on the west to the 
Canadian border in the east and is bounded in the north by the Brooks Range and in 
the south by the Chugach and Coastal mountains (Fig. 7.1), covering an area of 
nearly 500,000 km2. The Alaskan boreal forest consists of a mosaic of two general 
forest types, mixed poplar/birch and mixed spruce (Ruefenacht et al. 2008; Viereck 

Fig. 7.1 Geographic distribution of the 694 Sample Plots (in circles) within the Alaskan boreal 
forest (Ruefenacht et al. 2008)
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and Little 2007; Young et al. 2011) and primarily contains seven tree species. White 
spruce (Picea glauca) and black spruce (P. marianana) are the predominant coni-
fers and two poplars (Populus tremuloides and P. balsamifera), two birches (Betula 
neoalaska and B. kenaica), and tamarack (Larix laricina) represent the deciduous 
species. Significant variation in tree growth occurs due to local differences in topog-
raphy, soil type, the biota, the successional state, and climate conditions (Chapin III 
et al. 2006; Liang 2010; Lloyd and Fastie 2002; van Cleve et al. 1983; Wilmking 
and Juday 2005) which are collectively referred to as state factors (Major 1951). 
These variations in tree growth can lead to vastly different amounts of aboveground 
forest biomass depending on site differences in state factors. Biomass models that 
incorporate as many of the state factors as possible may yield an enhanced predic-
tive ability for this ecologically and economically important forest attribute (Cutler 
et al. 2007; Grossmann et al. 2010).

The combination of forest inventory data with remote sensing data from both 
aerial and satellite formats have been previously employed in mapping woody 
biomes across broad spatial scales (see for instance Fassnacht et al. 2006; Iverson 
and Prasad 2001; McRoberts et  al. 2008; Ruefenacht et  al. 2008). In the United 
States, the inventory data is typically from the Forest Inventory and Analysis (FIA) 
program of the USDA Forest Service which is uniformly distributed across the land-
scape, expect in interior Alaska where FIA data is still lacking. Spatial interpolation 
techniques that combine forest-inventory and remote-sensing data in regions with 
either sparse or non-uniformly distributed inventory data have been employed to 
predict the geographical distribution of various forest attributes (Liang and Zhou 
2010; Parmentier et al. 2011; Young et al. 2011). The use of machine learning to 
estimate aboveground forest biomass at the mesoscale from forest inventory and 
remotely sensed data in remote regions has, however, received less attention.

Maps depicting spatially explicit estimates of forest biomass are valuable for 
planning and monitoring (Drew et al. 2011). Creating such maps typically employs 
predictive spatial modeling techniques where the parameters of interest are obtained 
from inventory data and then related to remotely mapped attributes (see Austin 
2002; Cushman and Huettmann 2010; Cushman and McKelvey 2009; Ferrier et al. 
2002; Franklin 1995; Guisan and Thuiller 2005). Several statistical approaches have 
been used to create predictive maps, with non-parametric approaches tending to 
yield better results than parametric approaches, (Drew et  al. 2011; Prasad et  al. 
2006). Spatial autocorrelation, a general property of most ecological attributes 
(Legendre 1993), is an additional issue to address, especially in large-extent forest 
studies (Young et al. 2011). When unaccounted for in a traditional approach, spatial 
autocorrelation may affect statistical model predictions because it violates the 
assumption of independence on which most standard statistical procedures rely 
(Legendre 1993). Thus, non-parametric models that account for, or are tolerant of, 
spatial autocorrelation and noisy data, e.g. when employing ‘recursive partitioning’ 
could be generally useful in assessing the spatial patterns of biomass (Blackard 
et al. 2008; Li et al. 2011).The use of machine learning, and notably random forests, 
has allowed for major advances in the capacity to make predictions of various forest 
attributes including biomass (Baccini et al. 2008; Li et al. 2011).
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Our objectives here are to (1) develop a spatially explicit model depicting 
aboveground forest biomass for the Alaskan boreal forest using ground measured 
inventory plots, at a 1-km cell size, (2) evaluate model performance and compare 
the results to other region wide forest biomass estimates, (3) explore the contribu-
tion of the environmental predictors used to develop the biomass model and place 
them in ecological context, and lastly (4) use the resulting dataset to estimate and 
map forest biomass for the Alaskan boreal forest.

7.2  Methods and Materials

7.2.1  Biomass Data

Our dataset consisted of 694 permanent sample plots (PSPs) from the Cooperative 
Alaska Forest Inventory Database (CAFI; http://www.lter.uaf.edu/data_detail.
cfm?datafile_pkey=452) (Malone et  al. 2009) and the Fort Wainwright Forest 
Inventory Database (WAIN; http://www.usarak.army.mil/conservation) (Rees, per-
sonal communication). These databases consist of periodically re-measured PSPs 
located across interior and south-central Alaska north of 60°N (Fig. 7.1). The two 
databases were comparable because they had similar sampling designs and mea-
surement protocols largely following the procedures outlined by (Curtis 1983). The 
plots are at a minimum of 300 m apart from one another. These data consist of 
periodically remeasured PSPs located across interior and southcentral Alaska north 
of 60° N (Fig. 7.1). These PSPs are located primarily on stocked forested lands. 
The CAFI plots are primarily located along the road system on Federal, State, 
Borough, and Native Corporation lands, while the WAIN plots are scattered across 
Military lands (Fig. 7.1).

The aboveground tree woody biomass, which includes biomass from the tree 
bole, stumps, branches and twigs, on each of the 694 PSPs was calculated for 
each tree greater than 2.54 cm in diameter at breast height (DBH) using the equa-
tions developed by Jenkins et al. (2003) for each of the seven possible tree spe-
cies (Picea glauca, P. marianana, Populus tremuloides, P. balsamifera, Betula 
neoalaska, B. kenaica, and Larix laricina) present within a given PSP then 
aggregated to develop a megaton per hectare (Mg/ha) dry weight value. The 
Jenkins et al. (2003) calculations are used by the United States Forest Service 
Forest Inventory and Analysis Program (FIA) for their PSPs (Jenkins et al. 2004). 
We used the same calculations even though regional biomass calculations have 
been developed (see Yarie et al. 2007) so that the results from our model of aboveg-
round tree woody biomass could be directly compared with other previously 
published results (Blackard et al. 2008).
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7.2.2  Environmental Factors

Our original predictor dataset consisted of 39 variables, including the spatial struc-
ture (X and Y coordinates), climatic, topographic, vegetation, anthropogenic, and 
geophysical variables (Table  7.1). The climate variables were obtained from the 
Scenarios Network for Alaska Planning (SNAP; http://www.snap.uaf.edu/down-
loads/alaska-climate-datasets) which contains historical datasets derived from 
Climate Research Unit (CRU) data; shown to perform well in Alaska (Walsh et al. 
2008). The spatial resolution of the monthly and annual temperature data were at 
2km2 grid size and were averaged over the years 1901–2009 while, the monthly and 
annual precipitation data are averaged from 1901–2006. The topographic vari-
ables were derived from 300 m digital elevation models (Alaska Geospatial Data 
Clearinghouse (AGDC; http://agdc.usgs.gov/agdc.html) using Spatial Analysis 
surface analysis tool and the TPI extension for ArcGis (Jenness 2006) within 
ArcGis 10.0 (ESRI 2011). Vegetation type was obtained from the 30 m National 
Land Cover Database (NLCD; http://seamless.usgs.gov/data_availability.
php?serviceid=Dataset_13) for the year 2001 (Vogelmann et  al. 2001). Forest 
type was obtained from the 250 m Forest Type Groups of Alaska map (Ruefenacht 
et  al. 2008; http://fsgeodata.fs.fed.us/rastergateway/forest_type/) for the year 
2008. The Normalized Difference Vegetation Index (NDVI) values were from the 
14-day, band six Advanced Very High Resolution Radiometer (AVHRR) data from 
the NOAA polar-orbiting satellites covering the periods May through September 
2011, which were obtained from the Geographic Information Network of Alaska 
database (GINA; http://docs.gina.alaska.edu/ndvi/how_to.html). The stand age was 
determined using data from the Alaska Interagency Coordination Center (http://afs-
maps.blm.gov/imf_fire/imf.jsp?site=fire) fire perimeter data covering the years 
1942–2011. Using this fire history data, a binary response variable was created for 
each location describing the forests as young (< 69 years) or mature (> 69 years) 
based on when the location last burned (Johnson et al. 2011). Extrapolated tree size 
basal area and tree species basal area diversity values derived from a combination of 
forest inventory and remotely sensed data within the study region were obtained 
from Young et al. (2016). We calculated the anthropogenic and the geophysical vari-
ables using data from AGDC and tools within ArcGIS 10.0 (ESRI 2011). The pre-
dictor variables with a spatial resolution greater than 1 km underwent either nearest 
neighbor resampling, if the data were categorical, or bilinear interpolation resam-
pling, if the data were continuous. Those variables that had a native spatial resolu-
tion smaller than 1km2 were rescaled. The predictor dataset was constructed by 
overlaying the individual datasets in ArcGIS 10.0, then at each PSP location the 
environmental variables where extracted, resulting in a table with aboveground tree 
woody biomass values as the response variable and the environmental variables as 
predictors (as per Ohse et al. 2009).
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Table 7.1 Definition of variables used in the analysis

Variable Description Unit Reference

Spatial structure
X Latitude (Alaska Albers) 105m Magness et al. (2008)
Y Longitude (Alaska Albers) 105m Magness et al. (2008)
Climatic variables
T_01 Mean temperature January (°C + 100) Ohse et al. (2009)
T_05 Mean temperature may (°C + 100) Ohse et al. (2009)
T_06 Mean temperature June (°C + 100) Ohse et al. (2009)
T_07 Mean temperature July (°C + 100) Ohse et al. (2009)
T_08 Mean temperature august (°C + 100) Ohse et al. (2009)
T_09 Mean temperature September (°C + 100) Ohse et al. (2009)
T_G Mean temperature growing

Season (may–September)
(°C + 100) Ohse et al. (2009)

T_D Mean temperature difference
July–January

(°C + 100) Ohse et al. (2009)

T_A Mean annual temperature (°C + 100) Ohse et al. (2009)
P_05 Precipitation sum may Mm Ohse et al. (2009)
P_06 Precipitation sum June Mm Ohse et al. (2009)
P_07 Precipitation sum July Mm Ohse et al. (2009)
P_08 Precipitation sum august Mm Ohse et al. (2009)
P_09 Precipitation sum September Mm Ohse et al. (2009)
P_G Precipitation sum growing season 

(may–September)
Mm Ohse et al. (2009)

P_W Precipitation sum winter
(October–April)

Mm Yarie (2008)

P_A Precipitation sum annual Mm Ohse et al. (2009)
Topographic variables
Solar Potential maximum solar insolation (kWH/m2) Fu and rich (1999)
Prod Site productivity Unitless Stage and Salas (2007)
Sl Slope Percent Stage and Salas (2007)
As Transformed aspect Unitless Beers et al. (1966)
El Elevation m Magness et al. (2008)
SPC Slope position classification Class Murphy et al. (2010)
TPI Topographic position index Class Murphy et al. (2010)
LC Landform classification Class Johnson et al. (2011)
Vegetation variables
Veg Vegetation type Class Vogelmann et al. 

(2001)
FT Forest type Class Ruefenacht et al. 

(2008)
Gmax Maximum NDVI NDVI Magness et al. (2008)
Gmean Mean NDVI growing season NDVI Magness et al. (2008)
Age Stand age Binary Johnson et al. (2011)
Hs Tree species diversity Shannon’s Young et al. (in press)

(continued)
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7.2.3  The Calibration and Validation Datasets

For the 694 sites within our study region we had information about the aboveground 
forest woody biomass and the 39 environmental predictor variable and X and Y 
coordinates (Table 7.1). The dataset was randomly split into a calibration dataset 
(Cal, n = 522; 75% of the plots) and a validation dataset (Val, n = 174; 25% of the 
plots). The relationship between aboveground forest woody biomass and the envi-
ronmental factors was modeled using the calibration dataset and the quality of the 
predictions was assessed using the validation dataset.

7.2.4  Statistical Methods

Our modeling approach involved determining the association between aboveground 
forest woody biomass and the 39 environmental factor predictors at each of the PSP 
locations. The environmental predictors were pre-selected using the Boruta package 
(Kursa and Rudnicki 2010) in R (Version 3.2.4). This algorithm assesses the rele-
vance of each individual predictor by testing whether its importance, using P values 
at the 0.05 alpha level, is greater than a random permutation by running the random 
forests algorithm iteratively until all predictor variables are classified as “accepted” 
or “rejected” (Kursa and Rudnicki 2010). We computed the Boruta on these data 
with maxRuns = 1000 and ntree = 500 and the variables selected were determined 
to be significant based on their Z-score with an upper 95% confidence limit 
([Z] ≤ 1.65). The final set of predictors (Table 7.2) was then used in the develop-
ment of the random forests models (RF; Breiman 2001) using the randomForest 
package (Liaw and Wiener 2002) implementation in R. RF is non-parametric and so 
it makes virtually no relevant assumptions about the distribution of input data (Drew 
et al. 2011). This allows for the capturing of non-linear relationships involving com-
plex ecological and environmental interactions among variables and limits the prob-
lems associated with multicollinearity (De'ath and Fabricius 2000; Siroky 2009).

The RF as applied to these data used 2500 bootstrap samples each containing 
two-thirds of the Cal data. The remaining samples —out-of-bag (OOB) 

Table 7.1 (continued)

Variable Description Unit Reference

Hd Tree size class diversity Shannon’s Young et al. (in press)
Anthropogenic variables
Dtc Distance to community Km Wurtz et al. (2006)
Dtr Distance to roadway Km Wurtz et al. (2006)
Dtw Distance to navigable waterway Km Wurtz et al. (2006)
Geophysical variables
Perm Permafrost Class Liang (2010)
Soil Soil type Class Ohse et al. (2009)
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 observations— were used to assess model performance. For each bootstrap sample, 
an un- pruned regression tree was grown containing one-third of the predictor vari-
ables, which were randomly selected and used for binary partitioning. The average 
of all trees was then used to predict OOB observations, for cross validation (Breiman 
2001) and to evaluate the overall error of the RF models. The importance values for 
each predictor was calculated by investigating the percent increase in mean squared 
error (MSE) when OOB data for each variable were permuted while all others were 
kept constant (Breiman 2001; Cutler et al. 2007).

Table 7.2 Variable 
importance (ranking) in 
determining aboveground 
forest woody biomass 
(biomass; Mg/ha dry weight) 
using percent increase in 
mean standard error 
(%IncMSE) for ranking 
purposes. The variables 
deemed important were used 
in the development of the 
final  random forests model 
(RF)

Variables
Biomass
%IncMSE rank

Hd 90.62 1
Veg 36.40 2
P_06 31.86 3
Dtc 29.80 4
El 28.79 5
Y 27.52 6
Gmax 25.68 7
Prod 24.90 8
Sl 23.87 9
P_W 23.67 10
Gmean 23.05 11
Asp 22.04 12
P_07 21.65 13
T_A 21.00 14
X 20.94 15
TPI 20.74 16
P_A 19.37 17
FT 19.32 18
P_G 18.98 19
Perm 16.71 20
Solar 16.51 21
P_09 16.43 22
T_G 16.35 23
P_08 16.17 24
T_05 15.68 25
Age 14.45 26
Soil 14.20 27
T_07 13.96 28
T_09 13.33 29
P_05 13.30 30
T_08 12.61 31
T_06 12.41 32
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External validations of the predictive capabilities of the RF models were conducted 
on the Val dataset. Because we used a continuous response, model performance was 
evaluated using Pearson’s product-moment correlation coefficients (r), root-mean-
square error (RMSE) and, mean absolute error (MAE) (Li et al. 2011). Partial depen-
dence plots were constructed to visualize the marginal effects of the predictor variables 
in the RF estimates above ground woody biomass.

Considering that spatial autocorrelation affects statistical model predictions, due 
to a lack of independence (Legendre 1993), we tested for spatial autocorrelation as 
well as for large-extent spatial patterns within the residuals of the final RF models. 
We assumed that plots that were further apart would affect each other less than those 
that were closer (Cressie 1993) and therefore applied a spatial weight of inverse 
distance. Given the neighborhood structure, we then evaluated the residuals of the 
RF models using both Moran’s I and Geary’s C test statistics (Sokal and Oden 1978) 
within the spdep package in R (Bivand et al. 2007).

To further examine the relationships between aboveground forest biomass and the 
six most important environmental predictors for aboveground forest woody biomass 
determined through the RF, we employed regression tree analysis (RTA; De'ath and 
Fabricius 2000) in the ‘party’ package (Hothorn et al. 2006a) in R. RTA recursively 
partitions a dataset into subsets that are relatively homogeneous with regards to the 
response variable (De'ath and Fabricius 2000). The RTA as applied to these data 
used conditional inference trees (Hothorn et  al. 2006b), which require a statistical 
significant P value (P < 0.01 for this analysis) determined through a Monte Carlo 
randomization procedure (9999 permutations used in this analysis). This technique 
reportedly minimizes bias and prevents over-fitting (Hothorn et al. 2006b). The results 
of the RTA are easily interpreted as a dendrogram containing a set of decision rules on 
the environmental predictor variables.

7.2.5  Predictive Maps

Once calibrated and validated, the RF model (Table 7.2) was then predicted to the 1km2 
resolution prediction grid developed for the boreal forest of Alaska and then converted 
to a raster using the Point to Raster tool in ArcGIS (10.0) in order to obtain an estimate 
of the aboveground forest biomass (Mg/ha dry weight) for the entire region.

7.3  Results

7.3.1  Variable Selection and Importance

The Boruta algorithm was used as the basis of our variable selection processes to 
predict aboveground forest biomass (biomass). The explanatory variables selected 
using Boruta algorithm that best predicted forest biomass improved overall model 
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predictions. Applying the RF to the complete data set using the complete suite of 
prediction variables yielded a model with an RMSE  =  19.73, MAE  =  13.76, 
r  =  0.96), compared to the Boruta variable selected model which yielded an 
RMSE = 19.02, MAE = 13.57 and, r = 0.97. Given the improvement in model per-
formance for using the Boruta algorithm, we applied the final RF models to the 
reduced set of predictors as presented in Table 7.2.

Table 7.2 also shows the ranking of the predictor variables by their importance as 
determined by the percent increase in mean standard error (%IncMSE). The vari-
able of tree size-class diversity (Hd) is by far the most important variable to predict 
biomass for the Alaskan boreal forest accounting for over 90%IncMSE. An addi-
tional vegetation variable, vegetation type (Veg), was the second most important 
variable accounting for 36.40%IncMSE. Of the climatic variables, June precipita-
tion (P_06) was deemed the most important accounting for over 31%IncMSE. The 
anthropogenic variable of Distance to communities (DTC) was also found to be 
highly influential in predicting biomass contributing to nearly 30%IncMSE. Of the 
top ten variables to predict biomass three were vegetation variables (Hd, Veg, and 
Maximum NDVI (maxAV)), three are topographic variables (elevation (EL); the 
proxy of site productivity (Prod), which was derived from elevation, slope, and 
aspect (Stage and Salas 2007); and slope (Sl)), two climatic variables (P_06, and 
winter precipitation (P_W)), and one spatial structure variable (longitude (Y)), 
which is an indicator of continentality.

7.3.2  Random Forests Analysis Model Assessment

The RF model for aboveground forest biomass (as determined using the variables 
within Table  7.2) as applied to the calibration dataset (Cal) was able to explain 
35.23% of the total variation in biomass (Fig. 7.2: RMSE = 19.02, MAE = 13.57, 
r = 0.97, P < 0.001). The RF model also provided predictions on the validation data-
set (Fig. 7.2: RMSEval = 43.84, MAEval = 32.14, rval = 0.55, P < 0.001). Despite these 
highly significance levels, the RF model for biomass tended to slightly overestimate 
on the validation dataset for low biomass sites and underestimate in high sites. 
Additionally, we observed some variation in the magnitude of the errors; large 
errors are unlikely due to the relatively small difference between the RMSEval and 
MAEval values. Our modeled average differences on the validation dataset between 
the predicted and the observed biomass value was 32.14 Mg/ha with a mean pre-
dicted value of 92.68 Mg/ha.

In comparison to our results, the predictions of Blackard et al. (2008) for aboveg-
round forest woody biomass on the validation dataset (Val) were noticeably differ-
ent (Fig.  7.3). Using the results from the model by Blackard et  al. (2008) for 
biomass, we found a correlation coefficient of - 0.007 for the 176 PSPs. Additionally, 
the RMSE was 76.18 and the MAE was 59.00, suggesting a large magnitude of 
error and fairly low accuracy given that the average difference is found to be greater 
than the mean predicted value (44.46 Mg/ha) from the Blackard et al. (2008) model 
for aboveground forest biomass within this study region.
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Fig. 7.2 Application of the random forests (RF) model for aboveground forest woody biomass 
(Mg/ha dry weight) to the calibration data set (Cal) and the validation data set (Val)

Fig. 7.3 Predicted and observed above ground full tree woody biomass (Mg/ha dry weight) for the 
694 Sample Plots within the Alaskan boreal forest. The current model indicates the model pre-
sented in this paper while the other predictions are from Blackard et al. (2008)
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7.3.3  Influence of the Environmental Factors on Aboveground 
Forest Biomass

The partial dependency plots (Fig.  7.4) illustrate the relationships between 
aboveground forest biomass and the six most important environmental factors as 
determined by RF. The most important factor, tree size-class diversity (Hd) indi-
cates a potential threshold at an Hd value of >1.5 biomass steeply increases but 
below this level, it is stable at ~ 70 Mg/ha. Vegetation type (Veg) is the second 
most influential with closed forest vegetation types having the greatest biomass 
values. June precipitation (P_06) also appears to express a threshold effect on 
biomass, with values less than 55 mm having higher biomass than those receiv-
ing more moisture. Distance to communities (Dtc) also displays a pronounced 
effect on biomass with decreasing biomass values with increasing distance. The 
effect of Elevation (El) on aboveground woody biomass suggests a depressed 
value at mid-elevations with increased amounts on either extreme. The effect of 
continentality, as measured by Longitude (Y), is also pronounced with a slightly 
positive effect on biomass.

Fig. 7.4 Partial dependence plots representing the marginal effects of the six most important vari-
ables from the RF model on the estimates ofaboveground forest woody biomass while averaging 
out the effect of all the other variables
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7.3.4  Regression Tree Analysis Model Assessment

The RTA of aboveground forest biomass using the six most important variables 
determined from RF produced 8 terminal nodes (Fig.  7.5). The highest biomass 
values appear to occur when Hd is greater than 2.221 and on sites with diversity 
values between 1.903 and 2.221 that receive less than or equal to 54 mm of precipi-
tation in June. The lowest biomass values occur on low diversity (≤ 1.583) sites at 
elevations less than 417  m and greater than 30.7  km away from a community. 
Additionally, low biomass values are predicted for sites greater than 417 m in eleva-
tion which occupy micro sites dominated by open and or closed spruce forests or 
mixture of spruce shrub woodlands.

7.3.5  Spatial Dependency of Aboveground Forest Biomass

Forest biomass is strongly spatially autocorrelated (Table 7.3). The environmental 
predictors used in the RF model adequately accounted for the autocorrelation pres-
ent in the forest biomass as evident by the lack of autocorrelation present in the 
residuals of the final models (Table 7.3). The capturing of the large-scale systematic 
spatial trend by the environmental predictors subsequently improves the accuracy of 
the predictions for the regions outside of the sample area.

Fig. 7.5 Conditional Inference tree for aboveground forest woody biomass using the six most 
important predictor variables as determined by the random forests analysis (see Fig. 7.4, Table 7.2). 
The p-values at each of the nodes are from a Monte Carlo randomization test. In order for a split to 
occur the p-value must be <0.01. The box plots at the terminal nodes show the distribution of the 
data within that branch of the tree
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7.3.6  Predicted Aboveground Forest Biomass Patterns

The aboveground forest woody biomass for the boreal forest of Alaska as predicted 
through random forests analysis using environmental predictors and forest inven-
tory data ranged widely across the study region (Fig.  7.6). The predicted values 
ranged from 26.6–210.1 Mg/ha with a mean of 88.3 ± 16.4 Mg/ha. The highest 
values were primarily found within the central interior between Fairbanks and 
McGrath, around Glennallen, and north of Anchorage in the Matanuska-Susitna 
valleys.

7.4  Discussion

The data from the forest inventories (CAFI and WAIN datasets) were critical to 
our analysis in determining the abundance and spatial variation of aboveground 
biomass across the heterogeneous landscape of the Alaskan boreal forest. These 
datasets are getting more use (see Young et al. 2017), and we hope more can be 
done with those data in future investigations. So far, only the data contained 
within the CAFI and WAIN datasets comprise the necessary information for 
ground truthing large scale forest dynamics in the Alaskan boreal forest (Malone 
et  al. 2009; Rees, personal communication). However; these data are not uni-
formly dispersed across the study region and a collection bias exist (see Fig. 7.1). 
To this end, random forests (RF; Breiman 2001) is ideally suited to studies such 
as this where other spatial prediction techniques (i.e. kriging) would potentially 
produce a single mean value for large portions of the study region (Cushman and 
Huettmann 2010; Drew et al. 2011).

The prediction for aboveground biomass was strongly influenced by tree size 
class diversity (Hd) This result was not surprising because the structure of a young 
forest is typically characterized by a single canopy layer, high stem density, few 
forest gaps, and trees of roughly the same size with generally lower biomass 
(Pretzsch 2005; Scherer-Lorenzen et al. 2005; Schulze et al. 2005) whereas older 
forests generally have a greater mixture of tree sizes in multiple canopy layers due 
primarily to niche differentiation (Harper et al. 2003; Kneeshaw and Gauthier 2003; 
McCarthy 2001), resulting in higher overall stand biomass (Kohyama 1993; Scherer- 
Lorenzen et al. 2005). Forest age was relatively unimportant (see Table 7.2) in this 
analysis, probably because it was represented in this dataset by a binary response, at 

Table 7.3 Spatial autocorrelation and its level of significance for aboveground forest woody 
biomass (biomass; Mg/ha dry weight) in the Alaskan boreal forest, and for the residuals of the 
random forests (RF) model used for predicting biomass from this dataset

Moran’s I P-Value Geary’s C P-Value

Biomass 0.3224 <0.001 0.6779 <0.001
Residuals of RF model for biomass −0.0345 0.8906 1.0202 0.7535
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an age of 69 years, that may not reflect the age at which significant niche differentia-
tion occurs within this forest type. The results suggest that forest managers could 
enhance biomass production by increasing tree size diversity in the boreal forest of 
Alaska if biomass production becomes a primary management goal.

Surprisingly, the AVHRR band 6 (NDVI) data (Gmax and Gmean variables) 
were not as important at predicting biomass within this study as some of the 
other vegetation, climatic, anthropogenic, and topographic variables (see 
Table 7.2). While reflectance variables have previously been shown to be good 
predictors of biomass (Baccini et al. 2004; Baccini et al. 2008; Blackard et al. 

Fig. 7.6 A map of the aboveground forest woody biomass (Mg/ha dry weight) derived from the 
random forests analysis model using the CAFI and WAIN forest inventory plot biomass values as 
a function of environmental predictors (Table 7.2)
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2008; Powell et al. 2010) they were overshadowed in this study. For example, the 
previously derived categorical variable of vegetation proved to outperform both 
measures of NDVI at predicting biomass, which was likely due to it being derived 
from a combination of NDVI and other topographical variables.

The Interior Forest of Alaska is characterized by a wide range of elevation and 
climate zones and these variables exert important controls on the spatial distribution 
of aboveground biomass. For example, average June precipitation was important for 
separating forests into larger and smaller timber volumes (Figs. 7.4 and 7.5) how-
ever, contrary to our expectations, higher biomass values were observed at lower 
precipitation amounts, perhaps because low June precipitation coincided with 
warmer temperatures in more continental regions or perhaps, spring snowmelt 
resulting in soil moisture recharge may have been sufficient to handle water demands 
in a warmer June with little precipitation present.

The presence of broadleaf trees mixed with conifers created particular difficul-
ties, and the model tended to underestimate biomass in areas characterized by 
broadleaf and conifer mixtures. In this context, the use of 1 km2 spatial resolution 
was a key challenge for this work because virtually all grid cells included multiple 
forest stands and mixtures of forests and shrubs. Future efforts using somewhat finer 
(e.g., 300 m) resolution data should help to resolve this problem.

The balance of the variable variance distribution also needs to be considered in 
RF modeling. The RF model in this study showed an overall trend of underestima-
tion above the mean and overestimation below the mean because the diversity mea-
sures were either underestimated or overestimated. In RF regression modeling, the 
splitting and averaging algorithm used may have resulted in underestimation of the 
responses in the range where data points are scarce at the extreme ends (see Figs. 7.2, 
7.3). Although a sufficient sample size can minimize this problem, an RF model’s 
predictive power can be compromised. The phenomenon of over and under predic-
tion may also be due to the result of the predictions being based on the average 
values within the terminal nodes within tree-based models which occurs when the 
splitting procedure stops (Breiman 2001), or the learning rate of the random forests 
algorithm was too quick (Friedman 2001). Regardless of the reason, a schema to 
increase the size of a training dataset with balanced predictor variance distributions 
is likely to help minimize this issue for future modeling efforts.

Assessment of the spatial variation of forest biomass across landscapes is chal-
lenging but vital in order to improve regional-scale assessments. However, due to 
the presence of autocorrelated environmental variables at multiple spatial scales, 
largely due to community processes (Legendre 1993); our ability to assess their 
spatial variation likely depends upon the spatial arrangement of our permanent sam-
ple plots (Lamsal et  al. 2012). Across the heterogeneous landscapes of boreal 
Alaska, we had a dense but localized sampling effort that made it possible to detect 
localized patterns of biomass but our predictions for more distant locations is based 
strictly on correlation. Therefore, landscape- to regional-scale models of forest bio-
mass distribution within the heterogeneous boreal forest of Alaska could benefit 
with a wider geographic array of permanent sample plots to assess this vital resource.
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Predictive mapping is a powerful tool for landscape level planning and analysis 
(Franklin 1995). Consequently, landscape and regional scale predictive models 
often strike a balance between sample size and prediction performance. For exam-
ple, RF models developed with small training sets are prone to low prediction per-
formance (Breiman 2001). However, large sample sizes can be cost prohibitive 
particularly in remote locations such as Alaska. This modeling effort will lead to 
improved understanding of the current patterns of biomass and may assist land man-
agement agencies in their decision making processes in regards to sustainable for-
estry activities (Ogden and Innes 2009). Our proposed predictive mapping of above 
ground woody mapping at the 1-km2 extent would best be used for broad landscape 
level planning, and it can be applied in an Adaptive Management framework. We 
believe that this model could be improved by adding more ground sampled data, 
open access data sources, a full emphasize on GIS data predictions, and a stronger 
collaboration with forest practitioners for policy improvements.
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“It is a capital mistake to theorize before one has data. Insensibly, one 
begins to twist the facts to suit theories, instead of theories to suit facts.”  
 – Sherlock Holmes

Part III
Data Exploration and Hypothesis 

Generation with Machine Learning
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Chapter 8
‘Batteries’ in Machine Learning: A First 
Experimental Assessment of Inference 
for Siberian Crane Breeding Grounds 
in the Russian High Arctic Based on ‘Shaving’ 
74 Predictors

Falk Huettmann, Chunrong Mi, and Yumin Guo

8.1  Introduction

The Siberian crane (Leucogeranus leucogeranus, taxonomic serial number TSN 
176185) is an elusive species of global conservation concern listed as critically 
endangered since 2000 (BirdLife International 2001). It is known to breed in a dis-
persed fashion in the Russian high arctic and it is found in very low numbers in Asia 
during winter. There are appr. three populations in Asia. The Western/Central Flyway 
population is divided into Central Asian and Western Asian flocks. The Central Asian 
flock breeds on the basin of the Kunovat river, the north of West Siberia, Russia 
(Sorokin and Kotyukov 1987), and winters at the Keoladeo National Park, India. The 
Western Asian flock breeds in the basin of Konda and Alymka rivers, the centre of 
West Siberia, Russia (Sorokin and Markin 1996; Kanai et al. 2002), and winters in 
Fereydoonkenar in Iran. For more detail please see http://www.iucnredlist.org/
details/22692053/0. The populations have distinct flyways (Kanai et al. 2002).

Overall population trends seem to be rather traumatic. The western population 
has experienced huge declines and is considered a remnant population, likely related 
to habitat loss and other disturbances including some political chaos in its flyway; 
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the eastern population is probably the biggest one right now but has been impacted 
and is directly confronted by hydro dam development, air pollution, hunting and a 
myriad of other impacts (e.g. Wu et  al. 2009; Prentice 2010). Climate change 
impacts are an increasing concern with melting permafrost causing vastly changed 
breeding grounds including expansion of lakes and loss of islands and low-lying 
shorelines (Van Impe 2013). Conservation of major wetlands to protect habitat 
along migration routes and wintering habitat is reported to be critical to address 
population decline (Birdlife International 2001). Rivers and lake systems such as 
Poyang Lake, China, play a big role for this population (Wu et al. 2009) since the 
bird relies primarily on wetlands and this region is probably the biggest wintering 
area for this species with app. 3,750 individuals (Yu et al. 2008).

Due to its elegant appearance (Fig. 8.1) this species has reached a certain mystic 
celebrity status and it is considered sacred by many indigenous people (Matthiessen 
2001). And since 2002, Crane Day Festivals have taken place across its range 
including West Siberia and Kazakhstan to promote appreciation and conservation 
(Moore and Ilyashenko 2009). The conservation of this species is covered in national 
laws in Russia, Iran, Mongolia and China due to the importance of its migration, 
and it is also featured in the Agreement on the Conservation of African-Eurasian 
Migratory Waterbirds (AEWA; www.unep-aewa.org/), as well as in the Bonn 
Convention (Convention of Migratory Species CMS; http://www.cms.int/).The 
Siberian crane also has a specific Memorandum of Understanding concerning 
‘Conservation Measures for the Siberian Crane’ (https://www.ecolex.org/details/
treaty/memorandum-of-understanding-concerning-conservation-measures-for-the-
siberian-crane-tre-001318/). Indirectly this species is further covered by the 
RAMSAR convention (www.ramsar.org/). In reality though, and despite all those 
efforts, the numbers are widely declining and the conservation for this species is 
quite ineffective with funding assigned to this species being insufficient, conviction 
rates for harming the birds are difficult to track, and even exact population numbers 
and species distributions are not well known. In the Russian High Arctic for instance, 

Fig. 8.1 Photo of the 
Siberian Crane, one of the 
most elegant birds in the 
world…
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the Siberian Crane is rarely considered in coastal and associated marine conservation 
efforts and for protected areas, e.g. Klein and Magomedova 2003; Spiridonov et al. 
2011 for overview). There is currently no good agreement for the nesting range of 
this species but predictive mapping using machine learning can provide great prog-
ress as the most suitable approach (see Ohse et al. 2009; Mi et al. 2017 and Han 
et al. 2017 for examples).

While machine learning cannot address management and legal questions directly, 
it can help to progress specific data analysis issues (Hastie et al. 2009; Mueller and 
Massaron 2016), and specifically habitat associations. Many examples for the ben-
eficial use of such machine learning analysis exist already (e.g. Fielding 1999; 
Hochachka et al. 2007; Kandel et al. 2015; and specifically for cranes Cai et al. 
2014; Jiao et al. 2014; Mi et al. 2017). With a generic failure of conservation (Mace 
et  al. 2010 for United Nation assessment) and its underlying traditional analysis 
methods and parsimony (e.g. Guthery et al. 2005; Elith et al. 2006; Arnold 2010), 
here we investigated an advanced application and implementation of machine learn-
ing, ‘batteries’ (https://www.salford-systems.com/videos/tutorials/tips-and-tricks/
data-mining-automation-with-spm-batteries) for conservation progress. ‘Batteries’ 
means in this context a collective term used for a set of experiments on how to look 
and mine-through predictors; here we use tree-based algorithms and it is imple-
mented in an automated fashion in Salford System’s Salford Predictive Modeler 
(SPM) to run by ‘mouse-click’. There are over 28 different styles of batteries in 
SPM, and for this study we choose ‘shaving’ for our inquiry (https://www.salford-
systems.com/videos/tutorials/tips-and-tricks/improve-model-quality-with-battery-
shave). This battery iteratively ‘shaves’ the predictors by dropping the least relevant 
predictor and re-running the model, thereby allowing for an innovative way to 
assess unimportant and important predictors for inference. It follows a data mining 
concept but has its strength in the use of boosting as its underlying analysis engine. 
Here such type of analysis is presented for the first time.

8.2  Methods

8.2.1  Presence and Absence Points for Siberian Crane

We used 70 confirmed presence locations of Siberian crane in the nesting area. The 
data source was compiled by Chunrong Mi and was provided by a BirdLife 
International (2001) publication. For a spatially comprehensive characterization of 
environments in the study area (i.e., background sampling), we created random 
pseudo-absence locations (Barbet-Massin et al. 2012) using the random sampling 
tool in ArcGIS (ESRI Inc) resulting in 5046 data points (Fig. 8.2).

8 ‘Batteries’ in Machine Learning: A First Experimental Assessment of Inference…
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8.2.2  GIS Predictors

To test for habitat associations for this species in summer, we used 74 environmen-
tal predictor layers including spatial patterns in climate (12 long term monthly aver-
ages as well as 12 minimum and 12 maximum predictors), 19 bioclim predictors, 
terrain topography, land cover, human infrastructure and proximity to critical habi-
tat such as water bodies and coastlines. Latitude and longitude was used for GIS 
plotting purposes. This predictor set is meant to test for, and describe, the ecological 
niche of Siberian cranes in summer. Data sources are following Herrick et al. (2013) 
and were further extended by Chunrong Mi. Details about these data are presented 
and shown in Appendix 1.

8.2.3  ‘Battery’ Runs in Salford System’s Predictive  
Modeler (SPM7)

Using the assembled data cube (a set of cleaned columns and rows described above) 
we fitted a regular tree-based (Breiman et al. 1984) stochastic gradient boosting, 
TreeNet model in Salford Predictive Modeler (version 7; SPM7). TreeNet is a com-
mercial and highly performing version of stochastic boosting, based on underlying 

Fig. 8.2 Map of the wider study area and model area with presence (pink) and background sam-
ples (back dots)

F. Huettmann et al.
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classification and regression trees (Friedman 2001, 2002). It is freely available to 
the global public on a trial basis. We used the following model settings: 5 cross-
validations (CV), balanced samples, logistic binary, 40 trees (because from pre-runs 
we found the optimum is approximately 30 trees). This resulted in a regular TreeNet 
output with an optimum found (details shown in Appendix 2).

We then used the battery setting and ran ‘SHAVING’ (bottom). This allows us 
from the 74 environmental predictors to drop the lowest predictor each time, and 
then rank predictors for impact and relevance on the model performance metric 
(ROC/AUC based on CV (Fielding and Bell 1997). We could describe models and 
predictors and rank them. In addition, we displayed them in ArcGIS and were able 
to visually assess them too. Table 8.1 shows the battery runs that were carried out 
and investigated.

The interactions were assessed as 2-way interactions in SPM7 using TreeNet. 
Table 8.2 shows the top 20 whole-variable interactions. From this table we decided 
to use the first three predictors and removed them from the model run (called 
‘Leaving out top 3 interacting predictors’ in Table 8.1).

Table 8.1 Overview and justification of 10 battery runs for Siberian crane data using 74 
environmental predictors

Model# Model name Battery details Justification

1 ‘Kitchen Sink’ Use of all predictors A usual approach in machine learning
2 TMax12 ‘Best’ predictor A classic parsimony univariate approach
3 BIO14 Second best predictor Widely used in science
4 TMax12BIO14 Top and second 

predictor
A parsimonious model

5 Top5 First 5 predictors Already a more holistic approach, more 
multivariate

6 Top10 First 10 predictors Rarely applied but truly multivariate
7 Top29 First 29 predictors Truly multivariate
8 Top35 First 35 predictors Truly more multivariate
9 Bottom 44 44 lowest predictors 

(ignoring the top 35 
predictors)

It tests one of ‘the worst’ models. If the 
predictor rankings are meaningful the 
lowest predictors should create the 
worse model outcome

10 Leaving out top 3 
interacting 
predictors

‘Kitchen sink’ model 
but leaving out top 3 
interacting predictors
(Altitude, slope, 
distance to lake)

It’s an aim of most traditional models 
and statisticians to have ‘independent’ 
data and predictors (parametric). Here 
we can test it

8 ‘Batteries’ in Machine Learning: A First Experimental Assessment of Inference…
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8.3  Results

8.3.1  Predictive Performance Metrics

The results indicate that the highest AUCs are achieved for models with many 
complex predictors (Table 8.3, Appendix 1). Except for univariate solutions, judged 
by a pure numerical aspect, most models perform really well regardless. This is a 
pretty interesting aspect because it makes the notion of model selection and predic-
tor inference complex when using ‘just’ AUC. More insightful than just the ‘pure 
numbers’ is to look at the spatial predictions in the real world (Hilborn and Mangel 
1997).

A summary of the Relative Index of Occurrence (RIOs) for each of the 10 mod-
els is shown in Fig. 8.3. It shows that the RIOs have a range of performances, and 
that most of the study area is probably driven by low RIOs, absence, predictions.

8.3.2  Visual Assessment of Prediction Maps

All of the maps are shown in Appendix 4 and summarized in Table 8.4. Due to lack 
of more data points freely available, this table lacks alternative/independent testing 
data for map accuracy assessment, but already when compared with known range 
maps our visual expert assessment shows, again, that parsimonious models perform 
more poorly than the least constrained approach. The maps are far more spatially 
explicit than the pure numeric interpretation of performance metrics which subsume 
much important information. This approach allows to simply identify the ‘best’ 
model as the ‘kitchen sink model’, all based on optimizations of the machine 

Table 8.2 Overview of the 
top ten 2-way interactions for 
the analysis in the dataset

Predictor Interaction

Slope 50.3
Altitude 30.9
Distance to 
lake

21.8

Bio4 18.3
Bio2 15.8
Bio1 15.5
Bio14 14.0
Tmen2 13.3
Bio12 13.2
Tmin1 12.3

F. Huettmann et al.
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learning algorithm in SPM. Interactions do not really make a big difference nor do 
the drop of a few certain predictors. When based on powerful optimization algo-
rithms, having a large data cube, overall, seems to be a guarantee for a decent out-
come. Whereas, the actual composition of the data cube is less relevant (e.g. compare 
the closeness of model Top35 vs Bottom 44, and then compared to the Kitchen Sink 
Model overall).

Table 8.3 Predictive performance metrics for the individual battery models

Model name
AUC (from the 
testing data cube) Interpretation

Kitchen sink model 96 The most multivariate non-parsimonious 
model predicts ‘best’

TMax12 84 Single top predictor results into low AUC
BIO14 90 Single top predictor results into low AUC
TMax12BIO14 94 Top 2 predictors perform lower
Top5 95 Top 5 predictors perform high
Top10 95 Top 10 predictors perform high
Top29 95 Top 29 predictors perform high
Top35 96 Top 35 predictors also perform ‘best’
Bottom 44 95 Bottom 44 predictors perform very high
Leaving out top 3 interacting 
predictors

96 Multivariate set of predictors performs 
very high

0.
8

0.
6

0.
4

0.
2

0.
0

1 2 3 4 5 6 7 8 9 10

Fig. 8.3 Predictive 
performance of the 10 
model runs (x axis) and 
tested, showing the 
distribution of the Relative 
Index of Occurrence (RIO) 
(y axis)
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8.4  Discussion

Our study set out to explain the ecological niche of Siberian crane in summer. It is 
based on a unique set of 74 environmental predictors which is rare to have available 
and to see employed in wildlife and ecological niche studies (Mi et al. 2017 for 
applications; see Herrick et  al. 2013 for 40 layers, and Sriram and Huettmann 
unpublished using 104 GIS layers). Further, this is the first large-scale predictive 
model of Siberian crane distributions in the nesting grounds, as well as for the 
Siberian crane overall, and specifically for the high Arctic. The use of ‘batteries’ as 
a machine learning method is also a novum for this subject and for conservation 
management overall.

We show that the model with the top univariate predictor (Fig. 8.4) widely over-
estimates the range, beyond known presence locations and over-reaching pseudo- 
absences, when compared with the best model fit with the data and as expressed by 
the performance metric. Our results are in good agreement with studies that show 
parsimony as a failure for inference (e.g. Guthery et  al. 2005; Elith et  al. 2006; 
Arnold 2010; Mi et al. 2017).

The best possible map shows the birds to be mostly coastal, with a few locations 
along the rivers. The map shows a rather small available nesting area by now, and 
which is in support of indicating a conservation problem for this species; it is not a 
wide-spread species in the high arctic. Whether this is a new situation or a response 
to dramatic population declines needs more study.

We show that the so-called ‘kitchen sink model’ (all 74 predictors) in the TreeNet 
algorithm performs best for the Siberian crane when using a large number of envi-
ronmental predictors. We believe that this presents a major result and progress for 
“model selection” as a scientific scheme (Chamberlin 1890; Akaike 1974) which is: 

Table 8.4 Visual assessment and rank of predictive performance metrics for the individual battery 
models

Model name Rank Justification and meaning

Kitchen sink model 1 All presences well fit
TMax12 9 Large overestimation of presences
BIO14 10 Large overestimation of presences, misses some 

presences
TMax12BIO14 8 Overpredicts and mis-predicts absences
Top5 7 Presences predicted very tight, some islands likely 

overpredicted
Top10 5 Presences predicted very tight
Top29 2 Decent presence regions
Top35 4 Some slight overpredictions
Bottom 44 6 Presence points well included, but some wider 

overprediction areas
Leaving out top 3 interacting 
predictors

3 A few overpredictions

F. Huettmann et al.
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TreeNet (machine learning, boosting) performs in its default settings and with 
‘maximum numbers’ of predictors as one of the best solutions for data mining and 
predictions (e.g. Elith et al. 2006). However, for learning about model structure and 
how individual predictors perform, data structure, batteries prove rather insightful 
and for learning about the data cube. That way we were able to locate additional 
predictor and predictor arrangements to the usual set and learn about their contribu-
tions. It made the modeling more informative and robust, and consequently the 
inference became better for conservation. From our findings one can easily assess 
and design protected area locations for this species in the breeding grounds.

One of the biggest surprises of this study probably was that 44 of the least rele-
vant predictors perform almost as well as the top predictors. This is called predictor 
swapping and has major implications. This puts many questions towards traditional 
model selection (Burnham and Anderson 2002) as well as model selection, the sup-
posed meaning of univariate predictor selections, predictor ranking, identification 
and use when using ‘the best’ predictor and such narrow interpretations. Instead of 
individually ranked predictors and parsimonious ones (as promoted by Burnham 
and Anderson 2002), we argue that a set of spatial predictors ‘does the job’ pretty 
well, if not equally well and when predictions and such inference are the goal (as 
per Breiman 2001). In other words, model fitting cannot achieve well (as stated by 
McArdle 1988 and others) and instead the multivariate perspective is much more 
powerful, informative and less biased than the univariate and groomed pre-made 
selection of predictors (as promoted in Manly et  al. 2002 and Silvy 2012 for 
instance; but compare with McGarical et al. 2000).

When it comes to predictions, and inference from those settings (as per Breiman 
2001), batteries show an improvement and increased insight for non-parsimonious 
solutions (see Fig. 8.4).

Fig. 8.4 Heatmap of the ‘best possible’ Siberian crane prediction, based on the ‘kitchen sink 
model’ of 74 environmental predictors using TreeNet. Red shows the highest predicted Relative 
Index of Occurrence (RIO), pink dots show compiled presence locations. For details see Methods
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Despite their great promise and potential for ecological insight, battery applica-
tions in wildlife conservation are conspicuous by their absence. Here we just used 
‘shaving’ from the wide list of batteries available (Fig. 8.5). Table 8.5 shows 28 
types of batteries that can be run in SPM, for instance.

We think that batteries provide a powerful extension of traditional machine 
learning methods. They provide more insight into the data cube and model selected. 
As the reader will almost not be able to find relevant wildlife conservation publica-
tions on batteries (as listed in Table 8.4) they are currently almost unused for wild-
life conservation and climate applications. More study is recommended using 
batteries and their variations (Table 8.4). Arguably, this will result in further assess-
ment and decay of the AIC argument and of parsimony overall (Guthery et al. 2005; 
Arnold 2010), instead favoring models that address interactions and better predic-
tions (all fully in line with Breiman 2001).

We suggest to use batteries as an informative and powerful exploratory tool to 
learn more about the underlying model structure and predictors for inference. Here, 
it has provided powerful inference on nesting Siberian cranes in the Russian high 
arctic. This species is widely overlooked for international conservation research and 
can benefit greatly from more large-scale studies for advanced conservation 
management.

Fig. 8.5 Heatmap of the ‘most parsimonious’ Siberian crane prediction, based on the predictor 
‘TMAx12’ using TreeNet. A comparison with Fig. 8.4 shows its shortfalls and overprediction. Red 
shows the highest predicted Relative Index of Occurrence (RIO), pink dots show compiled pres-
ence locations. For details see Methods

F. Huettmann et al.
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Table 8.5 Overview of 28 batteries available in SPM; many of them await their testing for 
wildlife   conservation

Battery name Explanation (taken from SPM7) Comment

AddedVar Treenet added Var battery
Additive Moves through the list of predictors, 

selecting one predictor at a time
Additive models based on machine 
learning

Bootstrap Repeat with new learn sample (draw) An additional bootstrap to boosting 
and bagging (which have versions of 
bootstrapping implemented)

CV Number of folds in cross-validation Traditional cross-validation
CVBIN Creates a number of cross-validation, 

with binning defined by the several 
discrete variables

A more specific CV

CVR Repeat CV with different random seeds A further specific CV
Datashift Roll learn and test samples Rolls through data
Draw Repeat with new learn sample draw 

(replacement)
Another version of bootstrapping

Flip Reverse roles of learn and test samples An innovative version of re-sampling
Keep Select predictors at random, run and 

repeat, may include some required 
predictors

Random draw of predictors to 
include

Learnrate
(for Treenet 
only)

Learnrate Learnrate can be

LOVO Drop one predictor and repeat for all in 
keep list

‘Mills’ through the entire dataset in a 
detailed fashion, one-by-one

MCT Model overfitting test via Monte Carlo 
simulation

An often expressed concern for 
machine learning, but rarely a 
problem for bagging, for instance

Minchild Size of smallest allowable terminal node This is an essential and sensitive test 
for most tree-based models

Nodes Maximum number of terminable nodes 
allowed

This allows to test for node depth, 
and indirectly, for interactions

Oneoff One-predictor model for each predictor 
in the keep list

Specified univariate model predictor 
test run

Partition Repeat with new learn, test and holdout 
samples drawn from the ‘main”data

An innovative approach to 
subsampling

Pboot Parametric bootstrap models Follows parametric assumptions in 
subsampling

Sample Measure effect of learn sample size on 
error rate

Assesses subsampling effect

Seed Randomforest seed This could matter for bagging to find 
‘the best’ model

Shaving Drop least important predictor, re-run 
and repeat

A powerful approach to assess 
unimportant and important predictors 
in a multivariate approach

Stepwise Builds model by forward-stepwise 
selection of predictors

Classic forward step-wise approach 
to modeling

(continued)
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 Appendix 1: Details of 74 GIS Environmental layers Used 
in the Model Prediction (+ 3 Additional Internal Columns)

#

Name and 
abbreviation of GIS 
layer Source Comment

1–12 Monthly mean 
temperature
tmen_1–12

Worldclim.org These are standard layers used for GIS modeling

13–
24

Monthly minimum 
temperature
tmin_1–12

Worldclim.org (see above)

25–
36

Monthly maximum 
temperature
tmax 1–12

Worldclim.org (see above)

37–
48

Monthly 
precipitation
prec_1–12

Worldclim.org (see above)

49–
67

Bioclim
bio_1–19

worldclim.org/
bioclim

(see above)

68 Altitude Worldclim.org (see above)
69 Aspect Worldclim.org (see above)
70 Slope Worldclim.org (see above)

Table 8.5 (continued)

Battery name Explanation (taken from SPM7) Comment

Strata Generates a series of models for each 
level of the strata variable and overall 
model

Swapping Replace one of the predictors in the 
model from the list of replacement 
predictors

An eye-opening approach to assess 
predictors

Target Make each variable in keep list target A very innovative approach to 
response and predictor assessment

Tnreg TreeNet regression
Tnsubsample Varies the subsampling parameters Allows for some sensitivity tests in 

boosting
Xony Produces a series of models in which 

each predictor serves as the target, and 
the target serves as the sole predictor

Another innovative approach to 
response and predictor assessment

F. Huettmann et al.

http://worldclim.org
http://worldclim.org
http://worldclim.org
http://worldclim.org
http://worldclim.org/bioclim
http://worldclim.org/bioclim
http://worldclim.org
http://worldclim.org
http://worldclim.org


175

#

Name and 
abbreviation of GIS 
layer Source Comment

71 Landcover
Landcv

Herrick et al. 
(2013)

Several of global landcover layers exist

72 Human 
infrastructure index
Hii

Herrick et al. 
(2013)

Human footprint. Several human footprint layers

73 Distance to 
waterbody/lake
Dislke

Mi unpublished While essential for cranes, this layer is unlikely 
to be very accurate due to the huge and 
ephemeral wetlands worldwide

74 Distance to coastline
Discsln

Mi unpublished Relies on the coastline map resolution

75 x coordinate ArcGIS Not often used in most GIS model work but 
important for geo-referencing

76 y coordinate ArcGIS Not often used in most GIS model work but 
important for geo-referencing

77 Row index
FID

ArcGIS Not often used in most GIS model work but 
important for row identification

 Appendix 2

 List of Top 20 Predictors, as identified by TreeNet ranking

Predictor Relative Importance

Bio12 100.0
Bio14 71.2
Bio17 44.2
TMEN9 40.1
Prec12 37.6
Distance to lake 35.1
TMAX12 29.8
Altitude 27.3
Slope 25.9
Tmin1 23.8
Bio1 23.0
Bio19 20.4
Tmen2 19.2
Bio3 18.9
Tmax3 17.9
Bio6 16.3
Tmen7 15.9
Prec6 14.3
Prec7 13.9
Tmin6 12.9

8 ‘Batteries’ in Machine Learning: A First Experimental Assessment of Inference…
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 Appendix 3

 Prediction Model Details for the Best Performing Model  
(the ‘Kitchen sink model’ with 74 predictors)

Siberian crane with a battery run on TreeNet (SPM7) balanced
The kitchensink model, all 74 environmental predictors
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Frequency of Prediction Relative Index of Ocurrence (RIO 0-1) for known  
presence (1)
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 Appendix 4

(For Prediction map 1 for the ‘Kitchen sink model’ see Fig. 8.4 in the text; for map 
legends please see this figure; same for all other appendix maps)

(For Prediction map 2 for the ‘TMax12 model’ see Fig. 8.5 in the text)
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 Prediction Map 3 for the ‘BIO14 model’

 

 Prediction Map 4 for the ‘TMax12BIO14 model’
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 Prediction Map 5 for the ‘Top5 model’

 

 Prediction Map 6 for the ‘Top10 model’
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 Prediction Map 7 for the ‘Top29 model’

 

 Prediction Map 8 for the ‘Top35 model’
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 Prediction Map 9 for the ‘Bottom 44 model’

 

 Prediction map 10 for the ‘Leaving out top 3 interacting 
predictors model’
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Chapter 9
Landscape Applications of Machine 
Learning: Comparing Random Forests 
and Logistic Regression in Multi-Scale 
Optimized Predictive Modeling of American 
Marten Occurrence in Northern Idaho, USA

Samuel A. Cushman and Tzeidle N. Wasserman

9.1  Introduction

The American marten (martes americana) is a species that is dependent on old coni-
fer forest at middle to high elevations and is highly sensitive to habitat loss and 
fragmentation in a scale dependent fashion (e.g., Hargis et  al. 1999; Wasserman 
et al. 2012a, b), and forest management is often influenced by considerations of how 
management will affect extent and pattern of marten habitat. Due to their depen-
dence on extensive, unfragmented forest landscapes and microhabitat structures 
associated with late successional forest (Buskirk and Ruggiero 1994; Hargis et al. 
1999), American marten are sensitive to fragmentation of late seral forest habitats, 
such as that resulting from timber harvest and associated extraction routes and road 
building (e.g., Cushman et al. 2011). Previous studies have consistently shown that 
American marten habitat requirements include forests with high canopy cover 
(Hargis and McCullough 1984; Wynne and Sherburne 1984), abundant near ground 
structure (Chapin et  al. 1998; Godbout and Ouellet 2008), high prey densities 
(Fuller and Harrison 2005), and sufficient snow depth to provide subnivean spaces 
during winter (Wilbert et al. 2000). These habitats are thought to provide opportuni-
ties for foraging, resting, denning, thermoregulation, and avoiding predation. 
Perturbations, such as timber harvest, remove canopy cover, reduce coarse woody 
debris, change mesic sites into xeric sites, remove riparian dispersal zones, and 
change prey communities (Buskirk and Ruggiero 1994). American marten avoid 
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areas with even relatively low levels of forest fragmentation and rarely use sites 
where more than 25% of forest cover has been removed (Hargis et al. 1999). Highly 
contrasting edge habitats, such as borders between late successional forest and har-
vested patches, and areas of open canopy are strongly avoided (Buskirk and 
Ruggiero 1994; Hargis et al. 1999; Cushman et al. 2011).

