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Abstract In light of Cohen (Ann Math Stat 37:458-463, 1966) and Rao (Ann
Stat 4:1023-1037, 1976), who provide necessary and sufficient conditions for
admissibility of linear smoothers, one realizes that many of the well-known
linear nonparametric regression smoothers are inadmissible because either the
smoothing matrix is asymmetric or the spectrum of the smoothing matrix lies
outside the unit interval [0, 1]. The question answered in this chapter is how can
an inadmissible smoother transformed into an admissible one? Specifically, this
contribution investigates the spectrum of various matrix symmetrization schemes for
k-nearest neighbor-type smoothers. This is not an easy task, as the spectrum of many
traditional symmetrization schemes fails to lie in the unit interval. The contribution
of this study is to present a symmetrization scheme for smoothing matrices that
make the associated estimator admissible. For k-nearest neighbor smoothers, the
result of the transformation has a natural interpretation in terms of graph theory.
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1 Introduction

1.1 The Statistical Background

Consider the nonparametric regression model

Yi =m(X;) +¢ (D
that relates the response ¥; € R to predictors X; € R? through the regression
function m(x) = E(Y|X = x). The disturbances &; are mean zero and con-
stant finite variance o> random variables that are independent of the explanatory
variables X1, ..., X,,. The vector of predicted values Y = (?1, R ?,,)T for
m = (m(Xy),...,m(X,))T is called a regression smoother, or simply a smoother

as these are less variable than the original observations. Linear smoothers, which are
linear in the response variable, have been extensively studied in the literature. See
[9, 10] for recent expositions on common linear smoothers. These smoothers can be
written as:

m=S5,Y, @

where S, is the n x n smoothing matrix. That matrix depends on the observed
response variables, and typically on a tuning parameter, which we will denote by
A, that governs the trade-off between the variance and the bias of the smoother. For
simplicity reason from now on, we will write the smoothing matrix S.

Classical smoothers include smoothing splines where S is symmetric and positive
define where A is the coefficient associated to the penalty term, kernel smoothers
which could be written as S = D~ !IK where A is the bandwidth. Usually, K is
symmetric but not always positive definite (see, for example, [6]) and D is diagonal
with Dj; equal to the row sum of K so S is row-stochastic. A similar representation
holds for k-nearest neighbor (k-nn)-type smoother such as the classical k-nn and the
mutual k-nn.

1.2  k-nn and Mutual k-nn Smoothers

K-nn smoother [11] estimates the regression function m(X;) by averaging the
responses Y; associated to the k nearest observations X ; to X;.

Let (X1,Y1),...,(X,,Y,) be independent identically distributed copies of
(X,Y) € R? x R. Given x € R?, and a distance dist () (the choice of the distance
is beyond the scope of this chapter), reorder the data in a manner such that the
distances d;(x) = dist(X(1,;)(x), x) are nondecreasing and denote the reordering
as:

(X(l,n)(x)a Y(l,n)(x))a o, (X(n,n)(x)a Y(n,n)(x))-
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The k-nearest neighbor (k-nn) smoother is defined as:

k
N 1
g ") = Y Vim (). 3)
i=1
Conditional on the observed covariates X1, ..., X,, the k-nn smoother is linear
in vector of responses ¥ = (Y1,...,Y,). Let us denote A% (X;) the set of the k
nearest neighbors of X; in the design points {X1, ..., X,}, the (i, j)th entry of the
smoothing matrix Sk, is
Sem)ii = Lif X € M(X))
knnJii =10 otherwise '

We refer to [1, 7, 15] for in-depth treatment of consistency and statistical properties
of k-nn smoothers in the context of regression or classification.

It is instructive to interpret the matrix A = kSi,, as the adjacency matrix
of a directed graph on {Xj,..., X,}, in which a directed edge from X; to X;
exists if X; belongs to At(X;). While >>%_; A;; = k for all i, Y7/ Ay
depends on the configuration of the covariates X1, ..., X, and counts the number
of k-nn neighborhoods that X ; belongs too. When that number is larger than &,
we say that X; is a hub. While generally speaking, there are always hubs, the
emergence of highly connected hub in higher dimensions is associated to the curse
of dimensionality (see [24]).

Mutual k-nearest neighbors (mk-nn) have been introduced by Gowda and
Krishna [13] in an attempt to build a symmetric adjacency matrix. X; and X; are
mutual k-nearest neighbors if both X ; belongs to the k-nn of X; and X; belongs to
the k-nn of X ;. The adjacency matrix A™, defined as:

A?} =min(A;;, Aj;) = AjjAji.

The number of mutual k-nn of each covariate X;, K; = 27:1 A;;‘. is a random
variable bounded from above by k. In principle, it is possible that K; = 0. Guyader
and Hengartner [14] provide conditions on the distribution of the covariates to
ensure that as the sample size n and the size of the neighborhood k both tend to
infinity, we have that K; = O(k). Define the set .#Z;(x) = {X; € S (x),x €
1 (X;)} the closed form is

1
K () = Y:. 4)
’ ()], X-;//k(x) l

The (i, j)th entry of the smoothing matrixX Syxns, 1S

1 .
if X; e #(X;)and K; >0
(Smknn)ij — : K; J (10.6) i 7

0 otherwise
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or simply Syknn = DflAm where D is a diagonal matrix with entry K; so that the
smoother is row-stochastic. The matrix A, is symmetric and could be viewed as an
adjacency matrix of an undirected graph.

Many papers were devoted to k-nearest neighbor graph see, for example, [8, 21]
among others or mutual k-nearest neighbor graph see, for example, [2].

Going back to Eq. (2), we could mostly write the smoothing matrix as a matrix
product § = D~! A. Generally, the smoothing matrix is row-stochastic (so the eigen
values are in [—1, 1]) but not always symmetric and as pointed out by Cohen [5] this
leads to non-admissible estimator.

1.3 Admissibility

In this contribution, we are concerned with the mean-squared error admissibility of
k-nn smoothers within the class of all linear smoothers. Recall that a linear smoother
m is inadmissible in mean-square error if there exists another linear smoother m*
such that

E[|lm* —m|*] < E[|l# —m|?],

for all regression functions m, and with strict inequality for at least one regression
function m. That is, there exists a better smoother in terms of mean-squared
error, and thus being inadmissible is an undesirable property. If a smoother is not
inadmissible, it is admissible. Unless stated otherwise in this work, we will overload
the term admissible to mean admissible in the class of all linear smoothers.

Rao [25] showed that the following two conditions were sufficient and necessary
for a linear smoother to be admissible within the class of all linear smoothers:
(1) The smoothing matrix S, is symmetric and (2) the spectrum of S, lies in
the unit interval [0, 1]. We note that Rao’s was preceded by Cohen [5] who
showed that admissible linear smoothers in the class of all smoothers need to have
symmetric smoothing matrix and spectrum in the unit interval [0, 1], with at most
two eigenvalues being equal to one.

From that characterization, smoothing splines of any order are admissible,
whereas all local polynomial smoothers, see [10] including the Nadaraya-Watson
smoother [23], and k-nn-type smoothers are inadmissible because they have asym-
metric smoothing matrices.

We may point out here that admissibility does not affect minimax rate of con-
vergence, for example. In general, the difference between an estimator inadmissible
with optimal rate and it admissible pendant one is in the analysis of the constant
of the second-order term development. Such developments are beyond the scope of
this chapter.
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1.4 Symmetrization

The proof in [5] is particularly interesting, as it shows constructively how, starting
with a smoother with asymmetric smoothing matrix, one can symmetrize the
smoothing matrix to produce a smoother with smaller mean-square error. The
resulting smoother has a closed form:

Seohen = I —[(I — )T — 5)]/2. ®)

Other symmetrization schemes have been proposed by modifying Cohen’s estimator
[28]:

Sehao = 1 — pl(I — $)T(I — $)]'/? (©6)

or [19] (who are averaging the smoothing matrix and its transpose) in the context of
nonparametric regression.

Symmetrization is of real importance in image analysis and in particular in
image denoising. Milanfar [22] advocates for symmetrization which is not only a
“mathematical nicety but can have interesting practical advantages.” Among them
are:

1. Performance improvement,
2. Stability of iterative filtering,
3. Eigen decomposition.

Milanfar [22] studied smoothers of the form § = D1 where K is symmetric and
positive define and D is a diagonal matrix that makes S row-stochastic. Applying
the Sinkhorn algorithm (see [26]), he constructs a doubly stochastic estimator S and
controls the behavior of § because the change of the eigenvalues due to Sinkhorn
normalization is upper bounded by the Frobenius norm ||.S — S Il

More recently, Haque et al. [16] again starting with a smoother of the form
S = D~'K and working with the Laplacian L = D — K proposed the following
estimator C = (I + AL’L)~" where the value of X is chosen by optimization. This
estimator could be applied to any type of smoother, it does not need a symmetric K
or positive eigen values for S but the interpretation in terms of S is almost impossible
to understand. Moreover, it is impossible to apply that smoother at a new observation
(the same will be true for [28]). Furthermore, the eigen values of C are bounded
away from zero and the resulting variance is much bigger than the initial smoother.

More recently, [3, 4] interpreted Sinkhorn algorithm (in order to obtain a doubly
stochastic smoother) as an expectation-maximization algorithm learning a Gaussian
mixture model of the image patches.

Stability of the iterative filtering as pointed out by Milanfar [22] was already
advocated by Cornillon et al. [6] in the context of L, boosting. Friedman et al. [12]
showed that L, boosted smoother at iteration j is given by:

ij = —(—vS)]Y.
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The 0 < v < 1 could be seen as the step factor since boosting could be viewed as a
functional gradient descent algorithm. For simplicity, let us consider the case v = 1.
In the context of kernel boosting, Cornillon et al. [6] proposed the following:

i = I — (D~V2p12 — p=12p=12§p=1/2 pl/2yity
=l — D721 — p~V2sp1/2)i p'2Yy.

While symmetrization of the smoothing matrix is necessary, it is not sufficient for
a linear smoother to be admissible. Specifically, the spectrum of the symmetrized
smoothing matrix needs to belong to the unit interval. As indicated above, most of
the literature dedicated to symmetrization of smoother assume that S is of the form
D' where IK is symmetric and positive definite which is not true for k-nn-based
smoothers.

In the next section, we prove mainly negative results for row-stochastic matrices
(so the results are directly applicable to k-nn-type smoothers). We show that the
arithmetic and the geometric averages of a row-stochastic matrix and its transpose,
and even the symmetrization scheme proposed by Cohen, have eigenvalues outside
the unit interval. In Sect. 3, we propose an alternative approach to symmetrize k-
nn-type smoother that results in a smoothing matrix whose spectrum lies in the unit
interval. The new estimators can be evaluated at any arbitrary points and have their
own interpretation.

2 Symmetrization Procedures for Row-Stochastic Smoothers

In this section, we relate the spectrum of various symmetrized smoothing matrices
to the spectrum of their original smoothing matrix. We assume that the smoothing
matrix S is row-stochastic, that is, all of its elements are nonzero and S1 = 1, where
1=(,1,...,1)T € R"is the vector of ones.

2.1 Geometric and Arithmetic Mean

Geometric Mean Given a smoothing matrix S, define the symmetric matrix S =
(STS)!/2. The square-root is well defined as ST is symmetric and positive definite.
The variance of the resulting smoother is the same as the variance of the initial
smoother, but the biases are different. No comparison can be made between the
biases of the original smoother and the symmetrized one. While S is symmetric
and nonnegative definite, it is possible for the largest eigenvalue A4 to be strictly
larger than one. In those cases, the symmetrized smoother S remains inadmissible.

Lemma 1 Let S be a row-stochastic matrix. Then, Ayqx (STS) > 1, with equality if
and only if S is a doubly stochastic matrix.
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Proof Consider the Rayleigh quotient Q(x) = xTSTSx/(xTx) and denote by
jn, ceen \}n) the vector of length one. Note that Q(1,,) = 17STS1, =
(81,)T(S1,,) = 1 since S is row-stochastic. Hence, A4, (STS) > 1. Furthermore,
if Xpax(STS) = 1, then 1, belongs to the eigenspace associated to the largest
eigenvalue of STS. This implies that STS1, = 1,. Since S is row-stochastic,
we also have that STS1, = ST1,. Combining these identities, we conclude that
Amax(STS) = 1is and only if ST1, = 1,, which is equivalent to S being doubly
stochastic (since § is assumed to be row-stochastic).

1}1 = (\}nv

The conclusion of the lemma also holds for SST which has the same spectrum
as STS. It follows from the above lemma that the geometric mean smoother S =
(STS)1/2 is inadmissible whenever S is not a doubly stochastic matrix.

Arithmetic Mean Given a smoothing matrix S, define the symmetric smoothing
matrix § = (S + S§T)/2 considered by Linton and Jacho-Chavez [19]. For the
arithmetic mean smoother S, we can show

~ ) 1 ,oo 1
V(SY) — V(SY) = o~ [ trace(STS) — 2tlrace(S ) — 2trace(STS)

o? 2
=, (trace(STS) — trace(S )) > 0.
The last inequality is justified by Lemma 6 in the Appendix. This shows that the
arithmetic average smoother has a smaller variance than the original smoother, a
result that first was proven for kernel smoothers by Linton and Jacho-Chavez [19].
As for the geometric mean smoother, nothing can be said of the biases.

Even though the variance of the average smoother is smaller than that of the
original smoother, the following theorem proves that the largest eigenvalue of Sis
larger than one, unless S is doubly stochastic. As a result, the average smoother is
not admissible.

Lemma 2 Let S be a row-stochastic matrix, then Ay, ((ST + S)/2) > 1, with
equality if and only if S is a doubly stochastic matrix.

Proof Consider the Rayleigh quotient Q(x) = xT(ST 4+ S)x/(2(xTx)) and denote
by 1, = (jn, \/ln, e jn) the vector of length one. It is easy to verify that

0(,) = 1 since § is row-stochastic. Hence, A;;qx ((ST+5)/2) > 1. If A0 ((ST +
S)/2) = 1, then 1,, is in the eigenspace associated to the largest eigenvalue, and

ST1, + 81, =21,,.

Since S is row-stochastic, we have that S1,, = 1,,, and thus ST1,, = 1,,, which occurs
if and only if S is doubly stochastic (since S is assumed to be row-stochastic).
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2.2 Cohen’s and Zhao’s Symmetrization

Given a smoothing matrix S, Cohen [5] proposed the symmetrized smoothing matrix
which has the same bias and smaller variance than the original smoother S. That is,
Sconen dominates S. While this shows that S is not admissible, it does not imply that
Sconen 18 itself admissible. The following Lemma gives conditions for S¢open to have
an eigenvalue larger than one.

Lemma 3 Ifthe smoother S admits negative eigenvalues, then Cohen symmetrized
smoother Sconen has an eigenvalue larger than one and hence is inadmissible.

Proof of Lemma 3 Consider the right eigenvector x associated to the eigenvalue A <
0. With that vector x, develop the quadratic form:

xTU =TT - S)x =xTx —xTSTx —xTSx +xTSTSx
xTx — (Sx)Tx — xT(Sx) + (Sx)T(Sx)

= xTx — 2AxTx + A2xTx

=(1—2)>%xTx

> xTx.

This shows that Ay,qx (I — S)T(I — S)) > 1, which completes the proof.

Zhao [28] recognizes, without proof, that the Cohen estimator may have eigenvalues
larger than 1 and proposes a stepped version of the Cohen smoother. When p~2 >
Amax (I — S)T(I — §)), the resulting smoother has spectrum in [0, 1), and hence
is admissible. But, the construction of this smoother requires the knowledge of the
largest eigenvalue of (I — S)T(/ — S), or at least an upper bound for that eigenvalue.
Also, this smoother cannot be extended out of the initial design.

In order to close that section, we note that Sinkhorn algorithm was derived to
obtain from a positive matrix a doubly stochastic one. Here, the authors need a
doubly stochastic matrix, positive definite and symmetric. In order to reach their
goal, they need to start with a positive symmetric definite matrix [18] which is not
the case for k-nn-type smoother as we will see in the next section.

3 Symmetrization of k-nn-Type Smoothers

Let us recall that S, = k~'A and Sypin, = D' A,, where A (resp., Ay) is the
adjacency matrix associated to the direct graph (resp. of the indirect graph), and A,,
is symmetric. We first state some results concerning the eigenvalues of A and A,,.
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Lemma 4 Let S be the smoothing matrix of the k-nearest neighbor smoother with
k > 3. Denote for each i, the set of indices N; of k-nearest neighbors of i. Assume
that the set of covariates {X1, ..., X,} contain three points E, F, G such that

Ee N and F e Mg Fe A and G e N EgNg or G¢ N

Then, at least one eigen value of (I — S)' (I — S) is bigger than 1.
And, similarly for the mutual k-nn smoother:

Lemma 5 If the graph related to the adjacency matrix A,, admits a path of length
bigger than one, then the mutual k-nn initial smoother has a negative eigenvalue.

The proofs are given in the Appendix.

Remark 1 If the graph is not connected, the conclusions of Lemma 5 remain true,
provided that for at least one of the connected components, the conditions of the
lemma hold. Brito et al. [2] showed under technical condition that with probability
one, when k is of order of log(n) the graph is almost surely connected.

3.1 Construction of the Symmetrized Estimator

The previous section demonstrates that most attempts to symmetrize k-nn or
mutual k-nn smoothers do not result in an admissible smoother because the
considered symmetrizations do not control the spectrum. In this section, we propose
a construction specialized to k-nn smoothers and mutual k-nn. These two smoothers
could be written as S = D~ A where A is the adjacency matrix and D is a diagonal
matrix. We propose the following symmetrization of k-nn-type smoothers:

Spew = W12AATW /2, @)

where W is the diagonal matrix of the row sum of AAT. It is easy to see why the
spectrum of this symmetric smoother lies in the unit interval: The matrix S, is
similar to the row-stochastic matrix W1 A AT, which has eigenvaluein [—1, 1], and
is positive definite which implies that all the eigenvalues are nonnegative. Hence, all
the eigenvalues are in [0, 1].

Another strategy could have been to propose V~!/2ATAV~1/2. These new
estimators (for k-nn and k-mnn) have the advantage of producing an admissible
estimator that can be evaluated at any point. Furthermore, the resulting smoother has
a compelling interpretation in terms of neighbors. However, such an interpretation
is not new. Dealing with AAT was named bibliographic coupling by Kessler [17]
and AT A was named co-citation by Small [27].
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3.2 Interpretation, Estimation at Any Point x

Our new estimator (7) can be interpreted as a k-nn-type estimator. The general term
of the adjacency matrix A;; says if X; belongs to the k-nn (or mutual) of X;. The
general term (i, j) of AAT is the scalar product of lines i and j of A so it counts the
number of points in common from the k-nn (or mutual) of X; and X ;. Let us write
(AAT) = n;; (for neighbor) and (A" A™T) = m;.

In the case AAT, n;; is the number of points in the intersection of M(X;) and
A%(X ;) and on the diagonal obviously there is k.

k ...... nl / Kl ...... ml j
k n . “ e e o 0 K m
AAT = ! AnA,T = B
nn’./' .« .. k mn’./' .« .. Kn

Obviously, this quantity n;; (respectively, m;;) is large when X; has a lot of common
k-nn (or mutual) with X ; but will always be smaller than k. We further note that the
quantity m;; arises as a similarity measure in graph theory, see [20].

The quantity Wil/z is equal (37, ni)~ 12 (or (), mi)~1/?), that is, one
divided by the square-root of the sum of the numbers of common k-nn (or mutual)
of X; and the sample. This transformation looks like a weighted k-nearest neighbor,
though each weight depends on the considered point of the design.

The transformed k-nn smoother can be evaluated at the design point X; as:

A=Y §
Y

n
nj = Z Whi (X))Y;.
> \/Zj nij =1

The quantities n;; are of course dependent on k. That expression can be extended to
be evaluated at arbitrary points x as follows:

n 1 Y; n
mx) = Ryi = Whi(x)Y;.
,z:;\/z, Nxj \/Z, nij 12:;

where n,; is the number of points in common from the k-nn of x and X ;. The new
estimator is a weighted nearest neighbor estimator with random weights. The proof
of the consistency (which is not immediate) is beyond the scope of this contribution.
Being able to predict gives us the possibility to estimate for which k the strategy
should be carried on (using data-splitting, for instance).
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4 Conclusion

In summary, this chapter makes several contributions to the theory of k-nearest
neighbor-type smoothers (mutual and symmetric). First, we show that the sym-
metrization strategies proposed by Cohen [5] and Linton and Jacho-Chavez [19]
can produce smoothing matrices whose spectrum lies outside the unit interval for
general row-stochastic smoothers.

Second, we show that the spectrum of k-nearest neighbor smoothers has negative
eigenvalues.

Third, we propose an alternative construction of a symmetric smoothing matrix
whose eigenvalues are provably in the unit interval. Applying that construction to
k-nearest neighbor smoothers results in a novel k-nn smoother. This estimator could
be applied by itself as a weighted k-nn one by selecting the parameter k or, by
extension, it could be used in L, boosting procedures.

Appendix

Lemma 6 Let A be an n x n matrix. Then,
trace(A?) < trace(AT A).
Proof Given A, the matrix (A — AT)T(A — AT) is positive definite. Thus,

0 < trace((A — AT)T(A — AT)) = trace((AT — A)(A — AT))
= trace(ATA — ATAT + AAT — AA) = 2 trace(AT A) — 2 trace(A?).

The conclusion follows.

Proof of Lemma 5 Recall that Sk, = DA™, where D is a diagonal matrix with
nonzero diagonal. The matrices Sykn, and DY2Am D2 have the same spectrum.
We need only to show that the matrix A™ has a negative eigenvalue. Having a path of
length two, then there exist two vertices i1 and i such that the shortest path between
these two vertices is two. As a result, there exists a 3 x 3 sub-matrix of the form:

110
B=]111
011

The smallest eigenvalue of that matrix is negative and thus, by the interweaving
theorem

)\min (Am) =< )‘-min (B) < 0.
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As a result, there exists a vector u € R”, |u||> = 1, such that the Rayleigh quotient
uTAu < 0.1If we set w = D~ '/2y, we have wTD/2ADY2w < 0. This strict
inequality remains for the normalized vector w* = qu . Thus, the symmetric matrix

D'2AD'/? has also a strictly negative eigenvalue. Finally, since D'/2AD'/? and
S = DA have the same spectrum, the conclusion of the lemma follows.

Proof of Lemma 4 Let us consider the k-nn smoother the matrix S is of general term
I
Sij = r if X € M (Xp).

Consider the eigen values of (I — S)(I —S)’, since A = (I —S)(I —S)' is symmetric,
we have for any vector u that

u' Au
A < <AL (8)
u'u
Let us find a vector u such that u’Au > u'u. First noticethat A =1—-S— S+ S55.
Thus, we have that

A,-izl—k.

Second, to bound A;;, we need to consider three cases:

LLIf X; € M(Xj)and X; € AM(X;), then S;; = S§;; = 1/k. This does not
mean that all the k-nn neighbors of X; are the same as those of X, but if it is
the case, then (SS’); i < k/ k2 and otherwise in the pessimistic case, we bound
(§S); i >2/ k.1t therefore follows that

2 k2 1
2K — T <Ajj< - =— .
/ /R S k
2. If X; € M(X;)and X; & M (X;), then S;; = 1/k and S;; = 0. There is at
a maximum of k — 1 points that are in the k-nn of X; and in the k-nn of X; so
(§8"ij < (k—1)/ k2. In the pessimistic case, there is only one point, which leads
to the bound
1 1 k—1 1 1
R TR SIS e TS T
3.IfX; & (X)) and X; &€ (X)), then S;; = 0 and S;; = 0. However, there
are potentially as many as k — 2 points that are in the k-nn of X; and in the k-nn
of X ;. In that case

k—2

0=<Aj = 2
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Choose three points E, F', and G in the sample X such that

Ee M(F) and F € M(E)
FeM(G) and G € M(F)
E & M(G) or G & NM(E).

Next, consider the vector u of R” that is zero everywhere except at position e
corresponding at point E (respectively, f and g) where its value is —1 (respectively,
2 and —1). For this choice, we expand u’Au to get

WAL= Apo+3A 4+ Agg —4Ap p —4Apg + 24,

6
=6— r —4A, r —4Ase +2Ac0 .

With the choice of E, F, and G, we have
, 2
uAu > 6+ L +2A.¢.
The latter shows that u’ Au > u’u whenever
Apg > e

which is always true with the choice of points E and G.
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Nonparametric PU Learning of State )
Estimation in Markov Switching Model e

A. Dobrovidov and V. Vasilyev

Abstract In this contribution, we develop methods of nonlinear filtering and
prediction of an unobservable Markov chain which controls the states of observable
stochastic process. This process is a mixture of two subsidiary stochastic processes,
the switching of which is controlled by the Markov chain. Each of this subsidiary
processes is described by conditional distribution density (cdd). The feature of the
problem is that cdd’s and transition probability matrix of the Markov chain are
unknown, but a training sample (positive labeled) from one of the two subsidiary
processes and training sample (unlabeled) from the mixture process are available.
Construction of process binary classifier using positive and unlabeled samples
in machine learning is called PU learning. To solve this problem for stochastic
processes, nonparametric kernel estimators based on weakly dependent observations
are applied. We examine the novel method performance on simulated data and
compare it with the same performance of the optimal Bayesian solution with known
cdd’s and the transition matrix of the Markov chain. The modeling shows close
results for the optimal task and the PU learning problem even in the case of a strong
overlapping of the conditional densities of subsidiary processes.

1 Introduction

The hidden Markov chain (HMC) model is widely used in different problems,
including signal and image processing, economical filtering and prediction, biolog-
ical and medical sciences, and so on. In this model, the unobservable or “hidden”
signal s, is assumed to be a realization of a Markov chain S,,n € {1,2,..., N}
with a finite number M of states. The observed signal x, is assumed to be a
realization of a stochastic process X,,n € {1,2,..., N}. The links between
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them are described by the conditional density f(x,|S, = sn, X’ffl = x{“l).

One way of generating processes with statistically dependent values is to use the
conditional distribution of observations if the multidimensional distribution of the
process is known. This case is considered in an example 2 with the multidimensional
Rayleigh distribution. Another more simple way to obtain conditional density is
the recurrent equation for representation of random sequences. Such equations are
convenient for generating processes with dependent observations. These models
could be autoregressive models, GARCH models, and others (see [6, 11, 12, 16, 17]).
Especially often there are works devoted to the construction of volatility models
[2, 8] and many of them use Markov switching to describe the well-known
phenomenon of the volatility clusterization. Similar models are obtained as mixed
types like a Markov-switching ARMA-GARCH model [10] and MSGARH [7].

In the vast majority of articles, conditional distribution densities are specified
parametrically up to unknown parameters. In this case, the parameters of the mixed
model can be estimated using the well-known EM-method based on the observation
of the mixed sample.

In this chapter, we propose an algorithm for estimating the Markov chain state
under conditions when

1. the number of Markov chain states M = 2;

2. the conditional distribution densities of the subsidiary processes, corresponding
to each mixed process states, are completely unknown;

3. the a priori probabilities and transition probability matrix of Markov chain are
unknown;

4. for the restoration of unknown densities, a realization of mixed process (unla-
beled) and a training realization from one of the subsidiary processes (labeled)
are available.

The availability of sampling from only one class (or process) is very common
in applications. It is enough to cite such well-known problems as useful signal
detection in sonar or estimating volatility in econometrics. A main feature of these
problems is that the useful signal or volatility is never observed in pure form and
there is no information to restore signal distribution or generate corresponding
sample. On the other hand, the noise process is always observed while the devices
that measure the signal against the background of noise are operating. It is this noise
that is the source of the positive sample.

For the reconstruction of unknown densities, nonparametric kernel estimation
procedures generalized on weakly dependent random variables are used [5].

Two examples demonstrate the algorithm quality. The first one is dedicated to
the distinction between two autoregressive processes with different coefficients
and the conditional distributions of these processes. Herewith these conditional
distributions and the transition probability matrix of the Markov chain are unknown
to the experimenter. In the second example, the model of one of the processes does
not exist in the form of an equation, and the second process is defined only by its
observations (in the language of modern learning theory—positive learning).
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2 Problem Statement

Let (S,, X,,) be a two-component stationary process with strong mixing, where
(Sy) is unobservable component and (X,) is observable one, n € {1,2,..., N},
N € N. Let (S,) be a stationary Markov chain with 2 states {0, 1} and transition
probability matrix ||p; jll, pi,j = P{Sy = j|Sw—1 = i}. Process (S,) “controls”
coefficients of equations, which describe the observable process (X,):

if S, = 0, then

X~ [ | S0 =0,x77") = folen | ¥, (1)
if S, = 1, then

Xn ~ f O | Sy = 16771 = file |7, 2)
For example, in case of S, = 0, the process (X,) may be described by the

autoregressive model (AR) of order p:

p
Xp=p+ Y ai(Xni— )+ b, 3)
i=1

where {&,} are i.i.d. random variables with the standard normal distribution,
parameters (1, a; € R, b € RT, p € N. Therefore, the conditional pdf (1) equals

P 2
(xn - 0= 2:1 ai(Xp—i — M))

fole |X77Y) = folen | X)) = oy

1
exp | —
V27b P

As a performance of the proposed methods we use mean risk R = EL(S,, Sn) with
a simple loss function

X 1 S, #S§
LSn S =1 7 @)
0 S =S,
An optimal estimator of S, (the Bayes decision function) is
St = 0 ifP(S, =0|X]=x])>1/2 5)
1 otherwise,
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where P(S, = 0| X} = x{) is a realization of the posterior probability P{S, =
0] X7} with respect to a o-algebra generated by r.v. X/'. For brevity, we write x{
and x, instead of events {X} = x{'} and {X,, = x,}. For instance,

P(S, =m|X] =x]) =P(S, =m|x}). (6)

In this work we solve a problem of estimation S, using testing sample x{' (generated
from the marginal distribution of the process (X,)) and two training samples:
positive x,, (drawn from the conditional distribution of the process (X,) given
S» = 0) and mixed unlabeled x,, (drawn from the distribution of the mixed process

(Xn))
xp = (pi)iLy, (7)
Xy = (xu,i)?ila €))

where their sizes np,n, € N. The last two samples are used to learn a nonlinear
filter and the first for testing it.

3 Optimal Filtering

The optimal filtering may be applied, when the conditional densities fo(x, | x{ -

and fi(x, |xi'—1) and transition probability matrix || p; ;|| are known. In this case
the posterior probability of the Markov state (6) is related to the predictive posterior
probability of the state by the formula

Fon Cen [ X771

P(S, =m|x]) = P(S, =m|x" 1), 0,1 9

(Sp =m|x}) oo ) (Sp=m|x{™"), me{0,1) ©)
1

FOnl 5™ =" funCon [x]THP(S = m |27, (10)
m=0

Since transition probability matrix ||p; ;|| is known, then for predictive posterior
probability P(S, = m | x{ “yan equation

1
P(S,=m|x{™) = pimP(S1=i|x{™") (1)
i=0
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is correct. Then Eq.(9) can be transformed to the well-known evaluation equa-
tion [5]

1
S Cen | XD Y pimP(Samt =i 121 7h
P(S, =m|x)= i=0

ij(xnlxl )ZP:/P(Sn l—l|x )

j=0 i=0

Substituting this posterior distribution in (5), we obtain the optimal Bayes
estimator S, for the nonlinear filtering. This optimal method will be considered
as a standard and compared with the proposed method, where fy(x,), f1(x,), and
| pi,j || are not available.

4 Nonparametric Filtering

4.1 Main Idea

Let us consider the following estimator of S,

g _ |0 WP =01X = x] )= 1/2 a2
1 otherwise,
where T € {0,1,...,n — 1}. Here, only last T 4+ 1 observations are used in the

condition of the posterior probability. If t = n — 1, then §, = S¥. We assume
that the process (S, X,) is a-mixing. Then Ve > 0,3t (x) : [P(S, = 0] X)_, =
X, ) —P(S, = 0] X| = x{)| < €. It means that S, & S for some 7. Using simple

relation

fo(x Ix
P, =0|X"  =x" H)="""" P(S, =0|x""]

I Gon | xy

where denominator is equal to

FOn 1502 = fol | X} =DP(S, = 01 x,=0) + il | X)-DP(S, = 1] x,77),
13)

and normalization condition

P(S, =0|x""H+ P, =1[x'"H =1,
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one can rewrite (12) as

§n= 0 if 2 folxn | x,_ )P(Sn_0|xn ;) — [ | x)Z )>0 (14)
1 otherwise.

This estimator will be the base of proposed method. In the next sections nonpara-
metric kernel estimation of the conditional densities fo(x, | xji— ) fxn | x) ) and

probability P(S,, = 0| xn_,) will be considered.

