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Abstract In this contribution we consider the problem of active learning in
the regression setting. That is, choosing an optimal sampling scheme for the
regression problem simultaneously with that of model selection. We consider a
batch type approach and an on-line approach adapting algorithms developed for
the classification problem. Our main tools are concentration-type inequalities which
allow us to bound the supreme of the deviations of the sampling scheme corrected
by an appropriate weight function.

1 Introduction

Consider the following regression model

yi = x0(ti) + εi, i = 1, . . . , n (1)

where the observation noise εi are i.i.d. realizations of a random variable ε.
The problem we consider in this chapter is that of estimating the real-valued

function x0 based on t1, . . . , tn and a subsample of size N < n of the observations
y1, . . . , yn measured at a well-chosen subsample of t1, . . . , tn. This is relevant when,
for example, obtaining the values of yi for each sample point ti is expensive or time
consuming.
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In this work we propose a statistical regularization approach for selecting a
good subsample of the data in this regression setting by introducing a weighted
sampling scheme (importance weighting) and an appropriate penalty function over
the sampling choices.

We begin by establishing basic results for a fixed model, and then the problem
of model selection and choosing a good sampling set simultaneously. This is what
is known as active learning. We will develop two approaches. The first, a batch
approach (see, for example, [7]), assumes the sampling set is chosen all at once,
based on the minimization of a certain penalized loss function for the weighted
sampling scheme. The second, an iterative approach [1], considers a two-step
iterative method choosing alternatively the best new point to be sampled and the
best model given the set of points.

The weighted sampling scheme requires each data point ti to be sampled
with a certain probability p(ti ) which is assumed to be inferiorly bounded by a
certain constant pmin. This constant plays an important role because it controls the
expected sample size E (N) = ∑n

i=1 p(ti ) > npmin. However, it also is inversely
proportional to the obtained error terms in the batch procedure (see Theorems 2.1
and 2.2), so choosing pmin too small will lead to poor bounds. Thus essentially, the
batch procedure aims at selecting the best subset of data points (points with high
probability) for the user chosen error bound. In the iterative procedure this problem
is addressed by considering a sequence of sampling probabilities {pj } where at each
step j pj (ti) is chosen to be as big as the greatest fluctuation for this data point over
the hypothesis model for this step.

Following the active learning literature for the regression problem based on
ordinary least squares (OLS) and weighted least squares learning (WLS) (see, for
example [5–7] and the references therein) in this chapter we deal mainly with a
linear regression setting and a quadratic loss function. This will be done by fixing
a spanning family {φj }mj=1 and considering the best L2 approximation xm of x0
over this family. However, our approach is based on empirical error minimization
techniques and can be readily extended to consider other models whenever bounds
in probability are available for the error term.

Our results are based on concentration-type inequalities. Although variance
minimization techniques for choosing appropriate subsamples are a well-known
tool, giving adequate bounds in probability allowing for optimal non-asymptotic
rates has been much less studied in the regression setting.

This is also true for the iterative procedure, where our results generalize previous
ones obtained only in the classification setting for finite model spaces.

This chapter is organized as follows. In Sect. 2 we formulate the basic problem
and study the batch approach for simultaneous sample and model selection. In
Sect. 3 we study the iterative approach to sample selection and we discuss effective
sample size reduction. All the proofs are available in the extended arXiv version [3].
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2 Preliminaries

2.1 Basic Assumptions

We assume that the observations noise εi in (1) are i.i.d. realizations of a random
variable ε satisfying the moment condition

MC Assume the r.v. ε satisfies Eε = 0, E(|ε|r/σ r ) ≤ r!/2 for all r > 2 and
E(ε2) = σ 2.

It is important to stress that the observations depend on a fixed design t1, . . . , tn.
For this, we need some notation concerning this design. For any vectors u, v r , we
define the normalized norm and the normalized scalar product by

‖u‖2n,r = 1

n

n∑

i=1

ri (ui)
2, and < u, v >n,r= 1

n

n∑

i=1

riuivi .

We drop the letter r from the notation when r = 1. With a slight abuse of notation,
we will use the same notation when u, v, or r are functions by identifying each
function (e.g. u) with the vector of values evaluates as ti (e.g. (u(t1), . . . , u(tn)). We
also require the empirical max-norm ‖u‖∞ = maxi |ui |.