Recently, Wasserman et al. (2012a, b) predicted and mapped habitat suitability 
for American marten in northern Idaho, U.S.A. They used multiple scale habitat 
suitability modeling with logistic regression on a set of marten presence-absence 
locations collected non-invasively using genetic (hair) samples across a 3884 square 
kilometer region to quantify the relative importance of topographical, vegetation, 
and landscape metric variables in predicting marten occurrence. The Wasserman 
et al. (2012a, b) model identified strong and consistent relationships with various 
measures of landscape fragmentation: marten occurrence was positively associated 
with landscapes that contained high canopy closure, low density of all roads (includ-
ing small forest roads), few past clear-cuts, and extensive late seral forest. Several 
of these variables had maximum influence on marten probability of occurrence at 
fairly broad spatial scales. At scales approximately the size of marten home ranges 
(500–1000 m radius; Tomson et  al. 1999) within our study area, the Wasserman 
et al. (2012a, b) model showed that American marten select landscapes with high 
average canopy closure, low road density, and low forest fragmentation. Within 
these low-fragmentation landscapes, the model showed marten select foraging habi-
tat at a fine scale (90 m) within middle-elevation, late-seral, mesic forests. This is 
consistent with the results of previous studies, which have shown high sensitivity to 
landscape fragmentation and perforation by non-stocked clear-cuts (Hargis et  al. 
1999; Cushman et al. 2011), and strong preference of American marten in northern 
Idaho for mesic riparian forest conditions in unfragmented watersheds (Tomson 
1999; Shirk et al. 2014).

For a decade, logistic regression has been the dominant method in multi-scale 
habitat modeling (Hegel et al. 2010; McGarigal et al. 2016). Random forests (RF; 
Breiman 2001a, b) is increasingly used in a range of applications including digital 
soil mapping (Grimm et al. 2008), forest biomass mapping (Baccini et al. 2012), 
species distribution modeling (Evans and Cushman 2009), land cover change pre-
diction (Cushman et al. 2017) and others given its often superior performance com-
pared to other methods (Evans et al. 2011; Mi et al. 2017). However, there have been 
relatively few formal comparisons of the performance of multi-scale modeling 
between logistic regression and random forests. Recently, Cushman et al. (2017) 
compared the performance of logistic regression with random forests in a multi-
scale optimized predictive modeling study of deforestation risk across Borneo. As 
found in virtually all of such investigations, the authors found that random forests 
substantially outperformed logistic regression. Our interest in this study is to conduct 
a similar comparison of logistic regression and random forests in multi-scale opti-
mized predictive model of occurrence of a forest-dependent mammal species, the 
American marten (Martes americana) in northern Idaho USA.

The main purpose of this chapter is to compare the predictive power and the 
ecological interpretation of the Wasserman et al. (2012a, b) logistic regression model 
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with a model produced on the same data using the same multi-scale optimization 
approach, but using random forests instead of logistic regression. Based on past 
work showing that random forests often outperforms other predictive modeling 
approaches (e.g. Evans et  al. 2011; Cushman et  al. 2017), we predicted that the 
random forests model would outperform the logistic regression model based on 
AUC (area under the receiver operator curve). Also, previous work has shown that 
marten habitat selection is highly scale dependent (e.g., Hargis et  al. 1999; 
Wasserman et al. 2012a, b), and a recent review has demonstrated that multi-scale 
optimization is important for habitat modeling in general (McGarigal et al. 2016). 
Accordingly, an additional goal of this chapter is to see if the inferences about what 
variables are important and at what scales they are operative differ between models 
developed with random forests and GLM logistic regression.

9.2  Methods

9.2.1  Study Area

The study area is a 3884 km2 section of the Selkirk, Purcell, and Cabinet Mountains, 
encompassing the Bonners Ferry and Priest River Ranger Districts of the Idaho 
Panhandle National Forest (2282 km2) and adjacent non National Forest System 
lands, including private land (986 km2), State (508 km2), tribal- and other federally 
managed land (Fig. 9.1). The topography is mountainous, with steep ridges, narrow 

Fig. 9.1 Study area orientation map. Idaho Panhandle National Forest lands are cross-hatched
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valleys, and many cliffs and cirques at the highest elevations. Elevation ranges from 
approximately 700 m to 2400 m above sea level. The climate is characterized by 
cold, moist winters and dry summers. The average daily maximum temperature at 
Bonners Ferry, the largest town in the study area, in the coldest month (January) is 
0.2 °C, while that of the warmest month (July) is 27.8 °C. Average precipitation in 
the wettest month (December) amounts to 7.84 cm, while that of the driest month 
(July) is 2.33 cm, with an average annual total of 56.4 cm.

The area is heavily forested, with subalpine fir (Abies lasiocarpa) and Engelmann 
Spruce (Picea engelmannii) co-dominant above 1300 m, and a diverse mixed forest 
of Douglas-fir (Pseudotsuga menziesii), lodgepole pine (Pinus contorta), ponderosa 
pine (Pinus ponderosa), western white pine (Pinus monticola), grand fir (Abies 
grandis), western hemlock (Tsuga heterophylla), western red cedar (Thjua plicata), 
western larch (Larix occidentalis), paper birch (Betula papyrifera), quaking aspen 
(Populus tremuloides), and black cottonwood (Populus trichocarpa) dominating 
below 1300 m.

9.2.2  Occurrence Data and Logistic Regression Model

We decided to utilize a multi-scale habitat suitability model produced by (Wasserman 
et al. 2012a, b), who used multi-scale logistic regression modeling to predict habitat 
suitability from a presence/absence dataset collected non-invasively through hair 
snaring (e.g., Wasserman et al. 2010). To obtain data on American marten presence, 
Wasserman et al. (2010) deployed hair snare stations at 361 locations well distrib-
uted across a representative sample of topographical and ecological gradients over 
three winter seasons (2005, 2006, and 2007; 1 survey per site). Recently, Robinson 
et al. (2017) showed that this kind of non-invasive genetic sampling is consistent 
and has high success for species and individual identification across seasons and 
weather patterns. Genetic analysis confirmed the detection of American marten at 
159 individual hair snare stations. (Wasserman et al. 2012a, b) selected variables a 
priori assumed to be related to American marten occurrence based on previous 
research (Buskirk and Ruggiero 1994; Hargis et al. 1999; Tomson 1999), including 
elevation, percent canopy closure, road density, patch density, percentage of the 
local landscape surrounding survey sites occupied by late seral forests, percentage 
of the landscape occupied by non-stocked clear-cuts, and probability of occurrence 
of each major tree species (western red cedar and six other species) in each cell 
across the landscape.

The first step undertaken by (Wasserman et al. 2012a, b) was to use bivariate 
scaling (Thompson and McGarigal 2002; Grand and others 2004) to identify the 
scale at which each of these independent variables was most strongly related to 
American marten occurrence. Given that environmental factors may be related to 
deforestation at a range of spatial scales (Wiens 1989), and given the critical impor-
tance of multi-scale optimization to correct inferences about habitat selection 
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(McGarigal et  al. 2016), Wasserman et  al. (2012a, b) calculated all predictor 
 variables at 12 spatial extents including focal radii of 90 to 990 m at 90 m incre-
ments. This resulted in reduction of the model to seven variables significantly 
related to marten occurrence (Table 9.1). Wasserman et  al. (2012a, b) then used 
logistic regression to test all combinations of these predictor variables, without 
interactions, and used model averaging, based on AIC weights, to produce param-
eter estimates for a final model predicting probability of marten occurrence. This 
model was then used to evaluate the impacts of past timber harvest and road build-
ing on the extent and quality of available marten habitat.

9.2.3  Predictor Variables for Analysis

A priori, we proposed several environmental and anthropogenic variables as predic-
tors of marten occurrence. Following Wasserman et al. (2012a, b) we included road 
density and canopy closure, as well as a number of topographical and landscape 
composition and configuration metrics. Topographical variables included elevation 
and several terrain complexity measures produced using the Geomorphometry and 
Gradient Metrics Toolbox (ArcGIS 10.0; Evans et al. 2014). These included: topo-
graphical roughness, which measures the topographical complexity of the landscape 

Table 9.1 Variables included in the Wasserman et al. 2012a, b habitat model used in the current 
analyses. There were seven variables in the habitat model, related to elevation, road density, canopy 
cover, patch density in the landscape mosaic, large saw timber, non-stocked clear cuts and western 
red cedar forest types. Each of these was included in the habitat model at a particular spatial scale 
(focal extent) at which it most strongly affected probability of occurrence. These scales ranged 
from 90 m in radius (western red cedar and large saw timber) to a maximum extent of influence of 
road density at a 1980 m radius. Each of these variables had different effects on marten probability 
of occurrence. Effect size in this table records the percent change in the probability of marten 
occurrence as the associated variable changes from the 10th to the 100th percentile value in the 
dataset, holding the other variables constant at their medians. Based on this measure of effect size, 
the most important predictors, in decreasing order of importance, are western red cedar forest type, 
percent canopy cover, road density, patch density, percent of the landscape in non-stocked clear 
cuts, elevation, and finally large saw timber

Predictor variable Most significant scale (m) Effect size

Elevation 1400 19.78
Road density 1980 −53.05
Percent canopy cover 990 61.05
Patch density 990 −46.26
Percentage of the focal landscape in large 
sawtimber

90 13.21

Percentage of the landscape in non-stocked 
conditions

990 −35.99

Western red cedar 90 77.21

9 Landscape Applications of Machine Learning: Comparing Random Forest…
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within a defined focal extent (Blaszczynski 1997), relative slope position, which 
measures the relative position of the focal pixel within a defined extent on a gradient 
from valley bottom to ridge top (Evans et al. 2014), dissection index, which is the 
ratio between relative relief and to the absolute relief, curvature index, which mea-
sures the rate of change of local slope, heat load index, which predicts the total 
incident solar radiation as a function of latitude and topography, and compound 
topographical index, which models the cumulative aggregation of water flow 
through every cell in the landscape.

We also included FRAGSTATS metrics quantifying the extent and configuration 
of different land cover classes across a range of focal extents as predictor variables 
(McGarigal et al. 2012). The classes used in the analysis include: (1) large sawtim-
ber (> 24 inches DBH), (2) small sawtimber (12–24 inches DBH), (3) pole timber 
(3–12 inches DBH), (4) sapling/seedling (< 3 inches DBH), (5) non-stocked forest-
land, and (6) non-forest (Wasserman et al. 2012a, b). For each of these classes we 
used FRAGSTATS 4.0 (McGarigal et al. 2012) to calculate five class-level (area- 
weighted mean patch size, Area_AM; edge density; ED, patch density, PD; percent-
age of the landscape, PLAND; area-weighed proximity index, PROXAM), and four 
landscape-level metrics (aggregation index, AI; contrast-weighted edge density, 
CWED; edge density, ED; patch density, PD). These metrics were chosen given that 
they measure several critical attributes of habitat extent and fragmentation that have 
been shown to have important influences on habitat selection (e.g., Chambers et al. 
2016) and population connectivity (e.g., Cushman et  al. 2013). Also, following 
Wasserman et al. (2012a, b) we calculated all variables within 12 focal scales rang-
ing from 90 to 990 m radii around each sampling location to enable multi-scale 
model optimization.

9.2.4  Modeling Approaches

We used random forests machine learning and logistic regression to predict marten 
occurrence in the study landscape. We used the logistic regression model and results 
as published in Wasserman et al. (2012a, b). Random forests is a classification and 
regression tree (CART; De’ath and Fabricius 2000) - based bootstrap method that 
corrects many of the known issues in CART, such as over-fitting (Breiman 2001a, 
b; Cutler et al. 2007), multi-collinearity and variable interaction, and provides very 
well-supported predictions with large numbers of independent variables (Cutler 
et al. 2007). We used a modeling approach developed by Evans and Cushman (2009) 
to predict occurrence of marten using the random forests method (Breiman 2001a, 
b; Cutler et  al. 2007) as implemented in the package ‘randomForest’ (Liaw and 
Wiener 2002) in R (R Development Core Team 2008).

We conducted the random forests in two steps, mirroring the approach Wasserman 
et al. (2012a, b) used in the original logistic regression model. We recognize that 
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using random forests like a GLM does not unleash all its powers, but our purpose 
was to conduct a strict comparison keeping as many parameters as similar as pos-
sible to see how random forests and GLM differed in their predictions in this con-
text. First, we ran univariate models across the multiple scales to identify the scale 
at which each variable had the strongest ability to predict marten occurrence, as 
suggested by McGarigal et al. (2016) as a robust approach for multi-scale model 
optimization, and as shown to work well for random forests by Cushman et  al. 
(2017). To accomplish this, we ran a series of single random forests analyses for 
each variable across the 12 scales in each nation and used the Model Improvement 
Ratio (MIR; Murphy et al. 2010) to measure the relative predictive strength of each 
scale of the variable. The MIR calculates the permuted variable importance, repre-
sented by the mean decrease in out-of-bag error, standardized from zero to one. We 
compared the MIR scores for all scales for each variable, and retained the scale that 
had the highest MIR score for further multivariate modeling.

In the second step we used random forests to develop multivariate models predict-
ing probability of marten occurrence as a function of landscape condition across the 
suite of scale-optimized variables. To identify the most parsimonious random forests 
model we applied the Model Improvement Ratio (MIR; Murphy et  al. 2010). In 
model selection using MIR, the variables were subset using 0.10 increments of MIR 
value, with all variables above the threshold retained for each model. This subset was 
always performed on the original model’s variable importance to avoid over- fitting 
(Svetnik et al. 2004). We compared each subset model and selected the model that 
exhibited the lowest total out-of-bag error and lowest maximum within-class error.

Model predictions for the random forests model were created by using a matrix 
of the ratio of majority votes to create a probability distribution. Random forests 
makes predictions based on the plurality of votes across all bootstrap trees and not 
on a single rule set. This votes-matrix can be scaled and treated as a probability 
given the error distribution of the model (Evans and Cushman 2009; Murphy et al. 
2010). We used the function that (Evans and Cushman 2009) added to 
GridAsciiPredict (Crookston and Finley 2008) which uses the votes-probability 
function to write the probabilities to ASCII grids.

9.2.5  Model Assessment

There are a multitude of ways to assess the performance of predictions of the 
random forests and logistic regression models, and most previous studies have used 
the Kappa statistic (Cohen 1968) and similar measures of improvement of predicted 
classification compared to random assignment (e.g., based on the confusion matrix). 
However, following Ponitus and Milones (2011), we avoided the Kappa statistic 
given that it does not report a meaningful statistical measure of predictive success, 
even when corrected to address the two different aspects of prediction related to 
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predicted amount and predicted location (Pontius and Si 2014). In addition, since 
the predictions we produced using random forests and logistic regression are in the 
form of predicted probabilities, it is more meaningful to assess the continuous 
pattern or predicted probability in comparison to the actual observed changes than 
to cross-tabulate observed vs. predicted change (Pontius and Si 2014) We chose this 
approach because transforming predicted probabilities into categorical responses 
requires using a threshold cut-point or probabilistic function, which loses informa-
tion on the actual quality of the prediction (Pontius and Milones 2011; Pontius and 
Si 2014). We assessed the performance of the random forests and logistic regression 
predictions using area under the Total Operating Characteristic curve  (Pontius 
2014), as suggested by Pontius and Si (2014) and Pontius and Parmentier (2014). 
We also produced predicted probability of occurrence maps for both models and 
visually compared these to describe the differences in the pattern of predicted 
habitat suitability.

9.3  Results

9.3.1  Random Forests Univariate Scaling

The first step in the modeling approach was to identify the best scale for each indi-
vidual variable out of the 12 scales considered (90–990 m, by 90 m increments), 
based on Model Improvement Ratio. For each variable we chose the scale with the 
largest Model Improvement Ratio, except in some cases we retained two scales if 
the second had an MIR value over 0.75 and differed substantially in scale from the 
scale with the highest MIR value (Table 9.2). There was a relatively broad range of 
scales selected across all variables (Fig.  9.2), with an apparent bimodal pattern 
where more variables were selected at either the broadest (greater than 630  m 
radius), or finest (less than 270 m radius) scales.

9.3.2  Random Forests Multivariate Model

The multivariate random forests model used the Model Improvement Ratio as a 
variable selection approach. The final model included 14 variables (Fig. 9.3). Five 
of these were selected at the broadest scale of 990 m, showing a stronger pattern of 
dominance by broad-scale relationships in the multivariate reduced model than in 
the univariate scaling.

We produced LOWESS splines of the pattern of presence vs. absence across the 
sampled range of each of the top eight variables. LOWESS (locally weighted scat-
terplot smoothing) is a non-parametric regression method that combine multiple 
regression models in a k-nearest-neighbor-based meta-model to produce non-linear 

S. A. Cushman and T. N. Wasserman



193

Table 9.2 Variables included in the random forests modeling and the scales retained in the 
univariate scaling step. Land  – Landscape-level FRAGSTATS variable; Class  – Class-level 
FRAGSTATS variable

Variable Acronym Top scale Second scale retained

Agregation index (Land) AI 630 180
Road density AR 180 1440
Area-weighted mean patch size (Class) areaam1 900 180
Area-weighted mean patch size (Class) areaam2 720
Area-weighted mean patch size (Class) areaam3 540
Area-weighted mean patch size (Class) areaam4 990
Area-weighted mean patch size (Class) areaam5 450
Area-weighted mean patch size (Class) areaam6 990
Mean canopy cover canopy 180 630
Topographical curvature index crv 810 630
Compound topographical index cti 270 90
Contrast-weighted edge density (Land) cwed 360
Topographical dissection index dis 90
Edge density (Land) ed 90 990
Edge density (Class) ed1 630
Edge density (Class) ed2 90
Edge density (Class) ed3 180
Edge density (Class) ed4 990
Edge density (Class) ed5 450
Edge density (Class) ed6 900
Elevation elev90 720
Heat load index hil 720 270
Patch density (Land) pd 990 630
Patch density (Class) pd1 990
Patch density (Class) pd2 810
Patch density (Class) pd3 720
Patch density (Class) pd4 810
Patch density (Class) pd5 360
Patch density (Class) pd6 270 90
Percentage of the landscape (Class) pland1 990 180
Percentage of the landscape (Class) pland2 720
Percentage of the landscape (Class) pland3 990
Percentage of the landscape (Class) pland4 990
Percentage of the landscape (Class) pland5 360
Percentage of the landscape (Class) pland6 630 900
Proximity index (class) proxam1 450 990
Proximity index (Class) proxam2 450
Proximity index (Class) proxam3 540
Proximity index (class) proxam4 810
Proximity index (Class) proxam5 900
Topographical roughness r 90 900
Slope position sp 810
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Fig. 9.2 Frequency of selected scales (in meters) across all variables for the random forests model

Fig. 9.3 Model improvement ratio plot for the selected variables. The most important variable is 
mean elevation within a 720 m focal radius (elev90720). The other variables are listed in order of 
their importance relative to elevation, with the x-axis indicating the relative additional model 
improvement when adding each successive variable

splines showing the response pattern in a bivariate scatter plot. The most important 
variable by far, based on the MIR, was mean elevation within a 720 m focal radius 
(Fig. 9.3). Marten occurrence has a strongly non-linear relationship with elevation; 
detections are very rare below 1000 m, rising rapidly to an apparent unimodal peak 
at approximately 1280  m, and then slowly declining at the highest elevations 
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(Fig. 9.4a). The second most important variable based on MIR was edge density 
within a 720 m focal radius. Marten occurrence has a nonlinear relationship with 
edge density as well, with the highest detection rates generally occurring at low 
edge densities (Fig.  9.4b). The third most important variable was topographical 
roughness at a 90 m focal radius, with marten occurrence increasing monotonically 
but nonlinearly with increasing topographical roughness (Fig. 9.4c). Mean canopy 
cover within a 180 m focal radius was the fourth most important variable in the 
random forests model, with marten detections increasing strongly, but again non- 
linearly, at high levels of local canopy cover (Fig. 9.4d). The fifth most important 
variable based on MIR was contrast-weighted edge density, with marten occurrence 
declining with increasing density of high-contrast edges in the landscape mosaic 

Fig. 9.4 (a–d) – part 1. Scatter plots of presence and absence and fitted LOWESS splines for the 
first four variables selected by the Model Improvement Ratio variable selection process for the 
multivariate random forests model
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(Fig. 9.4e). The percentage of a 180 m radius focal landscape occupied by large saw 
timber was the sixth most important variable, with occurrence frequency with 
occurrence frequency increasing monotonically with the amount of large, old forest 
in the local landscape (Fig. 9.4f). Landscape-level aggregation index was the sev-
enth most important variable, with the frequency of marten occurrence increasing 
non-linearly but monotonically with increasing landscape aggregation within a 
630 m focal radius (Fig. 9.4g). Landscape-level patch density within a 990 m focal 
landscape was the eighth most important variable, with monotonically decreasing 
frequency of marten as patch density increased (Fig. 9.4h).

9.3.3  Model Comparison

There was substantial similarity in the qualitative interpretation of the Wasserman 
et al. (2012a, b) logistic regression and the random forests model produced for this 
chapter. In both models occurrence was strongly predicted by a unimodal function 

Fig. 9.4 (e–h) – part 2. Scatter plots of presence and absence and fitted LOWESS splines for the 
fifth through eighth variables selected by the Model Improvement Ratio variable selection process 
for the multivariate random forests model
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of elevation, a non-linear function of canopy cover, a non-linear function of patch 
density, and the extent of the landscape in large conifer forest. However, there also 
were some important differences. First and foremost in performance (inference 
from predictions). Secondly, when looking at the predictors, road density and per-
centage of the landscape in non-stocked forestland were included in the final model- 
averaged logistic regression prediction, while these variables were not selected by 
the MIR in the random forests model.

In addition, a number of other variables were included in the random forests 
model that were not included in the logistic regression model, notably edge density, 
topographical roughness, contrast-weighted edge density and aggregation index. 
Together, these variables provide a substantially stronger “fragmentation signal” in 
the random forests model than the logistic regression model, with stronger identifi-
cation of the negative effects of landscape heterogeneity than indicated by the logis-
tic regression model.

In both models, extent of large sawtimber forest was a strong predictor at a fine 
spatial scale, while patch density was a strong predictor at the broadest spatial scale 
tested. This suggests that both models predict that optimal American marten habitat 
consists of patches of large, old forest within broad forested landscapes that have 
low levels of heterogeneity or fragmentation. However, the logistic regression model 
identified canopy cover as having the strongest effect at the broadest scale, while the 
random forests model identified a relatively fine scale effect of canopy cover.

A visual comparison of the predicted probability maps (Fig. 9.5) shows three 
main differences in the spatial prediction of marten habitat between the logistic 
regression and the random forests model. As also seen by Cushman et al. (2017), 
random forests produces predictions that are more discriminatory, with higher range 
of predicted probability and higher spatial heterogeneity than logistic regression. 
Logistic regression fits smooth linear functions of a linear combination of variables, 
which results in simple and smooth patterns of predicted occurrence. The logistic 

Fig. 9.5 Comparison of predicted probability of marten occurrence from the logistic regression 
(a) and random forests (b) models across the study area
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regression map highlights areas of high canopy cover, high extent of old forest, and 
low fragmentation at middle to upper elevations. In contrast, the random forests 
model shows much higher heterogeneity of predictions, with steeper and stronger 
gradients of habitat quality across the landscape. Both models indicate that marten 
habitat quality is highest in middle to upper elevation areas with high canopy cover, 
low fragmentation, and high cover of old forest, but the random forests model shows 
that habitat quality varies more across space, with more areas of predicted very high 
occurrence probability, interspersed with areas of predicted lower quality, which are 
not seen in the logistic regression model predictions.

9.3.4  Model Performance

We assessed model performance based on the area under the TOC curve (Fig. 9.6). 
The logistic regression model has an AUC of 0.701, as previously reported by 
Wasserman et al. (2012a, b), indicating moderately good success in predicting pres-
ence vs. absence in the training dataset. By comparison, the random forests model 
had an AUC of 0.981, indicating very high predictive ability, and a much stronger 
ability to predict presences and absences in the training dataset than the logistic 
regression model. Expressed as a percentage, the random forests model had 28% 
higher performance, leading to much better prediction of habitat suitability, better 

Fig. 9.6 TOC curves showing comparative model performance among the logistic regression, ran-
dom forests, random forests without fragmentation variables, and the naïve model. Higher model 
performance is indicated by stronger convex curvature toward the upper left corner of the plot 
space. The AUC for the two models are 0.983 for random forests and 0.701 for logistic regression
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inferences about habitat variables influencing marten occurrence, improved identi-
fication of scale dependency, and ultimately, therefore, better guidance to conserva-
tion and management (Breiman 2001b).

9.4  Discussion

Consistent with the results of other researchers who found that random forests out-
performs other methods for prediction and classification (e.g., Cushman et al. 2010; 
Evans et al. 2011; Drew et al. 2010; Rodriguez-Galiano et al. 2012; Schneider 2012; 
Cushman et al. 2017), we expected that random forests would outperform logistic 
regression in predicting marten occurrences. Consistent with this expectation, ran-
dom forests greatly outperformed logistic regression based on AUC measures of 
predictive success. This confirms the superiority of random forests as a modeling 
tool for habitat modeling, and we suggest that future studies use this powerful tech-
nique as a baseline.

Our analysis provided insight into patterns of scale-dependent habitat selection 
in American marten. The results were generally consistent with those found by 
Wasserman et al. (2012a, b). Specifically, the models show that American marten 
occurrence is highest in middle to upper elevation forested landscapes with high 
local canopy closure and high local cover of old-growth forest, and low levels of 
landscape heterogeneity and fragmentation at broader scales. In essence, our model 
reconfirms the description of Wasserman et  al. (2012a, b) for optimal American 
marten habitat in northern Idaho: “… at the scale of home ranges, marten select 
landscapes with high average canopy closure and low fragmentation. Within these 
low-fragmentation landscapes, marten select foraging habitat at a fine scale within 
late-seral, middle-elevation mesic forests. In northern Idaho, optimum American 
marten habitat, therefore, consists of landscapes with low road density and low 
density of non-forest patches with high canopy closure and large areas of middle- 
elevation, late successional mesic forest.” Our analysis augments this interpretation 
with further emphasis on the importance of landscape heterogeneity at intermediate 
(CWED at 360 m) to broad scales (AI at 630 m, PD at 990 m), suggesting perhaps 
a larger importance of landscape fragmentation than suggested by the Wasserman 
et al. (2012a, b) analysis.

The random forests and logistic regression models were also quite different in 
their spatial predictions, with logistic regression producing smooth, monotonic pat-
terns of predicted suitability, while random forests produced a map with higher 
heterogeneity and discrimination, showing stronger identification of areas of high 
suitability for marten. These differences are highly relevant if predictions from 
models are to be used effectively for management and conservation. Conservation 
prioritization based on habitat suitability would likely be quite different when based 
on either of these two maps, with the logistic regression producing coarse recom-
mendations to protect middle elevation, unfragmented, old-growth forest in  general, 
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while the random forests would suggest the same general habitat niche but provide 
much stronger delineation of high priority areas.

Our analysis also provides an ability to assess patterns of scale-dependency in 
habitat relationships across a large number of predictor variables. This is an area of 
ongoing and increasing interest in landscape ecology (McGarigal et  al. 2016). 
Relatively few studies have comprehensively evaluated patterns of scale depen-
dence across pools of predictor variables. For example, Chambers et  al. (2016) 
evaluated scale dependence of habitat associations and scaling patterns of landscape 
metrics in relation to bat occurrence or capture rate in forests of southwestern 
Nicaragua. They found that that edge density and patch density were the most 
important configuration variables across species, and percentage of the landscape 
was the most important class-level variable. In addition, they found that certain 
landscape and configuration metrics were most influential at fine (100 m) and/or 
broad (1000 m) spatial scales. Our results echo the importance of patch density and 
edge density as configuration predictor variables (the most important configuration 
variables in our analysis) and PLAND as a composition predictor variable (PLAND1 
was the only composition variable in the random forests model).

One of the most important comparative differences between the logistic regres-
sion and the random forests models was their interpretation of scale dependence 
among the different predictor variables. In general both models found that land-
scape heterogeneity and forest fragmentation affected marten habitat suitability at 
broad scales, but the random forests analysis showed that fragmentation effects are 
active at both fine and broad scales, in contrast to the logistic regression which only 
identified these effects at broad scales. Also, the scales at which canopy cover and 
extent of old forest most strongly affected predictions were different between the 
models, indicating that the optimal scale of influence is highly sensitive to the 
method of modeling.

Random forests (Breiman 2001a, b) is a tree-based method based on “bagging” 
that is executed by bootstrapping (with replacement) 63% of the data and generating 
a weak learner based on a CART for each bootstrap replicate. Within the pre-set 
specification (e.g., node depth and number of samples per node) each CART is 
unconstrained (grown to fullest) and prediction is accomplished by tallying the 
‘majority votes’ across all nodes in all random trees (Hegel et al. 2010). Independent 
variables are randomly selected at each node, with the number of variables selected 
at each node defined by m [sqrt(number of independent variables)]. These attributes 
provide several reasonable explanations for why random forests proved so much 
more powerful in predicting marten occurrence patterns in our northern Idaho data-
set than did logistic regression. As seen in the LOWESS splines, there are strongly 
non-linear, often unimodal or multi-modal patterns of frequency of marten occur-
rence across the range of values of independent variables. Such complex non- 
linearity and non-monotonicity is a massive challenge to GLM modeling, such as 
logistic regression, even when, as in Wasserman et al. (2012a, b), nonlinear transfor-
mations are applied to the data. In contrast, the bootstrapping of CART within ran-
dom forests provides the generation of a large number of trees which are combined 
across all nodes in all random trees. This enables immense flexibility to deal with 
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non-linearity and multi-modality of response, resulting in random forests models 
predicting patterns of presence and absence in the training data much more tightly 
than is possible with GLM or similar functional relationship methods. This also 
enables random forests to accurately reflect complex multi-variate non-linear inter-
actions among predictor variables, which are typically completely ignored in 
GLM modeling (see Chap. 10 by Baltensperger).

In our case the logistic regression model was fair at prediction (AUC = 0.7) while 
the random forests model was excellent (AUC  =  0.98), even though both were 
applied to the same data, and included largely the same predictor variables. This 
suggests that the difference in prediction is primarily due to random forest’s superior 
ability to reflect the complex non-linear relationships and multi-variate interactions 
in the American marten habitat relationships in northern Idaho.

9.5  Conclusion

Random forests is shown here to substantially outperform logistic regression in 
predicting patterns of marten occurrence. This suggests, consistent with other 
research, that random forests may generally be a superior approach when the goal is 
obtaining high predictive power. It should be by now the starting platform for any 
analysis of this sort. The random forests model produced an ecological understand-
ing that was generally similar to that provided by the logistic regression model, but 
with some additional detail and clarity regarding variables and scales of influence. 
However, given the much higher predictive success, applications of the random 
forests model for mapping habitat quality and assessing the extent and pattern of 
habitat is likely to produce much more accurate and useful information.
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Chapter 10
Using Interactions among Species, 
Landscapes, and Climate to Inform 
Ecological Niche Models: A Case Study 
of American Marten (Martes americana) 
Distribution in Alaska

Andrew P. Baltensperger

10.1  Introduction

Machine learning algorithms are powerful analytical tools whose high predictive 
accuracy stems in part from their ability to predict non-linearly, handle missing 
data, and incorporate interactions among all predictors in a model (De’ath and 
Fabricius 2000; Breiman 2001a; Hastie et al. 2001; Cutler et al. 2007; Elith et al. 
2008). These flexibilities provide algorithms such as boosted decision trees and 
stochastic gradient boosting analyses (e.g., TreeNet; Salford Systems Inc., San 
Diego, CA; www.salford-systems.com) with the ability to classify imperfect 
datasets and derive highly accurate predictions that can be applied across broad 
landscapes (Prasad et al. 2006; Cutler et al. 2007; Elith et al. 2008; Evans et al. 2011). 
Here, I use TreeNet to analyze the effects of interaction terms and variable combina-
tions on the predictive performance of spatial models of American marten (Martes 
americana) distribution in Alaska.

10.1.1  Stochastic Gradient Boosting

There are a many types of machine learning algorithms which operate to iteratively 
develop non-linear predictive models from training data. One such algorithm, 
stochastic gradient boosting (implemented in TreeNet), acts by first developing a 
single decision tree that aims to estimate the main effect by accounting for 
the largest proportion of variance in a system (Hastie et al. 2001; Friedman 2002). 
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In successive, iterative steps, additional trees are developed to explain residual error 
remaining left over from previous trees (Hastie et al. 2001; Elith et al. 2008). This 
ensemble-modeling process, which combines the error-reduction benefits of multi-
ple tree-based models to reduce total error, is known as “boosting” and is funda-
mentally different from traditional frequentist statistical approaches that fit a single 
parsimonious model to data (Elith et al. 2008). Boosting is a method for improving 
model accuracy that relies on averaging the contribution from many satisfactory but 
imperfect models in a successive fashion rather than attempting to find a single 
model that best approximates the system in question (De’ath and Fabricius 2000; 
Hastie et al. 2001; Elith et al. 2008).

Whereas boosted decision tree analyses are not appropriate for quantifying sys-
tem parameters among often collinear variables, they do serve as exhaustive explor-
atory tools for developing accurate and robust predictive models and identifying 
important contributing predictors. They allow the user to include many predictors, 
even when collinear, in models without penalty. Additionally, because machine 
learning analyses are not designed to test a priori hypotheses, datasets must not 
conform to assumptions of normality and so do not require prior data transforma-
tions. They are capable of quantifying complex, non-linear relationships simultane-
ously among categorical and continuous predictors, and are insensitive to outliers 
and missing data (Friedman 2002; Elith et al. 2008). Most importantly for the analy-
ses here, stochastic gradient boosting algorithms automatically include and can 
quantify interactions among all predictors in a model (Breiman 2001b; Hastie et al. 
2001; Elith et al. 2008).

10.1.2  Variable Interactions

Interactions occur when the effect of a variable on the response is magnified by the 
presence of a second variable, such that the effect synergistically alters or reverses 
the direction of either variable alone (Cox 1984; Friedman 2002; Ai and Norton 
2003). More complex interactions among three or more predictors are also possible, 
though such high-order interactions are more difficult to conceptualize. In tradi-
tional frequentist statistical modeling approaches such as generalized linear regres-
sion (GLM), generalized additive models (GAM), or resource selection functions 
(RSF), the user decides a priori which interaction terms to include, where only a 
small subset of interactions can reasonably be incorporated in any model (Fielding 
1999; Breiman 2001b; Hastie et al. 2001; Burnham and Anderson 2002; Johnson 
et  al. 2004). Top parsimonious models identified using model-selection methods 
such as AIC (Akaike Information Criteria) are penalized for including an excessive 
number of variables or interaction terms because these do not represent parsimoni-
ous models and collinear variables make it difficult to accurately quantify model 
parameters (Burnham and Anderson 2002).

In contrast, because accurate predictions are based on explaining the highest 
proportion of system variance, machine-learning analyses often seek to incorporate 
as many contributions, however small, into the model, helping to increase predic-
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tion accuracy. Many machine learning models utilize dozens if not hundreds of 
predictors (e.g., Magness et al. 2008; Buchen and Wohlrabe 2010; Baltensperger 
and Huettmann 2015), translating into trillions of interactions. Because of the mag-
nitude of interactions that occur in a multi-variate model, such complexity can only 
be handled using machine-learning techniques (Breiman 2001b; Hastie et al. 2001; 
Friedman 2002). For example, a linear model with n variables has 2n terms includ-
ing: a constant, each variable, and all of the interactions. From this, one can deduce 
the number of interaction terms to be: 2n – n – 1, because variables cannot interact 
with themselves (Friedman 2002). So for a relatively simple model with just 3 vari-
ables, there are 4 interaction terms. With 4 variables, this grows to 11 interaction 
terms, and in the study case here, 53 variables results in 9 x 1015 interaction terms! 
No linear model could incorporate this type of complexity (Hastie et  al. 2001; 
Burnham and Anderson 2002).

The fact that such linear modeling approaches and our own comprehension 
breaks down with increasing interaction complexity is known as the “curse of 
dimensionality” (Bellman 1961). In omitting these higher order interaction terms 
from a model, some unknown portion of the explained variance is lost, and conse-
quently the potential predictive accuracy of the model suffers (Hastie et al. 2001). 
However, it remains unknown the degree to which the overall predictive accuracies 
of machine-learning models can be improved by including all of the interactions 
among dozens of predictors. Here I examine the effects of different variable combi-
nations and the strengths of interactions in determining the accuracies of stochastic 
gradient boosting models. Interaction indices and relative predictor importance val-
ues are also visualized in network graphs to demonstrate the complexities and rela-
tive strengths of multi-variate interactions in a modeled system.

10.1.3  Ecological Niche Models

From a landscape ecology perspective, analyses that can build interactions into spe-
cies distribution models (SDMs) or ecological niche models (ENMs) are highly 
desirable, in order to make accurate predictions of niche space, not based exclu-
sively on environmental predictors (Travis et al. 2005; Araujo and Guissan 2006). 
ENMs are, in fact, often criticized for failing to incorporate biotic interactions in 
their analyses (Austin 2002; Thuiller et al. 2005; Dormann 2007). It is theorized that 
in addition to environmental factors, competition from other species, symbiotic 
interactions among species, as well as the availability of prey and the prevalence of 
predators may also constrain where a species is able to live (Armstrong and McGehee 
1980; Travis et al. 2005). It is true that most ENMs do not include variables that 
account for ecological interactions that may occur among species. This shortcom-
ing, is in part due to a lack of spatial ecological data, but also to the inability of tra-
ditional analyses to incorporate numerous predictors and their interactions. Here I 
use boosted regression trees to address these modeling gaps by constructing a state-
wide ENM for American marten based on 53 interacting environmental and ecologi-
cal predictors, including individual ENMs for 17 small mammal prey species as 
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predictors. This example also provides the opportunity to examine the influence of 
prey on the distribution of a meso-carnivore predator and the effects of variable 
selection and interaction strength on the accuracy of ENM models. Additionally, I 
project a single best contemporary data model onto expected future environmental 
conditions in order to predict changes in marten distribution across Alaska by the 
year 2100. Such analyses complement existing research predicting changes in mar-
ten distribution near the northern limits of their range on the Kenai Peninsula, Alaska 
(Baltensperger et al. 2017) and near the southern limits in the Rocky (Wasserman 
et al. 2013, Chap. 9) and Appalachian Mountains (Carroll 2007).

10.2  Methods

10.2.1  Training Dataset

I downloaded 5990 occurrence records of marten from the Global Biodiversity 
Information Facility (GBIF; www.gbif.org). This collection of records is both free 
and publically available, but unfortunately represents only a portion of the known 
occurrences of marten in Alaska. While the Alaska Department of Fish & Game  
(2015) (ADFG) requires that harvested marten pelts be “sealed” (officially 
recorded), they do no not require trappers to report detailed locational information. 
Instead of identifying harvest locations with geographic coordinates, sealed marten 
are identified only to the minor drainage unit or uniform coding unit (UCU) from 
which they were harvested (e.g., Baltensperger et al. 2017). Because of the impre-
cise nature of these records, none of the state’s thousands of marten sealing records 
were contributed to GBIF or exist in any public georeferenced database, and as such 
were unavailable for this study. These types of records should be made public in 
order to provide a more complete picture of marten distribution in the state. The size 
of the training dataset was further limited because it also contained numerous dupli-
cate and imprecise records. These spurious records were filtered out, resulting in 
774 unique locations with at least 100 m accuracy that could be used as training 
presence data in the models. Because this dataset was comprised of presence-only 
records, I also constructed a randomly-distributed set of 775 locations which served 
as a pseudo- absence dataset. The remaining presence and pseudo-absence data 
points were then attributed with 36 spatial environmental variables and the distribu-
tions of 17 potential small mammal prey species (Table 10.1; Baltensperger and 
Huettmann 2015), and served as the training dataset for the models.

10.2.2  Model Iterations

I used the stochastic gradient boosting algorithm, TreeNet, to develop 12 different 
sub-models using various combinations of predictors in order to assess the influence 
of predictors and their interactions in the performance of the overall model. I used 
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Table 10.1 Complete model predictor set, including each predictors type (continuous or 
categorical), whether it changes over time (dynamic or static) and if yes, is there future data to 
include to represent a predictor’s dynamic nature

Variable Type Temporal Future Data

Active layer thickness Continuous Dynamic Y
Anadromous stream distance Continuous Static
Aspect Continuous Static
Cliome Categorical Dynamic Y
Coast distance Continuous Static
Dicrostonyx groenlandicus Continuous Dynamic Y
Elevation Continuous Static
Fall precipitation Continuous Dynamic Y
Fall snow day fraction Continuous Dynamic Y
Fall temperature Continuous Dynamic Y
Fire history Categorical Dynamic N
Freeze date Continuous Dynamic Y
Geology Categorical Static
Glacier distance Continuous Dynamic N
Ground temperature Continuous Dynamic Y
Growing season Continuous Dynamic Y
Lake distance Continuous Static
Lemmus trimucronatus Continuous Dynamic Y
Max (March) sea ice extent distance Continuous Dynamic Y
Microtus longicaudus Continuous Dynamic Y
Microtus miurus Continuous Dynamic Y
Microtus oeconomus Continuous Dynamic Y
Microtus pennsylvanicus Continuous Dynamic Y
Microtus xanthognathus Continuous Dynamic Y
Min (September) sea ice extent distance Continuous Dynamic Y
Myodes rutilus Continuous Dynamic Y
NDVI Continuous Dynamic N
NLCD Landcover Categorical Dynamic N
Slope Continuous Static
Soils Categorical Static
Sorex borealis Continuous Dynamic Y
Sorex cinereus Continuous Dynamic Y
Sorex hoyi Continuous Dynamic Y
Sorex minutisimus Continuous Dynamic Y
Sorex monticolus Continuous Dynamic Y
Sorex palustris Continuous Dynamic Y
Sorex tundrensis Continuous Dynamic Y
Sorex ugyunak Continuous Dynamic Y
Spring precipitation Continuous Dynamic Y
Spring snow day fraction Continuous Dynamic Y
Spring temperature Continuous Dynamic Y
Stream distance Continuous Static

(continued)
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TreeNet, despite RandomForests’ generally superior predictive accuracy, because 
of its unique capability to quantify interactions and develop partial dependence 
plots for each variable (Hastie et  al. 2001, www.salford-systems.com/products/
treenet). For each sub-model, I grew 500 trees and systematically varied both the 
maximum number of nodes per tree and the number of minimum training cases per 
terminal node in order to obtain the most accurate models. Predictive accuracies for 
each sub-model were compared using the area under the receiver-operator curve 
(AUC ROC) and the Overall Balanced Misclassification Rate (OBMR), where the 
threshold differentiating presences from absences was set to the value which maxi-
mized the sum of sensitivity (correctly predicted absences) and specificity (cor-
rectly predicted presences; Manel et al. 2001; Jimenez-Valverde and Lobo 2007).

Before modeling, relationships among predictors were analyzed using a 
Spearman correlation varclus analysis (F.  Harrell; https://github.com/harrelfe/
Hmisc) in R 2.12, providing a means of visualizing clusters of predictors with simi-
larly correlated spatial distributions. One should bear in mind that the collinear 
nature of many of these predictors is less of an issue in machine learning analyses, 
than it would be in a frequentist statistical analysis. Collinear predictors in machine 
learning models actually serve to reinforce tree splits, making models more robust. 
It is also important to remember that for a predictive model, unimportant variables 
are simply ignored, and so their inclusion does not harm overall model performance. 
The cluster analysis simply helped to identify predictors, whose contributions in the 
model were likely to be similar to one another.

10.2.3  Interaction Network Graphs

In order to quantify interaction strengths among predictors, TreeNet reported inter-
action indices for all predictors in the full model and the most accurate sub-model. 
This produced two metrics to evaluate predictor interactions for the two models: (1) 

Table 10.1 (continued)

Variable Type Temporal Future Data

Summer precipitation Continuous Dynamic Y
Summer snow day fraction Continuous Dynamic
Summer temperature Continuous Dynamic Y
Terrain Continuous Static
Thaw date Continuous Dynamic Y
Village distance Continuous Static
Wetland distance Continuous Static
Winter precipitation Continuous Dynamic Y
Winter snow day fraction Continuous Dynamic Y
Winter temperature Continuous Dynamic Y
Zapus hudsonicus Continuous Dynamic Y
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interaction strengths for each predictor with each of the other predictors, (2) interac-
tion strengths for each variable aggregated across all other variables. Interaction 
strengths among variable pairs were graphed using Gephi (www.gephi.org), an 
open-source network analysis software, which helped to visualize connectivity, 
interaction strengths, and patterns among predictors in the models. Interaction indi-
ces between variable pairs (represented by line thickness), and variable importance 
(represented by node size) were input into network models for the full and continu-
ous predictive models. I also created 2-variable joint partial-dependence plots for 
the most important interactions in the top sub-model to assess the directionality, 
trends, and thresholds in the interaction responses of predictors.

10.2.4  Landscape Predictions

After completing modeling iterations, I projected the most accurate versions of each 
of the 12 sub-models onto a lattice of 58,978 regularly-spaced (5 km) points that 
were attributed with the same set of variables. This resulted in several representa-
tions of marten distributions across Alaska for 2010 based on the different predictor 
sets. In order to select the best overall model, I then compared AUC and OBMR 
rates among sub-models and selected the one sub-model with the highest accuracy. 
This was used to predict the distribution of marten in the year 2100 using projected 
environmental conditions for that time frame. To do this, the most-accurate model 
was scored onto a 5-km lattice that was attributed with the future projections of 
dynamic predictors (static variables remained the same), namely downscaled values 
from the IPCC (International Panel on Climate Change) A2 climate projections.

Model predictions are represented by relative index of occurrence (RIO) values 
for each 5 km pixel across Alaska. These are not true probabilities of occurrence but 
do provide a metric to evaluate the relative prospect that marten would be found in 
one location versus another with a different RIO value. The top continuous models 
(2010 and 2100) were then converted to binary (presence/absence) models based on 
the balanced thresholds for each model. The 2010 model was then subtracted from 
the 2100 model using the ArcGIS 10.3 raster calculator in order to identify regions 
of species persistence, gain, and loss.

10.3  Results

10.3.1  Varclus Analysis

The varclus analysis using all 53 predictors resulted in the classification of 4 main 
groups of collinear variables (ρ > 0.0; Fig. 10.1). Most climatic variables (with the 
exception of Snow Day Fraction and Thaw Date) formed one cluster, topographic and 
physical features (except Coast Distance) comprised a second, small mammals and 
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winter variables a third, and Fire History, Summer Temperature, Active Layer Thickness 
and Village Distance formed a small fourth cluster. The first cluster was highly nega-
tively correlated (ρ ≅ -1) with the other three, whereas each of the remaining three 
clusters were somewhat negatively correlated (0 > ρ > −0.25) with one another.

10.3.2  Full Model

Constructing a model with the full complement of 53 predictors (AUC = 94.7%; 
OBMR = 11.4%), I identified the top three variables (Soils, Geology, Landcover), 
whose variable importance scores exceeded 20.0 (Table 10.2). The order of these 
predictors remained largely consistent while model parameters (max nodes/tree and 
minimum cases/terminal node) were varied. Interaction strengths between each of 

Fig. 10.1 Spearman correlation varclus analysis of full complement of variables. Groups of vari-
ables with root nodes greater than 0.0 are positively correlated, whereas those with root nodes less 
than 0.0 are negatively correlated
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these and all other variables in the model were also related to their importance 
(Table 10.2). For example, the three most important predictors in the model also 
comprised three of the top four most interactive predictors in the model (Fig. 10.2).

The network graph for the full model provided a visualization of interaction 
complexity, strength, and variable importance among predictors (Fig. 10.3a). Soils 
was not only the most important predictor used in construction of the full model, but 
it also interacted most strongly with a small set of secondarily important variables 
including Village Distance (8.6), Distance to Minimum Sea Ice (7.4), Geology 
(6.0), and NLCD Landcover (5.3; Fig. 10.3a).

Table 10.2 Variable importance and interaction strength scores for the top 10 most important 
variables in the full model

Variable
Variable Importance Interaction Strength
Continuous Full Continuous Full

Soils 100.0 32.1
Geology 39.4 10.2
NLCD Landcover 30.3 7.7
Lemmus trimucronatus 100.0 11.1 16.0 2.2
Max (March) sea ice extent distance 72.3 11.5 19.5 2.5
Thaw date 41.1 12.1 3.8 2.6
Village distance 40.2 20.2 10.9 9.8
Min (September) sea ice extent distance 36.4 20.4 9.7 7.5
Cliome 17.3 2.9
Summer precipitation 35.9 16.4 5.4 4.3
Anadromous stream distance 31.5 15.7 7.4 3.6
Dicrostonyx groenlandicus 29.3 13.6 5.5 4.4
Spring snow day fraction 29.2 8.3 2.4 1.5
Sorex cinereus 29.2 10.1 4.6 1.7

Fig. 10.2 Area under the receiver operator curve (AUC ROC) values and overall balanced mis-
classification/error rates (OBMR) for 12 analyzed sub-model variations
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Fig. 10.3 Interaction networks among all interactions in the a) full model, and b) continuous 
submodel, where node size indicates relative variable importance and line thickness indicates rela-
tive interaction strengths
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10.3.3  Top Sub–Models

Based on the rankings of predictors in the full model, I experimentally tested differ-
ent combinations of predictors to determine whether a subset of predictors could 
produce sub-models with similar or greater accuracy than the full model. I found 
two predictor subsets that outperformed the full model using both AUC and OBMR 
as evaluation metrics. The “Continuous” predictor sub-model, wherein I excluded 
all categorical predictors (including the top three variables from the full model), 
yielded the highest AUC value (95.7%) and an OBMR of 10.9% (Fig. 10.2). A sec-
ond sub-model, the “Dynamic” predictor sub-model, wherein I excluded all static 
variables (including many of the categorical variables as well), also outperformed 
the full model, yielding an AUC of 95.5% and OBMR of 11.1% (Fig. 10.2).

After removing all categorical predictors, both interaction strengths and variable 
importance scores were more evenly distributed across the Continuous sub-model 
predictor set (Fig. 10.3b). In contrast to the full model, variable importance scores 
for the top sub-model yielded 24 predictors with importance scores that exceeded 
20.0, including the top predictor, L. trimucronatus (100.0), Maximum Sea Ice 
(72.3), Thaw Date (41.1), and Distance to Village (40.2; Table 10.2). The relation-
ship among interaction strength and predictor importance in the Continuous sub- 
model was similar to the full model in that 3 of the 4 most important predictors were 
also those with the largest interaction strengths (Table 10.2). The exception was the 
third most important predictor, Thaw Date, who’s whole variable interaction 
strength (3.8) ranked 16th among the 46 predictors in the Continuous sub-model. 
Among 2-way interactions, Distance to Maximum Sea Ice interacted most strongly 
with L. trimucronatus (7.9), Minimum Sea Ice (7.9), and Village Distance, whereas 
L. trimucronatus also interacted strongly Minimum Sea Ice (5.6) and Village 
Distance (4.1; Table 10.2, Fig. 10.3b). Two-variable partial-dependence plots for the 
top interacting variables in the Continuous sub-model illustrated the synergistic 
relationships among predictors and their joint influence in the model (Fig. 10.4). For 
example, martens were predicted to occur with increasing likelihood in regions far 
from the Maximum and Minimum Sea Ice extents, especially in areas outside the 
predicted distribution of L. trimucronatus and in close proximity to villages 
(Fig. 10.4).

10.3.4  Other Sub–Models

Other sub-models were less accurate than the full model (Fig. 10.2). Even without 
contributions from any environmental predictors, the Small Mammal sub-model, 
using only the distributions of 17 small mammal prey species, outperformed 7 of the 
10 other sub-models and was still only slightly less accurate (AUC  =  94.0%, 
OBMR = 13.0%) than the full model or the Continuous or Dynamic sub-models. To 
determine the influence that predictor interactions have on model accuracy, I also 
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forced TreeNet to exclude interactions in the modeling process. This resulted in an 
“Additive” sub-model (AUC = 93.0% and OBMR = 13.5%), which was the seventh 
best sub-model out of 12 (Figs.  10.2 and 10.5). Including interactions in the 
Continuous sub-model amounted to an increase in AUC of 1.7% and OBMR of 
2.0% over the Additive sub-model. I also built two sub-models that removed those 
values of two predictors that were positively correlated with marten presence. This 
was done for both the top predicting categorical variable, Soils, and the top continu-
ous variable, Maximum Sea Ice. In both cases, sub-models performed poorly com-
pared to the full model (Fig.  10.2). For additional comparison and to test the 
predictive accuracy of sub-models based on single predictors, I built models using 
just the top predictor, Soils, and a second sub-model using only the top small mam-
mal predictor, L. trimucronatus. Both of these sub-models performed markedly 
worse than the full model and the small mammal sub-model, respectively. The Soils 
Only sub-model scored 5.26% and 5.46% less than the respective AUC and OBMR 
of the full model. The L. trimucronatus sub-model also had an AUC score that was 
8.36% lower and an OBMR that was 5.49% lower than the small mammal sub-
model (Fig. 10.2).

Fig. 10.4 Two-variable dependence plots for interactions between a) Maximum sea ice and the 
distribution of L. trimucronatus, and b) Maximum sea ice and distance to villages
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10.3.5  Spatial Models

Spatial depictions of the 12 sub-models demonstrated a range of predicted marten 
distributions, including many with similar range extents (Fig. 10.5). Most models 
were consistent in retaining predicted marten hot spots near occurrence clusters in 
the Yukon-Tanana Uplands, on the Kenai Peninsula, in the Copper River Basin, and 
in Southeast Alaska (Fig. 10.6). They also did not predict the presence of marten 
beyond the extent of latitudinal tree-line (Figs. 10.5 and 10.6). Whereas the top 7 
models shared this pattern, the Soils Only, L. trimucronatus Only, No Positive Soils, 
and No Positive Maximum Sea Ice sub-models deviated noticeably. The No Positive 
Soils and No Positive Maximum Sea Ice maps did not predict marten to occur across 
the southern portions of the state. In contrast, the Soils Only and L. trimucronatus 

Fig. 10.5 Spatial representations of the 12 tested sub-models depicting predicted marten distribu-
tions across Alaska for 2010. AUC scores are also noted for each model
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Only sub-models predicted marten to occur predominantly in the southern regions 
while failing to predict the occurrence of marten in the interior portion of the state, 
despite numerous training points indicating their detection throughout this region 
(Fig. 10.5).

Using the best performing sub-model (Continuous), I generated a map depicting 
the projected distribution of marten across Alaska in the years 2010 (Fig. 10.7a) and 
2100 (Fig. 10.7b). Comparing the two models using a landscape change analysis, 
yielded predicted distribution gains and losses for marten in Alaska over the coming 
century (Fig.  10.7c). Much of the distribution did not undergo any change 
(129,063 km2) during this time. These areas included the Kenai Peninsula, Southeast 
Alaska, much of the Copper River Basin, the Tanana-Kuskokwim Lowlands, and 
the Yukon-Tanana Uplands. However, losses to the distribution, amounting to 
19,815 km2, occurred around the periphery of the persistence regions in the Copper 
River and Tanana River basins. These losses were more than offset, however, by 
distribution gains of 187,459 km2 that were projected to occur in the Cook Inlet 
Basin, Upper Kuskokwim Valley, Yukon-Old Crow Basin and other regions around 
Interior Alaska. Kodiak Island was also predicted to occur within the future ecologi-

Fig. 10.6 Marten presences used as training data to build models. The green boundary depicts the 
boreal tree line (www.geobotany.uaf.edu), whereas shaded boundaries depict the major unified 
ecoregions of Alaska (http://agdc.usgs.gov/data/usgs/erosafo/ecoreg/index.html)
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cal niche for marten, however the geographic isolation of the region makes this 
prediction less likely. Nevertheless, projected gains in marten distribution over the 
coming 85 years amounted to a net expansion of 167,644 km2 across Alaska.

