
Chapter 17
Free Vibration of Rotating Twisted
Composite Stiffened Plate

Mrutyunjay Rout and Amit Karmakar

Nomenclature

L Length of the plate (m)
b Width of the plate (m)
h Thickness of the plate (m)
bst Width of stiffener (m)
dst Depth of stiffener (m)
/ Pretwist angle of the plate (deg.)
xn Fundamental natural frequency of the stiffened plate without rotation (rad/s)
X0 Actual rotational speed (rad/s)
X Non-dimensional rotational speed X ¼ X0=xnð Þ (dimensionless)

17.1 Introduction

Earlier, tourbomachinery blades are assumed as twisted beam wherein chordwise
bending is found missing particularly in moderate-to-low aspect ratio models and
the analysis becomes inaccurate. Thereafter, these blades are modelled as twisted
cantilever composite plates. In general, these blades fail due to flutter, which in turn
induces high value of repeated stresses. In order to have a safety of operation, these
thin plates are very often attached with rib-like structures called stiffeners at suitable
orientation to increase the overall stiffness, thereby increasing the fundamental
frequency. The high-speed rotation of the turbomachinery blades is very much
related to their frequencies and often prone to failure due to the centrifugal force.
The deformation of the geometry due to centrifugal force is represented by geo-
metric stiffness called centrifugal stiffening, which is the source of initial stresses.
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Hence, an intensive study of the stiffened blades considering the effects of different
parameters will be extremely useful for design engineers.

Leissa and Ewing [1] presented the free vibration results of turbomachinery
blades considering both beam and shallow shell theories and finally reported that
beam theory was found inadequate for moderate-to-low aspect ratio blades because
chordwise bending was found missing. Kielb et al. [2] carried out the theoretical
and numerical analysis of twisted cantilever plates wherein finite elements’ results
were obtained considering plate, shell and solid elements. In theoretical method,
they considered both shell and beam theory to carry out the investigation. Qatu and
Leissa [3] were the first investigators to report the effects of twist angles of the
composite plates on the natural frequencies and mode shapes. Liew et al. [4] used
Ritz method to study the effects of twist angle on the vibration response and mode
shapes of composite conical shells. Kuang and Hsu [5] studied the free vibration
results of tapered pretwisted orthotropic composite plate employing differential
quadrature method (DQM). Lee et al. [6] investigated the vibration response of
composite twisted plates, cylindrical and conical shells with cantilevered boundary
conditions employing finite element method (FEM). Sreenivasamurthy and
Ramamurti [7] studied the effects of Coriolis component on the natural frequencies
of the plates, rotating at different speeds, and reported that its effect is found
marginal at low and moderate speed of rotation. Ramamurti and Kielb [8] reported
the eigenfrequencies of twisted rotating isotropic plate wherein the effects of
rotation were included by using a stress smoothing technique. Karmakar and Sinha
[9] worked to investigate the free vibration response of laminated twisted plate at
moderate speed neglecting Coriolis effect. They used three-dimensional finite ele-
ment method to perform the parametric studies. Rao and Gupta [10] presented the
fundamental frequencies of twisted and tapered Timoshenko beams rotating at
different speeds. Hu et al. [11] computed the free vibration response of cantilevered
twisted conical shell subjected to axial and centrifugal force by Rayleigh–Ritz
method, while Kee and Kim [12] worked on the free vibration response of rotating
twisted thick cylindrical shell structures employing FEM wherein Coriolis accel-
eration was considered with centrifugal forces. Joseph and Mohanty [13] reported a
finite element numerical method to compute the natural frequency of the rotating
sandwich plates.

