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Abstract We consider a class of random matrices By = Xy Ty X%, where Xy is a
matrix (N x n(N)) whoserows are independent, the entries X;; in each row satisfy an
autoregressive relation AR(1), and Tl is a diagonal matrix independent of X . Under
some conditions, we show that if the empirical distribution function of eigenvalues
of Ty converges almost surely to a proper probability distribution as N — oo
and % — ¢ > 0, then the empirical distribution function of eigenvalues of By
converges almost surely to a non-random limit function given by Marcenko and
Pastur. Numerical simulations illustrate the behavior of kernel density estimators
and density estimators of Stieltjes transform around the true density and we give a
numerical comparison on the base of L; error varying different parameters.

Keywords Large dimensional random matrix + Empirical distribution function
of eigenvalues - Covariance matrix *+ Autoregressive processes * Stieltjes
transform - Kernel density estimators

1 Introduction

Theoretical studies on covariance matrices have a long history and appear in many
domains in the real world and having links with practical problems (see [1] and [9]).
For example, in multivariate statistics, spectral asymptotic results are used in solving
the detection problem in signal process [9].

Consider the following random matrix:

By = XyTy X', (1)
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where Xy = (ﬁXU), @i=1,...,N; j=1,...,n(N))is a matrix (N x n(N))
with independent rows with the entries X;; of each row satisfy an autoregressive
relation AR(1) and Ty is a diagonal matrix (n x n) with real entries independent of
Xy (X is the transpose matrix of X ). More precisely, for each i > 1 we have

Xij+1 = pXij + &ij+1, j=1 ()

where (sij, i,j> 1) arei.i.d. rv’s (random values) with mean 0 and variance 62 > 0,
such that &;; admits a continuous density function with respect to Lebesgue measure.
The parameter p is such that |p| < 1 assuring a strictly stationary process. The
diagonal matrix Ty = diag (ty, ..., T,) is independent of Xy and the rv’s t; are
real.

The empirical distribution function (e.d. f.) of the eigenvalues (A;) of the sym-
metric matrix By is defined by

B 1 al
F& () = 5 D o=,
i=1

where 1,4 denoting the indicator function of the set A.

A large number of papers have dealt with the problem to identify the limit of
the e.d. f. of eigenvalues of random matrices By as N —> oo and 22 — ¢ > 0.
Marcenko and Pastur [7] originally studied this problem for more general forms of
random matrices. They establish, under some conditions on moments, that if the
e.d.f. FT¥ converges to a proper distribution function H, then F5¥ converges in
probability to a proper distribution function. Their method involves the Stieltjes
transform, where they shown that the Stieltjes transform of the limiting distribution
function satisfies a first-order partial differential equation, then via the characteristics
they shown that this function is a solution of an algebraic equation identifying hence
the limit.

Afterward, several authors [4, 5, 8, 11, 12] extended this result giving the almost
sure convergence of the e.d. f. of eigenvalues under mild conditions on the entries
X;j. Most of the previous papers employ the same transform as [7] and the entries
X;; of the matrices are independent random variables, except the paper [3], where
dependent entries are considered.

Our goal in this paper is to study, under some assumptions, the limit of the e.d. f.
FBv of the random matrix By = XyTyX §\,, where the entries X;; of the matrix
Xy satisfy an autoregressive relation AR(1) for each i. We follow the approach
given in [8] where the authors apply Marcenko and Pastur method to study the
limit of Stieltjes transform of the e.d.f. F®¥ and then we identify the limit law.
We illustrate by numerical simulations the behavior of kernel density estimators and
density estimators of Stieltjes transform to identify the true density and give L, errors
varying different parameters.
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The paper is organized as follows. Section 2 provides the main result. Section 3

presents numerical simulations. The proof of the main result will be postponed in
Sect. 4.