10.4  Discussion

From these modeling exercises, I demonstrated that (1) sub-models with less than 
the full complement of predictors are capable of outperforming models that include 
the full predictor set, (2) the top predictors and interaction strengths can be heavily 
influenced by certain “greedy” categorical predictors, and (3) marten distribution is 
predicted to expand across Alaska with climate change over the coming century. So 
what do these results indicate regarding the effects of interactions and optimal vari-
able sets for most accurately predicting machine-learning models?

Fig. 10.7 Predicted current (a) and future (b) marten distributions using the best-performing sub- 
model (No Categorical Predictors) overlaid with marten occurrence records (open circles). The 
predicted distribution change map (c) depicts regions predicted to gain (green) or lose (red) mar-
ten, or where they are likely to persist (tan)
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10.4.1  Parsimonious Versus Highly Interactive Models

In frequentist models, parsimonious variable sets are often desired since this avoids 
problems associated with collinearity among predictors. This approach allows for 
the quantification of individual variable effects and provides greater mechanistic 
inference (Burnham and Anderson 2002). However, smaller variable sets can also 
leave a large amount of unexplained variance in a model by failing to include the 
explanatory power of additional variables and the effects of n-dimensional interac-
tions among many variables (Hastie et al. 2001; Friedman 2002).

In contrast, it is generally assumed that as the number of predictors in an opti-
mized machine-learning model increases, the more accurate the model will be. This 
is a result of the increased predictive power of a larger variable set in explaining a 
higher proportion of the overall variance in a system. This should be true as long as 
each additional variable contributes even a small portion to the overall variance, and 
as such more variables should be included to improve the predictive accuracy of 
models (Hastie et al. 2001). However, the results here, as well as recommendations 
by Salford Systems, suggest that by removing the poorest-performing predictors 
and by treating high-level categorical (HLC) predictors (predictors with more than 
20 categories) as continuous variables, the predictive accuracy of models can be 
improved (Steinberg 2011).

10.4.2  High Level Categorical (HLC) Predictors

In this case study, the accuracy of the marten distribution model improved slightly 
by removing categorical predictors and also by removing static variables. Using 
HLC predictors can be problematic for developing well-balanced and robust mod-
els. Because tree-based learning algorithms operate by splitting data into similar 
“nodes”, predictors that are already organized into categories can be segregated 
using many more node combinations than would be possible using continuous vari-
ables (Steinberg 2011). The splitting power of categorical variables tends to dispro-
portionately influence the model and only grows more problematic with more 
categories. A node can be split in as many as 2(K-1) – 1 ways, where K is the number 
of predictors in the model. For example, if K = 20 (maximum recommended), there 
are 524,287 ways to split the data at each node. However, when K = 253 (number of 
categories in the Soils predictor), a total of 7.24 x 1075 possible splits are possible! 
Not only does this slow down model processing, but the model is invariably driven 
disproportionally by a single predictor (Hastie et al. 2001; Friedman 2002; Steinberg 
2011). When Soils and other HLCs such as Geology and NLCD are penalized, 
treated as continuous variables (TreeNet is adept at recognizing this condition), or 
removed from the model entirely, (such as was done here in the Continuous sub- 
mode) the result is a higher-accuracy model that is more equally informed by splits 
using a diverse and robust range of predictors (Strobl et al. 2007; Steinberg 2011). 
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A similar improvement in model accuracy occurred when static variables were 
excluded from the “Dynamic” sub-model because many of the top static variables 
were also HLCs.

Additionally, because categories differ markedly from one another, interaction 
effects with categorical variables may be strong. A categorical variable’s value may 
vary dramatically as raster cell neighborhoods cross spatial categorical boundaries. 
In contrast, the value of a continuous variable may vary only slightly among neigh-
boring raster cells. The outsized change across categorical boundaries can lead to 
strong positive or negative interactive effects when combined with continuous pre-
dictors that vary more gradually across space (Strobl et al. 2007). Therefore, the 
categorical nature of Soils, and to a lesser extent of NLCD and Geology, resulted in 
strong interaction effects with other predictors.

10.4.3  Interaction Effects

Determining the contribution of interactions to model accuracy is somewhat more 
complicated. When building a model, the TreeNet algorithm first considers the 
“main effect,” a subset of easily-categorized predictors (usually three or four predic-
tors) at one time without incorporating their interactions (Hastie et  al. 2001; 
Friedman 2002). A tree is constructed to describe the main effect. Next TreeNet 
considers the effects of 2-variable interactions, followed by higher order interac-
tions (>2 variables) to boost the performance of the model by constructing trees that 
account for the remaining portions of unexplained variance (Friedman 2002). Thus 
the TreeNet algorithm is biased against strong, high-order interaction effects. The 
use of a subset of training records (“bagging”) in the construction of each tree, 
allows for the creation of models that are similar in accuracy to the full model, even 
when the full predictor set has been manually reduced to a smaller subset (Fig. 10.2; 
Breiman 1996; Hastie et al. 2001; Prasad et al. 2006). In other words, as demon-
strated here, a reasonably accurate model can be created using only lower-order 
interactions or only additive components (Hastie and Tibshirani 1990; Fig. 10.2). 
However, the accuracy is usually inferior to a full model that includes all of the 
interaction effects. This was demonstrated here by the lower performance of the 
additive model that was devoid of interactions (Fig.  10.2; Hastie et  al. 2001; 
Friedman 2002). So while high-level interaction effects may contribute only mar-
ginally to the overall accuracy of models, they can improve accuracy enough to 
make their inclusion worthwhile. Additionally, by growing complex trees with more 
terminal nodes, more interactions may be allowed to occur, potentially increasing 
the explanatory power of the model.

Predictors without known biological relationships to the response can act to 
improve model performance via interactions with other predictors, illuminating 
potential new avenues of investigation. For example, the most important interactions 
in the final model highlighted the combined effects of sea ice extent with the distribu-
tion of L. trimucronatus in predicting where martens are likely to occur (Fig. 10.4a). 
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In this case, it was not the affiliation with either of these predictors, but rather 
inverse associations with both that were most influential in predicting marten distri-
butions. Areas outside those heavily influenced by sea ice and where L. trimucrona-
tus occurs, namely Arctic and coastal regions, were highly unlikely to contain 
martens (Fig. 10.4a). These results reaffirm the pervasive influence that sea ice has 
with coupled terrestrial systems (Deser et al. 2010) and demonstrates the magnify-
ing effects that climate related changes can have on other ecological processes 
(Mantyka-Pringle et al. 2015). While sea ice loss occurs primarily in summer and 
fall, the largest effects are felt on land as warmer temperatures and increased pre-
cipitation in winter (Deser et al. 2010). While both effects would seem to favor the 
persistence of marten towards the northern extent of their range, the links between 
such correlated predictors begs further investigation. Associations with other small 
mammal distribution predictors were not highly interactive with other variables or 
especially predictive of marten occurrence, suggesting that marten are generalist 
predators that may be responding more to habitat conditions and prey abundance 
rather than associating themselves with any specific prey species. Conducting such 
an analysis using a more specialist predator and its potential prey items could yield 
stronger effects of prey on predator distributions.

10.4.4  Predicted Marten distribution in Alaska

The continuous spatial distribution sub-model for marten appropriately predicted 
marten to occur throughout the boreal forest biome of Alaska, and entirely within 
the latitudinal tree-line extent (Fig. 10.6). This is consistent with qualitative descrip-
tions of marten as boreal forest generalists that require dense over-head cover, and 
adequate secondary forest structure in the form of coarse-woody debris (CWD) at 
ground level (Spencer 1987; Wiebe et al. 2014; ADF&G 2015). Other contemporary 
range and distribution estimates of marten using more general methods (MaxEnt, 
deductive habitat models, combined models, and minimum range polygons) show 
more expansive distributions that extend farther westward and northward (Gotthardt 
et al. 2013; IUCN 2016). The best model produced here exceeded the predictive 
accuracy of these other models using both AUC (+1.8%) and OBMR (+8.6–30.2%) 
for comparison, yet because of differences in test samples among the models, differ-
ences in accuracy may be obscured by statistical noise.

The contrasting extent of my models with other deductive methods of marten 
distribution and range in Alaska may stem from the lack of a comprehensive, public 
occurrence database which includes accurate locations of trapped and sealed marten 
in Alaska (Baltensperger et  al. 2017). Because of such underreporting of marten 
occurrences and the limited accessibility of much of Alaska away from the road 
system to trappers, models were dominated by dense clusters of occurrence records 
in a handful of areas, without necessarily generalizing well to remote, unsampled 
regions, especially those far from human development. This is reflected by the high 
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relative importance value of the Distance to Village predictor, which theoretically 
could indicate an affinity of marten for roads, but more realistically shows that a 
community/road related sampling bias exists (Table 10.2). Also, because I chose not 
to correct for autocorrelation among training samples, and because TreeNet used 
bagging to select testing samples from clustered occurrences, it is likely that the 
apparent accuracies of the models were somewhat inflated as compared to a truly 
independent testing set that would likely reflect lower actual accuracy.

Using this limited, but best-available training dataset, we can still make compari-
sons to future projections of marten distribution using the same methods. Predicted 
distributions were projected to expand considerably across Alaska during the com-
ing decades (Fig. 10.7). This distribution expansion tracks the predicted growth in 
the Boreal Forest biome, and associated coastward and northward shifts in the 
boreal bioclimatic envelope (Murphy et al. 2010). While the direction of the pre-
dicted effect conforms to our knowledge of biome shifts in Alaska, the magnitude 
may be underrepresented because of the limited extent of training locations. 
However, the removal of HLC predictors, and the incorporation of interaction 
effects here provided improvements in producing the most accurate predictive 
model of marten distribution yet using publically available training data.

10.4.5  Conclusions and Suggested Practices

Having experimented with the predictive influence of a variety of predictor combi-
nations and interactions in TreeNet, I can make four general recommendations for 
developing ENM models using TreeNet. (1) Include as many predictors as possi-
ble, as long as each can explain even a small portion of the overall system variance. 
Even collinear predictors or those without known biological associations to the 
response variable can increase model accuracy through interactive effects with 
other predictors. Relative importances of predictors can be surprising and may also 
ultimately prove to be highly informative, if only by highlighting correlative 
effects. (2) Treat HLC predictors as continuous, penalize them, or remove them 
entirely to avoid having a single greedy variable or limited variable set dominate a 
model. Predictive performance will likely improve, variable importance will be 
more informative, and models will be more robust by using a more diverse set of 
variables. (3) Incorporating the influence of other species into ENMs by including 
distributions of prey, predators, or competitors as predictors can be informative, 
but effects may be more dramatic when modeling specialist species. (4) When 
modeling complex ecological systems influenced by dozens of environmental pre-
dictors, machine learning approaches offer several advantages over frequentist 
approaches, namely that they can incorporate the interactive effects of all high level 
interactions among all (even collinear) predictors to achieve the most accurate 
predictive models.
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Chapter 11
Advanced Data Mining (Cloning) 
of Predicted Climate-Scapes and Their 
Variances Assessed with Machine Learning: 
An Example from Southern Alaska Shows 
Topographical Biases and Strong Differences

Falk Huettmann

11.1  Introduction

Climate models are the method of choice for assessing the climate on a landscape 
scale (www.ipcc.ch/). As climate becomes an overarching role in the functioning of 
our ecosystems and economies (e.g. Stern 2006), these climate models are of utmost 
importance for human planning and natural resource management (e.g. Mi et al. 
2017; Han et al. 2018). The information source used in such climate models tend to 
be based on extrapolations from other locations and their models because not all 
pixels of interest are, or can be, sampled across all spatial and temporal scales. As a 
matter of fact, most ‘pixels’ in landscapes - relatively small and individual areas of 
inference - lack good climate measurement data (see here for some sampling efforts 
https://databasin.org/datasets/15a31dec689b4c958ee491ff30fcce75). This increases 
the role and relevance of model predictions because predictions enable the extrapo-
lation of local information to a larger spatial and temporal extent. This is possible 
due to the advanced statistical and mathematical methods using ‘best available’ data 
sources which alleviates some of the ineffectiveness of using other, less applicable 
types of mathematical methods. (e.g. Breiman 2001; Venables and Ripley 2002; 
Drew et al. 2011; Barri et al. 2014). Nowadays, predictive modeling methods are 
primarily computing-based algorithms, with machine learning being among the 
main platform for solutions (Fernandez-Delgado et  al. 2014). Obtaining the best 
predictions means the use of, and competing for, the best algorithm that produces 
accurate generalizations from the data (Breiman 2001).
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Climate remains an overruling topic in ecology and for global conservation ques-
tions (e.g. Jamieson and Di Paola 2014). Consequently, the most relevant climate 
models are probably policy-oriented ones, which tend to be large spatial extents 
(Lawler et al. 2011; Huettmann et al. 2017; Mi et al. 2017; Han et al. 2018) to the 
global scale (e.g. CRU data used for instance in Chernetsov and Huettmann 2005). 
By now, the IPCC climate models (http://www.ipcc.ch/) have become a global nar-
rative and have many implementations (for an overview and data, see here: www.
ipcc-data.org/). These IPCC models are often updated and act on a relatively coarse 
global scale (c. 16-km2 pixels), and often get further regionalized (“downscaled”) 
for more localized decision-making on smaller pixels. In recent years, several loca-
tions started to run those local models, e.g. the EU, U.S., Canada, Japan and 
Australia (for the EU see for instance here https://sites.google.com/site/ rt3valida-
tion/europe). Alaska, in particular, is in a fortunate position to have such regional 
models (Walsh et al. 2008; see https://www.snap.uaf. edu/tools/ data-downloads for 
details) that are being applied to a variety of data needs, e.g. Alaska GAP project 
(http://akgap.uaa.alaska.edu/). Alaska is also part of continental climate data proj-
ects (e.g AdaptWest https://adaptwest.databasin.org/; PRISM http://prism.oregon-
state.edu/), as well as specific Arctic and Polar data-driven partnerships (More 
details in Walsh et  al. 2008 and with CAFF.org). These regional climate models 
(‘climate-scapes’) act on smaller scales and can be assessed on smaller landscape 
extents in space and time. These climate-scapes are ideal for local assessment, 
ground-truthing, and focused insights.

While climate models and such subjects have been assessed and criticized for 
their performance for decades (Sawitzki 1994a, 1994b; Refsgaard et  al. 2005; 
Hayhoe 2010; Huettmann and Gottschalk 2011), by now, updated generations of 
climate models are improved and can be used for detailed pixel-based assessments 
and planning. Most flora and fauna relate closely to climate due to their metabolism 
(Fick and Hijmans 2017). In many cases, distribution and subsequent strategic plan-
ning and investment questions (Stern 2006) are directly related to climate models, 
e.g. expected temperature, sea level rise or wind questions for real estate planning, 
insurance costs and windpark site locations (see Moilanen et al. 2009 for generic 
applications).

There is virtually no doubt the Earth is experiencing a global warming trend (e.g. 
Giddens 2009 for an overview), but several other trends remain widely unclear and 
unresolved, (e.g. clouds, vapor, counter currents or a few increasing glaciers). 
Climate models, on a smaller scale, are known to still carry various problems, and 
those models are still not equal to weather forecasts. This chapter provides some 
examples for real-world problems (Table 11.1) and some additional technical cli-
mate model questions and issues of concern (Table 11.2).

Alaska sits at the forefront of climate change issues in the U.S., as well as in the 
Arctic and worldwide. Alaska’s coastal zones are a specific area of interest (Hayward 
et  al. 2017 for Chugach Forest). However, original data are relatively few (see 
Fig. 11.1 for Worldclim stations; worldclim.com; Fick and Hijmans 2017; see also 
http://akclimate.org/Climate). In this assessment, three climate models for Alaska 
were used and compared for a region in southern Alaska of high conservation 
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Table 11.1 Generic ‘issues’ with climate models that occur in virtually any complex landscape

Known weakness in 
climate models Local example Justification and explanation

Sampling efforts Alaska Lack of awareness and investment in 
sampling and climate stations.

Wind shadows Tibetan plateau The exact amount of wetness taken off the 
air mass is not easy to obtain.

Jetstream impacts Himalaya The functioning and local impacts of 
jetstreams are not well known, described and 
modeled, yet.

Ice thickness Greenland glacier While ice thickness is not part of climate 
models it is an inherent feature in the local 
climate.

Ocean coupling Islands, El Nino, Arctic 
Sea ice, Monsoon

IPCC implemented ocean models just in 
recent global climate updates. These 
interactions are a big driver in many 
terrestrial and global weather patterns.

Steep slope terrain Most steep and coastal 
mountain ranges

Pacific northwest in North America.

Rugged terrain Most mountain ranges Deviations from plain earth surfaces are 
difficult to map and to measure for climate 
(cold pools and warm peaks affected by 
aspect).

Valleys Death Valley (U.S.), 
Rhine Valley (EU)

Valleys consist of steep slopes and lower 
elevations at the bottom which triggers cold 
air flow but leaves certain cliffs exposed to 
the sun.

Aspects Virtually any mountain Precise aspect maps are difficult to obtain, 
southern aspects tend to be much warmer 
than northern ones.

Large elevational 
peaks

Mt. Everest (Nepal, 
China), Denali (U.S.), 
Ometepe volcanoes 
(Nicaragua)

Large mountains are known to maintain a 
weather system of their own.

Weather forecast Monsoon weather at a 
given pixel

Climate models do not relate directly to the 
weather but are instead statistical climate 
trends expressed on a pixel scale.

Specific day forecasts A pixel on April 3rd 
2067

It is virtually impossible to predict the 
global weather for an exact location in space 
and time for long-time ahead.

Forecasts at small 
scales/pixels

A pixel of 100 m Climate models are not developed on that 
pixel size, yet.

Lack of funding for 
proper ground-truthing 
and quality assessment

Alaska Ideally, every relevant pixel is to be visited, 
measured for its climate etc., all done 
long-term. Such a research and data luxury 
rarely exists though in the real world.
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230

 management value (Chugach Forest and associated areas; Hayward et al. 2017 for 
details). The study area allows for a good test case because it includes landscape 
components listed in Table 11.1 and it has already achieved first climate assess-
ments using regionalized climate data (Hayward et al. 2017). Following concepts 
by Hochachka et al. (2007) and Drew et al. (2011) climate and landscape data were 
mined for this climate-scape using machine learning and then investigated in a 
quantitative framework whether and what patterns and their predictors can be found 
in space and time.

11.2  Methods

11.2.1  GIS Data and Operations

Following Morton and Huettmann (2017) the Chugach forest outline was used as 
the study area based on an encompassing shapefile (Alaska NAD83 UTM Zone 6 in 
meters). Three commonly used climate models were tested for this region: 
Worldclim, Adaptwest and UAF SNAP. For each pixel the variance was computed 
among the three climate predictions for the monthly mean of January and July. See 
Fig. 11.1 for details.

Table 11.2 Some methodological questions and problems with existing climate models 
(abbreviations and URL are explained in the text)

Known weakness in 
climate models

Local 
example Reasoning

Lack of an 
appropriate research 
design for predictions 
and inference

IPCC, 
Arctic, 
Alaska

It needs a high-resolution and high-quality testing and 
independent assessment data set. While basic weather data 
station collecting was done for over a century - at a few 
sites - wider prediction views using modern methods were 
widely ignored.

Lack of machine 
learning

PRISM, 
SNAP- 
Alaska

Machine learning tends to outcompete any linear regression 
and differential equations

Lack of ISO 
compliant metadata

IPCC, 
SNAP- 
Alaska

Without a proper documentation the outcome is not 
transparent nor repeatable

Lack of underlying 
open access data 
made available

PRISM Without showing the data used, the outcome is not 
transparent nor repeatable

Lack of open source 
code made available

PRISM Without showing the code used, the outcome is not 
transparent nor repeatable

Lack of large-scale 
testing data

Most 
climate 
models

Without a proper assessment on all pixels the outcome is 
not reliable and does not carry a known error

Lack of re-runs SNAP- 
Alaska

Without updating models they are not best-available 
science
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Fig. 11.1 Worldclim weather stations for Alaska and the study area (Chugach forest)

The predictors, elevation, slope, aspect, distances to coast, river and road, as 
well as vegetation landcover and island yes/no were overlaid. Next, overlays were 
done on a regular 5-km2 lattice scale across the extent of the study area using 
ArcGIS and QGIS Open source GIS (Fig. 11.2). This resulted in 2130 terrestrial 
lattice points, which had the predictors attached as attributes to each point (see 
Fig. 11.3 for lattice map).

11.2.2  Data Mining

The resulting data cube for January (coldest month) and July (warmest month) was 
‘mined’ using TreeNet (Salford Systems Predictive Modeling Suite SPM 8; https://
www.salford-systems.com/). Each model was run with January and July data com-
bined using the climate model variance as a response, and with the predictors men-
tioned above. Month became a flagged predictor in the data cube allowing for data 
cloning (i.e., repeated use of the data) to obtain better model fits and predictions (see 
Lele et al. 2007 and Jiao et al. 2016 for concepts and methods). The analysis to draw 
from three climate models might be perceived as a meta-analysis (Schmidt and 
Hunter 2014).

The resulting models, their outliers, and their variance trends were described and 
to obtain an improved inference and prediction. Overall, it was hoped to achieve 
improved insights into these climate models by using machine learning methods.
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11.3  Results

The climate model comparison in Table 11.3 generally shows that for the month of 
January the Worldclim model predicts cooler temperatures than ADAPTWEST 
and AK SNAP. However, for July AK SNAP predicts cooler temperatures than the 
other two models. Generally, results using descriptive statistics point towards a 
small difference of up to 2-degree C. between models. Map details are shown in 
Appendix A.

Despite just ‘smaller’ differences between models, the map of variances allows 
to show spatial discrepancies more clearly. The variance in January shows the 
 biggest differences on islands and surrounding areas (‘hinterland’) (Fig.  11.3a), 
whereas the variance in July shows the biggest differences on glaciers and islands.

Fig. 11.2 Study area and location in Alaska

Fig. 11.3 Relative variance index of mean monthly temperatures among pixels from three climate 
models in January (a) and July (b). Red shows high variances, green low
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TreeNet obtained a ‘good’ model with a gains curve of c. 75% (Appendix for 
details) to explain variances for January and July. Using TreeNet allowed to extract 
nuanced but clear signals from the data to further indicate and explain differences 
among both climate models, as well as, describe patterns and identify relevant pre-
dictors. Across months, elevation is a major predictor explaining the discrepancies 
between both models (Fig.  11.3). Specifically, elevations ≥1100  m resulted in 
higher variance, with the highest being in July at c. 2500 meters. Additionally, the 
month of January had less variance than July (Fig. 11.4).

Further, the predictor ‘slope’ seems to drive high variances, specifically at higher 
elevations (Fig. 11.5). Fig. 11.6 shows also a distinct peak for the variance at pixels 
that are within 200 m of the coastline (a zone of generic uncertainty; that is presum-
ably the tidal range). Figure 11.7 shows high variance for pixels that are on north- 
facing aspects (Figs. 11.8 and 11.9).

For landcover classes only class 12 (closed mixed forest) show high variances. 
Islands have a generally higher variance than mainland indicating poor estimates for 
islands. Further details of the TreeNet model are available in Appendix B. The over-
all ranking of all predictors is shown in Table 11.4.

Table 11.3 Basic descriptive statistics for climate model comparisons

Model Month Minimum Mean Maximum

Worldclim January −22.00 −9.57 0.00
July 0.00 10.43 14.70

AK SNAP January −21.24 −8.33 0.31
July −5.70 9.98 15.80

ADAPT-WEST January −20.80 −8.00 0.90
July 0.00 11.19 15.40
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Table 11.4 Ranking of predictors used in the TreeNet model

Rank Predictor name Continuous or Categorical Importance Percent

1 Elevation Continuous 100
2 Month Categorical 66
3 Proximity to coastline Continuous 57
4 Proximity to roads Continuous 53
5 Aspect Continuous 50
6 Slope Continuous 49
7 Proximity to river Continuous 45
8 Landcover Categorical 40
9 Island yes/no Categorical 10
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11.4  Discussion

This is the first use of machine learning and advanced data mining on climate model 
assessments and comparison in the state of Alaska (Bieniek et  al. 2015; see 
Huettmann and Morton 2017 for use of those methods for species model forecast-
ing). Alaska is already well-known as an international posterchild for the observable 
and measureable effects of climate change on natural, cultural, and socio-economic 
systems. However, it is probably also known for some climate change denial, and 
the climate issue in Alaska remains a poorly addressed and a disputatious issue in 
the state, throughout the country, the circumpolar, and globally. Creating the most 
accurate climate models for Alaska reaches far beyond quantifiable evidence of cli-
mate change. Instead, it affects the ‘global climate chamber’, global processes, how 
foreign policy is implemented, and the laws that are to determine major industrial 
investments and their public justifications for overall regulation (or deregulation) 
and mitigation.

Alaska remains of strategic relevance, beyond ‘just’ natural resource manage-
ment. But so far, Alaska remains of strategic relevance, beyond ‘just’ natural 
resource management. But so far, Alaska primarily employs mechanistic warming 
models, p-values (Gardner and Altman 1986), linear regressions or differential 
equations and the delta method to understand, model and forecast climate (Bieniek  
et al. 2015; https://www.snap.uaf.edu/methods/downscaling). Most models known 
to the author that are employed lack transparency of the decision-making process on 
their code development and the relevant GIS methods which makes for improper 
broad-based assessment, open peer-based scrutiny, and scientific repeatability. The 
notion of pixel sizes and geographic projections  - or even autocorrelations, cou-
plings and interactions - remain widely unresolved in Alaskan climate models and 
ignored resulting in unknown but widely documented errors.

Here a regular 5-km2 lattice was used for model assessment. While this is rela-
tively coarse still, it should favor coarser (=robust) trends in the climate models, is 
thus conservative in its findings and addresses well potential concerns of autocor-
relation (Betts et al. 2009). Still, even on that scale, patterns of larger discrepancies 
in the data were already found and one can already point to relatively easily 
 explainable patterns in the predictors, all based on data mining techniques for better 
insights.

To describe ‘climate’ correctly one needs a complex set of measurements from 
an appropriate research design. Here that discussion was started using only monthly 
mean temperature for summer (July) and winter (January). However, even with 
using those few metrics one can show bigger differences among models (all claim-
ing high accuracy for Alaska and are used and applied), expand, what implications 
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can result from this. One may assume that adding additional climate metrics would 
show even more differences and renders such climate layers even more unreliable 
overall without proper metadata and spatial accuracies.

Further, I would like to caution the interpretation of coastal, specifically island, 
pixels. Figure 11.10 shows a coastal zoom in, and many islands are either not cap-
tured in pixelated models (e.g. here 5-km2 pixels by our lattice) or the existing 
island patterns differ from the described model even further (model details not 
shown here; available upon request from the authors). Climate models tend not to 
address islands specifically (e.g. due to lacking data and time required to assess 
each island; Alaska has easily thousands of islands) and thus they remain dubious 
in their validity (see Table 11.1 for details). This is in line with findings here that 
virtually all pixels, across months, have high variances when being located within 
200 m of the coastline. One relevant topic is that islands are the prime areas of 
extinction and thus, good management should focus there but their climate data 
remain uncertain.

These findings here show that the use of machine learning brings new informa-
tion and viewpoints to the table for climate-scape models. That is not only true for 
the data mining perspective, but also for understanding variances, outliers, for quan-
tifications and later for correcting models through predictions and data for an 
improved consensus and meta-analysis among competing models. Considering the 
huge pressure on climate-related decision-making, globally, machine learning is 
likely a more reliable methodology for such research and conservation management 
as a ‘best professional practice’. (Zuckerberg et al. 2011; see Silvy 2012 for lack of 
such entire concepts).

Fig. 11.10 Coastal details 
and islands in the study 
area to exemplify 
abundance of islands and 
their exclusion from 
high-resolution climate- 
scape work
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 Appendix A Example Map of Data Sets Used for this Machine 
Learning Assessment of Climate Models: Adaptwest in July. 
Raw Climate Surface and All GIS Maps are available 
from the Authors on Request
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 Appendix B Remaining Details of the TreeNet Model not 
shown in the text: (a) gains curve, and partial dependence 
plots for (b) proximity to road, (c) proximity to river
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Chapter 12
Using TreeNet, a Machine Learning  
Approach to Better Understand Factors  
that Influence Elevated Blood Lead Levels 
in Wintering Golden Eagles in the Western 
United States

Erica H. Craig, Tim H. Craig, and Mark R. Fuller

Investigating the effects of environmental contaminants on individuals and, 
ultimately, on wildlife populations is challenging. This is partly because it is diffi-
cult to interpret results potentially influenced by many interacting variables. The 
complexity of such datasets can constrain the ability of researchers to obtain mean-
ingful biological results using traditional statistical approaches. This can result in 
under- utilization of available information that is potentially useful to management 
decision makers (Craig and Huettmann 2009). Machine learning (ML) algorithms 
provide powerful tools that are increasingly seen as practical solutions for helping 
to address complex problems. They can be used as an end-product for prediction, to 
reveal patterns in data related to the incidence of contaminants in target species, and 
to guide future research efforts, or alternatively, to aid in hypothesis development or 
in conjunction with conventional statistical tools. ML has been used for decades in 
investigating the causes of disease in human populations (Collij et al. 2016; see e.g., 
Cooper et al. 1997; Cruz and Wishart 2006; Moradi et al. 2015; Shipp et al. 2002; 
Sriram et al. 2013) and the incidence of contaminants in the environment (see e.g., 
Hu and Cheng 2013; Wang et  al. 2015), but remains under-utilized in ecology 
(Thessen 2016).

Pb from bullet fragments in hunter-killed game (Herring et al. 2016; Hunt et al. 
2006; Knopper et al. 2006), and its potential effects on raptors and other avian spe-
cies that scavenge carrion has received considerable attention in recent years (Cade 
2007; see e.g., Church et al. 2006; Craighead and Bedrosian 2008; Cruz-Martinez 
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et al. 2012; Ecke et al. 2017; Herring et al. 2017, Herring et al. 2016). Golden Eagles 
(Aquila chrysaetos) are known to feed on carcasses and offal from hunter-killed 
game (referred to as game carcasses throughout the remainder of the text; Ecke 
et al. 2017). Although there may be other vectors, it is generally accepted that inges-
tion of Pb from game carcasses is the most widespread common source of eBLL in 
Golden Eagles (Bedrosian and Craighead 2009; Craig et al. 1990; Ecke et al. 2017; 
Fisher et al. 2006; Haig et al. 2014; Hunt 2012; Pattee et al. 1990; Stauber et al. 
2010; Wayland et al. 2003; Wayland and Bollinger 1999). However, the issue of Pb 
contamination in Golden Eagle populations and how it affects the species is com-
plex. Many factors influence the occurrence of eBLL in individual eagles and have 
the potential for subsequent population level consequences (see e.g., Finkelstein 
et al. 2012). Sublethal Pb contaminant loads may affect behavior (Ecke et al. 2017), 
and possibly even reproduction and survival; therefore it is important to identify 
members of a population at greatest risk and factors influencing exposure to Pb 
(Bedrosian and Craighead 2009; Ecke et al. 2017; Fisher et al. 2006; Herring et al. 
2016). Recent US Fish and Wildlife Service (FWS) models indicate a downward 
trend in Golden Eagle populations in the western United States (US; USFWS 2016). 
In addition, long-term regional datasets and migration counts provide evidence for 
local declines (Hoffman and Smith 2003; Kochert and Steenhof 2002; Millsap et al. 
2013). This trend is likely the result of a combination of different factors, including: 
changes occurring in shrub and grassland habitats critical to eagles (Kochert et al. 
2002) that are due to urbanization and the rapid expansion of renewable energy 
development projects (Copeland et  al. 2011), climate change and an associated 
increase in wildfires and drought (Abatzoglou and Kolden 2011; Dennison et al. 
2014), and the subsequent changes in prey distribution and availability and eagle 
reproduction and productivity (Kochert et al. 1999). It is unknown if Pb contamina-
tion in eagles is a contributing factor to these declines.

In this paper we used TreeNet, a machine learning algorithm that utilizes sto-
chastic gradient boosting (Friedman 2002; Friedman 2001), to 1) model the influ-
ence of six factors on eBLL in wintering Golden Eagles captured in Idaho, USA 
over a 9 year period, 2) compare winter blood lead levels (BLL) to levels in a small 
number of eagles sampled during late spring and summer, and 3) provide informa-
tion relevant for guiding future research on Pb exposure in eagles.

12.1  Methods

We modeled factors influencing BLL using 317 blood samples (275 individuals) 
from Golden Eagles that were captured during winters 1989–90 through 1997–98; 
42 birds were resampled up to 4 years later (see Craig and Craig 1998). We report 
the winter, rather than the year, in which an eagle was captured (e.g., eagles cap-
tured during winter 1989–90 are listed as being captured during winter 1990, those 
captured in 1990–91 as winter 1991, etc.). We assumed that the eagles we captured 
represented a random sample from the study area. The study area is located in a 
remote part of east central Idaho that is sparsely populated by humans. The 
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topography is varied with high mountain ranges that are dissected by rivers and 
streams; vegetation in the valleys is dominated by native sagebrush (Artemisia spp.) 
shrub- steppe habitat associations (Fig.  12.1). Most of our eagle trap-sites were 
located in the main valleys or along their larger tributaries. For modeling purposes, 

Fig. 12.1 Study area in Idaho where eagles were sampled for elevated blood Pb levels, winter 
1989–90 through winter 1997–98. The letter a identifies the Lemhi Valley, b, the Birch Creek 
Valley, and c, the Pahsimeroi Valley

12 TreeNet Model of Pb in Wintering Golden Eagles
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we grouped trap sites into three valleys in the study area. Two drain in a northerly 
direction and are part of the Salmon River drainage (Pahsimeroi and Lemhi Valleys); 
trap sites along the Salmon River were grouped with sites in the nearest of these two 
valleys. The third valley, Birch Creek, begins at the south end (head) of the Lemhi 
Valley and drains in a southeasterly direction to the edge of the Snake River Plain; 
we trapped eagles from this valley only during winters 1997 and 1998. Juvenile 
eagles were captured only during winters 1996, 1997 and 1998.

Golden Eagles in our study area reflect the partial migratory status of the species 
(Kochert et  al. 2002). The eagles we trapped included year-round residents and 
regional or long-distance migrants that arrived from summer areas as much as 
~5000 km away; the proportion of each group represented in the wintering popula-
tion we sampled is unknown. We also report BLL from 12 nestlings sampled during 
summer just prior to fledging and five free ranging eagles captured or recovered 
dead outside the winter season; because these samples were not obtained during 
winter, they are not included in the models we developed for wintering eagles. We 
provide data on them for comparison with BLL of Golden Eagles sampled during 
winter.

All blood samples, except those collected during winter 1996, were analyzed for 
Pb levels with a Perkin-Elmer Zeeman 5011 PC Atomic Adsorption 
Spectrophotometer graphite furnace at a wavelength of 283.3 nm. During winter 
1996, samples were analyzed for Pb using a VG Elemental PlasmaQuad through 
inductively coupled plasma-mass spectroscopy (ICP-MS; wavelength = 207.97 nm). 
An internal standard of indium was used at a wavelength of 114.9 nm. The lower 
limit of reportable Pb residues for samples, using both methods, was 0.01 ppm wet 
weight.

We used TreeNet to construct our models (Salford Systems, Inc.; Freidman 2002; 
Friedman et  al. 2000; Friedman 2001) because it: 1) is known for its prediction 
accuracy (see e.g., https://info.salford-systems.com/predicting-customer-churn-
with-gradient-boosting, accessed 25 October 2017), 2) provides graphs that visually 
depict the strength and form of relationship(s) and interactions among response and 
predictor variables, 3) is non-parametric, requiring no assumptions about the struc-
ture of the data, 4) is not constrained by complex interactions in highly dimensional 
datasets, and 5) can handle datasets with missing or otherwise ‘messy’ data (Guisan 
et al. 2007; Hastie et al. 2009; Knudby et al. 2010). Machine learning algorithms 
such as this can also provide good results in spite of non-stationarity in data (Hastie 
et al. 2009).

We used a binary logistic approach for our models. Presence or absence of BLL 
above background (> 0.20  ppm: Kramer and Redig 1997; Cruz-Martinez et  al. 
2012) was the response variable. The six predictor variables that we used, repre-
sented characteristics we measured for the wintering eagles sampled in our study 
area (eagle age class, gender, and winter, month, valley and time of day in which 
the bird was captured). We grouped the eagles we caught into three age classes 
based on plumage characteristics: adult, (≥ 4 years old), juvenile (first year birds 
still in their initial plumage), and subadult (eagles older than juveniles but not yet 
in adult  plumage). We ran multiple models using different settings to achieve best 
model performance; our best model was developed using a subsample of 0.60 and 
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the default settings (6 node trees, automatic learn rate, terminal node minimum 
training cases of 10). Although we specified a maximum number of 1000 trees be 
built in model development, the final number of trees for best model performance 
was determined by the software. This prevents overfitting the data by indicating 
the point at which the formation of additional trees explains no further variation in 
the data.

A realistic method for validating models is to evaluate performance when applied 
to an independent dataset (Elith et al. 2008) We randomly selected and withheld 
10% of the samples in our dataset for independent testing and used the remaining 
90% (called the learn data) for developing the model. We used prevalence (the 
default baseline; Liu et al. 2005) as our threshold when assessing models. We report 
the following five TreeNet metrics of model performance for the independent (test) 
data of our best model: 1) Precision: of eagles predicted to have eBLL, the propor-
tion that were correct, 2) Sensitivity or True Positive: the proportion of eagles with 
eBLL that were correctly identified, 3) Specificity or True Negative: the proportion 
of eagles without eBLL that were correctly identified, 4) the F1 statistic for each 
model (values near 1 indicate the model is both Precise and has good Sensitivity), 
and 5) Receiver Operating Characteristic curve (Hastie et al. 2009; Powers 2011). 
To aid in interpretation of the models and the biological significance of the results, 
TreeNet produces an index ranking the relative importance of each predictor vari-
able to the final model outcome. The top predictor with the greatest influence for 
predicting eBLL in Golden Eagles is given a score of 100; all other predictors are 
ranked in comparison with it. TreeNet also produces partial dependence plots 
(Friedman 2001; Hastie et al. 2009), which aid in graphically interpreting the func-
tional relationship between the presence of eBLL in eagles (response) and the indi-
vidual predictor variables. The graphs show the form and strength of the relationship 
of the variable(s) for predicting presence of eBLL after averaging out the influence 
of all the other variables. For comparison among variables, partial dependence val-
ues (PD) form the y axis for all graphs and represent an index of the likelihood of 
presence, i.e., 0.5 logit(p(X)) (Cutler et al. 2007), where X is the presence of eBLL 
in wintering Golden Eagles in the study area. Univariate plots reveal the additive 
relationship of the individual variable with predicting eBLL in eagles while bivari-
ate (interaction) plots indicate the shape and strength of 2-way interactions among 
predictors relative to eBLL. Figures for bivariate plots showing interactions between 
winter of capture and categorical variables are ‘sliced’ by category to aid in inter-
preting results.

12.2  Results

Overall accuracy of our best model was 76.7%, for predicting the presence or 
absence of eBLL in the independent sample of wintering eagles (also see Table 12.1). 
All six input variables contributed to the final model and were important predictors 
of eBLL in the eagles sampled (Table 12.2).

12 TreeNet Model of Pb in Wintering Golden Eagles
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The two most influential predictors were the year in which an eagle was cap-
tured, followed by the time of capture during the day; the other four predictors all 
contributed about equally to the final model.

The single variable dependence plots (Fig. 12.2) indicate that there is a positive 
association between eagles with eBLL during five of the nine winters of the study 
and a negative association with the other four winters (Fig. 12.2a). Birds captured 
mid-morning to mid-afternoon and eBLL were also positively associated; the stron-
gest association was later in the afternoon from 1400–1500 hr. (Fig. 12.2b). Adults, 
females, birds captured during the months of December and January, and eagles 
captured in the Birch Creek Valley were also positively associated with the occur-
rence of eBLL, although the latter was a very weak association (Figs 12.2c–f).

The bivariate plots and their PD values indicated that the top predictor, winter in 
which an eagle was captured, interacted most strongly with gender, but also inter-
acted strongly with all four other variables (Table 12.3; Figs 12.3a–f). These inter-
action effects were complex and had greater influence overall than individual 
variables in predicting the liklihood of eBLL in the wintering eagles sampled in the 
study area (Table 12.3). Capture month interactions and gender interactions exerted 
the next greatest influence on predicting eBLL. There was also a positive associa-
tion with age class and valley of capture, although that interaction exerted the least 
influence on the final model (Table  12.3). All eagles with eBLL, but especially 
females, were more likely to be captured later in the afternoon during the months of 
December and January most years and during winters positively associated with 
eBLL (Figs 12.3a–f, 12.4a–f). Adult females, and to a lesser extent, subadult females 
that had eBLL were more likely to be captured later in the afternoon than adult 

Table 12.1 TreeNet outputs 
measuring model 
performance for predicting 
presence or absence of 
elevated Pb levels in blood of 
30 independent samples from 
wintering Golden Eagles in 
our study area

Model Performance Metrics Percent

Specificity 80.00
Sensitivity 73.33
Precision 78.57
F1 statistic 75.86
ROC area 84.89

Table 12.2 Relative 
importance of variables for 
predicting the presence of 
eBLL in wintering Golden 
Eagles captured in Idaho. 
Variables are ranked relative 
to the top predictor

Predictor Variables
Relative 
Importance

Winter captured 100.00
Time caught 71.15
Month caught 47.34
Gender 43.45
Valley 41.58
Age class 40.60

E. H. Craig et al.



249

males and both were more likely to have eBLL than males. Subadult males and 
juveniles of either gender were least likely to have eBLL (Fig.  12.3e, 12.5a–c). 
Adults and subadults from the Birch Creek Valley and adults from the Lemhi Valley 
were more likely to have eBLL than juveniles or any age class from the Pahsimeroi 
Valley, but this association was relatively weak and varied by winter (Fig. 12.5d–f).

Samples taken from eaglets just prior to fledging revealed no or very low expo-
sure to Pb during summer months. Six of the young eagles had BLL levels below 
the minimum detection level of 0.01 ppm; the remainder had BLL that are consid-
ered background (mean = 0.035 ppm, SE = 0.008 ppm; Kramer and Redig 1997; 
Cruz-Martinez et  al. 2012). Two eagles were captured during the summer in the 
Pahsimeroi and Lemhi Valleys, an adult male (August 1991) and an eagle turned in 

Fig. 12.2 Univariate partial dependence plots showing additive influence for each input variable 
on predicting the incidence of eBLL in wintering Golden Eagles sampled in the Idaho study area. 
Plots are listed in order of importance to the optimal model; Output on the y axis = 0.5 logit(p(X)), 
where X is the presence of eBLL in wintering Golden Eagles in the study area. a Winter in which 
eagle was captured. b Time of day the eagle was captured. c Month of capture. d Age class of eagle 
(A = adult, Juvenile, and SA = subadult). e Valley in which the bird was captured (B = Birch Creek, 
L = Lemhi and P = Pahsimeroi. f Gender (F = female and M = male)
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to the local Fish and Game Department for which age and gender were undeter-
mined (August 1996); both had low BLL (0.06 and 0.01 ppm, respectively). A third 
eagle recovered dead in the early spring of 1993 in the Pahsimeroi Valley had a liver 
Pb level of 0.10 ppm wet wt; liver Pb levels of <2.0 ppm wet wt are considered 
background (Cruz-Martinez et al. 2012; Kramer and Redig 1997). Two adults, pre-
sumably a mated pair, were captured together just outside the study area during the 
fall (30 September 1991); their blood Pb levels were 0.95 ppm (male) and 0.45 ppm 
(female).

Table 12.3 Maximum partial dependence values (PD) for single variable and two-variable plots. 
Variables listed in order of their maximum PD value, not necessarily in order of their total 
contribution to the final model, which considers interaction effects among all variables when 
assigning rank

Max PD Value Two Variable Interactions Max PD Value Single Variable

0.6511 Winter captured/gender
0.6213 Winter captured /capture month
0.5947 Winter captured/time caught
0.5821 Winter captured/age class
0.5790 Winter captured/valley

0.5761 Winter captured
0.2862 Capture month/gender
0.2678 Time caught/gender
0.2316 Capture month/time caught
0.2126 Capture month/age class
0.2080 Capture month/valley
0.2064 Time caught/valley 0.2064 Capture month
0.1973 Gender/age class
0.1889 Time caught/ age class
0.1822 Gender /valley

0.1488 Time caught
0.1133 Age class/valley

0.1000 Gender
0.0453 Age class
0.0407 Valley

Fig. 12.3 (continued) captured interactions with time of day the eagle was captured. b Time of 
day the eagle was captured interactions with eagle gender. c Month of capture interactions with 
eagle gender. d Time of day the eagle was captured interactions with month of capture. e Age class 
of eagle (A = adult, SA = subadult and YOY = Juvenile) interactions with time of day the eagle was 
captured. f Valley in which the bird was captured (B = Birch Creek, L = Lemhi and P = Pahsimeroi. 
g Gender (F = female and M = male) interactions with age class of eagle 
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Fig. 12.3 Bivariate partial dependence plots showing two-way interactions among variables 
influencing the incidence of eBLL in wintering Golden Eagles sampled in the Idaho study area. 
Plots are listed in order of importance to the optimal model; Output on the y axis = 0.5 logit(p(X)), 
where X is the presence of eBLL in wintering Golden Eagles in the study area. Note that the 
scale for the y axis may be different for each graph, so predicted association between eBLL and 
the height of the bars is not directly comparable across all graphs a Winter in which eagle was 
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Fig. 12.4 Slices by categorical variable of bivariate partial dependence plots for predicting the 
likelihood of eBLL in wintering Golden Eagles in the Idaho study area. Slices show the relation-
ship between eBLL and interaction effects between winter in which an eagle was captured and 
gender (a and b), or capture month (c, d, e, f), respectively. Output on the y axis = 0.5 logit(p(X)), 
where X is the presence of eBLL in wintering Golden Eagles in the study area. Note that the scale 
for the y axis may be different for each graph, so predicted association between eBLL and the 
height of the bars is not directly comparable across all graphs

Fig. 12.5 Slices by categorical variable from bivariate partial dependence plots for predicting the 
likelihood of eBLL in wintering Golden Eagles in the Idaho study area. Slices show the relation-
ship between eBLL and interaction effects between winter in which an eagle was captured and age 
class (a, b, c) and valley (d, e, f), respectively. Output on the y axis = 0.5 logit(p(X)), where X is 
the presence of eBLL in wintering Golden Eagles in the study area. Note that the scale for the y 
axis may be different for each graph, so predicted association between elevated BLL and the height 
of the bar in each graph is not directly comparable. Eagles were only trapped in Birch Creek during 
winters 1997 and 1998. Juveniles were only captured during winters 1996, 1997 and 1998
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12.3  Discussion

All six of the variables used in developing our best model interacted with one 
another and were important for predicting eagles with eBLL in the study area. The 
winter an eagle was captured was the top predictor but the likelihood of eagle expo-
sure to contamination varied from year to year. This agreed with the results of our 
previous analyses using traditional statistics; we found a highly significant differ-
ence in Golden Eagle BLL among years (p = 0.000; Craig and Craig 1998). However, 
TreeNet results provided additional information that indicated the specific winters 
in which Golden Eagles were most likely to be exposed to Pb and how winter of 
capture interacted with the other input variables. Time of day an eagle was captured 
was the second-most influential predictor; it was not one of the variables included 
in our earlier, more parsimonious analyses (Craig and Craig 1998). There was a 
positive association between eagles captured from ~ 1000–1500 hr. and all years 
positively associated with eBLL. The strongest relationship was with eagles, par-
ticularly females, captured later in the day (early to mid-afternoon). Ecke et  al. 
(2017) attributed changes in movement behavior of Golden Eagles in Sweden to 
sublethal Pb exposure. They reported negative effects on movement rates and flight 
heights and suggested that even low levels of Pb exposure affect eagle behaviors 
that could potentially reduce hunting success. It is possible that eagles with eBLL in 
our study area were more likely to be captured later in the day than other eagles 
because they had lower hunting success, and so had to hunt longer. Further research 
is needed into the behavioral effects of sublethal exposure to Pb in eagles to better 
understand the potential conservation implications.

Month in which an eagle was captured, gender, age class and valley of capture 
were also important contributors to the final model output. Identifying the influence 
of these variables individually was informative but identifying the purely additive 
effects of each was insufficient to adequately explain how they might have influ-
enced the susceptibility of wintering eagles to contamination from Pb in east-central 
Idaho. The univariate and bivariate dependence plots helped in interpreting the form 
and strength of these relationships. Our model identified Golden Eagles captured 
during December and January, when game carcasses are often available, as posi-
tively associated with eBLL. Other studies, have also identified that eBLL in eagles 
are often associated with the timing of hunting seasons (Bedrosian et al. 2012; Ecke 
et al. 2017; Haig et al. 2014; Herring et al. 2017; see e.g., Pattee et al. 1990; Stauber 
et  al. 2010). Big-game hunting seasons and sport hunting for jackrabbits (Lepus 
spp.) occur mainly during fall and winter in our study area; it is likely that these are 
also the primary sources of Pb exposure to eagles wintering there.

Our model also identified that adult females and eagles captured in the Lemhi 
River and Birch Creek Valleys were most likely to be associated with eBLL and 
indicated a positive but very weak interaction of these two valleys with both gender 
and age. Parts of both of those valleys have background Pb in soils and sites with 
historic Pb mining activity (Lemhi County History Committee 1992; Birch Creek 
and Lemhi; Umpleby 1913). Although, Pb contamination in some avian species has 
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been linked to anthropogenic sources other than Pb bullets (see e.g., Henny 2003; 
Legagneux et al. 2014), bioaccumulation of Pb is generally thought to be low for 
raptors (Henny 2003). If background Pb from mining activity were available in por-
tions of our study area it should be a year-round source of contamination. However, 
none of the nestlings we sampled, nor the free-ranging eagles we captured inciden-
tally during the late spring and summer, had eBLL. Data are not available for Golden 
Eagles on the turnover rate of Pb in blood after exposure, but evidence from other 
avian species indicates that it is likely to be fairly rapid (see e.g., Fry et al. 2009; 
Pain et al. 2009; Herring et al. 2017). Pb in blood of birds generally has a half-life 
of ~2  weeks (Fry et  al. 2009; Pain et  al. 2009) and evidence from Bald Eagles 
(Haliaeetus leucocephalis) indicates that Pb effects from exposure may last up to 
4 weeks (Hoffman et al. 1981). As a result, BLL samples taken from eagles during 
summer should reflect relatively recent exposure to Pb. We rarely observed Golden 
Eagles feeding on carrion during summer and game carcasses are not generally 
available then. All these factors indicate that background Pb from mining activity is 
not likely the source of contamination to wintering eagles in the study area. Further, 
most of the indications from our model point to game carcasses as the primary 
source of Pb to the sampled Golden Eagles. However, because potential for expo-
sure may vary locally, we agree with Herring et al. (2017) that studies at smaller 
geographic scales, such as ours, are an important component of identifying the 
sources and assessing the effects of exposure to Pb on regional Golden Eagle 
populations.

Year-to-year and valley by valley differences in weather conditions and snow 
depth, hunting seasons, hunter success rates, and jackrabbit cycles are a few of the 
variables that may also influence the availability of Pb contaminated game carcasses 
to wintering eagles in the study area. Any of these factors could account for the 
yearly variation in risk to eagles that we observed. It is also possible that some of 
the migratory eagles with eBLL were exposed to Pb prior to arriving in the study 
area (Herring et al. 2017), or because of unidentified factors that we did not mea-
sure. Consequently, it is important to note that the six factors included in our model 
are not the only ones that may influence the occurrence of Pb in eagles. The inclu-
sion of other variables and additional sampling in future research efforts could 
 provide further insights toward understanding the conservation implications of the 
eagle-Pb contamination issue. A machine learning approach, with its ability to 
include all potential factors would be fundamental to these investigations.

Of the free-ranging eagles captured during winter, juveniles were identified by 
our model as the least likely to have eBLL.  Similarly, more adult and subadult 
eagles in Canada had higher Pb levels than did immatures (Wayland et al. 2003; 
Wayland and Bollinger 1999). However, Wayland and Bollinger (1999) did not ana-
lyze BLL and results from all tissues (e.g., blood, liver) were combined by Wayland 
et al. (2003) in their analysis; it is known that Pb accumulates over time in liver, 
kidney and bone tissues in birds (see e.g., Herring et al. 2017; Pain et al. 2009). 
Because turnover rates for Pb in avian blood are generally high (Pain et al. 2009) 
and are not known to accumulate over long periods of time, it is doubtful that the 
differences we observed in BLL are due to age-related accumulation of Pb in blood. 
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It is possible that it may be a result of differences among age groups in feeding 
behavior at carcasses, habitat exploitation, or some other unknown factor.

Adult female Golden Eagles were identified by our model as the most likely 
demographic in the study area to have eBLL. Subadult females were less likely than 
adult females, but both subgroups were more likely to have eBLL than males of any 
age class. Our study is the first to report that female Golden Eagles, and often adults, 
were more susceptible to Pb contamination than males. In contrast, Pattee et  al. 
(1990) found no significant difference by gender or age class in BLL of 162 Golden 
Eagles captured in California. However, adult female Bald Eagles have been 
reported to be the most sensitive age/gender group to Pb poisoning in the U.S. popu-
lation (USFWS 1986). Other studies have reported that Marsh Harriers (Circus 
aeruginosus) and female Common Ravens (Corvus corax) were more likely to have 
eBLL than males during hunting seasons (Craighead and Bedrosian 2008; Pain 
et  al. 1997). Pattee (1984) experimentally exposed American Kestrels (Falco 
sparverius) to Pb and reported higher levels of deposition in bones and liver of 
females than males. Craighead and Bedrosian (2008) suggested that the gender dif-
ferences they observed in BLL of ravens may have resulted from different metabolic 
rates, behavioral differences in activity level between the sexes, or simply differ-
ences in ingestion rates of Pb. Any of these could explain the gender difference we 
observed in the eagles in our study area. Pain et al. (1997) suggested the gender 
differences they observed were related to partitioning of prey by marsh harriers; the 
larger females generally take bigger prey than males, which increased their suscep-
tibility to ingestion of Pb fragments. It is unlikely that the size of prey is an impor-
tant factor in explaining the gender differences identified by our model, since game 
carcasses are already dead and unlikely to influence selection by eagles that feed on 
them. However, behavioral differences may be a contributing factor. Golden Eagles, 
like most other raptors, exhibit reverse sexual dimorphism, with the female being 
larger than the male (Kochert et al. 2002). This size difference may give females an 
advantage when scavenging; females we observed wintering in our study area were 
often the first to feed on carcasses. Although it was not always the case, male Golden 
Eagles and other avian species (e.g., Bald Eagles, Common Ravens, Black–billed 
Magpies [Pica hudsonia]) often retreated when a larger female Golden Eagle flew 
onto a carcass. Similarly, Halley and Gjershaug (1998) observed conflicts by Golden 
Eagles over access to carcasses in Norway. Gender was not known for many of the 
conflicts they observed, but when gender could be determined, females were domi-
nant at carcasses in five of seven encounters. This dominance could put females at 
greater risk to Pb contamination since the first bird on game carcasses probably 
starts feeding at the bullet entry or exit wound, where access is easiest and the site 
of highest Pb concentration (Hunt et al. 2006). Regardless of the reason that females, 
and especially adult females, may be more susceptible to Pb contamination than 
males, the demographic consequences of this potential difference merit further 
investigation.