4.2 Estimators of fo(xn | x,_ ) Sxn | x;~ 1)

In this section estimators of fo(xp | x,_ ) fen |2~ r) are proposed. Firstly, let us

transform positive sample x, of univariate elements to sample X, = (x,,;); 2 ” " with
(tr + 1)-dimensional elements

Xpi = (Xpis Xpitls - Xpitc).
Analogous to xp, construct new sample X, = (X, ,) * from unlabeled sample x,,:
Xu,i = (xu,i, Xuyi+ly ooy xu,i—i—r)-

Secondly, let us rewrite conditional densities fo(x, |x,’l‘:rl), S (xn |x,’f:r1) in the
following form

ARG Gy
- n—1y o0
Jon=a) e dx

folx | xi2} ,
S N A C

S |xn 7 n—1 00 .
FOn—c) f pen d,

Finally, for unknown densities fy(x]_,) and f(x)_,) estimators

np T

JoCo_o) & f((n—rs oo X0) | Xp.i)i 2y )
f(‘x:ll—‘[) ~ f((p—gs ey Xn) | (Xu z)n“ 1’)
are proposed, where notation f(x|(x;)7_,) is the multivariate kernel density

estimator (MKDE) in the point vector x constructed by training set (x;)!_,. The
next section is devoted to MKDE.
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4.3 Estimator of f (x| (X,)l_l)

There are a lot of kernel density estimators and approaches to configure them. In this
section is a one of the possible combinations of them, which includes two steps: pilot
and subtle estimators. Firstly, for density f (x| (x;)7_,) next fixed kernel estimator

. - I 1 —x;
fo=fxlcoy= > K (X o ) (15)
i=1

is applied, where K () is the kernel function, usually some probability density
function with zero mean; 4 is the bandwidth (tuning parameter), 4 > 0; X, X; €
R!*4 d e N. Probability density function of multivariate normal distribution with
zero mean and identity covariance matrix

_ 1 xx
POO= Gy P (_ 2 )

is used as the kernel function K (-). One of the methods for calculating the bandwidth
h is the unbiased cross-validation (UCV)(see [3, 14]). Procedure UCV leads to an
estimator

h = argmin UCV (h),
h>0

with minimization function

X, —X; 1
UCV(h) = 1)hd22 2d/2¢< J2h )_2¢< h ]>+nh‘1'

i=1 j=l1,
J#

Computing minima analytically is a challenge, so a numerical calculation is popular.
The function UCV (k) often has multiple local minima, therefore more correct way
is to use brute-force search to find &, however it is a very slow algorithm. In [9] it
was shown that spurious local minima are more likely at too small values of %, so
we propose to use golden section search between 0 and h™, where

4
ht = ;
(n(d+2)) t/e d}\/|s b
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and S is the sample covariance matrix of vector sequence (x;)?_;. To improve
accuracy of estimator (15) in the second step using more flexible approach is consid-
ered. Constructing estimator with fixed kernel is the first step in the methods with
“adaptive” kernel like balloon estimators (see [13]) and sample point estimators
(see [1, 4]). Silverman in [15] explored Abramson’s implementation and proposed
the following estimator

n _1 " 1 X — X;
f(x|(xi)i=1)_n;(hxi)dK< I~ ) (16)

with local bandwidth factors
Fxi) —-1/2
Ai = S i ,
8

where g is the geometric mean of the Fxi)

n 1/n
g = {H f(Xi)} .
i=1

Silverman noted that using similar bandwidth % for (15) and (16) gives good results.

4.4 Estimator of P(S, = 0|x!~ 1)

In this section an estimator of probability P(S, = 0| x,’l‘:rl) from (14) is explored.
Rewrite (13) as

f(xnlxnr —P(S, =0x" fl(xnlx )(1—P(Sn—0|x ))_ (17

fo(xn|xn T fo(xnlxn T

Note that P(S, = 0] x"il) does not depend on x,. It means that Vx,, € R the

last equation is true. If densities f (x;, | x,— ) and fo(x, | x,_ T) were known, then
simple estimator

(s, = 0[x" ) = min 7 & 1¥0- (18)

n— 'L'
xel R f()(xlxn r)
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would give good results, if there is some x € R, such that

filo G200 =P(S, =01570) o
fon 1x3=0)

Then the estimator P(S, = 0|x"~!) will be close to P(S, = 0|x""!). Since

in fact densities f(xy, |x,’,l:T1) and fo(x, |x:::T1) are unknown, their estimators

are substituted in (18). However, in this case estimator f’(Sn = le,'l':}) is

3 n—1
unreasonable, because if only for one point xo € R the value of ; ((XO llx"nj’l)) ~ 0,
0(X0 | Xy
then the estimator P(S,, = 0] x,’Z:TI) will be too undervalued in comparison with

the true value of P(S, = 0| x,’,lzrl). Therefore, it is necessary to introduce some
cumulative characteristics which will have less influence of particular x. As such
characteristics, we propose

0(p) = f olx |27~ Hp — Fx |22~ dx,
O(p) = /(fo(x X" hp — foelxizh) T dx,

where (a)¥ = max(0, a) and p € [0, 1] is a variable parameter. The meaning of

the function Q(p) is an area between two functions pfo(x Ix,'f:rl) and f(x |x,'f:f1 ,

where the first one exceeds the second one. The meaning of the estimator Q( p) is
the same. It is easy to show that Q(p) = 0 for p € [0,P(S, = lejl':rl)] and

0 < Q(p) < lforp e (PGS, = le;f:%), 1]. So Q(p) changes its first and
second derivatives in the point P(S, = 0] x,'j:%). We expect the similar changes in

derivatives of the estimator Q( p). Therefore, we propose to use point p, where the
curvature of the function Q(p)

= 120
(14 (Q'(p)2)3/2

reaches maximum, i.e. a final estimator of P(S, = 0| x,’,l;l) is

P(S, = 0]x"~}) = argmax« (p). (19)
0<p<1

Due to the analytical complexity of the estimator IA’(S,Z =0] x,';:%), its properties
are investigated by computer simulation.
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5 One-Step Ahead Prediction

Let us consider one-step ahead prediction. Like for filtering we minimize mean risk
EL(S,, S,) with simple loss function (4). Therefore an optimal predictive estimator
of S, is

0 ifP(S, =0|X] ' =x"H>1/2

1 otherwise.

S =

Note that probability P(S, = 0]X}' = x[7') is already obtained in the
considered approaches to filtering: for optimal method it is written in (11) and for
nonparametric method accordingly in (19). It means that we primarily solve problem
of one-step ahead prediction and then filtering problem.

6 Examples

6.1 Example I (AR(I) + AR(2))

Let the process X, for each state of S,, be given by the autoregressive model:

i£S,=0: X, =1402Xn_1 + &,
S, =1: X, =4+ 0.3X,_1 +0.2X,_» + 0.8%,

and transition probability matrix equals

Upi il = 0.92 0.08
Piilt=10.050.95)
Parameters T = 1,n € {0,1,...,201}, n, = 2000,n, = 2000. One may see

illustration of densities and their estimators for some point x,, in Fig. 1. It follows

that the estimator P(S, = 0| x,?:fl = 0.04 is very close to real value of the

probability P(S, = lezirl) = 0.05 from Fig.2. This experiment shows good
quality of the proposed method (see Table 1 and Fig. 3).

6.2 Example 2 (AR(2) + Rayleigh)

Let the process X, be described as

ifS,=0: X, =4+0.1X,,1 +05X,,2 +&;



Nonparametric PU Learning of State Estimation in Markov Switching Model 25

0.7 0.7
— flaa |27 Q1)
——P(S, = 0]a;2}) folaa | 22}) _f(;l,',, [E)

06} — — P(S, = 1]si A =it 06} ol |237h)

0.5} 0.5+

0.4} 04}

0.3} 0.3+

0.2} 02}

0.1} 0.1}

0 1 0 1 1
-5 10 -5 0 5 10

Ty

Fig. 1 Left plot: black line is f(x, | x)_ ) gray line is P(S, = 0]x),_ )fo(xn |xn T) dashed
line is P(S, = 1|x)_ )f1 (xn |x”7 ). Right plot: black line is estlmator f(x,, | X))~ ) gray line

n—t

is estimator fo(xn [ ,) gray area between two densities fo(xn | X, ) and f (en | x5 Z ) where

ol 1071y exceeds f (x, [ x270)

0.8 - 16 -
|
0.7 : 14
|
06|l 12}
|
|
05+ 10+
. |
So04] &gl
< | ©
|
0.3} : 6
|
0.2+ 44
|
|
0.1F 2
|
O 1 1 1 1 I 0 n " o
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
p p

Fig. 2 Left plot: black line is Q(p) grey line shows that estimator P(Sn =0]x,_ ) = 0.04;
dashed line represents true P(S, = 0 Ix” l) = 0.05. Right plot: black line is function « (p); grey
line shows that estimator P(Sn =0|x) ) =0.04
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Table 1 Simulation results in example 1 after 50 launches

np ny Optimal error (%) Nonparametric error (%) Difference (%)
2000 2000 7.96 13.93 5.97
T T T T T T T T T T
1 T
O C 1 1 1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180 200
n
1 O T T T T T T T T T T
5 °K |
0 —
5 1 1 1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180 200
n
T T T T T T T T T T
1 g
*m: H H H U H H
0 C 1 1 1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180 200
n
1 T T T T T T T T T T
0 3 1 1 1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180 200
n

Fig. 3 First plot: unobservable s,. Second plot: observable x,,. Third plot: optimal estimator s;:.
Fourth plot: nonparametric 5,

if S, = 1, the conditional density is the Rayleigh density

px,%_l—i-x,% I <\/,0xn_1x,,)
0

X,
S1(xplxn—1) = o2 T 202(1 = p) o2(1—p)

" eXxX
1—p) P

with p = 0.2,0 = 1, Ip(x) is modified Bessel function, and transition probability

matrix equals
Upi il = 0.87 0.13
Prilt=10.100.90)

Parameters t = 2,n € {0, 1,...,201}, n, = 2000, n, = 2000. In Fig. 4 one may
see illustration of densities and their estimators for some point x,. From Fig.5 it
follows that estimator P(S, = 0 | xg:rl) = 0.95 is close to real value of a probability
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05 05
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0.4+ 04+
0351 0.35
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025 0.25
0.2F 0.2r
0.15 0.15 |
01} 0.1
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0 . . 0 . . . . .
-4 -2 10 -4 -2 0 2 4 6 8 10

Fig. 4 Left plot: black line is f (x| x)_ 1) gray line is P(S, = 0]x),_ )fo(xn Ix” 1) dashed
line is P(S, = 1|x,_ ) S1Gen | x),Z T) Right plot: black line is estimator f (en | x5 gray line

nl
n—t

fo (oxn | X r) exceeds f (o | xp— r

is estimator fo(x,, | x,—;); gray area between two densities fo(xn | xp— ) and f (xn |x ) where

012y , 5¢
45}
01f
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35}
008}
3 -
= 006} o5l
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2 -
004}
154
1 -
002}
05}
o . o . . . . .
0 1 0 02 04 06 08 1

p

Fig. 5 Left plot: black line is Q(p) grey line shows that estimator P(Sn = len ) = 0.95;
dashed line represents true P(S, = 0 Ix” l) = 0.87. Right plot: black line is function « (p); grey
line shows that estimator P(Sn =0|x) ) =0.95



28 A. Dobrovidov and V. Vasilyev

Table 2 Simulation results in example 2 after 50 launches

np ny Optimal error (%) Nonparametric error (%) Difference (%)
2000 2000 9.87 19.24 9.37
T T T T T T T T T T
1
W
O B 1 1 1 1 1 1 1 1 1 T
20 40 60 80 100 120 140 160 180 200
n
10 T T T T T T T T T T
$5f -
0 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180 200
n
T T T T T T T T T T
1
“ _|—|_|—’L J’L’M H
0 C 1 1 1 1 1 1 1 1 1 T
20 40 60 80 100 120 140 160 180 200
n
T T T T T T T T T T
1
0 3 1 1 1 1 1 1 1 1 1 T
20 40 60 80 100 120 140 160 180 200
n

Fig. 6 First plot: unobservable s,. Second plot: observable x,,. Third plot: optimal estimator s,:.
Fourth plot: nonparametric s,

P(S, = 0] x,',ffl = 0.87. This experiment shows good quality of the proposed
method in this case (see Table 2 and Fig. 6).

7 Conclusion

This chapter presents a solution of the nonlinear problem of states estimating of a
homogeneous Markov chain that controls the switching of random processes defined
by their conditional distribution densities under conditions when these densities are
completely unknown to the operator. In addition, the transition probability matrix
of the Markov chain is also unknown. Only a sample of one of the processes and
a mixed sample are available and used to evaluate the state. A novelty of this
work is the nonparametric algorithm for estimating the probability of forecasting
the state of Markov chain by one step ahead, which makes it possible to construct
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an estimator of nonlinear filtration. At the same time, in well-known works on PU
learning it was repeatedly noted that it is not possible to construct an estimator of
the probability of a forecast without additional information. Two examples given
in this chapter show the sufficiently high accuracy of the proposed nonparametric
estimator, even in the case of a strong overlapping of the conditional densities of
the two subsidiary processes. To our knowledge, the a priori conditions adopted in
this work are minimal for solving the problem of estimating the states of the mixing
process. In what follows we intend to find conditions for the convergence of the
proposed state estimates.
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Multiplicative Bias Corrected m)
Nonparametric Smoothers s

N. Hengartner, E. Matzner-Lgber, L. Rouviéere, and T. Burr

Abstract This contribution presents a general multiplicative bias reduction strategy
for nonparametric regression. The approach is most effective when applied to an
oversmooth pilot estimator, for which the bias dominates the standard error. The
practical usefulness of the method was demonstrated in Burr et al. (IEEE Trans
Nucl Sci 57:2831-2840, 2010) in the context of estimating energy spectra. For such
data sets, it was observed that the method could decrease significantly the bias with
only negligible increase in variance. This chapter presents the theoretical analysis of
that estimator. In particular, we study the asymptotic properties of the bias corrected
local linear regression smoother, and prove that it has zero asymptotic bias and
the same asymptotic variance as the local linear smoother with a suitably adjusted
bandwidth. Simulations show that our asymptotic results are available for modest
sample sizes.

1 Introduction

In nonparametric regression, the bias-variance tradeoff of linear smoothers such as
kernel-based regression smoothers, wavelet based smoother, or spline smoothers, is
generally governed by a user-supplied parameter. This parameter is often called the
bandwidth, which we will denote by /. As an example, assuming that the regression
function m is locally twice continuously differentiable at a point x, the local linear
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smoother with bandwidth 4 and kernel K has conditional bias at that point

2

h m”(x)/uzK(u)du—l—o (h?)
2 14

and conditional variance

1 o2(x)

, 1
nh fy ) K detop (m)

where f stands for the density of the (one-dimensional) explanatory variable X and
o2(x) is the conditional variance of the response variable given X = x. See, for
example, the book of [7]. Since the bias increases with the second order derivative
of the regression function, the local linear smoother tends to under-estimate in the
peaks and over-estimate in the valleys of the regression function. See, for example,
[25-27].

The resulting bias in the estimated peaks and valleys is troublesome in some
applications, such as the estimation of energy spectrum from nuclear decay.
That example motivates the development of our multiplicative bias correction
methodology. The interested reader is referred to [2] for a more detailed description
and analysis.

All nonparametric smoothing methods are generally biased. There are a large
number of methods to reduce the bias, but most of them do so at the cost of
an increase in the variance of the estimator. For example, one may choose to
undersmooth the energy spectrum. Undersmoothing will reduce the bias but will
have a tendency of generating spurious peaks. One can also use higher order
smoothers, such as local polynomial smoother with a polynomial of order larger
than one. While again this will lead to a smaller bias, the smoother will have a
larger variance. Another approach is to start with a pilot smoother and to estimate
its bias by smoothing the residuals [3, 4, 6]. Subtracting the estimated bias from the
smoother produces a regression smoother with smaller bias and larger variance. For
the estimation of an energy spectrum, the additive bias correction and the higher
order smoothers have the unfortunate side effect of possibly generating a non-
positive estimate.

An attractive alternative to the linear bias correction is the multiplicative bias
correction pioneered by [19]. Because the multiplicative correction does not alter the
sign of the regression function, this type of correction is particularly well suited for
adjusting non-negative regression functions. [20] showed that if the true regression
function has four continuous derivatives, then the multiplicative bias reduction is
operationally equivalent to using an order four kernel. And while this does remove
the bias, it also increases the variance because of the roughness of such a kernel.

Many authors have extended the work of [20]. Glad [9, 10] propose to use a
parametrically guided local linear smoother and Nadaraya-Watson smoother by
starting with a parametric pilot. This approach is extended to a more general
framework which includes both multiplicative and additive bias correction by [21]
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(see also [16, 22, 28] for an extension to time series conditional variance estimation
and spectral estimation). For multiplicative bias correction in density estimation and
hazard estimation, we refer the reader to the works of [11, 12, 17, 23, 24].

Although the bias-variance tradeoff for nonparametric smoothers is always
present in finite samples, it is possible to construct smoothers whose asymptotic
bias converges to zero while keeping the same asymptotic variance. Hengartner
and Matzner-Lgber [13] has exhibited a nonparametric density estimator based on
multiplicative bias correction with that property, and has shown in simulations that
his estimator also enjoys good finite sample properties. Burr et al. [2] adapts the
estimator from [13] to nonparametric regression with aim to estimate energy spectra.
They illustrate the benefits of their approach on real and simulated spectra. The goal
of this chapter is to study the asymptotic properties of that estimator. It is worth
pointing out that these properties have already been studied by [19] for fixed design
and further by [20]. We emphasize that there are two major differences between our
work and that of [20].

 First, we do not add regularity assumptions on the target regression function. In
particular, we do not assume that the regression function has four continuous
derivatives as in [20].

* Second, we show that the multiplicative bias reduction procedure performs a bias
reduction with no cost to the asymptotic variance. It is exactly the same as the
asymptotic variance of the local linear estimate.

Finally, we note that we show a different asymptotic behavior under less restrictive
assumptions than those found in [20]. Moreover our results and proofs are different
from the above referenced works.

This contribution is organized as follows. Section 2 introduces the notation and
defines the estimator. Section 3 gives the asymptotic behavior of the proposed
estimator. A brief simulation study on finite sample comparison is presented in
Sect.4. The interested reader is referred to Sect.6 where we have gathered the
technical proofs.

2 Preliminaries

2.1 Notations

Let (X1, Y1), ..., (Xn, Yy) be n independent copies of the pair of random variables
(X, Y) with values in R x R. We suppose that the explanatory variable X has
probability density f and model the dependence of the response variable Y to the
explanatory variable X through the nonparametric regression model

Y =m(X) +¢. (D
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We assume that the regression function m(-) is smooth and that the disturbance ¢
is a mean zero random variable with finite variance o that is independent of the
covariate X. Consider the linear smoothers for the regression function m (x) which
we write as

mx) =Y wj(x; hY;,
j=1

where the weight functions w;(x; h) depend on a bandwidth A. If the weight
functions are such that Z?zl wj(x;h) =1and Z?:l wj(x; 1)? = (nh)~'72, and
if the disturbances satisfy the Lindeberg’s condition, then the linear smoother obeys
the central limit theorem

n
Vnh | m(x) — ij(x; hym(X ;) L v0,7%) as n— oo )
j=1
We can use (2) to construct asymptotic pointwise confidence intervals for the
unknown regression function m (x). But unless the limit of the scaled bias
n
b(x) = lim Vah [ 3w ym(X ) = mx) |
Jj=1
which we call the asymptotic bias, is zero, the confidence interval
[r?z(x) — Zi_appN/nhT, i (x) + Zl,a/zx/nhr]
will not cover asymptotically the true regression function m (x) at the nominal 1 — «
level (Z|_q/2 stands for the (1 — «/2)-quantile of the .47(0, 1) distribution). The

construction of valid pointwise 1 — « confidence intervals for regression smoothers
is another motivation for developing estimators with zero asymptotic bias.

2.2 Multiplicative Bias Reduction

Given a pilot smoother with bandwidth A for the regression function m(x),

(X)) =Y w;(x; ho)Yj,

j=1
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consider the ratio V; = (& e That ratio is a noisy estimate of the inverse relative
nitJ

estimation error of the smoother 7, at each of the observations, m (X ;)/m,(X ;).
Smoothing V; using a second linear smoother, say

@) =Y wjlx; h)V;,

j=1

produces an estimate for the inverse of the relative estimation error that can be used
as a multiplicative correction of the pilot smoother. This leads to the (nonlinear)
smoother

My (x) = 0y (X)itn (). 3)

The estimator (3) was first studied for fixed design by [19] and extended to the
random design by [20]. In both cases, they assumed that the regression function had
four continuous derivatives, and show an improvement in the convergence rate of
the bias corrected Nadaraya-Watson kernel smoother. The idea of multiplicative bias
reduction can be traced back to [9, 10], who proposed a parametrically guided local
linear smoother that extended a parametric pilot regression estimate with a local
polynomial smoother. It is showed that the resulting regression estimate improves
on the naive local polynomial estimate as soon as the pilot captures some of the
features of the regression function.

3 Theoretical Analysis of Multiplicative Bias Reduction

In this section, we show that the multiplicative smoother has smaller bias with
essentially no cost to the variance, assuming only two derivatives of the regression
function. While the derivation of our results is for local linear smoothers, the
technique used in the proofs can be easily adapted for other linear smoothers, and
the conclusions remain essentially unchanged.

3.1 Assumptions

We make the following assumptions:

1. The regression function is bounded and strictly positive, thatis, b > m(x) > a >
0 for all x.
2. The regression function is twice continuously differentiable everywhere.
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3. The density of the covariate is strictly positive on the interior of its support in the
sense that f(x) > b(#") > 0 over every compact %  contained in the support
of f.

4. ¢ has finite fourth moments and has a symmetric distribution around zero.

5. Given a bounded symmetric probability density K(-), consider the weights
wj(x; h) associated to the local linear smoother. That is, denote by K;(-) =
K (-/h)/ h the scaled kernel by the bandwidth /# and define for k = 0, 1, 2, 3 the
sums

Si(x) = Se(xih) = Y (X — )*Kn(X; — x).

j=1
Then
Sr(x;h) — (X; —x)S1(x; h
wj(x; h) = 206 8) = (Xj = x) 21(x )Kh(Xj—x).
S2(x; h)So(x; h) — 87 (x; h)
We set

@oj(x) = wj(x; ho) and wy;(x) = w;j(x; hy).
6. The bandwidths A and /4 are such that

hy
—0 as n— oo.

0

ho—> 0, hy — 0, nhy— oo, nh?—>oo,

The positivity assumption (assumption 1) on m(x) is classical when we perform
a multiplicative bias correction. It allows to avoid that the terms Y; /1, (X ;) blow
up. Of course, the regression function might cross the x-axis. For such a situation,
[10] proposes to shift all response data ¥; a distance a, so that the new regression
function m(x) 4+ a does not any more intersect with the x-axis. Such a method can
also be performed here. Assumptions 2—4 are standard to obtain rate of convergence
for nonparametric estimators. Assumption 5 means that we conduct the theory for
the local linear estimate. The results can be generalized to other linear smoothers.
Assumption 6 is not restrictive since it is satisfied for a wide range of values of hg
and hy.

3.2 A Technical Aside

The proof of the main results rests on establishing a stochastic approximation of
estimator (3) in which each term can be directly analyzed.
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Proposition 1 We have

i (X) = n () + Y o1 (D)A;(x) + Y w1j(x)Bj(x) + Y _ w1 (x)E;,

j=1 j=1 j=1

where u, (x), conditionally on X1, ..., Xy is a deterministic function, A;, Bj, and
&; are random variables. Under condition nhy — 00, the remainder &; converges
to 0 in probability and we have

R n n 1
my(x) = pu,(x) + Za)lj(x)Aj(x) + Zwlj(x)Bj(x) +0p <nho) '

j=1 j=1

Remark 1 A technical difficulty arises because even though &; may be small in
probability, its expectation may not be small. We resolve this problem by showing
that we only need to modify &; on a set of vanishingly small probability to guarantee
that its expectation is also small.

Definition 1 Given a sequence of real numbers a,, we say that a sequence of
random variables &, = o, (ay) if for all fixed ¢ > 0,

lim sup P[|&,| > ta,] = 0.

n—oo

We will need the following Lemma.

Lemma 1 If§, = o,(ay), then there exists a sequence of random variables & such
that

limsupP[§) #&,1=0 and E[§)] = o(ay).

n—-o0

We shall use the following notation:

E[&,] = E[&,;].

3.3 Asymptotic Behavior

We deduce from Proposition 1 and Lemma 1 the following theorem.

Theorem 1 Under the assumptions (1)-(6), the estimator im,, satisfies:

~ 1 1
E @m,(x)|X1,..., Xp) = pa(x) +O0p (n\/hom) +0, <nh0)
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and

R " 1 1
Va(@in ()| X1, ... Xp) =07 > wi(x) + 0, (nh0> + 0, (nm) .

j=1

We deduce from Theorem 1 that if the bandwidth ko of the pilot estimator
converges to zero much slower than 41, then i, has exactly the same asymptotic
variance as the local linear smoother of the original data with bandwidth h;.
However, for finite samples, the two step local linear smoother can have a slightly
larger variance depending on the choice of hg. For the bias term, a limited Taylor
expansion of u,(x) leads to the following result.

Theorem 2 Under the assumptions (1)-(6), the estimator im,, satisfies:
E (7, (x)|X1, . . ., Xp) = m(x) 4+ 0,(h?).

Remark 2 Note that we only assume that the regression function is twice con-
tinuously differentiable. We do not add smoothness assumptions to improve the
convergence rate from O, (h%) to op (h%). In that manner, our analysis differs from
that of [20] who assumed m to be four times continuously differentiable to conclude
that the bias corrected smoother converged at the O, (h‘l‘) rate. For a study of the
local linear estimate in the presence of jumps in the derivative, we refer the reader
to [5].

Remark 3 Under similar smoothness assumptions, [8, 10, 21] have provided a
comprehensive asymptotic behavior for the multiplicative bias corrected estimator
with a parametric guide. They obtain the same asymtptotic variance as the local
linear estimate and a bias reduction provided the parametric guide captures some of
the features of the regression function. We obtain a similar result when the rate of
decay of the bandwidth of the pilot estimate is carefully chosen.

Combining Theorems | and 2, we conclude that the multiplicative adjustment
performs a bias reduction on the pilot estimator without increasing the asymptotic
variance. The asymptotic behavior of the bandwidths /¢ and A is constrained by
assumption 6. However, it is easily seen that this assumption is satisfied for a large
set of values of g and /1. For example, the choice h| = cin— Y3 and hg = con™@
for0 < a < 1/5leads to

E, (,(X)|X1, ..., Xn) —m(x) = 0,(n" %)
and

Vo (i () X1, ... Xa) = O, (n*4/5).
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Remark 4 Estimators with bandwidths of order O(n™%) for 0 < o < 1/5 are
oversmoothing the true regression function, and as a result, the magnitude of their
biases is of larger than the magnitude of their standard deviations. We conclude that
the multiplicative adjustment performs a bias reduction on the pilot estimator.

4 Numerical Examples

Results presented in the previous sections show that our procedure allows to reduce
the bias of nonparametric smoothers at no cost for the asymptotic variance. The
simulation study in this section shows that the practical benefits of this asymptotic
behavior already emerge at modest sample sizes.

4.1 Local Study

To illustrate numerically the reduction in the bias and associate (limited) increase of
the variance achieved by the multiplicative bias correction, consider estimating the
regression function

m(x) =5+ 3|x|/? + x% 4+ 4 cos(10x)
at x = 0 (see Fig. 1). The local linear smoother is known to under-estimate the
regression function at local maxima and over-estimate local minima, and hence,

this example provides a good example to explore bias-reduction variance-increase
trade-off. Furthermore, because the second derivative of this regression function is

10.0

7.5

5.0

25

-1.0 -0.5 0.0 0.5 1.0

Fig. 1 The regression function to be estimated
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continuous but not differentiable at the origin, the results previously obtained by
[19] do not apply.
For our Monte-Carlo simulation, the data are generated according to the model

Yi=mX)+e, i=1,...,100,

where ¢; are independent .4 (0, 1) variables, and the covariates X; are independent
uniform random variables on the interval [—1, 1].

We first consider the local linear estimate and we study its performances over a
grid of bandwidths 7 = [0.005, 0.1]. For the new estimate, the theory recommends
to start with an oversmooth pilot estimate. In this regard, we take hp = 0.1 and
study the performance of the multiplicative bias corrected estimate for h; € J4 =
[0.005, 0.12]. To explore the stability of our two-stage estimator with respect to kg,
we also consider the choice 9 = 0.02. For such a choice, the pilot estimate clearly
undersmoothes the regression function. For both estimates, we take the Gaussian
kernel K (x) = exp(—x2/2)/+/2m.

We conduct a Monte Carlo study to estimate bias and variance of each estimate at
x = 0. To this end, we compute the estimate at x = 0 for 1000 samples (X;, ¥;),i =
1,...,100. The same design X;,i = 1, ..., 100 is used for all the sample. The bias
at point x = 0 is estimated by subtracting m(0) at the mean value of the estimate
at x = 0 (the mean value is computed over the 1000 replications). Similarly we
estimate the variance at x = 0 by the variance of the values of the estimate at
this point. Figure 2 presents squared bias, variance and mean square error of each
estimate for different values of bandwidths /4 for the local linear smoother and /;
for our estimate.

Comparing panel (a) and (c) in Fig.2, we see that if the pilot smoother under-
estimates the regression function, then the bias is small but the variance is large. For
such a pilot smoother, applying a bias correction does not provide any benefit, and
the resulting estimator can be worse than a good local linear smoother. Intuitively,
the bias of the pilot smoother is already small at the cost of a larger variance, and
operating a bias reduction provides little benefit to the bias and can only make the
variance worse, leading to a suboptimal smoother.

Comparing panel (a) and (b) in Fig.2, we note that the squared bias is smaller
for the bias corrected smoother over the standard local linear smoother, while the
variance of both smoothers is essentially the same. As a result, the mean squared
error for the bias corrected smoother is smaller than that of the local linear smoother.
This shows that the asymptotic properties outlined in Theorems 1 and 2 emerge for
moderate sample sizes. Table 1 quantifies the benefits of the bias corrected smoother
over the classical local linear smoother.

We conclude our local study by comparing the multiplicative bias correction
smoother starting from a nonparametric pilot with the multiplicative bias correction
smoother starting from a parametric model, as suggested by Glad [10]. Specifically,
we compare our smoother to multiplicative bias smoothers starting with the
following three parametric models:
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Fig. 2 Mean square error (dotted line), squared bias (solid line), and variance (dashed line) of the
local linear estimate (a) and multiplicative bias corrected estimate with 7p = 0.1 (b) and hy = 0.02
(c) at point x =0

Table 1 Optimal mean square error (MSE) for the local linear estimate (LLE) and the multiplica-
tive bias corrected estimate (MBCE) with g = 0.1 at point x = 0

MSE Bias? Variance
LLE 0.130 0.031 0.098
MBCE 0.068 0.003 0.065

* first, the guide is chosen correctly and belong to the true parametric family:
iy (x) = Po + Bilx1>/? + Bax? + B3 cos(10x);
* second, we consider a linear parametric guide (which is obviously wrong):
iy (X) = fo + Bix;

 finally, we use a more reasonable guide, not correct, but that can reflect some a
priori idea on the regression function

ﬁlg(x) = ,3() +,31x +,32x2 +...+ ngg.

All the estimates f ; stand for the classical least square estimates.
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Table 2 Pointwise optimal mean square error at x = 0 for the multiplicative bias corrected
estimates with parametric starts rﬁ{, j = 1,2,3, compared to a multiplicative bias corrected
smoother starting with initial bandwidth hg = 0.1

MSE Bias? Variance
Start 77} 0.052 0.000 0.052
Start rii’ 0.129 0.031 0.098
Start 7 0.090 0.019 0.071
MBCE 0.068 0.003 0.065

The multiplicative bias correction is performed on these parametric starts using
the local linear estimate. The performance of the resulting estimates is measured
over a grid of bandwidths 7% = [0.005; 0.4]. Bias and variance of each estimate
are still estimated at x = 0. We keep the same setting as above and all the results are
averaged over the same 1000 replications. We display in Table 2 the optimal MSE
calculated over the grid /4.

As expected, the performance depends on the choice of the parametric start.
Unsurprisingly, the performance of the smoother starting with the parametric guide
n~1,1, (which belongs to the true model) is best. Table 2 shows that (in terms of
MSE) the estimate studied in this work is better than the corrected estimated
with parametric start nﬁ% and nﬁg This suggests that in practice, when little priori
information on the target regression function is available, the method proposed in
the present contribution is preferable.

4.2 Global Study

The theory in Sect. 3 does not address the practical issue of bandwidths selection for
both the pilot smoother and the multiplicative adjustment. Burr et al. [2] suggests
adapting existing automatic bandwidth selection procedures to this problem. There
is a large literature on automatic bandwidth selection, including [14, 15]. In this
section, we present a numerical investigation of the leave-one-out cross-validation
method to select both bandwidths /¢ and 4 as to minimize the integrated square
error of the estimator. The resulting bias smoother is compared with a local
polynomial smoother, whose bandwidth is selected in a similar manner.

