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Abstract We consider a class of random matrices BN = XNTN Xt
N , where XN is a

matrix (N × n(N ))whose rows are independent, the entries Xi j in each row satisfy an
autoregressive relationAR(1), and TN is a diagonalmatrix independent of XN . Under
some conditions, we show that if the empirical distribution function of eigenvalues
of TN converges almost surely to a proper probability distribution as N −→ ∞
and n(N )

N −→ c > 0, then the empirical distribution function of eigenvalues of BN

converges almost surely to a non-random limit function given by Marcenko and
Pastur. Numerical simulations illustrate the behavior of kernel density estimators
and density estimators of Stieltjes transform around the true density and we give a
numerical comparison on the base of L1 error varying different parameters.

Keywords Large dimensional random matrix · Empirical distribution function
of eigenvalues · Covariance matrix · Autoregressive processes · Stieltjes
transform · Kernel density estimators

1 Introduction

Theoretical studies on covariance matrices have a long history and appear in many
domains in the real world and having links with practical problems (see [1] and [9]).
For example, in multivariate statistics, spectral asymptotic results are used in solving
the detection problem in signal process [9].

Consider the following random matrix:

BN = XNTN X
t
N (1)
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where XN = ( 1√
N
Xi j ), (i = 1, . . . , N ; j = 1, . . . , n(N )) is a matrix (N × n(N ))

with independent rows with the entries Xi j of each row satisfy an autoregressive
relation AR(1) and TN is a diagonal matrix (n × n) with real entries independent of
XN (Xt

N is the transpose matrix of XN ). More precisely, for each i ≥ 1 we have

Xi j+1 = ρXi j + εi j+1, j ≥ 1 (2)

where
(
εi j , i, j ≥ 1

)
are i.i.d. rv’s (random values) withmean 0 and variance σ 2 > 0,

such that εi j admits a continuous density function with respect to Lebesgue measure.
The parameter ρ is such that |ρ| < 1 assuring a strictly stationary process. The
diagonal matrix TN = diag (τ1, . . . , τn) is independent of XN and the rv’s τi are
real.

The empirical distribution function (e.d. f.) of the eigenvalues (λi ) of the sym-
metric matrix BN is defined by

FBN (x) = 1

N

N∑

i=1

1(λi≤x),

where 1A denoting the indicator function of the set A.
A large number of papers have dealt with the problem to identify the limit of

the e.d. f. of eigenvalues of random matrices BN as N −→ ∞ and n(N )

N −→ c > 0.
Marcenko and Pastur [7] originally studied this problem for more general forms of
random matrices. They establish, under some conditions on moments, that if the
e.d. f. FTN converges to a proper distribution function H , then FBN converges in
probability to a proper distribution function. Their method involves the Stieltjes
transform, where they shown that the Stieltjes transform of the limiting distribution
function satisfies a first-order partial differential equation, then via the characteristics
they shown that this function is a solution of an algebraic equation identifying hence
the limit.

Afterward, several authors [4, 5, 8, 11, 12] extended this result giving the almost
sure convergence of the e.d. f. of eigenvalues under mild conditions on the entries
Xi j . Most of the previous papers employ the same transform as [7] and the entries
Xi j of the matrices are independent random variables, except the paper [3], where
dependent entries are considered.

Our goal in this paper is to study, under some assumptions, the limit of the e.d. f.
FBN of the random matrix BN = XNTN Xt

N , where the entries Xi j of the matrix
XN satisfy an autoregressive relation AR(1) for each i . We follow the approach
given in [8] where the authors apply Marcenko and Pastur method to study the
limit of Stieltjes transform of the e.d. f. FBN and then we identify the limit law.
We illustrate by numerical simulations the behavior of kernel density estimators and
density estimators of Stieltjes transform to identify the true density and give L1 errors
varying different parameters.
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The paper is organized as follows. Section 2 provides the main result. Section 3
presents numerical simulations. The proof of the main result will be postponed in
Sect. 4.