The stability of populations has been linked to survival of adults that are capable 
of reproducing (Grier 1980; Newton 1989). Pb exposure may influence reproductive 
capabilities, and negatively affect flight behaviors and hunting success, making 
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individuals more susceptible to mortality through factors like starvation or colli-
sions (Ecke et al. 2017; Herring et al. 2017; Pain et al. 1997). Our initial results 
could be used to help inform population models using differential rates of exposure 
to Pb according to gender and age. Additional research is needed to determine how 
exposure to Pb is manifested in the survival and reproductive rates of Golden Eagles 
at local and regional scales. Recent evidence suggests that background blood Pb 
concentrations in Golden Eagles may be considerably lower than the 0.20 ppm cur-
rently used as a threshold in most studies, including ours (Craighead and Bedrosian 
2008; Ecke et al. 2017). Consequently, the results we present should be considered 
a conservative representation of Pb exposure in the wintering Golden Eagle popula-
tion in our study area.

Despite much research devoted to Pb contamination in avian scavengers, includ-
ing eagles (see e.g., Haig et al. 2014; Herring et al. 2017), there is need for a better 
understanding of the sublethal effects of Pb exposure to Golden Eagles. How it 
affects gender and age subgroups and the conservation implications of potential 
subsequent population level consequences are important to determine. This is where 
TreeNet outputs are particularly valuable. Although it does not designate statistical 
significance with p values in the outputs we present, TreeNet accommodated our six 
input variables simultaneously and detected patterns in the data and factors that 
influenced eBLL in our sample population. Future research could include any num-
ber of additional variables in TreeNet models; TreeNet simply ignores those of no 
importance. Further, since there is no need for parsimony, it is not necessary to 
restrict, a priori, predictors that may be relevant and eliminate those with strong cor-
relations. As a result, biases that might be introduced through data processing 
choices can be avoided. Our earlier, more parsimonious analyses using traditional 
statistics did not provide the more nuanced insights into the form and strength of 
interactions among variables provided by the TreeNet outputs. Our TreeNet model 
was further validated by the findings of others and our own earlier analyses using 
traditional statistical methods, but also identified additional information that was 
not previously reported. It revealed new information about timing of capture that 
may reflect behavioral effects of eBLL, the potential for gender related differences 
to Pb exposure within the wintering population and spatial distribution of eagles 
with eBLL that may warrant further attention. Our results provide direction for 
future investigation in other geographic areas and for environmental factors to 
include in future models.
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Part IV
Novel Applications of Machine Learning 

Beyond Species Distribution Models

 

“Artificial Intelligence, deep learning, machine learning — whatever 
you’re doing if you don’t understand it — learn it. Because otherwise 

you’re going to be a dinosaur within 3 years.”  
 – Mark Cuban
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Chapter 13
Breaking Away from ‘Traditional’ Uses 
of Machine Learning: A Case Study Linking 
Sooty Shearwaters (Ardenna griseus) 
and Upcoming Changes in the Southern 
Oscillation Index

Grant R. W. Humphries

13.1  Introduction

The El Niño Southern Oscillation (ENSO) is a large-scale process which affects 
climate systems around the world (Rasmusson and Wallace 1983; Rasmusson et al. 
1990; Latif et al. 1994; Timmermann et al. 1999; Turner 2004) and has also been 
shown to be correlated to population sizes of species (Stenseth et al. 2002; Velarde 
et al. 2004). Some of these correlations are straightforward: anchovy and sardine 
populations in the Humboldt Current fluctuate due to changes in upwelling that is 
directly related to the formation of an El Niño or La Niña (Schwartzlose et al. 1999; 
Ñiquen and Bouchon 2004; Gutiérrez et al. 2007). Other examples do not seem to 
have any immediately obvious mechanistic link: populations of owls in Chile have 
been linked to fluctuations in ENSO due to complex interactions between climate 
and abundance of prey items (Lima et al. 2002). The problem becomes further com-
pounded when one begins to examine lagged effects. For example, a population that 
may be affected by ENSO may not begin to change until months after a climatic 
shift (e.g., Lima et al. 2002). This will occur in top predators because climate shifts 
that affect local conditions (e.g., total rainfall or wind speeds) will affect lower 
trophic level species (e.g., plants, insects, or even small mammals). Population 
changes in those affected lower trophic levels then propagate through the food web 
and are detected in top predators. However, oceanographic precursors to ENSO 
may also affect lower trophic levels, causing top predators to respond before the 
event. This would mean that changes in top predators (e.g., population) could be 
predictive of a shift towards an ENSO event. Studying the mechanisms of how and 
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why populations are predictive of El Niño and La Niña events will give insights into 
precursors of climate shifts. One species in New Zealand that has been linked to an 
early warning of ENSO is the sooty shearwater (Puffinus griseus).

Sooty shearwater chick harvesting from breeding colonies (annually in April 
through May around Stewart Island, New Zealand) is an important part of Rakiura 
(Stewart Island) Māori culture (Stevens 2006). Indices of chick quantity and size 
derived from harvest diaries were positively correlated with lagged values of the 
Southern Oscillation Index (SOI; Lyver et al. 1999). In years when there were fewer 
birds available to be harvested, negative values of SOI (i.e., El Niño conditions) 
tended to follow 4–14 months later. Similarly, when there were more birds available 
to be harvested, positive values of SOI (i.e., La Niña conditions) tended to follow 
4–14 months later (Humphries and Möller 2017). This pattern was also reflected by 
the size of the chicks harvested where larger chicks indicated an oncoming positive 
shift in SOI, and smaller chicks indicated an oncoming negative shift in SOI 
(Humphries and Möller 2017). Obviously, birds do not cause the weather, therefore 
it is very likely that sooty shearwater adults are cuing into some oceanographic 
parameter(s) that acts as a precursor event to changes in SOI. Changes in oceano-
graphic factors may lead to changes in prey quantity or quality, or in behavior which 
can alter how well birds are able to provide for their young (e.g., longer times at sea 
due to less favorable wind conditions).

Sooty shearwaters are flexible in the types of oceanographic habitats in which 
they forage during the breeding season. Therefore, it may be difficult to tease apart 
particular intricacies in the mechanisms that influence chick quantity and size. 
However, the importance of winds (speed and direction) for sooty shearwaters has 
been highlighted in the non-breeding (Adams and Flora 2009), and breeding 
(Raymond et  al. 2010; Humphries 2014) seasons. Conditions which represent 
increased turbulence in the sub-Antarctic water region in March (i.e., significant 
wave height and wind speed in a region that sooty shearwaters use as a flyway 
enroute to foraging sites) are positively correlated with the size of chicks during the 
harvest by Rakiura Maori which occurs in mid-April to late-May (Humphries 2014). 
This is likely because increased wind speed increases the efficiency of adult flight, 
allowing birds to visit and return from foraging regions more quickly while using 
less energy. Signals from foraging efficiency in March would be detected in chick 
size during the period from which the population indices were derived (i.e., mid- 
April/late-May).

Due to the relationship between chick size and upcoming shifts in SOI, and the 
importance of March mean wind speeds in the sub-Antarctic water region in deter-
mining length of time of foraging trips and its relationship to chick size, I expect 
that wind speeds in the sub-Antarctic water region are also correlated with subse-
quent shifts in Southern Oscillation. Therefore, for this study I examined oceano-
graphic variables associated with three important regions for sooty shearwaters 
(coastal NZ waters, offshore core foraging area, and sub-Antarctic water) against 
future lagged values of SOI. I do this in a machine learning context to demonstrate 
a novel use of generalized boosted regression models to search for oceanographic 
regions that explain variation in upcoming values of SOI.

G. R. W. Humphries
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13.2  Methods

13.2.1  Study Region

The study region was defined as the oceanographic extent around New Zealand 
where sooty shearwaters nesting on Whenua Hou (Codfish Island; 47° 47’S, 167° 
38′E) were located during the 2004/2005 and 2005/2006 breeding seasons (defined 
as November first to mid-April of the following year) as shown from previously 
published light-sensing geolocator (GLS) data from Shaffer et al. (2006). The area 
extends from −16° to −66° latitude and 124° E to 124° W longitude (Fig. 13.1). 
Codfish Island is a small island, 3 km off the western coast of Stewart Island, and 
although not harvested by Maori, previous work has demonstrated that burrow den-
sities are proportionally similar between this island and harvested islands (Lyver 
et al. 1999). I therefore make the assumption here that the population of shearwaters 
on Codfish Island is representative of birds from the nearby harvested islands.

13.2.2  Data

Monthly mean climatologies of physical oceanographic variables were downloaded 
from the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim 
analysis project (https://apps.ecmwf.int) at a spatial resolution of 0.75 x 0.75 
degrees for the years 1985 to the present. A list of the environmental data layers 
used in my analysis can be found in Table 13.1.

Environmental data were selected due to their potential relationships between 
bird behavior and physical oceanographic qualities which may affect atmospheric 

Fig. 13.1 Map of study area showing the regions more important for explaining variation in the 
chick size index, and offshore foraging areas in comparison to the Southern Ocean fronts. In this 
study, we focus on the eastern most offshore core foraging area

13 Breaking Away from ‘Traditional’ Uses of Machine Learning: A Case Study…
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circulation. For example, ocean temperature may affect the location where birds 
forage (due to prey types having specific oceanographic requirements) but may also 
influence evaporation and air temperature. Wind speeds directly impact bird flight 
but may also be indicative of atmospheric changes that could lead to shifts in the 
Southern Oscillation. Data were processed in ArcGIS 10.0 (www.esri.com), pro-
gram R version 3.0.2 (R Core Team 2015), and NCL version 5.1.2 (NCAR 
Core Team 2013).

I also obtained chick size index data as described in Humphries and Möller 
(2017), which were representative of the months April and May due to the timing of 
the harvest. Mean chick size during the harvest (April and May) was available from 
1985 to 2010 (n = 25). This was calculated from sooty shearwater harvest diaries by 
dividing the bucket size (10 liters) by the number of chicks in each bucket. The 
means were calculated by taking the average of the mean chick size per bucket for 
each season in each diary. I then calculated an overall mean chick size for each year 
by averaging the mean chick sizes across all diaries, thus creating a time series of 
mean chick sizes.

Sooty shearwaters begin breeding in November, with eggs hatching in January – 
early February at the latest. Adult birds feed chicks until mid-April at the latest, 
when the young have reached peak weights. It is at this time that chicks are har-
vested by local Maori. Humphries and Möller (2017) demonstrated that oceano-
graphic parameters in March were important in determining the size of chicks in 
April – May (from harvest data) as this is the time of year when chicks are growing 

Table 13.1 European Center for Medium Range Weather Forecasting (ECMWF; https://apps.
ecmwf.int/datasets) data downloaded for use in modeling exercises

Variable Code Units Explanation

Charnock parameter CHNK – Constant of atmospheric stress at ocean surface 
(Charnock 1955)

High cloud cover HCC % Cloud cover at top level of ECMWF models
Low cloud cover LCC % Cloud cover at lowest level of ECMWF models
Medium cloud cover MCC % Cloud cover at mid-level of ECMWF models
Surface pressure SP Pa Atmospheric pressure at surface of the ocean
Temperature at 2 meters 
depth

T2M C Ocean temperature at two meters depth

Total column water vapour TCWV kg*m−2 Vertically integrated total mass of water vapour
Sea surface temperature SST C Temperature at top microlayer of ocean
Significant wave height SWH m Combined wind wave and swell height
Sea surface temperature 
gradient

SSTG % Percent change of sea surface temperature

Wind speed WSPD m/s Wind speed from 0 to 10 m above surface of the 
ocean

Wind direction WDIR – Classified compass bearing of wind direction (16 
classes)

Wind differential WDIF Deg Difference between direction of travel and wind 
bearing
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the fastest (Richdale 1945). Although it is possible there is a cumulative effect of 
oceanographic conditions on chick size over a season (i.e., variation in oceano-
graphic conditions from hatching to April could impact overall growth rate and thus 
size of the chicks later in the season; Hedgren and Linnman 1979), conditions 
immediately prior to harvesting would remain the most important. For example, if 
conditions are good early in the season, chicks may be fed frequently or with high 
quality prey. However, in March when chicks are growing the fastest, if conditions 
change and adults are unable to forage for their young, the quality and size of birds 
can decrease dramatically. This was evidenced by personal field observations in 
February–March 2013 when chicks that weighed ~800 - 900 g would decrease to 
~250 g and perish after 2 ½ – 3 weeks of not being fed. As such, I focused my analy-
sis on environmental conditions in March.

I then used the near and offshore core foraging areas in March which was calcu-
lated using GLS tracking data from Shaffer et al. (2006) for March 2005 and 2006 
from 14 birds tracked on Whenua Hou/Codfish Island. The 50% kernel densities 
were used to define the core foraging areas (Wood et al. 2000; Humphries 2014).

13.2.3  Spatial Models of SOI

I split the entire study area into 0.75 x 0.75-degree grid cells (matching the environ-
mental data) and extracted the environmental data into each cell, including the tem-
poral component. This created a time series for each of the environmental covariates 
(from 1985–2010, to match the shearwater data) in each grid cell. In each grid cell, 
I modeled the relationship between the environmental covariates and values of SOI 
from 1 to 24 months after March of the corresponding year (i.e., 24 time series 
models for each grid cell). March was used as the base month because it corre-
sponds to when chicks reach their peak weight. I did this because I was interested in 
comparing results from these models on the same temporal scale that the chick size 
index was able to predict SOI values from Humphries and Möller (2017). For every 
0.75 x 0.75-degree grid cell within the study area, I fit a generalized boosted regres-
sion model (gbm) model using the value of SOI as the response variable, and the 
oceanographic parameters as predictors.

Modeling was performed using the gbm algorithm in program R (Ridgeway 
2007). The gbm algorithm is a non-parametric machine learning algorithm. I chose 
this particular algorithm to model as it is commonly used for predictive modeling 
and is not prone to over- fitting like more frequentist statistical techniques (Friedman 
2002). It also has the ability to easily query relationships and interactions between 
explanatory and response variables and is not affected by inclusion of highly cor-
related predictors. This algorithm works by creating a series of regression trees (for 
continuous data), or decision trees (for categorical data) in an iterative fashion, 
minimizing the amount of error within the trees via cross validation (Friedman 
2002). Cross validation tends to help avoid over-fitting of data and can lead to better 
overall predictive  performance while taking into account complexities in datasets 
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(Breiman 2001). Yearly data of chick size were only available from 1985 to 2010 
(n = 25), thus I was unable to perform a true predictive analysis on these data. This 
was because the sample size (n = 25) was too low to be able to perform statistically 
valid (i.e., independent) cross validation on the data. However, it was possible to 
assess the amount of variation captured within the data by comparing the root mean 
squared error (RMSE) or Spearman rho (r) values between models.

13.2.4  Comparing Ocean Variables to SOI

I calculated the spearman’s r values for each month and oceanographic parameter 
for 24 months before after March to examine any potential overlap with correlation 
values from the chick size index. I did this to rule out the possibility that the chosen 
parameters were correlated to SOI prior to the period of interest. If strong correla-
tions existed 24 months before March, it would mean that conditions in March were 
being affected by shifts in SOI which would further confound patterns in our data. 
I performed the analysis for three important oceanographic regions for breeding 
sooty shearwaters; the sub-Antarctic water region, the 50% kernel density core for-
aging area from GLS data, and the near shore foraging area. Only oceanographic 
parameters that had statistically significant correlations (as per basic linear regres-
sion techniques) with SOI after March were plotted in order to identify any of the 
potential mechanisms.

13.2.5  Models of SOI lags from Broad Oceanographic Regions

I next constructed four gbm models of SOI lags from 1 to 24 months after March 
using only oceanographic parameters as predictor variables: one for each of the 
three identified oceanographic regions and one model combining all three regions. 
This was done to demonstrate if oceanographic features alone from our identified 
areas could build a good model of upcoming shifts in SOI.  The oceanographic 
parameters chosen (Table 13.1) were those that were identified to be significantly 
correlated to SOI values at the same time scale as correlations between SOI and 
chick size. Spearman r values for all four models were plotted, and the predictor 
variable ranks for the combined models from 4–14 months after March (i.e., the 
same time lag where significant correlations with chick size index were found) were 
calculated. I counted the numbers of times each variable occurred in the top three 
predictors to isolate which variables were most important to the model output. 
Finally, I created three-dimensional surface plots of the top three oceanographic 
predictor variables from the combined model with mean SOI values, and chick size 
values, from 4 to 14 months after peak chick size to demonstrate the overall relationship 
between chick size, SOI and the oceanographic features that link them.

G. R. W. Humphries
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13.3  Results

13.3.1  Spatial SOI Model Results

From one to three months after March, the oceanographic regions which best cap-
tured the variability in SOI (lowest RMSE values; 4.95 to 6.37) were to the Southeast 
of the study region, spanning an area from approximately 176° to 123° W, and from 
50° to 65° S. This fell in a band which overlapped the southern parts of the sub- 
Antarctic water region, and both the sub-Antarctic and Polar fronts (Fig.  13.2). 
When comparing to Fig. 13.1, this region of low RMSE values overlapped with both 
the offshore core foraging area and the sub-Antarctic water region (Southeast of 
New Zealand) identified as important for sooty shearwaters in the 2004/2005 and 
2005/2006 breeding seasons (Shaffer et  al. 2006). This pattern remained until 
approximately 11 months after peak chick size (February of the following year), 
when variability was not well explained in any region. (Fig.  13.2). From 13 to 
15 months after March (i.e., April, May and June 1 year after peak chick size), the 
region with the lowest RMSE values was a small patch to the South of New Zealand 
along the sub-Antarctic front. This dissipated at 16 to 17 months after peak chick 
size, but then from 18 to 23 months after March SOI values were best explained in 
the Tasman Sea, directly to the West of New Zealand. This pattern disappeared 
24 months after peak chick size (Fig. 13.3).

Fig. 13.2 Spatial generalized boosted regression models of Southern Oscillation Index (SOI) val-
ues for 1 to 12 months after the sooty shearwater peak chick feeding period (March). Maps repre-
sent the Root Mean Squared Error (RMSE) values for every grid cell in the study area to highlight 
oceanographic regions which best capture variability in SOI data using the entire suite of oceano-
graphic variables. I did not keep the scale of RMSE the same between months because the target 
variables for each month differed and were thus not comparable in this way
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13.3.2  Correlations between SOI and Ocean Parameters

Spearman correlations between the oceanographic parameters and values of SOI 
24 months before and after the harvest were depicted in Figs. 13.4, 13.5 and 13.6. 
In the sub-Antarctic water region, there were significant positive correlations (as per 
basic linear regression) between SOI and four oceanographic variables that overlap 
temporally with significant correlations of SOI and chick size: the charnock param-
eter (a measure of ocean turbulence), wind speed, significant wave height, and 
medium cloud cover. In the case of wind speed, significant wave height and char-
nock, significant correlations overlapped with Spearman r values between the chick 
size index with a lag of 4 to 13 months. Medium cloud cover overlapped with 
significant correlations of chick size with a lag of 4 to 10 months. Sea surface tem-
perature, low cloud cover, and surface pressure all had significant negative correla-
tions with SOI after the harvest, however overlaps with the significant correlations 
from the chick size were fewer. Sea surface temperature had one overlapping value 
at lag month 4, while low cloud cover overlapped at lags 4, 5, 6, 12 and 13 months, 
and surface pressure overlaps with lags 8,9 and 10 months (Fig. 13.4).

In the core foraging region, correlation coefficients between SOI and sea surface 
temperature gradient remained weak and non-significant until 1 to 5 months after 
March (i.e., SOI for April, May, June, July and August). During this period, there 
was a negative significant correlation between sea surface temperature gradient and 
SOI (Fig. 13.5). Total column water vapor was found to be significantly, negatively 

Fig. 13.3 Spatial generalized boosted regression models of Southern Oscillation Index (SOI) val-
ues for 13 to 24 months after the sooty shearwater peak chick feeding period (March). Maps rep-
resent the Root Mean Squared Error (RMSE) values for every grid cell in the study area to highlight 
oceanographic regions which best capture variability in SOI data using the entire suite of oceano-
graphic variables. I did not keep the scale of RMSE the same between months because the target 
variables for each month differed and were thus not comparable in this way
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correlated to SOI from 0 to 11 months after March. Surface pressure was also found 
to be significantly, negatively correlated to SOI from 0 to 10  months after peak 
chick size (March). Wind speed had a significant positive correlation from 0 to 
14 months after March (i.e., chick size leads a change in wind speed). Low cloud 
cover was found to only have 3 points where there was significant correlations after 
peak chick size (4, 5 and 12 months), however, there was a trend of significant 
positive correlations with SOI from −10 to −1 months before March (Fig. 13.5).

In the near shore region (Fig. 13.6), only five variables were found to have sig-
nificant correlations with SOI after March. Of the five variables, the only one that 
overlapped with the chick size correlations was sea surface temperature gradient 
from months 4 to 12, which has a significant positive correlation with SOI values.

In the sub-Antarctic water area and core foraging area, wind speed has a similar 
positive relationship to SOI. Wind speed also has a positive relationship to SOI after 
March in the near shore region however not at the time scale of interest. Medium 
cloud cover also shares a similar positive relationship to SOI in the sub-Antarctic 
water area and core foraging area, but not in the near shore area. Low cloud cover 
shares a similar negative relationship to SOI after March between all three regions. 
Surface pressure also shares a similar negative relationship between the sub- Antarctic 
water area and core foraging area, but not to the near shore region.

Fig. 13.4 Spearman’s rho between March values of oceanographic variables from 1979 to 2010 in 
the sub-Antarctic water region Southeast of New Zealand and Southern Oscillation values from 
24 months before and after peak chick size of sooty shearwater chicks. Variables plotted were only 
those that had significant correlations after the peak chick size period, and significant points are 
denoted by the corresponding marks on the lines as per the legend
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13.3.3  Regional SOI Models

Gradient boosted regression models of SOI for the sub-Antarctic water region show 
that the best correlation coefficients of predicted versus observed values (r > 0.80) 
were from 1 to 14  months after March with the best predictions occurring at 
2 months (r = 0.88). Assessment values then drop below r = 0.60 for 15 to 24 months 
after March. In the offshore core foraging area, the best model assessment values 
are from 1 to 7 months after March (r > 0.80). For the coastal NZ waters (i.e., near 
shore core foraging area), the best model assessments are from 16 to 21 months 
after March, coinciding with the timing of best predictions of SOI in the Tasman sea 
from Fig. 13.3 (Fig. 13.7).

When I ran a combined model of all the most important predictors (sea surface 
temperature, wind speed, medium cloud cover and significant wave height from the 
sub-Antarctic water region; sea surface temperature gradient from the near shore 
region; and wind speed, surface pressure, total column water vapor, temperature at 
2 m depth and medium cloud cover from the core foraging area), model assessments 
were best from 1 to 13 months after March (r > 0.80) with the best prediction at 
month 9 (December; r = 0.86; Fig. 13.7). The best predictor variables for the com-
bined model was wind speed in the sub-Antarctic water region, and in the offshore 

Fig. 13.5 Spearman’s rho between March values of oceanographic variables from 1979 to 2010 in 
the offshore core foraging area Southeast of New Zealand and Southern Oscillation values from 
24 months before and after peak chick size of sooty shearwater chicks. Variables plotted were only 
those that had significant correlations after the peak chick size period, and significant points are 
denoted by the corresponding marks on the lines as per the legend
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Fig. 13.6 Spearman’s rho between March values of oceanographic variables from 1979 to 2010 in 
the near shore foraging area Southeast of New Zealand and Southern Oscillation values from 
24 months before and after peak chick size of sooty shearwater chicks. Variables plotted were only 
those that had significant correlations after the peak chick size period, and significant points are 
denoted by the corresponding marks on the lines as per the legend

Fig. 13.7 Spearman’s rho of predicted versus observed values for generalized boosted regression 
models of upcoming Southern Oscillation Index after March for the 1979–2010 time series using 
only oceanographic parameters from each region that were significantly correlated with SOI from 
4–14 months after the sooty shearwater harvest. The core foraging area model is highlighted here 
with a solid line because I was interested in demonstrating how, although we have identified a 
potentially important area for sooty shearwater foraging, a better model is found in another area 
(Sub Antarctic water)
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core foraging area, and the sea surface temperature gradient in the near shore core 
foraging area (Table 13.2). The highest values of mean SOI 4–14 months after peak 
chick size (generally corresponding to La Niña events) are noted when wind speed 
in both the sub-Antarctic water (r2  =  0.52), and offshore core foraging areas 
(r2 = 0.48) are higher, which also coincide with a higher chick size index (Figs. 13.8a 
and b). A similar pattern was found for sea surface temperature gradient in the near 
shore region, where higher chick size and gradient values are indicative of an 
upcoming La Niña (r2 = 0.42; Fig. 13.8c).

Prior to a sustained El Niño 4–14 months after peak chick size, the chick size 
index during the harvest is on average 10% lower than prior to a sustained La 
Niña event (mean = 0.45 for an El Niño and mean = 0.50 for La Niña). I also 
found that mean wind speeds in the sub-Antarctic water region and offshore core 
foraging area were 9.29 m/s and 9.41 m/s respectively prior to El Niño condi-
tions, which were 20% and 12% lower than wind speeds in both areas prior to a 
La Niña. In the near shore core foraging area, mean sea surface temperature 
gradient was 60.94% prior to El Niño conditions, and 72.85% prior to La Niña 
conditions (Table 13.3).

Table 13.2 Variable rankings from a generalized boosted regression model using a combination 
of the variables for each oceanographic region which had significant correlations with upcoming 
SOI values on the same time scale as the chick size index from (Humphries 2014)

Region Variable

Number of 
times as top 
predictor

Number of times 
as second best 
predictor

Number of times 
as third best 
predictor Total

Sub-Antarctic 
water

Wind speed 4 5 2 11
Significant wave 
height

0 1 2 3

Charnock 
parameter

0 0 0 0

Medium cloud 
cover

0 0 0 0

Offshore core 
foraging area

Temperature at 
2 m depth

0 1 1 2

Wind speed 4 2 3 9
Total column 
water vapour

0 0 1 1

Medium cloud 
cover

0 0 1 1

Near shore 
core foraging 
area

Sea surface 
temperature 
gradient

3 2 0 5
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Fig. 13.8 Three 
dimensional linear 
relationships between 
mean SOI from 
4–14 months after peak 
chick feeding, the chick 
size index and the 
sub-Antarctic water (SAW) 
wind speed (a), offshore 
core foraging area (CFA) 
wind speed (b), and near 
shore sea surface 
temperature gradient (c)
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13.4  Discussion

The importance of predicting upcoming shifts in climate cannot be understated due 
to the obvious role it has in agriculture (Hansen et al. 1998; Solow et al. 1998), 
economy (Tapia Granados et  al. 2012), ecology (Veit et  al. 1997; Stenseth et  al. 
2002; Stenseth et al. 2003), and society (Glantz et al. 1987). In this study my broad 
goals were to examine oceanographic factors in regions that were important for 
sooty shearwaters during the breeding season to determine if these factors could 
also explain variation in upcoming SOI shifts. My more specific goal of this study 
was to test if turbulent conditions (i.e., wind speed and significant wave height) in 
the sub-Antarctic water region (which affects size of chicks) were also predictive of 
upcoming shifts in SOI.

13.4.1  Considerations

All of the data used for this study were downloaded from ECMWF and represent 
model simulations of all parameters from 1985 to 2010. I was limited due to the 
time series of the chick size data however ECMWF data are available up to 2 months 
from the present, meaning the analysis could be extended if chick data were avail-
able. I chose to use ECMWF data because primary data obtained from remote sens-
ing sources (e.g., satellites) do not extend back far in time (i.e., most data exist from 
mid-1990s to the present). Although the ECMWF data are generally calibrated 
using real time data from weather stations, they are not completely representative of 
measured values. It is also important to consider that I did not select biotic param-
eters (e.g., primary production or chlorophyll a or b) that have been correlated to the 
distributions of many seabirds (Hunt 1990; Suryan et al. 2006; Wells et al. 2008; 
Shaffer et al. 2009). Although there is mounting evidence that biology (particularly 
primary production) may be influencing climate on large scales (Charlson et  al. 
1987; Malin and Kirst 1997), I chose to only investigate physical ocean parameters 
which would be more likely to explain upcoming shifts in SOI. Sample size of the 

Table 13.3 Mean values of the chick size index and the top 3 predictor variables from the 
combined model prior to El Niño, normal, and La Niña conditions

Variable
Mean prior to El 
Niño conditions

Mean prior to 
normal conditions

Mean prior to La 
Niña conditions

Mean chick size (L / chick) 0.45 0.47 0.5
Sub-Antarctic water wind 
speed (m/s)

9.29 10.58 11.65

Offshore core foraging area 
wind speed (m/s)

9.41 10.12 10.67

Near shore sea surface 
temperature gradient (%)

60.94 66.84 72.85
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data is also a consideration when interpreting these results due to an n = 25 years for 
this dataset. When performing model assessment, the small sample size means that 
it is not feasible to perform independent cross-validation tests of model performance 
which would be indicative of the true predictive nature of the models. As such, 
gridded model assessment values are reported as the root mean squared deviation of 
the predicted versus observed within the data from 1985 to 2010.

13.4.2  Spatial Models of SOI Data

The spatial relationship between oceanographic conditions in March and upcoming 
values of SOI show a consistent pattern for 1 to 12 months after the sooty shearwa-
ter peak chick size period (March; Fig. 13.2). In general, the oceanographic region 
that best explains variation in the SOI data spans from 176° to 123° W and 50° to 
65° S, with few other areas appearing in these maps (Fig. 13.2). For the first 3 months 
after March, the areas with the lowest RMSE overlap both the sub-Antarctic and 
Polar fronts. However, this situation changes by July (+4), when the Polar front 
seems to become a barrier to the areas of lowest RMSE, while overlap still exists 
with the sub-Antarctic front. The Polar front is the southern extent of the Antarctic 
Circumpolar Current (ACC), and as such acts as a barrier to biological and oceano-
graphic processes (Convey et al. 2009). A pattern where the Polar front would act as 
a barrier to the low RMSE values is therefore not unexpected. When comparing the 
maps of core foraging areas for March 2005 and 2006, and the oceanographic area 
where the chick size index from Humphries and Möller (2017) is best explained 
(Fig. 13.1), there is relatively high overlap with both the offshore core foraging area 
and the sub-Antarctic water area and low RMSE values for upcoming SOI values. It is 
therefore likely that the link between SOI and chick size is driven by oceanographic 
conditions in the offshore core foraging area and sub-Antarctic water area.

Figure 13.3 depicts a region in the Tasman sea which has low RMSE values, 
suggesting that this region is important in predicting SOI from 16 to 24 months out. 
However, GLS data from Shaffer et al. (2006) and findings from Humphries and 
Möller (2017) do not support this region as a link between sooty shearwaters 
and SOI.

13.4.3  SOI and Oceanographic Factors

I examined spearman correlations between all the oceanographic factors for March 
and upcoming shifts in SOI in the sub-Antarctic water region, the offshore core 
foraging area, and the near shore region. In March in the sub-Antarctic water zone, 
I found that conditions that represent turbulence (i.e., significant wave height, wind 
speed and the charnock parameter) are highly correlated with upcoming SOI values 
Southern Oscillation Index (SOI):and oceanographic factors on the same time scale 
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as significant correlations between chick size and upcoming SOI values. The rela-
tionship is positive, which indicates that when conditions are more turbulent in the 
sub-Antarctic region, there may be an upcoming La Niña event, and when condi-
tions are less turbulent, there may be an upcoming El Niño event. A similar pattern 
is shown in wind speeds of the core foraging area. A combined model (using all 
variables that were correlated with SOI on the same time scale as the chick size 
index) confirms that the best predictors of upcoming shifts in SOI are wind speed 
variables in the offshore regions, and sea surface temperature gradient in the near 
shore region. The highest correlations between SOI values and oceanographic con-
ditions in March in the sub-Antarctic water region occur at lags of two and three 
months, and then decrease, which suggests a gradual change in conditions prior to 
a shift in SOI.

The Southern Pacific sea-air flux is driven by two major latitudinally moving 
atmospheric circulations, the Hadley cell, which drives air from the equatorial 
Pacific towards the central South Pacific, and the Ferrell Cell, which drives air from 
the Antarctic region towards the central South Pacific (Schneider 2006). During a 
La Niña event, Hadley and Ferrel cells in the Pacific region are weakened, leading 
to increased storm frequency in the Southern Ocean between 170° to 120° W and 
40° to 60° S regions due to a shift in the Southern jet stream. During El Niño events, 
the opposite is true, with strengthened Hadley and Ferrel cells causing generally 
more fine conditions in the same region due to a Northward shift of the jet stream 
(Rind et  al. 2001). This means there are increased wind speeds during La Niña 
events, and decreased wind speeds during El Niño events, eventually leading to the 
formation of the Antarctic dipole (Yuan and Martinson 2000; Yuan and Martinson 
2001; Liu et  al. 2002). Because La Niña and El Niño events tend to take many 
months to form, it is likely that the pattern observed in Fig. 13.3 is due to the gradual 
southward shift of the Southern jet stream through the sub-Antarctic region, which 
would cause increased wind speeds and the presence of low pressure systems. A 
pattern of higher sea surface temperature gradients in the New Zealand coastal 
region prior to La Niña events could also be correlated to a southern shift in the 
southern jet stream due to wind speeds having a strong effect on the Southland cur-
rent (Chiswell 1996). In this case, stronger wind speeds would lead to increased 
speed and strength of the Southland current, which would increase sea surface tem-
perature gradient due to greater separation of colder offshore waters and warmer 
near shore waters.

13.4.4  Relating SOI, Chick Size and Oceanography

These findings show a 10% difference in the chick size index prior to La Niña 
events versus El Niño events. This corresponds to 20% difference in wind speed in 
the sub-Antarctic water region, a 12% difference in wind speed in the core foraging 
area, and a 16% difference in the near shore sea surface temperature gradient. 
Behavioral models from Humphries (2014) show strong relationships between wind 

G. R. W. Humphries



279

speed and total time on long foraging trips. As suggested by these models, the likely 
explanation for the relationship between wind speed and the chick size index is 
due to foraging effort being altered, in that adults stay at sea for longer (or shorter) 
periods, thus affecting the size of chicks. However, the Polar front is on the edge of 
a major source of upwelling due primarily to wind speeds and direction in the ACC, 
and shifts in those speeds may, in some cases, cause changes in upwelling strength 
along the Polar front and therefore productivity (Convey et al. 2009). It could there-
fore be possible that there is a compounding effect of wind speed (via foraging effort) 
and general productivity in the foraging region, which would have consequences on 
chick size.

13.4.5  Future Steps

The reasons for shifts in SOI are complex and not well understood. Most models 
that currently exist are able to predict the onset of an El Niño or La Niña event by 
about 12 months. The results I have presented here rival current models and help 
resolve the mechanisms driving sooty shearwater dynamics during the breeding 
season. Further study is required to examine other aspects of these mechanisms 
including the effects of biological productivity shifts on the chick size index, and 
prey dynamics in foraging regions. More tracking studies over long-term periods 
would also help to determine if core foraging areas as determined from the Shaffer 
et al. (2006) tracking data remain stable over time, which would have effects on the 
breeding population. There are also unanswered questions as to any complex inter-
actions between environmental covariates and sooty shearwater foraging activities 
with the formation of the Antarctic Dipole which drastically alters oceanographic 
conditions in the core foraging area (Yuan and Martinson 2001). The effect of the 
Antarctic Dipole on breeding sooty shearwaters needs to be assessed to answer 
these questions. Also, I have only examined oceanographic data from March in 
order to compare with the chick size index. There would be merit in examining 
oceanographic conditions across the entire breeding season (November–March) to 
determine if chick size (and perhaps SOI) can be predicted from cumulative effects 
over the course of the Southern hemisphere summer.

Finally, biological activity may play a major role in climate control on a global 
scale (Malin and Kirst 1997; Stefels et al. 2007; Le Clainche et al. 2010). Due to the 
large amount of biological activity in the Antarctic region (driven by upwelling 
from wind speed in the ACC region), it acts as a major sink for CO2 in the atmo-
sphere (Takahashi et  al. 2002), at the same time potentially altering climate via 
cloud formation (Bates et al. 1987; Charlson et al. 1987). Therefore, it is also pos-
sible that the patterns I detected between wind speed, chick size index and SOI may 
be related to the fact that biological activity in the Antarctic, as determined by wind 
speed, has consequences in the upper atmosphere which leads to the relaxation of 
the trade winds and thus acting as a precursor to SOI shifts. However, this is specu-
lation and no studies to this effect have yet been performed.

13 Breaking Away from ‘Traditional’ Uses of Machine Learning: A Case Study…



280

13.5  Conclusions

Understanding the dynamics between oceans, climate systems, and seabirds is 
important to understanding seabird population dynamics (Lloyd 1979; Croxall et al. 
1999; Pinaud and Weimerskirch 2002; Ainley et  al. 2005). It also highlights the 
importance of seabirds as sentinels of ecosystems (Piatt and Sydeman 2007; Parsons 
et al. 2008). In regions that were important for sooty shearwater chick size in the 
breeding season, oceanic factors that represented turbulence were also important in 
predicting shifts in the Southern Oscillation. Higher wind speeds prior to La Niña 
events in the sub-Antarctic water zone between the breeding colonies and the off-
shore foraging regions allow birds to lower the amount of energy required for flight 
and thus spend less time foraging. These higher wind speeds are likely correlated 
with a transition from normal conditions to La Niña conditions as the Southern jet 
stream shifts south due to a relaxation of the Hadley and Ferrel cells in the Pacific 
Ocean. These relationships are only moderate and deeper studies of this phenomena 
could better resolve the connections between chick size, and ENSO. By studying 
this further it may be possible to monitor upcoming climate shifts by consulting 
groups like the Rakiura Māori about chick condition during the breeding season, 
which would have important implications in aspects of climate forecasting on a 
global scale.
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Chapter 14
Image Recognition in Wildlife Applications

Dawn R. Magness

Digital camera equipment, data storage and image processing capacity have become 
cheaper and more accessible to ecologists. Camera trap stations, with the images 
delivered to our inboxes, are widely available (O’Connell et al. 2010). Ecologists 
and wildlife biologists are also deploying camera and videography equipment as 
a standard back up to traditional census techniques, such as observer counts of wild-
life along transects. Drones can deliver high quality and detailed images of animals; 
for examples NOAA’s recent release of Killer Whales collected images by drones 
(Fig.  14.1). The amount of collected images can quickly outpace our ability to 
analyze this data by hand. Can machine learning applications help ecologists and 
wildlife biologists leverage the information contained in these images?

In this chapter, I review some broad applications and uses of imagery for ecolo-
gists and wildlife biologists. Images can be used to (1) identify species for occur-
rence, (2) identify individuals for mark-recapture studies and other behavioral 
studies, and (3) count individual animals for population census. Machine learning 
can help us effectively process and extract information from images and in some 
cases; the methods are becoming more available to biologists without computer 
programming skills.

14.1  Identifying Species for Occurrence

Camera traps have been widely used in ecology and wildlife management across a 
spectrum of studies ranging from inventory to population estimates (O’Connell 
et al. 2010). Each camera trap station can produce large volumes of images; many 
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without animals in the frame. Camera traps are an appealing method because they 
can be deployed in many places at the same time. However, annotating all the 
images is a challenge. Requiring an observer to go through every picture can be very 
time consuming. For example, researchers at Serengeti National Park, Tanzania 
deployed 225 camera traps over 3 years and collected over 1.2 million image sets 
(Swanson et al. 2015). The Snapshot Serengeti project used crowd sourcing to find 
volunteers to process the images and provide species identification. Snapshot 
Serengeti released this classified baseline dataset in 2015. Can computer scientists 
use machine learning to find new approaches to image processing and species iden-
tification for camera trap datasets?

Computer scientists are applying machine learning approaches to this problem. 
Image recognition has been an area of research developed in part to allow internet 
search engines to deliver images from the World Wide Web. Google recently 
released Tensorflow (https://www.tensorflow.org/), a scalable deep learning neural 
network useful for image recognition, as an open-source software library (Abadi 
et al. 2016). Machine learning can be used to identify images with animals in the 
frame and to classify the images by species. Machine learning uses an image dataset 
that has been annotated by an observer to train the model to categorize images. The 
model is then applied to a validation dataset to assess the predictive ability. Camera 
trap data can be difficult to classify with models because of unbalanced samples; for 
example, when there are many empty frames or the species of interest is rarely in 
the image when compared to a more common species. The model must also be 
robust enough to handle incomplete images and huge differences in the size, shape, 

Fig 14.1 Drones now deliver high quality, detailed images of wildlife. NOAA has been capturing 
images of killer whale pods
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and color of an animal that is due to where the animal is in relation to the camera 
and changing environmental conditions (Gomez and Salazar 2016). Often very 
large training datasets are needed to allow the model to train across the range of 
conditions or the image dataset must be filtered to a subset of high quality images.

Elias et al. (2016) used a very large dataset to train a Tensorflow computer vision 
model to classify images collected by a network of camera stations deployed to 
monitor wildlife on the University of California Santa Barbara Sedgwick Reserve. 
The large training dataset included empty images and augmented images that had 
bear, deer and coyote imaged cropped and overlaid on empty images. The aug-
mented images used publically available images to develop the training dataset. The 
model was trained on the commercial cloud because it needed the computing power 
to handle the large datasets. When tested on a validation dataset of empty and 
images with animals, the model was able to accurately classify 87% bear, deer and 
coyote images (Elias et  al. 2016). The classification ability of the trained model 
could be improved by including by including even more variation in image angles 
for deer, which had the majority of misclassified images (14% of images misclassi-
fied for deer; 1% for bear and coyotes).

Gomez and Salazar (2016) tested classification errors for 26 animals from the 
Snapshot Serengeti. They had classification accuracy of 35% when the dataset was 
unbalanced an included empty frames and frames with distant animals. Therefore, 
they filtered out the images without animals and trained the model on images with 
animals. When the dataset was preprocessed to remove empty frames and to only 
include images with optimal animal placement in the foreground, classification 
accuracy was 83%. The Snapshot Serengeti used human observers to annotate the 
entire dataset. Machine learning algorithms can also be used to pre-filter the training 
data. Earlier approaches filtered out empty frames by comparing pictures that are in 
a time series and use change between frames to indicate an animal (Figueroa et al. 
2014). Figueroa et al. (2014) used change detection with some success for detecting 
ocelots, though understanding if the change was an animal entering or leaving the 
frame was problematic. Another preprocessing approach to filter images before 
classification is segmentation. Segmentation detects blobs or objects in the image. 
Figueroa et al. (2014) found that the SURF algorithm could be used to find ocelots 
in an image. Yu et al. (2013) used segmentation (SIFT) to crop the animal body out 
of the camera trap station images. These cropped images included 18 species and 
were classified with a multi-class SVM with 82% accuracy. Accuracy ranged from 
58%–93%. The lowest accuracy was for Red brocket deer that were mostly misclas-
sified as White-tailed deer.

14.2  Identifying Individuals for Mark Recapture

Beyond detection and occupancy studies, images can be used to identify individuals 
for population estimates via mark-recapture analyses. Tracking individuals can also 
give us insight into animal behavior, such as residency and movements (Marshall 
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and Pierce 2012). Marine biologists have a long history of using images to study 
marine mammals. For example, researchers began photographing humpback whale 
flukes in the 1960s to use variation in fluke coloration to track individuals (S. Katona 
et al. 1979). Catalogs of humpback whale flukes are still published to allow research-
ers and volunteers, such as tour boat operators, to contribute sighting locations. 
These photographic datasets can be used to estimate population demographics via 
mark-recapture methods (Katona and Beard 1990; Smith et al. 1999). Photographic 
mark recapture studies have been used for a variety of marine species, such as whale 
sharks and some terrestrial species (Meekan et al. 2006; Van Tienhoven et al. 2007; 
Speed et al. 2007). Often a human observer is used to identify individuals, but this 
can be time intensive and limit the number of photographs that can be processed. 
Furthermore, matching errors increase as the size of the image catalog increases 
making observer matching for large populations less feasible.

Machine learning algorithms have been a focus of research groups interested in 
automating the identification of individuals. Image matching has been successfully 
deployed for a range of animals with coloration variability among individuals 
including fish, amphibians, and mammals (Bolger et al. 2012). Computer assisted 
identification can identify individuals through image matching faster than human 
observers and with similar accuracy (Dala-Corte et al. 2016). For image-based mark 
recapture, animal marking must be stable across time. In some species, natural 
marking and scar patterns can grow and change (Marshall and Pierce 2012). In 
general, the following steps are needed to match individuals in new images with 
databases of previously acquired images: (1) image preprocessing (2) creation and 
maintenance of image database, (3) use computer vision algorithm to extract infor-
mation about animal markings from the image and (4) compare animal markings 
among images and rank potential matches (Bolger et al. 2012).

A variety of open-source software packages have been developed to aid in com-
puter assisted image-based mark recapture studies (Table  14.1). These software 
packages reduce the programming skills needed by researchers interested in this 
approach. In most of these studies, animals are photographed to document marking 
that can be used to distinguish individuals, so software is useful for comparing these 
photographs, but will not help filter out images with no animals in the frame or with 
poor quality (see previous section).

In some cases, fully automated identification is possible. A colony of African 
penguins (Spheniscus demersus) on Robben Island, South Africa are being monitor-
ing with a fully automated identification system (Sherley et al. 2010). Penguins are 
an ideal species for automated monitoring because they have contrasting plumage, 
stable and unique individual plumage, slow movements, and predictable travel 
routes. Images of the penguins are captured in the daytime by cameras placed along 
“penguin highways” which are the primary pathways to and from the sea (Sherley 
et al. 2010). Images were captured by an Ethernet camera networked to a computer 
for image processing. In order to identify individual penguins, machine learning 
algorithms were used to (1) locate each penguin in the images and identify the belly 
as the area of interest, (2) orient or pose each penguin to be front facing, and (3) 
identify individuals based on belly spot pattern (Burghardt 2008). Burghardt (2008) 
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developed the methods used to automate penguin counts in his well-documented 
dissertation. Sherley et al. (2010) found that 13% of the 1453 penguins that passed 
the camera could be processed to the individual with >90% accuracy. This sampling 
rate was similar to what could be achieved with flipper banding.

However, many software packages are semi-automated and not fully automated. 
In semi-automated software, animal images must be preprocessed by to crop and 
orient the animal. The user is also usually required to validate the final match by 
reviewing the top ranked candidates. A common algorithm for identifying units of 
animal markings is the Scale Invariant Feature Transform (SIFT) algorithm (Lowe 
2004). SIFT is powerful because it can analyze images even when the scale (size of 
the animal in the frame) and rotation (angle of the animal in the frame) between two 
images are different. SIFT is too complex to be covered adequately here and it may 
not be important for most ecologists to understand exactly how it works (several 
websites include detailed descriptions such as, http://opencv-python-tutroals.
readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.
html). In simple language, SIFT identifies and describes features within an image 
(such as a distinct edge on a marking) in a way that is invariant to scale or orienta-
tion. SIFT then identifies candidate pairs of features present in pairs of images.

Image mark recapture studies have been successfully applied to wildlife studies. 
This technique was used to estimate demographic parameters for a giraffe popula-
tion (Bolger et al. 2012). Success is largely dependent on the ability of computers to 
accurately identify individual animals in images. Misclassification can negatively 

Table 14.1 Open-source software packages developed for identifying individual animals in 
photographs.

Program Pre-processing Match algorithm Final match Citation Website

Wild ID Images need to be 
cropped to area of 
interest prior to 
importing into 
software

SIFT RANSAC 
ranks matches 
and user 
inspection of 
best 20 
matches

(Bolger 
et al. 
2012)

http://dartmouth.
edu/faculty-
directory/
douglas-thomas-
bolger

Hotspotter User identifies 
region of interest 
and orients image

RootSIFT Local native 
Bayes nearest 
neighbor 
algorithm 
assigns 
identity

(Crall 
et al. 
2013)

http://cs.rpi.edu/
hotspotter/

SLOOP Segmentation, 
illumination 
correction, and 
rectification tools 
available

Multi-scale PCA, 
scale-cascaded 
alignment, SIFT, 
SURF, ORB,

User 
inspection of 
best matches

(Duyck 
et al. 
2015)

https://sloop.mit.
edu/

FoTo 
Spottr

User outlines the 
area of interest

Spot 
segmentation 
and pixel by 
pixel comparison

User 
inspection of 
best 10 
matches

(Schoen 
et al. 
2015)

http://cnd.
mcgill.
ca/~aschoen/
spottr/
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bias survival estimates (Morrison et al. 2011). Error rates in most image recognition 
studies are low. For example, 95% of known matches were identified in a large 
database of marbled salamanders (Ambystoma opacum) (Gamble et al. 2008).

14.3  Counting Animals for Population Census

Many species require accurate population estimates for management applications. 
Aerial surveys can be an effective way to census animals (Jolly 1969). Wildlife 
managers and researchers can use imagery, from manned and unmanned aircraft, to 
aid in aerial census. Drones can collect data at low elevation and with high image 
resolution, which provides the opportunity to monitor smaller animals with aerial 
images. Small shorebirds are now possible to detect with low altitude drone mis-
sions (Chabot and Francis 2016). High resolution imagery collected in conjunction 
with observer-based aerial counting can be used to estimate observer errors or the 
images can be used as the primary census method. When images are used, the popu-
lation census can be archived and repeat counting is possible. Observers have tradi-
tionally used photo editing software to hand mark and count animals in each image. 
Hand counting is time consuming, limits the area that can be sampled, and is subject 
to errors (Bajzak and Piatt 1990; Russell et al. 1996). Machine learning algorithms 
may be used to automate animal counts in order to make processing the images 
manageable.

There has been interest in using computers to count animals for nearly 30 years 
(Bajzak and Piatt 1990). Chabot and Francis (2016) provide an extensive review of 
studies that have used automated counting methods for birds. Of the 19 computer 
automated bird counts reviewed by Chabot and Francis (2016), 6 used spectral 
thresholding, 5 used spectral analysis and segmentation, and 5 used an object based 
classification. In other words, most studies to date have used approaches from the 
fields of remote sensing. Automating counting of animals in images must deal with 
the problem of many empty frames and for some spices, animals that occur in vari-
able densities.

Spectral thresholding delineates the spectral signal of animals from their back-
ground and can provide adequate results for animals with high contrast. For exam-
ple, snow geese could be counted with an accuracy of 2.8%, while caribou, which 
blend more with their background, had 10.2% count error (Laliberte and Ripple 
2003). Software from the medical sector, such as ImageTool (http://compdent.uth-
scsa.edu/dig/itdesc.html) and Image J (https://imagej.nih.gov/ij/), have tools that 
can delineate blobs and generate attributes that describe the shape and size of the 
blob. Blob size can be related to number of animals for animals in large flocks or 
that gather in groups (Pérez-García 2012; Laliberte and Ripple 2003). Blob charac-
teristics, such as shape, can be used to filter out blobs that are not animals 
(Cunningham et  al. 1996). Variable backgrounds between images, differences in 
lighting, and animal location can require that each image be preprocessed to sharpen 
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the contrast of the animal of interest or to crop out problematic features in the pic-
ture (Chabot and Francis 2016).

Remote sensing software has also been utilized to segment and classify the spec-
tral signatures of animals. For example, ArcGIS was used to conduct an unsuper-
vised classification of a gull colony. The bird pixels were converted to polygons that 
were filtered by size to remove larger species. The resulting count was similar to 
visual counting methods (Grenzdörffer 2013). However, pixel based approaches did 
not work well to detect deer, an animal that occurs at low densities and blends with 
the background, because of high commission errors (Chrétien et al. 2016).

Object-based image analysis software, such as Ecognition, derives objects by 
grouping similar pixels for segmentation and classification (Blaschke 2010). Object- 
based image analyses use hierarchical rule-sets to segment imagery and classify 
objects. This flexibility is useful for separating animals from backgrounds. For 
example, seabird flocks can be identified and separated from variable sea conditions 
that cause counting errors prior to identifying individual birds (Chabot and Francis 
2016). Object-based approaches have been used to count male and female scoters 
using aerial photographs (Groom et al. 2007). In the East African savannah, large 
mammals have been identified and counted using GeoEye-1 satellite images (2-m 
resolution pan sharpened to 0.5 m) with a 7% omission error and a 14% commission 
error; though species could not be distinguished due to the pixel resolution (Yang 
et al. 2014). Chrétien et al. (2016) had a detection probability of 0.5, a rate slightly 
lower than human observers, for deer using an object-based image analysis of ther-
mal infrared and color images collected with an unmanned aircraft.

Other machine learning approaches have been applied to counting animals. Abd- 
Elrahman et al. (2005) used pattern recognition techniques from the field of com-
puter vision to count wading birds. Both spectral signatures and image matching of 
photographed birds were used to recognize and count birds in the image. First, a 
normalized cross correlation, which provides a measure of the degree of similarity 
between a sample location and a known image of a bird, was used to identify poten-
tial birds in the images. Next, the center point of these potential birds is grown based 
on similarity to the spectral signatures of the image. The spectral characteristics 
within this region are them compared to the spectral signatures of photographed 
bird images. Finally, potential birds are filtered by size to remove areas that are too 
small. Mean omission error across images was 10% and mean commission error 
was 14%. Commission errors generally occurred when bright spots occurred due to 
combinations of sun, camera and vegetation angle.

Maire et al. (2015) used Convolutional Neural Networks (CNN) to detect Dugong 
(Dugong dugon), a marine mammal that can occur at very low densities. This 
approach stems from early work on face detection. A moving window feeds infor-
mation to a classifier algorithm to detect the presence of an object of interest. The 
Pylearn2 framework in Python was used to implement the CNN and the code and 
dataset is archived by Maire et  al. (2015). The best model correctly counted 41 
Dugong, missed 10, and falsely identified 110. Maire et al. (2015) suggest that as 
more data is acquired, the model will become more accurate. Although these results 
would not be accurate enough for automated counting, the model does reduce the 
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number of images that must be reviewed by a human counter. However, this 
approach cannot be applied when there are differences in image acquisition. The 
approach is scale dependent, so photos must be taken at a consistent altitude so that 
animals will not vary in apparent size.

Torney et al. (2016) use a rotation-invariant feature classification from the field 
of computer vision to perform a wildebeest population census. A 2009 survey of 
wildebeest collected 2017 images across the Serengeti National Park. Wildebeests 
in every image were counted twice, using 2 independent observers and compared to 
the computer automated count. Per image, the error rates are greater in the auto-
mated count. For the total census, the automated count is more accurate than either 
manual count alone because there is no systematic bias. However, when multiple 
human counts are averaged, they outperform the computer count. The computer 
correctly counted 1423 wildebeests, missed 235, and falsely counted 496. Torney 
et al. (2016) believe that the results are not accurate enough for fully automated 
counts, but the methods are promising.
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Chapter 15
Machine Learning Techniques 
for Quantifying Geographic Variation 
in Leach’s Storm-Petrel (Hydrobates 
leucorhous) Vocalizations

Grant R. W. Humphries, Rachel T. Buxton, and Ian L. Jones

15.1  Introduction

Many ecological studies have explored the numerous applications of machine learn-
ing (ML) algorithms. Primarily, these algorithms are used for species distribution 
models (Elith et al. 2006; Warren and Seifert 2011), where occurrence data (pres-
ences/absences) are modeled with environmental covariates to make predictions to 
larger areas. However, one can also apply these techniques to other interesting clas-
sification problems, including analysis of count, categorical, and continuous data 
(see also Chap. 1 in this book for an overview).

A potentially valuable application for ML techniques is classification of indi-
viduals into biologically relevant groups without any pre-conceived assumptions 
of what defines those groups. This is often done in genetics studies, where unsuper-
vised techniques (e.g., clustering) are used to classify organisms based on their 
genetic makeup (Chen and Ishwaran 2012). For an ecologist, one might compare 
this to how you recognize an animal taxon in the field; the size, colors, vocaliza-
tions etc., that are all identification criteria for species. This gets more challenging 
when comparing sub-species, for example the split of the song sparrow (Melospiza 
melodia) into 23 different sub-species, all distinguished by subtle characteristics 
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 (morphology, genetics, and vocalizations; Arcese et  al. 2002). Taxonomic splits 
like this usually result in heavy debate, conjecture and assumptions, and ultimately 
lead to questions about the definitions of “species” or “sub-species” (Winker 
2010). We are now at a point, technologically, where we can quantify these traits in 
objective ways with useful ML based algorithms.