Our selection of test functions for our investigation relies on the comprehensive
numerical study of [18]. We will only compare our multiplicative bias corrected
smoother with the classical local linear smoother. In all our examples, we use a
Gaussian kernel to construct nonparametric smoothers to estimate the following
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Fig. 3 Regression functions to be estimated

regression functions (see Fig. 3):

(1) my(x) = sin(5mx)

(2) my(x) = sin(157x)

(3) m3(x) = 1 — 48x + 218x% — 315x3 + 145x*

(4) ma(x) = 0.3 exp[—64(x — .25)%] + 0.7 exp[—256(x — .75)?].

from data Y;; = m;(X;) + €j;, with disturbances ¢y, ..., £, i.i.d. Normal with
mean zero and standard deviation o; = 0.25||mj|l2, j = 1,...,4,and X1,..., X,
i.i.d. Uniform on [—0.2, 1.2].

We use a cross validation device to select both 4y and A; by minimizing
simultaneously over a finite grid .7 of bandwidths /¢ and % the leave-one-out
prediction error. That is, given a grid .7, we choose the pair (ﬁo, le) defined by

P ] 1< .
(ho, ki) = argmin (¥ — i} (X))
(ho,h))est x|
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Table 3 Median over 1000 replications of the selected bandwidths and of the integrated square
error of the selected estimates

LLE MBCE
h ISE (x 100) ho h ISE (x 100) Rise
m 0.023 0.957 0.050 0.032 0.735 1.316
ms 0.011 6.094 0.028 0.012 4771 1.286
ms 0.028 2.022 0.071 0.054 1.281 1.591
my 0.018 0.087 0.034 0.024 0.074 1.187

LLE and MBCE stands for local linear estimate and multiplicative bias corrected estimate

Here fn\ﬁl stands for the prediction of the bias corrected smoother at X;, estimated
without the observation (X;, Y;). We use the Integrated Square Error (ISE)

1
ISE(im) =/ (m(x) — m(x))? dx,
0

to measure the performance of an estimator 771. Note that even though our estimators
are defined on the interval [—0.2, 1.2] (the support of the explanatory variable), we
evaluate the integral on the interval [0, 1] to avoid boundary effects.

Table 3 compares the median ISE over 1000 replication, of a standard local linear
smoother and our bias corrected smoother from a samples of size n = 100. This
table further presents the median selected bandwidth, and the ratio of the ISE.

First, in all four cases, the ISE for the MBCE is smaller than that of the LLE.
Second, we note that both bandwidths for the multiplicative bias corrected are larger
than the optimal bandwidth of the classical local linear smoother. That & is larger
is supported by the theory, as the pilot smoother needs to oversmooth. We surmise
that larger bandwidth £ reflects the fact that the pilot is reasonably close to the
true regression function, and hence the multiplicative correction is quite smooth and
thus can accommodate a larger bandwidth. Figure 4 displays the boxplots of the
integrated square error for each estimate.

Figure 5 presents, for the regression function m; with n = 100 and 1000
iterations, different estimators on a grid of points. In lines is the true regression
function which is unknown. For every point on a fixed grid, we plot, side by side, the
mean over 1000 replications of our estimator at that point (left side) and on the right
side of that point the mean over 1000 replications of the local polynomial estimator.
Leave-one-out cross validation is applied to select the bandwidths /¢ and /1 for our
estimator and the bandwidth 4 for the local polynomial estimator. We add also the
interquartile interval in order to see the fluctuations of the different estimators. In
this example, our estimator reduces the bias by increasing the peak and decreasing
the valleys. Moreover, the interquartile intervals look similar for both estimator, as
predicted by the theory.
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Fig. 5 The solid curve represents the true regression function, our estimator is in dashed line and
local linear smoother is dotted

5 Conclusion

This chapter revisits the idea of multiplicative bias reduction under minimal
conditions and shows that it is possible to reduce the bias with little effect to the
variance. Our theory proves that our proposed estimator has zero asymptotic bias
while maintaining the same asymptotic variance than the original smoother. The
simulation study in this work shows that this desirable property emerges for even
modest sample sizes. The one downside of our estimator is that the computation of
data driven “optimal” bandwidths is computationally expensive.

6 Proofs

6.1 Proof of Proposition 1

Write the bias corrected estimator

i (x) = Zm,-(x)nff"g;) Yj =Y w1j(0)R;x)Y],
j=1 : j=1

and let us approximate the quantity R;(x). Define

ma(x) =Y woj()m(X ) =B (g () X1, ..., Xp),
j=1
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and observe that

R0 :n’j&))
. . . S o= e ]
_ f’ln(x) % (1 4 mn(xz _mn(x)> « (1 4 mn(X/_) mn(X/)>
mn(X/) my (x) mn(X/)
= ") 14 An()] x
(X)) " Ay
where
iy (X) — 1y (x) 21<n @01 (X)€1
A,(x) = . = .
iy (X) > 1<n @or (x)m(Xp)

Write now R;(x) as

1y (X)

R = )

[T+ 20 (x) = Au(X)) +7j(x, X))]

where r;(x, X;) is a random variable converging to 0 to be defined later on. Given
the last expression and model (1), estimator (3) could be written as

() =Y o1 () R; ()Y,

j=1
—Zan () ) (Xv>+fw1 () ) [ej +m(X;) (An(x) = An(X )]
J _Vl(X) J = J = (X) J J n n J
+Za)1 (x) iy (X) (An(x) — An(X ) &} +Za)1 o " i (X) ri(x, X))Y;
J = (X) J J = (X ) J

j=1

=pn(X) + Y _01j()A;(X) + Y w1 (X)Bj(X) + Y o1 (0)E.

=1 j=1 j=1

which is the first part of the proposition. Under assumption set forth in Sect.3.1,
the pilot smoother m, converges to the true regression function m(x). Bickel
and Rosenblatt [1] shows that this convergence is uniform over compact sets %
contained in the support of the density of the covariate X. As a result, for n large
enough sup,  » |, (x) —m,(x)| < ; with probability 1. So a limited expansion of
(14 u)~! yields for x € #

R;(x) = Z&)) [1+ 20@) = 2,X) + 0, (1420 A, (X1 + 42X ) |
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thus

%‘j = Op (|An(X)An(Xj)| + Ai(XJ)) :

Under the stated regularity assumptions, we deduce that§; = O, (n ,110 ) , leading to
the announced result. Proposition 1 is proved.

6.2 Proof of Lemma 1

By definition limsup,__, . P[|&;| > ta,] = O for all t > 0, so that a triangular
array argument shows that there exists an increasing sequence m = m (k) such that

1
]P’[lgnl > CZL] < P for all n > m(k).
Form(k) <n <m(k+ 1) — 1, define

%.; _ {gn if |&,] < kilan

0 otherwise.

It follows from the construction of & that for n € (m(k), m(k + 1) — 1),

1
P&, # &1 = P[1&,] > k™ 'a,] < e

which converges to zero as n goes to infinity. Finally set k(n) = sup{k : m(k) < n},
we obtain

* an _
E[lg;1] < k) o(an).

6.3 Proof of Theorem 1

Recall that 771,, (x) = up (x)—l—Z;'.:l w1 (x)A; (x)—l—Z'}zl w1 (x)Bj(x)+O0p (n}lo )
Focus on the conditional bias, we get

E(ua()IX1, o, Xn) = pua(x),  E(A;(0)[X1, ..., Xp) =0
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and

E(B;(x)|X1, ..., Xn) = M (X) 02<a)0j(x) 3 woj(Xj)>.

mn (X ) mp(x)  mp(Xj)
Since
n n n 1
D w1j@wojx)| < | D wijx)? ZwOj(x)220p< Jhoh )
j=1 j=1 j=1 nviton
we deduce that
Z 1
w1ix)Bix)|X1,...,Xn ] =0 ( )
; J J ‘ n P\ n/hoh,

This proves the first part of the theorem. For the conditional variance, we use the
following expansion of the two-stage estimator

R i (%) !
1, (x) = Zw”(x)‘,,(X) i (1+[An(x) — An(Xj)])—i-Op(nhO).

Using the fact that the residuals have four finite moments and have a symmetric
distribution around 0, a moment’s thought shows that

1
V(Y [An(x) = An(XP] X1, ..., Xn) = Op (nho)
and
1
Cov(Yj,Y; [An(x) - AH(XJ')] X1, Xu) = Op (nho) .

Hence
n n_1 (x) 1
. n
V(@) X1, ..., X)) =V X_:wlj(x)’hn(X)Yj‘Xh...,Xn +Op<nh0>'

Observe that the first term on the right-hand side of this equality can be seen as the
variance of the two-stage estimator with a deterministic pilot estimator. It follows
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from [10] that

n () n 1
;a)“( x) _ (;) Xi,..., X, =622w%j(x)+0p (nh1>’

j=1

which proves the theorem.

6.4 Proof of Theorem 2

Recall that

My (X)

() =Y o1 in(X3)

j=n

m(X ).

We consider the limited Taylor expansion of the ratio

m(X]) o m(x) o m(x) 2 (x) "
iin(X)) g T (nmc)) MER A ( in >) (+optl,

then
o m(x) " ‘ m(x) - o ‘
M (X) = mp(x) 17t () j§:1 w1j(x) + (n_’l,,(x)) j§:1(X] x)wij(x)

< m(x) ) Z(X Cl)lj(x)(l +o0,(1))

MMy (x)
It is easy to verify that Z?:l w1j(x) =1, Z?zl(Xj —x)wij(x) =0, and

S3(x; hy) — S3(x; h)Si(x; )

. h — PR 2 . = .
Z2(x; h1) Z(X/ () Sa(x; h1)So(x: k) — ST(xs hy)

j=1
For random designs, we can further approximate (see, e.g., [27])

RE Gk f(x) + op(h*) for k even

Sk(x, hy) =
) {h"“ K1 #/(x) + 0, (BEF1) for k odd,
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where of = [ u*K () du. Therefore
Zo(x; hy) = i f u?K (u) du + o, (h?)
= oghi + 0, (h}),

so that we can write 1, (x) as

o m(x)  oph} (m(x) ),, )
M (X) =1, (x) i () 2 iy () +op(hy)

_ K o (MO o2

=m(x) + B mp (x) (l’;ln(x)> + Op( -

Moreover

my (x)

m(x) \" _ i om’ () i Goi, (rm ()
( )_ mix) 3 (x)
m @ () (x) | m() (i), (x))?

3 (x) m3 (x)

and applying the usual approximations, we conclude that

m(x) " B
(i) =ont

Putting all pieces together, we obtain

. B _ 2 1 1
E@@m,(x)|X1, ..., X)) —m(x) =0,(h7) + 0O, <nJh0h1) +0,p <nh0) .

Since nh% —> 00 and Z(l) — 0, we conclude that the bias is of order o, (h%).
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Efficiency of the V-Fold Model Selection m)
for Localized Bases ik

F. Navarro and A. Saumard

Abstract Many interesting functional bases, such as piecewise polynomials or
wavelets, are examples of localized bases. We investigate the optimality of V-fold
cross-validation and a variant called V -fold penalization in the context of the selec-
tion of linear models generated by localized bases in a heteroscedastic framework.
It appears that while V-fold cross-validation is not asymptotically optimal when V
is fixed, the V-fold penalization procedure is optimal. Simulation studies are also
presented.

1 Introduction

V-fold cross-validation type procedures are extremely used in statistics and machine
learning, with however a rather small set of theoretical results on it [3]. This
chapter aims at investigating from the theoretical point of view and on simulations,
the efficiency of two V-fold strategies for model selection in a heteroscedastic
regression setting, with random design. On the one hand, we investigate the
behaviour of the classical V-fold cross-validation to select, among other examples,
linear models of wavelets. As pointed out in the case of histogram selection in [2],
this procedure is not asymptotically optimal when V is fixed, as it is the case in
practice where V is usually taken to be equal to 5 or 10. On the other hand, we
study the V-fold penalization proposed by Arlot [2] and show its efficiency in our
general context.

More precisely, the present contribution is devoted to an extension of some
results obtained in [16] related to efficiency of cross-validation type procedures.
Indeed, as remarked in [16] (see Remark 5.1 therein) our results obtained for the
selection of linear models endowed with a strongly localized basis (see Definition
(Aslb), Section 2.1 of [16]) can be extended to more general and more classical
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localized bases, at the price of considering only models with sufficiently small
dimensions. Rigorous proofs are given here and further simulation studies are
explored.

This chapter is organized as follows. In Sect. 2, we describe our model selection
setting. Then V-fold cross-validation is considered in Sect. 3, while the efficiency of
V-fold penalization is tackled in Sect.4. A simulation study is reported in Sect. 5.
The proofs are exposed in Sect. 6.

2 Model Selection Setting

Assume that we observe n independent pairs of random variables & = (X;, Y;) €
Z xR with common distribution P. For convenience, we also denote by & =
(X, Y) a random pair, independent of the sample (&1, ..., &,), following the same
distribution P. The set 2" is called the feature space and we assume 2~ C RY,
d > 1. We denote by PX the marginal distribution of the design X. We assume that
the following regression relation is valid,

Y=s5.X)+0(X)e,

with s, € Ly (P¥) the regression function that we aim at estimating. Conditionally
to X, the residual ¢ is normalized, i.e. it has mean zero and variance one. The
function o : 2~ — R is a heteroscedastic noise level, assumed to be unknown.

To produce an estimator of s,, we are given a finite collection of models .#,,
with cardinality depending on the amount n of data. Each model m € .#, is taken
to be a finite-dimensional vector space, of linear dimension D,,. We will further
detail in a few lines the analytical structure of the models.

We set ||sll, = (fx szdPX)l/2 the quadratic norm in L; (PX) and s;,, the
orthogonal—with respect to the quadratic norm—projection of s, onto m. For a
function f € Ly (P), we write P(f) = Pf = E[f (§)]. We call the least squares
contrast a functional y : Ly (PX) — L1 (P), defined by

7)) G =s)? . seL(PY).
Using these notations, the regression function s, is the unique minimizer of the risk,

sy =arg min_ P (y (s)) .
seL(PX)

The projections s, are also characterized by

sum = argmin P (y (s)) .
SEM
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To each model m € ., we associate a least squares estimator $,,,, defined by

Sm € argmin {P, (y (5))}
= argnéin!i Z (Yi —s (Xi))z} ,
e i=1

where P, =n~! Y, 8, is the empirical measure associated to the sample.
The accuracy of estimation is tackled through the excess loss of the estimators,

Efse5n) i= Py () = 50) = 5 — 52
The following “bias-variance” decomposition holds,
€ (5w 5m) = € e sm) + € (52 $m)
where
€(ser5m) 1= P (v (5m) = ¥ (5:)) = llsm — 513
C(sm.8m) =P (y (Sm) —¥ (5m)) = 0.

The deterministic quantity £ (sx, s5,) is called the bias of the model m, while the
random variable ¢ (sm, §m) is called the excess loss of the least squares estimator Sy,
on the model m. By the Pythagorean Theorem, we have

s = [ — s

From the collection of models .#,, we aim at proposing an estimator that is as
close as possible in terms of excess loss to an oracle model m.,, defined by

my € argmneli/?/ {E (s*, §m)} .

We choose to select an estimator from the collection {fm ;m e ///n}. Hence, the
selected model is denoted by /. The goal is to ensure that the selected estimator
achieves an oracle inequality of the form

€(s4.8m) < C x inf £ (s, 8n) .

me. My,

for a constant C > 1 as close as possible to one and on an event of probability close
to one.
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3 V-Fold Cross-Validation

For convenience, let us denote in the following s, (P,) the least squares estimator
built from the empirical distribution P, = 1/n )", 8(x,,y;)- To perform the V-fold
cross-validation (VFCV) procedure, we consider a partition (B f)1<j<v of the index
set {1, ..., n} and set o

pU) _ 5 4 pCi 5
" Card( )Z (A ~ n—Card(B Z et -
i€B; t¢B

We assume that the partition (Bj) is regular: for all j € {1,...,V},

l<j<V
Card (B j) = n/V.Itis worth noting that it is always possible to define our partition
such sup; |Card (B ) —n/ V| < 1 so that the assumption of regular partition is

only a slight approximation of the general case. Let us write s, A( D= Pn(_j ))

the estimators built from the data in the block B;. Now, the selected model MVECY
is taken equal to any model optimizing the V-fold criterion,

myEcy € arg nlél%, {critvrey (m)} (D
where
, LS (), (=)
mmww=vgay@ ) @)

Let us now detail the set of assumptions under which we will investigate the
accuracy of VFCV.

Set of assumptions: (SA)

(P1) Polynomial complexity of .#,: there exist some constants ¢z, ay > 0
such that Card (%) < c_yn*# .

(Alb) There exists a constant r_, such that for each m € .#), one can find an
orthonormal basis ((,ok),?:’”1 satisfying, for all (,Bk),?:’”1 € RPn,

<74V D lBls » 3)

o]

where |8l = max {|Bk|; k € {1,..., Dn}}.
(P2) Upper bound on dimensions of models in .#,: there exists a positive
constant A_4 4 such that for every m € .4, Dy, < A///,+n1/3 (In n)*z.
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(Ab) A positive constant A exists that bounds the data and the projections s,, of
the target s, over the models m of the collection .Z,: |Y;| < A < 00, [lsmllee <
A < ooforallm e A,.

(An) Uniform lower-bound on the noise level: o (X;) > omin > 0 a.s.

(Ap,) The bias decreases as a power of D,,: there exist 84+ > 0 and C > 0 such
that

€ (55.5m) < Cy D"

Assumption (Alb) refers to the classical concept of localized basis (Birgé and
Massart [6]). It is proved in [5], Section 3.2.1, that linear models of piecewise
polynomials with bounded degree on a regular partition of a bounded domain of
R? are endowed with a localized basis. It is also proved that compactly supported
wavelet expansions are also fulfilled with a localized basis on R¢. However, the
Fourier basis is not a localized basis. For some sharp concentration results related
to the excess loss of least squares estimators built from the Fourier basis, we refer
to [19].

The assumption (Alb) is more general than the assumption of strongly localized
basis used in [16], but the price to pay for such generality is that, according to (P2)
we can only consider models with dimensions D,, << n'/3.

Assumption (P1) states that the collection as a polynomial cardinality with
respect to the sample size, allowing in particular to consider a collection of models
built from a basis expansion.

Then Assumption (Ab) is related to boundedness of the data and enables
in particular to use Talagrand’s type concentration inequalities for the empirical
process. Going beyond the bounded setting would in particular bring much more
technicalities that might darken our work. For an example of results in an unbounded
setting, see, for instance, [4], dealing with optimal selection of regressograms (his-
tograms being a very particular case of our general framework). Assumption (An)
is essentially a technical assumption that allows to obtain sharp lower bounds for
the excess losses of the estimators. Condition (Ap,) is a very classical assumption
in the model selection literature, specifying a rate of decay for the biases of the
models. This assumption is classically satisfied for piecewise polynomials when the
regression function belongs to a Sobolev space and for wavelet models whenever
the target belongs to some Besov space (see, for instance, [5] for more details). The
specific value of B4 parameter will only affect the value of the constants in the
derived oracle inequalities.

Theorem 1 Assume that (SA) holds. Let r € (2,400) and V € {2,...,n—1}
satisfying 1 < V < r. Define the V-fold cross-validation procedure as the model
selection procedure given by (1). Then, for all n > ng ((SA) , r), with probability at
least 1 — L(SA),rn_z,

- Lsayr\ . 4 (Inn)?
L (Rt A | R
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In Theorem 1, we prove an oracle inequality with principal constant tending to
one when the sample size goes to infinity. This inequality bounds from above the
excess loss of the selected estimator by the excess loss of the oracle learned with a
fraction 1 — V! of the original data. Ideally, one would, however, expect from an
optimal procedure to recover the oracle built from the entire data. The next section
is devoted to this task.

Parameter V (or r) is considered in Theorem 1 as a constant, essentially for ease
of presentation. Actually, the value of V may be allowed to depend on n but also
on the dimensions D,,, meaning that we may take different values of V according
to the different models of the collection. More precisely, it can be seen from the
arguments in the proofs (especially from Theorem 8 in [18]) that for each model
m € My, it suffices to have V < max {D,,(Inn)~7; 2} where 7 is any number in
(1, 3) to ensure an oracle inequality with leading constant tending to one when the
amount of data tends to infinity. In this case, » cannot be considered as a parameter
independent from the sample size anymore, but it can be checked that for the latter
constraints on V, the constants ng ((SA) , ) and L sa),» do not explode but are still
uniformly bounded with respect to n and thus can still be considered as independent
from n.

4 V-Fold Penalization

Now we investigate the behaviour of a penalization procedure proposed by Arlot [2]
and called V-fold penalization,

MpenVE € arg min {critpenve (m)} |
ney,

where
CritpenvF (M) = Py (¥ (Sm)) + penyg (m) ,
with
Voly ~(—)) (=), (=)
penyg (m) =, [PnV (Sm ) - Py (sm )] . )

j=1

The property underlying the V-fold penalization is that the V-fold penalty penyg

is an unbiased estimate of the ideal penalty pen,y, the latter allowing to identify the
oracle m.,

my € arg min {P (y Gm))}

= arg min {P, (y ) + peng (m)} |
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where

peng (m) = P (y (sm)) — Pu (¥ Gm)) -

The following theorem states the asymptotic optimality of the V-fold penaliza-
tion procedure for a fixed V.

Theorem 2 Assume that (SA) holds. Let r € (2,400) and V € {2,...,n—1}
satisfying 1 < V < r. Define the V-fold cross-validation procedure as the model
selection procedure given by

MpenvF € arg min {Pu (v Gin)) + penyp (m)}

Then, for all n > ng ((SA) , r), with probability at least 1 — L(SA),,n_Z,

~ Lisay,r\ . ~ (Inn)?
E (S*, sn/’;penVF) S <1 + Jlnn >m161’«1;n {E (S*’ Sm)} + L(SA),V .

As for Theorem 1 above, parameter V (or r) is considered in Theorem 2 as
a constant but in fact, the value of V may be allowed to depend on n and even
on the dimensions Dy, this case corresponding to possibly different choices V
according to the models of the collection. As for Theorem 1, it is allowed to have
V < max {Dm(ln n)"%; 2} where t is any number in (1, 3) to ensure an oracle
inequality with leading constant tending to one when the amount of data tends to
infinity.

5 Simulation Study

In order to assess the numerical performances of the model selection procedures we
have discussed, a short simulation study was conducted. Particularly, to illustrate
the theory developed above for the selection of linear estimators using the V-fold
cross-validation and V-fold penalization, linear wavelet models were considered.

Despite the fact that a linear wavelet estimator is not as flexible, or potentially
as powerful, as a nonlinear one, it still preserves the computational efficiency of
wavelet methods and can provide comparative results to thresholding estimator,
particularly when the unknown function is sufficiently smooth (see [1]).

The simulations were carried out using Matlab and the wavelet toolbox Wave-
1ab850 [10]. The codes used to replicate the numerical results presented here will
be available at https://github.com/fabnavarro. For more details on the numerical
simulations and comparisons with other model selection procedures, we refer the
reader to [19].


https://github.com/fabnavarro
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Fig. 1 The three test functions used in the simulation study (from left to right Angle, Corner and
Parabolas)

The simulated data were generated according to ¥; = s.(X;) + o (X;)e;, i =
1,...,n, where n = 4096, X;’s are uniformly distributed on [0, 1], &;’s are
independent .4 (0, 1) variables and independent of X;’s. The heteroscedastic noise
level o(x) = |cos(10x)|/10. Daubechies’ compactly supported wavelet with 8
vanishing moments was used. Three standard regression functions with different
degrees of smoothness (Angle, Corner, and Parabolas, see [7, 14]) were considered.
They are plotted in Fig. 1 and a visual idea of the noise level is given in Fig. 2b.

The computation of wavelet-based estimators is straightforward and fast in the
fixed design case, thanks to Mallat’s pyramidal algorithm [13]. In the case of random
design, the implementation requires some changes and several strategies have been
developed in the literature (see, e.g., [8, 11]). In the regression with uniform design
[9] has examined convergence rates when the unknown function is in a Holder
class. They showed that the standard equispaced wavelet method with universal
thresholding can be directly applied to the nonequispaced data (without a loss in
the rate of convergence). We have followed this approach since it preserves the
computational simplicity and efficiency of the equispaced algorithm. In the context
of wavelet regression in random design with heteroscedastic dependent errors [12]
has also adopted this approach. Thus, the wavelet coefficients of the collection of
models is computed by a simple application of Mallat’s algorithm using the ordered
Y;’s as input variables. The collection is then constructed by successively adding
whole resolution levels of wavelet coefficients. Thus, the considered dimensions
are {D,,m € My} = {2/,j = 1,...,J — 1}, where J = log2(n) (the
finest resolution level). Finally, the selected model is obtained by minimizing (2)
and (4) over the set m € .#,. Note that these linear models operate in a global
fashion since whole levels of coefficients are suppressed as opposed to thresholding
methods.

For choosing the threshold parameter in wavelet shrinkage Nason [15] adjusted
the usual 2FCV method—which cannot be applied directly to wavelet estimation.
In order to implement its strategy in a linear context, we test, for every model
of the collection, an interpolated wavelet estimator learned from the (ordered)
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Fig. 2 (a) Noisy observations. (b) Typical reconstructions from a single simulation with n =
4096. Dashed line indicates the true function s, solid line corresponds to the estimates Sz, and
dashed-dotted line to 's},pem. (c) Graph of the excess risk £(s,5,;) (black) against the dimension
Dy, and (rescaled) critprcy (m) (gray) and critpenzp(m) (light-gray) (in a log-log scale). The gray
circle represents the global minimizer magpcy of critopcy (m), the light-gray diamond corresponds
to the global minimizer mspcy of Critpen2r(m) and the black star the oracle model m.

even-indexed data against the odd-indexed data and vice versa. More precisely,
considering the data X; are ordered, the selected model mpcy (resp. n’ipenzF) is
obtained by minimizing (2) (resp. (4)) with V. = 2, By = {2,4,...,n} and
B, ={1,3,...,n—1}.

For one Monte Carlo simulation with a sample size n = 4096, we display the
estimation results in Fig. 2b. Plots of the excess risk £(sx,5,;) against the dimension
Dy, are plotted in Fig. 2c. The curve critarcy (m) and critpen2r(m) are also displayed
in Fig. 2c. It can be observed that critorey () and critpen2r(m) give very reliable
estimate for the risk £(s4,Sy), and in turn, also a high-quality estimate of the
optimal model. Indeed, in this case, both methods consistently select the oracle
model m..
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6 Proofs

As a preliminary result, let us first prove the consistency in sup-norm of our
least squares estimators. This is in fact the main change compared to the strongly
localized case treated in [16].

Theorem 3 Let « > 0. Assume that m is a linear vector space satisfying
Assumption (Alb) and use the notations given in the statement of (Alb). Assume
also that Assumption (Ab) holds. If there exists Ay > 0 such that

VE

A :
= (lnn)?

then there exists a positive constant L4 ; , o such that, for alln > no (r.yz, ),

Dy 1
P (Hs:m — Sm ||OO > LA,r_///,ot\/ mnnn) < n¢.

Proof (Proof of Theorem 3) Let C > 0. Set
F&={sem;|s —smle < C}
and
FXe=1{sem;|ls —smlloo > C} =m\F .

Take an orthonormal basis (cpk)f;"l of (m, ||-]l,) satisfying (Alb). By Lemma 19 of
[16], we get that there exists Lg)rm o > 0such that, by setting

,,,,,

Q max_ [(Py— P) W - 90l < LY \/ln”

= X — . N
1 kel n m P =Ly o "

we have for alln > ng (A4), P(£21) > 1 —n~%. Moreover, we set

2= max (P, — P) (¢ - @)l < L) min{[l¢illo s 01ll00} ,
(k.)e(l,....Dy Y2 n

where foz;m is defined in Lemma 18 of [16]. By Lemma 18 of [16], we have that
foralln > ng (A4), P(§22) > 1 —n=% and so, for all n > ng (Ay),

P(Qlﬂ.@z) >1—2m.
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We thus have for all n > ng (A4),
P(lsn — smlloo > C)

<P < 11('_1?;0 Py (y (s) =y (sm) < ii}f/:foc Py(y(s)—vy (Vm))>
SE. SEFQ

&Fsc

=P< sup Py (¥ (sm) —y (s)) = sup Py (¥ (sm) — ¥ (S)))

SEFG seFE°

sP({ sup Py (v (sm) =¥ () = sup Py (y (sm) — ¥ (s))}ﬂszlﬂﬂz) +2n°
seFw sefc/z
)

Now, for any s € m such that

D
s—sm=Y P B = (B € RPm,
k=1

we have

Py (y (sm) = v (5))
= (P = P) Wi - (m = 9) = (Pa = P) (5 = 50)) = P (¥ () = ¥ (5m))

Din D
= B (Pu—P)Wm - 9) = Y BB (Pu— P) (o~ 91) — Zﬂk
k=1 k=1

We set for any (k,/) € {1,..., Dm}z,

R") = (Py— P) (Y - 1) and R}, = (Po — P) (g1 - 91) -

Moreover, we set a function /,,, defined as follows:

Dy
p= (ﬂk)leZﬂkR(” Z,Bkﬂankl > Bt
k=1

k=1 k=1
We thus have for any s € m such thats — s, = ZkD;"l Bkok, B = (,Bk)kD;"I e RPm,

Py (y (sm) =y (8)) =ha (B) - (6)
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In addition we set for any = (,Bk)kD;"1 € RPn,

1Blm.oo = Tmy/ D 1Blos -

It is straightforward to see that |-|,, », is a norm on RPn | proportional to the sup-
norm. We also set for a real D,, x D, matrix B, its operator norm || A||,,, associated
to the norm |-, -, on the D,,-dimensional vectors. More explicitly, we set for any
B e RDm X D,

B
IBly=  sp  oome gy PPl
BeRDm | g=£0 |ﬁ|moo BeRDPm | B=£0 |ﬁ|oo

We have, for any B = (Bk 1) € RPnxDm the following classical formula

IBll,, = max > Bl
€ m

Notice that by inequality (3) of (Alb), it holds

Dp,
ﬂs‘ec{sem;s—sﬁZﬂkwk & |ﬂ|m,oozC} (7)
k=1
and
Dy
y&"}z?{sem; S—sw=) Ppx & |/3|moo—c/2} (®)
k=1

Hence, from (5), (6), (8), and (7) we deduce that if we find on §21 ) 22 a value of
C such that

sup hn (B) < sup ha (B)
BERDM, |l 002C BERDM, |Bl,, 0o <C/2

then we will get
P(lsm = smllooc > €) <207

Taking the partial derivatives of &, with respect to the coordinates of its arguments,
it then holds for any (k, 1) € {1,..., D,,}*> and g = (ﬂ,)D’" € RPn,

dhy (1) @
ap, B = Rui ~ 2;/3,1%”,” 2Bk 9)
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We look now at the set of solutions g of the following system,

dh
p

We define the D,, x D,, matrix R,(lz) to be

R® = (R(2)

"B)=0,Vke{l,...,Dp)} . (10)
k

n,k,l

and by (9), the system given in (10) can be written
2 (IDm + R,(,2)> p=RD, S)
where R,(,l) is a Dy,-dimensional vector defined by

1 (n
Rr(z ) = (Rn,k) _

Let us give an upper bound of the norm H R,(,z) H , in order to show that the matrix
m

Ip,, + R,(lz) is nonsingular. On §2; we have

RQW‘ - max b p .
H " lm T keflo D) ZE“ZD}K n — P) (g - o)
: Inn
= Léfim ke{{naxD } Z min {[|gll oo ; ||<Pl||oo}\/ i
""" " I€{l,..., Dy}

(1)

IA
s
~
S
s
&
>
3
5
N

Hence, from (11) and the fact that D,, < Ay (l';lf)z, we get that for all n >

|

-1
and the matrix (Id—i—R,(lz)) is nonsingular, of inverse (Id~|—R,(12)> =

no (rm, @), it holds on £2;,

1
<

R(z)‘
"l T2

u
::8 (—R,@) . Hence, the system (S) admits a unique solution 8V, given by

1 M Ha
g = (la+RP) R



66 F. Navarro and A. Saumard

Now, on £2; we have

1 ) Dm Inn
[RO) < /D, max |(Py = P) (i - 90)| < rmLA,,m,a/ ;

and we deduce that for all ng (ry,, @), it holds on 2, [ €21,

‘ﬁ(n)

1 2 -1 1 [€)) Dmlnn
I (R W IETT LA e

Moreover, by the formula (6) we have

2

Dm
hn (B) = Py (v (sm)) — P (Y - Zﬁk‘/)k)
k=1

and we thus see that &, is concave. Hence, for all ng (r,, o), we get that on £25,
,3(") is the unique maximum of %, and on £2, () £2, by (12), concavity of 4, and
uniqueness of ™, we get

(B)= s mB> s k),

BERPm  |B],, o<C/2 BeRPm, |Bl,, 5o=C
: _ (n Dy Inn .
with C = 2r, L, . a\/ s which concludes the proof.

From Theorem 2 of [17] and Theorem 3 above, we deduce the following excess
risks bounds.

Theorem 4 Let Ay, A_,a > 0. Assume that m is a linear vector space of finite
dimension Dy, satisfying (Alb(m)) and use notations of (Alb(m)). Assume, moreover,
that the following assumption holds:

(Ab(m)) There exists a constant A > 0, such that ||y |loo < Aand|Y| < A a.s.