2.2 Discretization Scheme

To start with we will consider the approximation of function x0 over a finite-
dimensional subspace Sm. This subspace will be assumed to be linearly spanned
by the set {φj }j∈Im

⊂ {φj }j≥1, with Im a certain index set. Moreover, we shall, in
general, be interested only in the vector (x0(ti))

n
i=1 which we shall typically denote

just by x0 stretching notation slightly.
We will assume the following properties hold:

AB There exists an increasing sequence cm such that ‖φj‖∞ ≤ cm for j ≤ m.
AQ There exist a certain density q and a positive constant Q such that q(ti) ≤

Q, i = 1, . . . , n and

∫

φl(t)φk(t)q(t) dt = δk,l,

where δ is the Kronecker delta.
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We will also require the following discrete approximation assumption. Let
Gm = [φj (ti)]i,j be the associated empirical n × m Gram matrix. We assume that
Gt

mDqGm is invertible and moreover that 1
n
Gt

mDqGm → Im, where Dq is the
diagonal matrix with entries q(ti), for i = 1, . . . , n and Im the identity matrix of
size m. More precisely, we will assume

AS There exist positive constants α and c, such that

‖Im − 1

n
Gt

mDqGm‖ ≤ cn−1−α.

Given [AQ], assumption [AS] is a numerical approximation condition which is
satisfied under certain regularity assumptions over q and {φj }. To illustrate this
condition we include the following example.

Example 2.1 Haar Wavelets: let φ(t) = 1[0,1](t), ψ(t) = φ(2t) − φ(2t − 1) (see,
for example, [4]), with q(t) = 1[0,1](t). Define

φj,k(t) = 2j/2φ(2j t − k) , t ∈ [0, 1] , j ≥ 0 and k ∈ Z ;
ψj,k(t) = 2j/2ψ(2j t − k) , t ∈ [0, 1] , j ≥ 0 and k ∈ Z .

For all m ≥ 0, Sm denotes the linear space spanned by the functions (φm,k, k ∈ Z).
In this case cm ≤ 2m/2 and condition [AS] is satisfied for the discrete sample ti =
i/2m, i = 0, · · · , 2m−1.

We will denote by x̂m ∈ Sm the function that minimizes the weighted norm
‖x − y‖2n,q over Sm evaluated at points t1, . . . , tn. This is,

x̂m = arg min
x∈Sm

1

n

n∑

i=1

q(ti)(yi − x(ti))
2 = Rmy,

with Rm = Gm(Gt
mDqGm)−1Gt

mDq the orthogonal projector over Sm in the q-
empirical norm ‖ · ‖n,q .

Let xm := Rmx0 be the projection of x0 over Sm in the q-empirical norm
‖ · ‖n,q , evaluated at points t1, . . . , tn. Our goal is to choose a good subsample
of the data collection such that the estimator of the unobservable vector x0 in
the finite-dimensional subspace Sm, based on this subsample, attains near optimal
error bounds. For this we must introduce the notion of subsampling scheme and
importance weighted approaches (see [1, 7]), which we discuss below.

2.3 Sampling Scheme and Importance Weighting

In order to sample the data set we will introduce a sampling probability p(t) and a
sequence of Bernoulli(p(ti)) random variables wi, i = 1, . . . , n independent of εi
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with p(ti ) > pmin. Let Dw,q,p be the diagonal matrix with entries q(ti)wi/p(ti ).
So that E

(
Dw,q,p

) = Dq . Sometimes it will be more convenient to rewrite wi =
1ui<p(ti) for {ui}i an i.i.d. sample of uniform random variables, independent of {εi}i
in order to stress the dependence on p of the random variables wi .

The next step is to construct an estimator for xm = Rmx0, based on the
observation vector y and the sampling scheme p. For this, we consider a modified
version of the estimator x̂m.

Consider a uniform random sample u1, . . . , un and let wi = wi(p) = 1ui<p(ti )

for a given p. For the given realization of u1, . . . , un,Dw,q,p will be strictly positive
for those wi = 1. Moreover, as follows from the singular value decomposition, the
matrix (Gt

mDw,q,pGm) is invertible as long as at least one wi 	= 0. Set Rm,p =
Gm(Gt

mDw,q,pGm)−1Gt
mDw,q,p . Then Rm,p is the orthogonal projector over Sm in

the wq/p-empirical norm ‖ · ‖n,wq/p and it is well defined if at least one wi 	= 0. If
all wi = 0, the projection is defined to be 0.