There are masses of data that could be collected from birds to help classify spe-
cies, but perhaps the least intrusive are vocalization data (bird calls and songs). This 
is because we can set up automated recording systems to collect acoustic informa-
tion that we can analyze at a later date. Most non-passerine bird groups have geneti-
cally determined vocalizations rather than imitative vocal learning, so vocal 
divergence is assumed to correlate with genetic divergence (Petkov and Jarvis 2012; 
Sosa-López et al. 2016). In colonial breeding birds like seabirds, individual recogni-
tion is a primary function of vocalizations, hence the extreme variability of call 
structure across individuals and low variability within individuals (e.g., Jones et al. 
1987, Bretagnolle 1989, Bretagnolle et al. 1998). The study of avian vocalizations 
is becoming an increasingly important field, with focuses on sexual selection and 
geographic variation (Bretagnolle and Genevois 1997; Ferreira and Ferguson 2002; 
Alström and Ranft 2003; Hamao et al. 2016; Keighley et al. 2017; Lynch and Lynch 
2017; Nelson 2017; Kriesell et  al. 2018). Moreover, rapid advances in acoustic 
recording technology offers insights into avian song and diversity over extended 
spatiotemporal scales (see Textbox 15.1 for a brief overview of ‘soundscapes’; 
Buxton et al. 2018).

Vocalizations are defined by subunits called notes and syllables (Kroodsma 
2005) each of which contain information to be transmitted between the sender 
(vocalizer) and receiver (another animal hearing the vocalization). A note is the 
smallest of the subunits, where a syllable is a set of two or more notes repeated 
(Marler and Slabbekoorn 2004). Calls are sets of notes and syllables usually made 
by both sexes. You might hear these while strolling through the woods when you 
flush up a bird, which “chips” as it whizzes into the trees. Songs (learned in pas-
serines) are generally complex (a variety of notes and syllables strung together) and 
can be used for warding off potential threats to the nest and attracting a mate (Marler 
and Slabbekoorn 2004; Kroodsma 2005). Each individual bird within a species can 
have unique note and syllable structures, allowing individual recognition 
(Lambrechts and Dhondt 1995).

Notes and syllables have characteristics that can be measured, such as amplitude 
and frequency. Amplitude refers to the energy or loudness of the soundwave, and 
frequency refers to the rapidity of the vibration or pitch (i.e. how frequently a sound-
wave oscillates). In many cases, notes are made up of a series of harmonics, charac-
terized by a fundamental frequency, the lowest frequency harmonic in that note, and 
harmonic overtones that are multiples of the fundamental frequency (e.g., Fig. 15.1).

Vocalizations have been used to differentiate between populations in several spe-
cies (Ainley 1980; Adkisson 1981; Bretagnolle and Genevois 1997). For example, 
the North American western grebe (Aechmophorus occidentalis) and morphologi-
cally similar Clark’s grebe (A. clarkii) were distinguished from one another by way 
of vocalization, where western grebe were found to have one or two more syllables 
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than Clark’s (Alström and Ranft 2003). This exercise can be more challenging in 
some less obvious cases, like that of the Leach’s storm-petrel (Hydrobates leu-
corhous, formerly Oceanodroma leucorhoa), where the structure of vocalizations 
differs only subtlety in the frequency of notes.

The Leach’s storm-petrel is one of the most widely distributed pelagic tubenose 
seabirds in the Northern Hemisphere (Order Procellariiformes, which includes 
storm-petrels, albatrosses, and shearwaters; Warham 1990). They are nocturnal 
birds that nest in earth burrows and dense grass on small islands in the North Pacific 
and North Atlantic and have an overall population estimated at eight million breed-
ing pairs (Watanuki 1986; Huntington et al. 1996). The taxonomic classification of 
Leach’s storm-petrel has fluctuated, divided into two to four subspecies of one to 
three species (Ainley 1980; Brooke 2004). We focus on H. l. leucorhous, which is 
wide-ranging across both the North-Atlantic and North Pacific. Bicknell et  al. 
(2012) found striking genetic differences (mitochondrial and nuclear DNA) between 
Atlantic and Pacific populations of H.l. leucorhous, but with relative uniformity 

Textbox 15.1 A brief introduction to soundscapes
Each landscape is characterized by a dynamic and unique suite of sounds, 
which allow organisms to gather information about their surroundings. 
Natural sounds drive essential behaviors, from predator deterrence to naviga-
tion, and thus many animals have evolved an acute ability to hear. Moreover, 
many animals have complex acoustic communication systems, with many 
species producing intricate song (e.g., humpback whales; Garland et al. 2011). 
If you, the reader, have been fortunate enough to visit the rainforest, you will 
have been witness to the cacophony of biological sounds ranging in pitch and 
volume. However, upon visiting more desolate landscapes like the Arctic, you 
might find the opposite; a quietness that seems to make the smallest sound 
seem louder.

The concept of the “soundscape” has been around since the 1960s, how-
ever it was used primarily in describing the sounds in urban environments 
(Southworth 1969). A soundscape is the assemblage of all anthropogenic, bio-
logical, and geological sounds emanating from a landscape (Schafer 1977). 
The acoustical characteristics of an area reflect natural processes and it is now 
evident that soundscapes reflect ecosystem health and biodiversity (Pijanowski 
et al. 2011; Mullet et al. 2016).

Because the soundscape is complex and related to the ecology of organ-
isms and habitat, the evolution of species vocalizations could have implica-
tions for population biology. For example, sub-populations of species that are 
separated and being exposed to different soundscapes might eventually alter 
their vocalizations. But vocalization structures are complex, with potentially 
subtle changes in several different notes or syllables which can be difficult to 
detect. This chapter will examine how we can use ML techniques to detect 
differences in vocalizations.

15 Machine Learning Techniques for Quantifying Geographic Variation in Leach’s…
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within the Atlantic and heterogeneity in the Pacific. Populations of H. l. leucorhous 
in the Aleutian Islands tend to have longer wings, bills, and tarsi than southern 
populations (i.e., Farallon Islands, Ainley 1980, Power and Ainley 1986).

Leach’s Storm-petrel have a limited vocal repertoire consisting of a chatter call 
exhibited during flight around the colonies at night time, a purring call performed 
from the burrow by males, an alarm call, and a begging call (Ainley 1980; Bourne 
and Jehl Jr. 1982; Huntington et al. 1996). In Ainley’s (1980) study, chatter calls 
were described as having a similar structure in the North Atlantic and the Pacific 
coast, but detailed analysis was not conducted. The chatter call consists of a series 
of approximately 10–12 notes in a characteristic rhythm with accentuations on 3 
notes (Ainley 1980; Taoka et al. 1989). In the spectrogram below (Fig. 15.1), the 
accented notes are identified as the start note (A), the accent note (B) and the center 
note (C). Possible uses for the chatter call have not been thoroughly examined but 
may include sexual recognition and mate attraction, individual recognition, intra- 
specific competition, and nest defense (Huntington et al. 1996).

The Atlantic and Pacific populations of H.l. leucorhous are separated consider-
ably geographically with limited evidence of any mixing (Bicknell et  al. 2012). 
With their calls genetically determined like those of other non-passerine birds, we 
would expect chatter call structure to diverge due to either genetic drift or natural 
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Fig. 15.1 The spectrographic display of a Leach’s Storm-Petrel chatter call recorded on Buldir 
Island, Alaska and captured in Raven Lite software. The image shows all the parts of the call that 
were measured. Peak of Fundamental Frequency of: start note (a), accent note (b), and center note 
(c), duration between: start note and first note of first staccato section (d), accent note and center 
note (e), and center note and first note of second staccato section (f), duration of: start note (g), 
accent note (h), center note (i), and total call (j), number of notes in first staccato section (k) and 
second staccato section (l)
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selection. Sound propagates differently through different habitats and this is consid-
ered to be an important factor in the evolution of bird vocalizations (Boncoraglio 
and Saino 2007). For example, birds that have calls with frequencies that carry bet-
ter through trees are more likely to find their mates and pass on their genes in a 
forested habitat. Over time, birds with a particular frequency call may be more suc-
cessful on forested islands, which differs from the frequency range on an unforested 
island. You might then ask, does that lead to speciation? If so, can we use vocaliza-
tions to differentiate sub-species? According to McCracken and Sheldon (1997), it 
might be possible to do this because the structure of calls (e.g., frequency) may 
reflect the physiology of the syrinx (an inherited quality).

Humphries (2007) found differences in chatter call structure between one Pacific 
(Buldir Island Alaska) and one Atlantic population (Gull Island, Newfoundland, 
Fig. 15.2).

Here we examined chatter call data in a ML framework of classification tech-
niques. More specifically, we compared two implementations of generalized boosted 
regression models (Ridgeway 2007; H2O.ai 2016) and three implementations of 
random forests (Cutler et  al. 2007; H2O.ai 2016) with respect to how well they 
categorized these geographically separate populations according to their chatter call 
properties. The goal was to assess performance and then provide some discussion 
on the efficiency of the algorithms to cluster different populations of birds based on 
their vocalization properties, as well as how they might play a role in future taxo-
nomic efforts with Leach’s storm-petrel.

Fig. 15.2 Discriminant 
function analysis 
performed in Humphries 
(2007) showing a certain 
degree of differentiation 
between chatter calls of 
Leach’s Storm-petrel 
recorded on Buldir island, 
Alaska and Gull island, 
Newfoundland
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15.2  Recording and Measuring Vocalization Structure

15.2.1  Study Sites

Field recordings of Leach’s storm-petrel chatter calls were taken at Buldir Island, 
Alaska (52.361°N, 175.920°E) and Gull Island, Newfoundland (47.261°N, 
−52.775°W) in the summer of 2006 (Humphries 2007), Amatignak Island 
(51.2622°N, 179.109°W) in 2008 (Buxton et  al. 2013), and Grand Colombier 
Island, St. Pierre (46.783°N, 56.20°W) in 2009 (Roul 2010, Fig. 15.3).

15.2.2  Call Recording Technique

Chatter calls were recorded using dynamic microphones and digital audio recorders 
at night as birds were returning to colonies (Humphries 2007, Roul 2010, Fig. 15.4). 
Either an observer would stand with the microphone outstretched and record sam-
ples at random open areas around the colony (Shure Prologue microphone with 
Sony TCD 10 Pro II digital audio tape; Humphries 2007), or automated recorders 
(Song Meters, Model SM1, Wildlife Acoustics, Inc., Concord, MA) were deployed 

Fig. 15.3 Map of study sites
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(Roul 2010; Buxton et al. 2013). We assumed, for our analysis, that there was little 
effect of device on comparability of our recordings.

15.2.3  Measuring Calls

The characteristics of Leach’s storm-petrel chatter calls were measured as per meth-
ods in Humphries (2007). When identifying calls for measuring, we chose one call 
from each two-minute recording, which represented the clearest and most easily 
measurable call. This helped to minimize any issues around individual birds circling 
around the audio device. Raven Lite version 1.0 was used with screen scale set to 
5.0 kHz x 1.2 seconds. We measured 14 parameters: peak frequency of the funda-
mental frequency of: start note, accent note, and center note; duration between: start 
note and first staccato element, accent note and center note, and center note and final 
staccato element; duration of: start note, accent note, center note, and total call; rate 
and number of elements of: first staccato element, and second staccato element 
(Fig. 15.1).

Each author measured the call elements manually in Raven Lite. Thus, the pos-
sibility existed that we might not be measuring vocalization characteristics the same 
way. To make sure that we were not adding more noise to the data we re-measured 
thirty of each other’s measured calls, chosen randomly. A generalized extreme stu-
dentized deviate test was first run to test for outliers and none were detected 
(p = 0.56). Equal variances were also found between both datasets (p = 0.32) with 
a Levene’s test. We compared the re-measurements using MANOVA tests to see if 
there were any significant differences. Because we found no difference between 
each author’s measurements (p  =  0.23), we included measurements from both 
observers in the same analysis.

Fig. 15.4 Device used to 
record vocalizations of 
Leach’s storm-petrel on 
Buldir Island (Alaska) and 
Gull Island 
(Newfoundland)
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15.2.4  Random Forests (Bagging techniques)

Many of the details of the  random forests algorithm have been described elsewhere 
(Breiman 2001, Cutler et al. 2007, Chap. 1), and we therefore do not cover them in 
great detail here. In general, bagging techniques like random forests take the aver-
age (or uses a voting technique) across several models to determine the value given 
to predictions for data rows. Random forests does this by taking advantage of clas-
sification and regression trees (Breiman et  al. 1984; De’ath and Fabricius 2000; 
Breiman 2001). Random forests will construct many trees, holding back a subset of 
data for each tree which is used to measure predictive accuracy. This algorithm has 
been shown to generally be more effective than boosting techniques for categorical 
data (Breiman 2001; Prasad et al. 2006; Cutler et al. 2007). Care must be taken by 
the user to ensure that cross-validation is properly used by ensuring the testing data 
are independent, otherwise there lies the risk of confounding inferences (Picard and 
Cook 1984).

15.2.5  Generalized Boosting (Boosting techniques)

As with the random forests algorithm, we do not detail the generalized boosted 
regression technique as it has been covered in other chapters of this book (see Chap. 
1 in this book and elsewhere). Boosting techniques like those implemented in gener-
alized boosted regression models create models in a step-wise fashion, aiming to 
minimize overall error in predictions. The generalized boosted regression model tech-
nique begins by building a regression tree, and then measuring the error associated 
with the model (e.g., predicted versus observed values). Using the information from 
the first tree, a second tree is constructed, and error is reduced. In other words, the 
algorithm learns and improves the estimates at every iteration until a minimum error 
is reached. The tree with the lowest amount of associated error is selected as the rep-
resentative model for predictions (Friedman 2002; Ridgeway 2007; Elith et al. 2008).

15.2.6  Comparing Model Algorithms

When comparing modeling algorithms, there are a few aspects to consider. From a 
computing standpoint, we were interested in the time it takes to run models, as well 
as the ease of implementation, and memory requirements (i.e. if can it handle large 
datasets). We decided to use the two of the more commonly used programming 
languages: Python, and R, with libraries typically used for ML exercises. From a 
predictive standpoint, we were interested in how well the models predict to indepen-
dent subsets of the data. Predictive performance was measured by the area under the 
receiver’s operators curve (AUC; Bradley 1997). In our case, we are interested in 
determining which model best classified the ocean basin where the bird was recorded 
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(Atlantic versus Pacific). From a scientific standpoint, we were interested in under-
standing the mechanisms that account for differences between populations.

To perform the modeling in this study, we assigned the ocean (Pacific or Atlantic) 
as the target variable, with all variables measured in Fig. 15.1 as the explanatory (or 
predictor) variables.

Below, we compare these algorithms based on ease of implementation, memory 
requirements, predictive capability, and qualitatively discuss the scientific merits of 
each. For an added level of excitement, we’ll also discuss and interpret our results 
in the context of Leach’s storm-petrel biology.

15.3  Findings

15.3.1  Reproducibility

Before we delve into the results, let’s report on the reproducibility. Using the thirty 
randomly sampled calls we performed a MANOVA on the results and found that 
there were no statistically significant differences between data measured by differ-
ent observers (p = 0.62). This means that we could safely assume that there is little 
variance introduced due to observer error.

15.3.2  Computational Comparison between Algorithms

In the table below, we ranked the model algorithms based on speed, ease of setup 
and memory handling (Table 15.1).

For speed, the ‘randomForest’ package was by far the fastest implementation, 
followed by the H2o implementation of random forests, the ‘gbm’ package (gener-
alized boosted regression models), the tensor forest implementation of random for-
ests in Python, and finally the H2o implementation of generalized boosted regression. 
The randomForest package also ranked number 1 in ease of implementation, how-
ever this is very closely matched with the ‘gbm’ package. The h2o implementations 
of both algorithms come in at 3 and 4 but are very close to the first and second 
ranked implementations because of the similar set up. The difference with h2o was 

Table 15.1 Ranking based on computational performance of 5 basic machine learning 
implementations

Implementation Speed rank (mean time) Ease Memory

Random forests H2O 2 (5.64 sec) 4 2
Boosted trees H2O 5 (38.24 sec) 3 3
Random forests (‘randomForest’) 1 (0.16 sec) 1 5
Generalized boosted regression models (‘gbm’) 3 (8.78 sec) 2 4
Tensor forest 4 (14.23 sec) 5 1

15 Machine Learning Techniques for Quantifying Geographic Variation in Leach’s…
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mostly associated with the setup of the h2o package, which actually involves more 
steps than the regular “install.packages” used in R. Also, the h2o package requires 
that users set up specific data frame types before running. Finally, the tensor forest 
implementation in Python was the most difficult to set up. This is because it is 
implemented through the tensorflow package in Python and requires a few set up 
steps before being able to run (see Textbox 15.2).

For memory use, tensor forest was ranked the best because it was designed spe-
cifically for large datasets, and due to its coding in Python, does not struggle with 
memory blocks. The h2o implementations came in second and third for memory 

Textbox 15.2 Sample code showing basic set up for each machine 
learning implementation

G. R. W. Humphries et al.



305

usage as they were also designed with large datasets in mind. Not only did H2o 
integrate with graphics processing units (GPUs), but could also be processed on 
multiple cores. However, we only let the h2o implementations run on one CPU. The 
worst two implementations for memory were ‘gbm’ and ‘randomForest’. Many 
users of both will be very familiar with the memory error: “cannot allocate vector of 
size X Gb”; a frustrating experience. This means that neither algorithm is well 
equipped to handle large datasets unless you have a monstrously large CPU (usually 
only available on high performance super computers, or via Amazon web 
services).

15.3.3  Predictive Comparison

Interestingly, the top performing models came from the H2o and ‘random forests’ 
implementations, while Tensor forest landed in the fourth spot. Tensor forest is 
meant to be a more sophisticated approach (Colthurst et al. 2016) and is very flexi-
ble with regards to how the data are presented to the algorithm (Table 15.2).

15.3.4  Variable Importance

One commonality across all the algorithms was the variable ranking. In both random 
forests and gbm, variable importance was calculated by looking at which variables 
lowered overall predictive error the most across all trees (i.e., which variable contrib-
uted to the most number splits in the trees). However, we ran a few different models 
in this case (i.e. random forests and gbm from a few different packages), and we used 
our own implementation of a variable rank averaging (by way of a voting system) to 
make some broad inferences. The variable ranking was scored based on the most com-
monly selected variable across model runs in each rank. For example, if the variable 
“frequency of center note” was selected the most as the top predictor in all model runs, 
then this was selected as the top variable. In this case we only examined the top three 
variables. This is somewhat arbitrary, and we could dig further down into this if we so 
decided, but for the purposes of this chapter it should suffice.

The top variable selected was the total time of the accent note (variable H, 
Fig. 15.1). The second most important variable was the total time of the start note 
(variable G, Fig. 15.1). The third most important variable was the total time of the 
center note (variable I, Fig. 15.1). Interestingly, the top variables chosen across all 
the implementations were those which represented total length (in seconds) of notes 
(Fig. 15.5).

When the top three variables (total time of the accent, center and start notes) are 
examined, the accent and center notes tended to be longer in the Pacific population 
than the Atlantic population, and the start note tended to be shorter in the Pacific 
population (Fig. 15.6).
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15.4  A Few Lessons Learned

This chapter briefly explored a few implementations of two popular ML algorithms 
widely used in ecology. Both the random forests and generalized boosted regression 
models offer insights into data structure, and most importantly, are non-parametric 
and able to handle large numbers of predictor variables. We demonstrate just one of 
many possible applications of ML algorithms to examine vocalization characteris-
tics. In fact, these methods are much more automated (Acevedo et al. 2009; Huang 
et al. 2009) and integrated into more sophisticated techniques to identify species 
vocalizations in long-term acoustic recordings (e.g., convolutional neural networks). 
We conclude that these ML methods are easy to implement and powerful classifiers 

Table 15.2 AUC values from 
implementations of random 
forests and generalized 
boosted modeling for the 
storm-petrel vocalization 
data. Values above 0.8 are 
typically considered ‘good’ 
(Zhu et al. 2010)

Implementation AUC

Random forests H2O 0.82
Boosted trees H2O 0.81
Random forests (‘randomForest’) 0.82
Generalized boosted regression 
models (‘gbm’)

0.78

Tensor forest 0.79
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Fig. 15.5 Spectographic 
depiction of the first half of 
a Leach’s storm-petrel 
chatter call with the 1st, 
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predictors of population 
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the first half here because 
none of the top three 
predictors were in the 
second half of the call 
structure

G. R. W. Humphries et al.



307

that offer interesting insights into the definition of seabird populations and sub- 
populations in the wild.

From the perspective of being able to identify species sub-populations, there are 
benefits to using algorithms that can efficiently tease apart complex relationships. 
Here, we compared Leach’s Storm-petrel chatter call vocalization characteristics 
from four sites in two oceans. However, it is easy to imagine a plethora of other 
variables being included in such an analysis in future. For example, in some cases 
in addition to recording birds calls it may be possible to capture individual birds and 
collect morphometric measurements (i.e. bill length, mass, wing cord, etc.) and 
draw blood. At this point, we have genetic evidence, morphometric evidence, and 
vocal evidence that we can combine to make quantitative decisions on how popula-
tions might be different from each other. Excitingly, using ML algorithms we can 
examine sub-species categorization based on all of these data (for example, % of 
correctly classified individuals). The argument then moves from philosophical 
questions (e.g., what defines a species) to numerical questions (e.g., using data to 
define a sub-species).

15.4.1  Sexing Birds with Machine Learning

ML methods could also be adapted to determine the sex of individuals from acoustic 
recordings. Previous work found that individual Leach’s storm-petrels calling from 
nest sites in Japan could be sexed by examining the structure of the chatter call (Taoka 
et al. 1989). They found that the highest peak of the fundamental frequency of the cen-
ter note of the chatter call was higher in the male than that in the female, and that the 
female had more elements in the second staccato element of the chatter call.

Fig. 15.6 Raw 
comparisons of mean time 
of Accent, Center and Start 
notes (top three predictors) 
between Atlantic and 
Pacific populations of 
Leach’s storm-petrel
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However, it could be that call differentiation between sexes is more nuanced 
across their distribution; thus, more work would be required to develop an auto-
mated method for sexing birds using vocalization structure. Vocalizations play a 
vital role in differentiation among sexes in species that are sexually monomorphic 
and nocturnal (Taoka et al. 1989; Taoka and Okumura 1990). Therefore, ML meth-
ods could be of great importance in understanding certain aspects of Leach’s storm- 
petrel (and other nocturnal seabirds’) ecology and behavior, thus providing progress 
towards conservation management.

15.4.2  Environmental v Genetic Influences

Now you might be asking, why the difference in Leach’s storm-petrel chatter vocal-
izations between populations as seen in Humphries (2007)? Bicknell et al.’s (2012) 
study indicated that Atlantic and Pacific populations are genetically distinct, have 
likely been separated for millennia, and have experienced minimal mixing of indi-
viduals between oceans. However, some evidence suggests that there is interchange 
of individuals and gene flow from Atlantic to Pacific populations (Bicknell et al. 
2012). Differences in calls between Buldir Island and Gull Island (Humphries 2007) 
could thus be attributed to two factors, genetic drift or selection for different call 
structure. Environmental factors could have a role in determining Leach’s Storm- 
petrel call structure based on optimal transmission of calls in the acoustic environ-
ment of the colony site (McCracken and Sheldon 1997). Lower frequency and 
shorter duration call elements are more effectively transmitted in dense vegetation, 
where trees and branches may absorb or echo sound, preventing backscatter. That is, 
sound with longer wavelengths travel better through dense vegetation than shorter 
wavelengths (Mccracken and Sheldon 1997). Characteristics of the acoustic envi-
ronment of storm-petrel colony sites have not been measured, but is likely to vary 
between densely forested islands (Gull Island), grass covered islands (Buldir 
Island), and rocky barren (Grand Colombier Island). Because both Atlantic and 
Pacific colonies of Leach’s storm-petrel occur on a variety of habitat types it is less 
likely that the differences we found between populations are due to environmental 
factors (Huntington et al. 1996). Alternatively, the differences we found may be due 
to genetic drift. Both factors could be studied in more detail with more recordings 
from other islands, quantitative characterization of their acoustic environments, and 
genetic data collected simultaneously.

15.4.3  The Machine Learning Algorithms

Why do some of the same implementations of algorithms work differently than oth-
ers? In this case, the devil was in the details, where small code differences led to 
large changes in memory performance, and even predictive performance. First, it 
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has to be noted that the random forests algorithm in R was developed by Leo 
Breiman and Adele Cutler (Breiman and Cutler 2007) and was originally licensed 
only to Salford Systems for use in their software suite. However, due to the rise of 
R, the implementation was adapted and uploaded as a package for open access use, 
which led to subtle changes in code. This original implementation has not been 
improved upon in R, save for some few package upgrades that made interpretation 
easier (latest upgrade was from 2015). As such, it is not really able to handle big 
datasets because the package was built prior to the big data revolution, hence the 
low score on the memory scale. For those who have used the randomForest package 
in R, you would be familiar with this when dealing with large datasets. H2o has 
been optimized to deal with huge datasets, and so the way data partitioning is done, 
and the loss algorithm used (i.e. mean squared error in most implementations) is 
calculated more efficiently. Similar to all the algorithms we tested, these slight dif-
ferences could have led to differences in accuracy. In short, each algorithm was built 
to handle datasets differently, and thus differences would be expected. The draw-
back of the H2o implementations is that because it is meant to work on large datas-
ets, it will take longer on small datasets compared to the other algorithms which 
have been optimized on small datasets. The Python implementation of tensor forest 
is an interesting case because it was transferred from the scikit-learn package with 
the intention of running it through tensorflow. Thus, there is a steep learning curve 
around its setup (for those not familiar with the technique). This algorithm was also 
optimized for different datatypes (big datasets, with hundreds of parameters), and as 
such, we could be seeing performance loss on smaller datasets due to this aspect.

We recommend, regardless of the algorithm, to try them all where possible and 
compare and contrast their predictive abilities. In the end, this can only lead to better 
understanding of the algorithms and can optimize ecological inference.

15.5  Conclusions

In our short study we have done two things: (1) compared the vocalizations of two 
sub-populations of Leach’s storm-petrel which are of the same subspecies; (2) 
Compared the performance of a few different implementations of random forests 
and generalized boosted regression modeling. We show that there are differences 
between our two sub-populations as defined by our ML algorithms, mostly focused 
on the length of certain notes of the call. Finally, we show that there are differences 
in the performances of 5 different ML implementations, with random forests from 
the h2o and ‘randomForest’ packages performing best with regards to accuracy, 
‘randomForest’ and ‘gbm’ performing best with regards to speed, and ‘tensor for-
est’ and ‘h2o’ implementations performing best with regards to memory. 
Consideration of these factors needs to be made when decided how to approach 
certain analyses.

15 Machine Learning Techniques for Quantifying Geographic Variation in Leach’s…
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Chapter 16
Machine Learning for ‘Strategic 
Conservation and Planning’: Patterns, 
Applications, Thoughts and Urgently Needed 
Global Progress for Sustainability

Falk Huettmann

Arguably, the modern western life-style and culture has dramatically marginalized 
the state of the global environment and its natural resources (Daly and Farley 2011; 
see Czech et al. 2000 for impacts and Walther et al. 2016 for wider implications). It 
comes then to no surprise that - as a global pattern - the environment is by now in a 
state of global crisis (Mace et al. 2010 and Cockburn 2013 for a generic assess-
ment). While humans have used the earth for millennia and made a certain footprint 
(see Groube et al. 1986 for an example of 40,000 years of documented human occu-
pancy and Flannery 2002 for its benign impacts), the specific anthropogenic foot-
print and impact of the last four decades remain unprecedented in terms of extinction 
and global climate change (Rockström et al. 2009, Baltensperger and Huettmann 
2015). It is noteworthy that the predominant governance paradigm during this 
period is globalization, based on Americanization (Czech 2000; Stiglitz 2003). The 
last few decades are arguably the worst managed in human history (Paehlke 2004; 
Alexander 2013). Actually, the history of the earth and universe as we know it has 
not produced such a destruction of life (by non-cosmic events) ever before (Cushman 
and Huettmann 2010); consider the outlook of what will easily be 10 billion people 
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“National Parks are just a rather poor transitional protection 
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in the next 100 years while global temperatures are also on the rise and most natural 
resources are already used up (Rockström et al. 2009)!

While I leave it here to others to assign that blame and to document impacts in 
great detail (Rich 1994; Czech et al. 2000; Huettmann 2011; Cockburn 2013), a way 
out of this crisis - moving forward in the best-possible fashion - is likely to be pro- 
active (e.g. to avoid problems before they occur) and to be pre-cautionary (e.g. to 
identify problems ahead of time and act carefully; Huettmann 2007a, b). The notion 
of “the need to know impacts ahead of time before they occur” are not new concepts 
in conservation though (Silva 2012), and they are by now mandatory by the U.N. 
and part of ‘best professional practices’ (http://unesdoc.unesco.org/images/0013/ 
001395/139578e.pdf). This is a key ingredient for good governance and for a trusted 
leadership. Machine learning plays a central role in this approach, and for achieving 
the best-possible predictions, to be obtained by the best-available science (Huettmann 
2007a, b) before impacts occur, e.g. for Alaska see Murphy et  al. (2010), 
Baltensperger et al. (2015), Huettmann et al. (2017).

However, it is easy to show that, thus far, Strategic Conservation Planning does 
not use much machine learning (see Ardron et al. 2008 and Moilanen et al. 2009 for 
‘best professional practices’ and textbook). Instead, the Strategic Conservation 
Planning tool has been almost entirely a stand-alone approach not connecting with 
machine learning. Mostly it relies just on optimization algorithms to find the best 
solution, such as for instance the ‘simulated annealing’ algorithm (as employed by 
MARXAN http://www.marxan.org/; Martin et al. 2008). Further, most MARXAN 
applications “do not look much into the future” , e.g. by using future scenarios 
obtained from machine learning and optimizing those ones (see Nielsen et al. 2008 
and Murphy et al. 2010 for an application). Instead, latest developments actually 
deal with optimizing in ‘zones’ - subunits- (http://marxan.net/index.php/ marzone; 
Watts et al. 2009). I find this to be a problem on three accounts: (i) The latest sci-
ence, machine learning, and related potential got ignored. (ii) Breaking down a 
spatial optimization problem into small separate, parsimonious, zones loses the 
overall optimization power, and (iii) relevant progress got somewhat stifled by forc-
ing creative minds and their solutions back into existing administrative boundaries 
and units and thus just re-confirming existing problems and patterns. In this chapter, 
I outline how machine learning has been used and how it could play a larger role in 
Strategic Conservation Planning projects towards true progress beyond circular rea-
soning and traditional mind traps. I am adding relevant perspectives on carrying 
capacity, limits of the earth and global governance to achieve global sustainability.

16.1  How Machine Learning Predictions Feed into Strategic 
Conservation Planning: A Common Sense Workflow 
Still Widely Underused for its Conservation Potential

One of the largest Strategic Conservation Planning projects was designed to make 
recommendations for the marine protected area (MPA) networks. Similar to the ter-
restrial national parks of the world, it is meant to protect the world’s oceans and 
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assure that a fixed percentage (~10%) set aside (Aichi targets for 2020 by the U.N.: 
https://www.cbd.int/sp/targets/)! Strategic Conservation Planning has also been 
applied to terrestrial systems, although many of these earlier approaches were just 
ad hoc and not optimized much for relevant conservation gains (see Table 16.1). 
Global applications that involve wider and holistic concepts such as the atmosphere 
and its protection are still lacking (but see Huettmann 2012 how to include those 
aspects). Arguably though, one cannot achieve sustainable solutions on a small 
scale because all is highly connected and influenced globally.

In the marine world, the Great Barrier Reef, Australia, has one of the longest 
histories of Strategic Conservation Planning (UNESCO Great Barrier Reef Marine 
Park Authority 1981. Fernandes et al. 2005). The task was here to identify the most 
relevant reef locations for human enjoyment in perpetuity (see end of the chapter 
for its outcome, thus far) and much can be learned from that ‘experiment’ and 
exercise.

Widely used software for such Strategic Conservation Planning are MARXAN, 
but also ZONATION (Lehtomäki and Moilanen 2013), and C-Plan (http://www.
edg.org.au/edg-free-resources/cplan.html) as well as many derivatives across oper-
ating systems and software implementations (e.g. https://www.aproposinfosystems.
com/solutions/qmarxan-toolbox/). Such software helps users by finding ‘the opti-
mal’ solution through an approximation for an assumed truth. The underlying theo-
retical differences between software packages is not described here but can be found 
in their respective manuals and URLs, as well as elsewhere in the conservation 
literature.

For being successful and without relevant errors, Strategic Conservation Planning 
projects usually require substantial input of information (data). Ideally, maps of spe-
cies ranges and conservation features for the study area and its planning units are to 
be available. The study area consists of planning units (PUs, which are often ‘bins’ 
e.g. hexagons or pixels). This highly detailed information is widely missing for 
larger study areas, however, conservation decisions must still be made while destruc-
tion is ongoing (Alidina et al. 2008). That is specifically true for a global scale and 
on a macro-ecology perspective (see Forman 1995 for an effective balance using ‘a 
regional scale’). How can we overcome the problem of data gaps fast enough and 
with reliable information so that we can make informed conservation decisions in 
the best way possible for large areas of the globe?

In the past, so-called ad hoc decisions were made with political convenience and 
opportunism driving the agenda (see for instance Huettmann and Hazlett 2010 for 
Alaska). The protected area network for most of the circumpolar Arctic, in Russia 
(Spiridonov et al. 2012 for the Russian arctic) or all of North America reflects just 
that (‘protection of rock and ice’ Scott et al. 2001). Experts got used to identify and 
fill data gaps in Strategic Conservation Planning projects. In addition, scoping meet-
ings are often held with commercial stakeholders. This is widely referred to as a 
delphi process (a non-scientific process that simply banks on agreements and 
 compromises made during a session). The use of experts is known though to be 
biased and has been widely criticized for years and was assessed accordingly (e.g. 
Perera et al. 2012; see Gonzales et al. 2003 for a real-world example). Those plan-
ning efforts may not be representative; and often just the most effluent, vocal or 

16 Machine Learning for ‘Strategic Conservation and Planning’…
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wealthy stakeholders drive the process. The delphi method can easily compromise 
the entire objectivity, fairness, quality and transparency of Strategic Conservation 
Planning and of its science, process and trustworthiness overall.

It is here where machine learning offers help. It can provide a solution to the 
problem of filling data gaps with the delphi method. As shown in Drew et al. (2011) 

Table 16.1 Overview of a global selection of conservation priority areas and conservation 
networks

Project name and citation Location Relevance
Computational tools 
involved

Path of the panther (‘Jaguar 
Trail’;
http://www.ecoreserve.org/
tag/path-of-the-panther/)

Central 
America

Probably the biggest 
initiative for 
connecting North and 
South America in 
ecological terms

None

YtoY (Yellowstone to 
Yukon; https://y2y.net/)

North 
America, 
Rocky 
Mountains

Tries to protect and 
connect areas in the 
Rocky Mountains, 
also relevant for 
major watersheds

None

10% protection of polar 
temperature and associated 
animals (Huettmann 2012)

Arctic, 
Antarctic and 
Hindu Kush 
Himalaya

The global climate 
chamber, endemic 
species as a world 
heritage

Marxan

Africa’s traditional 
protected areas (e.g. http://
www.critical improv.com/
index.php/surg/article/
view/1987/2670)

Africa African wildlife and 
national parks as a 
world heritage

None

RAMSAR convention 
(http://www.ramsar.org/)

Global Global wetland 
conservation policy

None

Important bird areas (IBAs; 
http://www.birdlife.
org/worldwide/
programmes/
sites-habitats-ibas)

Global Global waterbird 
conservation

None

Great barrier reef (e.g. 
Fernandes et al. 2005)

NW Australia One of the finest coral 
reefs in the world

Marxan

California coastal protected 
zones (http://www.
californiamsf.org/pages/
about/strategicplan.html)

California California as a land 
and coastal area of 
global relevance

Marxan, CALZONE etc.

Circumpolar Arctic Polar A global climate 
chamber, global 
endemism

None (Spiridonov et al. 
2012; but see Huettmann 
2012, Spiridonov et al. 
2017 and Spiridonov et al. 
2017 for Marxan)

Global MPA network 
(http://www.mpatlas.org/)

World-wide The globe’s ocean 
protection

Marxan
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SDMs can be produced with transparent, repeatable methods using open access data 
(see GBIF.org for species data, and worldclim.org for environmental data) with 
open source models (e.g. Openmodeler http://openmodeller.sourceforge.net/om_ 
desktop.html or commercial models (SPM https://www.salford-systems.com/). The 
SDMs with the highest accuracy tend to use machine learning; see Elith et al. 2006 
and Fernandez-Delgado et al. 2014 for a review of the highly performing algorithms 
available.

However, despite the easy access, very few SDMs are actually run for, or used 
by, Strategic Conservation Planning projects (Moilanen et al. 2009; but see Beiring 
2013 for an example how SDMs are employed for Strategic Conservation Planning). 
There are several reasons why that problem still exists, as outlined in Table 16.2.

In my experience, available SDM applications are never really sufficient and not 
truly complete for Strategic Conservation Planning exercises (see Table 16.3 for 
shared experiences). In addition, SDM accuracy is another topic to watch for. That’s 
because SDM accuracies are usually inconsistent across species in a study area, and 
which does not allow then for consistent inference or application. Sometimes SDM 
performances can be too low to be useful or to be employed to larger areas (Aycrigg 
et al. 2015). Overall, I often find that limited and sparse raw data cannot provide 
consistent and year-round spatial estimates of important demographic and ecologi-
cal parameters such as fecundity, winter survival and migration risk for instance. 
SDMs rarely are applied yet to provide demographically relevant spatial estimates 
such as mating places, productivity hotspots and mortality landscapes (often sum-
marized as ‘sources and sinks’; Pulliam 1988). On the one hand, the detail that 
would be ideal and needed is rarely possible to achieve with demographic tools 

Table 16.2 Some reasons for SDMs not being used in strategic conservation planning projects

Reason Implication Fix Comment

SDM does not make 
predictions widely 
available

SDM results are 
just ‘shiny’ and 
not used

Request all SDM 
model files to be 
fully open access 
with ISO metadata

This is a common problem in 
SDM projects, e.g. see Guisan 
and Zimmermann (2000); 
Guisan and Thuiller (2005); 
Franklin and Miller (2009) 
but see Drew et al. (2011)

Strategic conservation 
planning project runs 
out of time

Not all species 
considered and 
some information 
under-utilized

Realistic time 
window needed for 
planning

Many agencies do not have 
adequate resources for all 
planning projects

Strategic conservation 
planning project runs 
out of money

Not all species 
considered and 
some information 
under-utilized

Realistic budget 
planning; cost- 
effective methods 
needed

Many agencies do not have 
adequate resources or 
technical capacity for all 
planning projects

Strategic conservation 
planning project 
ignores ecological 
complexities 
involving ‘all’ species

A reductionist 
and simplistic 
approach gets 
applied

Admission of 
incompleteness; 
focus on multivariate 
approaches

A so-called pragmatic 
a.approach is frequently 
applied

aBeing pragmatic does not solve the initial problem and creates problems of its own
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(Amstrup et al. 2006). On the other hand, conservation decisions are urgent and in 
times of a global conservation crisis (Rockström et al. 2009, Mace et al. 2010). And 
so even basic SDMs, such as species occurrence, help to provide information that is 
useful for the overall Strategic Conservation Planning process. By now, virtually all 
what is not parsimonious (e.g. using Generalized Linear Models (GLMs) and 
Akaike’s Information Criteria (AIC); Arnold 2010) can be achieved as progress 
(Breiman 2001) considering the global environmental crisis mankind is facing.

Overall, the use of machine learning for SDM approaches has greatly improved 
Strategic Conservation Planning processes (Table 16.3). These projects are often the 
first of their kind allowing for these methods and approaches to be introduced to 
Strategic Conservation Planning in the region. While data must be available to run 
SDMs (but often are not openly shared in SDM publications, and hardly in webpor-

Table 16.3 Shared experiences for SDM approaches in strategic conservation planning type 
projects

Project SDM application Strength Weakness

Conservation 
assessment for Asian 
passerine migrants 
(Beiring 2013)

Provide species 
range estimates as 
input into 
MARXAN

First models and 
migratory bird 
estimates produced

Lack of good data. Lack of 
stakeholder support. SDM 
accuracy rel. low

Alaska corridors 
(Murphy et al. 2010)

Provide species 
range estimates as 
input into 
MARXAN

First models and 
estimate for 4 
species produced

Legal constraints not allowing 
to address land ownership 
issues and buy-outs or such 
discussions and planning. 
Virtually left unused by 
stakeholders.

Arctic protection 
(Huettmann and 
Hazlett 2010, 
Spiridonov et al. 
2017, Solovyev et al. 
2017)

Suggested to use 
SDMs to start 
strategic 
conservation 
planning

GIS data and model 
discussion starts the 
conservation gap 
and management 
work

Unless designed specifically 
with local knowledge and 
citizen science, it can be too 
much driven by GIS and 
disconnected from 
implementation networks

St. Lucia island, 
Caribbean (Evans 
et al. 2015)

No SDM directly 
applied, but 
employs concepts 
of risk

Allows for 
simulations and to 
test concepts and 
assumptions

No direct species occurrences 
and abundances used

Bears in US/CAN 
(Proctor et al. 2004, 
Singleton et al. 2004)

None (Habitat 
Suitability Analysis 
HSI, Resource 
Selection 
Functions (RSF))

None No quantitative progress; 
potential left unused; 
ambiguous results

Alaska (Semmler 
2010)

Species 
distributions for 
major predators 
and their food 
chains

Overcomes existing 
data gaps

Model assessments for each 
pixel. Not used by agencies 
and deciders

F. Huettmann
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tals like Movebank https://www.movebank.org/) and model outputs could easily be 
improved, these projects then allow for a subsequent machine learning ‘culture’ of 
conservation to be set up, also based on stakeholders in a public forum. It’s rather 
transparent that way; the contribution of GBIF in that context remain unchallenged 
(see for instance Beiring 2013). Beyond data and model accuracies, the actual intro-
duction of such a new conservation culture may be the biggest contribution. The 
need for data models, transparency and stakeholder buy-in is essential for imple-
menting management of natural resources (Clark 2002). Having that awareness and 
accept such a need of wider community buy-in might well present the main contri-
bution in SDMs and Strategic Conservation Planning projects for a global sustain-
able society.

16.2  How Machine Learning Predictions can Also Be Used 
Directly for Strategic Conservation Planning: How it’s 
‘ought to be’ and towards ‘Better’ Solutions

Strategic Conservation Planning is usually employed with an optimization frame-
work; rarely, it is used with forecast scenarios directly. The actual optimization is 
usually based on methods like ‘solvers’, namely the simulated annealing algorithm 
(Ardron et al. 2008), whereas machine learning just provides the input GIS layers 
for describing generic patterns in the landscape. The use of future scenarios is pos-
sible and has been increasingly applied though (see Murphy et al. 2010 for an exam-
ple). SDMs built with explanatory variables that have future forecasts, such as 
downscale global climate models and for 2100 let’s say, can be used to forecast 
future conditions for species. While Population Viability Analysis (PVA) lack much 
of the spatially explicit aspects (e.g. Proctor et al. 2004), a spatial population viabil-
ity analysis (sPVA) offers interesting and relevant possibilities for forecasting future 
conditions for Strategic Conservation Planning (Nielsen et al. 2008 for an example). 
These techniques link demographic PVA approaches with GIS habitat data and 
future scenarios, all based on optimizations from Strategic Conservation Planning. 
It tends to represent the best science available!

Often, sPVAs themselves fall short on some of the principles of Strategic 
Conservation Planning, or leave them unaddressed (Table  16.4), such as lack of 
optimization and not comparing several scenarios in parallel but just favoring singu-
larity and reductionism. However, the strengths of sPVAs linked with scenario 
 planning (Peterson et al. 2003) are that they can be much better and directly applied 
and tested for specific management questions, including demographic sensitivities 
and outlooks. The use of well-thought out scenarios provide policy alternatives (e.g. 
Gonzales et al. 2003; Nielsen et al. 2008) as compared to the narrow, singular and 
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traditionally used Strategic Conservation Planning solution (which often consist of 
just ‘one’ solution wiping all other thoughts off the agenda). Computationally, and 
for all work that includes machine learning, this can easily be achieved. However, 
the sPVA option and when applied with scenarios is not yet widely employed in 
wildlife management and it is not required by law (see Huettmann et  al. 2005; 
Nielsen et al. 2008) but it can come rather close to the ideal of adaptive wildlife 
management (Walters 1986; Huettmann 2007a; b). In the meantime, scenario- 
planning starts to become more common (Peterson et  al. 2003). e.g. for climate 
change outlooks (IPCC; http://www.ipcc.ch/). The use of scenarios is widely known 
in the social sciences but so far less common in the traditional North American 
Model of wildlife management (Organ et al. 2012; Silva 2012), or in most other 
natural resource management schemes in the world. Clearly, such work is computa-
tional intense, and the role of coding and linking tools and codes across operating 
platforms becomes a power tool to achieve such conservation solutions! It’s all part 
of machine learning either way!

Table 16.4 Some principles of conservation planning and protected area design (as per Martin 
et al. 2008, Moilanen et al. 2009)

Principle Meaning Relevance

Efficiency The process and protected area 
includes no ‘waste’ of effort

Conservation is time 
critical

Compactness and/or 
connectedness

The trade-off in the spatial 
arrangement is clear and 
correctly implemented

Species dispersal and 
gene flow

Flexibility Alternative options exist to 
achieve the goal still

Reaching the goal 
regardless of obstacles

Complementarity The process and solution 
matches the context

Taking into account 
ongoing and other efforts

Selection frequency vs 
irreplaceability

Unique sites are considered 
appropriately

Endemic hotspots vs. 
generalists

Representativeness The protected area represents 
the wider landscape and all of 
its components

The solution is complete 
and meaningful, unbiased

Adequacy The process and protected area 
is sufficient to achieve 
meaningful goals

Adequate effort and 
outcome

Optimizations based on decision- 
theory and mathematical 
programming

The best solution is found 
using best-available science

Best solution that humans 
can achieve, an ethical 
mandate

Best-available data used The process and result is based 
on best-available information

An ethical mandate to find 
the best-available solution

F. Huettmann
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IMPUTATION: More Ways with Machine Learning to Fill Data Gaps 
and Smooth–Out Predictors with Information Gain for an Effective 
Science–Based Conservation Management
Most statistical analysis default on data gaps. It’s a ‘no go’ zone for modern 
science and it tends to result in statements of convenience such as ‘no evidence 
exist.’ So what to do when your data set is gappy, missing records and gets 
labeled ‘no go’ zone? This seemingly old question remains a ‘hot button’ 
item, and becomes now a key bottleneck to overcome for progress. This prob-
lem actually made it to the forefront of modern data analysis (e.g. Graham 
2009). Many reasons can be envisioned why data gaps occur. But if that can 
be resolved, then new insights can be won, and a subject can be moved for-
ward (see Kenward 2013 for health applications). Thus, finding methods to 
substitute and fill data gaps make for a classic but very relevant and modern 
problem that data miners and machine learners have to deal with. It’s a typical 
case in conservation that data are gappy while decisions are to be made though.

Reason for data gap Detail of the data gap Comment

Predictor has a data 
gap

Data column is incomplete This is a common problem.

Response has a data 
gap

Data column is incomplete In times of open access data this 
probably the biggest problem.

Missing data per se Entire absence of information Probably the biggest issue for 
holding us back for making 
inference

Lacking data due to 
research design 
problems

Entire lack of a specific 
information

The ‘best’ research design is 
usually not known ahead of the 
study. At minimum, research 
design can always be improved 
in hindsight.

Wrong entries Entry is not correct Depending on the term ‘wrong’ 
and its definitions some datasets 
are said to feature 50% of such 
‘errors’ and ‘wrong’ entries.

Entries got erased by 
accident

Hole in the data set This has been observed quite a 
lot and when data are modified, 
re-formatted and sorted in spread 
sheets for instance, or when they 
get operated by inexperienced 
people.

Entries had to be 
removed due to 
uncertainties

Hole in the data set This is a common problem, e.g. 
when metadata are missing and 
with older data. Doubts about 
geo-referencing, taxonomy and 
collection times are typical 
examples. Arguably, it’s better to 
keep weak data than having none.
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Reason for data gap Detail of the data gap Comment

Entries had to be 
removed due to 
copyrights

Hole in the data set This is also a common problem 
when data are not shared.

Error simulations Based on certain assumed 
backgrounds, some data might 
be acceptable whereas under 
other assumptions might make 
this data set viable

For advanced inference, data 
error simulation can provide new 
insights. While this can present 
questions for high-end data 
mining, it can be a relevant 
feature for high-end information 
gain and inference.

One can easily envision a situation where these ‘real world’ data gaps 
occur, and then, where they ‘magically’ could be overcome! So why not sim-
ply imputing them? 1 Conceptually, imputation means to replace data holes 
and to fill (substitute) them (Enders 2010). In reality that means they are to be 
modeled! It usually makes use of existing, neighboring, associated and sur-
rounding attributes and data points. Based on those relationships in the data, 
data gaps can get filled. With the help of advanced computing and data sci-
ence, it is less a question ‘whether’ that can be done (no problem really to do 
so). Instead, the issue is more ‘how good’ is the accuracy obtained for a cer-
tain purpose (many applications are happy to have a 75% modeled accuracy 
when compared to no data at all)? In a way, imputation is a specific method to 
model-predict data gaps. And this can be done, all with a certain estimation 
accuracy. A 100% prediction accuracy can probably not be achieved, but often 
it is not needed even. Instead, one can fill errors in a decent way, the models 
do not default, and which helps to move the overall process and progress for-
ward for an analysis topic.

By now, imputation, as a statistical discipline, is evolving fast and many 
methods exist (see also for updates at the Wikipedia site https://en.wikipedia.
org/wiki/Imputation_(statistics). Major techniques are for instance single 
imputations such as hot-deck, cold-deck, mean-substitution, regression. 
Multiple imputations are other powerful techniques. Often, these methods are 

1 It should be emphasized here that many other methods exist to overcome data gaps, includ-
ing data cloning to stabilize models on poor data or to extend the data (Lele et al. 2007; Jiao 
et al. 2016 for machine learning application). The other, and equally exciting approach for 
overcoming data gaps is to explain why data gaps actually occur (forensics), often based on 
‘common sense’. It tends to work nicely because most data gaps have a reason for their 
existence! For instance, some field research data gaps are due to bad weather (rain), or inac-
cessibility of steep slope elevations. Those factors, data gaps, can then serve as explanations 
for the absence of certain events in the data. Tree-based models, and specifically the work 
from Friedman (2002), make use of such approaches with good success.
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linked with sampling and re-sampling approaches. Of particular relevance are 
the geo-imputation methods as they allow interpolations in geographic infor-
mation systems (GIS), linked with the discipline and tools from Spatial 
Statistics. Those are popular in forestry, canopy, remote sensing and image 
analysis too. Entire textbooks and journals are devoted to that topic, e.g. 
https://www.journals.elsevier.com/spatial-statistics.

There are several software approaches possible that allow to run imputa-
tions; see for instance Enders (2010). Similarly, Salford Systems Ltd. offers in 
TreeNet (stochastic gradient boosting) options to run analysis with ‘gappy 
data’ (Friedman 1999, Salford Systems Ltd. https://www.salford-systems.
com/products/treenet)). In the R language, YAImpute is one of those packages 
that can ‘impute’ data based on using nearest neighbor observations (kNN; 
Crookston and Finley (2008; https://cran.r-project.org/web/ packages/ yaIm-
pute/ index.html). See also applications of such R code by J. Evans (http://
evansmurphy.wixsite.com/evansspatial).

While this is all pretty exciting, developing and moving forward fast, the 
sad news is that in wildlife conservation management, and for many natural 
resource applications, imputation convinces in the pure absence. The main-
stream literature is extremely poor on making use of those methods and for 
advancing fields like conservation remote sensing, geo-locators, telemetry, 
wildlife surveys, disease outbreaks and citizen science. Two notable excep-
tions can be found though, namely climate as well as some forest work 
(Eskelson et al. 2009).
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16.3  A Wider Perspective against the Local Techno-Fix: 
Good Ethics and Ecological Governance Foundations 
to Achieve a Conservation Break–Through with Open 
Access Machine Learning and Strategic Conservation 
Planning Carrying a Global Perspective for Mankind

An honest assessment of the environment, and the strategy needed for its conserva-
tion will expose nothing but a crisis, which is footed on a failed management and 
leadership in an overall destructive global framework (Ostrom 2015). We are run-
ning out of space while most relevant species and habitats are not protected, or at 
least not protected well or optimal! (Table 16.5).

Table 16.5 Selected examples for lack of achievement with National Park concepts for conserving 
species effectively

Species Status
Habitat area protection through 
National Parks

Snow leopard Vulnerable (or endangered, as 
per recent debate)

Found widely outside of protected 
areas

Songbirds, virtually 
worldwide

Large declines Found widely outside of protected 
areas, e.g. Beiring (2013), Jiao et al. 
(2016)

Shorebirds Large declines, e.g. for arctic 
species

Found widely outside of protected 
areas

Tree Kangaroo Large declines (several species; 
Australia and Papua New 
Guinea)

Found widely outside of protected 
areas (FH unpublished)

Langures Large declines Found widely outside of protected 
areas (FH unpublished

Red panda Globally threatened Found widely outside of protected 
areas, e.g. Kandel et al. (2015)

Great panda Vulnerable (1,000 individuals in 
the wild)

Not well protected within the 
protected area (Xu et al. 2014)

Black-necked cranes Vulnerable Found widely outside of protected 
areas (Xuesong et al. 2017)

Grizzly Bear (Canada) Species at risk, partly extinct Not well protected within protected 
area (Gallus 2010)

Atlantic Puffin Vulnerable Almost no marine protected areas 
(MPA), e.g. Huettmann et al. (2016)

Sharks Widely declining Almost no marine protected areas 
(MPA)

Commercial food fish 
species worldwide

Widely declining Almost no marine protected areas 
(MPA; no take-zones)

Gharial Critically endangered Not well protected within protected 
area and outside

F. Huettmann
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The New World Order, and starting with Bretton Woods in 1944, The World 
Bank and its subsequent institutions such as IUCN and UNEP show us nothing but 
that (Rich 1994). All too often we then just get presented a techno fix used to present 
us with progress when there actually is none (Czech et al. 2000; Cockburn 2013); 
even basic principles of strategic conservation are consistently violated (Table 16.4). 
By now, the list of those technical ‘innovations’ and fixes are very long, almost 
comical if it were not that tragic. It is easy to see that machine learning, or optimiza-
tion algorithms from strategic conservation planning could fall into that category. 
The challenge now remains to show that it is not and to apply them in a good eco-
logical setting. On the one hand machine learning cannot really break out of the 
techno-trail. It’s a technological high-end application. It also requires energy and 
resources as input, eventually. Some of the stakeholder workshops also leave a big 
financial and carbon footprint, for instance. However, on the good side, the outcome 
is more than its individual pieces. That is nowhere so true than in machine learning: 
just consider what the phrase ‘many weak learners make for a strong learner’ 
(Schapire 1990) means in real life.

So, while we are easily trapped in our institutions and minds with certain techno- 
arguments and its neoliberal world, there can be a decent output for the better, and 
hopefully with a good life- balance to be found eventually. Tables 16.4 and 16.6 
show some of the core components of Strategic Conservation Planning projects to 
be successful, but which are widely missing in real world applications still 
(Huettmann 2007a, b, 2008a, b for projects and related data and publications). 
Table 16.7 shows known failures and a mis-use of Strategic Conservation Planning.