2 Main Result

First, we introduce some random variables and random matrices. We truncate and
centralize the entries X;; of the random matrix Xy to obtain new corresponding

random matrices as follows: fori = 1,...,N; j=1,...,n(N), let
%y = X1 Ry =(—=%,). By = RyTy & 3
i = Xijl(x;|<vmy, AN = ﬁ ij ], BN = XnINX Y, 3)
%, =% E(;z);z—(l;z>g—;zmt @
ij — Aij ij)» AN — «/ﬁ ij )] >» PN — ANINAN,

and
Xij = Xij (x| <ton) — EXij1(|x;)<nn)» )
Xy = (%NX,-J-) By = XyTy X\,

We pointed out that the problem described above has been often handled by the
method of Stieltjes transform. Let M (R) be the set of distribution functions on R.
Recall that the Stieltjes transform of a distribution function F € M (R) is defined
by

1
mp(z)sz—_ZdF(A), zeCt={zeC:3mz > 0},

where Jm is the imaginary part. The inversion formula is given by

1 b
F([a,b]) = ;eli%r/ Smmp (x +i€)dx,

where a and b are continuity points of F. Also, the weak convergence of probability
distribution functions is equivalent to the convergence of Stieltjes transforms (Theo-
rem B.9, [1]). From the inversion formula, it follows that for any countable set S ¢ C*
such that R C § the closure of S, and a sequence (Fy) € M (R), F € M (R), we
have the following equivalence:

A}im mp, (2) =mp(),Vz€S<= Fy - F as N — oo, (6)
—00

where Fy — F is the vague convergence of distributions functions.
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Furthermore, we consider the following random matrices. For j,/ =1,2,...,
n(N), denote by g; the jth column of X defined by (5) that is

_ 1 - SN 1
gi=—(X1/,..., Xy;) == —=V,, (7
J \/ﬁ ( J Nl) \/ﬁ J

and by B B B
B = B(Ij) ‘= By — Tjéj‘};v (8)

where 7; are the elements of Ty, and define
x=xN:=li—Tj Xy = xN = — Z 9)

N = L+ tmps, @)’ v W P 1+ om s, @’

where m .5, and m 5, are Stieltjes transform of the matrices By and By, respec-
tively. Finally, set

T -1 2 . 1,5 —1
Cipy =By —zI) . €= (¥ —2)  (By —z2I) (10)
where [ is the identity matrix.

Now, we state the main result of this paper giving the almost sure limit of the
e.d.f. of the eigenvalues of the random matrix By (¢r is the trace of the matrix).

Theorem 1 Assume

(a) For N =1,2,...,let Xy =
dent rows and an AR(1) autoregressive relation (2) in each row. The entries
Xij, i, j = 1, have all their moments finite and * <N) —c¢>0as N — oo.

(b) Ty =diag(ty,...,T,), T; € R, and the e.d. f. f Tn converges almost surely
to a distribution function Has N — oo.

(c¢) The matrices X and Ty are independent
(d) Fork=1,2and j =1,2,...,n(N), the matrices c*k

(\/LNX,-J-) be a matrix (N x n(N)) with indepen-

) defined in (10) satisfy

V ckv < KN3, where V; given by (7) and K > 0.

(j) —trC

(/))

Then, the e.d.f. FB of the random matrix By = XnTy X', converges vaguely
almost surely to a distribution function F, as N —> 00, whose Stieltjes transform
mp(z) satisfies the following functional relation:

tdH (r) \ ' .
mp(z) (z C/ Tp— (z)) ;2€C (11)

Remark Assumption (a) is fulfilled in part if the white noise (g;;) has all moments
(Gaussian white noise). Assumptions (b), (c) are standard and analogous of that
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Fig. 1 Densities of the limit law and STE with Ty the identity matrix

existing in [8]. Assumption (d) requires a control of sixth moment of quadratic form
of a matrix and its trace by a third power of size N. In the case of i.i.d. entries
Xij, i, j = 1, assumption (d) is fulfilled (cf. Lemma 3.1 in [8]).