If it holds

, VE

A_(Inn)" <D, <A )
( ) = Um = A4 (11’1}1)2

then a positive constant A exists, only depending on o, A_ and on the constants
A, Omin and ry, such that by setting

:<lnn)1/4 <Dmlnn)1/4}
&, = Ap max , )
D, n
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we have foralln > no (A_, A+, A, ', Omin, &),
G, G,
P[(l—en) "<l Sm) = (1 +€n) ’”} >1—10n7%,
n n
©, ¢ _
P[(I—S%) . 5£emp(§m,sm)s(1+85) n’”} >1-5n7%,

where €, = ZkD;"l var (Y — sy (X)) - ¢x (X)).

Having at hand Theorem 4, the proofs of Theorems 1 and 4 follow from the exact
same lines as the proofs of Theorems 6 and 7 of [16]. To give a more precise view of
the ideas involved, let us detail the essential arguments of the proof of Theorem 1.

We set

Vv

. . 1 i
critypey (m) = crityrey (m) — v Z P (v (s0)) .
j=1

The difference between crit(\),FCV (m) and crityrcy (m) being a quantity independent
of m € #,, the procedure defined by Crit(\)/ch gives the same result as the VFCV
procedure defined by critygcy.

We get for all m € .4,

crit(\),FCV (m) = ‘1/ -XV;P,,(]-) ()/ ('frffj)) 4 (s*)>
-V X[ (7))

+ (P = P) (r Gm) = v 5D + P (7 Gsm) = ¥ (50)]
zz(s*,@,(;l)) + Ay (m) + 8 (m) (13)

where

Avom = SR () = v w) =P (v (5577) =¥ 6).
j=1

and

V .
Som = 3 (B = P) 6 )~y 520
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Now, we have to show that Ay (m) and § (m) are negligible in front of ¢ (s*, ?,f,_l)).

For § (m), this is done by using Bernstein’s concentration inequality (see Lemma 7.5
of [16]). To control Ay (m), we also make use of Bernstein’s concentration
inequality, but by conditioning successively on the data used to learn the estimators

?,f;”, j=1,...,V (see Lemma 7.3 and Corollary 7.4 of [16]).
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Non-parametric Lower Bounds ®)
and Information Functions ik

S. Y. Novak

Abstract We argue that common features of non-parametric estimation appear in
parametric cases as well if there is a deviation from the classical regularity condition.
Namely, in many non-parametric estimation problems (as well as some parametric
cases) unbiased finite-variance estimators do not exist; neither estimator converges
locally uniformly with the optimal rate; there are no asymptotically unbiased with
the optimal rate estimators; etc.

We argue that these features naturally arise in particular parametric subfamilies
of non-parametric classes of distributions. We generalize the notion of regularity of
a family of distributions and present a general regularity condition, which leads to
the notions of the information index and the information function.

We argue that the typical structure of a continuity modulus explains why
unbiased finite-variance estimators cannot exist if the information index is larger
than two, while in typical non-parametric situations neither estimator converges
locally uniformly with the optimal rate. We present a new result on impossibility
of locally uniform convergence with the optimal rate.

1 Introduction

It was observed by a number of authors that in many non-parametric estimation
problems the accuracy of estimation is worse than in the case of a regular parametric
family of distributions, estimators depend on extra tuning “parameters,” unbiased
estimators are not available, the weak convergence of normalized estimators to the
limiting distribution is not uniform at the optimal rate, no estimator is uniformly
consistent in the considered class of distributions. These features have been
observed, e.g., in the problems of non-parametric density, regression curve, and tail
index estimation (cf. [9, ch. 13], and the references therein).
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Our aim in this study is to develop a rigorous treatment of these features through
a generalization of the notion of regularity of a family of probability distributions.
We argue that features mentioned above (which might have been considered
accidental drawbacks of particular estimation procedures) in reality are inevitable
consequences of the “richness” of the non-parametric class of distributions under
consideration.

We argue that the degree of “richness” of the class of distributions determines
the accuracy of estimation. The interplay between the degree of “richness” and the
accuracy of estimation can be revealed via the non-parametric lower bounds. In
some situations the lower bound to the accuracy of estimation is bounded away
from zero, meaning consistent estimation is impossible.

2 Regularity Conditions and Lower Bounds

In a typical estimation problem one wants to estimate a quantity of interest
ap from a sample Xi,..., X, of independent and identically distributed (i.i.d.)
observations, where the unknown distribution P = £.(X1) belongs to a particular
class Z.

If there are reasons to assume that the unknown distribution belongs to a
parametric family & = {Py, 0 € ®}, ©® C 2, where 2 is R™ or a Hilbert
space, then it is natural to choose ap, = 6. Other examples include ap = fp, the
density of P with respect to a given measure w (assuming every P € & has a
density with respect to (), the tail index of a distribution form the class of regularly
varying distributions, etc.

Let

d,, d and d,

denote Hellinger, x2, and the total variation distances, respectively.
In the case of a parametric family of probability distributions a typical regularity
condition states/implies that

dX(Py; Posn) ~ 11> Ip/8 or di(Py: Poin) ~ IIh|* Iy (1)
as h - 0, 0 €0, 0+he€®, where Iy is “Fisher’s information.” If one of regularity
conditions (1) holds, estimator 6 is unbiased, and function 6 — ]E9||9 — 02 is

continuous, then

Eglld — 01> > 1/nly (Y0 €O). )
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This is the celebrated Fréchet—-Rao—Cramér inequality. Thus, if an unbiased estima-
tor with a finite second moment exists, then the optimal unbiased estimator is the
one that turns lower bound (2) into equality.

However, the assumption of existence of unbiased estimators may be unrealistic
even in parametric estimation problems. For instance, Barankin [1] gives an example
of a parametric estimation problem where an unbiased estimator with a finite second
moment does not exist.

Below we suggest a generalization of the regularity condition for a family of
probability distributions, and introduce the notion of an information index. We
then present a non-parametric generalization of the Fréchet—-Rao—Cramér inequality.
We give reasons why in typical non-parametric estimation problems (as well as in
certain parametric ones) unbiased estimators with a finite second moment do not
exist.

Notation Below a,, ~ b, means a, = b,(14+0(1)) as n — oco. We write
an > by *)

if a, > b,(1+0(1)) as n — oo.

Recall the definitions of the Hellinger distance d,, and the x>-distance dy . If
the distributions P; and P> have densities f; and f> with respect to a measure
I, then

12 172

1
dX(Pr; Py)= 2/<f1 ) )zdu=1—/\/f1fzdu,
& o= [~ 17,

In the definition of dy we presume that suppP; 2 suppPx.
Definition 1 We say the parametric family &2 = {Py, 0 € @}, ® C 2, obeys the
regularity condition (R; p) if there exist v>0 and I; g >0 such that

dX(Pr; Pryn) ~ I mllhl” (Ri.1)

ash—0,1re®, t+he®.
Family &7 obeys the regularity condition (R,,) if there exist v>0 and function
I g >0 such that (R; p) holds for every € ®.

Definition 2 We say family &7 obeys the regularity condition (R, ,) if there exist
v>0 and I; , >0 such that

d(P;; Prin) ~ Iy I (Ri,)

ash —> 0, te®,t+he®.
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Family & obeys the regularity condition (R) if there exist v >0 and function
1.y >0 such that (R, ,) holds for every t € ©.

Definitions 1 and 2 extend the notion of regularity of a parametric family of
distributions.

A variant of these definitions has ~ replaced with <.

We are not aware of natural examples where dependence of d[f(P,; Piyn) or

dXZ(P,; P;yy) on h is more complex. However, if such examples appear, then (R, p)
and (R; ,) can be generalized by replacing ||#||” in the right-hand sides with v (h)
for a certain function 1.

Definition 3 If (R,) or (R)) holds, then we call v the “information index” and
I p and/or I, the “information functions.”

It is known (see, e.g., [12] or [9, ch. 14]) that
d? <d,, <~2d, <d,. 3)
If both (R,) and (R)) are in force, then inequality 2d[3 < dX2 entails
ZII,H S Ith .

In Example 1 below I; , = 21I; p . In the case of a family {P; = A4'(¢; 1),t € R}
of normal random variables (r.v.s) one has

(PP =1-e"18 (PP = e — 1,
hence I, y = 81I; g (cf.[9, ch. 14.4]).
Information index v indicates how “rich” or “poor” the class &7 is. In the case
of a regular parametric family of distributions (i.e., a family obeying (1)) one has

v=2.

“Irregular” parametric families of distributions may obey (R, and (R ) with v <2
(cf. Example 1 and [9, ch. 13]).

Example 1 Let & = {P;, t >0}, where P, = UJ[O0; ¢] is the uniform distribution
on [0; ¢]. Then

dXPrn: P) = 1= (1RO~ 02t (2h\0),

dX2(P,+h; P) =h/t, dp(Piip; P) =h/(@+h) (=h>0).

Hence family & is not regular in the traditional sense (cf. (1)). Yet (R,;) and (R )
hold with

v=1, Ly=1/2t, I , =1/t.
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The optimal estimator ¢, = max{Xi, ..., X,}(n+1)/n is unbiased, and
E (&} — 1% =1*/n(n+2). O

Parametric subfamilies of non-parametric classes typically obey (R,,) and (R ) with
v > 2 (cf. Example 3 and [9, ch. 13]).

We present now lower bounds to the accuracy of estimation when (R,;) or (RX)
holds. Theorem 1 below indicates that the accuracy of estimation is determined by
the information index and the information function.

Definition 4 We say that set ® obeys property (A;) if for every 1 € © there exists
t' € ® such that ||t' — t|| = &. Property (A) holds if (A;) is in force for all small
enough &> 0.

We say that estimator 6 with a finite first moment has “regular” bias if for every
t € ® there exists ¢; >0 such that

IE 40 — B ~ ekl (h — 0). 4)

An unbiased estimator obeys (4) with ¢, = 1. If @ is an interval, then (A)
trivially holds.

Theorem 1 ([9]) Assume property (A), and suppose that estimator t, obeys (4).
If (R)) holds with v € (0; 2), then, as n — oo,

sup(nly )V Eyllin — t1? /et = y2 /(e 1), (5)

te®

where y, is the positive root of the equation 2(1—e™) = vy.
If the function t — E;||f — t||* is continuous, then, as n — 00,

1 )2 Bylliy — 117 /c? = y2V /(@ —1)  (Vte®). (5%

If (R)) holds with v>2, then ||f||* = co (3r€O).
The result holds with (R,) replaced by (Ry,) if I y is replaced with I; y and
the right-hand side of (5) is replaced with (In4/3)*/"/4 .

According to (5), the rate of the accuracy of estimation for estimators with
regular bias cannot be better than n~ /v Moreover, (5) establishes that the natural
normalizing sequence for 7, — ¢ depends in a specific way on n, v, and the
information function.

Theorem 1 supplements the Fréchet—-Rao—Cramér inequality that deals with the
case v=2. Note that (5*) formally extends to the case v=2 with y; := 0 and the
right-hand side of (5%) treated as lim, o y/(e”—1) = 1.

According to Theorem 1, an estimator #, cannot be unbiased or have a regular
bias if (R ) or (R,) holds with v>2 and E; ||7,)|1> < oo for every t€ 0.

Lower bounds involving continuity moduli are presented in the next section.
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3 Lower Bounds Based on Continuity Moduli

We consider now a general situation where one cannot expect regularity conditions
to hold (cf. Example 3).

Let & be an arbitrary class of probability distributions, and let the quantity of
interest ap be an element of a metric space (27, d). Given ¢ > 0, we denote by

PP, e) ={QeP:d,(P; Q) < &}

the neighborhood of distribution P € &2. We call

wy(P,e) = sup d(ag;ap)/2 and wy(e) = sup wy, (P, &)
QePy(P,¢) PeZ

the moduli of continuity.
For instance, if & = {P;,t€®}, ap, =1t and d(x; y) = |x — y|, then

2wH(Pta 8) = Sup{|h| : dH(Pta Pl+h) S 8}

and wy(¢) = sup, w,(F;, €).

Similarly we define &, (P, ¢), &, (P,¢), w(-) and w;(-) using the x2-
distance d  and the total variation distance d;,. For instance, if ap € R and
d(x;y) = |x — yl, then

w.(P,e)= sup |ag —apl/2.
Qe P, (P.¢)

The notion of continuity moduli has been available in the literature on non-
parametric estimation for a while (cf. Donoho & Liu [3] and Pfanzagl [10, 11]).
It helps to quantify the interplay between the degree of “richness” of class &7 and
the accuracy of estimation.

Lemma 1 ([9]) For any estimator a and every Py € 2,

sup  P(d(an; ap) > wy(Po, &) > (1—e*)*/4, (©6)
PePy(Py,¢)
sup  P(d(an; ap) = w(Po, 8)) > [1+(1+&%)"*172, ()

PeP (Po.e)

Let R be a loss function. Lemma 1 and Chebyshev’s inequality yield a lower
bound to Suppe 5, (py.) E, R(d(ay; ap)). For example, (6) with R(x) = x2 yields

sup  EV2d*(an; ap) > wy(Po, )(1 — &2)"/2. (8)
PePy(Py,¢e)
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A (8)-type result for asymptotically unbiased estimators has been presented by
Pfanzagl [11]. Note that Lemma 1 does not impose any extra assumptions.

The best possible rate of estimation can be found by maximizing the right-hand
side of (8) in ¢. For instance, if

w, (P,e) = J, p6¥  (e—0) 9)

for some J,, , >0, then the rate of the accuracy of estimation cannot be better than

n—r

If (R,) and/or (RX) hold for a parametric subfamily of &, then

2wy, (Pr, &) ~ (e%/I, )" andlor 2w (P, &) ~ (£*/ 1 )", (10)
yielding (9) with r = 1/v. Hence the best possible rate of the accuracy of
estimation is n~1/V .

The drawback of this approach is the difficulty of calculating the continuity
moduli.

Example 2 Consider the parametric family & of distributions Py with densities
Jo(x) =9(x=0)/2 +p(x+6)/2  (B€R),
where ¢ is the standard normal density. Set
ap, =0, d(61;62) =01 — 62].

Then

d(Po; Py) ~ h* /4.
Thus, (K, ;) holds with

v=4, Io,g =1/16,
wy, (Po, €) ~ /e as ¢ — 0; there is no asymptotically unbiased with the optimal
rate finite-variance estimator; the rate of the accuracy of estimation in a neighbor-
hood of the standard normal distribution P, cannot be better than n~ /4 (cf. Liu

and Brown [5]). An application of (13.8) in [9] yields

sup Ep, |6, —0>>1/2/en  (n — o) (11)

0<b<e

for an arbitrary estimator 6, and any ¢ > 0. O
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Put 2 = ¢?/n in (8). Then

sup E}D/Zd(&n; ap)? > ef"sz(Po, c//n )/2. (8%
PPy (Po.6)

Thus, the rate of the accuracy of estimation of ap in a neighborhood of P, cannot
be better than that of

wH(POa 1/\/71)

(cf. Donoho & Liu [3]). More specifically, if (9) holds, then

sup  EY’d*@n;ap) = ey, n )2 (12)
PePy(Py,€) :

If J, . is uniformly continuous on &2, then (12) with ¢? = r yields the non-
uniform lower bound

sup J LB 2d% @ ap) = (r/e)'n”" /2. (13)
Pewy

Lower bound (13) is non-uniform because of the presence of the term depending
on P in the left-hand side of (13). Note that the traditional approach would be
to deal with supp. g Ep dXay; ap) (cf. [12]); the latter can in some cases be
meaningless while supp. 4 J;}JIEP dXa,; ap) is finite (cf. (14)).

Example I (continued) Let ap, =t, d(t;s) = |t — s|. Then
wy (P, &) =te2(1 — e2/2)/(1 — 12 > 162,

and (9) holds with r =1, J, , = t. According to (8) with e2=1/n,

sup  EV3E, — 5|2 > 1/2en
Pye Py (Pre)

for any estimator 7, . Hence sup,_ o IE,|f, — t|> = oo, while the non-uniform bound
is

supE, 2|2, /t — 112 > 1/2en(1+2/n). (14)

t>0

Remark In typical non-parametric situations the rate of the accuracy of estimation
is worse than n~1/2 . However, an interesting fact is that if we choose ap = P and
d =d,, then w,(P,e) =¢/2 forall P, (9)holds with r=1/2, Jupr= 1/2, hence

sup Ep d>(an; ap) = 1/32en. (15)
Pey
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4 On Unbiased Estimation

It is not difficult to notice that in most estimation problems concerning non-
parametric classes of distributions the available estimators are biased. The topic
was studied by a number of authors (see Pfanzagl [11] and the references therein).
Examples include non-parametric density, regression curve, hazard function (failure
rate), and tail index estimation.

We notice in [6] that the sample autocorrelation is a non-negatively biased
estimator of the autocorrelation function (the bias is positive unless the distribution
of the sample elements is symmetric).

Theorem 1 suggests a way of showing that there are no unbiased finite-variance
estimators for a given class & of distributions if the class contains a parametric
family of distributions obeying the regularity condition (R, ) or (R ) with v>2.

Example 3 Let &2, where b > 0, be the class of distributions P such that

—bay

sup |x_°‘P P(X <x)— 1|x

O<x<l

< 0 (Ja, >0)

(the Hall class). Note that F(x) = P(X < x) = x*(1+0(x%)) as x — 0 if
P € &, . We consider the problem of estimating index o =, from a sample of
independent observations when the unknown distribution belongs to &, .

Let Py and Py, be the distributions with distribution functions (d.f.s)

Foo(y) =y"1{0 <y <1},
Fopy(y) =87y 1{0<y <8} + y*1{§ <y =<1},

where § = yl/ho‘ , ¥ €(0; 1). One can check that
AP0 Puy) = 7 [1 =1y ja [y 20| <y V78, (16)
dX(Po0; Po,y) =y a2 (L +y /207" < y'7ja?, (17)
where r = b/(1 4 2b). Thus, (R, ) and (R, ,) hold with v=2+41/b.
According to Theorem 1, there are no unbiased finite-variance estimators of
index «.
Note that
dX(Py0: Pup) ~ >8> (h — 0)
for the parametric family {Pp.n, 0<h<1} C &, while

dX(Po0; Payno) ~ W /8> (h — 0)

for the parametric family {Pyyn.0,0<h<1} C P (cf. [9, p. 293)). a
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The next theorem shows that in typical non-parametric situations there are no
asymptotically unbiased with the rate estimators.

Let {<7,,n> 1} be a non-increasing sequence of neighborhoods of a particular
distribution Py, and let {z,,} be a sequence of positive numbers. Pfanzagl [11] calls
estimator {a,} asymptotically unbiased uniformly in &7, with the rate {z,} if

limsuplimsup sup |EpK,((dn —ap)/za)| =0,

uU—>00 n—>00 PeP,

where K, (x) = x1{|x| <u}.
Denote & . = & (Fo, g/+/n), where &> 0.

Theorem 2 ([11]) Suppose that

limsup e~ 1hmmfw ) (Po, &/+/n)/zn = o0, (18)
e—0

lim liminf Po(|a, — apyl/zn < u) > 0, (19)
U—>00 n—oo

lim 11m1anEp0K ((an — apy)/zn) < 00. (20)

U—>00 n—>0oo

Then estimator {a,} cannot be asymptotically unbiased with the rate {z,} uni-
formly in &y, o for some &> 0.

Pfanzagl [11] showed that in a number of particular non-parametric estimation
problems

inf ¢~ liminfw (Po, &/+/n)/za > 0 Jce(0; 1)) 21
>0 n— 00

(cf. (10)). Note that (21) entails (18).

5 On Consistent Estimation

The rate of the accuracy of estimation can be very poor if the class & of
distributions is “rich.” In utmost cases the lower bound is bounded away from zero
meaning neither estimator is consistent uniformly in &?. We present below few such
examples.

Example 4 Let % be a class of distributions with absolutely continuous distri-
bution functions on R such that [ |f(x+y) — f(x)|dx < |y|. Ibragimov and
Khasminskiy [4] have shown that

sup]Efflfn fl=27° n>1

for any estimator fn of density f (see Devroye [2] for a related result). O
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Example 5 Consider the problem of non-parametric regression curve estimation.
Given a sample of i.i.d. pairs (X1, Y1),..., (X,,Y,), one wants to estimate the
regression function

V(x) = BE{Y|X =x}.
There is no uniformly consistent estimator if the only assumption about L(X, Y) is
that function v is continuous.

Let 2 be a class of distributions of random pairs (X, Y) taking values in R?
such that function ¥ (-) = IE{Y|X = -} is continuous. Set

JoGx,y) = HlxEyl < 1/2}, fi(x,y) = folx,y) +hg(xh™)g(y),
where ¢ >0, he(0; 1) and g(x) = sin(2rx)1{|x| <1/2}. These are the densities
of two distributions of a random pair (X, Y).
Let ¥, k€{0; 1}, denote the corresponding regression curves. Then

Yo =0, Y1(x) = 21 2hsinrh™x)1{|x| <h/2}.

Hence |V — ¥1|| = 27 ~2h.
Note that dxz( fo: f1) < h*¥+¢/4. Applying Lemma 13.1 [9], we derive

max Pi(yn — vl = h/w?) = (14+47) 774 = exp(-nh®" /4) /4
i€{0,

—1/n

for any regression curve estimator Yn. With c =n—2 and h =n , we get
sup P(|fn — ¥l = 1/9) = 1/4¢'/*. (22)
Pe”

Hence no estimator is consistent uniformly in &2. O

Example 6 Consider the problem of non-parametric estimation of the distribution
function of the sample maximum. No uniformly consistent estimator exists in a
general situation. Indeed, it is shown in [7, 8] that for any estimator {13,,} of the
distribution function of the sample maximum there exist a d.f. F such that

1imsup]PF(||Fn —F'| > 1/9) >1/3.

n—oo

Moreover, one can construct d.f.s Fy and F; such that

max Pr(|F, — F'l| = 1/4) = 1/4  (n=1),
i€{0;1}

where Fp is uniformon [0; 1]and F; = F, — Fp everywhereas n — oo.
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An estimator a,(-) = a,(-, X1, ..., Xp) is called shift-invariant if
an(x, X1, ..., Xy) =ap,(x+c, X1+c, ..., Xp+c)
for every x €R, c€R. An estimator a,(-) is called scale-invariant if
an(x, X1, ..., %) = an(cx,cxy, ..., Cxy) Ve>0)

forall x, x1,...,xy,.

Examples of shift- and scale-invariant estimators of F" include F)', where F),
is the empirical distribution function, and the “blocks” estimator

[n/r]

Fo=( D 1{Mi, <x)/ln/r1)

i=1

n
’

where M;, = max{X;_1),41,..., Xir} (1=r=<n).
For any shift- or scale-invariant estimator {F},} of the distribution function of the
sample maximum there holds

PrflIfs = FI=1/4) = 1/4 (=), 23)

Thus, consistent estimation of the distribution function of the sample maximum is
only possible under certain assumptions on the class of unknown distributions. O

6 On Uniform Convergence

We saw that the rate of the accuracy of estimation cannot be better than
w, (P, 1/4/n). According to Donoho and Liu [3], if ap is linear and class &
of distributions is convex, then there exists an estimator a, attaining this rate.

We show now that in typical non-parametric situations neither estimator con-
verges locally uniformly with the optimal rate.

Definition 5 Let &’ be a subclass of &. We say that estimator @, converges to
ap with the rate z,, uniformlyin &’ if there exists a non-defective distribution P*
such that

lim sup |P((Gy, —ap)/zn € A) — P*(A)| =0 (24)

n—>00 pc gy

for every measurable set A with P*(dA) = 0.

Note that for every P € &’ (24) yields the weak convergence (a, —ap)/v, =
P*.
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The following result on impossibility of locally uniform convergence with the
optimal rate is due to Pfanzagl [10]. It involves a continuity modulus based on the
total variation distance.

Let 2" = R.Denote 2Py, e) = (P € P :d.(P"; P}) < ¢}, and recall
that

w(Py, &)= sup lap —apl/2.
Pe{) (Po.e)

Theorem 3 ([10]) Suppose that

; —1q; (n), _
Eﬂ}s hnnlsolip w,(Po, €)/zn = 00. (25)

Then neither estimator can converge to ap with the rate z, uniformly in
PPy, €) for some €€ (0; 1).

Example 7 Let &7, where b > 0, be the non-parametric class of distributions on
(0; 1] with densities

f@) = Capx®~ (147 (),
where supg_,<; r (x)]x~** < 0o. We consider the problem of estimating index «.
Denote r = b/(1+2b) . Pfanzagl [10] showed that

e ¥ liminfn" w"(Py, &) >0 (Ve €(0; 1)). (26)
n—>oo

Since r < 1/2, (25) and (26) entail that neither estimator of index « can converge
to a uniformly in WT(C)(PO, €) with the rate z,, = n—?/(1+20), O

The next theorem presents a result on impossibility of locally uniform conver-
gence with the optimal rate involving the modulus of continuity w, based on the
Hellinger distance. The Hellinger distance may be preferable to the total variation
distance in identifying the optimal rate of the accuracy of estimation as there are
cases where

d,(Po; P1) > d(Po; Py)

for “close” distributions Py and Pj. For instance, consider family & =
{ P,y }y=0, where distributions {Py,,} have been defined in Example 3. Then

1/r—1

y 1/r
dTV(Pa,o; Pa,y) ~ we > dj(Pa,o; Poz,y) ~

v

802 (y = 0).

Theorem 4 If (9) holds for a particular P € & with r < 1/2, then neither
estimator converges to ap with the rate n=" uniformly in (P, 1//n).
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Theorem 4 generalizes Theorem 13.9 in [9] by relaxing the assumption that
there exists a positive continuous derivative of distribution P* with respect to the
Lebesgue measure.

Proof of Theorem 4 Let a, be an arbitrary estimator of ap. Denote
Wy,e = 2w, (P, e/\/n) (e>0).

Let € €(0; 1]. For any ¢ >0 one can find P’ € &, (P, ¢//n) such that ap —ap >
wp,¢ — c. Then for an arbitrary x e R

I1<P(ap—a>—x)+ P, —ap > x+wpg—c)

<Pa—ap <x)+ P@—ap > x+wpg—c)+d, (P"; P").
According to (3), d,,(P™; P") < V2n d,(P’; P). Hence
Play —ap > x) < P(4 —ap > x+wye—c)+~2nd,(P'; P).

Since d,(P’; P) < g/s/n and wy,, > JH,PK,ZSZ’/n’ by (9), where «, — 1 as
n — 0o, we can apply the monotone convergence theorem in order to derive that

inf Plan—ap > x) < Pl@n—ap > x+J,, jkne?/n") +ev/2  (27)
P'ePy(P.e//n) :

for any €€[0; 1].

Suppose that estimator @, converges to ap uniformly in 2, (P, 1/4/n) with
the rate z,, = n~" . Then there exists a non-defective distribution P* such that (24)
holds with &' = 2, (P,1/4/n). We will show that this assumption leads to a
contradiction.

Let 1 be an r.v. with the distribution £.(n) = P*, and set

x=yn" (y € R).

The assumption implies that (24) holds also with &' = 2, (P, ¢//n) for every
¢ € [0; 1]. Taking into account (24) and (27), we derive

P() = y) < P() = y+Jp, pkne?) +ev/2.
Hence P(y <n < y—l—JH,p/cns”) < ev/2. Thus,

P(y <n <y+1) < (A +[1/Jy pkne? Dev/2 < ev/2 + ' "2V2/ Iy pin .
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Since r < 1/2, letting ¢ — 0, we get

Py<=n=<y+1)=0 (VyeR),

i.e., P* is a defective distribution.

The contradiction obtained proves the theorem. O
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Modification of Moment-Based Tail )
Index Estimator: Sums Versus Maxima Creck o

N. Markovich and M. Vaiciulis

Abstract In this contribution, we continue the investigation of the SRCEN estima-
tor of the extreme-value index y (or the tail index o« = 1/y) proposed in McElroy
and Politis (J Statist Plan Infer 137:1389-1406, 2007) for y > 1/2. We propose a
new estimator based on the local maximum. This, in fact, is a modification of the
SRCEN estimator to the case y > 0. We establish the consistency and asymptotic
normality of the newly proposed estimator for i.i.d. data. Additionally, a short
discussion on the comparison of the estimators is included.

1 Introduction and Main Results

Let Xk, k > 1 be non-negative independent, identically distributed (i.i.d.) random
variables (r.v.s) with the distribution function (d.f.) F. Suppose that F' belongs to
the domain of attraction of the Fréchet distribution

0, x <0,

D =Py,
exp{—x~"1/7}, x > 0, !

®y(x) = {

which means that there exist normalizing constants a,, > 0 such that

. L .
lim P( < x) = lim F" (amx) = &, (x), (1)
m— 00 am m— 00
for all x > 0, where L, , = max{X,,...,X,}forl <u <vand L, = Lj,.

The parameter y > 0 is referred to as positive extreme-value index in the statistical
literature.
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Meerschaert and Scheffler [13] introduced the estimator for y > 1/2, which
is based on the growth rate of the logged sample variance of N observations
X1,..., XN

A

YN = 21n1(N) In (N SN )

where 53 = N1 YN (X, — Xn)*, Xy = (X1 4 -+ + Xx)/N and Inj (x) =
OVinx.

McElroy and Politis [12] divided the observations Xi,..., Xy into non-
intersecting blocks {X(k—l)m2+1» ey X2h 1 <k < [N/m2] of the width m?,
while each such block was divided into non-intersecting sub-blocks of the width m.
To estimate y > 1/2 the so-called SRCEN estimator was proposed as the sample
mean over all blocks:

[N/m?]
(1
Py (m) = Z £ (m),
l'_
where
im? 2 (k—1)m>+km 2
£ (m) = In (Zj=(i71)m2+1 Xj) _ (Z, (k—Dm2+(k—1)m+1 X/) @)
S 21In(m) m 2 In(m) ’

k=1

and [-] denotes the integer part. In applications a simple heuristic rule for the choice
of sub-block width m = [N1/3], provided in [12], works quite well, see the Monte-
Carlo simulation studies in [12, 17] and [18].

Using the inequality of arithmetic and geometric means we obtain that for sample
X1,..., Xy, P\ (m) = 1/2 holds with equality if and only if X2 ==
X2 . 1<i<[N/m?]

In this chapter we provide an estimator similar to the SRCEN estimator but one
that can be used for y > 0, not only for y > 1/2. Namely, we replace the sums
in (2) by corresponding maxima and introduce the new estimator

) | N/m?)
W= e 2 &
i=1

where

Ei(m) =

I (L 1yp241.im2) 1§: (L= 1ym2 (= Vymt1.Gi—Dym2+ jm)
In(m) m In(m) '
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In fact, the estimator )?Ii,z) (m) is based on the convergence EIn (L,;) /In(m) — y
as m — oo, which implies

In (L) In (L)
E(ln(mz) >_E<ln(m) >—>7/, m — 0. 3)

Thus, the estimator )?Ii,z) (m) is nothing else, but a moment-type estimator for the
left-hand side in (3).

Note that )715,2) (m) and )?Ii,l)(m) are scale-free, i.e., they do not change when X ;
is replaced by ¢ X ; with ¢ > 0.

Typically, the estimators, whose constructions are based on the grouping of
the observations into the blocks, are well suited for recursive on-line calculations.

In particular, if y(l)(m) = )?Ii,l)(m; X1, ..., Xn) denotes the estimate of y
obtained from observations Xi,..., Xy and we get the next group of updates
XN+1s+-+» X2, then we obtain
N+1
PN X1 Xy ) = p M= L (50 + g, om).

denoting N = [N/m?]. After getting L additional groups {X Nt e—ym2415 -+ >
Xnim2b k=1,..., L, we have

N+L
A1
N5 X1 X L) Z-’Ez( )

_ ! (W9 ) + & 0m) + &gy, o).
N+L N N+1 N+L

It is important that ?If]l)(m; X1,..., Xyypm2) is obtained using J?Ifll)(m) after
O(1) calculations. The same is valid for ')715,2)(m) substituting &;(m) by g,-(m).
The discussion on on-line estimation of the parameter y > 0 can be found in
Section 1.2.3 of [11].

There are situations when data can be divided naturally into blocks but only the
largest observations within blocks (the block-maxima) are available. Several such
examples are mentioned in [15], see also [1], where battle deaths in major power
wars between 1495 and 1975 were analyzed. Then the estimator )71&]2) (m) can be

applied while the estimators yx and )?1(\,1) (m) are not applicable.
We will formulate our assumptions in terms of a so-called quantile function V' of
the d.f. F, which is defined as the left continuous generalized inverse:

. ) 1
V() = 1nf{x >0: _lnF(x) > t} .
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The domain of attraction condition (1) can be stated in the following way in terms
of V: regarding the d.f. F, (1) holds if and only if for all x > 0,

im LU0 _ (4)
t—oo V(t)

i.e., the function V varies regularly at infinity with the index y > 0 (written V €
RV,), see, e.g., [3, p.34].

First our result states that )?1(\,2) (m) is a weakly consistent estimator for y > 0. For
the sake of completeness we include a corresponding result (as a direct consequence
of Prop. 1 in [12]) for the SRCEN estimator ﬁjg,l)(m).

Theorem 1 Let observations X1, ..., Xn be i.i.d. rv.s with d.f. F.