Table 16.6 Components to further improve Strategic Conservation Planning with a ‘good’ 
machine learning component

Wider topic Justification
Example and 
citation

Status in strategic conservation 
planning projects

Best 
predictions

Best predictions SPM8 (https://
www.salford-
systems.com/)

Not fully employed, yet

Use of best 
data

Best information 
assures best 
inference

Open access, e.g. 
Freedom of 
information act 
(https://www.foia.
gov/)

Not used to the full potential yet

Make final 
project data 
available

Repeatable and 
transparent 
conclusions

Kandel et al. (2015) Almost never achieved

Ethics Avoid mis-use and 
destructive 
science

Weaver (1996), 
Bandura (2007), 
Daly and Farley 
(2011)
Steady state 
economy mother 
earth

Virtually ignored

(continued)
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Table 16.7 Known failures of strategic conservation planning projects and their suggested fixes

Strategic 
conservation 
planning project

Known failure in the 
goal Effective fix Outlook

Great barrier reef Overruled by political 
and global forces, e.g. 
Indian mining 
concessions in the 
wider watershed

Implement a better 
global governance

It is currently not realistic 
to assume a global 
governance that puts 
harmony and 
environmental balance at 
its core serving the wider 
public good

Terrestrial 
national parks

10% protection level 
too small for being 
effective or 
meaningful, Marxan 
not well used

30% protection levels, 
implement a better 
global governance

Unlikely to happen any 
time soon in ecological 
relevant terms

Global MPA 
ocean network

Most of the MPAs are 
usually not ‘No Take’ 
zones, lacking 
enforcement either 
way, greatly improve 
coverage

30% protection levels, 
implement a better and 
realistic global 
governance and 
enforcement

Unlikely to happen any 
time soon in ecological 
relevant terms

OSPAR (https://
www.ospar.org/
work-areas/bdc/
marine-protected-
areas)

Use of a MPA far 
offshore to mitigate 
climate change. Put 
MPAs where the 
diversity actually sits

Reduce industrial 
consumption as the 
underlying cause of 
climate change, 
improve ocean 
protection and 
management

Unlikely to happen any 
time soon in ecological 
relevant terms

Russian Arctic 
MPAs (Spiridonov 
et al. 2017, 
Solovyev et al. 
2017)

Climate change 
futures not included

Re-run with climate 
change future outlook

Unlikely to happen any 
time soon in ecological 
relevant terms

Wider topic Justification
Example and 
citation

Status in strategic conservation 
planning projects

Dynamic 
re-runs

MPA conditions 
change and need 
to be constantly 
adjusted

Dynamic MPAs at 
sea that reflect 
ocean currents and 
climate change 
(Murphy et al. 
2010)

Discussed for the marine 
environment but virtually left without 
implementation, e.g. for terrestrial 
applications

Enforcement 
and policy link

Laws are only as 
good as their 
enforcement 
culture and related 
budget

Legal theory Virtually ignored (see for missing 
links in wildlife management, 
conservation biology and strategic 
conservation planning textbooks, e.g. 
Bolen and Robinson (2002), Silva 
(2012), Primack (2016), Ardron et al. 
(2008)

Ecological 
economics

The only known 
economy to 
achieve a ‘steady 
state’

Czech (2000), Daly 
and Farley (2011)

Rarely considered, yet.

Table 16.6 (continued)

https://www.ospar.org/work-areas/bdc/marine-protected-areas
https://www.ospar.org/work-areas/bdc/marine-protected-areas
https://www.ospar.org/work-areas/bdc/marine-protected-areas
https://www.ospar.org/work-areas/bdc/marine-protected-areas
https://www.ospar.org/work-areas/bdc/marine-protected-areas


329

In a way, I hope, machine learning, e.g. for Strategic Conservation Planning, can 
at least help to strike that balance better reaching a steady-state (Daly and Farley 
2011). We can actually afford to spend some energy, as long it is sustainable and not 
excessive, on machine learning with Strategic Conservation Planning and for good 
decision-making reaching sustainability on a global level. As a matter of fact, if we 
have any energy, or effort for that matter handy, it should be invested into great 
decision-making, achieved with machine learning-aided Strategic Conservation 
Planning making good use of those techniques available to mankind. This can even-
tually lead to a global society respecting ‘mother earth’. For global sustainability to 
become real, wider questions come to play, including universe ones, belief systems, 
spirituality, governance structures, distribution of wealth and the balance of life 
(Weaver 1996; Stiglitz 2003). But one way or another, machine learning is available 
and involved by now, and all one can ask for then is to make good and best-suitable 
use of this method; all done with good ethics and outcome for the wider public, 
global good. Anything that is not destructive science would be progress in that 
regard. Now, who would not agree?
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Chapter 17
How the Internet Can Know What 
You Want Before You Do: Web-Based 
Machine Learning Applications for Wildlife 
Management

Grant R. W. Humphries

17.1  Importance of Web–Based ML Applications

In the twenty-first century, we are inundated with terabytes of data on a daily basis. 
Furthermore, there is a global increase in access to internet services, with nearly 4 
billion users as of mid-2016 (http://www.internetworldstats.com). Combined with 
this is the threat of over-population (Toth and Szigeti 2016), climate change (Bestion 
et al. 2015), and resource depletion (Schneider et al. 2015). I therefore pose a ques-
tion to the reader: What is the fastest and cheapest way to get information from 
source to manager, while engaging the public? The answer is, of course, the 
internet.

The growth in global infrastructure now means information is at our fingertips, 
(i.e., we are now able to learn and adapt at the click of a button). For example, you 
are driving from New York to Washington, D.C. and you are using a web-based 
mapping application (e.g. Google Maps) which analyzes traffic patterns while giv-
ing directions. Suddenly, there is an accident on the route which you were taking 
(we’ll call it a fender bender to appease the sensibilities of the reader). Your map-
ping application, which uses machine learning and data-mining tools to analyze 
traffic conditions, then detects the accident and re-routes you, saving money, time, 
and sparing you the look of disappointment in your partner’s eyes because you were 
late for supper. In other words, you used a web-based application to make direct and 
efficient decisions, which helped to increase your quality of life. Wildlife manage-
ment could take this form if scientists, managers and developers worked together to 
build web-based tools and applications that actively engaged the public in an open 
access manner. One use for such an application might be in the enforcement of ille-
gal fishing, where machine learning algorithms could be used to estimate risk of a 
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vessel engaging in illegal activities. If the risk is calculated to be high enough, then 
enforcement officers would have to board the vessel and inspect the goods.

Web tools are ideal delivery methods for scientific data and for management 
because they: a) create a storage space for data and information that can be accessed 
from anywhere in the world (as opposed to dusty file cabinets in a retired professor’s 
basement), b) act as a near real-time, peer-review system for scientific findings, c) 
engage the public in an open access fashion (and seeing as they pay for most of our 
science, why not allow them to poke the bear a bit?), d) allow for full transparency 
of decision making processes as things can be easily re-created and usually the code 
is housed in repositories like GitHub, e) mean that users do not have to install any 
additional software or have technical knowledge of the code to use them, and f) 
allow for easier collaborations. Because web-based technologies are more efficient, 
cheaper, and more transparent, with better feed-back mechanisms, I believe we are 
moving towards a new medium of scholarly achievement. In my humble opinion, 
the “publish or perish” attitude is likely to change drastically, where more emphasis 
will be placed on the use or creation of these sorts of tools ad products. Not to say 
that publishing will end completely as scholarly articles are still important and will 
remain so. However, getting that job after 10 years or so of University may soon be 
easier with a track record of building tools for conservation rather than just studying 
the academic questions.

17.2  Open Access

The free access of data has become a vastly important issue in science for a variety 
of reasons (Engleward and Roberts 2007). Most importantly is so that all stakehold-
ers (e.g., scientists, managers, and the public) have free and easy access to the best 
available science and information. Arguably, this should be the policy for any pub-
licly funded science. Funding organizations such as the National Science Foundation, 
or Landscape Conservation Cooperatives (LCC) require all studies to make their 
data and finding open access after publication and reporting periods have passed, 
however this is generally un-enforced (however, with some LCCs, support can be 
pulled for non-compliance of making data available). Existing web tools, or those 
under development, can alleviate issues with open access data, and offer amazing 
platforms to apply machine learning techniques for decision support. That is to say, 
web applications like eBird (Sullivan et al. 2009), GBIF (Flemons et al. 2007), or 
the Birdlife International Seabird Tracking database (http://www.seabirdtracking.
org) are designed to ingest data from the public and scientists in a way that mini-
mizes the amount of pre-processing. Once on the server, or in the appropriate data-
bases, machine learning algorithms can mine those data and make forecasts or 
predictions that may help inform the pre-cautionary principle or other management 
guidelines. We could be nearing a point where computers can tell us what we need 
to do before we know what we need (and don’t worry, we aren’t describing HAL 
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9000 from “2001: A Space Odyssey”). These web-tools also give us access to perti-
nent information about the data we are accessing.

17.3  Metadata

The ‘data about the data’ (A.K.A. the metadata) is a vital piece of information that 
should come along with any data download (Fegraus et al. 2005). Many style for-
mats exist however the International Organization for Standardization (ISO) have 
several internationally recognized standards for metadata structure. Geographic 
data (e.g., ESRI shapefiles, rasters, etc.…) for example, is dictated by ISO standard 
19115, and states that metadata must contain information about spatial extent, reso-
lution, projection (and datum), as well as the organizations or individuals who cre-
ated the files and how to contact them. Programming techniques and machine 
learning algorithms can automatically generate metadata, and append them to data 
being downloaded. Web-tools are again by far the most effective way of disseminat-
ing metadata records, and therefore opens the door for major citizen science 
initiatives.

17.4  Citizen Science

One of the real advantages of web-based applications is the ability to integrate sci-
ence and public knowledge (Dickinson et al. 2012). For example, over 75% of peo-
ple in the United States have access to the internet (Zickuhr 2013). If, of those 
approximately 229 million people who have internet access, only 5% are wildlife 
enthusiasts, that leaves us with ~ 11.5 million people. Further, we will assume that 
only 2% of those people are avid bird watchers who would report their sightings via 
a web application (~229,000 individuals). We then assume that they report one time 
every month (maybe a conservative estimate for some of the truly avid birders out 
there). That means that over the course of a single year, you could have access to 
nearly 2.8 million sightings of various species. From an ecological standpoint, this 
is quite substantial, and is the very model that eBird uses to get their data. Those 
data are then processed and used for various modeling exercises (though most of the 
results are yet to become publicly accessible).

Another example of citizens accessing and providing data via web-tools is on the 
website “Penguin Watch” (http://www.penguinwatch.org). Scientists from the 
United Kingdom have placed a number of cameras around the Antarctic peninsula, 
which are taking an array of images over the course of a year at colonies. These 
images are uploaded to the web, where citizens can go online and count any of the 
penguins they see in those images. This project is still relatively new as of when we 
wrote this piece, but plans are underway to make population models and other data 
open access. This is an important aspect of any scientific work to ensure public 
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engagement and because we owe these data to the public as they are often the fund-
ing source (i.e., in the case of government funding).

17.5  Public Access

Public engagement is vital to the success of science (Stilgoe et al. 2014). Engagement 
ensures transparency and fills an obligation that scientists have towards their funders. 
As I have stated in previous sections, a large proportion of individuals world-wide 
have access to the internet. Web-tools are the fastest way of getting information from 
scientists to the public. I think it goes without saying that public access / engagement 
is the best way of making sure that science continues to get funding into the future.

However, enough of my prattling on about the importance of these tools (I would 
imagine as a reader of this book, you may already be aware of the issues). Let us 
move on to the juicy bits. As a budding machine learning user or data scientist you 
want to know HOW to implement these sorts of systems. In the next few sections, I 
will identify some common platforms, and give examples and a “how-to” with some 
(hopefully) easy to follow code.

17.6  How to Develop your Own Application

Prior to any software or application development, it’s important to clearly identify 
your GOALS, OBJECTIVES and AUDIENCE. This allows you to build an applica-
tion around their needs. Once this has been done, the following steps can be 
implemented:

 1) Select a database framework
 2) Select a programming framework
 3) Choose your modeling algorithm (this might depend on your question, or your 

application)
 4) Build your database (a plethora of useful frameworks exist for this; SQLite, 

mySQL, PostgreSQL)
 5) Construct your model code
 6) Build your static web content
 7) Integrate your model with the static web content
 8) Select a web host
 9) Test and push Beta version to the web
 10) Get feedback
 11) Re-test and push live version to the web
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 12) Make results from modeling and data downloadable with ISO standard 
metadata

 13) Track website usage with analytics programs (e.g., Google)

17.7  Databases and Choosing the Right One for you

In another chapter, some of my colleagues will go over databases in more detail. 
However, to build a good web application, database selection is a key feature, so I 
will briefly touch on it here.

There are several key things to consider when choosing a database structure:

 1) Usability: Is it easy to use for you? How much training will you need?
 2) Security: How much security do you require for your data to prevent database 

corruption due to web-bots?
 3) Functionality: Does the framework do everything you need it to do with respect 

to storing and extracting data on demand?
 4) Integration: How easily can you integrate with your web application?
 5) Scalability: Can you continually grow the database?
 6) Hosting: Can your chosen database framework be hosted easily on the web?
 7) Long-term maintenance?

Once you have examined your needs, you can wade through an ocean of database 
management systems. They range from completely free to wildly expensive, and 
scalability and security are often directly linked to the cost. Oracle RDBMS, for 
example, can be upwards of tens of thousands of dollars per  annum (or more), 
depending on the side of the database. Oracle can be programmed, and has a very 
intuitive database construction tool, as well as unlimited support for security, 
updates and troubleshooting. MySQL is a completely open source database system, 
and does not have the same logistical support, nor a straightforward tool for data-
base construction. Typically, MySQL databases are programmed, and there can be 
a steep learning curve associated with it. However, MySQL is useful for most 
generic databases. PostgreSQL is a powerful open source database management 
system that not only has a relatively intuitive interface (PGADMIN III), but also 
links to a variety of web app frameworks, and can be enabled with PostGIS so you 
can store spatial data quite easily. Not only can you interface with PostgreSQL 
through PGADMIN III, but using packages in R or in Python, you can easily access 
and program the database. A more commonly used program for those of you who 
don’t program databases is MS Access, which is a pretty simple graphical user 
interface system for building SQL enabled relational databases. However, it suffers 
from several drawbacks including a finite amount of space available for a database, 
meaning it’s only good for small programs, and it has very poor security overall (to 
name a couple) (Textbox 17.1).
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17.8  Selecting a (relatively) Painless Programming 
Framework

Only in recent years have wildlife ecologists begun to truly delve into the world of 
computer science. Particularly since open access statistical languages (e.g., R) have 
become commonplace for analysis. This arguably means that we (as wildlife ecolo-
gists) are still disconnected from the fundamentals of computer science, and are 
somewhat forced to stick with easy to understand scripting and programming lan-
guages. I could drone on about various languages like PERL, RUBY, C, C++, F92 
etc.…, but instead I will focus on the two most commonly used languages in our 
field (i.e., R and Python), and the advantages and disadvantages of both (briefly, as 
this topic alone could be a thesis). As a note before proceeding, languages like C, 
and C++ are much more powerful than R or Python, yet are much more complex 
and carry the risk of ‘up-ending’ an operating system if you are not careful. There 
is a good infographic available at: https://www.datacamp.com/community/

Textbox 17.1 Sample code to construct database table in R. The database 
itself (in our example, “censusdata”), must be created ahead of time, and 
then R is used to build tables, load data, etc... In my below example, I’ve 
created a database using PGADMIN III with a username “me”, and a 
password “password”. From there, I assign an SQL command as a string of 
text to a variable and the use the dbGetQuery command to run the SQL 
sequence on the table
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tutorials/r-or-python-for-data-analysis#gs.jrKw75w. Both R and Python are compa-
rable and your choice of language depends wholly on your application (see 
Table 17.1 for a ‘subjective’ comparison).

17.9  The R Statistical Programming Language

The language R (R Core Development Team 2015) was developed as a statistical lan-
guage, and due to its relatively easy interface, has become one of the most widely used 
languages in data science and wildlife ecology (this is based on extrapolation from 
conversations with colleagues, and the known availability of statistics training in ecol-
ogy programs). Many of the readers of this book are likely already R users, or are at 
least thinking about it. Because it has a wide user base, and most code are open-access, 
it makes for a great platform for database and machine learning implementation. 
However, with respect to deployment for web applications, R still has a way to go and 
is somewhat limited. The “RShiny” add on for R and RStudio is the most used method 
for building web applications in R and I will use this in the below examples.

17.10  Python

Python, named for the Monty Python acting troupe; (Python Software Foundation 
2015) is a powerful language that is used very heavily by data scientists around the 
world, directly “competing” with R (though they can be used in conjunction with 

Table 17.1 Comparison of key points for R versus Python for web applications and data mining/
machine learning based on author’s experience and conversations with colleagues. Points are 
ranked as either Yes or No, or Poor, Moderate and Good

Feature Python R

Free Yes Yes
User contributed packages Yes Yes
Memory management Good Poor
Web deployment Good Poor
Data visualization Good Good
Ease of statistical analysis Moderate Good
Spatial data handling Moderate Good
Learning curve Moderate Poor
Processing speed Good Moderate
GPU access Good Moderate
Operating systems All – Works best with Linux All
GitHub integration Good Good
Multi/General-purpose Good Poor
Script management Good Good
Online community / Help Good Good
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each other). It has a huge online community and a number of user developed pack-
ages that make scientific programming easy to do. Furthermore, it has several pow-
erful spatial packages, and interfaces directly with ArcGIS (if you are lucky enough 
to have a license for it). In a general sense, Python has better spatial packages and 
can integrate with web development much better than R, however has fewer statisti-
cal packages and can be more complex to learn than R. Django is a library that is 
commonly used for web application development in Python (though others exist), 
and I will use this package to illustrate my examples below.

17.11  Choose your Weapon: Algorithms for your Modeling 
Pleasure

Throughout this book, you have been introduced to a variety of machine learning 
algorithms which can be applied to address different problems. Your choice of algo-
rithm when you build a web application will be dependent on your questions or 
ultimate goal. For example, image recognition applications might require the use of 
convolutional neural networks (Krizhevsky et al. 2012). Time series models might 
benefit from the use of long short term memory neural networks (Hochreiter and 
Schmidhuber 1997), and spatial modeling efforts could benefit from the use of ran-
dom forests (Breiman 2001; Cutler et al. 2007). No matter which algorithm you 
choose, there are some excellent libraries in Python and R that can be easily inte-
grated into web applications. In Table 17.2 I present some of the more commonly 
used packages in R and Python. There are other options on the “cloud” as well for 
machine learning applications on the web, and although there are some issues to be 
resolved (Dillon et al. 2010), they offer powerful alternatives to straight models in 
R or Python alone. Both Google (https://cloud.google.com), and Amazon (https://
aws.amazon.com/machine-learning) offer machine learning solutions on the cloud, 
which allow users to deploy web applications efficiently.

17.12  Building your Code: Database Construction, Mining 
and Modeling

No matter which language or algorithm chosen, there is a basic structure that should 
be adhered to when developing an application that uses machine learning for deci-
sion support. This process typically starts with development of the question and data 
cleaning or pre-processing. Once the database has been created, it can be queried 
and modeled and then relevant output reported (Fig. 17.1).
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Table 17.2 A few useful packages and libraries in Python and R for data mining, machine learning 
and web deployment. Further libraries can be found at http://www.kdnuggets.com/2015/06/top-
20-python-machine-learning-open-source-projects.html for Python and https://cran.r-project.org/
web/views/MachineLearning.html for R

Language Package Purpose

Python Django Allows for the “model-view-template” structure to develop web apps 
in Python

Numpy Includes many options for array style maths and data

Scipy Includes functions for linear algebra, interpolation and other 
scientific processing

Scikit-learn Contains an array machine learning algorithms

Dendropy Can be used for a variety of basic statistical analyses

Bottleneck Increased functionality for statistics in Python

Pandas Useful for handling reading and writing of csv files

psycopg2 Used for accessing PostgreSQL databases

R RShiny This creates a server / ui structure to develop web apps in R

Dplyr Used for cleaning and organizing data in R

Tidyr More functions for data cleaning and organization

randomForest Implements Breiman’s randomForest algorithm in R

Dismo Has a suite of machine learning algorithms and functions for species 
distribution models

ggplot2 Package for creating professional plots in R

Data pre-
processing

and cleaning

Database
construction 
and storage

Database
query

Split training
and testing 

data

Train
algorithm

Test
algorithm

Report
output

Re-assess
and adjust

parameters
for optimal

model

Fig. 17.1 General steps for modeling within a web application
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17.13  Static Content and Integrating your Models

Unfortunately for you budding data scientists, the work has yet to finish. Ideally, 
you will be part of a team which not only consists of scientists and programmers, 
but also, web designers. Web design skills are a must when constructing new open 
access tools, and that means understanding core concepts of HTML, CSS and 
Javascript. Despite this hurdle, there are many online resources to learn these lan-
guages, and many good style guidelines that exist on the web through some simple 
searches. Furthermore, those who are already talented programmers might find the 
jump to these languages relatively easy, and may already have a flare for good web 
designs.

17.13.1  In the Python/Django Framework

Applications are developed around .html, .css and .js files which contain all perti-
nent code for processing static content. The HTML will create objects like para-
graphs, headers, images, etc.…, while CSS is used for styling those objects (fonts, 
locations on page, size, etc.…). Javascript code is used for handling data objects or 
HTML objects (e.g., animating elements, changing elements dynamically). In the 
Django framework, Python is used to first access the database and manipulate data 
(e.g., modeling). From Python, data objects are sent as a HTTP response that can be 
accessed via HTML code, which can further be manipulated with Javascript, and 
styled with CSS. Textbox 17.2 shows a minimized example of how this works in 
Django.

The library RShiny offers a very simple option for fast deployment of applica-
tions, and because it is in R, you get the ease of access to any of R’s libraries for 
statistical analysis. Similar to the Python/Django option, R can also read and write 
directly to databases (like postgreSQL through the ‘RPostgreSQL’ library). This 
allows you to get past some of R’s memory limitations by allowing you to select and 
draw data back and forth from the database. In this case, however, you would not be 
aided by simple “Pythonic” ways of filtering from the database; you will need to 
know some SQL. RShiny also works best within the RStudio environment as you 
can create projects which already have the structure for an RShiny application (A 
server.R file and a Ui.R file). The server.R file is where you would run models, or do 
any data cleaning or setup, where the Ui.R file is the script you use to set up the 
visual output. This is much more simplistic than the Python/Django option and does 
not offer as much design freedom. However, it is faster to set up, and is particularly 
helpful for those trained solely in R (which is commonplace in wildlife ecology) 
(Textbox 17.3).
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Textbox 17.2 Sample code snippit from Django/Python framework showing 
some basic code used in a web application. The first glance of this will seem 
complicated to those who have not used Django. A wide variety of resources 
exist on the web, including a great tutorial by the Microsoft team. This code 
snippit is meant to simply demonstrate the different approach taken by 
Django versions R (see Textbox 17.1)
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17.14  Pushing to the Web: Selecting a Host, Test Test Test, 
and Reassess

Once you have created a functioning version of your web application on your local 
machine (a.k.a. local server), the next step is to select a good web host which can 
support your database and static content. There are many good web hosts that can 
be used with Django, some of which have options for good database storage. Most 
web hosts are paid services, particularly those that function with Django, and for a 
good application (i.e., that which has high security and reliability), it is recom-
mended you find one you can afford. Some web hosts connect directly to Amazon 
cloud services, and even go so far as to create Git repositories so that code and data 
can be easily shared.

Textbox 17.3 Sample code showing very basically how RShiny works with 
the server.R and ui.R setup. This is vastly different from the Django/Python 
setup and is much faster overall in going from nothing to a functioning app. 
However, RShiny is much less flexible overall than Django. I would 
recommend that RShiny is great for test or Beta level applications, while 
Django (or similar frameworks) are better for full web application launches
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The R/RShiny option is somewhat more limited in that there are few web hosts 
that can currently work with them. RShiny does offer a web server (RShiny.io), 
which you can pay for, or use the free service (which requires you to use a given 
URL as opposed to a custom one). In order to deploy an RShiny app to a custom 
URL with the paid service, there is some requirement to set up your own server 
(which is, in essence, a computer that is constantly running). This can be done via 
Amazon Cloud services (or similar).

Once a host is selected, the next steps are to test and re-test, then test again. This 
is done by accessing your application on a variety of platforms, operating systems 
and devices. Once you are satisfied your application works, you can go live with a 
Beta version, which can be tested by “naïve” users to determine the usefulness or 
accessibility of your tool. Surveys are a great aid during this stage to help fine tune 
any glitches in the program.

After the survey phase, you can deploy your web app and “go live”. However, 
your web application will require maintenance from time to time. You should also 
ensure that you have code to track website usage (e.g., Google analytics), which is 
a typical part of reporting to funding agencies. Finally, your website will need to be 
“refreshed” on a frequent basis to ensure engagement. Part of this is a smart use of 
data-mining and machine learning techniques which give convincing and scientifi-
cally valid results.

17.15  Case Examples

In wildlife ecology, there is still a lack of web applications as I have described them 
in this chapter (i.e., using machine learning specifically to make forecasts or mod-
els). In industry however, there are number of examples ranging from traffic map-
ping, fraud detection and search engine optimization. The National Aeronautics and 
Space Administration (NASA) has funded a series of biodiversity forecasting proj-
ects; some of which have yet to go live. A list of these projects is found here: http://
appliedsciences.nasa.gov/programs/ecological-forecasting-program. Below I high-
light several live examples that nearly meet the criteria as I have specified in this 
chapter, and offer a few simple suggestions that may improve their usefulness.

17.15.1  FLIRT

The FLIRT program (https://flirt.eha.io/) was designed to simulate the spread of 
Zika virus using flight pathway analysis from a database of airports and flights 
(Huff et al. 2016). Their web application is a simple mapping application that allows 
users to select a major airport with certain parameters such as number of passengers 
per day and how full the average aircraft is. Using Generalized Linear Models 
(Nelder and Wedderburn 1972), the application makes predictions on outbreaks of 
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Zika on a global scale. The application is very clean, open access, and easy to use. 
Furthermore, the maps and data are relatively simple to access. This application 
could be improved by applying a more sophisticated algorithm (e.g., random for-
ests, or a type of network analysis).

17.15.2  Movebank

Movebank is a web application that allows users to upload GPS tracking data, then 
have those data temporally and spatially annotated with climatic or environmental 
data (e.g., sea surface temperature, etc.…). This application was designed more 
specifically with marine species in mind, but could be applied to terrestrial species 
in some circumstances. Movebank has a relatively simple interface, but does require 
a user log-in to function. Once logged in, users have access to all relevant data, and 
can download any GPS tracks uploaded to their database. However, the application 
does not include any analysis methods or tools where a user could request behav-
ioural predictions or a home-range analysis (for example). If Movebank were to 
employ machine learning in this specific case to make custom predictions and anal-
yses for users, the functionality would be greatly enhanced.

17.15.3  BirdVis

The BirdVis program (http://www.birdvis.org/) is an application that was developed 
using eBird data and climate variables to create predictive species maps for the 
United States (Ferreira et  al. 2011). This is an open access program that can be 
downloaded and run on any system, and presents temporal and spatial data based on 
semi-parametric machine learning models (Fink et al. 2010). This is a useful tool, 
and although it uses open access data from the web (eBird), it requires installation 
on a local machine. The program was written using C++ and in order to run, must 
be compiled, which can be challenging for those without the proper skills. If the 
program were developed into an open access web application, it would be a valuable 
tool for bird conservation.

17.15.4  MAPPPD

The Mapping Application for Penguin Populations and Projected Dynamics 
(MAPPPD; http://www.penguinmap.com) is a recently developed application 
which delivers population data for four species of Antarctic penguins (Humphries 
et al. 2017). The application is completely open access, and all data are download-
able. Behind the website lies a Bayesian model which incorporates meta population 
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dynamics as well as environmental data to create population projections up to the 
present year. The website is map-based and can be queried a number of ways. 
However, the program could be improved by including machine learning population 
forecasts and metadata for users to download.

17.16  Web Based Programs for Landscape–Scale 
Conservation

Despite the variety of legislation, parks, and attempts to conserve biodiversity, wild-
life management schemes to date are failing with respect to conservation goals 
(Butchart et al. 2010, 2015). Whole ecosystem management techniques (where all 
aspects of an ecosystem are accounted for; (Slocombe 1998, Visconti and Joppa 
2014) must therefore be considered as viable alternatives to replace current, failing 
schemes. Web-based tools have the ability to assist and drive a shift towards this 
type of management system as they can be open access, transparent, and integrate 
the latest (and greatest) in statistical techniques and visualization.

As you may have learned by reading along this book, machine learning algo-
rithms can integrate large number of predictor variables. These variables can be 
drawn from other web sources (if needed), or stored on your database. The variables 
can represent various factors from human economy, to climate, habitat, and preda-
tor/prey responses. Using these data to train a model would encapsulate the very 
essence of whole ecosystem based management. In a web framework, an interactive 
application could be developed where users could alter future climatic, economic or 
ecological factors to determine how populations may change. A good machine 
learning algorithm would be able to actively predict these shifts in either time or 
space, and managers would be able to plan for worst-case scenarios in a more mean-
ingful capacity.

Because these data and applications could be open access, the general public 
could easily engage with the website as well and view various scenarios as they 
needed. It would fall to the individuals (e.g., you) to ensure that all relevant model 
assessment data (e.g., cross-validation success values, etc.…) are available to down-
load, or expressed in the static content. Furthermore, any workshops or meetings to 
determine management objectives would be enhanced as all individuals would have 
access to the same information with the best available science.

17.17  Concluding Remarks

Web-based tools for decision support have been around for some time, but in wild-
life ecology/management, are still only a decade or so old. Furthermore, the use of 
machine learning in these tools is very minimal. This is changing however, as 
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easy- to- use data mining and machine learning libraries become available in 
 commonly used scripting/programming languages (e.g., R and Python). Further, 
more and more wildlife ecologists are being trained in these languages and tech-
niques. In time, it is conceivable that whole-ecosystem management could be imple-
mented globally using web-based tools due to their ability to be open access and 
transparent. However, this means training a new generation of ecologists in proper 
machine learning, data management and data-mining techniques, as well as web-
design and programming skills, while retaining their knowledge of ecological sys-
tems. Furthermore, we require a significant coordination between federal agencies 
regarding data access and portals. This means that data management skills need to 
be improved in wildlife conservation. The merging of ecological knowledge, data- 
mining/machine learning, computational science, and web design is a growing field, 
and the basics of web applications as outlined in this chapter are important. A team 
based approach here would be best, where individuals with specific skill sets can be 
combined to build these applications; only then will natural resource managers be 
able to better conserve wildlife with the latest and greatest in web technologies.
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Chapter 18
Machine Learning and ‘The Cloud’ 
for Natural Resource Applications: 
Autonomous Online Robots Driving 
Sustainable Conservation Management 
Worldwide?

Grant R. W. Humphries and Falk Huettmann

18.1  Introduction

18.1.1  What is ‘the cloud’?

Throughout human history people have struggled with the concept of clouds (i.e. 
those big puffy things in the sky); they are usually somewhat fuzzy and difficult to 
describe and measure. In the technological era, the same seems to apply to the mod-
ern cloud computational infrastructure. The actual technical definition of the cloud 
is debated in the global community and in the computing world, and as such it can 
be described in several ways (SYS-CON Media Inc. 2008; Youseff et  al. 2008; 
Armbrust et al. 2009). What is generally accepted is that ‘the cloud’ (in its modern 
technical definition) is essentially an infrastructure that exists on the world-wide 
web (www) and that is accessible by most people with an internet connection (and/
or appropriate logins for specific cloud services) for a variety of purposes (n.b., 
some people argue that “the cloud” is just another way of saying “the internet”). 
Generally speaking, it is a series of data servers that are located at data centers 
accessible to those with an internet connection (see Youseff et al. 2008 and Armbrust 
et al. 2009 for deeper reviews on the cloud). It has been used heavily for purposes 
like database construction and hosting, problem optimization, banking scenarios 
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and gaming solutions. This makes the cloud a central item in information-creating 
efforts and tools, e.g. in data mining efforts using machine learning on big data. Or 
put in other terms: the cloud is a new strategic sword to tackle progress and control 
issues of global well-being and performance (Fig. 18.1).

Throughout this chapter, when we refer to the cloud, we are referring primarily 
to cloud-computing (i.e. the ability to handle large, complex tasks remotely), and 
cloud storage (i.e., data storage through secure or open access servers). These can 
be paid or free services, and certain cloud computing organizations (e.g., Amazon 
Web Services, Google Cloud Services we describe further below) offer both 
options depending on the computing power required by users. Furthermore, the 
cloud is platform-independent, meaning that anyone on any computer with an 
internet connection can take advantage of any services that exist there. This makes 
the cloud generic and universal for usage globally, making its powerful potential 
readily understood.

In the following, we will provide an overview of ‘the cloud’, particularly with a 
focus on how it links with machine learning for natural resource / environmental 
management. Such focus is rarely done, yet very important because it is widely 
ignored in discussions about ‘the cloud’ (e.g. see citations we provided above), 
secondly, wildlife-habitat applications are widely lacking (e.g. see Silva 2012), and 
the potential and responsibilities for use are ‘huge’ (Hochachka et  al. 2007; 
Huettmann 2015a).

Fig. 18.1 A comic representation of the digital sword. A powerful weapon (that looks really cool) 
when used carefully and mindfully, allowing people to strike down the evil forces of climate 
change, and biodiversity loss. However, when mis-used, is just as likely to “cut your own hand off” 
via spreading of mis-information, allowing for corporate influence on our daily lives and freedoms, 
and profiteering (amongst others)
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18.1.2  The Role of WWW and ‘the cloud’ in Daily Life

Popular use and access to the cloud has led to some major players driving much 
of the framework and guidelines which are adhered to on the www (e.g., 
Microsoft, Google, W3C, Mozilla, Apple, hackers and blockchain currencies). 
These organizations, actors and their products are run primarily by cloud com-
puting technologies and are also primary service providers to most people with 
the internet. The cloud is global and plays an active role in the every-day life of 
people with access to the internet (and to a degree, those without). The subse-
quent links with democracy, governance and its institutions have quickly become 
obvious thanks to how the cloud is used for information transfer and analysis 
(e.g., political analysis, news mining, etc.…). However, the potential of the cloud 
has yet to be fully utilized for natural resource management apart from climate 
change, atmospheric-oceanic computations, and a few biodiversity related pro-
grams (often via citizen science programs like eBird, described below). A brief 
review of some major textbooks used for teaching purposes in natural/life sci-
ences demonstrates this to a convincing degree. (Table 18.1). Consequently, this 
means that as students come through life sciences programs, their digital fluency 
and knowledge of the cloud is limited, despite its powerful potential.

Table 18.1 Disciplines and textbooks for natural resource conservation and their use and 
embracement of ‘the cloud’ (see also Mordecai et  al. 2010 for applications and potential with 
natural resource management)

Discipline Textbook

Content 
discussing the 
cloud Relevance

Wildlife 
management

Silva (2012) Almost no Very large, e.g. for North 
America

Ornithology Gill (2007) No Large, e.g. for birds and their 
habitats

Conservation Primack (2016; 6th 
edition)

No Very large globally, any 
conservation of any species

Landscape ecology Forman (1995), 
Gergel and Turner 
(2001)

No or very little Very relevant, e.g. urban 
planning and design

Strategic 
conservation 
planning

Moilanen et al. (2009) Somewhat Very relevant, e.g. coral reefs 
and marine protected areas

Statistics and 
quantitative analysis

Zar (2010), Burnham 
and Anderson (2002)

No Very relevant for all 
quantitative and model 
analysis
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18.1.3  ‘The cloud’: A Powerful Tool and its Implications

The cloud currently plays a major role in development and applications of technolo-
gies worldwide. We have referred to the cloud earlier as a sword that allows us to 
provide cutting-edge applications. Here we mean a double-edged sword that has 
major positive potential, but also some inherent dangers that must be considered 
(see Fig. 18.1).

While the cloud offers huge opportunities for computing, it is often sold to the 
general public who may not have the skills to use it properly or interpret outputs. 
Thus, it ends up being somewhat of a waste with respect to energy expenditure, 
Rapid development of cloud technologies means that the average person (who has 
an un-related job or hobbies) will likely be unable to keep up with the understand-
ing, expertise and frameworks required to take full advantage of cloud services. 
Furthermore, the ethics behind these developments are not moving forward at the 
same pace, which then means that corporations are virtually unconstrained when it 
comes to how the cloud can be manipulated for their benefit. Before we elaborate 
deeper on this subject, we will show some cloud applications to present its power.

18.1.4  Specific Cloud Service Examples

Perhaps one of the most successful and accessible cloud computing and storage 
services is Amazon Web Services (https://aws.amazon.com). Amazon hosts many 
data centers around the world that are connected by a fast and redundant network. 
The large number of data servers allow for redundant back-ups but also enables 
users to access a virtually unlimited bandwidth for data storage and processing. 
Using virtual machines, users can run processes with their own custom algorithms 
and code, or more recently, they can use some of Amazon’s deep learning tools to 
perform ‘out of the box’ analyses on large datasets. The ability to vary the size and 
power of virtual machines being used means that users can decrease speed of analy-
ses and results drastically when working with large datasets. The downside to this, 
however, is that as users increase the power of the machines they use, the cost goes 
up exponentially and this could be a barrier to some applications. From a natural 
resource management perspective, this means that scientists and managers are now 
(and have been) able to run meaningful and accurate modeling scenarios without 
having to rely on local machines (see Che-Castaldo et al. 2017 where Amazon web 
services was used to run population models), reducing costs on local infrastructure. 
So far, examples for such work are still few in Natural Resource Management, but 
projects in Australia and ones employing Strategic Conservation Planning are cur-
rently working on such applications and to scale-them up more easily (F. Huettmann 
and J. Hanson pers. com.).
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18.1.5  Specific Cloud Services: Supercomputing Centers

According to the TOP500 list (www.top500.org), supercomputing centers are dis-
tributed around the world but concentrated in the some of the more developed coun-
tries (primarily China and United States, but followed by Japan, Germany, France 
and the UK). Access to these centers varies depending on the organizations who 
own them. For example, the Trinity and Cielo supercomputers operated by the Los 
Alamos National Laboratory in the U.S.A., are only accessible by employees or 
direct collaborators with scientists from the lab. However, others have public access 
supercomputers that can be accessed for a fee (e.g., IBM’s Watson), or free of 
charge (Zennet.sc). These operate somewhat differently from cloud systems as they 
are large computers designed for fast processing, with very little permanent mem-
ory. This means that users typically cannot store large data objects for long periods 
of time on them. A user is given access to a working “node” on a supercomputer, 
and then a virtual machine allows them to perform operations on that node. If nodes 
are busy on a supercomputer then the user must wait until that node is free, usually 
controlled by a queuing system. Whereas in the cloud, users have access to a near 
unlimited number of processes and space due to the ability to split data across mul-
tiple data centers. Furthermore, some supercomputers are operated by corporations 
that are prone to inherent market fluctuations. For example, “Silicon Graphics Inc.”, 
which developed the graphics for movies like Jurassic Park, have gone under 
because the products they were offering were unable to keep up with rapid changes 
in the technology. In some cases, it is therefore possible that, like with some data 
portals (Costello et al. 2014), supercomputers are vulnerable to boom-bust cycles. 
The Arctic Center for Supercomputing at the University of Alaska Fairbanks is a 
classic example for that (https://en.wikipedia.org/wiki/Arctic_Region_
Supercomputing_Center) due to their reliance on government grants to operate 
which can vary depending on political administrations. If using supercomputing for 
natural resource development, the longevity and sustainability of the system needs 
to be considered though to maintain longevity. We would guess that at least two 
human generations into the future should be considered as a good time frame here 
as it will allow for projects to be handed over in stable ways for them to make them 
viable in the long term.

18.1.6  ‘The cloud’ and Mobile Devices

All cloud services discussed previously were initially based on stationary comput-
ing, which usually required a PC and an office with an authentication. However, 
many applications are now more flexible and require dynamic uploads, additions, 
batching and re-runs. This can now be achieved through mobile devices (e.g., smart 
phones and tablets) and remote log-ins. This has made the cloud even more dynamic, 
bringing it directly into the home, and adds many more applications. Because it can 
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be used by virtually any user anywhere, the cloud has arguably become the most 
important computational infrastructure in the world! There are certain limitations in 
remote areas, for example, where users (even with mobile devices) are unable to 
access internet connections or reliable energy sources (though this is rapidly chang-
ing). Many parts in Alaska for instance qualify for those situations, others are found 
in China and North Korea where Google is not supported or allowed even. 
Regardless, the use of mobile devices for field work and field courses in the natural 
sciences is becoming ‘part of the course’ (Huettmann 2015a,b,c). There are also 
many implications of the use of mobile devices for natural resource management 
(Huettmann 2007a,b).

18.2  Current Uses of the Cloud in Wildlife Biology or 
Ecology

The cloud was primarily used for enhanced computational speed on large program-
ming jobs. This was quickly modified for financial gain (e.g., speed trading and 
analysis on the stock market). However, this has changed, and the cloud is now used 
wider and more flexibly in a wide variety of tasks, including quantitative computa-
tions, visualizations, database storage, optimization problems, simulations, bank-
ing, gaming and spatial applications.

18.2.1  GBIF and the Rio Convention

The act of hosting and delivering biodiversity data in web portals falls under the 
purview of cloud storage and thus our definition of ‘the cloud’ for the purposes of 
this chapter. Biodiversity data tend to be ‘huge’ and need digital attention and con-
version. On the web, they were initially stored on single servers requiring SSH 
(Secure Shell) or FTP (File Transfer Protocol) access, which limited their capabili-
ties. These efforts were initiated by the Rio Convention and its Convention of 
Biodiversity (CBD) as early as 1992. It led to the creation of the Global Biodiversity 
Information Facility (GBIF.org), which houses occurrence records of species from 
around the world. However, due its international nature and set up, it evolved into a 
computational online architecture tailored for biodiversity. It involves data sharing 
and updating in-time from all its member nations. This resulted in the formation of 
a variety of federated hubs and servers that feed into one global database that is 
served via the www. GBIF went through several generations of data schemas and 
software to reach its goals, while the operating systems are changing and moving 
towards ‘virtual standards’. This has pushed GBIF eventually into ‘the cloud’ and 
made it a ‘cloud’ computational service (details are found at gbif.org).
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18.2.2  OBIS, OBIS–Seamap and Similar Sites

Due to the success of GBIF, many user communities and funders wanted to emulate 
this product or improve on their data delivery within the discipline. Many used simi-
lar concepts and developed their own schemes, such as presented in Table 18.2. 
However, this was and is often done on a smaller and more narrow scale, which has 
the unfortunate side effect of fragmenting global efforts. While this might have trig-
gered some additional data fed into the public sphere, these were easier to fund as 
they are smaller programs (n.b. the convention on biological diversity is legally 
binding for signatories’ parties and as such, all public data are meant to be in gbif.
org, although this is not enforced). These applications became their own cloud ser-
vices and are often intertwined and make use of similar data and computational 
platforms. As such in some cases, double-serving of data can be observed, making 
the value of metadata and ethical questions vital for these efforts.

Table 18.2 A selection of web-portals serving biodiversity data in ‘the cloud’

Webportal name 
(selection) and URL 
for online data, 
GBIF-style Topic Goal

Year of 
initiation Organization

OBIS (http://www.
iobis.org/)

Marine 
biodiversity

Serve all marine 
biodiversity data 
funded by COML

2009 COML

SCAR-MarBIN 
(http://www.
scarmarbin.be/)

Antarctic 
biodiversity

Serve Antarctic 
marine biodiversity 
data

2007 SCAR & Belgium 
Museums and 
Science Funders

ICES (http://ices.dk/
marine-data/
data-portals)

Fisheries 
related data 
from ICES

Serve all data funded 
by ICES

2010 ICES

eBird (ebird.org) Public birding 
data

Provide birding data 
worldwide

2005 NSF U.S., Wolf 
Creek foundation, 
Leon levy 
foundation

iNaturalist (http://
www.inaturalist.org/)

Naturalist data Provide and improve 
naturalist data 
worldwide

2008 California Academy 
of Science

Copepod (http://
www.st.nmfs.noaa.
gov/copepod/)

Global plankton 
database

Provide best 
available global 
plankton data

2004 NOAA

MAPPPD (http://
www.penguinmap.
com)

Antarctic 
penguin 
population 
database

Open access source 
for all publicly 
accessible penguin 
abundance data

2016 Oceanites, Inc. and 
Stony Brook 
University
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18.2.3  OpenModeller

OpenModeller is a true cloud-based computational infrastructure that allows a user 
to make in-near-real-time use of GBIF data (Muñoz et al. 2011). Users can upload 
their own data sources to the cloud servers used by OpenModeller and perform 
analyses without using resources on their local machines. This concept enables vir-
tually any user in the world (with internet access) to use and apply predictions on 
topics of interest. This falls directly in the category of both cloud storage and com-
puting. OpenModeller provides temporal and spatial predictions using an ensemble 
model algorithm set which can be tuned via several different settings to obtain the 
best possible predictions required by the global user community. Despite these great 
services and to assess best-available data and models, textbooks on natural resource 
management and related journals lack citations of publications employing such 
methods and concepts (as seen in Table 18.1). Arguably, while global destruction 
continues OpenModeller is widely underused, e.g. in conservation and wildlife 
management, court cases and for climate change predictions. A representative mul-
tiyear list of publications using OpenModeller is found here: http://openmodeller.
sourceforge.net/publications.html

18.2.4  eBird

A large-scale citizen science initiative, eBird.org, is a global repository of bird 
occupancy data (submitted by bird-watchers). It is somewhat based on the long 
tradition of ‘citizen science’ (e.g. the U.S. American Rosalie Edge starting hawk 
watches in the 1920s; http://www.hawkmountain.org/) and generic environmental 
concern about global well-being and society, e.g. Carson’s Silent Spring (http://
www.rachelcarson.org/SilentSpring.aspx).

While it started in the U.S. and North America with bird observations (e.g. run 
by Cornell University’s lab of Ornithology and its funders), eBird has become a 
truly global program (Sullivan et al. 2009) and has led to many ‘spin-offs’ in other 
disciplines and topics (see sections below). In terms of adoption and growth, this 
scheme has been a global success story and feeds its data to GBIF. eBird obtains 
app. 25,000 new records a day, and over nine million new records per year. Its data 
include geo-referenced surveys, opportunistic sightings and photos to document 
sightings. Due to the sheer amount and diversity of data in eBird, we argue that, so 
far, only machine learning and data mining techniques via cloud computing can be 
used for analysis and modeling exercises. This program has been taking advantage 
of cloud and machine learning techniques for several years now, with one of the 
major advances being in how citizen science records can be tested with machine 
learning techniques, with information feeding directly back into the model and to 
the user (Kelling et al. 2012). The visualizations (i.e., migration movements, obser-
vation density) that can be found on the eBird website are driven by cloud  computing 
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technologies, and the species distribution models have been created with a pseudo-
machine learning algorithm based on adaptive trees (AdaSTEM; Fink et al. 2013). 
Further, eBird is now in the process of moving their services to Microsoft’s AZURE 
cloud computing system, which will give way to opportunities to expand into more 
advanced machine learning technologies. However, some studies (e.g., Huettmann 
et  al. 2011; Humphries and Huettmann 2014) have used machine learning tech-
niques on eBird data downloads with good success. Considering the wealth of citi-
zen science data, and despite the popular increase of its use, this resource may still 
be considered as somewhat under-analyzed and under-used. For example, once 
GBIF went online over a decade ago, there was an ‘explosion’ of publications that 
arose from the data (see https://www.gbif.org/science-review). Although there is a 
mass of citizen science data on eBird, we have yet to see the same effect outside of 
the core research group. A quick search through Alaskan publications for instance 
shows no use of eBird data to date and could be a good place for people to start.

18.2.5  iNaturalist

iNaturalist.org banks on the success of eBird but opens a much wider array of spe-
cies to be included, e.g. plants, insects, mammals, reptiles and amphibians. Data 
collected and housed in iNaturalist are even more complex than in eBird and will 
eventually provide a larger amount and diversity of data. Crowd-sourced identifica-
tions and detections are now mainstream and offer completely new ways to conduct 
surveys and data collection, world-wide. As we argued in the previous section, its 
information can only truly be extracted and analyzed in a meaningful and effective 
way when advanced data mining and machine learning via cloud computing ser-
vices are employed. The full potential of these programs and data are still to be 
explored and await heavier use.

18.2.6  MoveBank

The online web portal, Movebank, is free but not completely ‘open access’ (i.e., 
data are not immediately downloadable). The program opted for a data management 
model wherein data are protected via user name and password (which can be 
obtained by signing up to the web service upon approval). Data cannot be readily 
accessed and harvested thus the web portal is not truly transparent, which violates 
public trust and gives the impression of elitism towards a small circle of people who 
are funded. This could be appealing to some biologists who are not wanting to share 
exact locations of vulnerable species (i.e. to protect them from poachers), or those 
who are waiting to publish papers before making data available (see Textbox 18.1).
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The data content of Movebank (supported by public EU and German money) is 
primarily focused on movement of animals and somewhat in competition with 
GBIF (with regards to the storage of presence only data). It can be submitted and 
downloaded by anyone, as long as they have an approved username and login. 
Unfortunately, the data lack mandatory ISO compliant metadata to date, primarily 
since enforcements are missing from submissions coming from a variety of species 
and sources (e.g., telemetry, tracking, sightings; primarily from well-funded proj-
ects). Within this service, a contributor (usually agencies, NGOs and highly-funded 
project PIs who can afford such projects) can request limited or no access to their 
data at any time, which is why Movebank does not qualify as a truly open-access 
service (as otherwise required for RIO Convention signatory nations). Another 
arguable pitfall of the data is that if a contributor requests, public access to their data 
can be revoked even. As we mentioned, this leads to non-repeatable science and a 
lack of transparency, despite working on a public resource (migratory species and 
their habitats), with approved public permits, and all being funded by government 
sources (i.e. tax-payer’s money and with a mandate to serve the wider public good).

Movebank acts as a cloud computing system however, as it offers behind its 
‘wall’, a suite of analytical tools to temporally and spatially overlay environmental 
parameters with GPS tracks, and presents quick graphs which analyze movement 
behavior. It can serve as a platform of innovation and development. The tools can be 

Textbox 18.1 A few reasons for withholding data and arguments  
against it
The reasons why data aren’t made available are not public, making it difficult 
to comprehend the real issues at hand. Aside from protecting species from 
poachers (i.e. giving poachers exact locations in near real time of vulnerable 
species), there is not much justification for holding back data, in our opinion. 
Ecologists generally site ‘scooping’ as an issue, but if it happens, it is not 
recorded and thus no evidence exists to suggest that this is an actual problem. 
Perhaps in more competitive fields where millions of dollars of research fund-
ing are on the line (medical research for example), this would be expected to 
be a problem. In ecology, however, budgets and resources are very constrained 
and it just isn’t feasible for another research group to simply come along and 
grab someone else’s data (even online via GBIF) and just ‘pop’ out a paper. 
Furthermore, these issues were addressed in GBIF’s data policy as per the 
RIO convention).

Carlson (2011) states that other arguments for holding back data include 
copyright claims, lack of appropriate budget for data management and poten-
tial financial losses. There are yet to be any truly scientific reasons for with-
holding data from the public.
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helpful to individuals who lack skills in programming or ArcGIS (particularly for 
analyzing movement) but can be done in both of those platforms for a more repeat-
able / transparent analysis. Some of its capabilities are based on machine learning 
methods however, which is a good step forward in our opinion. Regardless of some 
of the dis-advantages, Movebank, as a cloud-based system, is a typical example 
where results look shiny and progressive, but certain underlying issues are yet to be 
included or documented. For instance, reporting of animal ethics concerns (e.g., 
impact of transmitters or tags on survival or behavior) is virtually not included, nor 
is relevant progress in conservation when many species are on the decline or their 
habitats are in a poor state (most shorebirds, seabirds, Arctic wildlife). The notion 
of international species, their ownership and best management remains to be 
addressed to satisfaction (a topic that essentially has not been resolved worldwide 
for over 100  years, e.g. straddling stock problem and Migratory Species Act 
100 years ago). Statistical assumptions are widely left unaddressed and many users 
of Movebank still try to remove autocorrelation and apply self-designed outlier 
removal algorithms. A stronghold of these tools is to make descriptive data analysis, 
data cleaning and fancy visualizations (with appealing colors and in three- 
dimensions) easier for untrained practitioners, managers and users.

18.2.7  MAPPPD

The Mapping Application for Penguin Populations and Projected Dynamics 
(MAPPPD; https://www.penguinmap.com/) is a fully open access tool for down-
loading and exploring penguin population data for the Antarctic ecosystem 
(Humphries et al. 2017). The web application has a dynamic map linked to a data-
base of historic counts of penguins and a Bayesian population model. As of writing 
this book chapter, MAPPPD was still under development, however all data can 
already be downloaded with ISO compliant metadata so that the user community 
can fully understand them. Furthermore, code for the model and database are avail-
able on Github, a website for hosting open source code (https://github.com), for 
public examination (n.b., at the time of publishing this book, the code was not avail-
able as it was under development, but links to this code will be found at www.
penguinmap.com). This application makes use of cloud computing technologies 
available through Amazon Web Services, which allows for complex models to run 
just within a few days (Che-Castaldo et al. 2017). This means the model can be 
updated and added to “on the fly” as new data become available. We think this 
concept has a lot of merit and presents a role model how public resources, the 
Antarctic region and its penguins, can be analyzed and delivered to a global audi-
ence. MAPPPD is one example of a program that has taken advantage of cloud 
computing methods developed outside of ecology (e.g., economics).
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18.2.8  Translating Economic Applications of ‘the cloud’ 
to Ecology

In the last decade or so, the cloud became rather popular in economic applications 
(outside of wildlife conservation). Worldwide currencies, and high-speed trading 
(stock markets) rely on a digital and online infrastructure, often supported by cloud 
applications due to the huge amounts of data. With that, the cloud is a highly strate-
gic tool in support of national and global wealth affecting landscapes, watersheds 
and the atmosphere (Drew et  al. 2010). The stock market applications are also 
behind the push to provide broadband internet connections linking the EU with 
Britain, the U.S. and then, Japan and other financial trading hotspots. Because every 
millisecond counts in the financial sector, cloud computing is fundamental there.

In addition, cloud applications play a role in modeling and predicting the behav-
ior of business partners (e.g., to aid in negotiations; game theory mentioned below). 
Computing the gain in cost-benefit analysis is such an application. Applications 
with an environmental spin include cap-and-trade of carbon, price-setting in com-
plex carbon markets or for the insurance risks of stochastic environmental events 
(tsunamis, fire, earthquakes). In addition, game theory is steeply on the rise in eco-
nomics including ‘tit for tat’ reasoning. Similar concepts are also widely developed 
in gaming; a huge global industry. These approaches have now become of strategic 
interest in decision-making for finding an optimum in complex scenarios and with 
data, e.g. for climate change questions. Albeit driven by costs, in modern natural 
resource decision-making, these approaches can also be used and applied. They 
offer some conservation value but are not yet used and examined to their full poten-
tial for natural resource management. A wider use and assessment for the benefit of 
natural resources seems beneficial due to the global impacts, e.g. in CITES and with 
simple Tariffs of Trade, which happen to affect global biodiversity, habitats and the 
atmosphere in dramatic ways. One could imagine a “stock index” for wildlife that 
could be tracked in real time with existing stock markets. This would allow us to 
take advantage of advanced cloud techniques for analysis. Sadly, most banks would 
“short” wildlife stocks (i.e. bet on the decline).

18.2.9  Crowdsourcing/Storage

We feel it is pretty clear at this point that leveraging computational power and storage 
on the cloud is linked to the best available science and decision making in conserva-
tion ecology. If applied correctly, it can be used to advance conservation management 
(Cushman and Huettmann 2010; Drew et al. 2010). So beyond ‘just’ computational 
gains, ‘the cloud’ offers equally attractive services in relation to online storage to 
maintain long-term viability of data. Data storage and associated data management 
remain major schemes in science for wildlife conservation data (Zuckerberg et al. 
2011). Data storage is likely the most common usage of ‘cloud’ services. ‘The cloud’ 
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allows users to store data of any type and form in a dynamic fashion to process them 
and make them available as needed; often this can be done ‘in-time’. With that, ‘the 
cloud’ has become part of a business strategy, e.g. for companies (book keeping) and 
when photos, videos and scanned images (or records) are involved. Examples for 
such a service applied to conservation can be seen in dSPACE (data storage at univer-
sities and repositories for self-archiving), as well as scanned specimen collections of 
museums and herbaria for instance (see the internationally linked Alaska Museum, 
ARCTOS database as an example: https://arctos.database.museum/home.cfm). 
Youtube, Facebook, Dropbox, Google and ‘wetransfer’ offer similar services and so 
it becomes a global commodity. There, machine learning applications are often pro-
vided in-time when high precision pattern and outlier recognitions is required. Facial 
or vocal recognition of people and individual pattern learning, and recognition are 
among classic examples for such applications. Just like Facebook might recognize 
the face of a person in a photo you post, for conservation purposes, cloud services 
like this could recognize images of animals with geographic tags.

18.2.10  Other Applications

As we have shown above, the cloud is an almost ideal platform for many citizen 
science projects. The cloud is ‘cool’, has a good public buy-in, is relatively cheap, 
nearly infinitely expandable and is globally accessible by anyone with an internet 
connection. It provides a good learning ground for society to aid in understanding 
online computing tools and infrastructure and machine learning. The cloud (and its 
effective use through machine learning) can be and already is part of modern society 
and could even play a major role in guiding democracy and natural resources.