3 Numerical Simulations

As a practical impact of the main result, we illustrated in [6] the behavior of the
empirical density estimator of e.d. f. of eigenvalues (1;,i = 1, ..., N) of large ran-
dom matrices By, and identify the density function of the limit law by numeri-
cal simulations. First, we recall the formulas giving density of limit law and the
empirical Stieltjes transform estimator. From [10], we have for all x € R — {0}, and
z=x+iy,y > 0, the distribution function F (limit of the e.d. f. F¥) has a con-
tinuous derivative f defined by f(x) = (1/7) Smmg(x), where my(x) is given by
Stieltjes transform m g (z) as lim,_,, mp(z) := mo(x) (Figs. 1, 2 and Table 1).
The Stieltjes Transform Estimator (STE) is defined by

Sn(x) = (1/m) Smmpey (2),

N
where mpsy (z2) = xtr By —zD)7'= + > (L —2)7".
i=1

Now, we apply Gaussian Kernel Estimatozrs (GKE) defined by

1 S A=
A) = K “aeR
v NhN; ()ike
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Fig. 2 Densities of the limit law and STE with Ty having three eigenvalues: 1, 3, 10
Table1 Lj-errors of STE in Case 1: Ty identity matrix with ¢ = 1 and Case 2: T diagonal matrix

having three eigenvalues: 1, 3, 10 with ¢ = 0.2. For weak and strong dependence and different
sample size values N

p =02 p =07
N 100 500 1000 100 500 1000
Case 1 0.0297 0.0245 0.0200 0.0390 0.0327 0.0298
Case 2 0.0206 0.0020 0.0009 0.0151 0.0020 0.0009
‘Il —— True density il —— True density
411 — SIE 1 — STE
| — GKE | — GKE

.

|

A
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Fig. 3 Behavior of STE and GKE with matrix Ty having three eigenvalues: 1, 3, 10

where hy is the bandwidth converging to 0 and Nhy — oo, and K is a Gaussian

kernel : K (1) =

ﬁ exp(—1u?).

We compare the performance of Stieltjes Transform Estimators (STE) and Gaus-
sian Kernel Estimators (GKE) on the base of L;-errors (Fig. 3 and Table 2).
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Table2 Lj-errors of the STE and GKE, with T having three eigenvalues and ¢ = 0.2 for different
sample size values N

p =02 p =07
N 100 500 1000 100 500 1000
STE 0.0160 0.0102 0.0092 0.0126 0.0102 0.0093
GKE 0.0109 0.0094 0.0088 0.0106 0.0093 0.0091
Conclusion

From more numerical simulations, we may observe that the performance of esti-
mators strongly depends on the choices of the dimension ¢, AR parameter p, and
sample size N. The variability of parameters has a direct impact on the stabilization
and convergence rate of the estimators. Particular choices of parameters confirm
a good performance of the estimators and lead to indicate optimal values for these
parameters. We also observe an effect of the dimension ¢ on density estimator conver-
gence rate. For ¢ > 1, for both weak and strong dependencies (p = 0.2, p = 0.7), the
estimators perform well from on N = 100. However, for small values of ¢ (¢ < 0.2),
there is an influence of parameter values on the convergence rate. For weak depen-
dence (p = 0.2) STE perform quite well for moderate value N = 100, whereas for
strong dependence (p = 0.7) the estimator accurate enough well only for large N
(when N > 1000). The number of eigenvalues of T has an effect on the behavior
of the estimators as well as on their performance. Both estimators perform well and
give a good representation of the true density with a small advantage of GKE.

4 Proof of the Main Result

Recall these well-known facts. For each i, the process (X;;, j € Z) satisfying relation
(2) is a stationary AR(1) process, then it satisfies the geometric strong mixing prop-
erty (G.S.M) with strong mixing coefficient oy = o (Fy', Fo°,) = O (pk), where
0<p<land ff = f;”i = 0(X;j,a < j < b), whenever ¢;; has a strictly positive
continuous density (see [2] p. 58).

The covariance between two real-valued rv’s is bounded as follows: if n € L? and
& € L7 are F{' and F°,  -measurable, respectively, then we have

|E (&) —Em E )] = 12||77||,,|IE|Iqa;§l‘ (12)

forall 1 < p,q,r < oo with % + 14 % = 1, and the norm .||, = Ev [.|7.
On the other hand, there exists a distance D(., .) on the space M (R), such that
for two sequences (Fy), (Gy) € M (R), we have (see [8]).

lim |Fy —Gyll=0 = lim D (Fy,Gy) =0, (13)
N—o00 N—o00



86 Z. Khettab and T. Mourid

where ||.|| denotes the sup-norm of bounded functions from R to R.