The remarkable researchers [14–17] investigated the free vibration characteris-
tics of stationary untwisted laminated eccentrically and concentric stiffened plates/
shells using FEM based on the kinematics of FSDT. Sadek and Tawafik [18] used
higher-order shear deformation theory (HSDT), which eliminates the use of shear
correction factor to study the flexural response of the stiffened plates. Qing et al.
[19] worked on the free vibration of stiffened plates based on the theory of
state-vector equation, wherein the compatibility of stresses and displacement at the
interface of stiffener and plate were satisfied. Yuan and Dawe [20] studied the
stability and vibration characteristics of sandwich plates stiffened eccentrically
employing spline finite strip method, while Guo et al. [21] presented a finite ele-
ment model based on zigzag theory of the laminated stiffened composite plates,
wherein the inter-layer continuity was maintained by employing bilinear in-plane
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displacement constraints. Li et al. [22] united two theories such as layerwise
laminated theory and traditional finite element theory to investigate the static and
free vibration response of laminated stiffened cylindrical shells, while Bhar et al.
[23] presented a comparative study of laminated stiffened plates employing both the
kinematics of FSDT and HSDT. Zaho and Kapania [24] presented an efficient finite
element method to investigate the vibration response of laminated composite
stiffened panel, wherein curved composite stiffeners were considered. Castro and
Donadon [25] developed a semi-analytical model to investigate the buckling and
vibration response of laminated composite stiffened panel with inclusion of the
debonding problem. Rout et al. [26, 27] presented the free vibration response of
rotating stiffened cylindrical shells with preexisting delamination, while
Damnjanović et al. [28] used the dynamic stiffness method to investigate the free
vibration responses of composite stiffened and cracked plate assemblies based on
the HSDT and FSDT theories.

Though plenty of literature is available in the theme of free vibration of stiffened
plates, the investigators have not studied the effects of rotational speed on the free
vibration characteristics of the initially twisted laminated composite eccentrically
stiffened plate. Hence, the present work aims at studying the vibration response of
rotating twisted composite stiffened plate employing finite element method, wherein
the composite plate is modelled with an eight-noded isoparametric element and the
stiffener is with a three-noded isoparametric beam element. The compatibility
between the plate element and the stiffener element is established by considering the
eccentricity of the stiffener element. The degrees of freedom of the stiffener element
at each node are transferred to the corresponding nodes of the plate element. The
initial stiffening due to rotation is manifesting itself through geometric stiffness,
considering Green–Lagrangian strain components for initial stresses. The effect of
fibre orientation angle, twist angles, stiffener depth-to-plate thickness ratio and
rotational speeds on the free vibration response of the stiffened plate is furnished.
Finally, the influence of twist angles and moderate speed of rotation on the mode
shapes of the eccentrically stiffened composite plate is presented.

17.2 Theoretical Formulation

The laminated composite crossed-stiffened plate of uniform thickness h, curvature
of twist Rxy, length L is shown in Fig. 17.1 with the global coordinate system. The
twist angle of the stiffened plate is expressed as,

tan/ ¼ � L
Rxy

ð17:1Þ

The isoparametric eight-noded plate element consisting of five degrees of free-
dom including three translations (u, v, w) and two rotations (a, b) per node is
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considered for discretization of the entire plate. The generalized strain vector of the
plate based on the kinematics of FSDT is expressed as,

ex ey cxy cxz cyz
� � T ¼ e0x e0y c0xy c0xz c0yz

� � T
þ z jx jy jxy jxz jyz½ �T

ð17:2Þ

where e0x ; e
0
y ; c

0
xy; c

0
xz; c

0
yz are the mid-surface strains and jx; jy; jxy; jxz; jyz corre-

sponds to the curvatures of the plate.

e0x

e0y

c0xy

c0xz

c0yz

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

¼

@u=@x
@v=@y

@u=@xþ @v=@xþ 2w=Rxy

a þ @w=@x
bþ @w=@y

8>>>><
>>>>:

9>>>>=
>>>>;

ð17:3Þ

and
jx
jy
jxy
jxz
jyz

8>>>><
>>>>:

9>>>>=
>>>>;

¼

@a=@x
@b=@y

@a=@yþ @b=@x
0
0

8>>>><
>>>>:

9>>>>=
>>>>;

ð17:4Þ

Fig. 17.1 Typical twisted
laminated composite stiffened
plate
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The mid-plane strain field and curvatures can be written as,

ef g ¼ B½ �fdeg ð17:5Þ

where

fdeg ¼ u1 v1 w1 a1 b1 � � � u8 v8 w8 a8 b8½ �T ð17:6Þ

B½ � ¼

Ni;x 0 0 0 0
0 Ni;y 0 0 0
Ni;y Ni;x 2Ni=Rxy 0 0
0 0 0 Ni;x 0
0 0 0 0 Ni;y

0 0 0 Ni;y Ni;x

0 0 Ni;x Ni 0
0 0 Ni;y 0 Ni

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

2
66666666664

3
77777777775
i¼1;8

ð17:7Þ

The constitutive relation of the plate can be expressed as,

N
M
Q

8<
:

9=
; ¼

Aij Bij 0
Bij Dij 0
0 0 Sij

2
4

3
5 ep

jb
cs

8<
:

9=
; ¼ D½ � ef g ð17:8Þ

where Aij, Bij, Dij and Sij are the stiffness coefficients, while ep, jb and cs represent
the in-plane strains, the curvatures and shear strains in transverse directions,
respectively.