2 Main Result

First, we introduce some random variables and random matrices. We truncate and
centralize the entries Xi j of the random matrix XN to obtain new corresponding
random matrices as follows: for i = 1, . . . , N ; j = 1, . . . , n(N ), let

X̂i j = Xi j1(|Xi j |<√
N), X̂ N =

(
1√
N
X̂i j

)
, B̂N = X̂ N TN X̂

t
N , (3)

X̃i j = X̂i j − E
(
X̂i j

)
, X̃ N =

(
1√
N
X̃i j

)
, B̃N = X̃ N TN X̃

t
N , (4)

and

{
X̄i j = X̃i j1(|Xi j |≤ln N) − E X̃i j1(|Xi j |≤ln N),

X̄ N =
(

1√
N
X̄i j

)
, B̄N = X̄ N TN X̄ t

N .
(5)

We pointed out that the problem described above has been often handled by the
method of Stieltjes transform. Let M (R) be the set of distribution functions on R.

Recall that the Stieltjes transform of a distribution function F ∈ M (R) is defined
by

mF (z) =
∫

1

λ − z
dF (λ) , z ∈ C

+ ≡ {z ∈ C : 	mz > 0} ,

where 	m is the imaginary part. The inversion formula is given by

F([a, b]) = 1

π
lim

ε→0+

∫ b

a
	mmF (x + iε) dx,

where a and b are continuity points of F . Also, the weak convergence of probability
distribution functions is equivalent to the convergence of Stieltjes transforms (Theo-
remB.9, [1]). From the inversion formula, it follows that for any countable set S ⊂ C

+
such that R ⊂ S̄ the closure of S, and a sequence (FN ) ∈ M (R), F ∈ M (R), we
have the following equivalence:

lim
N→∞mFN (z) = mF (z) ,∀z ∈ S ⇐⇒ FN → F as N → ∞, (6)

where FN → F is the vague convergence of distributions functions.
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Furthermore, we consider the following random matrices. For j, l = 1, 2, . . . ,
n(N ), denote by q̄ j the j th column of X̄ N defined by (5) that is

q̄ j = 1√
N

(
X̄1 j , . . . , X̄ N j

)t := 1√
N
Vj , (7)

and by
B̄( j) = B̄N

( j) := B̄N − τ j q̄ j q̄
t
j , (8)

where τ j are the elements of TN , and define

x = xN := 1

N

n∑

j=1

τ j

1 + τ jmF B̄N (z)
, x( j) = xN

( j) := 1

N

n∑

l=1

τl

1 + τlmF B̄( j) (z)
, (9)

where mFB̄N and m
FB̄( j) are Stieltjes transform of the matrices B̄N and B̄( j), respec-

tively. Finally, set

C1
( j) := (

B̄( j) − z I
)−1

, C2
( j) := (

x( j) − z
)−1 (

B̄( j) − z I
)−1

(10)

where I is the identity matrix.

Now, we state the main result of this paper giving the almost sure limit of the
e.d. f. of the eigenvalues of the random matrix BN (tr is the trace of the matrix).

Theorem 1 Assume

(a) For N = 1, 2, . . . , let XN =
(

1√
N
Xi j

)
be a matrix (N × n(N )) with indepen-

dent rows and an AR(1) autoregressive relation (2) in each row. The entries
Xi j , i, j ≥ 1, have all their moments finite and n(N )

N → c > 0 as N → ∞.
(b) TN = diag (τ1, . . . , τn) , τi ∈ R, and the e.d. f. of TN converges almost surely

to a distribution function H as N → ∞.

(c) The matrices XN and TN are independent.
(d) For k = 1, 2 and j = 1, 2, . . . , n(N ), the matrices Ck

( j) defined in (10) satisfy

E
∣
∣∣V t

j C
k
( j)Vj − trCk

( j)

∣
∣∣
6 ≤ K N 3, where Vj given by (7) and K > 0.