(i) Suppose F satisfies the first-order condition (4) with y > 1/2. Suppose, in
addition, that the probability density function p(x) of F exists and is bounded,
and also that p(x)/x is bounded in a neighborhood of zero. Then for the
sequence m = m(N) satisfying

N1n?m
m(N) — o0, , — 00, N —o00, (®)]
m
it holds
~(1 P
Py m) = . ©)

P . -y
where — denotes convergence in probability.
(ii) Suppose F satisfies (4) with y > 0. Suppose, in addition,

F@©)=0 )

for some & > 0. Then for the sequence m = m(N) satisfying (5) it holds

PPy Ly, ®)

As usual, in order to get asymptotic normality for estimators the so-called
second-order regular variation condition in some form is assumed. We recall that
the function V is said to satisfy the second-order condition if for some measurable
function A(¢) with the constant sign near infinity, which is not identically zero, and
A(t) > 0ast — oo,

W e

Py A1) =X p ®)
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holds for all x > 0 with p < 0, which is a second-order parameter. The function
A(t) measures the rate of convergence of V(tx)/V(t) towards x¥ in (4), and
|A(t)| € RV,, see [8].

In this work, we assume a second-order condition stronger than (9). Namely, we
assume that we are in Hall’s class of models (see [9]), where

V) = Ct’ (1 +po A A +0(1))), t = oo (10)

with A(t) = yBt?, where C > 0, 8 € R\ {0} and p < 0. The relation (10) is
equivalent to

F(x)=exp{—<é>_l/y<l+ﬁ(é)p/y—i-o(xp/”))}, x>0 (1)

Theorem 2 Let the observations X1, ..., Xy be i.i.d. rv.swithd.f. F.

(i) Suppose F satisfies the second-order condition (11) with y > 1/2 and, in
addition, that the probability density function p(x) of F exists and it is bounded,
and also that p(x)/x is bounded in a neighborhood of zero. Then for the
sequence m = m(N) satisfying m — 0o and

NP2y =2VEHEPVE2 Inm) — 0, if — 1V p #£1—2y,
N'Z2m=2Y In®(m) - 0, if —1vp=1-2y,

N'/21 R 2—(1/4)n?
0 3 —) . 67U

12)

holds, where 4 stands for the convergence in distribution.
(ii) Suppose F satisfies (7) and (11) withy > 0. Then, for the sequence m = m(N)
satisfying (5) and

N1/2
A(m) — v € (—o0, +00), (13)
it follows
N'/21 ra- 22
n(m) (7715,2)(171)—7/) —d>JV<—v ( ,o)’yn >, N o oo
m 0 6
(14)

The remainder of this chapter is organized as follows. In the next section we
investigate the asymptotic mean squared error (AMSE) of the introduced estimator,
and compare this estimator with several classical estimators, using the same
methodology as in [4]. The last section contains the proofs of the results.
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2 Comparison

The AMSE of the estimator )?Ii,z) (m) is given by

AMSE (7915,2) (m)) = (15)

1 {Fz(l—,o)Az(m) yznzmz}
© In2(m) ’

p? 6N

Regular variation theory, provided in [5] (see also [4]), allows us to perform the
minimization of the sum in the curly brackets of (15). Namely, under the choice

6121 — g2 /20—
(1-p)B ) NVCO-0) (1 4 o(1)). N — oo,

_on?

m(N) = (
we have

682I"2(1 — p))”“”) NP/(=0)

AMSE(@%R@ﬂ'vIQGw»ﬁz( ) T

Probably, the Hill’s estimator

1 k—1 Xn_in

(H) 1y _ ~J.

YN (k)—k§01n< )
j:

XN—k,N

is the most popular, [10]. Here, 1 < k < N is a tail sample fraction, while X; y <

Xy N < --- < Xy, n are order statistics from a sample X1, ..., Xy. Let us denote
r=—1V pand
B, -1 <p <0,
v=1B8+(1/2), p=—1,
1/2, o< —1.

From [4] it follows that the minimal AMSE of the Hill’s estimator under assump-
tion (11) satisfies the relation
B 1=2 2 2.,2—4r
AMSE (v (0) ~ " ( v

1/(1-2r)
N2r/(172r) N — 00
—2r (1—-r)?2 ’ ’

where

(1—r)?

1/(1-2r)
o2 ) N~/ (14 0(1)), N — oo.

k(N) = (
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Now we can compare the estimators )715,2) (m) and yli,H) (IE) Denote the relative
minimal AMSE in the same way as in [4]:

AMSE (v (8))
RMAMSE(y, 8, p) = lim 5 .
V=00 AMSE (77 (i) )
Following [4] we may conclude that yl(\,H) (/E) dominates )?1(\,2) (m) at the point
(y, B, p) if RMAMSE(y, B, p) < I holds. Note that RMAMSE(y, 8, p) = 0 holds

for =2 < p < 0, i.e. yl(\,H) (/E) dominates )715,2)(%), while for p < —2 we have

RMAMSE(y, B, p) = oo and thus, 7715,2) (m) outperforms yjf,H) (IE) in this region of
the parameter p. It is worth to note that the same conclusion holds if we replace
Hill’s estimator by another estimator investigated in [4].

Unfortunately, it is impossible to compare the performance of )?Ii,l) (m) and other

estimators taking the AMSE as a measure. By taking v = 0 in (14) one can compare
the estimators J?Ifll)(m) and )71&]2) (m) under the same block width m?. By comparing
variances in the limit laws (12) and (14) we conclude that )?Ii,l)(m) outperforms
PP (m) fory > 1/2.

3 Proofs

Let us firstly provide preliminary results that are useful in our proofs.

Lemmal Let Xy,..., Xy be i.id. rv.s with d.f. F. Suppose F satisfies (4) with
y > 0and (7). Then

mlewEln<VIE:1)> =XV, (16)

. 2f Lm N\ _ 2.2 772)

ml;meln (V(m)>—y (x + 6 ) (17
4

mlewEln4 (VL(”;)> =y* (x“ + 2% + 327; + 8x§(3)), (18)

: L, Ly 2.2

mlimooEOn(V(m%)ln(V(m))) B 9

holds, where y =~ 0.5772 is the Euler—Mascheroni constant defined by y =
— fooo In(#) exp{—1}t, while ¢ (t) denotes the Riemann zeta function, {(3) ~ 1.202.
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Proof of Lemma 1 We shall prove (16). Let Y be an r.v. with d.f. @. It is easy to

check that it holds
L, d V(mnY)
In = In .
V(m) V(m)

By Theorem B.1.9 in [3], the assumption V € RV,, y > 0 implies that for
arbitrary €1 > 0, e > O there exists mg = mg(€, €2) such that for m > my,
my = mo,

V(my)

Vim) (14 €1)y” max {y, y~*}

(1 —en)y” min {y, y~?} <

holds. Whence we get that under restriction 0 < €1 < 1 it follows

V (my)

it ) <In(l +e) + (& + u(y) In(y),

(20)

In(l —e) + (¥ —u(y)) In(y) < ln<

where u(y) = —exI{y < 1} + e2I{y > 1} and I{-} denotes the indicator function.
We write for m > my,

V(mY) .
E <ln< V(m) )) = Jl,m + JZ,Ma

mo/m 'V (my) o V (my)
m = 1 do , m = 1 do .
. /0 “( v (m) ) SUNRE /mo/m “( v (m) ) 0)

The statement (16) follows from

lim Jim =0, @1
m—00
lim Jo, = xy. 22)
m—00

Substituting my = t we get

m
| J1] 5/ '
0

= / " lIn V@) At /m) + D mo/m) lIn V(m))
0

V()
ln(v(m))‘dqﬁ(t/m)
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By using d® (t/m) = m® (t/(m — 1)) d®(¢) we obtain
mo
|Jim| < m® (mo/(m — 1))/0 In V (¢)|d® (1) + ®(mo/m) [In V (m)] .

Assumption (7) ensures V (0) > §, which implies [;"° |In V (1)| d® (1) < oco. Since
the sequence V (n) is of a polynomial growth and @ (my/m) = exp{—m/mo} tends
to zero exponentially fast, then relation (21) follows.

To prove (22) we use inequality (20). Then we obtain

mo/m

| Jom — x| < max (= In(1 — &), In(1 + €} +&F |1n(Y)|+y/O lIn ()| d ().

One can check that IE [In(Y)| = x — 2Ei(—1), where Ei(x), x € R\ {0} denotes the
exponential integral function, Ei(—1) ~ —0.219384.
Since €1 > 0 and €3 > 0 may be taken arbitrary small, the proof of relation (22)

will be finished if we show that meO/m [In(y)|d®(y) — 0, m — oo. Substituting
t = my we get

mo/m mo
/0 lIn ()] db () = /0 [In(t/m)| d (¢ /m)

—m f " line/m)] @t/ m — 1))d (1)
0
< m®(mo/(m — 1)) (In(m) + E[In(Y)]) - 0,

as m — oo. This completes the proof of (22), and also of relation (16).

Proofs of relations (17) and (18) are similar and thus are skipped. It remains to
prove (19). We note that L,, and L, , are independentr.v.s and L,» = Ly, V
L, +1.m2- LetY) and Y5 are independent r.v.s with d.f. @. Then it holds

L,» ) ( L, ) d (V(mYl) v V(mm — 1)Y2)> (V(mYQ)
In In = In In ,
(V(mz) V(m) V(m?) V(m)

and consequently,

L _
E(ln( 2 >ln< Ly, )>=E<IH<V(mY1)\/V(m(m 1)Y2)>1n<V(mY1)>).
V(m?) V(m) V(m?) V(m)
Let us recall that V (¢), t > 0 is a non-decreasing function, see, e.g., Prop. 2.3 in [6].
By using this property we obtain

E (ln (V(mYl) v V(m(m — 1)Y2)> In (V(mYl)

=J J. J5.m,
V(mz) V(m) )) 3,m+ 4,m+ 5.m
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where

V(mYy) V(mY1)
Jaim=E <ln< V(m2) )ln< Vm) ) I{Y]1 > (m — 1)Y2}> ,

Jiw = E <1n <V(m(m - 1)Y2)>> E (ln <V(mY1)>> ’
' V(m?) V(m)

_ V(m(m — 1)Y2) V(mY1) _
Jsm =E <ln< V(m?) >ln< V(m) ) I{Y1 > (m 1)Y2}> .

Let us rewrite quantity Jy ,,, as follows:

Jom = {m (V(’"(’" N 1))) +Eln< Lnn—1y >}Eln< L ) .
’ V(m?) V(im(m — 1)) V(m)
For any € > O there exists natural mg such that 1/m < € for m > mg. Then
V(m*(1 =€)/ V(m?) <V (m*(1 — 1/m)) /V(m?) < 1. By (4) we get V (m?*(1 —
€))/V(m*) — (1 — €)Y, m — oo. Since € > 0 can be taken arbitrary small, the
relation V(m(m — 1))/ V(m*) — 1, m — oo holds. By using the last relation

and (16) we deduce that J4 ,,, — X2y2 holds as m — oo.
Next, we have

V(nY
Jam =B (m2 ( ‘E’?m)l)) Y, > (m— 1)Y2}>

V(m) V(mYy)
+In <V(m2)) E (m < Vo ) Y, > (m — 1)Y2}) .

We apply the Holder’s inequality to get

1/2
|3 < {Eln“( L )} (P(Y) > (m — Y2}/

V(m)
Vi(m) 2 Lm i _ 1/2
e ()

We find that P(Y] > (m—1)Y2) = 1/m holds. Let us recall the well-known property
of regularly varying functions: if V € RV,,, then

InVvV
nvom _ 23)

m—oo In(m)

see, e.g., Prop. B.1.9 in [3]. By using (23) we obtain In (V (m?)/V (m)) ~ y In(m),
m — oco. Thus, keeping in mind (17) and (18) we obtain |J3 | = O (m~'/?In(m)),
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m — oo. By a similar argument we obtain |J5,m| =0 (mfl/z), m — o0o. This
finishes the proof of (19) and Lemma 1.

Proof of Theorem 1 First we prove (8). Let us rewrite

7o) = + {E77 o) =y | + Swom), 24)
where
Ep o) — {m V(mj) —InVim) y}
n(m)
! (]El < L2 ) El ( Lm )) (25)
Fiaemy U vy ) T v
and
[N/m?]
_ 1 Li—vymgr,im?\ L,
VO = 1 iy 2 Hln< V(m?) ) El“(V(m%)}

1

1 i In L —tym24-(j=1ym+1,G—Dym>+jm —Eln L :
m - vim) e

j=1

By combining (16) and (23) we deduce that Ep (2) (m) —y — 0, m — oo. Thus,

it is enough to prove that Sy (m) L oas N > . By Chebyshev’s inequality, for
any € > 0 it holds P (|Sy (m)| > €) < € 2E (Sy (m))? . We have

= o 1 (0 (v )
E(Sym))” = N /m] 1 m) Var ( In Vo)

2oy (m( E7 Y m( E Uar (1 ( 26
B °V<n<V(m2)>’n<V<m>>>+ aI( (wm))}' (20

Use (16)—(17) and (19) to deduce that the sum in the curly brackets has a finite limit
as m — oo. Thus, assumption (5) ensures It (Sy (m))2 — 0, m — oo. This finishes
the proof of (8).

Consider now (6), where the restriction y > 1/2 holds. Assumption (4) is
equivalentto 1 — F € RV_y,,,. By the Representation Theorem (see Thm. B.1.6. in
[3]), there exists a function £ € RV, such that

1 — F(x'/?) = x~ 1/ (xl/z) . x— 00 27)
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Following the Mijnheer Theorem (see Thm. 1.8.1 in [16]), we determine the
norming function a(m) € RV,,, from

ml (al/z(m))

m—00 (a(m))/ @) =d(y), d@y)=I({1—-1/Q2y))cos(r/(4y)). (28)

Put Q(m) = (X} + -+ X2,)/an. Then Q(m) 47, asm — oo, where Z is totally
skewed to the right 1/(2y)-stable r.v. with characteristic function

Eexp{i#Z} = exp {—|9|1/<2V> (1 —isgn(0) tan (f )) } ) (29)
14
Similarly to (24) we use the decomposition

7 om =y + [B7 0m) — L+ Syom,

where
1 [N/m?] im? 2
Sn(m) = I L | —ElQom?
LR Tyse D DIS LI WD Dy nee)
i=1 j=G—m2+1
(i—=)m%+im 2
1 & X5
— Z In Z '] —EmlQm)
m 4 a(m)
j=1 j=(—Dm2+(@i—1Dm+1

The bias of the estimator )715]1) (m) is given by E)?]y)(m) —y = A(m*) —(1/2)A(m),
where

a 1
A(m) = am 2y + I {EInQ(m) —EInZ}.

In Prop. 1-2 of [12] it is proved
ElnQm) > Elnz, EIn>Q@m)— Eln*Z, (30)
Cov (1n 0(m?), In Q(m)) =0, m— oo. 31)

It is worth to note that the moments E1n Z and EIn* Z can be found explicitly.
Indeed, there is a direct connection between moments of order r < 1/(2y) and
log-moments of order k € IN:

; (32)
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see [19]. Regarding the moments IEZ", the following relation is proved in Sec-
tion 8.3 of [14]:

. T —=2yr) YEAN B
EZ" = rd—r <1+tan (4y>) , 1<r<1/Q2yp). (33)

By using (32) and (33) we obtain

Ean:—X+2xy+yln<tan2<£/>+l>, (34)

2 2.,2
R + y?log? ( tan® ( o + 1)
3 4y
2 2 _ 2
+4xy~log| tan +1 2xy log | tan +1). @35
4y 4y

We combine (23) and the first relation in (30) to deduce that A(m) — 0, m —
oo, which implies IE)?I(\,I)(m) —y — 0, m — oo. Thus, relation (6) will be proved

2
T
ElnZ = x% - ¢ +4x2y? —4xPy +

~ 2
if we show that under assumptions (5), [& (S N (m)) — 0. The last relation can be
verified by using (30) and (31), and

Var (In Q(m?)) — 2Cov {In Q(m?), In Q(m)} + m~"Var (In Q(m))

E(S ’
(N(m)> = A[N/m2]1n?(m)

(36)
This completes the proof of Theorem 1.

Proof of Theorem 2 In view of decomposition (24), the assertion (14) follows from

2,,2,,2
E(Sym)> ~ " V" 37
v ~ (37

112 a

{Esvm)?| " syom = o, (38)

172 _
N InGm) (]E)?;,l)(m) - y) — _vF(l 'O), N — oo, (39)

m P

where v is the same as in (13).

Relation (37) follows from (26) by applying (16)—(17) and (19). To prove (38),
by using (16)—(19) we check the 4-th order Lyapunov condition for i.i.d. random
variables forming a triangular array. We skip standard details.

By using (10) we obtain

In V(m) { A(m) }
—y= In(C) + (I+o();, m— oco.
In(m) In(m) o
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Following the proof of Lemma 2 in [18] one can obtain

Eln( Lo )—xy:F(l_p)_lA(m)(l—i-o(l)), m — o0,
V(m) P

We combine the last two relations, assumption (13) and decomposition (25) to
verify (39).
Let us discuss the proof of (12) now. Relations (30), (31), (34)-(36) imply

~ 2
E (SN(m)) ~ m2N~VIn"2(m) (y% — (1/4)) 72/6, N — oo. In view of the last
relation it is enough to prove that

{Var (S,V(m))}fl/2 Svim) S 10,1, (40)

O (m DOV ETN), v p# 1 =2y. )

EsDom) — » —
v m =y {o(m”nn(m)), “lvp=1-2y.

We skip a standard proof of (40) and focus on the investigation of the bias
E)?Ii,l)(m) — y. Firstly, we prove that

Ina(m?) —Ina(m) <m—1vp)
—y=0 ., m — o0. 42)
2 In(m) In(m)

The relation (11) can be written in the form 1 — F (x) = x /7 ¢(x), x — oo, where
function £ € RVj has the form

0(x) = clv (1 + 6(131 0) (x/c)(—lvﬂ)/y +o (x(—lvﬂ)/y)) . x — 00,

43)
where
5 B/p, -1 <p <0,
CB.p)=1-2B=D/p,p=—-1,B#1/2,
—1/2, p < —1.

Now, by using (28), one can find that under assumption (11) the norming function
satisfies the asymptotic relation

a(m) = (C”V/d(y))zy m® (1420 (B, )= ym ™0 4 0 (m17))

as m — oo, while the last relation implies (42).
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We claim that

ElnQ(m)—EInZ _ { O (m=1vPva=21)  —1vp#1-2y, 44)

Inm O (m'"*In(m)), —1vp=1-2y

asm — oQ.

Then terms In~'(m?) {Eln Q(m?) —EInZ} and 2In(m))~'{lnam? -
Ina(m)} — y are negligible with respect to In"'(m) {Eln Q(m) — Eln Z} and
thus, the relation (41) follows.

To verify (44) we use the similar decomposition Eln Q(m) —EInZ = Ry, —
R>.m — R3  as in the proof of Prop. 3 in [12], where

Rim= /00 {PnQ(m) > x) —P(InZ > x)}dx,
0

0
Ry = / {P(InQ(m) <x)—P(UnZ < x)}dx,

—1Inm

—Inm
R3m = / {PnQ(m) <x)—P(nZ < x)}dx.

—00

By using substitution ¢t = exp{x} we obtain
[e¢)
Rim = / TP (Q(m) > 1) —P(Z > 1)} dr.
1

Similarly we get Ry, = fll/m Y {P(Q(m) <t) —P(Z < t)}dt. From Corol-
lary 2 in [2] it follows

sup £, (1) [P(Q(m) > 1) —P(Z > 1)| = O (x (mz”) +m*2y) . m— oo,
>0

where f,, (1) = 1 +12 In"2 (e + ¢) and A(R) = A1 (R) + R~/ @,(R), R > 0,
where

9

A(R) = sup ul/@V) ‘P(X% > u)—P(Z > u)

u>R

R
A (R) =/ ‘P(X% ~u)—P(Z > uw)|du.
0

It is well-known that P(Z > x) = Cix~ /@) (14 Cox V@) o (x~1/@0))),
x — oo holds, where Cy = Ci(y) are some constants. The asymptotic of P(X % >
u) is given in (27), where a function ¢ slowly varying at infinity is given in (43).
Recall that )?Ii,l)(m) is a scale-free estimator. Thus, without loss of generality, we
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may assume that the scale parameter C in (43) satisfies C'/? = Cj. Then we have

P(X2 > x) —P(Z > x) = Dx"2V0=/@n) 4, (x(fzv(pfl))/(zy)) . x— o0,
(45)
where D # 0 is some constant. By applying (45) we obtain immediately

A (m*) = 0(m™P),m — co.If =2V (p — 1) > =2y, by ex. 1.2 in [7],
arelation f(x) ~ x", x — oo implies

X r+1 _
/f(t)dt~ ¥/ + D>l X — 00 (46)
0 In(x), r=-—1,
and thus we obtain m'=2Y 1, (m%’) = O (m_lvf’), m — o00. In the case —2 Vv
(o0 — 1) = —2y, by applying (46) one more time we get m!=2Ay(m?") =

(0] (ml_zy ln(m)), m — o00. As for the case =2 v (p — 1) < —2y, we have
m' = x(m?) = 0 (ml_z”), m — oo. By putting the obtained results together
we get

0 (mflvpv(lﬂy))’ —1Vvp#1-=2y,

f‘;lgfﬂ” [P(Q(m)>1t) —P(Z >1)| = { O (M= In(m). —1vp=1-2y

asm — oo.
Applying the last asymptotic relation we obtain immediately

Ron| = O (m="VPVU=2)1n(m)), —1v p # 1 -2y,
2 0 (m' 2 2 (m)) —1vp=1-2y

and |Ri | = o(|Rom|) as m — oo. Since the relation |R3,| = O (m™') =
o ( Rom |), m — oo holds (see proof of Prop. 3 in [12]), the statement of Theorem 2
follows.
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Constructing Confidence Sets m)
for the Matrix Completion Problem e

A. Carpentier, O. Klopp, and M. Loffler

Abstract In the present contribution we consider the problem of constructing
honest and adaptive confidence sets for the matrix completion problem. For the
Bernoulli model with known variance of the noise we provide a method with
polynomial time complexity for constructing confidence sets that adapt to the
unknown rank of the true matrix.

1 Introduction

In recent years, there has been a considerable interest in statistical inference for
high-dimensional matrices. One particular problem is matrix completion where one
observes only a small number n <« mmy of the entries of a high-dimensional
m1 x my matrix My of unknown rank r; it aims at inferring the missing entries. The
problem of matrix completion comes up in many areas including collaborative fil-
tering, multi-class learning in data analysis, system identification in control, global
positioning from partial distance information and computer vision, to mention some
of them. For instance, in computer vision, this problem arises as many pixels may
be missing in digital images. In collaborative filtering, one wants to make automatic
predictions about the preferences of a user by collecting information from many
users. So, we have a data matrix where rows are users and columns are items. For
each user, we have a partial list of his preferences. We would like to predict the
missing ones in order to be able to recommend items that he may be interested in.
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In general, recovery of a matrix from a small number of observed entries is
impossible, but, if the unknown matrix has low rank, then accurate and even exact
recovery is possible. In the noiseless setting, [3, 5, 6] established the following
remarkable result: assuming that it satisfies a low coherence condition, My can be
recovered exactly by constrained nuclear norm minimization with high probability
from only n 2 rank(Mo)(m; Vv m3) logz(ml V my) entries observed uniformly at
random.

What makes low-rank matrices special is that they depend on a number of free
parameters that is much smaller than the total number of entries. Taking the singular
value decomposition of a matrix A € R™*™2 of rank r, it is easy to see that A
depends upon (m +my)r —r? free parameters. This number of free parameters gives
us a lower bound for the number of observations needed to complete the matrix.

A situation, common in applications, corresponds to the noisy setting in which
the few available entries are corrupted by noise. Noisy matrix completion has been
extensively studied recently (e.g., [2, 8, 13, 16]). Here we observe a relatively small
number of entries of a data matrix

Y=My+ E

where My = (Mp);;) € R™ > is the unknown matrix of interest and E = (g;;) €
R™1*M2 g a matrix of random errors. It is an important issue in applications to be
able to say from the observations how well the recovery procedure has worked or,
in the sequential sampling setting, to be able to give data-driven stopping rules that
guarantee the recovery of the matrix My at a given precision. This fundamental
statistical question was recently studied in [7] where two statistical models for
matrix completion are considered: the trace regression model and the Bernoulli
model (for details see Sect.2). In particular, in [7], the authors show that in the case
of unknown noise variance, the information-theoretic structure of these two models
is fundamentally different. In the trace regression model, even if only an upper
bound for the variance of the noise is known, a honest and rank adaptive Frobenius-
confidence set whose diameter scales with the minimax optimal estimation rate
exists. In the Bernoulli model however, such sets do not exist.

Another major difference is that, in the case of known variance of the noise, [7]
provides a realizable method for constructing confidence sets for the trace regression
model whereas for the Bernoulli model only the existence of adaptive and honest
confidence sets is demonstrated. The proof uses the duality between the problem
of testing the rank of a matrix and the existence of honest and adaptive confidence
sets. In particular, the construction in [7] is based on an infimum test statistic which
cannot be computed in polynomial time. This is not feasible in practice. Thus, in
the present note we develop an alternative method of constructing a confidence set
in the Bernoulli model which is computable with a polynomial time algorithm.
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2 Notation, Assumptions, and Some Basic Results

Let A, B be matrices in R"1*™2 'We define the matrix scalar product as (A, B) =
tr(A” B). The trace norm of a matrix A = (aij) is defined as [|A|lx = Y0 (A),
the operator norm as ||A|| := o1(A) and the Frobenius norm as ||A||% = al.z =
> i al.zj where (0 (A)); are the singular values of A ordered decreasingly. || Al =

max|a;;| denotes the largest absolute value of any entry of A. In what follows,
ij
we use symbols C, ¢ for a generic positive constant, which is independent of

n, mi, my, rank and may take different values at different places. We denote by
aVvb = max(a, b). We let Py, denote the distribution of the data when the parameter
is M. For a set of matrices & we denote by ||€’||2 its diameter measured in Frobenius
norm.

We assume that each entry of Y is observed independently of the other entries
with probability p = n/(mimy). More precisely, if n < mym; is given and B;;
are i.i.d. Bernoulli random variables of parameter p independent of the &;;’s, we
observe

Yij = Bij (Mo)ij +¢&ij), 1<i<m,1=<j<ms. (D

This model for the matrix completion problem is usually called the Bernoulli model.
Another model often considered in the matrix completion literature is the trace
regression model (e.g., [2, 10, 13, 16]). Let kp = rank(Mp) Vv 1.

In many of the most cited applications of the matrix completion problem, such
as recommendation systems or the problem of global positioning from the local
distances, the noise is bounded but not necessarily identically distributed. This is
the assumption which we adopt in the present chapter. More precisely, we assume
that the noise variables are independent, homoscedastic, bounded, and centered:

Assumption 1 Forany (ij) € [m1]x[m3] we assume that E(g;;) = 0, E(sfj) = g2

and that there exists a positive constant u > 0 such that

max [ei;| < u.
ij

Let m = min(m,my),d = my + my. For any [ € N we set [[] = {1,...,[}.
For any integer 0 < k < m and any a > 0, we define the parameter space of rank k
matrices with entries bounded by a in absolute value as

o (k,a) ={M € R"*™ : rank(M) <k, [[M|l« < a}. ()

For constants 8 € (0, 1) and ¢ = c(o, a) > 0 we have that

M—My|?  kd
inf sup  Puyyo | ollz >c > B
M Mye/ (k,a) mim2 n
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where ~ denotes two-sided inequality up to a universal constant and M is an
estimator of My (see, e.g., [11]). This bound is valid uniformly over My € </ (k, a).
It has been also shown in [11] that an iterative soft thresholding estimator M satisfies
with [Py, -probability at least 1 — 8/d

and [|Mo — M|l < 2a 3)

o 2 2
1M~ Molly _ .(a+0)%kod
mimy n
for a constant C > 0. These lower and upper bounds imply that for the Frobenius
loss the minimax risk for recovering a matrix My € 7 (kg,a) is of order

(0 + a)%kodmm;
, .
For k € [m] we set

2dk
e = C(a + a) ’
n

where C is the numerical constant in (3). We use the following definition of honest
and adaptive confidence sets:

Definition 1 Let o, o’ > 0 be given. A set 6, = €,((Y;j, Bij), ) C &/ (m,a)isa

honest confidence set at level « for the model .o/ (m, a) if

liminf inf )IP’M(M €%y >1—a.
n ,a

Meof (m

Furthermore, we say that %, is adaptive for the sub-model 7 (k, a) at level &’ if
there exists a constant C = C(«, «’) > 0 such that

sup Py (I6ull2 > Cry) <o
Med (k)

while still retaining

sup Py (”CKnHZ > Cry) < o
Meo/ (m,a)

The liminf in this definition is to be understood in a high-dimensional sense, i.e.
m1, my both depend on n and grow to oo as n — oo such that n < mj(n)ma(n).
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3 A Non-asymptotic Confidence Set for the Matrix
Completion Problem

Let M be an estimator of My based on the observations (Y}, B;;) from the Bernoulli
model (1) such that ||M loo < a. Assume that for some 8 > 0, M satisfies the
following bound:

mimy n

sup
Mye (ko,a)

o 2 2
]P’(”M Mol _ @+ kod) >1-p. )

We can take, for example, the thresholding, estimator considered in [11] which
attains (4) Wlth B = 8/d. Our constructlon is based on Lepski’s method [15]. W
denote by My the projection of M on the set .o/ (k, a) of matrices of rank k Wlth
sup-norm bounded by a:

My € argmin ||[M — Al|>.
Aed (k,a)

We set
={k: |M— M|3 < i) and  k = min{k € S}

and we will use M = M + to center the confidence set with diameter controlled by
the residual sum of squares statistic 7,

L 1 L p N2 2
= E (Yl./ Bz/Mz/) o (5)
n 7
Given o > 0, we denote

4y log(oe’l)
3/n '

Here z is a sufficiently large numerical constant to be chosen later on and ¢* > 2 is
a universal constant in Corollary 3.12 [1]. We define the confidence set as follows:

M — M|? 22dk + 7
C,,:{MGR’"IX’”Z:” ”25128(;,,+“ LRI SR

z= 2§6||M — M|} +z(uc*)?dk and &y, = 2u2\/10g(a_1) +

mimsy n Jn

Theorem 1 Let « > 0, d > 16 and suppose that M attains the bound (4) with
probability at least 1 — B. Let C,, be given by (6). Assume that || My||sc < a and that
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Assumption 1 is satisfied. Then, for every n > mlog(d), we have
Pyy(Mp € Cy) > 1 —a — exp(—cd). @)
Moreover, with probability at least 1 — 8 — exp(—cd)

2 2
ICallz _ C(G +a) dko.
mimy n

®)

Theorem 1 implies that C,, is a honest and adaptive confidence set:

Corollary 1 Let « > 0, d > 16 and suppose that M attains the risk bound (4)
with probability at least 1 — B. Let Cy, be given by (6). Assume that Assumption I is
satisfied. Then, for n > mlog(d), C, is a a 4 exp(—cd) honest confidence set for
the model <f (m, a) and adapts to every sub-model </ (k,a), 1 < k < m, at level
B + exp(—cd).

Remark The procedure for building a confidence set consists of

1. Building an adaptive estimator satisfying Eq. (4), that is computable in polyno-
mial time, e.g. the thresholding estimator from [11] or the matrix lasso [13]

2. Projecting the estimator on the smallest possible model which is coherent with
the estimator and amounts to computing the SVD of M once. This has complexity
of smaller order than the complexity of the matrix lasso.

3. Computing 7, for which on average n terms have to be considered

Summarizing, the computational cost of computing the adaptive confidence set is
of smaller order than the computational complexity of constructing an adaptive
estimator.

Proof (Proof of Theorem 1) For 1 < k < m1 A my we consider the following sets

256(a Vv u)2zd

C(k,a) =1 A e R">XM2 Al <a, [[My— Al > and rank(A) < k
p
and write
€ = U, C (k. ). )
~ 256(a Vv u)’zd
When | Mo — MH; < @vu)z we have that My € C,. So, we only need to
p

256(a Vv u)2zd

. ~2 . ~
consider the case H My —M ||2 > . In this case we have that M € %

We introduce the observation operator .2 defined as follows:

X R R with Z(A) = (Bijaij)ij-
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and set | A7, 7y = EI.2°(A)[13 = pllA]l3. We can decompose

o =n (M — Mo)|3 4 20~ (2 (E), Mg — M) + n | 2 (E)|3 — o2

Then we can bound the probability Py, (Mo ¢ Cp) by the sum of the following
probabilities:

IM — Mol N A
I =Py, ( 128 BUD S 2 (B — Mo |3 + za’dk ) |

11 =Py, (202 (E), Mo — M) > Z),
111 2= Pyty (—1 27 (E)B + 10 > ko)

By Lemma 1, the first probability is bounded by 8 exp (—4d) for z > (27¢*)?. For
the second term we use Lemma 7 which implies that /1 < exp(—cd) for z > 6240.
Finally, for the third term, Bernstein’s inequality implies

t2
P{—||%(E)||§+naz>t} < exp (- )

202nu? + %uzt

Taking t = 2u2\/n log(e~1) + §u2 log(a~!) we obtain that /71 < « by definition
of &y ,,. This completes the proof of (7).