Based on the finite element method, the standard formulations used to compute
the element stiffness and mass matrices are expressed as,

Kp
� � ¼ Z1

�1

Z1

�1

½B�T ½D�½B� Jj j dndg ð17:9Þ

Mp
� � ¼ Z1

�1

Z1

�1

N½ �T m½ � N½ �Jj j dndg ð17:10Þ

where [B] is the strain–displacement matrix, [D] is the elasticity matrix, [N] is the
shape function matrix and [m] is the inertia matrix per unit area of the plate element,
respectively.

The stiffener element is considered as a one-dimensional three-noded isopara-
metric beam element consisting of four degrees of freedom per node, which
includes two translations and two rotations. The shape functions considered for the
stiffener element are given by,
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Nsx
i ¼ 0:5nnið1þ nniÞ for i ¼ 1; 3

Nsx
i ¼ ð1� n2Þ for i ¼ 2

ð17:11Þ

The strain–displacement relations of a stiffener, whose axis is parallel to x-axis,
is given by,

esxx

csxxy

csxxz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼
@usx
@x þ z @a

sx

@x crz
@bsx

@x

asx þ @wsx

@x � y @bsx

@x

( )
ð17:12Þ

The stress resultants developed in the cross section of the x-directional stiffener
are computed and arranged as,

Nsx
x

Msx
x

Tsx
x

Qsx
xz

8>>><
>>>:

9>>>=
>>>;

¼

Asx
11bst Bsx

11bst Bsx
16bst 0

Bsx
11bst Dsx

11bst Dsx
16bst 0

Bsx
16bst Dsx

16bst
1
6

�Qsx
66 þ �Qsx

44

� �
dstb3st 0

0 0 0 ksxs A
sx
44bst

2
6664

3
7775

@usx
@x
@asx
@x
@bsx

@x

asx þ @wsx

@x

8>>>><
>>>>:

9>>>>=
>>>>;

¼ Esx½ � esxf g
ð17:13Þ

The nodes of the plate and the stiffener elements are assumed to be collinear in
thickness direction of the global coordinate system. The relation between the nodal
displacement vector of the stiffener element and that of the mid-surface of the plate
element is expressed as,

usx

wsx

asx

bsx

8>><
>>:

9>>=
>>; ¼

1 0 0 e 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

8>><
>>:

9>>=
>>;

u
v
w
a
b

8>>>><
>>>>:

9>>>>=
>>>>;

¼ Tsx
ce

� �
dpf g ð17:14Þ

In consequence, the elemental nodal degrees of freedom of the x-directional stiff-
ener can be presented in terms of nodal degrees of freedom of the plate element as,

X3
i¼1

usxi
wsx
i

asxi
bsxi

8>><
>>:

9>>=
>>; ¼

X3
i¼1

Tsx
ce

� �X8
j¼1

Nij 0 0 0 0
0 Nij 0 0 0
0 0 Nij 0 0
0 0 0 Nij 0
0 0 0 0 Nij

2
66664

3
77775

uj
vj
wj

aj
bj

8>>>><
>>>>:

9>>>>=
>>>>;

ð17:15Þ

In Eq. (17.15), Nij is defined as the jth quadratic shape function of plate element
computed at the ith node of the stiffener element.
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Equation (17.15) can be expressed as,

dsxe
� � ¼ Tsx

ce

� �
Tsh
sx

� �
def g ¼ Tsx½ � def g ð17:16Þ

where Tsx
� �

is called as transformation matrix, which is used to transfer the degrees
of freedom of the nodes of the stiffener element to the corresponding nodes of the
plate element taking eccentricity (e = (h + dst)/2) of the stiffener into account.