Then, the e.d. f. FBN of the random matrix BN = XNTN Xt
N converges vaguely

almost surely to a distribution function F, as N −→ ∞, whose Stieltjes transform
mF(z) satisfies the following functional relation:

mF (z) = −
(
z − c

∫
τdH (τ )

1 + τmF (z)

)−1

; z ∈ C
+. (11)

Remark Assumption (a) is fulfilled in part if the white noise (εi j ) has all moments
(Gaussian white noise). Assumptions (b), (c) are standard and analogous of that
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Fig. 1 Densities of the limit law and STE with TN the identity matrix

existing in [8]. Assumption (d) requires a control of sixth moment of quadratic form
of a matrix and its trace by a third power of size N. In the case of i.i.d. entries
Xi j , i, j ≥ 1, assumption (d) is fulfilled (cf. Lemma 3.1 in [8]).

3 Numerical Simulations

As a practical impact of the main result, we illustrated in [6] the behavior of the
empirical density estimator of e.d. f. of eigenvalues (λi , i = 1, . . . , N ) of large ran-
dom matrices BN , and identify the density function of the limit law by numeri-
cal simulations. First, we recall the formulas giving density of limit law and the
empirical Stieltjes transform estimator. From [10], we have for all x ∈ R − {0} , and
z = x + iy, y > 0, the distribution function F (limit of the e.d. f. FBN ) has a con-
tinuous derivative f defined by f (x) = (1/π) 	mm0(x), where m0(x) is given by
Stieltjes transform mF (z) as limz→x mF (z) := m0(x) (Figs. 1, 2 and Table 1).

The Stieltjes Transform Estimator (STE) is defined by

fN (x) = (1/π) 	mmFBN (z) ,

where mFBN (z) = 1
N tr (BN − z I )−1 = 1

N

N∑

i=1
(λi − z)−1 .

Now, we apply Gaussian Kernel Estimators (GKE) defined by

f̂N (λ) = 1

NhN

N∑

i=1

K (
λ − λi

hN
); λ ∈ R
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Fig. 2 Densities of the limit law and STE with TN having three eigenvalues: 1, 3, 10

Table 1 L1-errors of STE in Case 1: TN identity matrix with c = 1 and Case 2: TN diagonal matrix
having three eigenvalues: 1, 3, 10 with c = 0.2. For weak and strong dependence and different
sample size values N

ρ = 0.2 ρ = 0.7

N 100 500 1000 100 500 1000

Case 1 0.0297 0.0245 0.0200 0.0390 0.0327 0.0298

Case 2 0.0206 0.0020 0.0009 0.0151 0.0020 0.0009

Fig. 3 Behavior of STE and GKE with matrix TN having three eigenvalues: 1, 3, 10

where hN is the bandwidth converging to 0 and NhN → ∞, and K is a Gaussian
kernel : K (u) = 1√

2π
exp(− 1

2u
2).

We compare the performance of Stieltjes Transform Estimators (STE) and Gaus-
sian Kernel Estimators (GKE) on the base of L1-errors (Fig. 3 and Table 2).
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Table 2 L1-errors of the STE andGKE, with TN having three eigenvalues and c = 0.2 for different
sample size values N

ρ = 0.2 ρ = 0.7

N 100 500 1000 100 500 1000

STE 0.0160 0.0102 0.0092 0.0126 0.0102 0.0093

GKE 0.0109 0.0094 0.0088 0.0106 0.0093 0.0091

Conclusion
From more numerical simulations, we may observe that the performance of esti-
mators strongly depends on the choices of the dimension c, AR parameter ρ, and
sample size N . The variability of parameters has a direct impact on the stabilization
and convergence rate of the estimators. Particular choices of parameters confirm
a good performance of the estimators and lead to indicate optimal values for these
parameters.We also observe an effect of the dimension c on density estimator conver-
gence rate. For c > 1, for bothweak and strong dependencies (ρ = 0.2, ρ = 0.7), the
estimators perform well from on N = 100. However, for small values of c (c < 0.2),
there is an influence of parameter values on the convergence rate. For weak depen-
dence (ρ = 0.2) STE perform quite well for moderate value N = 100, whereas for
strong dependence (ρ = 0.7) the estimator accurate enough well only for large N
(when N > 1000). The number of eigenvalues of TN has an effect on the behavior
of the estimators as well as on their performance. Both estimators perform well and
give a good representation of the true density with a small advantage of GKE.