To lighten the writing, the dependency of most of variables on N will occasionally
be dropped form the notation. Now, we replace T by a suitable matrix for further
analysis: for 6 > 0 define, Ty = diag (t11(5j=6). - - - » Tal(z,|=0)) - and let Q be any
(N x n) matrix. If 6 and (—6) are continuity points of H, then by Lemma 2.5 of [8]
and assumption (b) of the Theorem 1, as N — oo and - — ¢ > 0, we have

. . 1 l & .
HFQTQ — FOne H = 78 (T =To) = 5 D 1(jq |0y = cH {[=0.61} as.
j=1

It follows that if 6 = 8y — o0, then

HFQTQ’ _ FOn0’ H 50 as. (14)
Choose 6 such that
1
o4 |:E§ 1 X112 1(X|]|21nN)+Nj| — 0, (15)
and
= | 1
8 1/ _
1;9 |:_N7/6E |X11| 1(lnNS|X11|<\/ﬁ)+N2:| < Q. (16)

For continue, we need the following result.
Lemma 1 Let the (N x n) matrices X = (\LFNXU) verifying assumption (a) of

Theorem 1, and X = (\LFN)A(,,) where )A(i_,- = Xij1(|X,-,v|<«/ﬁ)' For 0 >0 set Ty =

diag (111120, - - - » Tal(mi=)) » T € R. We have
Y S
Proof From Corollary A.42 of [1], we find
D (FXTX' PRI < [%tr (xx = X%)+ %trf(f(’] [f\jzr (xx - XX’)} .
In order that this distance tends almost surely to 0, we can show by Borel-Cantelli

lemma that [%tr (XX’ - )A()?’)] tends to 0 and [%trf(f(’] is bounded almost
surely. So the result.
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Proof of the Theorem 1

For (N x n) matrix, X = (\/LN X; j) verifying assumption (a) of Theorem 1. With
help to inequality (12) and the fact that (X i ]‘) satisfies the G.S.M. property, we obtain

my < E (r (xX)?) < M2 (17)

where
_5 4 _ 2 2l 6
M, = N{nE|X11| +n(N+n-—2)E"|X11] E3 | X1},

_K 4 _2)E? 2 z 6 _DE} 3
MZ—N{nE|X11| +n(N+n-=2)E° | Xnl"+ E3 [ X"+ (N = 1) E3 [ X1}

With the same arguments, we may deduce a bound of the variance

K
var (tr (XX’)2> < F{NA‘EU(M4 E* | X1l (18)

FNIES X010 + BT X[ ES 1X0 0 B3 1X012 4 E1x1 P ES 1x1%)
FNAES X110 ES X2+ B3 X015 E X0 P+ EF X012+ BT X 2 6 X 1'8)),
Using (14) and (13), we may write
D (FX”’, FXX') 0 and D (FXTGX’, F*Tf"> —~ 0 as.
Furthermore, by Lemma 1, we get
D (FXTX’, FYTX) =0 as. (19)
For BN and By defined by relations (3) and (4), we have from Lemma 2.5 of [8],

HFéN — FB| 5o, (20)

Let )?ij = )?ij — )_(ij' Hence,

= ~ ~ = 1 =
Xij = Xijl(x,1zmny + EXijl(1x, | <mny. X = (TNX”)
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where X ij and X; ; are defined by the relations (4), (5), respectively.
Then, from Cauchy—Schwartz inequality, we can show that the squared distance

D2 (F)ZTg)Zf F)_(Tg)_(’)

is bounded by

2

3o (RE) 4t (32) o (0

" Hem (%%) o (23] e (ﬁ’)z}z

Therefore, in order to show that almost surely

D (FXTGX‘, FXT"X') -0, Q1)
it suffices to verify that
4 1 = =1\ 2 1 S o 2
o i (XX) ~ 0, S (XX) =0 as. (22)

Since E ()_(11) =0and X;; = }?ijl(|x,.,|z1nN) + E)}ijl(|xij|<]nN), we have

- 2
E ‘Xu‘ < KE|X11* Lix,smn) — O. (23)

For p > 4,
E‘X’“

"< K (NFEIXW e v + 1) (24)
By dominated convergence theorem, we get

E[Xn| > ElXnlP=y. (25)
For p > 4 and definition of rv’s X1, we have
E|Xu|" < K(nN)yP 2. (26)

From (15), (23), (24), E(|X11|4 1(1nN§|x,.\<ﬁ)) < NE |X;;|? and relation (17), we
may write
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Lo (77) 4| 2 2 !
E NG tr(XX) < K6 E3|X11| 1(|X11\ZIHN)+N — 0.