The stiffness and mass matrices of the stiffener element are computed as,

Ksxe½ � ¼
Z1

�1

Tsx½ �T Bsx½ �T Esx½ � Bsx½ � Tsx½ � Jsxj j dn ð17:17Þ

Msxe½ � ¼
Z1

�1

Tsx½ �T Nsx½ �T msx½ � Nsx½ � Tsx½ � Jsxj j dn ð17:18Þ

where Bsx½ � is the strain–displacement matrix and msx½ � is the inertia matrices of the
one-dimensional stiffener element. The strain–displacement matrix is expressed as,

Bsx½ � ¼
Nsx
i;x 0 0 0
0 0 Nsx

i;x 0
0 0 0 Nsx

i;x
0 Nsx

i;x Nsx
i 0

� � �
� � �
� � �
� � �

2
664

3
775
i¼1;3

ð17:19Þ

and the inertia matrix of the stiffener is written as,

msx½ � ¼
psx 0 0 0
0 psx 0 0
0 0 Isx 0
0 0 0 Jsx

2
664

3
775 ð17:20Þ

where psx ¼
Pnl

k¼1 bstðzk � zk�1Þqk, Jsx ¼ 1
3

Pnl
k¼1 b

3
stðzk � zk�1Þqk and Isx ¼ 1

3

Pnl
k�1

bstðz3k � z3k�1Þqk .
The same procedure may be adopted to compute the elasticity stiffness matrix

and mass matrix of the stiffener placed along y-axis of the plate.
The stiffness matrix and mass matrix of the stiffened plate element can be

computed as,

Ke½ � ¼ Kp
� �þ Ksxe½ � þ Ksye

� � ð17:21Þ

Me½ � ¼ Mp
� �þ Msxe½ � þ Msye

� � ð17:22Þ
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The generalized dynamic equilibrium equation is derived from Lagrange’s
equation of motion. While deriving the dynamic equilibrium equation, it is assumed
that the stiffened plate is rotating at moderate speed. For moderate speed of rotation,
the Coriolis effect is neglected and the dynamic equilibrium equation in global form
is written as [9],

M½ � €d
n o

þ K½ � þ Kr½ �ð Þ df g ¼ FðX2Þ� � ð17:23Þ

In Eq. (17.23), ½M� is the global mass matrix, ½K� is the global elastic stiffness
matrix, ½Kr� is the global geometric stiffness matrix, fdg is the global displacement
vector and fFðX2Þg is the global centrifugal force vector [9]. The computation of
the geometric stiffness matrix ½Kr� is based on iterative solution [7, 9], because it
depends on the values of initial stresses.

K½ � þ Kr½ �ð Þfdg ¼ FðX2Þ� � ð17:24Þ

In the first phase of solution, the initial stresses are equal to zero and the equation
becomes,

½K�fdg ¼ FðX2Þ� � ð17:25Þ

The solution of the above equation gives a stress distribution r0. Taking this
stress distribution, the geometric stiffness matrix is derived. The equation becomes,

K½ � þ Kr0½ �ð Þfdg ¼ FðX2Þ� � ð17:26Þ

The solution of Eq. (17.26) gives another new stress distribution r1. Similarly,
the procedure can be repeated to get the converged value of the stresses.

The rotational velocity component matrix contributing for angular acceleration is
expressed as [7, 9],

Ax½ � ¼
X02

y þX02
z �X0

xX
0
y �X0

xX
0
z

�X0
xX

0
y X02

x þX02
z �X0

yX
0
y

�X0
xX

0
z �X0

yX
0
z X02

x þX02
y

2
64

3
75 ð17:27Þ

The centrifugal force vector of an element can be written as [7, 9],

FXef g ¼ q
Z
vol

N½ �T Ax½ �
x
y
z

8<
:

9=
; dðvolÞ ð17:28Þ

In Eq. (17.28), q and ½N� are the density of the composite material and the matrix
of shape functions. Considering the Green–Lagrangian nonlinear strain components

364 M. Rout and A. Karmakar



due to rotation, the geometric stiffness matrix of the stiffened plate element can be
computed as [9, 29],