As the approximation of xm, we then consider (for a fixedm, p and (u1, . . . , un))
the random quantity

x̂m,p = arg min
x∈Sm

‖x − y‖2
n,

qw
p

= arg min
x∈Sm

1

n

n∑

i=1

wi

p(ti )
q(ti)(yi − x(ti))

2.

Note that

x̂m,p = Rm,py, (2)

This estimator depends on yi only if wi = 1. However, as stated above, this depends
on p(ti ) for the given probability p.

2.4 Choosing a Good Sampling Scheme

To begin with, given n, we will assume that Sm is fixed with dimension |Im| = dm

and dm = o(n). Remark that the bias ‖x0 − xm‖2n,q is independent of p so for our

purposes it is only necessary to study the approximation error ‖xm− x̂m,p‖2n,q which
does depend on how p is chosen.

Let P := {pk, k ≥ 1} be a numerable collection of [0, 1] valued functions over
{t1, . . . , tn}. Set pk,min = mini pk(ti ). We will assume that mink pk,min > pmin. The
way the candidate probabilities are ordered is not a major issue, although in practice
it is sometimes convenient to incorporate prior knowledge (certain sample points are
known to be needed in the sample, for example) letting favourite candidates appear
first in the order. To get the idea of what a sampling scheme may be, consider the
following toy example:
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Example 2.2 Let Π = {0.1, 0.4, 0.6, 0.9} and set P = {p,p(ti ) = πj ∈ Π, i =
1, . . . , n} which is a set of |Π |n functions. In this example, any given p will tend to
favour the appearance of points ti with p(ti ) = 0.9 and disfavour the appearance of
those ti with p(ti ) = 0.1.

A good sampling scheme p, based on the data, should be the minimizer overP of
the non-observable quantity ‖xm−x̂m,p‖2n,q . In order to find a reasonable observable
equivalent we start by writing,

[x̂m,p − xm] = Rm,p[x0 − xm] + Rm,pε

= E
(
Rm,p

) [x0 − xm] + (Rm,p − E
(
Rm,p

)
)[x0 − xm] + Rm,pε. (3)

Consider first the deterministic term E
(
Rm,p

) [x0 −xm] in (3). We have the next
lemma which is proved in the extended arXiv version.

Lemma 2.1 Under condition [AS] if m = o(n), then

‖E (
Rm,p

) [x0 − xm]‖n,q = O(
n−1−α‖x0 − xm‖n,q

pmin

).

From Lemma 2.1, we can derive that the deterministic term is small with respect
to the other terms. Thus, it is sufficient for a good sampling scheme to take into
account the second and third terms in (3). We propose to use an upper bound with
high probability of those two last terms as in a penalized estimation scheme and to
base our choice on this bound.

Define

B̃1(m, pk, δ) = ‖x0 − xm‖2n,q (β̃m,k(1 + β̃
1/2
m,k))

2 (4)

with

β̃m,k = cm(
√
17 + 1)

2

√
dmQ

npk,min

√

2 log(27/4dmk(k + 1)/δ). (5)

The second square root appearing in the definition of β̃m,k is included in order to
give uniform bounds over the numerable collectionP .

In the following, the expression tr(A) stands for the trace of the matrix A. Set
Tm,pk = tr((Rm,pkD

1/2
q )tRm,pkD

1/2
q ) and define

B̃2(m, pk, δ) = σ 2r(1 + θk)
Tm,pk + Q

n
+ σ 2Q

log2(2/δ)

dn
, (6)

with r > 1 and d = d(r) < 1 a positive constant that depends on r . The sequence
θk ≥ 0 is such that

∑
k e−√

drθk(dm+1) < 1 holds.
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It is thus reasonable to consider the best p as the minimizer

p̂ = argmin
pk∈P

B̃(m, pk, δ, γ, n), (7)

where, for a given 0 < γ < 1,

B̃(m, pk, δ, γ, n) = {(1 + γ )B̃1(m, pk, δ) + (1 + 1/γ )B̃2(m, pk, δ)}.