To prove (8), using Lemmas 1 and 7, we can bound the square Frobenius norm
diameter of our confidence set C,, defined in (6) as follows:

2 ~ 2
ICnll5 < M — Moll; n ( k+§au)
mima mimoy Jn

This bound holds on an event of probability at least 1 — exp(—cd). Now we restrict
to the event where M attains the risk bound in (4) which happens with probability
at least 1 — 8. On this event, My € <7 (kg, a) implies ||M Mk0||2 < Iiy- S0, ko € S
and k < ko. Now, the triangle inequality and r; < rg, imply that on the intersection
of those two events we have that

2
1M — Moli3 < myma (riy + 17) S mimarg,.

This, together with the definition of &, and the condition n < mm2, completes
the proof of (8).
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4 Technical Lemmas

Lemma 1 With probability larger than 1 — 8 exp (—4d) we have that

|||%(Mo — Ay = 1Mo — All oy | — §I1Mo — AllL,am

<27c*
AEC() a/(rank(A) v 1)d

where ¢* is a universal numerical constant and € is defined in (9).

Proof We have that

P |||30V(M0 - A)”2 - ”M() - A||L2(17)| — 3 ||M() — A||L2(17) > 27 *
Ae‘é a/(rank(A) v 1)d

ko
fZ“"( sup  [1.2°(Mo — A)ll — 1Mo — AllLocm| — ||Mo—A||L2<m>27ca¢kd)
— A€C (k,a)

I

(10)
In order to upper bound I, we use a peeling argument. We set « = 7/6 and v> =

188a’zd
. Moreover, for/ € N set

p
5 = {A c@k,a) : alv < ||A— Mol < o1y ]
Then
o0
I<y'P <sup 12" (Mo — A)lly — IMo — AllL,m| = 27 c*avkd + g¢ a«/lSSzd)
=1 \A€S
> 7
< ZIP’ sup 112" (Mo — A)lly — 1Mo — All,am| = 27 c*avkd + _o'av/188zd
=1 Ae¥ (k,a,alt1) 8

~ -~

I

where €' (k,a, T) = {A € €(k,a) : |[Mp— All, < T}. The following lemma gives
an upper bound on II:

Lemma 2 Consider the following set of matrices:
Ck,a,T)={AeC(ka) : [My—Al, <T}

and set

Zr= sup |12 (Mo— A)lly — Mo — AllL,m| -
A€ (k.a.T)
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Then, we have that
3
P (ZT > 4\/pT +27 c*a\/kd) < 4e—c1pT?/a

with ¢; > (512)71.

Lemma 2 implies that IT < 4 exp(—c; p «*v?/a®) and we obtain

o0 o0
I<4 Z exp(—ci pa?t?0?/a%) < 4 Z exp (—2c1 pv? log(a) l/az)
=1 =1

where we used e* > x. We finally compute for v> = 188a%zdp~!
4exp (—2c1 pv? log(ar)/a?
< p( P g@/ ) < 8exp (—376 c1zd 1og(7/6)) < exp(—5d)
1 —4exp (—2c pv? log(e)/a?)

where we take z > (27¢*)2. Using (10) and d > log(m) we obtain the statement of
Lemma 1.

Proof (Proof of Lemma 2) This proof is close to the proof of Theorem 1 in [16]. We
start by applying a discretization argument. Let {Gé, ... Gév(a)} be a §—covering of
€ (k,a, T) given by Lemma 3. Then, for any A € €' (k, a, T) there exist an index
ief{l,...,N(8)}and a matrix A with ||A||2 < § such that A = Gg + A. Using the
triangle inequality we thus obtain that

1Mo — Ay — 12 (Mo — A)l| <| | 2 (o — G5

‘2 — 1Mo — Gl Ly
+ 12 Ally + /pé.
Lemma 3 implies that A € Z5(2k, 2a, 2T) where
sk, a,T) ={A €eR"™ ™ : |Allx <a, [|Al2 <6 and [All. < VKT).

Then,

Zr < max H‘%'(M()—Gg)
i=1,....N ()

— Mo — Gill,am |+ sup (12 Al + /pS.
2 AeT5(2k,2a,2T)

Now we take § = T/8 and use Lemmas 5 and 6 to obtain that

Zr < /pd +8c*avkd + 19ac*V2kd + /pT /2 + /ps < 27 c*avkd + 6./pT/8.

with probability at least 1 — 8 exp (— 5’;5:2).
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Lemma 3 Let § = T/8. There exists a set of matrices {G;, A Gév(a)} with Ns <
18T 2(d+1)k
( s ) and such that
(i) Forany A € € (k,a, T) there exists a Gg‘ € {Gé, ... va(a)} satisfying
|A—G{la<6 and (A—GE)e D52k, 2a,2T).

(ii) Moreover; |G} — Moloo < 2aand |G}, — Moll2 < 2T forany j =1,..., N;.
Proof We use the following result (see Lemma 3.1 in [4] and Lemma A.2 in [18]):

Lemmad4 Let Sk, T) = {A € R™*™ :rank(A) <k and |All2 < T} Then,
there exists an e —net S(k, T) for the Frobenius norm obeying

Sk, T)| < (9T /e)mitmatDk,

Let Sy (k, T) = {A € R™>™2 :rank(A) <k and |[A— Moll2 < T} and take
a Xo € €(k,a, T). We have that Sy, (k, T) — Xo C S(2k,2T). Let S(2k,2T) be
an §—net given by Lemma 4. Then, for any A € Sy, (k, T') there exists a (_;? €
S(2k,2T) such that |A — Xo — G|l < 8. Let G} = I1(G}) + Xo for j =
..., |Sk, 2T)| where IT is the projection operator under Frobenius norm into
the set 2(2k,2a,2T) = {A € R™*™2 : ||Alloo < 2a, and [A|s < 2v2kT}.
Note that as Z(2k, 2a, 2T) is convex and closed, /T is non-expansive in Frobenius
norm. Forany A € €(k,a, T) C Sy, (k, T), we have that A — Xo € Z(2k, 2a, 2T)
which implies

IA — Xo— (G2 = ITT(A — Xo— G2 < 1A — G — Xo)|2 < 8

and we have that (A — H(Gg‘) — Xo) € 52k, 2a, 2T) which completes the proof
of (j) of Lemma 3. To prove (i), note that by the deﬁnition of IT we have that

IG5 — Mollo = III1(G3) + Xo — Mol = IIIT(G} + Xo — M)l < 2a and
IG§ — Moll> < 2T.

LemmaS5 Let 6 = T/8 and assume that n > mlog(m). We have that with
- pT?
bability at least 1 — 4 -
probability at leas exp( 51232>
sup |2 All, < 19ac*V2kd + /pT /2.

AeDs(2k,2a,2T)

Proof Let Xr = sup | Z All,. We use the following concentration
AePs(2k,2a,2T)
inequality by Talagrand:
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Theorem 1 Suppose that f : [—1,11¥ — R is a convex Lipschitz function with
Lipschitz constant L. Let 21, ... En be independent random variables taking value
in[—1,1]. Let Z := f(&1,..., Ey). Then foranyt > 0,

P(1Z —E(Z)| > 16L + 1) < 4~ /2L7,

For a proof see [17, Theorem 6.6.] and [8, Theorem 3.3]. Let f(x11, ..., Xmm,) 1=

sup \/Z(i ) xizj Alzj It is easy to see that f(x11, ..., Xmm,) is a Lipschitz
AePs(2k,2a,2T) '
function with Lipschitz constant L = 2a. Indeed,

|f(-x115 RN xmlmz) - f(lea BRI Zm1m2)|
_ 2 42 2 A2
=| __sup DA~ sup P
A%k 2a.2T)\| ;=) AT (2K, 20.2T)\| (=)
< sup > (xij - )2 A7 < 2allx =zl
A2k 20.2T)\| ;)
where x = (x11, ..., Xmym,p) and z = (211, . . ., Zm my)- Now, Theorem 1 implies
2
]P’(XTzE(XT)+3Za+t)§4exp<—8 2). (11)
a

Next, we bound the expectation E(X7). Applying Jensen’s inequality, a sym-
metrization argument and the Ledoux-Talagrand contraction inequality (e.g., [12,
Theorem 2.2]) we obtain

EX7)? <E sup " BjjA;
AeT5(2k.2a.2T) ;)

<E sup ZB,-jAl-zj—E<B,-jAl-2j> + ps?
A€P5(2k,22.2T) (5

§2E( sup Zn,-jB,-jA%j)eraz

AE_@(S (2k,2a,2T) (l ])

SSaE( sup Zni/’Bi/’Ai/)—i—pSZ

Ae5(2k,2a,2T) | ;75

=8ak sup [(Zg. A | + ps® < 16av2k TE (| Zg) + ps°
AeDs(2k,2a,2T)
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where {7;;} is an i.i.d. Rademacher sequence, g = }_; ;) Bijnij Xij with X;; =
ej (ml)e/T (m>) and e, (1) are the canonical basis vectors in R/. Lemma 4 in [11] and
n > mlog(m) imply that

E || Zrll < ¢*y/pd (12)

where ¢* > 2 is a universal numerical constant. Using (12), /x +y < /x + /y,
2xy < x>+ y? and § = T/8 we compute

12
E(X7) < 4 (a */2kpd T) + /P8 < 16ac*~2kd + 3./pT/8.

Taking in (11) r = /pT /8 we obtain the statement of Lemma 5.
Lemma 6 Let§ =T/8,d > 16 and (G;, cees va(a)) be the collection of matrices
given by Lemma 3. We have that

max ] 2o = GH |, ~ 10 — Gllaam | < Vps +8"avkd

with probability at least 1 — 4 exp (— paz).

8a2

Proof For any fixed A € R™*™2 gatisfying ||A|lco < 2a we have that

||<%A||2=\/ZBi/Az'2j= sup Z(”ijBiinj)-

ij [lell2=1 ij
Then we can apply Theorem 1 with f(x11, ..., Xmm,) = sup Y (uijxij) to
[lull2=1
obtain
2
P (|2 All2 — E|| 2 All2] > t +32a) < 4exp {_832} : (13)

On the other hand, let Z = sup )_,; (uij BijAij). Applying Corollary 4.8 from

lull=1
[14] we obtain that Var(Z) = ||A||%2(n) — (IE||3&”A||2)2 < 16%a” which together
with (13) implies

t2
P (|2 All2 = |AllL,amy| > t +48a) < 4exp {—832} . (14)

Now Lemma 6 follows from Lemma 3, (14) with t = ,/pd + 5¢*av/kd and the
union bound.
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Lemma 7 We have that

(2 (E), A — Mo)|l — ,56 1Mo — Al 1,
sup

< 6240(uc*)?.
Ac? drank(A)

with probability larger than 1 — exp(—cd) with ¢ > 0.0003.
Proof Following the lines of the proof of Lemma 1 with & = /65/64 and v =

252(aV u)?zd .
we obtain
p

o ((sup (27 (E), A — Mo)| — ,5c 1Mo — A3 17,
Acy drank(A)

> 6240(uc*)2)

0 o0 pa21v2
<> > sup 2 (E), A — Mop)| > 6240(uc*)*dk +
A€C (k,a,al*1v) 256

20422

0 o0
pao
<4 Zexp <— er@ay u)z) < exp(—cd)

where we use the following lemma:

Lemma 8 Consider the following set of matrices
Ck,a,T)={AeCka) : |My— Al =T}

and set

Zr = sup [(Z(E),A— Mo)l.
A€ (k,a,T)

We have that
P (ZT > 6240(c*u)>dk + pT2/260) < dexp (— pT2/cr(@avV u)2)

with ¢3 < 12(1560)2.

Proof (Proof of Lemma 8) Fix an Xg € ¥'(k,a, T). Forany A € € (k,a,T), we
set A = A — Xo and we have that rank(A) < 2k and ||A|l2 < 2T. Then using
(Z (E), A— Mp)| < {Z (E), Xo — Mp)| + |{Z (E), A)| we obtain that

Zr < (Z(E), Xo— Mo)l+  sup  [(Z(E), A)]|
Ae T (2k,2a,2T)
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where

T (2k,2a,2T) = {A e R™>™2 . || A|loc <2a, ||A]p <2T and rank(A) < 2k}.

Bernstein’s inequality and || Xo — Mp|l2 < T imply that

2
P{{(Z(E), Xg — Mp)| >t} <2exp| — .
{{Z(E), Xo o) >t} P( 202pT2+‘3‘uat>

Taking r = pT?/520 we obtain

2 pT?
P {|(3&”(E), Xo — Mo)| > pT /520} <2exp <— . u)2) . (15)

On the other hand, Lemma 9 implies that with probability at least 1 —
pT?
2exp| —
c3(aVvu)?

sup (2 (E), A)| < 6240(c*u)’*kd + pT*/520
A€ T (2k,2a,2T)

which together with (15) implies the statement of Lemma 8.

Lemma 9 Assume that n > mlog(m). We have that with probability at least 1 —

pT?
2exp| —
c3(a Vv u)?

sup  [(Z(E), A)| < 6240(c*u)’kd + pT?/520
AeT (2k,2a,2T)
where ¢3 < 12(1560)2 is a numerical constant.

Proof Let )?T = sup (Z (E), A)| = sup (Z(E), A). First we
A€T (2k,2a,2T) A€T (2k,2a,2T)

bound the expectation IE()? T):

E(Xr) <E sup |y eijBijA| | =E sup (%, A)
A€T (2k,2a,2T) G, ) A€T (2k,2a,2T)

<22k TE(|Z1)

where ¥ = Z(i’j) Bjjeij Xij with X;; = ¢; (ml)e/T (m») and ey (1) are the canonical

basis vectors in R’. Using n > mlog(m) Lemma 4 in [11] and Corollary 3.3 in [1]
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implies that
E|Z| < c*uy/pd. (16)
where ¢* > 2 is a universal numerical constant. Using (16) we obtain
E(X7) < 2c*uy/2kpd T < 3120(c*u)*kd + pT?/1560. (17)

Now we use Theorem 3.3.16 in [9] (see also Theorem 8.1 in [7]) to obtain

2
N " t
P(Xr >E(X7)+1) <exp|— =
( T > E(X7) )— p( 4uaE(XT)+402PT2+9”at>

2

t
<exp|-— 18
- p( 8auZc*/2kpdT ~|—402pT2~|—9uat) (18)

Taking in (18) t = pT?/1560 4 2uc*\/2kpdT, together with (17) we obtain the
statement of Lemma 9.
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A Nonparametric Classification )
Algorithm Based on Optimized e
Templates

J. Kalina

Abstract This contribution is devoted to a classification problem into two groups.
A novel algorithm is proposed, which is based on a distance of each observation
from the centroid (prototype, template) of one of the groups. The general procedure
is described on the particular task of mouth localization in facial images, where
the centroid has the form of a mouth template. While templates are most com-
monly constructed as simple averages of positive examples, the novel optimization
criterion allows to improve the separation between observations of one group
(images of mouths) and observations of the other group (images of non-mouths).
The separation is measured by means of the weighted Pearson product-moment
correlation coefficient. On the whole, the new classification method can be described
as conceptually simple and at the same time powerful.

1 Introduction

In this chapter, a novel nonparametric classification method to two groups is
proposed, which is based on a centroid (prototype, template) of one of the groups.
The method does not consider any distributional assumptions, allows a clear
interpretation, and optimizes the centroid without any parametric model, as it is
common in the nonparametric regression context.

The method is explained and illustrated on a particular classification task in the
context of 2D images, namely a mouth detection in images of faces. Nevertheless,
the method does not use any specific properties of mouths and not even of images
and thus can be described as a general classification method suitable for high-
dimensional data. Thus, the optimization algorithm may bring improvement in
a wide variety of applications in different fields, e.g. in medicine or forensic science.
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The concept of centroids in classification tasks has been recently investigated
within various classification [9, 26] or unsupervised [6] learning tasks with rec-
ommendations to replace means by other (shrunken, regularized) centroids to
improve the classification performance. Searching for a suitable centroid in various
applications (e.g., image analysis or gene expression data) may be complicated
i.e. by strongly correlated variables or by a high dimensionality of the problem,
especially if the number of variables is large compared to the number of training
data [14].

Centroid-based classification is popular in image analysis for being simple,
powerful, and comprehensible. In the context of images, a centroid is called a
template and is interpreted as a typical form, a virtual object with ideal appearance
or shape, or image model [26], while the most common classification method
based on templates is known as template matching. It is commonly performed by
measuring similarity (most often by means of Pearson product-moment correlation
coefficient) between the template and every rectangular part of the image, which has
the same size as the template. Such area of the image with the largest similarity with
a given mouth template is classified as the part of the image corresponding to the
template.

Template matching has established applications, e.g. in person recognition, com-
puter vision, forensic science, or archeology [2, 5, 21, 25] even recently. Unflagging
attention is paid to templates as tools within more complicated approaches (e.g., sets
of landmarks are used as templates in geometric morphometrics [27]), but also to
self-standing local or global 2D or 3D templates, geometrical descriptors in the form
of rigid templates [4], allowing to model the covariance structure of the data and to
distinguish the intrapersonal variation from noise. All such approaches, just like any
likelihood-based approaches to detection of eyes [24], faces [19] or humans [20],
can be however described as parametric with all possible disadvantages following
from violations of the probabilistic assumptions and models.

To the best of our knowledge, there have been no recommendations on a
sophisticated construction of templates, which is surprising with regard to their
simplicity and applicability. Commonly, a template is constructed as the average
of several different positive examples. This ignores the requirement that templates
should be very different from all possible negative examples, which are defined as
parts of the image not corresponding to any mouth. If a mouth detection task is
considered as an example, positive examples are mouths and negative will be called
non-mouths. At the same time, we are not aware of any procedures for optimizing
the discrimination between two images.

Our previous work in the task of face detection attempted to improve the
correlation coefficient [11] exploiting its robust versions [13, 15], while only the
current contribution is focused on improving and optimizing templates. Section 2
of this chapter describes a nonparametric method for optimizing templates together
with an approximate algorithm. Results of computations over a particular data set
of images of faces are presented in Sect. 3. Section 4 discusses the results as well as
advantages of the proposed approach. Finally, Sect. 5 concludes the work.
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2 Methods

2.1 Optimization Criterion

We propose a minimax optimization procedure for a nonparametric construction
of an optimal centroid (template). The approach, although rather general, will be
explained on the example of locating the mouth using a single template. Let r, (r, S)
denote the weighted (Pearson, i.e. product-moment) correlation coefficient between
two data vectors r and s with given weights. Without any prior dimensionality
reduction, r,, will be used as a measure of similarity between the template and the
image throughout this chapter. Our aim is to optimize the classification rule over
grey values of the template for the weighted correlation coefficient. The template is
improved over the training data set of images, starting with an initial template. Fixed
weights are used throughout the whole procedure, which express the importance of
particular pixels for the classification task.

Let us consider a given template t and let us use the notation, e.g. t = vec(t) =
(t,..., t,,)T so that the matrix is converted to a vector. Denoting n the number
of its pixels, we consider a particular mouth x = (x1,..., x,,)T and a particular
non-mouth z = (zy, ..., zn)T as vectors of the same size as the template. We also
consider given non-negative weights w = (wq, .. ., wn)T, which fulfil

Xn:wiZI. (1)

i=1

The function

rF (x, t)
s £y ta = v ' 2
f(x,z,t,w) rE (2, 1) 2
will be considered, where the monotone Fisher transformation
1 1+ ryX,y)
F w
= _1 3
(X y) =, %2, xy) 3

is applied on r, extending its values to the whole real line (—oo, 0o) and improving
the separation between mouths and non-mouths by putting emphasis on the worst
non-mouths with the largest weighted correlation coefficient with the template.
Besides, (3) can be characterized as a variance-stabilizing transformation. The value
of (2) exceeds 1 if and only if the particular mouth x is classified correctly, i.e. it is
well discriminated from the non-mouth. The larger (2), the better separation between
x and z.

The template optimization proposed below maximizes the worst separation,
i.e. the separation for the worst case, which is defined as the mouth and non-mouth
in a particular image with the worst separation over the whole training data set. For
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a particular image i in the data set of images .#, let us consider the set I of all
rectangular areas in image i, which have the same size as the template. If there is
exactly one mouth in every image, then I consists of the mouth and of the set I,
corresponding to the remaining areas (non-mouths). Retaining given weights w, the
optimal template is found as

argmax minmin f (X, z, t, W), @
t,ontn€R €S 2EI;

considering all non-mouths z in every particular image i € .# of the training data
set.

Let us now consider more mouths in a given image. Then, we consider [ to
contain also the set I, with several (rather than one) areas corresponding to the
mouth. Then, we consider the worst of the mouths and thus instead of (4),

argmax min minmin f(x, z, t, w) (®)]
lyentneRi€I 21 XEL,

will be searched for.

2.2 Optimizing Templates

A linear approximation to the solution of the nonlinear problem (5) will be now
used to simplify the optimization, while results will be presented later in Sect. 3. Let
us use the notation (2) for the separation between a particular mouth x and a non-
mouth z in the worst case over all images, given the template t and weights w. The
task of minimizing (5) will be replaced by a linear approximation obtained from the
Taylor series as

n

ad t,
Rz t+EW A Kz LW+ 5 f&xz,tw) 6)
= at;
Small constants 81, ..., d,, where n is the size of the template, will be added

to the grey intensities of the initial template with the aim to increase the worst
separation. Formally, the linear problem

Z 5; af (x,z,t, w) )

will be solved under constraints

¢ Z?:lfsi:o’
e 0<t;,+6; <C withagivenC >0, i=1,...,n,
e —g<§; <e withagivene >0, i=1,...,n.
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The linear problem for the separation in the worst case should be formulated
and solved repeatedly within an iterative algorithm. The simplex algorithm will be
used to solve the linear problem. In some applications, e.g. mouth localization, it
is reasonable to accompany the set of constraints by a requirement on the optimal
template to be symmetric along its vertical axis, which at the same time reduces the
dimensionality of the problem.

As the worst separation (5) increases, sooner or later it reaches the level of the
second worst case. Therefore, we introduce additional constraints to improve the
separation for several cases simultaneously. Let us now consider all non-mouths
together with the mouths from the same images, which have the separation larger
than the very worst case by less than (say) p = 0.01. For each one of these worst
cases with the mouth denoted by x* and the non-mouth z*, let us require

n

Z(Si of (x,z,t,w) _ Z(Si f (x*,z*, t, W)

8
0t; 0t; ®)

i=1 i=1

as additional constraints for (7). The classification is based on mouths and non-
mouths near the boundary between these two classes and the whole iterative
computation is described in Algorithm 1. The value of (5) as a function of a given
template and weights will be denoted as M (t, w).

Remark 1 A repeated evaluation of (5) requires to find the worst case over all
images repeatedly, as it may be different from the worst case in the previous
iteration.

Algorithm 1 Linear approximation for optimizing a given (initial) template
Require: Symmetric initial template ty, symmetric weights wg, p = 0.01
Ensure: Optimal template t*

1: k=0

2: repeat

3: Consider the linear problem (7) for t = t;.

4:  Find such mouths and non-mouths, which have the separation using t; smaller than

M (te, wo) + p.
5:  Formulate constraints (8) for all such mouths and non-mouths for the linear problem.
6:  Solve the constrained linear problem by linear programming to obtain 81, ..., §,.
7 k=k+1
T
8t = (k=11 + 81, k10 + )

9: until M (t;, wo) > M (tx_1, wo)
10: t* =t
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3 Results

3.1 Description of the Data

The novel classification method, i.e. template matching with the template obtained
with the approach of Sect.2.2, will be now illustrated on the task of mouth
localization in a data set of 212 raw grey-scale images of faces of size 192 x 256
pixels. The data set, which was created within projects BO 1955/2-1 and WU 314/2-
1 of the German Research Council (DFG), was acquired at the Institute of Human
Genetics, University of Duisburg-Essen [1, 11]. A grey intensity in the interval [0, 1]
corresponds to each pixel. Each image contains a face of one individual sitting
straight in front of the camera under standardized conditions, i.e. looking straight
in the camera with open eyes without glasses, without hair covering the face or
other nuisance effects. The size or rotation of the head differs only slightly.

First, the data set is divided to a training data set of 124 images and an
independent validation data set of the remaining 88 images. The reason for this
division was pragmatic as the 88 images were acquired later but still under the same
standardized conditions fulfilling assumptions of independent validation.

In order to compare results of various methods, we manually localized the
position of the midpoint of the mouth in every image of both data sets. The
localization is considered successful if the midpoint of the detected mouth has
the distance from the manually localized midpoint less or equal to three pixels
(cf. Sect.2.1). In this way, every mouth contains the middle parts of the lips, but
reaches neither the nostrils nor the chin. All further computations are performed on
raw images without a prior reduction of dimensionality or feature extraction. We
used C++ for programming the entire code and R software for visualization of the
results.

3.2 Locating the Mouth: Initial Results

For the given database of images of faces, the average mouth computed from the
whole training data set contains a clear mouth without any inkling of moustache, but
has rather a weak performance if used as a template. It localizes the mouth correctly
in 85% of the images in the training data set. Instead, we attempted to construct
various mouth templates of the same fixed size 26 x 56 pixels as averages of
groups (clusters) of mouths mutually resembling each other. The size was selected to
cover each mouths together with a small neighborhood. We consider only this fixed
template size, while data driven approaches to selecting a suitable template size are
much more complicated [17]. Several templates constructed in such a way yield
a better performance than the overall average. The template with the best mouth
localization performance among 10 such templates is the bearded template of Fig. 1,
constructed as the average of 7 mouths of bearded men.
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Fig. 1 Bearded template of size 26 x 56 pixels

The classification performance of the templates turns out to be improved if radial
weights (Fig.2, second row left) for the template are used. They are inversely
proportional to the distance of each pixel from the template midpoint, stressing the
central area of the template rather than its boundary parts. If a pixel with coordinates
[, j] is considered, radial weights in this pixel are inversely proportional to its
distance from the midpoint [ig, jo], formally for even n and n, defined as

Wl = ! ©)
Vi —i0)? + (j — Jjo)?

and a standardization (1) is used.

Table 1 presents values of the worst separation (5) obtained with various
templates on the training and validation data sets. The optimal template was
always constructed over the training data set. Its classification performance was
subsequently evaluated over the training as well as the validation data sets.

Let us also compare the results obtained with template matching with those
obtained with standard algorithms. The approaches of [22] and [28] were applied
on raw images over the considered data set. To compare the results also with several
standard classification methods, we performed the following manual pre-processing.
Out of the training data set, a set of 124 manually selected mouth images of size
26 x 56 pixels and 124 non-mouths of the same size, where each non-mouth comes
from one image, was created. Here, such non-mouth was selected from each image
which has the largest correlation coefficient with the bearded template. The results
are shown in Table 2 for various general classification methods as well as specific
procedures for object detection in 2D images. However, the separation measure (2)
cannot be applied to any of these standard methods.

3.3 Optimal Mouth Template

The template optimization of Sect.2.2 will be now used to further improve the
results of template matching in terms of separation between mouths and non-
mouths. The optimization starts always with the bearded initial template but
considers various choices of the weights. Symmetry of the optimal mouth template
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Fig. 2 Results of template optimization. Left: choice of the weights. Middle: optimal template
obtained for these weights and for the bearded initial template. Right: optimal weights for this
optimal template, obtained by the two-stage search with the upper bounds ¢; = ¢, = 0.005

is required to reduce the computational complexity. In the computations, the choice
C = 0.005 was made to prevent overfitting. This is rather a precaution because
templates resulting from the optimization commonly reach C only in a small
percentage of pixels.

The computation based on the linear approximation requires several hundreds of
iterations in small steps. Concerning the value of ¢, we started with ¢ = 0.000020
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Table 1 Performance of mouth localization evaluated by means of (5) in the training and
validation data sets for equal or radial weights

Equal weights Radial weights
Template Training set Validation set Training set Validation set
Average 0.66 0.69 0.85 0.82
Bearded 0.78 0.55 1.13 0.94
Optimal (C = 0.005) 2.12 1.81 1.79 1.52

Different templates include the average across the training data set, a bearded template (Fig. 1),
and the solution of the linear approximation of Sect. 2.2, starting with the bearded initial template

Table 2 Percentages of correctly classified images using different standard methods for classifi-
cation or object detection

Results over the

Method Training set Validation set Software

Viola-Jones [22] 1.00 1.00 MATLAB, package vision
Zhu [28] 1.00 1.00 Online supplement of [28]
Support vector machines 0.90 0.85 R, package 1071
Classification tree 0.97 0.90 R, package tree
Multilayer perceptron 1.00 1.00 R, package neural
SCRDA 0.98 0.92 R, package rda

The classification rule was learned over the training data set and its performance was subsequently
evaluated over both data sets

Table 3 Performance of mouth localization evaluated by means of (5)

Weights Initial template Optimal template

(row of Fig.2) Training set Validation set Training set Validation set
1 0.78 0.75 2.12 1.53

2 1.13 1.03 1.79 1.43

3 0.77 0.72 2.05 1.36

4 0.80 0.81 2.06 1.48

5 0.82 0.75 2.05 1.41

Different weights are used from different rows of Fig. 2 (left). For the initial bearded template, the
performance is evaluated for the training (T) and validation (V) data sets. The optimal template
was constructed over the training data set and its performance was subsequently evaluated over
both data sets

but later iterations required a decrease to ¢ = 0.000001 in order to continue
improving the worst separation. Also, there happen to be as many as 10 worst cases
from different images during the last iterations. To speed the computation, we have
a good experience with violating Remark 1 and finding the worst case over the
whole data set only in each fifth iteration.

The resulting optimal templates are shown in Fig. 2 for different choices of fixed
weights. The performance of the optimal templates for these various choices of
weights is presented in Table 3. As we can see, the optimal templates in all cases
contain clear lips but no beard any more (Fig. 2).
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4 Discussion

In this chapter, a novel classification method is proposed, which can be characterized
as a nonparametric classifier to two groups based on optimizing the centroid
(template) of one of the groups. It is illustrated on a particular task of optimal
construction of a mouth template for the automatic mouth localization in 2D grey-
scale images of faces. We use a weighted Pearson product-moment correlation
coefficient as the measure of similarity between the image and the template. The
procedure may find applications in a broad scope of classification problems not
limited to template matching, which itself is acknowledged as one of standard,
powerful, comprehensible, and simple methods useful for object detection in single
images. Still, the topic of optimal construction of templates has not attracted
sufficient attention.

If the average mouth is used as a single template, the performance of template
matching is rather weak over the given dataset. A simple bearded template yields
the best performance with the mouth localization results to be correct in 100% of
images if radial weights are used. While some of the standard algorithms of machine
learning as well as specific approaches of image analysis are able to reach the 100%
performance as well, the advantages of the new approach include the possibility to
measure directly the separation (2) in the worst case. Such measure is tailor-made
for template matching and allows to search for an optimal template, while it cannot
be even evaluated for any other classification procedure.

The optimization criterion is formulated to separate the mouths and non-mouths
in the worst case across the whole data set. The optimization task was solved
exploiting a linear approximation to the high-dimensional optimization task and
depends on a small number (not more than ten) of non-mouths with the largest
resemblance to the mouths. The optimization is able to remarkably improve the
initial classification performance and the improvement is retained if verified on an
independent validation data set. This contradicts the popular belief that the average
of mouths of different people as a very suitable template. We have a good experience
with the bearded initial template, although the beard seems to disappear from the
optimized templates. Additional computations also reveal the resulting template not
to be very sensitive to the choice of the initial template.

The procedure can also be described as a nonparametric search for a shrinkage
version of the centroid of one group (cf. [23]). Numerous classification procedures
for high-dimensional data are based on shrinkage estimators of the population
mean, which reduce the mean square error compared to the classical mean for
multivariate data [10, 16]. In the classification task, the mean of each group is
commonly shrunken towards the overall mean [18] or towards zero [9]. However,
all such approaches require to consider the prototype (e.g., regularized mean)
also of the non-mouths, while the population of non-mouths is substantially more
heterogeneous (diverse) than that of mouths.

The novel method works reliably on the considered data without any initial
reduction of dimensionality, which allows a clear interpretation and represents also
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the difference from numerous habitual approaches to image analysis which require
a prior feature extraction. It may be, however, used after a prior dimensionality
reduction (feature extraction) as well. The classifier does not seem to have a
tendency to overfitting in spite of the high dimensionality of the task, when the
number of pixels n = 1456 largely exceeds the number of images.

5 Conclusion

In this chapter, a novel general nonparametric approach to classification to two
groups is proposed and implemented. It is based on measuring the weighted
correlation coefficient between an observation and a centroid of one of the two
groups, for which an optimization criterion tailor-made for the classification task
is formulated. The novel method does not require any distributional assumptions
and does not evaluate any form of a likelihood. It may be applied to classification
tasks for high-dimensional multivariate data in various fields, while it is common
to use the arithmetic mean to play the role of a centroid (prototype, estimator of
the population mean) of the groups in classification tasks, e.g. in the framework of
linear discriminant analysis [10, 12].