As we have eluded to above, many international corporations such as Google, 
Microsoft, QQ (Chinese version of Skype), Facebook, Twitter, Instagram etc. heav-
ily use the cloud. They are cloud users as well as providers and could not operate 
without it. While applications are too numerous to be mentioned here, many of them 
rely on machine learning algorithms. One might think that this is stand-alone and 
has no big implications for natural resource management, but we argue that it does. 
We see at least four applications when it comes to natural resource management:

 1) Machine learning-supported cloud applications create their own reality and 
image of what nature is and how we relate to nature and its resources. Albeit this 
is initially indirect, it might well be the biggest impact.

 2) Face and pattern recognition can help in enforcement cases, like with poaching 
and CITES and for species identification ‘in time’, virtually anywhere.

 3) Generic information requests of any sort, for science and research will be greatly 
helped by ‘the cloud’ and machine learning.

 4) Decision support tools that can provide risk analysis (e.g., illegal fishing, or 
poaching risks). However, potential is forming based on creativity which is 
opening many other possible applications.
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18.3  How Does the Cloud Link Specifically with Machine 
Learning?

18.3.1  Mining ‘the Cloud’ before Analysis and Posting (Data 
Cleaning and Statistical Filtering)

A major use of data mining methods lies in the use of sorting and pre-screening data. 
Machine learning algorithms are used to assess and classify incoming data streams 
from a trained model, and then follow rules when certain outcomes are predicted. 
Another major application is pattern recognition where data and images are used for 
training detection of an object. Once sufficiently ‘learned’, new data or images are 
searched for the trained pattern(s). There are so many applications of this sort that it 
has become a growing discipline and business (Costello et al. 2014). More intelli-
gent applications involve outlier detection. This is very powerful for finding a ‘nee-
dle in a haystack’ and for sorting out bad data in a constant stream of incoming data 
packages. Classic examples here are presented in eBird when a user enters an 
unusual record or bird number. Often these ‘dubious’ entries get detected in-
near-real-time and produce an alert. Or, once entered, data get compared with a 
computed average record and then can help to pin-point such outliers in the existing 
vast pool of data which can then be verified by human eyes (perhaps in the future, 
machine learning will allow for less human intervention in these cases). eBird also 
makes aggressive use of the second approach to verify records post-hoc. A third 
application of machine learning and predictions lies in the use of extrapolating 
trends from existing data, e.g. for early warning assessments (tripwires) and pre- 
alerts or risk identification. In such cases, forecasted trends get reported based on 
existing trends. These trends can arguably be weak or incorrect even, but they invoke 
a prioritization method and what to check and assess for Quality Control questions, 
or where potentially risky situation could occur for action to be remedied before 
danger occurs. This should be part of any pre-cautionary management technique.

18.3.2  Mining the Cloud in a Smart Way, with Consistent 
Learning Feedback

Artificial Neural Network (ANN) analysis is part of machine learning and can be 
pretty powerful because it keeps a memory. This is in line with ‘Deep Learning’ 
(Mueller and Massaron 2016). Making the memory smarter and filling it with ‘knowl-
edge from the world’ can make ANNs not only powerful, but it can provide the best 
and only way of making decisions (i.e. it has no competitor). It is relatively easy to 
digitize most libraries of the world, and extract knowledge and feed it into such an 
ANN (e.g. to provide it to politicians and think-tanks). Applications of this sort are 
already used in online marketing where the customer behavior of the past informs 

G. R. W. Humphries and F. Huettmann



367

offers of the present, or even how discounts and incentives are offered. Applications 
to natural resource management are still lacking but can easily be envisioned. More 
recently, a company called Deepsense used deep learning to classify images of Right 
whales for individual recognition. However, an envisioned use would be for time 
series analysis of biodiversity changes over time based on past knowledge. It would 
be reasonable to include traditional ecological knowledge into the memory of a neu-
ral network to inform potential changes under varying scenarios.

18.3.3  ‘The Cloud’ as the Source of Data Mining 
and for Inference

Data mining needs data to run on. It is ‘the cloud’ that collects and stores a near 
unfathomable number of records per second to be used, re-used and re-analyzed in 
context with the existing and newly forming information. Both, ‘the cloud’ and 
machine learning are interacting and evolving into a new entity, and to some extent 
becoming a nearly sentient process. We find the potential, dynamics and trends of 
such works are not yet fully explored. However, they are already recognized and 
make for big applications and opportunities. Rapid assessments and summaries 
come to mind; see for instance Huettmann and Ickert-Bond (2017). So far, manag-
ers of natural resources and their agencies and institutions have not fully embraced 
these steps. For instance, a nation-wide institutionalized and widely promoted pol-
icy to use parsimony for decision-making can only be harmful for making best use 
of all information available (Manly et al. 2002; Burnham and Anderson 2002).

18.4  Specific Applications and Issues of the Cloud 
with Machine Learning

18.4.1  Machine Learning with GARP (in OpenModeller), 
Genbank and Influenza Research Database (IRD)

For model predictions, the mentioned OpenModeller is primarily based on the 
GARP model concept but it still employs several algorithms. It is in the hand of the 
user to pick and choose whatever provides the best output (as assessed by model 
accuracy metrics).

Genbank (https://www.ncbi.nlm.nih.gov/genbank/) can employ machine learn-
ing in various ways. One is for sequence matching, where a new gene sequence gets 
compared (matched) with the existing set of genes. Due to the new generation 
sequencing methods, these applications are rapidly advancing. For applications like 
Genbank and IRD (fludb.org) these methods are often used as a work bench, making 
analysis runs and workflows easier to employ, to repeat and update.
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18.4.2  ‘The Cloud’ and ‘R’

‘R’ is a statistical tool, coding and programing environment (https://cran.r-project.
org/). It is global and open source and it is increasingly applied to computing prob-
lems in natural resource management. The R-language makes extensive use of 
online resources for package management and the language itself is fully available 
for free download worldwide on multiple platforms. R uses national server mirrors 
to serve the raw console and its packages. R (and other languages) can be used on 
the cloud by logging into remote machines that have the R language installed, and 
some R packages allow you to log directly into cloud applications e.g. https://
www.r-statistics.com/tag/cloud-computing/ for using the Amazon cloud. Using R in 
the cloud means that we can run memory expensive tasks that would not run effec-
tively on our local computers. This is a great advantage when paired with machine 
learning packages in R. This is probably a major lead into the notion that frequentist 
statistics are now moving directly into machine learning (see also https://normalde-
viate.wordpress.com/2013/04/13/data-science-the-end-of-statistics/).

18.4.3  Known Problems When Applying the Cloud

‘The cloud’ makes use of huge server farms to deliver all services, store data and 
provide the computational backbone. This is a big business, which includes interest 
in the real estate market due to specific site requirements. While many of them were 
initially located in more developed nations (e.g. USA, Japan, Germany), real estate 
and maintenance costs are relatively high. This results in a shift towards data centers 
being moved to ‘cheaper’ nations which still have the infrastructure to provide these 
services in similar conditions. However, this might remain a widely dubious con-
cept, unless back-ups and pre-emptive security measures are in place (N.B., the 
advantage of multiple data servers in various countries means that redundancies can 
be set up in varying places to ensure no disruption of service. Amazon web services 
and Google are companies that do this). Arguably, this safety net comes with a 
heavy price of cyber security expenses. The actual failure or certain break down of 
a server farm, or its maintenance and service, can have dramatic consequences for 
‘the cloud’ service. While the full-scale loss is probably not so realistic, outages and 
online security topics might play equal or worse roles.

We discuss the issue of sustainability from an environmental perspective shortly, 
but there are other issues around the business of server farms which are not clear. 
Growth in the industry, right now, is very high, with many server farm providers 
structuring around this increase over the next 20 years or so. However, the underly-
ing business model as well as the long-term viability of the market remains unclear 
and is heavily tied to the environment (i.e. rare earth mineral extraction, energy 
usage, etc. References by Eichstaedt (2016) for the Congo and www.meltdowninti-
bet.com/ for the Tibetan Plateau already show us those problems very clearly). It is 
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reasonable to suspect that at some point data farms may even become obsolete when 
newer and sleeker technologies replace them. ‘Moore’s law’ and the history of 
faster computing points towards such situations: the ever-increasing progress 
directly linked with smaller and faster circuits and transistors seems not to stop for 
the foreseeable future, thus far (https://en.wikipedia.org/wiki/Moore%27s_law).

The unknown future and security of the cloud remain key issues, which can make 
usage a risky endeavor. Further, many data ownership issues are not so clear when 
considering that data are often international, they frequently cross borders and occur 
simultaneously across various regimes. Copyright infringements and privacy issues 
remain a wide concern (some readers might find it interesting to know that Google 
for instance considered for a while to move its operation onto a ship operating in 
international waters! The real-world, legal and governance implications of operat-
ing servers and communications ‘offshore’ in international waters are not fully 
explored yet. But consider solar panels providing cheap energy etc.).

One way or another, the cloud is usually not very transparent for users. On the 
one hand, this has hindered many applications that otherwise could benefit from 
cloud applications due to some confusion on how to best use it. On the other hand, 
the steep rise in cloud applications shows those problems of being less of a concern 
to users, thus far. Virtually no legislation exists anywhere that truly protects users, 
customers and even operators of ‘the cloud’ (data use and web portal agreements to 
be signed online prior to use make for a good point in case). Arguably, cloud appli-
cations could easily invoke the constitutional questions such as those related to pri-
vacy, property and freedom of expression, liability, financial damage compensation 
and international agreements.

18.4.4  Lack of Sustainability of the Cloud (environmental 
footprint)

The ecological footprint of server farms is ‘very high’ due to a large amount of real 
estate space and energy requirements (Walsh 2013). The primary costs are financial, 
whereas the secondary costs are the resources and materials needed; thirdly, the 
required infrastructure, and fourthly, the energy that is emitted (usually heat). Social 
costs of excessive online usage are not yet even fathomed. Server farms need con-
stant temperatures and cooling thus leading to massive energy requirements. Serious 
proposals have been suggested to put server farms in Alaska and cold/polar regions 
as cooling would be naturally less expensive in these areas. In 2018, Microsoft 
famously sunk a data center off the coast of Scotland in order to help mitigate the 
energy costs of cooling it. Implications of the wiring and geo-strategic connectivity 
have yet to be thoroughly explored.

Reliable assessments of the energy consumption of server farms are at its infan-
cies. However, one might believe that over 10% of all energy, worldwide, is by now 
devoted to the internet (Mills 2013). The amount of energy required to run server 
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farms is probably a large proportion within that. The consumption of such energy is 
on the rise, and with China being a huge builder and user of ‘the cloud’ as well as 
coal-fired and nuclear plants, the issues are abundantly clear. Secondly, servers usu-
ally need hard drives and transistor circuits. They need specific metals and rare 
metals and earth to run. They rely heavily on mining products, some of them are 
known to fuel civil war, rape, genocide and poverty on a grand scale, e.g. in Congo 
(Eichstaedt 2016) and in Tibet (www.meltdownintibet.com/), besides others. Either 
way, it is readily clear that server farms and their maintenance are now presenting a 
political issue; one that affects the global environment (Fig. 18.2).

18.4.5  Democracy and Control of ‘the cloud’

The cloud is not just a tool of convenience as it fully supports globalization of busi-
nesses and industry and is therefore not likely to go away. However, the control of 
the cloud remains widely undefined. Net neutrality is a wide discussion item and is 
not set to change in the immediate future (at least within the U.S. and the EU). 
However, China and other nations (North Korea) actively censor services like 
Google or Facebook, which then poses questions about the internet, its players and 
its services (including the cloud). Current political circumstances in the USA and in 
Britain may cause them to move this direction as well, but other countries might 
remain on the forefront of ethical issues around technological advancement.

China and India are among the world’s biggest providers of software, hardware 
and users. However, both carry notorious human rights records and have not shown 
accepted track records of a balanced and fair worldview (e.g. the extreme poverty rate 
in India’s Hindu cast system is 20%; China runs officially on a single-party Marxist-
Leninist government with poor democratic policies for its minorities). None of these 
approaches will truly scale up globally and with western human- rights in mind. North 
America and ‘the western world’ present just a small fraction of the world’s citizens, 
whereas France, Mexico and Brazil for instance still promote an exclusive French, 
Spanish and Portuguese web respectively. The U.N. thus far, has not become engaged 
with internet issues, and thus, major decisions remain in the hands of commercial 
giants like Google, Microsoft, Facebook and Apple. It seriously affects The United 
Nations Environmental Program (UNEP; http://www.unep.org/) or Food and 
Agriculture Organization (http://www.fao.org/home/en/), its decision-making and 
leadership, as consequently natural resources, the world and future generations. From 
such a structure and setup, it is unlikely that the internet, software and hardware, as 
well as the cloud, are currently designed for fair and socialistic concepts helping the 
poor (app 1/3 of the world by now), not resulting into a better and more equal distribu-
tion of wealth and making the environment the constraining factor to protect and act 
upon. The international corporations simply do not care for those metrics and are not 
set up to handle such topics; they are not democratic. Under such a framework and 
governance though it is not really possible to stop the decay of ecological services and 
associated extinction of species and their habitats, nor to stop climate change.
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Fig. 18.2 Four images showing some of the concepts we discuss in this chapter (a) Data storage: 
The Facebook mega data center in Prineville, Oregon. This center sits on 120 acres of land, and is 
over 300,000 square feet. This data center consists of two stages as of 2017 with a third planned. 
When completed, it will use nearly 80 MW of power. Some data centers have a power capacity of 
around 100 MW (e.g., Apple in North Carolina; which claims to be completely powered by renew-
able energy; http://www.apple.com/environment/report). (b) Power utilization of the internet: for 
comparison, the Datteln 2 coal power plant (built in the 1960s and decommissioned in 2014) had 
a power capacity of 86 MW (just enough to power a SINGLE data center!). Coal plants are more 
efficient now (upwards of 1000 MW), but a single data center can use 10% of this type of coal 
plant’s power capacity. (c) Citizen science on the cloud: a map of the distribution of Baird’s sand-
piper (Calidris bairdii) made from open access data in eBird. (d) Facial/image recognition (i.e. 
automated species recognition from cameras): The endangered red panda (Ailurus fulgens), which 
has a rapidly declining wild population. Not only is it cute, but it is one of the many species poten-
tially at risk from the digital sword because public awareness of its ‘cuteness’, as spread by the 
internet, fuels illegal trade, notwithstanding impacts of climate change partly due to energy con-
sumption of web resources (Fig.  18.1). Some recent work has quantified its distribution using 
machine learning techniques (Kandel et al. 2015)
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18.5  Where is the Cloud Going with Machine Learning?

18.5.1  Rise of the Relevance of the Cloud

The many applications discussed here are arguably just ‘the tip of the iceberg’ as 
many new applications are in development and still evolving. A first glimpse might 
come from S. Korea and Japan where electronic and online applications have already 
been fully integrated with home and private life (e.g., kitchen appliances, living 
rooms, heating, cars, gardens and even toilets, some of them designed to operate 
during earthquakes!). Some of the latest applications involve ‘sheep & cattle herd-
ing’ with robots that detect flock behavior by cameras and with online connection 
back to the owner, all done in-time and with insurance, e.g. using drones. This 
essentially presents a new form of land management driven by an effective cloud.

18.5.2  Teaching in the Cloud (e.g. MOOCs)

The first author of this chapter uses the cloud frequently in lectures and workshops 
for teaching on natural resource management topics with graphic and computational 
examples. Most software is now served online, and can be run ‘online’ (meaning, in 
the cloud). Becoming fluent with the cloud is probably a major shortcoming, for 
now (Huettmann 2007a, b; 2015b, c). Students, and therefore society as a whole, 
lacks awareness and expertise as to what the cloud is, what it and should, and what 
it should not do. Teaching the cloud is therefore an essential feature in virtually any 
syllabus and to educate future citizens in the Anthropocene.

18.5.3  Interacting and Synergetic Applications 
and Implications

The power of the cloud sits in its network, as well as in its sophisticated intelligence 
when connected with machine learning. Adding different applications together, and 
across nations or continents towards a coherent ‘one’, creates new entities that never 
existed before. For instance, business applications that are optimized from game 
theory adding climate data forecast models for best-possible biodiversity outcomes 
considering human behavior! On one hand, applications of this complexity create 
new options for solutions, presenting optimized systems for economy, ecology and 
sociology. On the other hand, it can easily be envisioned how bad leadership can 
have extremely negative results. The cloud and optimized with machine learning 
can act “like a machete in the hand of Neanderthal” when not driven by ethical 
control mechanisms to use it in the best-possible manner.
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18.5.4  Ecology and the Cloud

Most applications of the cloud that are discussed here consider unlimited growth, 
and see no limits set by the environment. Carrying capacity, and that the earth is 
finite, is usually entirely left out of the discussion. A study demonstrating the con-
nection between the ecosystem, global well-being and ‘the cloud’, has yet to be 
performed for all its impacts (e.g., energy use, space use of data centers, spread of 
mis-information, etc.…). This means that to date, the fact that that ‘the cloud’ can 
easily destroy the ecosystem (taking up resources and energy) is ignored. The vir-
tual world happens just off the screen but does not show its wider network world-
wide and the footprint.

We find, this is a shortcoming and should be corrected. The ecological footprint 
of ‘the cloud’ was already discussed above, however, one must not be entirely 
opposed to a human footprint, as long as it is benign, serves a good meaning and can 
be sustained, e.g. done through renewable resources and/or with a defendable dem-
ocratic impact. These things are possible, but again, widely left out of the debate. 
Deep Ecology, and Ecological Economics, provide good platforms to deal with 
those issues, and those should be included in any discussion about ‘the cloud’.

18.5.5  Ethics in the Cloud?

Similar to the endless growth paradigm (Rosales 2008a, b for an assessment), and 
somewhat related, one will not find ethical issues discussed with ‘the cloud’ (but see 
O’Neil 2016 for so-called ‘weapons of math destruction’. Questions like:

 – who benefits from the cloud?
 – what’s the cloud really for?
 – who pays for the cloud, and at what cost?
 – what does the cloud really produce?
 – what are the impacts from the cloud, and what is gained?

are rarely discussed. It is clear that many of these questions and topics are still in 
their infancy and will trickle down to issues in ecology regarding how or if the cloud 
should be used (i.e. is it beneficial for wildlife). However, while ‘the cloud’ is 
pushed and growing, the larger questions about ethics and society, are not resolved 
and hardly on the ‘agenda’. We find, they must be part of a valid discussion about 
‘the cloud’, specifically when the gains for ecology and nature are to be harvested 
for the wider public good, e.g. following concepts of Næss (1989), Cushman and 
Huettmann (2010), Zuckerberg et al. (2011), Huettmann (2015a, c).
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18.5.6  Some Future trends of the Cloud

Nobody really knows what the future will look like. However, a few trends are pretty 
obvious. Unless we have a major turn-around, wilderness (as somewhat protected by 
U.S. and international law) is unlikely to survive as we know it. The speed of devel-
opment, resource consumption and lack of awareness and governance is just too big 
on a global scale. We might be lucky if only a few small parcels remain (e.g. 2%). 
Already in the western world, habitat losses of 90% can easily be found, e.g. tall 
grass prairie, Canadian old growth forest on Vancouver Island, wetlands in California 
and Ontario or swamp forests in the Gulf of Mexico. Global access and human popu-
lation and consumption rise will certainly drive this destructive progress, fueled by 
industrialization and globalization for years to come. The notion of national parks - 
as we know them- is unlikely to be upheld for the next 100 years. All signals for 
Antarctica for instance show just that, e.g. pressure to mine for uranium, even oil and 
gas drilling, besides the already intense pressures to fish and for tourism. The U.S. 
experience goes along the same way, e.g. pipelines to be built in National Parks and 
watersheds affected by grazing, hydro dams and fracking. The loss of tropical rain-
forests, e.g. in Amazonia, SE Asia and Congo is on that same trend (see Yen et al. 
2005 for a tropical national park in Vietnam). Major urbanization and decay of eco-
logical services are on the rise. The hope is that ‘the cloud’ and machine learning can 
detect impacts early, so we can make better decisions, and help to minimize impacts 
and global attitudes. We can hold out hope that perhaps, people can change the 
framework and attitude to achieve harmony with nature.

18.6  Conclusion: Ethical Non–Parsimony to the Rescue

Natural resource managers live in an exciting, yet tragic time. While experiencing a 
global species extinction event, they face their expertise being replaced and becom-
ing often superfluous due to technology. However, in many instances those natural 
resource managers did not halt the problems and perhaps exacerbated them, e.g. 
when promoting reductionism (Silva 2012; Primack 2016), parsimony (Burnham 
and Anderson 2002), being by-standers of environmental destruction schemes, and 
locking up data without relevant ethics and metadata even (Movebank.org). Humans 
are now moving into a computationally driven society, where many decisions are 
made by cloud computing technologies. While the WWW is the empirical data plat-
form for this, the algorithms - specifically machine learning employed as ensem-
bles - sit at the core of that intelligence and trend (Cushman and Huettmann 2010; 
Drew et al. 2010). We find that currently this trend is virtually unaccounted for with 
managers of conservation and natural resources. This has the large implication that 
it indicates once more that natural resource management is widely behind. This 
profession is passive and conservative but not pro-active (see Anderson et al. 2003 
for an assessment, and Silva 2012 and Primack 2016 for institutionalized forms as 
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per wildlife & conservation management textbooks), just watching the decay of 
what they are trusted with: a global asset (this equals to watch and study and ‘the 
deckchairs on the Titanic’, instead of saving the entire ark). Secondly, natural 
resources and their conservation are likely to be marginalized further. Such as state 
of denial will not only harm natural resources, the world, but leads to a continued 
decay of human development (Cockburn 2013), society (Diamond 2005), vision of 
modernity and progress (Alexander 2013) and the decision-making process, while 
better options exist and await to be urgently employed.
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Chapter 19
Assessment of Potential Risks 
from Renewable Energy Development 
and Other Anthropogenic Factors 
to Wintering Golden Eagles in the Western 
United States

Erica H. Craig, Mark R. Fuller, Tim H. Craig, and Falk Huettmann

19.1  Introduction

Golden Eagles occur in a variety of landscapes across a wide latitudinal range in 
North America (NA). As a result, they are subject to many factors that could have 
negative cumulative effects on geographic populations (Kochert et al. 2002). These 
include fire (Balch et al. 2013; Knick et al. 2005), wind and various forms of energy 
development (Watson 2010; Watson et al. 2014), changes in management of range-
lands and forests, and urban sprawl that are occurring on a broad scale within Golden 
Eagle range (Hunt and Watson 2016; Hunt et al. 2017; Kochert and Steenhof 2002; 
Paprocki et  al. 2017; Paprocki et  al. 2015). Simultaneously, effects from climate 
change in the same regions (e.g., severe change in water run-off, drought conditions) 
are predicted to exacerbate the existing effects of altered fire regimes and invasive 
annual grasses (Dukes and Mooney 1999; Chapin III et al. 2000; Flannigan et al. 
2009; Bradley 2010; Balch et al. 2013; Creutzburg et al. 2015). These factors will 
subsequently effect the distribution and abundance of avian and prey species (Bradley 
2010; Knick et al. 2003; Knick and Dyer 1997; Kochert et al. 1999; Nielson et al. 
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2016). However, managers often lack landscape scale analyses of the effect of these 
potentially harmful factors on eagle populations. It is particularly difficult to evaluate 
the effects on wintering birds because information about winter use and distribution 
patterns of Golden Eagles is often lacking over much of their range. In addition, 
wintering populations frequently comprise a mix of resident eagles, and regional and 
long-distance migrants, representing populations from a broad geographic area 
(Craig and Craig 1998; see e.g., Marzluff et al. 1997; Poessel et al. 2016; Watson 
et al. 2014). Published research specifically addressing the winter ecology and distri-
bution of Golden Eagles in NA, and related risk factors, is limited. Further, data are 
frequently lacking on the geographic origin of eagles in wintering areas. All these 
factors constrain the ability of management decision makers to adequately address 
the geographic scale of potential impacts from anthropogenic activities on Golden 
Eagle populations.

Blade strikes by wind turbines at some wind-energy facilities can be a substan-
tial source of mortality for raptors (Carrete et al. 2009; Dahl et al. 2012; De Lucas 
et  al. 2008; Kikuchi 2008; Loss et  al. 2013), including Golden Eagles (Aquila 
chrysaetos) (Pagel et al. 2013; Smallwood and Thelander 2008); rapid expansion 
of wind and solar energy development is occurring in shrub and grassland habitats 
(Copeland et al. 2011; Tack and Fedy 2015) within the range of the Golden Eagle 
in NA. At the same time, other changes, wildfires, invasive plants, drought, and 
climate change are altering or destroying native habitats at an unprecedented scale 
in the western United States (West; US; Abatzoglou and Kolden 2011; Copeland 
et al. 2011; Dennison et al. 2014; Tredennick et al. 2016); eagles are known to rely 
on these habitats (Kochert et al. 2002). Recent US Fish and Wildlife Service (FWS) 
models indicate that Golden Eagle populations in the western US may be declining 
slightly (USFWS 2016). Long-term datasets from migration counts and nest occu-
pancy data from locations in the West also reveal evidence of local population 
declines (Hoffman and Smith 2003; Kochert and Steenhof 2002; Millsap et  al. 
2013). Other models indicate that a “floater” population of Golden Eagles, com-
prised of surplus non-breeders, may be limited (Hunt 1998; Millsap and Allen 
2006; USFWS 2009).

The FWS has primary statutory authority for management of Golden Eagles in the 
US under the Bald and Golden Eagle Protection Act (16 U.S.C. 668-668d; Eagle Act). 
Consequently, the agency is developing strategies for eagle conservation (USFWS 
2016; 2013), and in 2008 the FWS designated the Golden Eagle as a Species of 
Conservation Concern in much of its range in the West (USFWS 2008). As a result of 
the accelerated development of renewable energy projects in the US, the FWS has 
established new policy for permits to take Golden Eagles under the Eagle Act, “when 
necessary to protect certain public interests”, in particular localities (e.g., wind energy 
projects). The permits are based on the ability of the eagle population to sustain per-
mitted loss that is compatible with maintaining stable or increasing populations; per-
mits are to be implemented using an adaptive management strategy (Dept. of Interior 
FWS: 50 CFR Parts 13 and 22; Eagle Permits; revisions to regulations for eagle inci-
dental take and take of eagle nests: see Federal Register final rules: 81 FR 91494; Dec. 
16, 2016 and 82 FR 7708; Jan. 23, 2017). Currently, this is interpreted to mean that 
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Golden Eagle populations can sustain “no net loss”. The FWS proposes to manage 
populations for “no net loss” at the scale of Eagle Management Units (EMU’s), but 
the boundaries of geographic Golden Eagle populations in NA are not well estab-
lished, creating additional challenges for FWS management objectives (Brown et al. 
2017; USFWS 2016). Current FWS analyses utilize the boundaries of existing NA 
Bird Conservation Initiative (NABCI), Bird Conservation Regions (BCR’s; http://
nabci-us.org/resources/bird-conservation-regions/),or possibly administrative migra-
tory bird flyways (e.g., Pacific and Central Flyways; USFWS 2014, 2015, 2016); fly-
ways are more likely to include the full annual cycle of migratory Golden Eagles 
(USFWS 2016), although see Brown et al. (2017).

Considerable research on NA Golden Eagles has been conducted in recent years 
(Brown et  al. 2017; Domenech et  al. 2015a, 2015b; McIntyre and Lewis 2016; 
Poessel et  al. 2016; see e.g., Watson et  al. 2014), and is currently underway. 
However, there is still uncertainty regarding aspects of eagle population biology and 
status. In particular, gaps in the knowledge base on key factors that are necessary to 
manage stable or increasing populations challenge the ability of the FWS to prevent 
further population declines under the new 30-year permit rule for Golden Eagles 
(81 FR 91494; Dec. 16, 2016 and 82 FR 7708; Jan. 23, 2017). There is currently 
inadequate information to develop a management plan that sets management objec-
tives with strategic habitat conservation goals for wintering Golden Eagles over a 
broad geographic range, to identify and assess the cumulative effects of risks within 
eagle winter range to the population in the western US and Canada, or to identify 
key areas for habitat conservation and eagle monitoring.

Our research objectives were to: (1) predict potentially important Golden Eagle 
winter use areas in Idaho, Utah, Nevada and eastern Oregon, by applying a machine 
learning predictive model developed from wintering eagles in Idaho and Montana 
(The Authors, Unpublished Data); (2) describe the characteristics of predicted win-
ter range that are of particular relevance for the management and conservation of 
eagles within the study area; (3) relate predicted winter distribution to known risk 
factors (stressors) and evaluate potential for cumulative risks to wintering eagles; 
and (4) highlight additional research needs at other spatial scales.

19.2  Methods

19.2.1  Study Area

The study area in the western US encompasses Idaho, Utah, Nevada and eastern 
Oregon. It falls within five Bird Conservation Regions (BCR’s; 9 [Great Basin], 10 
[Northern Rockies], 15 [Sierra Nevada], 16 [Southern Rockies/Colorado Pleateau] 
and 33 [Sonoran and Mojave Deserts]; Fig. 19.1) and lies entirely within the Pacific 
Flyway (see USFWS 2016). This area supports wintering eagles that are resident in 
the study area, as well as, migrants primarily from the Pacific Flyway, and from at 
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least two other BCR’s: 4 (Northwestern Interior Forest) and 5 (Northern Pacific 
Rainforest) in Canada and Alaska (USGS data; Craig and Craig 1998). We selected 
this region because: (1) it is within the known range of the Golden Eagle in NA; 
(2) digital layers are available for the study area that were similar to the 

Fig. 19.1 The four state study area in western North America (indicated with diagonal lines) is 
overlain with Bird Conservation Region (BCR) boundaries (http://nabci-us.org/resources/bird-
conservation-regions/; BCR reference numbers are shown within each boundary). The entire study 
area lies within the Pacific Flyway (see Fig. 19.1 in USFWS 2016)
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environmental layers used to develop the original model (The Authors, Unpublished 
Data), (3) there are digital layers available of known potential threats in the 
region (e.g., energy development, wildfires) that might affect Golden Eagle popula-
tion dynamics and status; and (4) inferences from our research can be applied to this 
region for management planning.

19.2.2  The Model

Prediction To estimate potential Golden Eagle winter distribution, we used a pre-
dictive model derived from a 1990’s dataset of satellite-tracked eagles wintering in 
shrub-steppe habitat associations in Idaho and Montana and applied it to the larger 
geographic four state area. We derived the original distribution model using the 
machine learning software, TreeNet (The Authors, Unpublished Data; Salford 
Systems, Inc., San Diego, CA), a stochastic gradient boosting algorithm that is 
known for highly accurate predictions (Craig and Huettmann 2009; Cutler et  al. 
2007; Elith et al. 2006; Prasad et al. 2006). We found it to be accurate for predicting 
winter distribution of Golden Eagles across broad temporal and spatial scales in the 
original application in Idaho and Montana (Precision: 98.7%, Sensitivity: 89.1%, 
Specificity: 99.7%, F1 Score: 93.7%; see Shalev-Shwartz and Ben-David 2014 for 
explanation of statistical terms). The original model also had 89.4% accuracy (The 
Authors, Unpublished Data) when applied to an independent, external sample of 
770 eagle winter locations from eBird (eBird 2013; Munson et al. 2011; Sullivan 
et al. 2009) in Idaho and Montana. The model predicts the distribution of eagles at 
the scale of the wintering area that an eagle has already selected from the broader 
landscape. It represents only one of the many hierarchical choices made by winter-
ing Golden Eagles (e.g., how to use the landscape within an already selected winter 
area) in their selection and use of resources in the region (see e.g., Marzluff et al. 
1997). For the analyses presented here, we applied the original model, which over-
laps a portion of the current study area, to the four state area.

Application All spatial interpretations and analyses were performed in a geo-
graphic information system (GIS) using ArcMap 10.1 (ESRI, Redlands, CA), or in 
Geospatial Modeling Environment (GME; Beyer 2012). To transfer the outputs 
from the original model to a new geographic area, we generated a lattice of approxi-
mately 900,000 regularly spaced points across the four state study area (1 km x 
1 km spacing). We extracted data to each point from 11 digital environmental layers 
representing the same variables that were used to construct the original model (see 
Appendix Table A19.1 for digital layer details). We then applied the TreeNet output 
(grove file) from the original model to the resultant gridded point dataset; the grove 
file retains the relationships among the response (satellite derived location estimates 
of wintering eagles) and 11 predictor variables. This provided a relative index of 
occurrence (RIO), on a scale from 0.00–1.00 of the suitability for eagle winter habi-
tat at each gridded point. The RIO does not provide a frequency statistic (Gaussian) 
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probability; however, it does produce a testable model that allows a comparison 
ranking among areas. We use the model-produced RIO to predict potential eagle 
wintering areas in the study area; we also refer to these as wintering grounds or 
habitat in the text.

We used inverse distance weighting (IDW; similar to Booms et  al. 2010) for 
visual representation of predicted wintering areas; IDW is an interpolation method 
that considers the weight of the closest measured values more heavily than those 
further away (see Lu and Wong 2008). For clarity of display, we converted the RIO 
into percentages and classified them into three equal intervals using the following 
arbitrary thresholds: (1)  <  33%: low suitability (interpreted for our purposes as 
unsuitable winter habitat and a conservative estimate at 0.10 above prevalence; see 
Liu et al. 2005), (2) 33% - 67%: medium suitability and (3) > 67%: high suitability 
for eagle winter areas. The arbitrary selection of the threshold value for prediction 
has the potential to influence accuracy assessment of the model (Manel et al. 2001). 
However, this metric still provides a basis for comparing the suitability of locations 
within the study area for eagle wintering habitat, allows for good classifiers overall 
(Anderson et al. 2003) and is testable using external data for validation.

19.3  Winter Range Characteristics and Potential Risk 
Factors

We used digital GIS layers for spatial overlay of predicted eagle winter distribution 
with features of particular relevance for management and conservation of Golden 
Eagles (Kochert et al. 2002; e.g., shrub/grassland vegetation associations, land own-
ership categories; Marzluff et al. 1997), including potential risks to wintering eagles. 
We selected layers of potential risks to eagles based on our knowledge of Golden 
Eagle biology, the published literature, and the availability of digital risk datasets 
that spanned the entire study area. We use simple spatial assessment (see Suter II 
2016) to describe where predicted winter areas overlap risks. These do not necessar-
ily represent all risks to Golden Eagles and because changes are occurring rapidly 
in the West, our digital layers contain some data that are already out of date. Risks 
included in our analyses include: anthropogenic fragmentation, human footprint 
intensity, potential wind and solar commercial development areas, oil and gas well 
distribution and density, invasive plant species risk, and fire history within the last 
decade (see Appendix Table A19.2 for additional layer details). We report human 
footprint intensity (from Leu et al. 2008) separately from our map of cumulative 
risks to eagles. It is a conglomerate that estimates the combined physical and eco-
logical effects of many anthropogenic influences (Leu et al. 2008), thereby duplicat-
ing some risk factors presented here, and would artificially inflate our results.

We extracted data from the digital risk layers to each of the gridded points from 
the predictive surface. For risk layers represented by point data, we used the ‘select 
by location’ option with a spatial selection of 1500 meters to determine the model 
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predicted RIO value for the closest gridded point. To map the risks to wintering 
Golden Eagles, each risk factor at a given gridded point was assigned a numerical 
rank of 0 for no, or low risk, and a 1 for risk; all risks were weighted equally and 
then summed at each gridded point within predicted winter range. The number of 
potential risks (range: 1–7) at any one site does not account for the dissimilarities 
among risks to eagles (e.g., direct mortality vs. displacement of prey; also see 
Carrete et al. 2009). It does provide a first step in spatial assessment of some of the 
risks to wintering eagles across the study area (see, e.g., Suter II 2016 for an over-
view of ecological risk assessments).

Evaluation Using external, independent, spatially explicit data can be informative 
for testing model assumptions and also provide one of the most realistic evaluations 
of model accuracy (Booms et  al. 2010; Hernandez et  al. 2006; Zorn 2012). We 
assessed the reliability of model predicted eagle wintering areas in the four-state 
region by employing subsets of the publicly available eBird data (eBird 2013; 
Munson et al. 2011) and results from Christmas Bird Counts (CBC; Audubon 2010), 
which include winter sightings of Golden Eagles across the study area. We used 
eBird records from 1979–2011 (n = 2012; Munson et al. 2011) that were collected 
during the same winter months we used for the original model (1 Nov. – 30 March; 
The Authors, Unpublished Data), but excluded any that were classified as not valid 
by the eBird review process (Sullivan et al. 2009). We overlaid the eBird eagle win-
ter locations with a raster layer of mean RIO values in the study area (4.1 x 4.1 km 
grid cell) to determine if the winter sightings fell within model-predicted suitable 
wintering areas for Golden Eagles. We then compared the difference in the observed 
number of eagle locations in suitable and unsuitable habitat with the expected fre-
quency of an equal number of aspatial points (based on the proportion of the study 
area predicted as suitable or unsuitable; chi-square goodness of fit test; R Core 
Team 2013). Additionally, we report the percent of buffered eBird locations (1500 m 
radius) that contain predicted suitable winter habitat vs. those that did not. We buff-
ered the eBird sightings to account for potential errors in  location accuracy and 
selected 1500 m because that represents the maximum error of the satellite derived 
eagle locations used to develop the original model (The Authors, Unpublished 
Data), and because eagles are highly mobile and can easily move this distance dur-
ing their daily winter movements (EHC, THC, MRF pers. observation). For further 
validation, we used data collected from 39 Christmas Bird Count (CBC) circles 
representing survey routes where winter sightings of eagles were made (1979–2010; 
www.audubon.org, www.christmasbirdcount.org). Any CBC circle that contained 
≥1 Golden Eagle sighting was treated as one eagle survey unit for our analysis, 
regardless of the number of eagles observed in it, or number of years in which sight-
ings were made; most CBC circles were surveyed multiple years but eagles were not 
necessarily sighted every year. CBC’s do not record the specific locations of birds 
observed within the 24 km (15 mi) diameter circle but simply the number and spe-
cies of birds sighted. Because CBC circles encompass a large area, we could not 
directly equate the predicted suitability for wintering eagles with a specific location. 
We calculated the proportion of predicted high and medium suitability and unsuit-
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able eagle winter habitat within the CBC circles. We then compared the distribution 
of the categories within the CBC circles in which eagles were sighted, with the 
distribution within all 100 CBC circles in the study area (chi-square goodness of fit; 
R Core Team 2013). When centers of circles from routes changed from year-to-year, 
but still overlapped, we counted the overlapping routes as a single route for our 
analysis. Although CBC and eBird citizen science datasets may be somewhat biased 
toward population centers (Bonney et al. 2014; Dickinson et al. 2010), the extent of 
the data is widespread and reasonably represents the study area. Therefore, they 
were the best independent data available for evaluating our predictive model when 
applied to the study area.

19.4  Results

19.4.1  Model Evaluation

Our predictive model correctly classified the 2012 eBird Golden Eagle winter sight-
ings as occurring in suitable winter habitat significantly more often than expected, 
based on the predicted winter area available (χ2 = 19.1417, df = 1, p < 0.001; see the 
chi-square residuals Appendix Table A19.3). In addition, most (> 94.0%) of the 
buffered (1500  m radius) 2012 eBird eagle winter locations contained predicted 
suitable wintering areas. Similarly, there were significantly more predicted Golden 
Eagle wintering areas within the 39 CBC circles where eagles were sighted than 
were observed (available) in all 100 CBC circles in the study area (χ2 = 25.7315, 
df = 2, p < 0.001). Chi-square residuals indicate that more than expected winter 
habitat classified as highly suitable was found in the CBC circles where eagles were 
sighted (see Appendix, Table A19.4).

19.4.2  Winter Range Characteristics and Risk Factors

Model predicted wintering areas that are potentially suitable for Golden Eagles 
comprise 44.9% (31.5% high and 13.4% mid suitability) of Idaho, Utah, Nevada 
and eastern Oregon and are widespread across the study area (Fig. 19.2). Public land 
predominates in the region and comprises most of predicted eagle wintering areas 
(75.2%: Fig. 19.3). Almost half of the predicted wintering areas are on BLM land 
and 62.3% encompass shrub/grassland vegetation communities (Fig.  19.3). 
Sagebrush encompasses about a third of predicted eagle wintering areas (Fig 19.4a) 
and digital overlays of predicted eagle winter distribution and mapped distribution 
of sagebrush correspond closely in many regions of the study area (Fig 19.4b).

All of model predicted Golden Eagle wintering areas overlapped one risk factor 
(potential for commercial solar development) and 39.4% overlapped two or more 
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potential risks (Fig. 19.5). About a quarter (25.6%) of predicted wintering areas are 
at risk to invasive weed species because of proximity to roads, human population 
centers and agricultural areas (risk classified as greater than or equal to 2 in Leu 
et al. 2008) or because of wildfires and their relationship to invasive weed encroach-
ment into burned areas (Figs  19.6, 19.7; Brooks and Pyke 2001; Keeley 2006; 

Fig. 19.2 Model predicted areas potentially suitable for wintering Golden Eagles in the states of 
Idaho, Nevada, Utah and eastern Oregon in western North America
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Fig. 19.3 Characteristics of predicted Golden Eagle winter range (classified as mid to high suit-
ability), that may have significance for conservation of eagles in the four state study area of west-
ern North America (shown in percent--categories may overlap within the wintering area)

Fig. 19.4 (a) Distribution of sagebrush vegetation communities in the four state study area of 
western North America. (b) Close-up of the sagebrush habitats overlain with a portion of model 
predicted winter areas, showing the close association between the two (original sagebrush layer 
from Knick and Connelly 2011)
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Abatzoglou and Kolden 2011) and subsequent influence on prey availability (Knick 
and Dyer 1997; Kochert and Steenhof 2002).

Significantly more than expected of the predicted wintering areas (59.4%) are in 
the least fragmented landscapes (<10%) while less than expected (3.3%) of model 
predicted winter areas are in landscapes fragmented ≥50% (χ2 = 977.8901, df = 5, 
p < 0. 001; and see chi-square residuals Appendix Table A19.5; Fig. 19.8). Predicted 
Golden Eagle winter habitat occurred across the spectrum of human footprint 
intensity (1–10; calculated from the original data layer created by Leu et al. 2008). 
However, there is a significant difference in the distribution of the intensity of the 
human footprint in suitable vs. unsuitable winter habitat; more than expected 
potential eagle winter areas occurred in landscapes with the least human footprint 
(< 2: from Leu et al. 2008) and less than expected in landscapes where the human 

Fig. 19.5 Distribution and number of potential risks analyzed, that occur in model predicted 
Golden Eagle wintering areas in the four state study area of western North America

19 Assessment of Potential Risks from Renewable Energy Development and Other…



390

footprint was ≥3 (χ2 = 826.8963, df = 5, p < 0.001; and see chi-square residuals 
Appendix Table A19.6).

All the model predicted winter areas overlap potential sites for commercial solar 
development and  <  5% overlap potential sites for wind energy development 
(Fig. 19.6). However, about half of BLM approved wind development sites (47.2%), 
areas with potential for utility grade wind (42.2%; Fig. 19.9a) and solar (44.9%; 
Fig.  19.9b) development in the four state study area, occur in predicted Golden 
Eagle winter habitat. Approved oil and gas wells and development sites, mining 
claims, active mines and other mineral resources overlap about 15.0% of predicted 
winter areas in the four state region (Fig. 19.6), but most that do occur are within 
predicted eagle winter areas (Figs. 19.10a, 19.10b and 19.11).

19.5  Discussion

Our results are the first to predict Golden Eagle wintering areas across a multi-state 
region of the western US, by applying the outcome of a previous predictive model 
(The Authors, Unpublished Data) to a new geographic area. The model was derived 
using TreeNet, a machine learning algorithm, and represents broad-scale ecological 
factors associated with eagles on their winter grounds. It was developed using pub-
licly available digital layers. The same ecological factors used to construct the origi-
nal model for Idaho and Montana were used as a basis for extrapolating Golden 
Eagle wintering areas across Idaho, Utah, Nevada and eastern Oregon. Based on the 
accuracy of our predictions using independent observations from citizen science 

Fig. 19.6 Extent of potential or known risk factors to Golden Eagles that overlap model predicted 
eagle wintering areas in a four state region of western North America
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Fig. 19.7 Distribution of burns and years in which areas burned within the four state study area of 
western North America (original layer from US Department of Interior)
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datasets (CBC: www.christmasbirdcount.org, Audubon 2010; eBird: Sullivan et al. 
2009; eBird 2013), we believe that our model is sufficiently accurate to be useful for 
predicting suitable eagle wintering areas, their characteristics and the co-occurrence 
of potential risk factors within Golden Eagle winter range in the four-state region. 
Our model results were further validated by agreement with published findings that 
wintering eagles in the West are often associated with sagebrush and other shrub/
grassland vegetation associations (see e.g., Marzluff et al. 1997; Poessel et al. 2016) 
and regions where habitat fragmentation and anthropogenic influences are less evi-
dent (Craig et al. 1986; Domenech et al. 2015a; see e.g., Fischer et al. 1984; Marzluff 
et  al. 1997; Nielson et  al. 2016). A visual comparison also shows considerable 

Fig. 19.8 Percent fragmentation of the landscape in the four state study area in western North 
America (original layer from Leu et al. 2008)
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Fig. 19.9 (a) Extent of potential utility grade wind (original layer from National Renewable 
Energy Laboratory) and (b) solar areas (Perez et al. 2002) suitable for development within the four 
state study area in western North America

Fig. 19.10 (a) Distribution of oil and gas wells (layer original source: USGS National Oil and Gas 
Assessment website) and (b) mineral resource sites (Fernette et  al. 2016) within the four state 
study area in western North America
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overlap of our predicted winter areas with Nielson et al.’s (2016) model of the inten-
sity of Golden Eagle use in the western US during late summer.

Identifying areas that are suitable for wintering eagles is an essential first step for 
determining their distribution, the potential extent of risks to the population, and for 
informing future management actions. Our results predict that eagle wintering areas 
extend in a mosaic pattern across all the current FWS EMU’s (BCR’s; USFWS 
2016) in the study area. Eagles that winter there are known to represent breeding 
populations from at least 5 BCR’s within the Pacific Flyway, which extend from the 
southern tip of Nevada, north to Alaska (see e.g., Marzluff et al. 1997; McIntyre 
et al. 2008; McKinley and Mattox 2010). During migration, eagles could potentially 
cross any of more than 25 ecoregions (see Level III ecoregions of NA; https://www.
epa.gov/eco-research/ecoregions-north-america), 5 Landscape Conservation 
Cooperatives (LCC’s; https://lccnetwork.org/map), and 5 Joint Ventures (JV; https://
iwjv.org/resource/map-north-american-joint-ventures) as they travel from their 
summer areas to wintering grounds in the study area. A cluster analysis of the yearly 
movement tracks of 571 Golden Eagles in North America from 1992–2016 simi-
larly indicated that different clusters of eagles, representing both resident and 
migratory populations, often used the same geographic units (e.g., BCR or LCC; 
Brown et al. 2017). Brown et al. (2017) also found that the clusters of eagle data 
they analyzed did not adequately conform to the geographic boundaries of the four 
mapping systems they examined in western NA (BCR, Flyway, LCC, JV). This 
emphasizes the challenges faced by managers as they attempt to identify geographic 
populations of Golden Eagles in order to estimate the impacts of local risks on long- 
term population stability. The numbers of wintering eagles, their distribution in an 

Fig. 19.11 Percent of energy related risk factors in the four-state study area in western North 
America that fall within model predicted Golden Eagle wintering areas
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EMU (BCR), and the extent to which different breeding populations are represented 
in specific winter areas within the four state region are unknown. There is a need for 
eagle surveys across the species’ winter range and for identifying the composition 
of the wintering population in order to identify important use areas and to gather 
data for advancing population models (USFWS 2016).

Our predictions of Golden Eagle winter habitat in Idaho, Utah, Nevada and east-
ern Oregon are based on eagle locations and habitat characteristics in southwestern 
Idaho and the east-central Idaho/west-central Montana region. Shrub/grassland veg-
etation associations predominated in the winter areas of those satellite-tracked 
eagles (The Authors, Unpublished Data) and shrub/grasslands predominate the 
results of the predicted eagle winter areas in the four-state study region. It is inter-
esting to note that although we did not use a specific layer representing sagebrush to 
construct the original model, there was remarkable overlap in portions of the pre-
dicted winter areas and the digital sagebrush layer created by Knick and Connelly 
(2011). These results corroborate the importance of sagebrush habitats to Golden 
Eagles in the study area during winter and agree with observations in the field (EHC, 
THC, MRF; Marzluff et al. 1997). They further support the general assumption that 
Golden Eagles often rely on these habitats in much of the US intermountain west 
(Kochert et al. 2002; Marzluff et al. 1997). Future models could be further refined 
by using sagebrush distribution maps overlain with predicted winter areas in west-
ern US landscapes where shrub-steppe vegetation cover prevails.

Of particular interest is that most of predicted wintering areas in the four state 
region occur on sparsely populated public lands, and almost half occurs on BLM 
managed lands. These include much of the shrub-steppe habitat in the western US 
and many of the areas targeted for rapid expansion of energy development projects 
(Copeland et al. 2011). As a result, public land management decisions, particularly 
those involving permits for development on BLM managed lands, and the transfer 
of public lands to private ownership (see e.g., 1 March 2018, Bill H.R. 5133, which 
allows, “…for the sale or exchange of public land…”), will play a vital role in the 
future conservation of Golden Eagles in the West.

We found considerable overlap in our model predicted eagle wintering areas and 
sites with high potential for renewable energy development. Nielson et al. (2016) 
report similar results for their modeled density distribution of eagles during late 
summer. Direct mortality from wind farms (Katzner et al. 2017; Loss et al. 2013; 
Pagel et al. 2013; Smallwood and Thelander 2008) is just one of the energy develop-
ment related threats to Golden Eagles. Copeland et al. (2011) estimate that some of 
the greatest effects to ecosystems in western NA from energy development will 
occur in shrublands (>40,000,000 h), and that >75,000,000 h of grasslands are also 
vulnerable because of their occurrence in areas with high oil and gas reserves. They 
further speculated that, if development in the US occurs at a maximum rate, the 
future effects of commercial wind and solar development are greatly underesti-
mated, and could have major impacts on shrub and grassland ecosystems (Copeland 
et al. 2011). At the same time, climate change, wildfires, and invasive weeds are also 
predicted to further transform ecosystems in the western US and present additional 
major challenges for conserving sagebrush and other native shrub-steppe vegetation 
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communities and the species reliant upon them (Abatzoglou and Kolden 2011; 
Balch et al. 2013; Bradley 2010; Chambers et al. 2014; Creutzburg et al. 2015). 
More than half of predicted winter areas in the four state region have already been 
altered by fires and/or invasive weed species, emphasizing the importance of moni-
toring the cumulative effects of these multiple threats on eagle populations in the 
West.

Currently, little of our model predicted eagle wintering areas have active devel-
opment in them, although ~40% contain at least two risk factors. Because winter 
areas are scattered across much of Idaho, Utah, Nevada and eastern Oregon, it is 
likely that many of the individual eagles wintering there are exposed to some of the 
risks identified in our analysis. Potential sites for renewable energy development are 
the most widespread of the risks we examined, but almost all oil and gas develop-
ment and other mineral resources occur in potential eagle wintering areas. 
Identifying critical habitat for wintering eagles and the density and composition 
(breeding populations represented) of wintering populations is essential for effec-
tive conservation planning. It is particularly important for assessing the population 
level impacts of potential future development and other risk factors in eagle winter 
areas. Our model does not provide an estimate of eagle density, but we speculate 
that the most suitable habitats will likely support higher numbers of eagles; addi-
tional investigation is needed in this area.

Predicted winter areas occur disproportionately where the intensity of human 
activity is low, and where habitat fragmentation is also relatively low. We assume 
these areas reflect more intensive and consistent winter use by Golden Eagles. 
Similarly, Domenech et al. (2015a) reported wintering eagles to avoid urban areas 
and Nielson et  al. (2016) found a negative relationship between the intensity of 
Golden Eagle use during late summer in the western US and the proportion of 
developed landscape. These results imply that the potential for adverse effects on 
eagles in western NA is high as a result of expanding anthropogenic influences. 
Generalist apex predators [such as the Golden Eagle] that have low population den-
sities and range over large areas are particularly at risk from habitat fragmentation, 
partly because it may cause them to move more widely or relocate, where they may 
also encounter other threats (Terborgh et al. 2011). Similarly, the distribution of 
threats we analyzed provides evidence of the extent of some of the stressors that 
resident and migrant eagles face in the study area during winter.

Many risks we identified are concentrated near population centers and where 
habitat fragmentation is high, both, areas where fewer wintering eagles are likely to 
occur (this study; Domenech et al. 2015a; Nielson et al. 2016). However, we caution 
that our map of risks to eagles should be considered a minimum estimate because 
changes are occurring rapidly in the West and some of the digital layers we used 
contain data that are out of date; in addition, we weighted all risks equally. Our 
analysis makes no attempt to take into account the varying demographic conse-
quences of individual risks to Golden Eagles such as direct mortality from blade 
strikes at wind farms (Pagel et al. 2013) vs. effects of wildfires and invasive weed 
encroachment in native habitats (Balch et al. 2013; Bradley 2010) that may affect 
prey distribution and availability (Knick and Dyer 1997; Kochert et  al. 1999). 
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Further, our results represent only a portion of risks to eagles. The widespread 
extent and level of exposure to environmental contaminants (e.g., heavy metals or 
polychlorinated biphenyls; Herring et  al. 2017) remain largely unmapped and 
unavailable as digital data layers. Still other risks to eagles may be unknown. This 
challenges resource managers attempting to quantify and estimate local risk factors 
on the long-term stability of widespread geographic populations of Golden Eagles. 
The problem is further exacerbated because, as evidenced by Brown et al.’s (2017) 
research on the movements of hundreds of eagles and recognized by USFWS (2016) 
analyses, it is difficult to identify the appropriate boundaries of an EMU. Further, 
the proportional extent to which different breeding populations are represented in 
specific winter areas within the four-state region is still unknown. Preliminary esti-
mates of wintering Golden Eagle density at the larger, landscape scale have been 
highly variable and challenge interpretation (USFWS 2016).

Some may assume that alterations in habitats have less impact on wintering 
eagles than to birds during the breeding season because wintering eagles are not tied 
to a nest site and can forage elsewhere when winter habitats are altered or lost. 
However, recent evidence indicates that migrants, like resident Golden Eagles, 
show fidelity to wintering areas, particularly adult birds (The Authors, Unpublished 
Data; McKinley and Mattox 2010; Watson et al. 2014; Domenech et al. 2015a). Site 
fidelity during winter indicates the importance of consistently used areas and 
emphasizes possible negative impacts from deterioration of winter habitats. There is 
a need to identify these areas ante factum as an essential component of informing 
appropriate management decisions relative to population level impacts of perturba-
tions on eagle winter grounds. Our findings are an important first step toward that 
end. However, we emphasize that our model predicted winter areas do not necessar-
ily represent the actual winter distribution of eagles, but their potential distribution 
in the study area. Additional surveys or other assessment of Golden Eagle presence 
at the local level are necessary to refine this broad-scale predictive model. Further, 
until Golden Eagle winter distribution and resource use are studied and more fully 
understood across landscapes, it will continue to be difficult to determine how inter-
acting and multiple risk factors affect eagle population dynamics. This is particu-
larly true if rapidly expanding energy development occurs where migrants and 
residents concentrate.