The different roles of B̃1 and B̃2 appear in the following lemmas:

Lemma 2.2 Assume that the conditions [AB], [AS], and [AQ] are satisfied and that
there is a constant pmin > 0 such that for all i = 1, . . . , n, p(ti ) > pk,min > pmin.
Assume B̃1 to be selected according to (4). Then for all δ > 0 we have

P

[

sup
P

{‖(Rm,p − E
(
Rm,p

)
)[x0 − xm]‖2n,q − B̃1(m, p, δ)} > 0

]

≤ δ/2

Lemma 2.3 Assume the observation noise in Eq. (1) is an i.i.d. collection of
random variables satisfying the moment condition [MC]. Assume that the condition
[AQ] is satisfied and assume that there is a constant pmin > 0 such that p(ti ) >

pmin for all i = 1, . . . , n. Assume B̃2 to be selected according to (6) with r > 1,
d = d(r) and θk ≥ 0, such that the following Kraft inequality

∑
k e−√

drθk(m+1) < 1
holds. Then,

P(sup
P

{‖Rm,pε‖2n,q − B̃2(m, p, δ)} > 0) < δ/2.

Those two lemmas together with Lemma 2.1 assure that the proposed esti-
mation procedure, based on the minimization of B̃, is consistent establishing
non-asymptotic rates in probability.

We may now state the main result of this section, namely, non-asymptotic
consistency rates in probability of the proposed estimation procedure. The proof
follows from Lemmas 2.2 and 2.3 and is given in the extended arXiv version along
with the proof of the lemmas.

Theorem 2.1 Assume that the conditions [AB], [AS], and [AQ] are satisfied.
Assume p̂ to be selected according to (7). Then the following inequality holds with
probability greater than 1 − δ

‖xm − x̂m,p̂‖2n,q ≤ inf
p∈P

6

(

‖E (
Rm,p

)
(xm − x0)‖2n,q + B̃(m, p, δ, γ, n)

)

.

Remark 2.1 In the minimization scheme given above it is not necessary to know the
term ‖x0 −xm‖2n,q in B̃1 as this term is constant with regard to the sampling scheme

p. Including this term in the definition of B̃1, however, is important because it leads
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to optimal bounds in the sense that it balances pmin with the mean variation, over
the sample points, of the best possible solution xm over the hypothesis model set
Sm. This idea shall be pursued in depth in Sect. 3.

Moreover, minimizing B̃1 essentially just requires selecting k such that pk,min is
largest and doesn’t intervene at all if pk,min = pmin for all k. Minimization based on
pk(ti) for all sample points is given by the trace Tm,pk which depends on the initial
random sample u independent of {(ti, yi), i = 1, . . . , n}. A reasonable strategy in
practice, although we do not have theoretical results for it, is to consider several
realizations of u and select sample points which appear more often in the selected
sampling scheme p̂.

Remark 2.2 Albeit the appearance of weight terms which depend on k both in the
definition of B̃1 and B̃2, actually the ordering ofP does not play a major role. The
weights are given in order to assure convergence over the numerable collectionP .
Thus in the definition of β̃m,k any sequence of weights θ ′

k (instead of [k(k + 1)]−1)
assuring that the series

∑
k θ ′

k < ∞ is valid. Of course, in practice P is finite.
Hence for M = |P| a more reasonable bound is just to consider uniform weights
θ ′
k = 1/M instead.

Remark 2.3 Setting Hm,pk := (Gt
mDw,q,pkGm)−1Gt

mDw,q,pk we may write
Tm,pk = tr(Gt

mDqGmHm,pkH
t
m,pk

) in the definition of B̃2. Thus our convergence
rates are as in Lemma 1, [5]. Our approach, however, provides non-asymptotic
bounds in probability as opposed to asymptotic bounds for the quadratic estimation
error.

Remark 2.4 As mentioned at the beginning of this section, the expected “best”
sample size given u is N̂ = ∑

i p̂(ti), where u is the initial random sample
independent of {(ti, yi), i = 1, . . . , n}. Of course, a uniform inferior bound for

this expected sample size is E
(
N̂

)
> npmin, so that the expected size is inversely

proportional to the user chosen estimation error. In practice, considering several
realizations of the initial random sample provides an empirical estimator of the non-
conditional “best” expected sample size.

2.5 Model Selection and Active Learning

Given a model and n observations (t1, y1), . . . , (tn, yn) we know how to estimate
the best sampling scheme p̂ and to obtain the estimator x̂m,p̂. The problem is that
the model m might not be a good one. Instead of just looking at fixed m we would
like to consider simultaneous model selection as in [7]. For this we shall pursue a
more global approach based on loss functions.