Kref g ¼
Z
vol

G½ �T Mr½ � G½ � dðvolÞ ð17:29Þ

In the above equation, the matrix ½G� contains the derivatives of shape functions
and ½Mr� represents the matrix of initial in-plane stress resultants developed due to
rotation. The expressions of [G] and ½Mr� of the stiffened plate are given by,

G½ � ¼

Ni;x 0 0 0 0
Ni;y 0 0 0 0
0 Ni;x 0 0 0
0 Ni;y 0 0 0
0 0 Ni;x 0 0
0 0 Ni;y 0 0
0 0 0 Ni;x 0
0 0 0 Ni;y 0
0 0 0 0 Ni;x

0 0 0 0 Ni;y

0 0 0 Ni 0
0 0 0 0 Ni

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

2
6666666666666666664

3
7777777777777777775
i¼1;8

ð17:30Þ

Mr½ � ¼

Nx Nxy 0 0 0 0 0 0 0 0 0 0
Nxy Ny 0 0 0 0 0 0 0 0 0 0
0 0 Nx Nxy 0 0 0 0 0 0 0 0
0 0 Nxy Ny 0 0 0 0 0 0 0 0
0 0 0 0 Nx Nxy 0 0 0 0 0 0
0 0 0 0 Nxy Ny 0 0 0 0 0 0

0 0 0 0 0 0 Nxh2

12
Nxyh2

12 0 0 0 0

0 0 0 0 0 0 Nxyh2

12
Nyh2

12 0 0 0 0

0 0 0 0 0 0 0 0 Nxh2

12
Nxyh2

12 0 0

0 0 0 0 0 0 0 0 Nxyh2

12
Nyh2

12 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

2
666666666666666666664

3
777777777777777777775

ð17:31Þ

The QR iteration algorithm [30] is used to compute the natural frequencies of
stiffened panel. The solution of governing equation of motion is given as,

½A�fdg ¼ kfdg ð17:32Þ

where ½A� ¼ ½K� þ ½Kr�ð Þ�1½M� and k ¼ 1=x2
n.
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17.3 Result and Discussion

For the computational purpose, an in-house computer programme based on the
above formulation is developed in MATLAB environment. A mesh convergence
study is conducted, and it is found that the mesh size of 8 � 8 gives the converged
results. So for the entire analysis of the present study, this mesh size is used to
compute the results. The validation of the formulation with respect to stiffened
panel is shown in Table 17.1, which shows the agreement of the computed results
with that of Nayak and Bandyopadhyay [16] and Das and Chakravorty [31]. The
natural frequencies of antisymmetric cross-ply crossed-stiffened laminated com-
posite plates are furnished in Table 17.1. The non-dimensional fundamental fre-
quencies of an isotropic cantilever plate are furnished in Table 17.2 corresponding
to different rotational speeds. The computed results corresponding to various
rotational speeds show very good agreement with that of Sreenivasamurthy and
Ramamurti [7]. The non-dimensional fundamental frequencies of a twisted com-
posite plate are computed and compared with that of Qatu and Leissa [3] corre-
sponding to different fibre orientation angles. These comparisons of results are
shown in Table 17.3. The capability of the present MATLAB code in respect of
stiffener formulation, rotation of the panel and pretwist angle is well established and
acceptable. Therefore, it is obvious that the MATLAB code can effectively compute
the natural frequencies of the pretwisted stiffened panel subjected to various rota-
tional speeds.

Table 17.1 Natural frequencies (Hz) of simply supported cross-ply (0°/90°) crossed-stiffened
plate, L = b = 254 mm, h = 12.7 mm, bst = 6.35 mm, dst = 25.4 mm, E1 = 144.8 GPa,
E2 = 9.67 GPa, G12 = G13 = 4.14 GPa, G23 = 3.45 GPa, m = 0.3, q = 1389.23 kg/m3 and
nx = ny = 1

Mode
number

Nayak and Bandyopadhyay
[16]

Das and Chakravorty
[31]