Our results and distribution maps describe characteristics of, and risks associated 
with predicted Golden Eagle wintering areas in the four state region and potentially 
identify where management can best be implemented toward conserving a stable or 
increasing Golden Eagle population. Our results can also provide geographic focus 
for prioritizing surveys to help identify important eagle use areas in western US 
landscapes, where the greatest potential for conflicts between development projects 
and wintering eagles occurs, and where risks from degradation of habitat, distur-
bance, or take is likely to affect eagles (USFWS 2013). They can additionally pro-
vide geographic input on relevant anthropogenic stressors for inclusion in more 
complex ecological risk assessments (Suter II 2016) such as spatial demographic 
models that estimate population level responses to risks at smaller geographic 
scales, (see, e.g., Wiens et al. 2017).
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19.5.1  Summary

Our results indicate that wintering Golden Eagles are predicted to occur in a con-
tinuum of suitable habitat across much of the four state region, but are likely exposed 
to a variety of risk factors on their wintering grounds. The demographic conse-
quences of wintering in habitats of varying suitability are unknown, as are the 
effects of exposure to various risk factors or multiple risks. We believe that manag-
ing for a stable or increasing population at the continental or regional scale by per-
mitting and mitigating take at the local site or EMU scale (USFWS 2016) can 
benefit from our predictions of potential winter areas. Using the predictions and our 
documented distribution of risk factors, biologists can stratify surveys to locate 
eagle use areas and document eagle resource use responses to risk factors. 
Management of wintering areas to minimize and mitigate adverse effects or to max-
imize conservation is likely to be especially important in areas of suitable habitat 
that are consistently used by resident and migrant eagles (The Authors, Unpublished 
Data; Marzluff et al. 1997; Domenech et al. 2015a). Comparatively dense concen-
trations of eagles at risk could result in greater demographic consequences. Also, if 
habitat loss or eagle take affects individuals that would have dispersed to or returned 
to breeding season range in a different EMU, a decline in eagles detected in a distant 
area will be difficult to understand and manage without more complete knowledge 
of Golden Eagle winter ecology.

Although a relatively small percent of our model predicted eagle wintering areas 
have active development in them, it is important to note that: (1) mortality at the 
localized scale can have widespread impacts to eagle populations; (2) a high per-
centage of development projects or areas with potential for development, occur 
within predicted winter areas; (3) our map of risks to wintering Golden Eagles is 
appropriate for initial, broad-scale project level planning but it does not represent all 
risks that occur in the study area; (4) our model of winter areas reflects only one of 
a series of hierarchical choices that eagles make when selecting and using a winter-
ing area; (5) our model of predicted winter areas is an estimate and does not neces-
sarily represent the actual winter distribution of wintering eagles in the study area; 
(6) the resolution of the digital layers we used and error associated with the original 
input datasets also determine the scale at which our models can be interpreted; and 
(7) further field validation is essential for fine-scale project level risk assessment.

Conflicts with Golden Eagle winter populations could be greatly reduced by 
encouraging renewable energy development in fragmented landscapes near popula-
tion centers that are already heavily impacted by the human footprint and where 
current research indicates that fewer wintering Golden Eagles are likely to occur 
(this study; Nielson et al. 2016). Further, solar and wind development at already 
impacted population centers and by individual home owners and businesses are 
more energy efficient and cost effective because they provide power at or near the 
site where it is used; energy loss due to transportation from remote locations is 
avoided (Bialek 1996; Rao et al. 2013). In addition, energy development that occurs 
in disturbed areas has been shown to result in fewer ecological impacts overall 
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(Jones and Pejchar 2013). Privately developed solar projects in some states have 
been highly successful and occur in impacted environments where Golden Eagles 
are not likely to occur (Aylett 2013; Cusick 2015). An avoidance approach for 
development could be a useful management strategy even while there is still uncer-
tainty about aspects of eagle population biology.
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 Appendix

Table A19.1 Descriptions and sources for environmental layers used to apply the grove file from 
the original wintering Golden Eagle model in Idaho and Montana (The Authors, Unpublished 
Data) to the geographic area of Idaho, Nevada, Utah and eastern Oregon1

Environmental 
layer Description (labels) Time period Data source

Climate 30 year averages used to 
interpolate minimum monthly 
temperature during winter; raster, 
cell: 1 km.

Nov–March 
1980–1997

PRISM, http://prism.
oregonstate.edu

30 year averages used to 
interpolate monthly precipitation 
during winter; raster, cell: 1 km.

Nov–March 
1980–1997

PRISM, http://prism.
oregonstate.edu

Average Hillshade2, a relative 
measure of solar illumination 
(value during winter on the 15th of 
each winter month at 10:00 hr). 
Derived in ArcMap; raster, cell: 
1 km.

Nov–March, 
winter

Derived in ArcMap 
(Azimuth and Altitude 
calculated using 
NOAA’s solar calculator

Topography Digital elevation models for the 
4-state area; datasets were merged 
for our purposes; raster, cell: 90 m

NA https://catalog.data.gov/
dataset/
usgs-national-elevation-
dataset-ned

Slope: Derived from Digital 
Elevation Model;raster, cell: 90 m

NA Derived in ArcMap
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Environmental 
layer Description (labels) Time period Data source

Aspect2: Degrees derived from 
Digital Elevation Model and then 
classified;raster, cell: 90 m

NA Derived in ArcMap

Water Distance3 to rivers and streams 
derived from original hydrography 
layer (https://nhd.usgs.gov/ ); 
raster, cell: 1 km.

2002 Derived in ArcMap

Highways and 
roads

Distance3 to highways or roads 
derived from original Tiger 
transportation layers; raster, cell: 
1 km.

2000 Derived in ArcMap

Land Cover Vegetation cover2, reclassified to 9 
classes from the original GAP 
layers (US Geological Survey 
2011); raster, cell: 30m)

2006 https://gapanalysis.usgs.
gov/gaplandcover/data/
Version 2

Land Ownership Land ownership2 clipped to the 
four states’ boundaries from 
original, westNA_own.shp; 
polygon.

1992–2003 http:\\sagemap.wr.usgs.
gov

Human population 
density

Human population density from 
Census Blocks 2000 with 
Associated Data; polygon.

2000 US Census Bureau Tiger 
Files http://sagemap.wr.
usgs.gov/ftp/regional/
usgs/us_
population_1990-2000_
sgca.zip

1Spatial Reference Information: Projection: North American Datum Albers 1983, False Easting: 
0.000000, False Northing: 0.000000, Longitude of Central Meridian: -96.000000, Latitude of 
Origin: 23.000000, Standard Parallel 1: 29.500000 and 2: 45.500000
2Additional GIS Layer Information
Hillshade was calculated in ArcMap but input parameters for azimuth and altitude were calculated 
using an online solar calculator (NOAA Research, http://www.esrl.noaa.gov/gmd/grad/solcalc/)
We reclassified the vegetation classes into 9 general categories from the original GAP layers 
(Homer, 1998; Redmond et al., 1998): 1 = urban or developed land, 2 = agricultural land, 3 = 
grasslands and shrublands, 4 = forest uplands, 5 = water, 6 = riparian and wetland areas, 7 = barren 
land (exposed rock, sand dunes, shorelines and gravel bars), 8 = alpine meadow, 9 = snow, ice, 
cloud or cloud shadow
For Land Ownership we retained the original 16 categories described by Finn (2003): BIA=Bureau 
of Indian Affairs, BLM=Bureau of Land Management, BOR=Bureau of Reclamation, 
DOD=Department of Defense, DOE=Department of Energy, LOCAL=local ownership, MISC_
FED=miscellaneous federal lands, NPS=National Park Service, PRIVATE=private land, 
STATE=state land, TNC=the Nature Conservancy, UNKNOWN, USFS=U.S.  Forest Service, 
USFWS=U.S.  Fish and Wildlife Service, WATER=bodies of water, USFS/BLM=U.S.  Forest 
Service or Bureau of Land Management. The combined USFS/BLM category comprised a very 
small portion of the land ownership and was included by Finn (2003) for the small percentage of 
lands in which the exact federal ownership was undetermined
3All distance layers were derived using the Euclidian Distance tool in the Spatial Analyst extension 
of ArcMap 10.1
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Table A19.2 Descriptions and source information for layers included in the analysis of risks to 
Golden Eagles in their predicted winter areas in Idaho, Utah, Nevada and eastern Oregon. Original 
source layers were clipped to the study area boundaries and reprojected, if necessary. Spatial 
Reference: North American Datum Albers 1983, False Easting: 0.000000, False Northing: 
0.000000, Longitude of Central Meridian: -96.000000, Latitude of Origin: 23.000000, Standard 
Parallel 1: 29.500000 and 2: 45.500000

Risk layer Description (labels) Time period Data source

Prospect and 
mine-related 
features

Prospect- and Mine-Related 
Features on USGS 
Topographic Maps of the 
Western United States 
(point; Fernette et al. 2016)

1888–2006 https://www.sciencebase.gov/
catalog/
item/57962314e4b007df0739fede

Fire history Historical fire record for the 
western United States 
(polygon; Western Fire Map 
1870-2007; US Dept. of 
Interior);

1870–2007 https://catalog.data.gov/dataset/
western-range-fires-1870-2007

Anthropogenic 
fragmentation

Estimates the degree of 
fragmentation caused by 
development of human 
features on the landscape 
(raster, cell: 180 m; Leu 
et al. 2008).

2007 USGS SAGEMAP: http://
sagemap.wr.usgs.gov

The human 
footprint in the 
West

Model of the influence of 
anthropogenic disturbance in 
the western United States. It 
contains 10 human footprint 
classes based on input from 
14 anthropogenic related 
features (raster layer, cell 
size: 180 m; Leu et al. 
2008).

2007 USGS SAGEMAP: http://
sagemap.wr.usgs.gov

Exotic plant 
invasion risk in 
the western 
United States

Model of the risk of invasion 
by exotic plant species 
(raster, cell: 180;Leu et al. 
2008).

2008 USGS SAGEMAP: http://
sagemap.wr.usgs.gov

Oil and gas well 
distribution

Displays the oil and gas well 
distribution in the western 
United States (points; all_
wells_wus_1899-2007). 
Original layer from USGS 
National Oil and Gas 
Assessment website

1899–2007 USGS SAGEMAP: http://
sagemap.wr.usgs.gov; http://
energy.cr.usgs.gov/oilgas/noga/

Oil and gas well 
density

Density of oil and gas wells 
in the western United States 
(raster, cell: 180; Original 
layer from USGS, National 
Oil and Gas Assessment)

2004 http://energy.cr.usgs.gov/oilgas/
noga/
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Risk layer Description (labels) Time period Data source

Western US 
wind resource at 
50 meters above 
ground level

Identifies areas of high wind 
resource potential in the 
western US on a scale of 
1-7, with 7 having the 
highest potential (polygon; 
original source: National 
Renewable Energy 
Laboratory)

2002 USGS SAGEMAP: http://
sagemap.wr.usgs.gov/ftp/sab/
wus_50mwind.zip

Utility grade 
solar 
development 
potential

Monthly and annual average 
solar resource potential for 
48 Contiguous United 
States. (polygon; Perez et al. 
2002)

1998–2005 Created by the National 
Renewable Energy Laboratory 
which is operated by the Alliance 
for Sustainable Energy, LLC for 
the U.S. Department of Energy

Sagebrush in 
the Western US

Sagebrush habitat in the 
western US (raster, cell size: 
90 m; Knick and Connelly 
2011)

2006 USGS SAGEMAP: http://
sagemap.wr.usgs.gov

Table A19.4 Comparison of the distribution of predicted suitable Golden Eagle winter habitat in 
CBC circles where eagles were sighted (observed), with the expected distribution in all CBC 
circles in the study area. Residuals of the chi-square test are shown for each category of habitat 
from low (unsuitable) to high suitability for winter habitat (χ2 = 25.7315, df = 2, p <0.001)

Suitability for Golden Eagle 
winter habitat

Low (unsuitable): < 
0.33 RIO

Mid: > 0.33 and < 
0.67 RIO

High: > 0.67 
RIO

Chi-square Residual −2.6282 −0.7986 4.2645

Table A19.3 Chi square residuals from a comparison of 2,012 independent Golden Eagle (eBird) 
winter sightings that were located in predicted suitable and unsuitable Golden Eagle wintering 
areas (observed), with the expected distribution, based on the the percent of predicted suitable vs. 
unsuitable winter areas available in the Idaho, Utah, Nevada and eastern Oregon study area (χ2 = 
19.1417, df = 1, p <0.001)

Suitability for Golden Eagle winter 
habitat

Low (unsuitable): < 0.33 
RIO

Mid and High: > 0.33 
RIO

Chi-square Residual −2.932 3.2476

Table A19.5 Chi square residuals for a comparison of the degree of fragmentation in predicted 
suitable Golden Eagle wintering areas (observed), with fragmentation of all the available (expected) 
area in the Idaho, Utah, Nevada and eastern Oregon study area (χ2 = 977.8901, df = 5, p <0.001)

Percent of the habitat 
that is fragmented < 10 10 – 20 20 – 30 30 – 40 40 – 50 > 50

Chi-square Residual 20.013849 −13.972032 −10.307536 −7.616126 −9.877737 −10.968042
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Table A19.6 Chi square residuals for a comparison of the intensity of the human footprint (scale 
1 – 10) in predicted suitable Golden Eagle wintering areas (observed), with the intensity of the 
human footprint in all the available (expected) area in the Idaho, Utah, Nevada and eastern Oregon 
study area. Predicted winter areas were more likely to be in habitats with the lowest intensity 
human footprint (1 and 2) and less likely than expected in areas with greater human footprint (>3; 
χ2 = 826.8963, df = 5, p <0.001)

Intensity of human footprint 1(least) 2 3 4 5 > 5 (most)

Chi-square Residual 25.1540 3.5628 −2.8829 −4.0488 −4.7643 −11.5790
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Part VI
Conclusions

 

“In God we trust. All others must bring data.”  
          – W. Edwards Deming
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Chapter 20
A Perspective on the Future of Machine 
Learning: Moving Away from ‘Business 
as Usual’ and Towards a Holistic Approach 
of Global Conservation

Grant R. W. Humphries and Falk Huettmann

20.1  The Future is Here

The year 2100 seems so far away for us that it’s almost inconceivable to picture 
what life might be like then. In fact, very few people who were born before this 
book was published, will survive to that year. For some of us, the year 2100 may as 
well be 3000 years or even eons from now (i.e. when our sun is predicted to con-
sume the planet). Therefore, it is hard for those of us currently alive to care about it. 
By the time 2100 arrives, three more generations of humans (assuming a generation 
is approximately 25 years) will come to be. Scientists have arbitrarily chosen 2100 
as a benchmark for climate change model predictions (e.g., www.ippc.ch, Friedman 
2010). Thus, natural resource managers and ecologists predicting distributions and 
populations into the future in relation to climate data are limited to using the same 
benchmark year.

We draw your attention to the fact that 2100 is a benchmark year for ecologists 
to highlight that technological advances, particularly those in machine learning, are 
going to be well beyond our current imagination by the time this comes around. 
This almost need not be said, but if you consider the fact that the first computer was 
created in the 1940s (just ~78 years before the publication of this book), and there 
are still ~82  years until 2100, the possibilities are actually mind-boggling. Ever 
since machine learning started becoming mainstream in the early 2000s, we have 
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developed software that can accurately classify voices, faces, and even determine 
which Harry Potter character we most resemble based on our social media posts. 
Consider also the use of robots, data sensors and drones which have massive impli-
cations not only for society, but also in ecological studies and subsequently, conser-
vation management. These technologies rely on machine learning algorithms that 
are developing faster than we can keep up with. So where will that take us in the 
next 10, 50 or 100 years? Will humanity (and society) and landscapes still be the 
same? Having a concept of ‘the future’ in mind is essential.

Beyond these technical advances, which obviously have implications in how we 
do science, we have to ask a larger question: What is the future of machine learning 
in ecology? More specifically, what will its impact be on our understanding and 
conservation of ‘Mother Earth’, and its various systems?

As with nature and earth issues in general, what we don’t know vastly outweighs 
what we do. We do know that the virtual economy (i.e. economic growth driven by 
technological change) and related concepts (Romer 1990) are likely not sustainable 
due to resource limitations (Daly and Farley 2010). We also know that humanity has 
become interwoven with technologies (driven by machine learning), which impacts 
every aspect of our lives, even in remote areas thanks to the advent of smart phones 
and wireless technologies. This means that virtually every landscape, its flora, fauna 
and indigenous communities are directly impacted (Huettmann 2015, sensu Czech 
2000).

Arguably, massive changes on all fronts (hardware, software, human society, and 
the earth) may be expected when creating these new interactions and synergies. But 
we simply cannot predict what those interactions will look like for ‘Mother Earth’, 
or how they will affect her. While parsimony will only lead us to a single predictor, 
machine learning technologies will be central to how we study this moving forward 
due to their ability to learn and predict patterns as data evolve. But as we just previ-
ously mentioned, these technologies are limited by natural resources (e.g., rare earth 
metals) and their extraction. So, despite various claims (Romer 1990), the 
‘Information Economy’ cannot grow forever and is not decoupled from the planet 
or her resources and ecology (Czech 2000). This is something that must be borne in 
mind as we move forward as a society and species. Work by Eichstaedt (2016) for 
the Congo, Buckley (2014) for the Tibetan Plateau, or Henton and Flower (2007) 
for Papua New Guinea demonstrate the impacts of the ‘Information Economy’ on 
human environments at multiple scales.

We are making great strides in using machine learning technologies, yet there are 
large conceptual and ideological bottlenecks to progress in ecology that cannot be 
ignored. The rise of nationalism, for example, which tends to lead to decreased 
interest in advancing ecological studies (i.e. through federal funding cuts), could 
lead to situations where ecologists fall too far behind the technology to be able to 
fully understand the potential impacts of machine learning on the planet. It is vitally 
important to overcome these bottlenecks through creative solutions to keep abreast 
of future advancements.
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Below is a short list of research fields and technologies that are currently advancing 
thanks to machine learning, and which will have implications in ecology. We also 
provide examples of a few hypothetical possibilities for the future.

 1. DNA research: disease screening is much faster, and entire genomes can now be 
analysed using big data techniques. Perhaps this, combined with new lab tech-
niques, could lead to bringing back extinct species or at least provide early warn-
ing signs for human disease. If performed correctly, linking DNA information 
with spatial information (e.g. Landscape Genetics) can allow for a more inclu-
sive approach when using DNA.

 2. Taxonomy: related to DNA research, the study of entire genomes with machine 
learning algorithms (e.g. intelligent clustering) could lead to the re-definition of 
species and underlying concepts (Fernández et al. 2010).

 3. Drones: the peaceful application and automation of drones is already advancing 
rapidly. As they become cheaper and automated algorithms for detecting animals 
are integrated, it could drastically improve how we perform wildlife surveys 
worldwide.

 4. Robotics: related to drones to some degree, with automation using machine 
learning algorithms imminently due to take over certain activities normally car-
ried out by humans (e.g., expert scientists, factory workers, ship operators, 
etc.…). These could be ground-based robots that take samples of plants, or per-
haps marine-based UAVs for sampling organisms in the ocean.

 5. Databases: although databases have been used for many decades, machine learn-
ing has helped to build on, and add to, these technologies. Algorithms can query 
and populate databases in near-real time (i.e., data are uploaded quickly and can 
be accessed instantaneously by other after uploading), which could facilitate 
running near-real time species distribution models. Those databases can be com-
plex and very big (i.e., ‘Big’ Data) but it works equally well for data gaps and 
small data sets. eBird and its machine learning approach is a good example of 
how these algorithms can be used to improve databases and inferences (Kelling 
et al. 2012).

 6. Risk assessment: commonly used by insurance agencies and economics, these 
methods are getting more efficient and accurate. We see many applications appli-
cable to ecology with outlier / anomaly detection as a showpiece, helping us to 
focus our conservation efforts.

 7. Forecasting: Time series forecasting or forecasting of species distributions and 
densities is now common in ecology, but machine learning has greatly advanced 
our ability to do this accurately (Craig and Huettmann 2008; Taylor and Letham 
2017). This is bound to improve with new statistical methods, and machine 
learning is likely to be central to this.

There are other social movements that are predicted to impact machine learning 
technologies as well, including: global availability of the internet (e.g., public 
WIFI), cheap computers, smaller microchips, faster internet connections (4G, 
5G, etc.…), changes in how we produce energy, and the push to reduce carbon 
emissions. We have to be aware of these developments, movements, and changes as 
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they occur in order to ensure that we fully take into account our impacts on the 
environment into the future.

With this perspective in mind, there are still facets of wildlife and natural resource 
management that seem unprepared for these changes; getting stuck in and re- 
embracing older methodologies and technologies in the hope that the system and 
society will change to adopt their paradigms. So where do we go from such situa-
tions? We believe that the key is to re-visit some of the short-comings of where we are 
right now in order to determine the best strategies for moving forward. We are usually 
optimistic of the future, but to even begin to understand where we are going, we must 
know where we are and what is causing delays in moving towards new strategies.

20.2  Natural Resource Management (and Species 
Distribution Models)

For over five decades habitat selection studies have been the cornerstone for wildlife 
research, and natural resource management, particularly in the United States. A 
quick search on ‘white-tailed deer Odocoileus virginianus and habitat studies’ 
online will reveal a bewildering amount of literature on this topic (41,500 hits on 
Google Scholar; bearing in mind that not all of these will be on this exact subject, 
but will be somewhat related). This has the unfortunate consequence of terminology 
being blurred (e.g., Jones 2001, Silvy 2012, Kirk et al. 2018), or potentially conflict-
ing arguments. Considering burgeoning white-tailed deer numbers, we have to 
question how effective the current habitat selection function techniques have been 
for wildlife management. Sophisticated research designs and analysis are still 
treated like the ‘holy grail’ (Johnson 1980 for habitat preference; Manly et al. 2002 
for the original theory and quantitative methods at the time). Meanwhile, efforts by 
citizen science have vastly changed the playing field (e.g. Hochachka et al. 2007).

Habitat suitability indices (HSIs) were dominant in the literature and quite cut-
ting edge in the absence of laptop or personal computers in the 1970s and 1980s. 
The use of HSIs attracted a lot of attention (Brooks 1997; Silvy 2012) and funding, 
leading to many updates in the methodology (e.g., Verner et al. 1986; Manly et al. 
2002; Elith et al. 2006). But, by their very nature, HSIs are considered reductionist, 
and do not take the entire ecosystem into account. A continuation of this reduction-
istic thinking then came with Manly et al. (2002) who widely formulated and pro-
moted the use of Resource Selection Functions (RSF)s, all based on (basic) 
computing and a controlled research design (see Eq. 1 below for an example RSF). 
Linked with GIS and computational statistics, in some governmental and federal 
contractor corners this overly simplistic and reductionistic approach then became 
the ‘latest cry’ in their species conservation management plans and for their solu-
tions presented to the public audience on how to best manage wildlife. It was rela-
tively easy to do in an environment that is neither in favor of technology, nor 
computing and certainly not of math. The North American performance metrics on 
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basic mathematical knowledge express that clearly, and thus, simple formulas carry 
great weight in a public discussion.

w(x) = e(β1x1 + β2x2 + …βkxk) (Manly et al. 2002; Johnson et al. 2004; Silvy 2012) Eq. 1

Linked with the information-theoretic approach to decision-making (Burnham and 
Anderson 2002) RSFs became virtually mandated for federal agencies. It became a 
recommended method for charismatic megafauna like polar and grizzly bears, 
whales, etc.… (Manly et al. 2002 for examples). However, early work by Ferrier 
(2011 for review), Peterson et al. (2002) and Guisan and Zimmermann (2000) sowed 
the seeds of change in this culture. This change was likely slow perhaps because the 
initial works linking machine learning to spatial ecology were rooted in botany and 
not in charismatic species (see Huettmann and Diamond 2001 for an exception). 
However, this has been improving since that time (e.g., Tobeña et al. 2016).

It was left to a study within an international working group of the National Center 
for Ecological Analysis and Synthesis (NCEAS) in St. Barbara, California, by Elith 
et al. (2006) which probably focused the ecological world’s attention on the use of 
advanced modeling methodologies. Still, the role of earlier model work by 
D.R.B. Stockwell, A.T. Peterson, M. Burgman, S. Ferrier, C. Moritz, A. Hirzel and 
the open access museum community should really be emphasized first, strongly 
leading to NCEAS and its studies and concepts. Judging by the many citations of 
this NCEAS effort and its related papers and outcome, Elith et al. (2006 and many 
other publications coming from it) truly represents a big leap forward demonstrat-
ing that machine learning methods were becoming the method of choice for wildlife- 
habitat investigations. It remains a seminal study to this very day and the concept is 
continually growing.

Machine learning methods like Maxent (maximum entropy; Phillips et al. 2006) 
were now on the rise, geared towards species distribution models (SDMs; Guisan 
and Zimmermann 2000; Guisan and Thuiller 2005). Maxent for SDMs became very 
popular due to it being a ‘point & click’ platform, which led to somewhat of a ‘me 
too’ type of approach to ecology (this type of ‘me too’ science was critiqued by 
O’Connor 2000). However, despite their widespread use, these point and click 
methods typically did not have code that could be shared, making them somewhat 
opaque, scientifically. Also, it is somewhat difficult to report on all the settings used 
within the graphical user interface, especially during the initial project phases when 
most scientists forget to record such details (this is a reference to poor data manage-
ment skills as well, commonly found in ecology). This is changing though as pro-
gramming languages become more commonly used by ecologists (see https://
github.com/julienvollering/MIAmaxent for an open source R implementation of 
maximum entropy modeling, and Phillips et al. 2017 for the now open sourced code 
for Maxent). However, to date there is still a needed change of culture away from the 
typical SDM template which do not adhere to true machine learning philosophies 
(see Breiman 2001a).
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We think that the lessons from the seminal Breiman (2001a) statistical culture 
publication are not yet strictly adhered to in SDMs because:

 a) the specific compiled input data are not always shared open access,
 b) the specific code that was run are not shared in relevant detail,
 c) the output prediction layer is rarely made available for an assessment and use, 

and worst of all
 d) the study is rarely linked to effective conservation management in that machine 

learning is not referred to in most policy or legal (court) decisions.
 e) these studies widely lack a reflective component which advances ethical and 

societal questions

Despite this, machine learning (often linked with Artificial Intelligence), has become 
a much more commonly referenced term in the scientific literature. However, there 
is much more work to be done to fully incorporate creative and scientifically sound 
applications of machine learning. For example, examining new and upcoming algo-
rithms (e.g., Prophet; Taylor and Letham 2017, or convolutional neural nets; LeCun 
and Bengio 1995) could lead to new insights into ecosystem scale (i.e. holistic) 
modeling.

20.3  Falling ‘out of love’ with your Model to Help Develop 
New Methodologies and Insights

Many modelers (and programmers) tend to fall in love with their models, algo-
rithms, code, and insights, even in cases where they are not relevant for conservation 
(McArdle 1988; Keating and Cherry 2004; Guthery 2008; Stephens et  al. 2007; 
Arnold 2010; Faraway 2016). Meanwhile, the destruction of nature continues 
unabated in many places, especially hotspots of biodiversity like Asia, Africa, and 
South America (Mace et al. 2010; Pimm et al. 2014). Falling in love with a method 
can potentially lead to costly, drawn out debates in public fora and elsewhere (e.g., 
published rebuttals). Science and progress entails debate. It means that, apart from 
being teachers, mentors, researchers, programmers, and writers, ecologists must 
also be part- time debaters (see Silvy 2012). This can be exhausting and demoral-
izing and can often end up with one side simply conceding to the fact that “nothing 
can be done”. Although scientific debate is important, and certainly there is merit in 
being able to defend a methodology, oftentimes, debates and arguments lie around 
issues with statistical assumptions, or problems with parametric approaches. Issues 
like significance (p-values; which are beginning to fall out of favor in the ecological 
community due to their various drawbacks), linear model fits, data distributions 
(e.g., the assumption of normal distributions which are hardly ever found in ecologi-
cal data; McArdle 1988; Breiman 2001a) and localized optima problems can drasti-
cally sideline projects and publication. This is where machine learning techniques 
can be of great value and provide progress.
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As you have learned throughout this book, machine learning algorithms have the 
advantage of being flexible across a range of different datasets while providing opti-
mal results against traditional parametric statistics. They are also independent of 
issues with a priori statistical assumptions about the parameters in the model. Not 
having to worry about how you have transformed your data (and whether you should 
have done so in the first place), as well as eliminating problems around significance 
and information criterion model selection, means that the ecologist can spend sig-
nificantly more time on inference and applying his or her findings for conservation 
(if applicable). However, after spending time on a project that leads to a publication 
(or two), it is understandable that one might get attached to the process and then 
continue to apply it. Unfortunately, this attitude leads to several arguments against 
using new methods (like machine learning). Below we list briefly some of these 
arguments, and our rebuttals to them (Table 20.1).

Table 20.1 Some brief arguments made against using machine learning algorithms in our 
experience, and our brief rebuttals

Argument Rebuttal

“This is too much of a 
‘black box’”

All the sub-algorithms that make up algorithms like random forests 
and boosted regression trees are well described in the literature. We 
would argue that machine learning algorithms are transparent if you 
spend the time to dig into the methods.

“The methods are very 
new and untested”

Machine learning methods have been around since Alan Turing in the 
1950s, and basic implementations of algorithms have been used in 
search engines since the early 2000s.

“My supervisor does 
not want it”

Graduate students are important for pushing the boundaries of science, 
and if they are keen to use machine learning methods it behooves 
them to try the methods and convince their supervisors of the merits.

“We lack the software” Free software exists online, and some paid-for software have free (and 
sufficient) trial periods, and most algorithms can be implemented via 
Python or R with great resources online.

“Machine learning is 
not sufficient for 
inference”

As we have demonstrated in this book, and as seen throughout the 
machine learning literature, inference is possible, and can be powerful 
(i.e., it can be more holistic than other methods).

“My agency does not 
allow using machine 
learning”

This is an unfortunate consequence of policy legislation that has yet to 
be updated. This falls on government scientists to be willing to put in 
ground work to demonstrate the power of machine learning.

“Predictions are not 
our goal”

Generalizations are best achieved through strong predictions. See 
Breiman (2001a) for discussions on how to perform the best possible 
inferences. And as mentioned above, powerful inference can be made 
through machine learning.

“We just want to stay 
with the mainstream 
analysis methods”

Machine learning is mainstream in many disciplines and is a 
cornerstone for many industries (e.g., social media, advertising, 
bioinformatics).

“Our clients asked us to 
use commonly applied 
methods”

This relates to legislation and is the responsibility of government 
scientists to demonstrate the benefits of machine learning. This also 
falls to analysis providers to demonstrate potential power of machine 
learning algorithms.
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So, how does one go about ‘falling out of love’ with a preferred method? In our 
opinion, the best way is to try several methods yourself and then assess their perfor-
mance. There are many good tutorials on the subject that can be found on the inter-
net with a simple search. The programming language, R, is constantly improving 
and making it simpler to apply machine learning techniques to datasets, and most 
universities offer courses or have tutors willing to help with such matters. Other 
programming languages like Python or java will be equally insightful. Benchmarking 
methods (i.e., modeling platforms) against each other is the best way to convince 
yourself of the merits of particular techniques and helps to advance scientific pro-
cesses and innovation.

20.4  Innovations in Machine Learning and Innovative Uses 
that can Benefit Ecological Studies

The true depth of how machine learning affects our daily lives is not well under-
stood by the average person on the street. However, machine learning is used so 
frequently that essentially everyone in the world is affected by it daily and will be 
from now onwards (or at least until the downfall of human civilization and comput-
ing). The massive push of machine learning has been so successful (due to the 
power of these algorithms for prediction and inference), that an entire industry and 
even sub-industries have formed around it. This means that there are billions of dol-
lars (or Euros, Yens or Pounds sterling) being thrown into the industry which is 
driving innovation in ways which we are probably not yet prepared for as a society. 
Unfortunately, wildlife science (and several other fields) are falling behind the curve 
when it comes to innovative uses of these technologies. In Table 20.2, we list some 
machine learning concepts and references that ecologists could find handy.

Despite the plethora of machine learning tools that have shown great promise in 
other fields, wildlife and ecology textbooks still lack any relevant mention of these 
methods (Caughley and Sinclair 1994; Krausman 2002; Gergel and Turner 2001; 
Moyes and Schulte 2007; Primack 2010; Silvy 2012). Furthermore, there is a seri-
ous disconnect between ecology and the latest computational techniques. Although 
this is changing to some degree with some quantitative ecology courses being taught 
in R or Python, there is still much work to be done to bring the field up to speed. 
Unless the new generation embraces some of these new techniques, things are 
unlikely to change when it comes to natural resource management, which is arguably 
failing, e.g. Mace et al. (2010).

We have presented several machine learning concepts in this book that are some-
what ‘new’ to ecology (within the last decade or so) that could offer some new 
insights into natural resource management and conservation (e.g., image recogni-
tion; Chap. 15, classification of species by call; Chap. 16, ensembles of ensembles; 
Chaps. 5 and 6). However, these types of analyses are commonplace outside of 
ecology, but we expect them to be used more and more in this field in the near future 
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Table 20.2 List of relevant machine learning developments that could be useful for Ecological 
studies; many of them are referred to and applied in this publication

ML 
Development Reference Description Impact Comment

Automated 
linear 
regression 
analysis

Harrel (2001), 
Mac Nally (2000)

LM and GLM Modern linear 
statistics

Those methods are 
tempting but are not in 
line with machine 
learning philosophies

Friedman (1991) 
Salford Systems 
Ltd. (2017)

MARS, 
LASSO

More advanced 
analysis 
methods

SPLINES can 
outcompete linear 
regressions and are 
easy to interpret

Elder IV (2003) Ensembles Comparative and 
context

Probably one of the 
biggest steps forward 
in machine learning

Neural 
network

Rumelhart et al. 
(1986)

Backward feed, 
back- 
propagation

NN became an 
accepted 
standard tool

The standard for 
neural networks. Still 
rarely used in wildlife 
studies

Cortes and Vapnik 
(1995)

Support vector 
machines

Powerful use of 
predictions

Powerful but not 
widely used in 
wildlife studies

Recursive 
partitioning

Breiman et al. 
(1984)

CART Introduction to a 
new form of 
inference

The basis for both 
random forests and 
boosted regression 
trees

Antipov and 
Pokryshevskaya 
(2010)

Multi-path split 
CARTs 
(CHAID)

An alternative to 
binary CARTs

Not widely used but 
intriguing approach.

Boosting Freund and 
Schapire (1997)

ADABOOST Introduction to a 
new form of 
inference

Can be used to boost a 
variety of modeling 
approaches

Drucker (1997) Boosted neural 
networks

An intriguing 
combination of 
concepts toward 
powerful 
outcomes

Virtually unused in 
wildlife studies

Friedman (2002) TreeNet Powerful use of 
predictions

TreeNet invokes 
boosting and (basic) 
bagging concepts

(continued)
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(the general concepts here are in agreement with conclusions made in Cushman and 
Huettmann 2010; Drew et al. 2011; and Hochachka et al. 2007). In Table 20.3, we 
list a few machine learning innovations that will likely play a vital role in upcoming 
uses of these algorithms.

Implementing many of these methods offer ecologists an advantage because it 
shifts many of the issues away from the bottleneck of quantitative debate (e.g., a 
priori statistical assumptions), and towards the policy and applications of findings. 
Combining these with concepts of holistic ecological modeling could lead to real 
advancement in this field and to new information.

Table 20.2 (continued)

ML 
Development Reference Description Impact Comment

Bagging Breiman (2001b) Random forests Introduction to a 
new form of 
inference

An ensemble of 
CART trees and 
shown to be quickly 
becoming a favorite in 
ecological studies

YAIMPUTE 
(Crookston and 
Finley 2008)

Imputation Allows 
innovative 
approaches to 
multi-response 
and gap 
imputations

Method that can 
suggest or fill data 
gaps are in big 
demand

Entropy Shannon (1949) Entropy Introduction to a 
new form of 
inference

A basic and early 
concept for 
quantification, 
information theory 
and machine learning

Phillips et al. 
(2006)

Maxent Powerful use of 
predictions

One of the most 
popular algorithms in 
SDMs, thus far

Ensembles BIOMOD package 
(Thuiller et al. 
2009)

Ensembles An R code that 
combines 
several model 
(standard) 
algorithms

A standard package 
that performs 
‘standard’ models. 
(lack of fine-tuning). 
Difficult to use due to 
documentation.

Lieske et al. 
(Chap. 5), Salford 
Systems Ltd. 
(2017)

Ensembles of 
ensembles

Ensembles can 
be run and 
combined with 
many algorithms

An open and 
developing field, very 
close to deep learning 
and holistic analysis

Coulouris et al. 
(2011)

Distributed 
computing

Ensembles 
linked in the 
cloud

Probably one of the 
most powerful and 
global applications, 
e.g., when including 
sensors.Various 
options exist.
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20.5  Machine Learning and ‘Mother Earth’: Towards a 
holistic Understanding of Ecosystems for Better 
Conservation and Ethics

Ecology is complicated and convoluted, which makes quantifying systems a chal-
lenging task. We, as ecologists, generally agree that the reason for this is because 
environmental factors interact in ways that we cannot predict or quantify well, or 
where this concept can easily be misleading. This should go beyond just environ-
mental factors, however, with anthropogenic forces affecting these natural phenom-
ena and their interactions. Basically, this equates to something like the ‘gaia’ 
hypothesis and ‘deep ecology’, which states that all things in the natural environ-
ment are connected, and that once life exists it will try to remain (Lovelock and 
Margulis 1974; Naess 1989). Even if you don’t accept this ideology, there is no 
doubt that there are still many connections/relationships in ecological systems that 
are too complex for standard linear or parametric techniques. Machine learning can 
help here by allowing us to make predictions and inference in complex systems; a 
more holistic form of modeling. It further provides progress on the unresolved 
questions of gaia and of ‘Mother Earth’.

Machine learning is generally at its strongest when applied using the philosophies 
of the originators of some of the more frequently used techniques (e.g. “many weak 
learners provide for a strong learner” Freund and Schapire 1997; Breiman 1998; 

Table 20.3 Some innovations in machine learning that will likely become more mainstream in 
ecology

Innovation Reference Impact Comment

Weighting Salford Systems Ltd. 
(2017). ‘Ranger’ 
(Wright and Ziegler 
2015)

Unbalanced data allowing 
users to find ‘outliers’

This appears like a small 
innovation but will allow 
users to be more flexible 
in defining classes for 
prediction

Batteries Salford Systems Ltd. 
(2017), Huettmann 
(Chap. 8)

Allows one to test for best 
predictors, an alternative to 
model selection

Virtually unused in 
wildlife conservation (see 
Chap. 12 for an example)

Swapping Salford Systems Ltd. 
(2017)

Removes uncertainty in 
classic approaches (LMs, 
AIC) and allows one to truly 
test for robust predictors 
(=model selection problem)

A subset of batteries; It’s 
a massive change in how 
we understand and infer 
on predictors, predictions 
and multiple regressions

Ensembles 
of 
ensembles

Lieske et al. (Chap. 5), 
Salford Systems Ltd. 
(2017), BIOMOD 
(Thuiller et al. 2009) 
and ‘caret’ (Kuhn 
2008)

Automated and autonomous 
optimizations for 
classifications, predictions 
and inference

Probably the latest ‘cry’ in 
predictions and for 
inference. Likely, a 
research scheme to come 
for the next decade

Distributed 
computing

Coulouris et al. (2011) Ensembles linked in the 
cloud

Probably one of the most 
powerful and global 
applications, e.g. when 
sensors are included.
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Friedman 2002). The basic idea behind this is that instead of limiting ourselves to a few 
covariates in the model (in marine sciences these tend to be predictors like sea surface 
temperature, salinity, bathymetry and chlorophyll a), we should include a plethora of 
variables that may or may not be related to what we “know” about a system. We dem-
onstrate a few examples of including many variables (more than what would be typi-
cally included in parametric methods) into a model in this book (Chaps 10, 12, 13, and 
16). As ecologists, this might seem counterintuitive due to our “obsession” with mech-
anisms, as taught at good academic institutions. However, the approach we propose can 
lead to more powerful and holistic predictions (by considering those complex relation-
ships between parameters), and drive hypothesis generation. For example, finding a 
relationship that was unexpected could lead to interesting and fundamental scientific 
discussions, and satisfy some of our desire to understand mechanistic relationships. 
However, this powerful aspect is still widely ignored (see Guisan and Zimmermann 
2000; Guisan and Thuiller 2005; or Franklin and Miller 2009). Being all inclusive 
can play a powerful role in understanding whole ecosystems, but for now, no ethical 
guidance or ‘best professional’ practices really exists for machine learning applica-
tions, certainly not in the context of natural resource conservation management 
(see Huettmann 2007 and Zuckerberg et al. 2011 for data and metadata) (Fig. 20.1).

Fig. 20.1 Four broad categories of factors that are interconnected and that deserve incorporation 
into predictions of a target problem. Anthropogenic (socio-economic) forces include things like 
infrastructure (roads, buildings), pollution (e.g., sulfates, plastics) and burning of fossil fuels; spe-
cies interactions include competition and predator/prey dynamics (or plants for herbivores); envi-
ronmental factors include available habitat, weather conditions, and climate; cosmic forces include 
those often termed “environmental”, but are from beyond our planet (e.g., solar phase, proximity 
of the moon, solar storms, meteor strikes, day phase, season). Those are very relevant, and one 
could easily argue that many environmental factors are actually very reflective of cosmic forces, 
thus leading us to not need inclusion of such parameters. However, in the absence of data on certain 
environmental forces, including well measured cosmic parameters might act as a good alternative 
(including solar cycles, moon stages, seasons and multi-annual cycles will often create fascinating 
and very relevant discussions and predictors for instance)
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From a conceptual perspective, we believe that machine learning can be applied 
to whole ecosystems by first focusing on older data sets that may exist in the public 
domain that are often deemed ‘too messy’ to be included in traditional analyses. 
Secondly, trying out what some might call “the shotgun approach” (a.k.a. the 
‘kitchen sink’ model) within a machine learning framework and using cross- 
validation to determine methods that create the best predictions (including ensem-
ble models). Thirdly, assessing potential interactions, relationships and inferences 
from complex covariate structures to develop new and interesting hypotheses that 
could be tested (experimentally or otherwise). These techniques have the potential 
to deal with the fact that in the real world, data are messy, research designs are 
almost always incomplete while results are time-sensitive (concepts explained in 
Breiman 2001a, with examples in Herrick et al. 2013 and Wei et al. 2010), which 
will help move forward with strong conservation measures.

20.6  Where to Go from Here? Integrating Machine Learning 
and Good Ethics into your Scientific Process 
and Sustainability Policy

As shown throughout our book, the powerful predictions can actually be used to 
make inferences and generalize mechanistic understanding of systems (as per 
Breiman 2001a). We firmly believe that valid inferences are best made when using 
models that achieve powerful predictions on independent datasets. Machine learn-
ing methods can fill this niche, but those styles of research designs and techniques 
have yet to be fully adopted in natural resource conservation management and as 
‘best professional practices’ (Silvy 2012). The best way forward here is simply to 
encourage the use of open access code, data and research to make these methods 
more transparent for other scientists.

First, we emphasize that predictions can be created from virtually any data and any 
research design, and the easiest covariates to obtain are those that exist in the public 
domain. This means that once a research question is identified, a next step would be 
to download (and document) variables from the internet. Many datasets exist, and we 
leave this up to the reader to decide where best to obtain them. For environmental 
variables, NOAA and NASA have some open access layers that marine scientists 
anywhere in the world might find useful. The European Center for Medium-Range 
Weather Forecasting (ECMWF) also hosts open access atmospheric data that might 
of interest to ecologists. Other governments (e.g., Australia and New Zealand) pro-
vide similar datasets relevant to their regions. If your readers know where your data 
come from, any modeling experiment can be replicated (or critiqued if needed).

Once data grooming is completed (i.e. getting rid of errors and potentially anom-
alous values, etc…) then the modeling process can begin. Unlike in parametric 
models (where, as we have noted, much time spent on dealing with statistical 
assumptions), we can immediately begin the modeling process in most cases. 
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Typically, an independent subset of the data are held back to predict onto in order to 
get a benchmark model. Keeping as many predictor variables as possible in this 
solution is a good way to do this as variables can be pared away (if desired, though 
not recommended if working within the Breiman 2001a philosophy and approach). 
From here, it is a matter of trying other settings, combining models, and in the end, 
deciding on which performed best against the independent test set. That is the sci-
ence we promote. This differs from common parametric techniques because there 
are no “goodness of fit” tests really because no data are fit in the explicit statistical 
sense for model-based inference. Furthermore, it frees us from the shackles of 
p- and AIC values and gives us the ability to start thinking about hypotheses and 
better inference while at the same time having the best possible predictions handy.

In the classical sense, hypotheses should not ignore relevant concepts and biases, 
e.g. for ecology and conservation see Naess (1989), Bandura (2007) and Rosales 
(2008). Further, hypotheses can and should be predicted to test if they are generaliz-
able  and thus, supported  (as per approach expressed by Leo Breiman 2001a). 
Predictions assessed against independent data, give us a much better idea of the 
accuracy of a model. This differs from the more traditionally used p-values, or 
AIC. This tiny detail pushes us into a new frontier in ecology though, where we can 
rigorously test our hypotheses by pitting them against many other ideas derived 
from machine learning applications.

In our work, we specifically promote the use of machine learning methods as a 
rigorous, often automated, prediction machine (e.g., Kandel et al. 2015 for an exam-
ple). It can be done as a black-box, or otherwise, as a coded (from scratch) concept. 
Once predictions achieved then the process can move forward and further test 
mechanisms, e.g. in the field or with experiments and hypothesis-testing, and one 
can even incorporate p-values and AIC later, if one really wishes to do so. In times 
where conservation is time-sensitive, machine learning easily gets us a first rapid 
assessment. So why not use it?

Following this logic is the basic concept behind machine learning that we promote, 
where we know little or nothing of the system before we begin, find the best predic-
tive model, and then make inferences from that (see Kandel et al. 2015 for a work-
flow). Any algorithm can be used to do so, as long as it predicts well (sensu Breiman 
2001a, Elith et al. 2006). The basic concepts of stiff, stringent and untested parametric 
assumptions (Zar 2010) are replaced with a flexible prediction machine, regardless of 
r2 values (Hastie et al. 2009). It is here where the power really lies for ecology.

How realistic is it to have all the basic statistical procedures following Zar (2010) 
and Burnham and Anderson (2002) replaced with open source machine learning 
code? Or, and based on input and output data that are predominately published open 
access in public repositories and web-portals? We believe we are fully heading in 
that direction. A culture change is coming in ecology, where the p-value is likely to 
become less important. And fortunately, we feel that this will happen quickly as a 
new generation of ecologists have started embracing machine learning concepts. 
A change of the global framework and ‘how things are done’ is easily possible in 
conservation. This has happened before, as the discipline of ecology itself frequently 
shows, e.g. Naess 1989, Begon et al. (2005).
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20.7  Some Final Thoughts

Globalization in the Anthropocene, to the detriment of wildlife and its habitat, has 
been in full swing for four decades (arguably more) and it is clear by now that we 
have entered a widely acknowledged crisis-state (Rosales 2008; Mace et al. 2010). 
Solutions to global issues are time-sensitive, and complex, and we need techniques 
that can adapt to a fast-changing global ecosystem. Marginalizing these problems is 
the last thing that should be done.

Throughout our book, we have guided you, the reader, through a number of use-
ful, practical applications of common ML techniques that are being adopted in the 
ecological community. Many of these examples revolve around using ML tech-
niques to analyse patterns in space and time which are vital to global conservation 
efforts. There are two reasons for this: (1) Spatial ecology is the field that most 
commonly uses ML algorithms for prediction and is thus well developed in this 
regard. and (2) Holistic approaches to conservation must include spatial information 
whenever possible (hence why it’s termed a ‘holistic’ approach). Despite this, how-
ever, there are many other useful applications of machine learning that are only 
recently becoming known to the ecological community. For example, deep learning 
techniques (deriving from machine learning) are now advancing and allowing ecol-
ogists to identify individual animals (e.g. right whales; Eubalaena glacialis; https://
www.kaggle.com/c/noaa-right-whale-recognition). We also demonstrate how we 
can use the machine learning technique that we are most familiar with (e.g., random 
forests; Breiman 2001b, and boosted regression trees; Friedman 2002) to derive 
hypotheses, and how we can integrate all these techniques with ‘the cloud’ and web- 
based applications (see Sect. 20.5).

In all we are hopeful for the future of ecology as technology is advancing and 
scientists are learning more about new applications and helping to redefine ecology 
as a discipline. Although there is a lot of work to be done before ML techniques are 
fully accepted, we urge caution moving forward. The digital sword that we refer-
ence in Chap. 17 is a powerful weapon that can be easily misused to the detriment 
of the environment if the techniques are not properly applied, and over-used (e.g. 
massive data centers, etc…which could lead to issues around energy development 
in the future). But if used carefully, with a holistic approach in mind for conserva-
tion purposes, ML algorithms have great potential. Ecologists can look beyond a 
single study system and start applying ecosystem scale management and precau-
tionary measures which will have massive implications on how we leave the planet 
for future generations.
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This piece by Gunnar Brehm shows just a tiny fraction of the incredible life that is at risk on our 
planet. We propose that machine learning approaches applied to ecology and natural resource 
management as shown throughout our book can be used to promote and maintain the natural 
beauty of our world for the sake of our global well-being and happiness as well as world peace and 
sustainability… for the only place in the universe that is currently known to carry life

G. R. W. Humphries and F. Huettmann



431© Springer Nature Switzerland AG 2018 
G. R. W. Humphries et al. (eds.), Machine Learning for Ecology and Sustainable Natural 
Resource Management, https://doi.org/10.1007/978-3-319-96978-7

A
Aboveground forest biomass

biomass data, 144
boreal forest (see Boreal forest)
boreal region, 141
carbon exchange, 141
calibration and validation  

datasets, 147
dry mass portion of live trees, 141
ecologically and economically, 143
energy demands, 142
environmental factors, 145–147, 152
FIA, 143
forest inventory data, 143
investigations, 141
maps, 143
NDVI, 155, 156
non-parametric models, 143
predicted patterns, 154, 155
prediction, 154
predictive mapping, 148, 149, 157
RF model, 150
RTA, 153
spatial dependency, 153–154
spatial interpolation techniques, 143
statistical methods, 147–149
variable selection processes,  

149, 150
variation, 143, 156

ADABOOST, 67
Advanced difference tests, 89
Advanced Very High Resolution Radiometer 

(AVHRR) data, 145
Akaike Information Criterion (AIC), 30

Alaska
boreal forest (see Alaskan boreal forest)

Alaska Geospatial Data Clearinghouse 
(AGDC), 145

Alaskan boreal forest
estimate and map, 144
geographic distribution, 142
ground measured inventory plots, 144
landscape, 154
mixed poplar/birch, 142
mixed spruce, 142
RF, 154
woody biomass, 151

Algorithmic models, 27
Algorithms

Bayesian analytics, 17
CART, 8
categories, 17
complex behavior, 7
and computational techniques, 4
in ecology and wildlife biology, 17–19
maxent, 13

Amazon, 342
Amazon Web Services, 356, 363, 368
American marten (Martes americana)

AUC measures, 199
CART, 200
complete model predictor set, 209–210
continuous sub-model, 215
deforestation, 188
ENMs, 207–208
forest management, 185
fragmentation, 186
full model, 212–215

Index

https://doi.org/10.1007/978-3-319-96978-7


432

American marten (Martes americana) (cont.)
genetic analysis, 188
GLM modeling, 201
2012 habitat model, 189
habitat suitability, 199
HLC predictors, 220–221
interaction effects, 221, 222
investigations, logistic regression, 186
landscape predictions, 211
low-fragmentation landscapes, 186, 199
marten habitat suitability, 200
modeling approaches, 190, 191
multi-scale modeling (see Multi-scale 

modeling)
network analysis, 210–211, 214
occurrence records, in Alaska, 208
outcomes

differences, spatial prediction, 197
model performance, 198, 199
qualitative interpretation, 196
RF model, 197
RF multivariate model, 192, 195
RF univariate scaling, 192, 194
sawtimber forest, 197

parsimonious vs. interactive models, 220
patterns of scale-dependency, 200
performance of predictions, 191, 192
perturbations, 185
predicted marten distribution, 222–223
prediction, 186
predictive power and ecological 

interpretation, 186
predictor variables, 189, 190
recommendations, ENM models 

development, 223
scale dependent fashion, 185
scale-dependent habitat selection, 199
Small Mammal sub-model, 215, 216
spatial models, 217–219
spatial predictions, 199
Spearman correlation varclus analysis, 

210, 212
study area, 187, 188
timber harvest, 185
training dataset, 208
TreeNet, 210
varclus analysis, 211
variables, full model, 212, 213

Analysis of complex ecological systems, 
30–32

Analysis rules, 90, 92
Aquila chrysaetos, see Golden eagles
ArcGIS (remote sensing software), 291
ARCTOS database, 365

Artificial intelligence (AI), 79
Artificial Neural Network (ANN), 366
Autocorrelation, 89
Automatic identification system (AIS), 111, 112
AVGMOD, 131, 132
Avian vocalizations, 296

B
Bagging, 126

applications, 76
binary re-cursive partitioning, 68
vs. boosting, 68
bootstrapping, 69
experiences, 76
Leach’s storm-petrel, 302
linear regressions, 69
parameters, 67, 68
pseudo- r2, 69
re-sampling, 69
RF algorithms, 69, 70
ROC/AUC, 69
trick, 69

Base learners, 125, 127, 128
Batteries

available, in SPM, 173–174
description, 165
kitchen sink model, 168, 170
for non-parsimonious solutions, 171
predictive performance metrics, 169
for Siberian crane, 167
shaving, 165, 172
styles, in SPM, 165
on TreeNet (SPM7), 166–168
visual assessment, 168–170
in wildlife conservation, 172

Bayesian approaches, 63
Binary re-cursive partitioning, 66
Biodiversity, 13
BIOMOD R package, 52
Bird Conservation Regions (BCR’s), 381
BirdVis program, 348
Blood lead levels (BLL), 244, 246, 249
Boosted regression trees (BRT), 110–112, 

114–119, 267, 302
Boosting, 110, 127, 128

ADABOOST, 67
applications, 75, 76
binary re-cursive partitioning, 66
CARTs, 66
concept, 66
correlations, 66
description, 66
experiences, 75, 76

Index



433

fielding, 67
Leach’s storm-petrel, 302
linear regressions, 68
machine, 67
non-parametric methods, 66
parameters, 67
sequence of algorithms, 66
stochastic, 66
testing and internal assessment data, 66
tree-algorithms, 66
tree-based methods, 68

Bootstrapping, 68, 69, 114
Boreal forest

Alaska (see Alaskan boreal forest)
ground measured inventory plots, 144
terrestrial biome, 141
types, 142

Boreal forest biome, 222, 223
Boruta algorithm, 149, 150
Buffer fuzzy data, 42

C
Camera traps, 285–287
Capture-mark-recapture models, 51
CAVGMOD, 131–134
Cheer pheasant (Catreus wallichii), 14, 15
Chi-square residuals, Golden eagles, 386, 402
Christmas Bird Count (CBC) circles, 385, 386
Citizen science, 22, 337–338
Classification and regression trees (CARTs), 5, 

6, 8–11, 18, 31, 64, 65, 190, 200
Climate change models, 48, 49
Climate models

for Alaska, 228, 236
climate predictions, 230
comparisons, 232, 233
data mining, 231
expected temperature, 228
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inference, 227, 230
information source, 227
IPCC models, 228
methodological questions and problems, 230
pixels, 232, 234, 235
regional, 228
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Climate Research Unit (CRU) data, 145
Climate-scapes, 228, 230, 237
The cloud
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citizen science, 371
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democracy, 370
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ethics, 373, 374
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future trends, 374
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resources, 365
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internet, power utilization, 371
and mobile devices, 357–358
on programming jobs, 358
role and its implications, 356
‘sheep & cattle herding’ with robots, 372
as a strategic sword, 354
and storage services, 356
Supercomputing Centers, 357
tasks, 358
teaching, 372
technical definition, 353
usage, 353
web-portals serving biodiversity  

data, 359
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eBird, 360–361
economic applications, 364
GBIF and the Rio Convention, 358
iNaturalist, 361
MAPPPD, 363
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natural resource management, 365
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OpenModeller, 360

with ML
ANN analysis, 366
business, 368
as data mining and inference, 367
data mining before analysis and 
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future and security, 369
GARP model, 367
Genbank, 367
Influenza Research Database (IRD), 367
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server farms, 369–370

and www, 355
Committee averaging, 111
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Confidence trick, 89
Consensus, 110, 111, 119
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Curse of dimensionality, 207
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Databases, 413
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functionality, 339
hosting, 339
integration, 339
MySQL, 339
PostgreSQL, 339
scalability, 339
security, 339
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software/application development, 338
usability, 339

Data cloning, 231
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and availability, 17, 20, 21
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evidence-based analysis, 92, 95–97
good practice, 87
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parametric ones, 90
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real-world data and analysis, 97–100
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data and making predictions, 28
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