4 Proof of the Main Result

Recall thesewell-known facts. For each i , the process (Xi j , j ∈ Z) satisfying relation
(2) is a stationary AR(1) process, then it satisfies the geometric strong mixing prop-
erty (G.S.M) with strong mixing coefficient αk = αk(Fm

0 ,F∞
m+k) = O

(
ρk

)
, where

0 < ρ < 1 andFb
a = Fb

a,i = σ(Xi j , a ≤ j ≤ b), whenever εi j has a strictly positive
continuous density (see [2] p. 58).

The covariance between two real-valued rv’s is bounded as follows: if η ∈ L p and
ξ ∈ Lq are Fm

0 and F∞
m+k-measurable, respectively, then we have

|E (ηξ) − E (η) E (ξ)| ≤ 12 ‖η‖p ‖ξ‖q α
1
r
k (12)

for all 1 ≤ p, q, r ≤ ∞ with 1
p + 1

q + 1
r = 1, and the norm ‖.‖p = E

1
p |.|p.

On the other hand, there exists a distance D(., .) on the space M (R) , such that
for two sequences (FN ), (GN ) ∈ M (R) , we have (see [8]).

lim
N→∞

‖FN − GN‖ = 0 =⇒ lim
N→∞ D (FN ,GN ) = 0, (13)
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where ‖.‖ denotes the sup-norm of bounded functions from R to R.

To lighten the writing, the dependency of most of variables on N will occasionally
be dropped form the notation. Now, we replace T by a suitable matrix for further
analysis: for θ ≥ 0 define, Tθ = diag

(
τ11(|τ1|≤θ), . . . , τn1(|τn |≤θ)

)
, and let Q be any

(N × n) matrix. If θ and (−θ) are continuity points of H , then by Lemma 2.5 of [8]
and assumption (b) of the Theorem 1, as N → ∞ and n

N → c > 0, we have

∥∥∥FQT Qt − FQTθ Qt
∥∥∥ ≤ 1

N
rg (T − Tθ ) = 1

N

n∑

j=1

1(|τ j |>θ) → cH
{
[−θ, θ ]c

}
a.s.

It follows that if θ = θN → ∞, then

∥∥∥FQT Qt − FQTθ Qt
∥∥∥ → 0 a.s. (14)

Choose θ such that

θ4

[
E

2
3 |X11|2 1(|X11|≥ln N ) + 1

N

]
→ 0, (15)

and ∞∑

N=1

θ8

[
1

N 7/6
E1/6 |X11|4 1(ln N≤|X11|<

√
N) + 1

N 2

]
< ∞. (16)

For continue, we need the following result.

Lemma 1 Let the (N × n) matrices X =
(

1√
N
Xi j

)
verifying assumption (a) of

Theorem 1, and X̂ =
(

1√
N
X̂i j

)
where X̂i j = Xi j1(|Xi j |<√

N). For θ ≥ 0 set Tθ =
diag

(
τ11(|τ1|≤θ), . . . , τn1(|τn |≤θ)

)
, τi ∈ R. We have

D
(
FXTθ Xt

, F X̂Tθ X̂ t
)

→ 0 a.s.

Proof From Corollary A.42 of [1], we find

D2
(
FXTθ Xt

, F X̂Tθ X̂ t
)

≤
[
2

N
tr

(
XXt − X̂ X̂ t

)
+ 4

N
tr X̂ X̂ t

] [
θ2

N
tr

(
XXt − X̂ X̂ t

)]
.