We start by introducing some notation. Set l(u, v) = (u − v)2 the squared loss
and let Ln(x, y, p) = 1

n

∑n
i=1 q(ti)

wi

p(ti)
l(x(ti), yi) be the empirical loss function

for the quadratic difference with the given sampling distribution. Set L(x) :=
E (Ln(x, y, p)) with the expectation taken over all the random variables involved.
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LetLn(x, p) := Eε (Ln(x, y, p))whereEε () stands for the conditional expectation
given the initial random sample u, that is the expectation with respect to the random
noise ε. It is not hard to see that

L(x) = 1

n

n∑

i=1

q(ti)E (l(x(ti), yi)) ,

and

Ln(x, p) = 1

n

n∑

i=1

q(ti)
wi

p(ti )
E (l(x(ti), yi)) .

Recall that x̂m,p = Rm,py is the minimizer of Ln(x, y, p) over each Sm for given p

and that xm = Rmx0 is the minimizer of L(x) over Sm. Our problem is then to find
the best approximation of the target x0 over the function space S0 := ⋃

m∈I Sm. In
the notation of Sect. 2.2 we assume for each m that Sm is a bounded subset of the
linearly spanned space of the collection {φj }j∈Im with |Im| = dm.

Unlike the fixed m setting, model selection requires controlling not only the
variance term ‖xm − x̂m,p‖n,q but also the unobservable bias term ‖x0 − xm‖2n,q

for each possible model Sm. If all samples were available this would be possible just
by looking at Ln(x, y, p) for all Sm and p, but in the active learning setting labels
are expensive.

Set em := ‖x0−xm‖∞. In what followswe will assume that there exists a positive
constant C such that supm em ≤ C. Remark this implies supm ‖x0 − xm‖n,q ≤ QC,
with Q defined in [AQ].

As above pk ∈ P stands for the set of candidate sampling probabilities and
pk,min = mini (pk(ti )).

Define

pen0(m, pk, δ) = QC2

pk,min

√
1

2n
ln(

6dm(dm + 1)

δ
), (8)

pen1(m, pk, δ) = QCβ2
m,k(1 + β

1/2
m,k)

2, (9)

with

βm,k = cm(
√
17 + 1)

2

√
dmQ

npk,min

√

2 log(
3 ∗ 27/4d2

m(dm + 1)k(k + 1)

δ
),

and finally setting Tpk,m = tr((Rm,pkD
1/2
q )tRm,pkD

1/2
q ), define

pen2(m, pk, δ) = σ 2

{

r(1 + θm,k)
Tpk,m + Q

n
+ Q ln2(6/δ)

dn

}

(10)
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where θm,k ≥ 0 is a sequence such that
∑

m,k e−√
drθm,k(dm+1) < 1 holds.

We remark that the change from δ to δ/(dm(dm+1)) in pen0 and pen1 is required
in order to account for the supremum over the collection of possible model spaces
Sm.

Also, we remark that introducing simultaneous model and sample selection
results in the inclusion of term pen0 ∼ C2/pk,min

√
1/n which includes an L∞ type

bound instead of an L2 type norm which may yield non-optimal bounds. Dealing
more efficiently with this term would require knowing the (unobservable) bias term
‖x0−xm‖n,q . A reasonable strategy is selecting pk,min = pk,min(m) ≥ ‖x0−xm‖n,q

whenever this information is available.
In practice, pk,min can be estimated for each model m using a previously

estimated empirical error over a subsample if this is possible. However this yields a
conservative choice of the bound. One way to avoid this inconvenience is to consider
iterative procedures, which update on the unobservable bias term. This course of
action shall be pursued in Sect. 3.

With these definitions, for a given 0 < γ < 1 set

pen(m,p, δ, γ, n) = 2p0(m, p, δ) + (
1

pmin
+ 1

γ
)pen1(m, p, δ)

+(
1

p2
min

(
2

γ
+ 1) + 1

γ
)pen2(m, p, δ) + 2((c + 1)

n−(1+α)QC

pmin

)2.

and define

Ln,1(x, y, p) = Ln(x, y, p) + pen(m,p, δ, γ, n).

The appropriate choice of an optimal sampling scheme simultaneously with that
of model selection is a difficult problem. We would like to choose simultaneously
m and p, based on the data in such a way that optimal rates are maintained. We
propose for this a penalized version of x̂m,p̂, defined as follows.

We start by choosing, for each m, the best sampling scheme

p̂(m) = argmin
p

pen(m,p, δ, γ, n), (11)

computable before observing the output values {yi}ni=1, and then calculate the
estimator x̂m,p̂(m) = Rm,p̂(m)y which was defined in (2).