Also (18) gives

[V = =1\? g| 1 1/6 4 1
var (0 i (XX)") < ko 7 B X0 Ly o) + 773 |

where the latter bound is summable by (16).
- =t 2
Hence, we obtain %94” (XX ) — 0 as.

Now it remains to show that ﬁtr ()_(}_(’)2 = O (1) a.s. Using (17), (25) and (26),
we find

(In N)3 1, n(n 2 3
Ki-—y 1=k [ﬁ"(XX )2] -y (ﬁ +1- ﬁ) E? Xy’
n (InN)>  (nN)} (InN)3
< K{N N + N2 + N }.

Consequently, E [%tr ()_()_(f)z] — 2 (241-2)E? })_(11|2 — 0, and,
E [%tr ()_()_(’)2] — y2lc(c+D].
Concerning the variance, by (18), (25) and (26), we may obtain

17/3

1 - - InN
var (—tr (XX’)2> < K&,
N3

which is summable. Then, (22) is verified from which (21) follows. This result with
(14) allow us to write, D (F’?T’?', FXT’?/) -0 a.s.

From (19) and (20), in order to prove D (FXTX', F) — 0 a.s, it suffices to verify
that, D (F)_‘T)_‘r, F) — 0 a.s. For this aim, we shall show that for any z € C*,
Mpzrxe (2) = mp (2) a.s.

Let z € C* and By = XT X', the sequence {F BN} satisfies the assumptions of
Lemma 2.8 of [8]. So 3m > 0 such that

inf FBv [-m,m] > 0, § = inf Im (mFgN (z)) >0 a.s.
N N

Write By — zI = (x —z) I + XT X' — x1I, and then

n

1
(x—2)"—mp, (2) = ﬁ;

Tj

—d;, 27
L+ tjmpsy (2) &7
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where

1+ TiMphy (2)

d,-:d’.V

j ——3a (Bij) — o) (@-27' 1) g

- 1415 (Byy —2I) qj
1 - _
—ﬁtr(BN—zI) 1((x—z)fll),

with g; denote the jth column of X, and B(j), x, x(j are defined by relations (8) and
).

Lemma 3.1 of [8] and assumption (d) of the Theorem 1 permit us to obtain

max max [B1, B2, B3] — 0 a.s (28)
j<n
where
pi=lal* 1),

o U T -
B = |q; (Bij) — ) lqj—ﬁ”’ By —21)"

)

B3 = ‘675' (Byy —21) " ((xy—2) )" @
1 _ _ _
—Ntr (B(j)—ZI> : (()C(j)_Z) I) l"

Lemma 2.6 of [8] gives us, max;<, max[| y; |, | 2 [] — 0, where y; =m

FBu)
/5 -1 _
(@) —mpiy @), 2 =mpiy &) — G} (B —zl) q;.
So that for N large enough, we have, max <, max[|3my |, [Smy»|] < %
Then, for j,l < n,
14+ 1t;m.3, (2) 2
— J_FBN _1_—1‘<E|V2|,
L+7q; (B —z) 4
and
T T 2
- - - =5 Inl.
l + T[mFBN (Z) 1 + TlmFB(j) (Z) 8
Therefore,
14+ timps, (2
max max|[ - S ik ()71_ — 11, x—x(j)|]—>0. 29)
J=n 1+Tquj (B(j)—ZI) qj

Using Lemmas 2.6, 2.7 of [8] and (28), (29), we may have
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maxd; — 0.
j<n °

Since

T <1
_6’

1+ TiM sy (2)

we may conclude from (27) that

(x—2)"! —mg, (2) > 0.

Hence, the relation (11) is satisfied.

Finally, using (6), the proof of Theorem 1 is now complete.
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