In order that this distance tends almost surely to 0, we can show by Borel–Cantelli

lemma that
[

θ2

N tr
(
XXt − X̂ X̂ t

)]
tends to 0 and

[
4
N tr X̂ X̂ t

]
is bounded almost

surely. So the result.
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Proof of the Theorem 1

For (N × n) matrix, X =
(

1√
N
Xi j

)
verifying assumption (a) of Theorem 1. With

help to inequality (12) and the fact that
(
Xi j

)
satisfies the G.S.M. property, we obtain

M1 ≤ E
(
tr

(
XXt

)2) ≤ M2 (17)

where

M1 = K

N
{nE |X11|4 + n (N + n − 2) E2 |X11|2 − E

2
3 |X11|6},

M2 = K

N
{nE |X11|4 + n (N + n − 2) E2 |X11|2 + E

2
3 |X11|6 + (N − 1) E

4
3 |X11|3}.

With the same arguments, we may deduce a bound of the variance

var
(
tr

(
XXt

)2) ≤ K

N 4
{N 4E |X11|4 E2 |X11|2 (18)

+N3[E 4
3 |X11|6 + E

1
2 |X11|4 E

1
3 |X11|6 E

1
3 |X11|12 + E |X11|2 E

2
3 |X11|9]

+N2[E 2
3 |X11|6 E

1
6 |X11|24 + E

1
3 |X11|15 E |X11|3 + E

2
3 |X11|12 + E

5
12 |X11|12 E

1
6 |X11|18]}.

Using (14) and (13), we may write

D
(
FXT Xt

, FXTθ Xt
)

→ 0 and D
(
F X̂Tθ X̂ t

, F X̂T X̂ t
)

→ 0 a.s.

Furthermore, by Lemma 1, we get

D
(
FXT Xt

, F X̂T X̂ t
)

→ 0 a.s. (19)

For B̂N and B̃N defined by relations (3) and (4), we have from Lemma 2.5 of [8],

∥
∥∥F B̂N − F B̃N

∥
∥∥ → 0. (20)

Let ¯̄Xi j = X̃i j − X̄i j . Hence,

¯̄Xi j = X̃i j1(|Xi j |≥ln N) + E X̃i j1(|Xi j |<ln N),
¯̄X =

(
1√
N

¯̄Xi j

)
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where X̃i j and X̄i j are defined by the relations (4), (5), respectively.
Then, from Cauchy–Schwartz inequality, we can show that the squared distance

D2
(
F X̃Tθ X̃ t

, F X̄Tθ X̄ t
)

is bounded by

1

N

{
θ2tr

( ¯̄X ¯̄Xt)2
+ 4

[
θ4tr

( ¯̄X ¯̄Xt)2
tr

(
X̄ X̄ t

)2
] 1

2

+4

[[
θ4tr

( ¯̄X ¯̄Xt)2
tr

(
X̄ X̄ t

)2
] 1

2

θ2tr
( ¯̄X ¯̄Xt)2

] 1
2

⎫
⎬

⎭
.

Therefore, in order to show that almost surely

D
(
F X̃Tθ X̃ t

, F X̄Tθ X̄ t
)

→ 0, (21)

it suffices to verify that

θ4 1

N
tr

( ¯̄X ¯̄Xt)2
→ 0,

1

N
tr

(
X̄ X̄ t

)2 = O (1) a.s. (22)

Since E
( ¯̄X11

)
= 0 and ¯̄Xi j = X̃i j1(|Xi j |≥ln N) + E X̃i j1(|Xi j |<ln N), we have

E
∣∣
∣ ¯̄X11

∣∣
∣
2 ≤ K E |X11|2 1(|X11|≥ln N ) → 0. (23)

For p ≥ 4,

E
∣∣
∣ ¯̄X11

∣∣
∣
p ≤ K

(
N

p−4
2 E |X11|4 1(ln N≤|X11|<

√
N) + 1

)
. (24)

By dominated convergence theorem, we get

E
∣∣X̄11

∣∣2 → E |X11|2 = γ. (25)

For p ≥ 4 and definition of rv’s X̄11, we have

E
∣∣X̄11

∣∣p ≤ K (ln N )p−2 . (26)

From (15), (23), (24), E(|X11|4 1(ln N≤|X11|<
√
N)) ≤ NE |X11|2 and relation (17), we

may write
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E

[
1

N
θ4tr

( ¯̄X ¯̄Xt)2
]

≤ K θ4

[
E

2
3 |X11|2 1(|X11|≥ln N ) + 1

N

]
→ 0.