Finally, choose the best model as

m̂ = argmin
m

Ln,1(y, x̂m,p̂(m), p̂(m)). (12)

The penalized estimator is then x̂m̂ := x̂m̂,p̂(m̂). It is important to remark that for
each model m, p̂(m) is independent of y and hence of the random observation error
structure. The following result assures the consistency of the proposed estimation
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procedure, although the obtained rates are not optimal as observed at the beginning
of this section.

Theorem 2.2 With probability greater than 1 − δ, we have

L(x̂m̂) ≤ 1 + γ

1 − 4γ
[L(xm) + min

m,k
(2p0(m, pk, δ) + 1

pmin
pen1(m, pk, δ)

+ 1

p2
min

(1 + 2/γ )pen2(m, pk, δ))]

≤ 1 + γ

1 − 4γ
min
m

[L(xm) + min
k

pen(m,pk, δ, γ, n)]

Remark 2.5 In practice, a reasonable alternative to the proposed minimization pro-
cedure is estimating the overall error by cross-validation or leave one out techniques
and then choose m minimizing the error for successive essays of probability p̂.
Recall that in the original procedure of Sect. 2.5, labels are not required to obtain
p̂ for a fixed model. Cross-validation or empirical error minimization techniques
do, however, require a stock of “extra” labels, which might not be affordable in
the active learning setting. Empirical error minimization is specially useful for
applications where what is required is a subset of very informative sample points,
as for example when deciding what points get extra labels (new laboratory runs, for
example) given a first set of complete labels is available. Applications suggest that p̂
obtained with this methodology (or a threshold version of p̂ which eliminates points
with sampling probability p̂i ≤ η a certain small constant) is very accurate in finding
“good” or informative subsets, over which model selection may be performed.

3 Iterative Procedure: Updating the Sampling Probabilities

A major drawback of the batch procedure is the appearance of pmin in the
denominator of error bounds, since typically pmin must be small in order for the
estimation procedure to be effective. Indeed, since the expected number of effective
samples is given by E (N) := E

(∑
i p(ti )

)
, small values of p(ti ) are required in

order to gain in sample efficiency.
Proofs in Sect. 2.5 depend heavily on bounding expressions such as

1

n

n∑

i=1

q(ti)
wi

p(ti )
εi(x − x ′)(ti)

or

1

n

n∑

i=1

q(ti)(
wi

p(ti )
− 1)(x − x ′)2(ti)
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where x and x ′ belong to a given model family Sm. Thus, it seems like a
reasonable alternative to consider iterative procedures for which at time j , pj (ti ) ∼
maxx,x ′∈Sj

|x(ti) − x ′(ti)| with Sj the current hypothesis space. In what follows
we develop this strategy, adapting the results of [1] from the classification to the
regression problem. Although we continue to work in the setting of model selection
over bounded subsets of linearly spanned spaces, results can be readily extended to
other frameworks such as additive models or kernel models. Once again, we will
require certain additional restrictions associated to the uniform approximation of x0
over the target model space.

More precisely, we start with an initial model set S(= Sm0) and set x∗ to be the
overall minimizer of the loss function L(x) over S. Assume additionally

AU supx∈S maxt∈{t1,...,tn} |x0(t) − x(t)| ≤ B

Let Ln(x) = Ln(x, y, p) and L(x) be as in Sect. 2.5. For the iterative procedure
introduce the notation

Lj(x) := 1

nj

nj∑

i=1

q(tji )
wi

p(tji )
(x(tji ) − yji )

2, j = 0, . . . , n

with nj = n0 + j for j = 0, . . . , n − n0.
In the setting of Sect. 2 for each 0 ≤ j ≤ n, Sj will be the linear space spanned

by the collection {φ�}�∈Ij
with |Ij | = dj , dj = o(n).

In order to bound the fluctuations of the initial step in the iterative procedure we
consider the quantities defined in Eqs. (4) and (6) for r = γ = 2. That is,

Δ0 = 2σ 2Q

{
2(d0 + 1)

n0
+ log2(2/δ)

n0

}

+2(β̃m0(1 + β̃m0))
2B2.

with

β̃m0 = cm0(
√
17 + 1)

2

√
d0Q

n0pmin

√

2 log(27/4m0/δ).