Principles of the new nonparametric classifier, although rather general, are
explained and illustrated on a particular classification task in images. In such
context, the centroid can be denoted as a template and we may speak of a nonpara-
metric construction of optimal templates exploiting all benefits of a nonparametric
approach.

The optimization criterion of the new method is based on improving the
separation only for a small set of the worst cases. These are in our case mouths with
the worst separation from non-mouths, i.e. non-mouths with the largest resemblance
to a mouth. This is a common feature of various nonparametric optimization
approaches, e.g. kernel-based methods [7, 10] or support vector machines, where the
latter are based only on selected observations (support vectors) near the boundary
between the classes. In our examples, the novel template optimization brings
improvements in the separation between positive and negative examples, as verified
on an independent validation data set.

The resulting classification procedure can be perceived as a comprehensible
method allowing to interpret which variables contribute the most to the similarity
between the template and the corresponding part of the image. This is an advantage
over competing image analysis procedures, which commonly contain a large
number of parameters with a great impact on the result but with a too difficult
interpretability (e.g., [22]).

Limitations of the new method include its computational intensity due to its
nonparametric character. Still, the method may be suitable, e.g. for applications in
medicine or forensic science, which do not require a fast computation. The demand-
ing computation is performed however only in the optimization (i.e., learning) of
the template, while assigning a new observation to one of the groups (i.e., the
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template matching itself) can be computed quickly. Other disadvantages include
the suitability of template matching only for standardized images, although the
method itself is general and uses specific properties of neither faces nor images.
Further, we did not invent a special solution for images with the mouth located
at the boundary of the image; it may be worthwhile to replace r,, by a robust
correlation coefficient [15]. While template matching is common as an elementary
tool within more complicated computational pipelines, it must be admitted that
templates themselves cannot compete with image analysis approaches invariant to
illumination changes [3]. The rigid character of the template represents another
restriction, while deformable 2D templates represent a more flexible alternative,
allowing to model the deformation of the object from the ideal template.

A future research is intended to be devoted to the following tasks, which are
arranged from the simplest applications to more complicated extensions.

* Localizing other objects (e.g., eyes) in facial images by optimal templates in 2D
or 3D images.

* Optimizing also the weights for the weighted correlation coefficient.

* Applying the new method to nonparametric classification of data which are not
images, especially data which are high-dimensional and not normally distributed
(e.g., molecular genetic measurements). While this chapter considers mouths
and non-mouths in blocks (i.e., within images), gene expression data have an
analogous structure in pairs, while a sample of a patient and a sample of a control
individual both are measured within a pair within a microarray.

* Optimizing deformable templates, which are obtained by a shape alteration
(distortion, warping) of rigid templates [8].
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PAC-Bayesian Aggregation of Affine )
Estimators s

L. Montuelle and E. Le Pennec

Abstract Aggregating estimators using exponential weights depending on their
risk appears optimal in expectation but not in probability. We use here a slight
overpenalization to obtain oracle inequality in probability for such an explicit
aggregation procedure. We focus on the fixed design regression framework and
the aggregation of linear estimators and obtain results for a large family of linear
estimators under a non-necessarily independent sub-Gaussian noise assumptions.

1 Introduction

We consider here a classical fixed design regression model
Vie{l,....n}, ¥; = folx)) + W;

with fo an unknown function, x; the fixed design points, and W = (W;);i<, a
centered sub-Gaussian noise. We assume that we have at hand a family of linear
estimate {f,(Y) = AY|Ar € ST (R), by € R",t € T}, for instance a family
of projection estimator, of linear ordered smoother in a basis or in a family of
basis. The most classical way to use such a family is to select one of the estimates
according to the observations, for instance using a penalized empirical risk principle.
A better way is to combine linearly those estimates with weights depending on the
observation. A simple strategy is the Exponential Weighting Average in which all

those estimates are averaged with a weight proportional to exp (— };,) 7 (t) where

7 is a (penalized) estimate of the risk of f, This strategy is not new nor optimal
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as explained below but is widely used in practice. In this chapter, we analyze
the performance of this simple EWA estimator by providing oracle inequalities in
probability under mild sub-Gaussian assumption on the noise.

Our aim is to obtain the best possible estimate of the function fy at the grid points.
This setting is probably one of the most common in statistics and many regression
estimators are available in the literature. For non-parametric estimation, Nadaraya-
Watson estimator [39, 52] and its fixed design counterpart [26] are widely used,
just like projection estimators using trigonometric, wavelet [24] or spline [51] basis,
for example. In the parametric framework, least squares or maximum likelihood
estimators are commonly employed, sometimes with minimization constraints,
leading to LASSO [47], ridge [34], elastic net [60], AIC [1], or BIC [45] estimates.

Facing this variety, the statistician may wonder which procedure provides the
best estimation. Unfortunately, the answer depends on the data. For instance, a
rectangular function is well approximated by wavelets but not by trigonometric
functions. Since the best estimator is not known in advance, our aim is to mimic
its performances in terms of risk. This is theoretically guaranteed by an oracle
inequality:

R(fo, f) < Gy, inf R(fo, f1) + €n
teT

comparing the risk of the constructed estimator f to the risk of the best available
procedure in the collection { f,, t € ). Our strategy is based on convex combi-
nation of these preliminary estimators and relies on PAC-Bayesian aggregation to
obtain a single adaptive estimator. We focus on a wide family, commonly used in
practice : affine estimators {f,(Y) = A (Y =Db)+b+b|A € S (R), by e R" 1 €
T} with b € R" a common recentering.

Aggregation procedures have been introduced by Vovk [50], Littlestone and
Warmuth [37], Cesa-Bianchi et al. [13], Cesa-Bianchi and Lugosi [14]. They are
a central ingredient of bagging [9], boosting [25, 44], or random forest ([3] or [10];
or more recently [6-8, 27]).

The general aggregation framework is detailed in [40] and studied in [11, 12]
through a PAC-Bayesian framework as well as in [53-59]. See, for instance, [49]
for a survey. Optimal rates of aggregation in regression and density estimation are
studied by Tsybakov [48], Lounici [38], Rigollet and Tsybakov [42], Rigollet [41]
and Lecué [35].

A way to translate the confidence of each preliminary estimate is to aggregate
according to a measure exponentially decreasing when the estimate’s risk rises. This
widely used strategy is called exponentially weighted aggregation. More precisely,
as explained before, the weight of each element f, in the collection is proportional
to exp (— rg) 7 (t) where F; is a (penalized) estimate of the risk of f,, B is a positive
parameter, called the temperature, that has to be calibrated and 7 is a prior measure
over 7. The key property of exponential weights is that they explicitly minimize the
aggregated risk penalized by the Kullback-Leibler divergence to the prior measure
7[12]. Our aim is to give sufficient conditions on the risk estimate 7; and the
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temperature § to obtain an oracle inequality for the risk of the aggregate. Note that
when the family .7 is countable, the exponentially weighted aggregate is a weighted
sum of the preliminary estimates.

This procedure has shown its efficiency, offering lower risk than model selection
because we bet on several estimators. Aggregation of projections has already been
addressed by Leung and Barron [36]. They have proved, by the mean of an oracle
inequality, that the aggregate performs almost as well, in expectation, as the best
projection in the collection. Those results have been extended to several settings
and noise conditions [5, 18, 19, 21-23, 29, 30, 43, 46] under a frozen estimator
assumption: they should not depend on the observed sample. This restriction, not
present in the work by Leung and Barron [36], has been removed by Dalalyan
and Salmon [20] within the context of affine estimator and exponentially weighted
aggregation. Nevertheless, they make additional assumptions on the matrices A; and
the Gaussian noise to obtain an optimal oracle inequality in expectation for affine
estimates. Very sharp results have been obtained in [15, 31] and [32]. Those papers,
except the last one, study a risk in expectation.

Indeed, the Exponential Weighting Aggregation is not optimal anymore in
probability. Dai et al. [17] have indeed proved the sub-optimality in deviation
of exponential weighting, not allowing to obtain a sharp oracle inequality in
probability. Under strong assumptions and independent noise, [4] provides a sharp
oracle inequality with optimal rate for another aggregation procedure called Q-
aggregation. It is similar to exponential weights but the criterion to minimize is
modified and the weights no longer are explicit. Results for the original EWA
scheme exist nevertheless but with a constant strictly larger than 1 in the oracle
inequality. Dai [16] obtain, for instance, a result under a Gaussian white noise
assumption by penalizing the risk in the weights and taking a temperature at
least 20 times greater than the noise variance. Golubev and Ostobski [32] does
not use an overpenalization but assumes some ordered structure on the estimate
to obtain a result valid even for low temperature. An unpublished work, by
Gerchinovitz [28], provides also weak oracle inequality with high probability for
projection estimates on non-linear models. Alquier and Lounici [2] consider frozen
and bounded preliminary estimators and obtain a sharp oracle inequality in deviation
for the excess risk under a sparsity assumption, if the regression function is bounded,
with again a modified version of exponential weights.

In this work, we will play on both the temperature and the penalization. We
will be able to obtain oracle inequalities for the Exponential Weighting Aggregation
under a general sub-Gaussian noise assumption that does not require a coordinate
independent setting. We conduct an analysis of the relationship between the choice
of the penalty and the minimal temperature. In particular, we show that there is a
continuum between the usual noise based penalty and a sup norm type one allowing
a sharp oracle inequality.
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2 Framework and Estimate

Recall that we observe
Viefl,...,n}, Yi = folxi)+ W,;

with fo an unknown function and x; the fixed grid points. Our only assumption
will be on the noise. We do not assume any independence between the coordinates
W; but only that W = (W;);<, € R" is a centered sub-Gaussian variable. More
precisely, we assume that IE(W) = 0 and there exists 0> € R* such that

2
Vo € R, E[exp (otTW>] < eXp<02 ||05||%) ;

where ||.||2 is the usual euclidean norm in R”. If W is a centered Gaussian vector
with covariance matrix X, then o2 is nothing but the largest eigenvalue of X.

The quality of our estimate will be measured through its error at the design points.
More precisely, we will consider the classical euclidean loss, related to the squared
norm

gl = gt

i=1

Thus, our unknown is the vector ( fo ()c,-))?:1 rather than the function fj.

As announced, we will consider affine estimators ft(Y ) =A;(Y —b)+ b+ b
corresponding to affine smoothed projection.
We will assume that

n
HX) =AY =b)+b+b =Y pilY —b.gi)gni+b+b

i=1

where (g;;)7_, is an orthonormal basis, (o;,;)7_; a sequence of non-negative real
numbers, and b, € R". By construction, A; is thus a symmetric positive semi-
definite real matrix. We assume furthermore that the matrix collection {A;},;c 7 is
such that sup,c # [|A;ll2 < 1. For the sake of simplicity, we only use the notation
fi(Y) = A;(Y — b) + b + b, in the following.

To define our estimate from the collection { ﬁ (Y) =AY +bi|Ar € ST (R), by €
R", t € T}, we specify the estimate 7; of the (penalized) risk of the estimator ft (Y),
choose a prior probability measure 7 over .7 and a temperature 8 > 0. We define
the exponentially weighted measure pgw 4, a probability measure over .7, by

A

dpewa(t) = L
[ exp (—ﬁrﬂ> dm(t')
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and the exponentially weighted aggregate fgwa by fEwa = f ﬁ dopwa(®). If T
is countable, then

e_};/ﬂnt ~

JEwa = 5 .
tg? drege " Py

This construction naturally favors low risk estimates. When the temperature goes
to zero, this estimator becomes very similar to the one minimizing the risk estimate
while it becomes an indiscriminate average when B grows to infinity. The choice
of the temperature appears thus to be crucial and a low temperature seems to be
desirable.

Our choice for the risk estimate 7; is to use the classical Stein unbiased estimate,
which is sufficient to obtain optimal oracle inequalities in expectation,

re =Y — fi(V)|3 4 20°Tr(A,) — no?

and add a penalty pen(r). We will consider simultaneously the case of a penalty
independent of fy and the one where the penalty may depend on an upper bound of
(kind of) sup norm.

More precisely, we allow the use, at least in the analysis, of an upper bound
||]70_\—/b||oo which can be thought as the supremum of the sup norm of the

coefficients of fp in any basis appearing in 7. Indeed, we define ||]70_\—/b||oo as
the smallest non-negative real number C such that forany t € .7,

1A (fo — b)|I5 < C*Tr(A?).

By construction, || fo — b||, is smaller than the sup norm of any coefficients of

fo — b in any basis appearing in the collection of estimators. Note that ||]70_\—/b||OO
can also be upper bounded by || fo — bl|1, || fo — bl|2 or \/n|| fo — b|lco Where the £;
and sup norm can be taken in any basis.

Our aim is to obtain sufficient conditions on the penalty pen(#) and the
temperature § so that an oracle inequality of type

Ifo = fewallz < inf ,+e / Ifo = fil3dn(o)

M€%+(

+(14+€) (/ price(t)du(t) + 2BKL(u, ) + B1n rl])

holds either in probability or in expectation. Here, € and ¢’ are some small non-
negative numbers possibly equal to 0 and price(t) a loss depending on the choice
of pen(s) and 8. When 7 is countable, such an oracle proves that the risk of
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our aggregate estimate is of the same order as the one of the best estimate in the
collection as it implies

A 1
Ifo = fewall < inf {(1 +ollfo— fill+1+é€) (price(r) +pin (t)2n> } :

Before stating our more general result, which is in Sect.4, we provide a
comparison with some similar results in the literature on the countable .7 setting.

3 Penalization Strategies and Preliminary Results

The most similar result in the literature is the one from [16] which holds under
a Gaussian white noise assumption and uses a penalty proportional to the known
variance o2

Proposition 3.1 ([16]) Ifpen(t) = 20°Tr(A;), and B > 45216, then for all n > 0,
with probability at least 1 — 1,

12802

38 ) I fo— fill* + 80 *Tr(A,)

I fo— fEwall? < mtin { (1 +

1 1
+38In  +3B81In } .
T n
Our result generalizes this result to the non-necessarily independent sub-
Gaussian noise. We obtain

Proposition 3.2 If B > 20072, there exists y € [0,1/2), such that if pen(t) >

,34—(222 Tr(Atz)az,for any n > 0, with probability at least 1 — n,

4 N
I fo = fewall® < ir;f{(l - _sz) I fo— filP

1

+ (1 + 2y ) (pen(l) 4202 Tr(A;) +281n ! +B1In 1)] )
1-2y Ty n

The parameter y is explicit and satisfies € = 0(‘752 ). We recover thus a similar weak
oracle inequality under a weaker assumption on the noise. It should be noted that
[4] obtains a sharp oracle inequality for a slightly different aggregation procedure
but only under the very strong assumption that Tr(A;) < In ()

Following [33], a lower bound on the penalty that involves the sup norm of fp,
can be given. In that case, the oracle inequality is sharp as € = ¢’ = 0. Furthermore,
the parameter y is not necessary and the minimum temperature is lower.
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Proposition 3.3 If > 402, and
2

4 _— 2
pen() z _"402 <O-2Tr(A3> +2 [Ilfo — bllo Tr(AD) + ||bt||§D :

then for any n > 0, with probability at least 1 — n

1fo— fewal® < inf {1l fo — /il +202Tr(a)
802 2
g [nfo Dl Tr(A; )+||b,||2}
1 1
+pen(r) +26In  + BIn }
T n

We are now ready to state the central result of this contribution, which gives
an explicit expression for y and introduce an optimization parameter v > 0, from
which this theorem can be deduced.

4 A General Oracle Inequality

We consider now the general case for which .7 is not necessarily countable. Recall
that we have defined the exponentially weighted measure ppwa, a probability
measure over .7, by

dpewa®) = (-37) dr (1)
[ exp (—éf;) dm(t)

and the exponentially weighted aggregate frwa by fEwa = f ﬁ dppwa(t).
Propositions 3.2 and 3.3 will be obtained as straightforward corollaries.
Our main contribution is the following two similar theorems:

Theorem 4.1 For any B > 2002, let
B —120% — /B —402/B — 2002
- 1602
Ifforanyt € 7,
2

4o 5 2
pen(t) > g - 452° Tr(A;),
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then
* foranyn € (0, 1], with probability at least 1 — n,
Ifo— fewall; < inf (1 + )/ I fo — fil3du()
ne (T

(14,27, ) [rent 207
+(1+ pen(?) + 20 Tr(A;)du(t)
1—-2y

+5(1+ 2y )(ZKL(u,n)+lnl>.
-2y n

e Furthermore

. 4 o
Ell fo— fewal3 < inf (1 + 7 ) /]E||fo — fill3du ()
ped(7) 1 -2y
2y 2 2y
+{ 1+ pen(t)+20“Tr(A)du()+28 (1 + KL(u, ).
1 -2y 1-2y

and
Theorem 4.2 Forany § € [0, 11, if B > 402, If foranyt € 7,
2

pen(t) >
B — 402

—_— 2
(oZTrm%) +2 [Ilfo — bll oo Tr(AD) + ||b; ||%D ,

then

e foranyn € (0, 1], with probability at least 1 — n,

I fo— fewalz < inf /Ilfo — filldu)
e (T)

2

o
+/pen(t)+202Tr(A,)+ 8- 452

[Ilfo bllooTr(Az) + ||bt||2i| dp(r)

+8 (2KL(M, 7)+1n ;) .

e Furthermore

. 4 A
E|l fo— fewall; < inf (1+ g >/]Ellfo—ﬁllgdu(t)+/13€n(t)
pe T -2y

2

2
+20 Tr(At)—i-,B 42

[Ilfo bllooTr(Az) + ||bt||2i| dp(r) +2KL(w, 7).
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When 7 is discrete, one can replace the minimization over all the probability
measures in ///}r(ﬂ ) by the minimization overall all Dirac measures §7, with
t € . Propositions 3.2 and 3.3 are then straightforward corollaries. Note that
the result in expectation is obtained with the same penalty, which is known not to
be necessary, at least in the Gaussian case, as shown by Dalalyan and Salmon [20].

If we assume the penalty is given

pen(r) = kTr(A?)a?,

one can rewrite the assumption in terms of «. The Weak oracle inequality holds for

any temperature greater than 200> as soon as k > While an exact oracle

ﬁ o
inequality holds for any vector fy and any temperature 8 greater than 4¢-> as soon
as

B - 402K ||f0 b“oo + bl /TT(AZ)
402 o2

—~ 2
For fixed « and B, this corresponds to a low peak signal to noise ratio I Off oo up
o

to the ||b;||* term which vanishes when b, = 0. Note that similar results hold for
a penalization scheme but with much larger constants and some logarithmic factor
inn.

Finally, the minimal temperature of 2002 can be replaced by some smaller value
if one further restricts the smoothed projections used. As it appears in the proof, the
temperature can be replaced by 8¢ or even 65> when the smoothed projections are,
respectively, classical projections and projections on the same basis. The question
of the minimality of such temperature is still open. Note that in this proof, there is
no loss due to the sub-Gaussianity assumption, since the same upper bound on the
exponential moment of the deviation as in the Gaussian case is found, providing the
same penalty and bound on temperature.

The two results can be combined in a single one producing weak oracle
inequalities for a wider range of temperatures than Theorem 4.1. Our proof is
available in an extended version of this contribution in which, we prove that a
continuum between those two cases exists: a weak oracle inequality, with smaller
leading constant than the one of Theorem 4.1, holds as soon as there exists § € [0, 1)
such that 8 > 402(1 + 48) and

buoo + bl /Tr(A2>

B — 402
2 o2

K—1>(1—8)(1+2y )2”f°
4o

where the signal to noise ratio guides the transition. The temperature required
remains nevertheless always above 402, The convex combination parameter §
measures the account for signal to noise ratio in the penalty.
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Note that in practice, the temperature can often be chosen smaller. It is an open
question whether the 402 limit is an artifact of the proof or a real lower bound. In the
Gaussian case, [32] have been able to show that this is mainly technical. Extending
this result to our setting is still an open challenge.
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Light- and Heavy-Tailed Density )
Estimation by Gamma-Weibull Kernel s

L. Markovich

Abstract In our previous papers we focus on the gamma kernel estimators of
density and its derivatives on positive semi-axis by dependent data by univariate
and multivariate samples. We introduce the gamma product kernel estimators for
the multivariate joint probability density function (pdf) with the nonnegative support
and its partial derivatives by the multivariate dependent data with a strong mixing.
The asymptotic behavior of the estimates and the optimal bandwidths in the sense
of minimal mean integrated squared error (MISE) are obtained. However, it is
impossible to fit accurately the tail of the heavy-tailed density by pure gamma
kernel. Therefore, we construct the new kernel estimator as a combination of the
asymmetric gamma and Weibull kernels, i.e. Gamma-Weibull kernel. The gamma
kernel is nonnegative and it changes the shape depending on the position on the
semi-axis and possesses good boundary properties for a wide class of densities.
Thus, we use it to estimate the pdf near the zero boundary. The Weibull kernel is
based on the Weibull distribution which can be heavy-tailed and hence, we use it
to estimate the tail of the unknown pdf. The theoretical asymptotic properties of
the proposed density estimator like the bias and the variance are derived. We obtain
the optimal bandwidth selection for the estimate as a minimum of the MISE. The
optimal rate of convergence of the MISE for the density is found.
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1 Introduction

It is well known that in modeling of a wide range of applications in engineering,
signal processing, medical research, quality control, actuarial science, and climatol-
ogy among others the nonnegatively supported pdfs are widely used. For example,
the distributions from the gamma family play a key role in actuarial science. Most
total insurance claim distributions are shaped like gamma pdfs [11]: nonnegatively
supported, skewed to the right and unimodal. The gamma distributions are also
used to model rainfalls [1]. Erlang and x? pdfs are used in modeling insurance
portfolios [13]. The pdfs from the exponential class play a prominent role in the
optimal filtering in the signal processing and control of nonlinear processes [7].
On the basis of the high popularity of the nonnegatively supported distributions,
it is fairly natural to study the estimation methods of such pdfs by finite data
samples. One of the most common nonparametric pdf estimation methods are kernel
estimators. However most of the known asymmetric kernel estimators are oriented
on the univariate nonnegative independent identically distributed (iid) data and
the light-tailed distributions. For example, for the iid random variables (r.v.s), the
estimators with gamma kernels were proposed in [6]. The gamma kernel estimator
was developed for univariate dependent data in [4]. In [3] the gamma kernel
estimator of the multivariate pdf for the nonnegative iid r.v.s was introduced. Other
asymmetrical kernel estimators for the case of the iid data like inverse Gaussian
and reciprocal inverse Gaussian estimators were studied in [20]. The comparison
of these asymmetric kernels with the gamma kernel is given in [5]. However,
for a real life modeling the multivariate dependent probability models are used.
For example, to attempt modeling portfolios of insurance losses the dependent
multivariate probability models with gamma distributed univariate margins were
used in [11]. Moreover, in the risk theory the pdfs can be heavy-tailed [9]. Modeling
the heavy-tailed densities is important to compute and forecast the portfolio value-
at-risk when the underlying risk factors have a heavy-tailed distribution [12, 19].
Hence, the need of the multivariate pdf estimation for the nonnegative dependent
r.v.s and heavy-tailed pdfs arises. In [16] we introduce the gamma product kernel
estimators for the multivariate joint pdf with the nonnegative support and its
partial derivatives by the multivariate dependent data. The author develops both
the asymptotic behavior of the estimates and the optimal bandwidths in the sense
of the minimal mean integrated squared error (MISE). Note that the derivative
estimation requires a specific bandwidth different from that for the pdf estimation.
The mathematical technic applied for the derivative estimation is similar to the
one applied for the pdf. However all formulas became much more complicated
particulary because of the special Digamma functions arisen. Thus, one has to find
the order by a bandwidth from complicated expressions containing logarithms and
the special function. Other asymmetrical kernel estimators like inverse Gaussian
and reciprocal inverse Gaussian estimators were studied in [20]. The comparison
of these asymmetric kernels with the gamma kernel is given in [5]. The gamma
kernel is nonnegative and flexible regarding the shape. This allows to provide a
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satisfactory fitting of the multi-modal pdfs and their derivatives. Gamma kernel
estimators have no boundary bias if f”(0) = 0 holds, i.e. when the underlying pdf
f(x) has a shoulder at x = 0 [22]. This shoulder property is fulfilled, for example,
for a wide exponential class of pdfs. Other bias correction methods can be found
in [14] for the univariate iid data and in [10] for the multivariate iid data. However,
less attention is dedicated to the tail fitting. The main focus of this chapter is on the
nonparametric estimation of the heavy-tailed pdfs which are defined on the positive
part of the real axis. It is obvious that the known classical estimators cannot be
directly applied to the heavy-tailed pdfs. These are characterized by slower decay to
zero of heavy tails than that of an exponential rate, the lack of some or all moments
of the distribution, and sparse observations at the tail domain of the distribution
[9]. The known approaches of the heavy-tailed density estimation are the kernel
estimators with the variable bandwidth, the estimators based on the preliminary
transform of the initial r.v. to a new one and “piecing-together approach” which
provides a certain parametric model for the tail of the pdf and a nonparametric
model to approximate the “body” of the pdf [18]. In this contribution, we introduce a
new kernel constructed from the gamma and the Weibull kernels. The new Gamma-
Weibull kernel has two smoothing parameters (bandwidths) and the third parameter
that is the width of the boundary domain of the gamma part of the kernel. A stapling
between the gamma and the Weibull parts is provided. The asymptotic behavior
of the estimates and the optimal bandwidths in the sense of the minimal MISE
are obtained. Normally, the Pareto distribution tail is accepted as a tail model for
regularly varying heavy-tailed distributions. We selected the Weibull distribution tail
since it does not belong to the latter class of the distributions and can be either heavy-
tailed or light-tailed, depending on the shape parameter. This chapter is organized
as follows. In Sect. 1.1 we provide a brief overview of the results known for the
gamma kernel density and its derivative estimators. In Sect.2 we introduce the
Gamma-Weibull kernel estimator and in Sect. 3 its convergence rate and the optimal
bandwidth parameters that minimize its MISE are derived.

1.1 Gamma Kernel

In this section we briefly recall the theory known for gamma kernel estimators. Let
{Xi;i = 1,2,...} be a strongly stationary sequence with an unknown probability
density function f(x), which is defined on x € [0, co). To estimate f(x) by a
known sequence of observations {X;} the non-symmetric gamma kernel estimator
was defined in [6] by the formula

- 1<
frw) = ;Kpb(x>,b(x,~). (1)
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Here

17O~ exp(—t/b)

b T (pp(x)) @

Kp,x),p(1) =

is the kernel function, b is a smoothing parameter (bandwidth) such that b — 0 as
n — oo, I'(+) is a standard gamma function and

x/b, if x> 2b,

op(x) = { (x/(2b))? + 1, if x € [0,2b).

3)

The use of gamma kernels is due to the fact that they are nonnegative, change
their shape depending on the position on the semi-axis, and possess better boundary
bias than symmetrical kernels. The boundary bias becomes larger for multivariate
densities. Hence, to overcome this problem the gamma kernels were applied in [3].
Earlier the gamma kernels were only used for the density estimation of identically
distributed sequences in [3, 6] and for stationary sequences in [4]. Along with the pdf
estimation it is often necessary to estimate the derivative of the pdf. The estimation
of the univariate pdf derivative by the gamma kernel estimator was proposed in [17]
for iid data and in [15] for a strong mixing dependent data. Our procedure achieves
the optimal MISE of order n~*7 when the optimal bandwidth is of order n=%/7. In
[21] an optimal MISE of the kernel estimate of the first derivative of order n=47
corresponding to the optimal bandwidth of order n~!/7 for symmetrical kernels was
indicated. The unknown smoothing parameter b was obtained as the minimum of
the mean integrated squared error (M I SE) which, as known, is equal to

MISE(fy(x)) =E f (f(x) = fu(x))2dx.
0

Remark 1 The latter integral can be split into two integrals f02b and fzog’. In the

case when x > 2b the integral fozb tends to zero when b — 0. Hence, we omit the
consideration of this integral in contrast to [22]. The first integral has the same order
by b as the second one, thus it cannot affect the selection of the optimal bandwidth.

In [21, p. 49], it was indicated an optimal MISE of the first derivative kernel
estimate 7~ 7 with the bandwidth of order n=7 for symmetrical kernels. Neverthe-

less, our procedure achieves the same order n_é with a bandwidth of order n_%.
Moreover, our advantage concerns the reduction of the bias of the density derivative
at the zero boundary by means of asymmetric kernels. Gamma kernels allow us
to avoid boundary transformations which is especially important for multivariate
cases.
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2 Gamma-Weibull Kernel

The term heavy-tailed is used to the class of pdf whose tails are not exponentially
bounded, i.e. their tails are heavier than the exponential pdf tail [2, 9]. The examples
of such pdfs are Lognormal, Pareto, Burr, Cauchy, Weibull with shape parameter
less than 1 among others. Let {X;;i = 1,2, ...} be a strongly stationary sequence
with an unknown pdf f(x) which is defined on the nonnegative semi axes x €
[0, 00). Our objective is to estimate the unknown heavy-tailed pdf by a known
sequence of observations {X;}. Since the pdf is assumed to be asymmetric and
heavy-tailed we cannot use the standard symmetrical kernels. Let us construct a
special kernel function which would be both flexible on the domain near the zero
boundary and it could estimate the heavy tail of the distribution. For the domain
x € [0, a], a > 0 we use the gamma kernel estimator that was defined in [6] by the
formula

- 1 1 & XMl g=Xifo
= K Xi) = ! , ,0 > 0.
fon) = ; o6 (Xi) = > ore oy’ P07

i=1

Here, I'(p) is the gamma function evaluated at p and # is the bandwidth of the
kernel. The shape parameters p, 8 will be selected further. For the domain x > a
the Weibull kernel estimator is constructed by

— 1 1o k(x, b) (X )P X\
an(x):n;Kk(x,b)(Xi):niZ; N <)\> exp|—| ,

where the shape parameters are A > 0, 0 < k < 1 and b is the bandwidth of the
kernel. Hence, the pdf estimator is the following

fo,(x)if  xel0,al,
fw, ) if  x>a.

fow,(x) = { (4)

The latter kernel estimator has two bandwidth parameters # and b and one special
parameter a. The parameters p(x, h), k(x,b), A and 6 can be found from the
matching conditions

fo(X.p(e.h).0)| _ = (@ k(x.b). )| _ =0, 5)

FL(X, p(x, ), Q)LZH — fl(a k(x, b), )\)‘x:a —0. (6)
From the condition (5) we can deduce that the shape parameters of the kernels are

pla,h) =k(a,b), 0 =A.
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From the condition (6) we can deduce that

tialp(x, h) _ tialk(x, D)

tialx x=a tialx x=a

(N

Hence, we can select any variety of p(x, %) and k(x, b) that satisfy the latter
conditions to get some kernel estimators. Let us select, for example, the following
parameters

x+crh X+ cab
.

plc iy ="~ kx.b)= ®)

Hence, the bandwidth parameters satisfy the condition 7 = bcy/cy. Since k(x, b) <
1 for the heavy-tailed Weibull pdf the parameters c1, c2 are some negative constants
that we will select further. As the measure of error of the proposed estimator (4) we
consider the MISE and the unknown smoothing parameters 4 and b are obtained as
the minima of (4).

3 Convergence Rate of the Density Estimator

In this section we obtain the asymptotic properties of the estimator (4). To this end
we derive the bias and the variance of the estimates in the following lemmas.

Lemmal Ifb — 0asn — oo, then the bias of the pdf estimate (4) is equal to

Ci(x,a)+hCr(x,a,c1) +o(h)if x € [0, al,

Bias(f(x)) = {B1(x,a)+bB2(x’afc2) ‘o) if x>a,

€)

where we denote

Gl ="71"@. Caxacen =ciama =c (F@+/0 + @),
(10)

2
Bi(x,a) = f (al' (1)) = f(x) + f" (al" (1)) a2 (K@ —reE)*, an

2
By(x.a,c2) = caby(x.a) = “xgz ( —f @l ) w0 (12)
+ f" @l (1) a( (I @)~ )T O @) —2I ()W (r)))

2
— f"(al () a2 (F(t)—F(r))ZF(t)W(t)>,
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and

r=1+4% r=147" (13)
X

Lemma?2 [fb — 0asn — oo, then the variance of the pdf estimate (4) is equal
to

~ 1
Var(f(x)) = " (Al(x, a) = (Ci(x,a) + f(0))* + h(Aa(x, a, ¢2) (14)
—2C(x,a,c)(Ci(x,a) + f(X)))) +o(h) if  xel0,al,
~ 1
Var(f(x)) = " (Dl(x, a) — (Bi(x,a) = f(x))> + b(Da(x, a, c2)

— 2Ba(x,a,c2)(Bi(x,a) — f(X)))) +o®) if  x>a,

where we denote

— a Jx
Ai(x,a)=—f (x - 2) Ja(a —2x)’ -
2
Az(xa a, Cl) = ClaZ('x’ a) =-q (f (x B 621) 2\/612(_; —x2x)2

* 2o (7569 (=)

and

By _
Dy(x,a) = x2“2 ( £Qa) (x(xzaf“) + 2) +fQa)x —a) + f”(2a)2a2) . (16)

3 g

a _ 2 -
Da(x. . ¢3) = dyy (5. @) + eadp(x. @) = x2a2 (f(Za)((x 2a)(dx2:;a(c2 dx))

dx® +a(cr — dx) x(x —a)(x —2a)(6y — 10— ln(4))>
+ - 3
a 2a

dx? + a(cy — dx)
a

“oxd(x —2a+1)— "

+ F'Qa) < (x —a)(6y — 10— 1n(4)))

a

3x
2 a -1

— ") (2x(d(x —a)+2d% + a6y — 10 — ln(4)))) + 770 (=xIn(@ +a+2xIn()

x ( fCa) (x(x2;23”) + 2) + 7 Ca)(x —a) + f”(za)za2> )

The proofs of the latter lemmas are given in Appendix.
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3.1 The Optimal Bandwidth Parameters for the Density
Estimator

To find the mean integrated squared error (MISE) we use the results of two last
sections. Hence, for the domain x € (0, a] the MSE is equal to

MSE(f(x))G = C}(x,a) +h>C3(x,a,c1) + 2hCy(x,a)Ca(x,a,c1) (17)

1
+ (Al(x, a) — (C1(x,a) + f(x))* + h(Ax(x, a, c1)

—2C(x,a,c)(Ci(x,a) + f(x)))> +o(h).