Also (18) gives

var

(
1

N
θ4tr

( ¯̄X ¯̄Xt)2
)

≤ K θ8

[
1

N 7/6
E1/6 |X11|4 1(ln N≤|X11|<

√
N) + 1

N 2

]
,

where the latter bound is summable by (16).

Hence, we obtain 1
N θ4tr

( ¯̄X ¯̄Xt)2
→ 0 a.s.

Now it remains to show that 1
N tr

(
X̄ X̄ t

)2 = O (1) a.s. Using (17), (25) and (26),
we find

K {− (ln N )
8
3

N 2
} ≤ E

[
1

N
tr

(
X̄ X̄ t

)2
]

− n

N

(
n

N
+ 1 − 2

N

)
E2

∣∣X̄11

∣∣2

≤ K { n
N

(ln N )2

N
+ (ln N )

8
3

N 2
+ (ln N )

4
3

N
}.

Consequently, E
[

1
N tr

(
X̄ X̄ t

)2] − n
N

(
n
N + 1 − 2

N

)
E2

∣∣X̄11

∣∣2 → 0, and,

E
[

1
N tr

(
X̄ X̄ t

)2] → γ 2 [c (c + 1)] .

Concerning the variance, by (18), (25) and (26), we may obtain

var

(
1

N
tr

(
X̄ X̄ t

)2
)

≤ K
(ln N )

17/3

N 3
,

which is summable. Then, (22) is verified from which (21) follows. This result with

(14) allow us to write, D
(
F X̃T X̃ t

, F X̄T X̄ t
)

→ 0 a.s.

From (19) and (20), in order to prove D
(
FXT Xt

, F
) → 0 a.s, it suffices to verify

that, D
(
F X̄T X̄ t

, F
)

→ 0 a.s. For this aim, we shall show that for any z ∈ C
+,

mFX̄T X̄t (z) → mF (z) a.s.
Let z ∈ C

+ and B̄N = X̄T X̄ t , the sequence {F B̄N } satisfies the assumptions of
Lemma 2.8 of [8]. So ∃m > 0 such that

inf
N

F B̄N [−m,m] > 0, δ = inf
N

	m (
mFB̄N (z)

)
> 0 a.s.

Write B̄N − z I = (x − z) I + X̄T X̄ t − x I, and then

(x − z)−1 − mB̄N
(z) = 1

N

n∑

j=1

τ j

1 + τ jmF B̄N (z)
d j , (27)
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where

d j = dN
j = 1 + τ jmF B̄N (z)

1 + τ j q̄ t
j

(
B̄( j) − z I

)−1
q̄ j

q̄ t
j

(
B̄( j) − z I

)−1 (
(x − z)−1 I

)
q̄ j

− 1

N
tr

(
B̄N − z I

)−1 (
(x − z)−1 I

)
,

with q̄ j denote the j th column of X̄ , and B̄( j), x , x( j) are defined by relations (8) and
(9).

Lemma 3.1 of [8] and assumption (d) of the Theorem 1 permit us to obtain

max
j≤n

max [β1, β2, β3] → 0 a.s (28)

where

β1 =
∣∣∣
∥∥q̄ j

∥∥2 − 1
∣∣∣ ,

β2 =
∣∣∣∣q̄

t
j

(
B̄( j) − z I

)−1
q̄ j − 1

N
tr

(
B̄( j) − z I

)−1
∣∣∣∣ ,

β3 =
∣
∣∣q̄ t

j

(
B̄( j) − z I

)−1 ((
x( j) − z

)
I
)−1

q̄ j

− 1

N
tr

(
B̄( j) − z I

)−1 ((
x( j) − z

)
I
)−1

∣∣∣∣ .