Present
FEM

1 1141.00 1123.17 1142.03

2 2394.17 2367.77 2398.12

3 2415.82 2407.57 2417.10

4 2646.18 2656.00 2646.31

Table 17.2 Non-dimensional fundamental frequencies x ¼ xnL2
ffiffiffiffiffiffiffiffiffiffiffi
qh=D

p	 

of an isotropic

rotating cantilever plate

Non-dimensional speed X ¼ X0=xn Sreenivasamurthy and Ramamurti [7] Present FEM

0.0 3.43685 3.41748

0.4 3.75280 3.72640

0.8 4.56786 4.51250

1.0 5.09167 5.01066

L/b = 1, h/L = 0.12, D = Eh3/12(1 − m2), m = 0.3
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The fundamental frequencies of the composite stiffened plate are presented
corresponding to different twist angles and rotational speeds. The geometric and
material properties of the composite stiffened plate made of graphite–epoxy are as
follows:

L=b ¼ 2; L=h ¼ 100; bst ¼ h; dst ¼ 4h; m12 ¼ 0:30; E1 ¼ 138:0 GPa;

G12 ¼ G13 ¼ 7:1 GPa;E2 ¼ 8:96 GPa;G23 ¼ 2:84 GPa

The entire analysis is based on the laminated composite plate with composite
stiffeners placed symmetrically along the nodal lines. The stacking sequence of the
plate and the stiffener is always same. The boundary condition considered for the
stiffened plate is given below:

u ¼ v ¼ w ¼ a ¼ b ¼ 0 at x ¼ 0: ð17:33Þ

The effect of fibre orientation angle on the fundamental natural frequency of an
eight-layered laminated composite [h/−h/h/−h]s stiffened plates is presented in
Fig. 17.2 for two panels, wherein one panel is attached with a single x-directional
stiffener while the second panel is appended with a single y-directional stiffener. At
the same time, the stiffened plates of different angles of pretwist are also considered.
Form the graph, it may be observed that raise in the value of fibre orientation angle

Table 17.3 Non-dimensional fundamental frequencies x ¼ xnL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q=E11h2

p	 

of three layer

[h/−h/h] graphite–epoxy twisted plates

h (Deg.) Qatu and Leissa [3] Present FEM

0 0.9553 0.9431

15 0.8759 0.8629

30 0.6923 0.6812

L/b = 1, b/h = 20, twist angle (/) = 30°, E1 = 138.70 GPa, E2 = 8.96 GPa, G12 = 7.1 Gpa,
m12 = 0.3
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Fig. 17.2 Variation of fundamental frequency with fibre angle of different twisted stiffened plates
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decreases the fundamental frequency irrespective of twist angle. When the fibres of
stiffener and plate are orthogonal to the clamped edge (h = 0°), fundamental fre-
quency is obtained maximum and minimum at h = 90° irrespective of twist angles.
Increase in the value of pretwist angle is found to reduce the value of fundamental
frequency because of decrease in structural stiffness, and the results corroborate
with the results of Qatu and Leissa [3]. The maximum percentage of reduction in
fundamental frequency with increase in twist angle is observed at fibre orientation
of 30° while minimum at h = 90° for x-directional stiffened plate. In case of
y-directional stiffened plate, insignificant variation of fundamental frequency is
observed corresponding to 15° twist angle. At 30° pretwist angle of y-directional
stiffened plate, maximum reduction in fundamental frequency is depicted at h = 0°.
Comparing x- and y-directional stiffened plates, it may be observed that maximum
value of fundamental frequency is obtained with x-directional stiffener. Hence,
x-directional stiffener is found to be more efficient in rendering maximum stiffness
to the plates, thereby increasing the fundamental frequency. This observation is
limited to cantilever boundary condition.

The variation of fundamental frequency with increase in number of x-directional
stiffener of stationary composite [30°/−30°/30°/−30°]s twisted stiffened plate cor-
responding to twist angle 0°, 15°, 30° is furnished in Fig. 17.3, because from the
previous observation it is clear that x-stiffener is more efficient in terms of
increasing fundamental frequency. It reveals that increase in number of stiffeners
increases the value of fundamental frequency, as normally expected. However, the
rate of increase in fundamental frequency, especially at early stage, gradually
decreases with increase in number of stiffeners for all the cases. Excellent perfor-
mance in terms of improving fundamental frequency is achieved by appending
maximum three numbers of stiffeners; thereafter, the increase in fundamental fre-
quency is found marginal as the curves gradually become horizontal.
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Fig. 17.3 Variation of
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The variation of first fundamental frequency with stiffener depth-to-plate
thickness ratio (dst/h) of both untwisted and twisted laminated composite
[30°/−30°/30°/−30°]s stiffened plate is illustrated in Fig. 17.4. A single x-direc-
tional composite stiffener placed symmetrically is considered for this particular
case. It is evident that increase in (dst/h) increases the fundamental frequency,
because it increases the eccentricity of the stiffener, which in turn increases the
second moment of area. The rate of increase of fundamental frequency is found
slow at early stage while its growth is found rapid after dst/h = 2 in both the cases.
This observation will be helpful for the investigators to select the depth of the
stiffener.