As discussed in Sect. 2.4, Δ0 requires some initial guess of ‖x0 − xm0‖2n,q . Since

this is not available, we consider the upper bound B2. Of course this will possibly
slow down the initial convergence as Δ0 might be too big, but will not affect the
overall algorithm. Also remark we do not consider the weighting sequence θk of
Eq. (6) because the sampling probability is assumed fixed.
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Next set Bj = supx,x ′∈Sj−1
maxt∈{t1,...,tn} |x(t) − x ′(t)| and define

Δj =
√

σ 2Q[(2(dj + 1)

nj

) + log2(4nj (nj + 1)/δ)

nj

]

+
√

log(4nj (nj + 1)/δ)
16B2

j (2Bj ∧ 1)2Q2

nj

+ 4

√

4
(dj + 1) logn

nj

.

The iterative procedure is stated as follows:

1. For j = 0:

• Choose (randomly) an initial sample of size n0, M0 = {tk1, . . . , tkn0
}.

• Let x̂0 be the chosen solution by minimization of L0(x) (or possibly a
weighted version of this loss function).

• Set S0 ⊂ {x ∈ S : L0(x) < L0(x̂0) + Δ0}
2. At step j :

• Select (randomly) a sample candidate point tj , tj 	∈ Mj−1.
Set Mj = Mj−1 ∪ {tj }

• Set p(tj ) = (maxx,x ′∈Sj−1 |x(tj )−x ′(tj )|∧1) and generatewj ∼ Ber(p(tj )).
If wj = 0, set j = j + 1 and go to (2) to choose a new sample candidate.
If wj = 1 sample yj and continue.

• Let x̂j = argminx∈Sj−1 Lj (x) + Δj−1(x)

• Set Sj ⊂ {x ∈ Sj−1 : Lj (x) < Lj (x̂j ) + Δj }
• Set j = j + 1 and go to (2) to choose a new sample candidate.

Remark that, such as it is stated, the procedure can continue only up until time n

(when there are no more points to sample). If the process is stopped at time T < n,
the term log(n(n + 1)) can be replaced by log(T (T + 1)). We have the following
result, which generalizes Theorem 2 in [1] to the regression case.

Theorem 3.1 Let x∗ = argminx∈S L(x). Set δ > 0. Then, with probability at least
1 − δ for any j ≤ n

• |L(x) − L(x ′)| ≤ 2Δj−1, for all x, x ′ ∈ Sj

• L(x̂j ) ≤ [L(x∗) + 2Δj−1]
Remark 3.1 An important issue is related to the initial choice of m0 and n0. As the
overall precision of the algorithm is determined by L(x∗), it is important to select a
sufficiently complex initial model collection. However, if dm0 >> n0, then Δ0 can
be big and pj ∼ 1 for the first samples, which leads to a more inefficient sampling
scheme.



218 A.-K. Fermin and C. Ludeña

3.1 Effective Sample Size

For any sampling scheme the expected number of effective samples is, as already
mentioned, E

(∑
i p(ti )

)
. Whenever the sampling policy is fixed, this sum is not

random and effective reduction of the sample size will depend on how small
sampling probabilities are. However, this will increase the error bounds as a conse-
quence of the factor 1/pmin. The iterative procedure allows a closer control of both
aspects and under suitable conditions will be of order

∑
j

√
L(x∗) + Δj . Recall

from the definition of the iterative procedure we have pj (ti) ∼ maxx,x ′∈Sj
|x(ti) −

x ′(ti )|, whence the expected number of effective samples is of the order of∑
j maxx,x ′∈Sj

|x(ti) − x ′(ti)|. It is then necessary to control supx,x ′∈Sj−1
|x(ti) −

x ′(ti )| in terms of the (quadratic) empirical loss function Lj . For this we must
introduce some notation and results relating the supremum and L2 norms [2].

Let S ⊂ L2 ∩L∞ be a linear subspace of dimension d , with basis Φ := {φj , j ∈
mS}, |mS | = d . Set r := infΛ rΛ, where Λ stands for any orthonormal basis of S.

We have the following result

Lemma 3.1 Let x̂j be the sequence of iterative approximations to x∗ and pj (t)

be the sampling probabilities in each step of the iteration, j = 1, . . . , T . Then,
the effective number of samples, that is, the expectation of the required samples

Ne = E
(∑T

j=1 pj (tj )
)
is bounded by

Ne ≤ 2
√
2r(

√
L(x∗)

T∑

j=1

√
dj +

T∑

j=1

√
djΔj ).
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