Lemma 2.6 of [8] gives us, max j≤n max[| γ1 |, | γ2 |] → 0, where γ1 = m
FB̄( j)

(z) − mFB̄N (z) , γ2 = mFB̄N (z) − q̄ t
j

(
B̄( j) − z I

)−1
q̄ j .

So that for N large enough, we have, max j≤n max[|	mγ1| , |	mγ2|] < δ
2 .

Then, for j, l ≤ n,

∣
∣∣∣∣

1 + τ jmF B̄N (z)

1 + τ t
j q̄ j

(
B̄( j) − z I

)−1
q̄ j

− 1

∣
∣∣∣∣
<

2

δ
| γ2 |,

and ∣∣
∣∣∣

τl

1 + τlmF B̄N (z)
− τl

1 + τlmF B̄( j) (z)

∣∣
∣∣∣
≤ 2

δ2
| γ1 | .

Therefore,

max
j≤n

max[
∣∣
∣∣∣

1 + τ jmF B̄N (z)

1 + τ t
j q̄ j

(
B̄( j) − z I

)−1
q̄ j

− 1

∣∣
∣∣∣
,
∣
∣x − x( j)

∣
∣] → 0. (29)

Using Lemmas 2.6, 2.7 of [8] and (28), (29), we may have
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max
j≤n

d j → 0.

Since ∣∣
∣∣

τ j

1 + τ jmF B̄N (z)

∣∣
∣∣ ≤ 1

δ
,

we may conclude from (27) that

(x − z)−1 − mB̄N
(z) → 0.

Hence, the relation (11) is satisfied.
Finally, using (6), the proof of Theorem 1 is now complete.

Acknowledgements Theauthorswould like to thank theEditor and anonymous referees for insight-
ful comments improving the presentation of this paper.

References

1. Bai, Z.D., Silverstein, J.W.: Spectral Analysis of Large Dimensional Random Matrices, 2nd
edn. Springer (2010)

2. Bosq, D.: Linear processes in function spaces. Theory and Applications. Lecture Notes in
Statistics, vol. 149. Springer (2000)

3. Boutet de Monvel, A., Khorunzhy, A.: Limit theorems for random matrices with correlated
entries. Markov Process. Relat. Fields 4(2), 175–197 (1998)

4. Grenander, U., Silverstein, J.W.: Spectral analysis of networks with random topologies. SIAM
J. Appl. Math. 32(2), 499–519 (1977)

5. Jonsson,D.: Some limit theorems for the eigenvalues of a sample covariancematrix. J.Multivar.
Anal. 12, 1–38 (1982)

6. Khettab, Z., Mourid, T.: Eigenvalues empirical distribution of covariance matrices of AR pro-
cesses. A simulation study. Annales de l’ISUP, 60, fasc 1–2, 3–22 (2016)

7. Marcenko, V.A., Pastur, L.A.: Distribution of eigenvalues in certain sets of random matrices.
Mat. SB (N. S.). 72(114), 507–536 (1967)

8. Silverstein, J.W., Bai, Z.D.: On the empirical distribution of eigenvalues of a class of large
dimensional random matrices. J. Multivar. Anal. 54(2), 175–192 (1995)

9. Silverstein, J.W., Bai, Z.D., Couillet, R., Debbah, M.: Eigen-inference for energy estimation
of multiple sources. IEEE Trans. Inf. Theor. 57(4), 2420–2439 (2011)

10. Silverstein, J.W., Choi, S.I.: Analysis of the limiting spectral distribution of large dimensional
random matrices. J. Multivar. Anal. 54(2), 295–309 (1995)

11. Wachter, K.W.: The limiting empirical measure of multiple discriminant ratios. Ann. Stat. 8,
937–957 (1980)

12. Yin, Y.Q.: Limiting spectral distribution for a class of random matrices. J. Multivar. Anal. 20,
50–68 (1986)


	Eigenvalues Distribution Limit  of Covariance Matrices with AR  Processes Entries
	1 Introduction
	2 Main Result
	3 Numerical Simulations
	4 Proof of the Main Result
	Proof of the Theorem 1

	References