Figure 17.5 shows the variation of fundamental frequency of the composite
[30°/−30°/30°/−30°]s stiffened plate with non-dimensional rotational speeds
(X = 0.00, 0.50 and 1.00). Three cases are considered corresponding to twist angles
0°, 15° and 30°, respectively. The present investigation is performed for two dif-
ferent stiffened panels: one is embedded with a single x-stiffener and other with a
single y-stiffener. The fundamental frequency is found minimum at twist angle 30°
while found maximum in untwisted stiffened plate as normally expected for both
the panels. It is evident that increasing the rotational speed raises the value of
fundamental frequency because of centrifugal stiffening. The percentage increase in
fundamental frequency due to rotational speed is found maximum in the twisted
plate (/ = 30°) than untwisted plate. This observation is found in x-directional
stiffened plate, while in y-directional stiffened plate, no such observation is noticed.
Hence, the rotating effect is more pronounced for the twisted plate than the
untwisted plate, when attached with x-directional stiffener.
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The mode shapes of the composite stiffened plate for various twist angle and
rotational speeds are furnished. First the effect of different twist angles of stiffened
plate on its mode shapes is presented in Table 17.4. The continuous and dashed
lines denote the upward and downward displacements, respectively. It reveals that
the symmetry of mode shapes disappears with increase in twist angles.

The effects of different rotational speeds on the mode shapes of a twisted stiff-
ened plate are shown in Table 17.5. The first five mode shapes of the composite
stiffened plate are shown corresponding to non-dimensional rotational speeds 0.0,
0.5 and 1.0, respectively. The first five modes of the non-rotating stiffened plate are,
in order, first spanwise bending (1B), first torsional mode (1T), second torsional
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Fig. 17.5 Variation of fundamental frequency with rotational speed of composite [30/−30/30/−30]s
stiffened plates with different angles of pretwist

Table 17.4 Mode shapes of the cantilevered composite [30°/−30°/30°/−30°]s stiffened plate
corresponding to different twist angles

Twist 
angle

Mode-1 Mode-2 Mode-3 Mode-4 Mode-5

0°

15°

30°

370 M. Rout and A. Karmakar



mode (2T), first chordwise bending mode (1C) and third torsional mode (3T),
respectively. The symmetry of mode shapes is not observed due to twist angle and
rotational speed. It is observed that the mode-1 is not at all influenced by the
rotational speed, while the influence of rotational speed can be seen after mode-2.

17.4 Conclusions

In this investigation, the finite element formulation of the rotating twisted stiffened
plate is presented and the accuracy and effectiveness of the formulation are well
verified with the results available in the open literature. The major conclusions
drawn from the parametric studies are listed below:

1. The fibre orientation of the laminated stiffened plate has large control over the
fundamental frequency, wherein maximum and minimum values of fundamental
frequency are obtained corresponding to 0° and 90°, respectively.

2. The x-directional stiffener is found to be more efficient in increasing the fun-
damental frequency of the twisted stiffened plate.

3. The fundamental frequency is noticed to reduce with increase in twist angle of
the composite stiffened plate.

4. Increase in stiffener depth-to-plate thickness ratio has also a striking effect on the
fundamental frequency.

Table 17.5 Mode shapes of the cantilevered composite [30°/−30°/30°/−30°]s twisted (30°)
stiffened plate corresponding to different rotational speeds

Rot.
speed

Mode-1 Mode-2 Mode-3 Mode-4 Mode-5

0.0

0.5

1.0
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5. The effect of speed of rotation on the fundamental frequencies is observed to be
more prominent in twisted stiffened plates. Increase in the rotational speed of the
stiffened plate increases the fundamental frequency due to centrifugal stiffening
irrespective of twist angle.
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