Thus, from the minima of the latter equation we can obtain the optimal bandwidth
parameter for the domain x € (0, a]

¢ 1 A .
hopt(x,a,n) = 1 a) ( 2(x,a,cr)

S Cy(x.a,c1)  Cax,a,cnn \2Ca(x,a, cr)

—C1(x,a)—f(X))-
(18)

Substituting the latter bandwidth into (17) we get

n 1 A ,a,
MSE(f () Gopt = ( 2(x, @, 1)

n? \2Ca(x, a, c1)

2
—(Cl()ﬁa)‘i‘f(x)))

Ax(x,a,c1)Ci(x,a)
Cy(x,a,cy)

1
+ (wa,a) — + (Ci(x,a) - f2<x)>).

For the domain x > a the MSE is the following:
MSE(f())w = Bi(x,a) + b’ B3 (x,a, ) + 2bBi(x, @) Ba(x,a,¢2) (19)

1
+ " (Dl(x, a) = (Bi(x,a) — f(x))* + b(Da(x, a, c2)

— 2By(x,a,c2)(Bi(x,a) — f(X)))> +o(b)
and the optimal bandwidth is

_B 1 D
bopi(x,a,n) = 1%, a) < 2(x, a, ¢2)

Ba(x,a,c2)  Ba(x,a,cn \2Ba(x,a, c2)

- B+ W),
20)
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Substituting the latter bandwidth into (19) we get the following rate:
~ 1 Dy(x,a,c
MSEF () wop = — ( 2L ¢2)

2
2Bo(x.a.cr) (Bi(x,a) + f(X)))

n2
Dy (x,a,c2)Bi(x,a)

1
Di(x,a) —

+ (B¥(x,a) — fz(x))) :

To satisfy the condition hyps(a, a,n) = bypi(a, a, n)cz/c1, we have to find the
parameters a, c1, ¢2. Let us select the bandwidth b,y (a, a, n) which is optimal
for the tail part of the estimate. Hence, the second bandwidth is hhap, (a,a,n) =
bopt(a, a,n)cy/c1. We can find such constants a, c1, ¢ that provide

min {hO[Jt (a, a, n) - hb[}pt (aa a, n)}‘
a,ci,e2

Hence, substituting the values of the bandwidths (18) and (20) we get the following
condition:

C

1 (Bl(a,a)bz(a,a) (az(a,a)

2% (e, a) Ci(a.a) era.a) 2f(a)) —2f(a)ba(a, a) — dp(a, a))

where

f'(2a)

In(10) (a = 1)(y In(10) — In(5))

dri(a,a) = 2% <

+ f"(2a) (y — 1+ 24? ( In(® _ 6y + 10) + () ))
In(10) In(10) ) )’

_ 3a71 f(2a) 261 -1 — !
dyp(a,a) =22 ( a2 ( 2 +3 (1 In(10)(In(a) — 21n(2))>>

n f'Qa) 1
a

+ £"(2a) (1 = n(10)

(In(a) — 21n(2))> )

and ax(a, a), Bi(a,a), by(a, a), Ci(a, a), and c2(a, a) are defined in Lemmas 1
and 2. Note that we can select any negative cy, e.g. c; = —1. Hence, the selection
of a provides the choice of ¢y which gives us the optimal bandwidths (18) and (20)
for both domains x € (0, a] and x > a, respectively. In practice, the calculation of
¢ requires a pilot estimation of the pdf f (x). One can use the rule of thumb method
with the gamma reference function (see [8]).
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4 Conclusion

The new kernel estimator of the heavy-tailed probability density function on
the positive semi-axis by iid data is proposed. Our estimator is based on two
kernels: the gamma kernel for the boundary domain and the Weibull kernel for
the tail domain. Since the Weibull density can be either heavy-tailed or light-
tailed, depending on the shape parameter, the proposed kernel estimator can be
applied to both types of densities. The Gamma-Weibull kernel is smooth due
to the cross-linking condition on the boundary and the introduced cross-linking
parameter. We provide the asymptotic properties of the estimator by optimal rates of
convergence of its mean integrated squared error. We develop explicit formulas for
the optimal smoothing parameters (bandwidths). Further development may concern
the investigation of alternative bandwidth selection methods. The results can also be
extended to multivariate samples with mixing conditions.

Acknowledgements The study was supported by a Foundation for Basic Research, grant 16-08-
01285A.
Appendix

Proof of Lemma 1

To find the bias of the estimate f(x) let us write the expectation of the kernel
estimator (4)

EG(F) =[5 Kpwean s fOdy = E(f &), if  x €[0,a),
Ew(F&) = J5° Kim a0V f D)y = E(F0), i x = a.
1)

E(f(x) = [

where &, is the gamma distributed (p(x, /), 8) r.v. with the expectation u, =
p(x, h)0 and the variance Var(&y) = p(x, h)6?% and N is the weibull distributed
(k(x, b), A) r.v. with the expectation r, = AI'(l + k(xl b)) and the variance

—~ 2
Var(ney) = A2 (F(l + k(xz’b)) -1+ k(xl,h))) . Let us use the parameters (8)

and & = X = a. Hence, using the Taylor series in the point i, the expectation for
the domain x € [0, a] can be written as

1
E(f(x) = fux) + 2f”(ux)Var($x) + o(h)

a(x + c1h)

2

a(x + ci1h)
2

= f(x+ch) + f”(x—l—clh)—l—o(h)

= f) + f(Derth + (f") + f"@)eth) +oh). (22)



Gamma-Weibull Kernels 155

Thus, it is straightforward to verify that the bias of the estimate in the domain x €
[0, a] is

Biasg(f(x)) = Ci(x,a) + Ca(x, a)h + o(h),
where we used the notations (10). To find the bias for the domﬂa\ifl x > a we need
to Taylor expand E( f(ny)) in the point ji,. However i, and Var(n,) contain the
gamma function depending on the bandwidth parameter. To find their order on b we

need to expand them knowing that » — 0 and nb — oo as the n — oo. Hence, we
can write

2
fe=al' 0 =b" Fr @ ©)+ob),
X
_ 3.
Tar) =@ (" ()~ I 0 45> 2 (00 = T ) (5% () =27 ()0 1) + 00,

where we used the notation (13) and ¥ (-) is a digamma function. Thus, the
expectation (21) can be written as

~ 1 1~ NYT o
E(f(mo) = fre) + 2f (mx)Var(ny) +o(h) (23)

2
= f@ra - s @ray OO,

302

1/, 5, 2a%crb
+ 2(a r@—-re+ 2 Tr®O-re)d Owv@ -2 (r)llf(r))>

ZC2

b
X (f” (al’ ) — " (aI" (1)) ax2 rmw (1)) + o(D).
Therefore, we can write that the bias of the pdf estimate in the domain x > a is
Biasw(f(x)) = Bi(x,a) + bBa(x,a) + o(b),

where we used the notations (11) and (12).

Proof of Lemma 2

By definition the variance is
) 1 1 5 )
Var(f) = Var(K) = (B2 - EAK@D). @4)

The second term of the right-hand side of (24) is the square of (22) and (23) for the
domains x € [0, a] and x > a, respectively. The first term of the right-hand side
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of (24) for the domain x € [0, a] can be represented by

© 2 x+cih 1

5 ® 5 y a )e—Zy/a
k3 = [ Kooy = [ L )y = Blx, h ) E(F (&),
J ; a2 a2 <x+ac1h)

(25)

where ¢, is the gamma distributed r.v. (with parameters (2()(-‘;6‘1]1) -1, g)) The
expectation is iy = x + c1h — 5 and the variance is Var(§y) = (x +c1h)§ — “42.

Here we used the following notation:

a

2 o1 h °
ar? (o)t

r (2(x+c1h) . 1)

B(x,h,a) = (26)

Using the Stirling’s formula for the gamma function, x € (0,a] and » — 0 as
n — oo we can expand (26) as

Jx a+2x

B(x.h,a) = C Jala —2x) hqzx/ax(a —2x)?

+ o(h).

The expectation in (25) can be Taylor expanded similarly to (23) as

2

2 8 2
Sl (e ) ) e 2) o

Hence, the expectation (25) is

E(f@) = f(x+eh=")+ ((x+qh)j _ )f” (x+en=")+owm

E(K%*(x)) = A1(x,a) + hAs(x, a) + o(h),

where we used the notations (15). The variance (24) for the domain x € (0, a] is
A 1
Varg(f(x)) = " (A1(x,a) — Ci(x,a) + he1(Az(x, a) — 2C1(x, a)C2(x, @))) + o(h).
Now we turn our attention to the domain x > a. Similarly to the previous part of
the proof it can be written that
T ook( b)? 2(k(x,b)—1) k(x.b)
2 2 X, y *0)— DA
Ky = [ Ko smdr = [157 () exp (—2 ) ) F)dy
0 0

4D e (x, b
= D) B gnshenty, 27)
a £
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where ¢, is the Weibull distributed r.v. with the parameters (k(x, b), 2k(x *h)“) and
the expectation is

my = 2(a — bxd) + o(bz), d=y—14+InQ)
and the variance is
Vare, = 4a® — 4bax(6y — 10+ In(4)) + o(b?),

where y is the Euler-Mascherson constant. Hence, the expectation (27) can be
written as

X — X — V X 14 X —
E(f(c)sk ™Dl = fmymEED=1 4 azrg (f (my)mk D1
+ 20k(x, b) — 1) ma)mh P72 4 (k(x, b) — D) (k(x, b) — 2>f(mx)m§(“’)*3) + o(b)

_ \%
= mkb) 1(f(nm+ “2’9‘ (f”(m)+<k<x,b)—1>m;1

: <f’(mx) + (k(x, b) = 2)f(mx)m;1))>.
Using the Taylor series, we can write that

mkeD=1 = (2g)a—! (1 + b (cz In(2a) + xd(1 — x))) +o(b),
a

X —a a(cy — dx) + dx?

-1 _
k(e b) = Dym =" o)
X —2a a(cz—2dx)+dx2
(ke by —2m ! =" 4 T +o(b)

4Bk (x, b) s _xy PR
Koy = X4eaTaT +obdiama T (—xIn(@) +a + x1In(4)) + o(b).
aker,

Finally, the variance can be written as follows:
N 1
Varw(f(x)) = " (Dl(x, a) +bDy(x,a,c2) — (Bi(x,a) +bBy(x,a) + f(x))z) ,

where we used the notations (16).
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Adaptive Estimation of Heavy Tail )
Distributions with Application to Hall e
Model

D. N. Politis, V. A. Vasiliev, and S. E. Vorobeychikov

Abstract The problem of tail index estimation of Hall distribution is considered.
We propose the estimators of tail index using the truncated estimation method
developed for ratio type functionals. It is shown that the truncated estimator
constructed on the sample of fixed size has a guaranteed accuracy in the sense
of the Ly,-norm, m > 1. The asymptotic properties of estimators are although
investigated. These properties make it possible to find the rates of decreasing of
the x2 divergence in the almost surely sense between distribution and its adaptive
estimator. Simulations confirm theoretical results.

1 Introduction

The models with heavy tail distributions are of interest in many applications con-
nected with financial mathematics, insurance theory [1, 4, 15], telecommunication
[16], and physics [2]. Usually it is assumed that the distribution function contains
as an unknown multiplier a slowly varying function. The problem of tail index
estimation was studied by Hill [9] who proposed the estimators based on the order
statistics. The estimator is optimal in mean square sense on the class of distribution
functions with heavy tails in presence of unknown slowly varying function. It should
be noted that Hill’s estimators are unstable and can diverge essentially from the
estimated parameter for large sample sizes [4, 17].

Later other approaches to estimation problem were proposed (see, e.g., [6, 10]
and the references therein). In [18] a least squares estimator for tail index was
proposed which is based on the estimation of parameters in linear regression. The
geometric-type estimators of the tail index are proposed and investigated in [2].
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Some estimators have the form of ratio statistics, see, e.g., Embrechts et al. [4].
For example, formula (1.7) of Markovich [10] describes a well-known class of
ratio estimators which are generalization of Hill’s estimator in the sense that an
arbitrary threshold level instead of an order statistic is used—see, e.g., Novak [11—
14], Resnick and Starica [17], or Goldie and Smith [5].

In this work, the truncated estimation method of ratio type functionals, proposed
by Vasiliev [19], is used to obtain estimators with guaranteed accuracy in the sense
of the Ly,,-norm, m > 1. The estimators are constructed on the basis of empirical
functionals without usage of non-parametric approach in an effort to obtain (or get
close to) the parametric optimal rate of convergence. These estimators can be used
to construct the adaptive estimators of distribution functions. It allows one to find
the rates of decreasing ¢, Y(n), & > 0 of the x? divergence in the almost surely
sense between distributions and their adaptive estimators.

As an example we have found the rate of decreasing for Hall distribution [7, 8]
with unknown tail index. Similar results for convergence of the x2 divergence in
probability are presented, e.g., in [6].

2 Adaptive Distribution Estimation

Let # = {Fa(x), x e G C R', Ae 9 C %%} be the parametric family of heavy
tail distributions. Here Z is an admissible set of the unknown parameter A. Denote
A, an estimator of A.

Suppose that for every A € 2 the density fa(x) = d Fa(x)/dx exists. It is easy
to verify that the x2 divergence between F, and F A, has the form

) [ dFs,() (A Y
X2(Fa, Fa,) = G/ s (o AT 0 = 1= G/ ( P 1) fa@ydx.

The problem is to construct estimators F,, of concrete well-known distributions
F4 on the basis of a special type parameter estimators A, with known rates of
decreasing ¢, '(n), &€ > 0 of the x2 divergence in the following sense

lim @) x*(Fa, Fa,) =0 as. (1
n—o0

Suppose the following
Assumption (A). Assume there exists the number §y > 0 such that for true value A
theset Zp ={6: A48 C 2, [|8]] < o} is not empty and

sup / IV fass GO £1 ! (0)dx < o0.
56.@06
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Then, using the Taylor expansion for the function f4,(x) on the set £2, = {w :
[|An — Al < 80} we have

x2(Fa, Fa,) = / (Fa, (6) = fa(0)) £3 (x)dx

G

q 2
-/ [Z af“"‘éjm(x)(An—A)i} fa dx
G Li=1 !

<|[la, — Al*- / VA fata(an—ay NP4 (0)dx < CollAx — A%,
G

where @ € (0, 1).
Thus to prove (1) it is enough to find the functions ¢, (n) and estimators A, such
that

lim @:(n)||A, — A|> =0 as. )
n—0o0

The general truncated estimation method presented in [19] makes possible to
obtain estimators of tail indexes of various type distributions with the properties

E|lAy— APP <7 Yn,p), n>1, A3)

which are fulfilled for every p > 1 and some functions r(n, p) — oo asn — 00
and/or p — o0.

Define £2,, a complement of the set £2,,. Suppose that there exists a number pg
such that the series

Zr‘l(n, Po) < 00.

n>1
Then using inequalities
P(x*(Fa, Fa,) > CollAw — A|*) < P(24) = P(|4x — Al| > 80)
<85 Bl A, — AIPP < 5527 (n, po),
and the Borel-Cantelli lemma we have

1Ay — Al 72x*(Fa, Fa,) — 0 as. 4)
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Define ¢(n, p) = (nfzr(n, p))l/ P By making use of the Borel-Cantelli lemma
for every p > 1 in particular it follows

lim ¢, p)||A, — Al =0 as. 5)
n—o0
From (4) and (5) we get

@, pP)x*(Fa, Fa,) — 0 as.

and the function ¢.(n) can be defined as ¢.(n) = ¢(n, p;) with an appropriate
chosen p, > 0.

We will apply this approach to the adaptive estimation problem of the Hall model
for distribution function Fa(x) =1 — Cix™V — Cox ™V, y~l = a 4 6.

In the next section the estimator A, = p, of y with needed properties will be
constructed and investigated.

Define p = 0/a — 1.

The following theorem presents the main result of this contribution.

Theorem 2.1 For every ¢ > 0 there exist numbers p. such that the property (1) for
the Hall model is fulfilled with

P,
pe(n) =net2 7,

3 Estimation of Heavy Tail Index of the Hall Model

The problem is to estimate by i.i.d. observations X1, ..., X, the parametery = 1/
of the Hall distribution function [7]

Fa(x)=1—Cix VB —Cox Ve, x>c,

where 8 >0, >0; B=a+0 > By > 0.
Then the tail distribution function

P(x) = Cix V(1 + Cax 7Py,

where C3 = C2/Cy, y =1/8, p=0/a — 1.
The density function has the form

fx) = Cryx™ YD 4 (Cy oy~ V/etD

and Assumption (A) is fulfilled for ¥ = {A =y, y >0}, Zo = {6 : |§] < y/2}
and §p = y /2.
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To construct the estimator for y we find its appropriate representation.
For some X = (x1, x2), X1 > x2 > c by the definition of P(x) we have

log P(x1) =log C; — y logxy + log(1 + C3x1—7(p+1))’

log P(x3) =logCy — y logxo + log(1 + C3x2—7(p+1)).

Thus we can find y as a solution of this system

_ log(P(x2)/P(x1)) og | 1+ C3(x2”’(p+1) _x;y(pﬂ))
logtx/x2) 1+ C3x1—y(p+1)

and it is natural to define the estimators y,, of y as follows:

 1og(Py(x2)/ Pa(x1))

X -1
Yu(X) = log(x1 /x2) x(Pn(x1) zlog™ " n), n>1

Here P, (x) is the empirical tail distribution function
1 n
Pa) = Z;xof,- > x).
i

To get the estimator y;,, with the optimal rate of convergence (in the sense of
L>-norm see [3, 6, 8]), we put for p > 1 the sequence X (n) = (x1(n), x2(n)),
where

V4
x1(n) =e-x(n), x2(n) = nr2pe+2-11 (6)
The deviation of this estimator has the form

Ya(X) —y = {log(Pn (x2(n))/ P (x2(n))) — log(Ppn(x1(n))/ P (x1(n)))

G - e_l) *)’(erl)(n)

—log |1+ by
|: 1+C3x1_)’()0+1)(n) 2

} } X (Pa(x1(n)) > log™' n)

— ¥ X(Pu(x1(n)) < log™" n). )
For any m > 1 and x > c it follows

2B, P(x)

E(Py(x) — P(x))™" <" > 1, ®)
n

where By, is a constant from the Burkholder inequality.



164 D. N. Politis et al.

We will use the following inequality

Py(x) — P(x)

|log(P, (x)/P(x))| = |log (1 + P)

> X (Pa(x) = P(x) > 0)
[P (x) — P(x)]

+lo (1 +
g Py(x)

) “X(Pu(x) — P(x) = 0)|

<1200 P+ ] = 12020 [+~ py)]
- P(x)  Pu(x) " P(x) \Py(x) P(x)

2 2UP() = PO (Pu(x) = P(x))?
- P(x) P(x)Py(x)

Then using the c,-inequality and (8) fori = 1, 2 we estimate
E1og (P (xi)/ P(si)) - x (Pax1) = log ™' n)

- C Clog*’ n
~ nPP2r=1(x))  n2PP2(0=D(x)’

€))

In what follows, C will denote a generic non-negative constant whose value is
not critical (and not always the same).
Further, by the Chebyshev inequality and (8) we have

P(P,(x) <log~'n) = P(P(x) — P,(x) > P(x) —log~'n)

E[P,(x) — P(x)]*? c x@p=Dy
= [Py —lognpr = w2l =€ e (10)
From (7), (9), and (10) it follows
E(ya(X(m)) — y)*P < Cr~'(n, p), (11)

2p(p+1)
r(n, p) — n2pe+h+2p-1P

and we can put according to the definition of ¢(n, p) = (n2rn, p))l/ P with the
r(n, p) defined in (11)

p+1_
De > 2871, Qe (n) = nert2 €.

Note that proposed parameter estimation procedure gives estimator y, with
convergence rate, with optimal (for p = 1) convergence rate, see[6]. At the same
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time the sequences (6) in the definition of y, depend on the unknown model
parameters. Then the adaptive estimation procedure should be constructed, e.g., on
the presented scheme using some estimators of y and p. The main aim is to get
adaptive estimators with the optimal convergence rate.

Consider, for instance, the case of known p. Define the known deterministic
sequence (Mmp)n>1, my, = n*, k € (0, 1) and pilot estimator y,, = ¥, (X (mp)) of y
as follows

Pn(X (M)
 (108(Pa, (Ea(mn)/ Py (R (m))) _ B
=min [ iy X B 1) = log” ). o,
(12)
where X (n) = (X1(n), %2(n)),
Fim) =e-Fan),  Faln) = nwleerdn |y = gl (13)

This estimator has the property

EGn—y) <C-ry'(n,p), p=>1,

2pyk(p+1) p
ro(n’ p) — nl’()[zp(ﬂ+l)+2.l7*” ,

which can be proved similar to (11) and is strongly consistent according to the
Borel-Cantelli lemma with the following rate

n’(n—y)—> 0 as. (14)
for every
0 yk(o+1)
< .
yo(2p +3)

Indeed, for every a > 0, v defined above and p large enough

n2vp

<
ro(n, p)

Y PO Ga—y)>a)<a Y nPEG —y) <CY

nzl1 n>1 n>1

Define the adaptive estimator of y as follows

5 log(Py(i2(m)/ Py(G1(n)))

n - N , 15
log(x1(n)/x2(n)) (1
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where P, is the empirical tail distribution function

n

1

P =
0= ) a0
k=my,+1
and X (n) = (£1(n), £2(n)),
£1(n) = e - Xa2(n), Xn) = nmzmgm—n, (16)

The estimator ,, has the property
E[(a = )| Fn, ) <C-F ' n.p), pz1,

where o-algebra %, = o{X1,..., X;,} and

» 2py(p+1)
F(n, p) = nmpoth+2p-1P

Thus, using the Borel-Cantelli lemma and strong consistency of the pilot
estimator y, it is easy to prove the last property of Theorem 2.1 for the adaptive
estimator P; in the Hall model.

To prove the strong consistency of ¢ (n, p) (P, —y)2 and, as follows, Theorem 2.1,
we establish first the convergence to zero of ¢(n, p)(y, — y)*, where ¢(n, p) =
(n =27, p)'/P

Y P@. p)Fu =) >a) <a” Y EGP(n, pE[(Dn — ¥ Fm, ]

n>1 n>1

~ N 1
=a 0y nPEF(n, pYEI(n = 1)1 Fm, | <C Y < 00,

nzl1 n>1
Thenasn — oo
G, p)Pn—y)* =0 as.
Using the property (14), we have
log7(n, p)r~t(n, p) ~ (Pn — y)logn — 0 as.
and, as follows, for the function ¢(n, p) defined after formula (11), as n — oo

e, P)Pn —y)* = 0 as.
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Thus Theorem 2.1 is proven with
2
Y0 ] a7

> —i—lmax[ ,
Pe = 0 DM ot 1) 1 —e(p+2)

if in the Hall distribution estimator we use, according to the notation in Sect. 2 the
adaptive parameter estimator A, = y, of A = y, defined in (15).

4 Simulation Results

To establish the convergence of x2 divergence (1) one needs to check the condi-
tion (3), which is the key point to investigate the properties of estimators. In this
section, to present some numerical results we define the quantity A, as Lp-norm
of normalized deviation of estimator y,, from the parameter y

1
A = [r(n, pYE(yn — y)?P1% (18)
in Hall’s model [6]
Fx)=1=-2x""4x72, x>1, p=0.5,

as a function of n. The values of A, are given in Figs. 1 and 2 for different sample
sizes n. Each coordinate is computed as an empirical average over 1000 Monte
Carlo simulations of the experiment (for each value of n).

First the simulation was performed for the case when one can choose the
sequences x1(n), x2(n) according (6) to get the estimators y,, with the rate of
convergence close to the optimal one, see [6]. The value of p = p, was chosen
as pe = [2/e] + 1. The results are presented in Fig. 1 for ¢ = 0.1 and ¢ = 0.05.
One can see that A, remains bounded from above as n increases and therefore the
condition (3) is fulfilled. Similar results were obtained for p > p;.

The results for adaptive estimator , (15) with the sequences x(n), x2(n)
defined by (16) are given in Fig.2 for ¢ = 0.1 and ¢ = 0.05. The value of By was
equal 0.5, the sequences X1 (n), x2(n) were defined by (13) withm,, = n*, « =0.8.
The pilot estimator y,, was determined by (12), the power p was defined as the right-
hand side of inequality (17). The quantity A, remains bounded from above as n
increases as well.

Our numerical simulations in all cases give practical confirmation of the theoret-
ical properties of the proposed estimators.
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Fig. 1 A, as a function of n in Hall’s distribution with y = 1.0. Left panel: ¢ = 0.1, Right
panel: ¢ = 0.05
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Fig. 2 A, as a function of n in Hall’s distribution with y = 1.0. Left panel: ¢ = 0.1, Right
panel: ¢ = 0.05
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Extremal Index for a Class m)
of Heavy-Tailed Stochastic Processes s
in Risk Theory

C. Tillier

Abstract Extreme values for dependent data corresponding to high threshold
exceedances may occur in clusters, i.e., in groups of observations of different sizes.
In the context of stationary sequences, the so-called extremal index measures the
strength of the dependence and may be useful to estimate the average length of
such clusters. This is of particular interest in risk theory where public institutions
would like to predict the replications of rare events, in other words, to understand
the dependence structure of extreme values. In this contribution, we characterize the
extremal index for a class of stochastic processes that naturally appear in risk theory
under the assumption of heavy-tailed jumps. We focus on Shot Noise type-processes
and we weaken the usual assumptions required on the Shot functions. Precisely, they
may be possibly random with not necessarily compact support and we do not make
any assumption regarding the monotonicity. We bring to the fore the applicability of
the result on a Kinetic Dietary Exposure Model used in modeling pharmacokinetics
of contaminants.

1 Motivations and Framework

The assessment of major risks in our technological society has become vital because
of the economic, environmental, and human impacts of recent industrial disasters.
Hence, risk analysis has received an increasing attention over the past years in
the scientific literature in various areas, e.g., in dietary risk, hydrology, finance
and insurance; see [1, 7, 12], for instance. By nature, risk theory concerns the
probability of occurrence of rare events which are functions—sums or products—of
heavy-tailed random variables. Hence, stochastic processes provide an appropriate
framework for modeling such phenomena through time. For instance, non-life
insurance mathematics deal with particular types of Shot Noise Processes (SNP)
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defined as

N(1)

Si() =Y Wiht —T), >0, ()

i=0

where usually (W;);>¢o are independent and identically distributed (i.i.d.) random
variables (1.v.’s), & is a nonincreasing measurable function, and N is a homogeneous
Poisson process. In this insurance context, S; may be used to represent the amount
of aggregate claims that an insurer has to cope with; see [20] for a complete review
of non-life insurance mathematics. More generally, this kind of jump processes are
useful in many applications to model time series for which sudden jumps occur
such as in dietary risk assessment, finance, hydrology or as reference models for
intermittent fluctuation in physical systems; see [8] and [24], for instance. The
study of the extremal behavior of these stochastic processes leads to risk indicators
such as the expected time over a threshold or the expected shortfall, which supply
information about the exceedances that give rise to hazardous situations; see [23],
for instance.

Besides, since extremal events may occur in clusters, the study of the dependence
structure of rare events is a major issue, for example to predict potential replications
of earthquakes in environmental sciences. This dependence structure may be
captured by the extremal index defined in the seminal contribution [16]. Recall that
a stationary sequence (Z;);cz has an extremal index 6 € [0, 1] if for all ¢ > 0 and
all sequence u, () such that lim,_, oo nP(Z1 > u,(t)) = 7, it holds that

lim IP’( max Z; < un(r)> =7, )
n—oo i=1,...,n

Less formally, the extremal index indicates somehow, how many times in average
an extremal event will reproduce. The case 6 = 1 (respectively & = 0) corresponds
to independent data, i.e., to extreme values occurring in an isolated fashion
(respectively to potentially infinite size clusters).

Authors in [9, 14] and [18] characterize the extremal index in several particular
configurations of (1) and study the extremal properties of the process; see also
[10, 11] and [13]. More recently, [19] compute the extremal index when the jumps
(Wi)i>o form a chain-dependent sequence (the cumulative distribution function
(c.d.f.) is linked to a secondary Markov chain) and they assume that % is a bounded
positive strictly decreasing function supported on a finite interval.

In this chapter, we continue the investigation of the extremal index for such
stochastic processes relaxing the conditions required on 4. We focus on an extension
of such SNP on the form

S(ty=) Wihit —=T)), >0, 3)
i=0
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where t — h; () is a random function. Throughout this chapter, we work under the
following three conditions (C1)—(C3).

(Cl) Jumps (W;);en are nonnegative r.v.’s with c.d.f. H suchthat H =1 — H is
regularly varying at infinity with index —«, @ > 0, that is

H(wx)

— w Y, Yw>0.
H()C) X—>00

(C2) Jumps instants (T;)ieN are defined fori > 1 by 7T; = Z;c:l ATy and
To = 0 while the inter-jumps (AT;);eN+ are i.i.d. positive r.v.’s with finite

expectation.
(C3) For all i > 0, the random functions h; are positive, stationary, and
independent of 7;.

The condition (C1) is the heavy-tailed distribution assumption on the jumps. We
refer to [22] for an exhaustive review of the univariate regular variation theory. The
condition (C2) means that (7p, 71, ...) forms a renewal sequence so that one may
define the associated renewal process {N(¢)};>0 by N(t) := #{i > 0 : T; < t}
for t+ > 0. The remaining part of the manuscript is organized as follows. In Sect. 2,
we present the main result regarding the extremal index of the process (3) while
an illustrative application is given in Sect. 3. In the Appendix, we recall the main
notions involved in the proof of the theorem.

2 The Extremal Index

The extremal index defined in Eq.(2) holds for discrete-time series. The purpose
of this work is to investigate the dependence structure of the extreme values of
the continuous-time stochastic processes S defined in Eq.(3). Depending on the
context, it means that we are interested in the dependence structure either of its
maxima or of its minima. In dietary risk assessment, S aims at representing the
evolution of a contaminant in the human body through time; see Sect.3 for more
details. Toxicologists determine thresholds from which the exceedance may have
some adverse effect for the health of an individual and we are therefore interested in
the maxima of §. Similarly, in hydrology, (3) may be used to describe the flow of a
river and a hazardous situation—seen as a rare event—arises when the flow exceeds
a critical threshold; see [17]. On the other the hand, in most of the applications,
the random functions 4; are in essence monotonic for each i > 0 when ¢ grows.
To be convinced, let us go back to the dietary risk assessment. In this context, A;
models the elimination of the contamination and is thus a decreasing function for
each i > 0. For instance, h;(f) = e~ ', ¢t > 0 has been proposed in [6] and is also
used in non-life insurance mathematics; see [20].
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Assuming that the random function h; are monotonic for each i > 0, it is
straightforward to see that the extreme values—the maxima or the minima—occur
on the embedded chain, i.e., the process {S(¢)};>0 sampled at the jump arrivals
T1,T,.... As a consequence, the dependence structure of the continuous-time
stochastic process S may be deduced from the analysis of the dependence structure
of the underlying sequence (S(71), S(T2), .. .).

This is the purpose of this section: to compute the extremal index of the
embedded chain of the jump process (3). This means that we focus on the following
discrete-time risk process

k
S(T) =Y Wihi(Ty —=T)),  k>0. )
i=1

Hereinafter, for i > 1, define —7_; (respectively W_; and A_;) as an independent
copy of T; (respectively of W; and k;) so that under (C1) and (C3), (Wi)?if oo and
(hi)?2_ ., form, respectively, an i.i.d. and a stationary sequence of positive r.v.’s.
Facing with the issue of non-stationarity of the embedded chain (4)—required for
the computation of the extremal index—we study a stationary version/modification

denoted (S )rez and defined by

k
Sc= Y Wihi(Tli =T,  k>0. (5)

i=—00

We now introduce the condition (D1), under which the stationary sequence (5) is
well defined.

(D1) The random function A; satisfy
o Yo E(TH] <00, a<I.
* There exists € > 0 such that ) ;2 E[hY™“(T)] < 00, a <2.
o Y XOERI(TH] <00, o >2.

Theorem 1 Assume Model (5) holds. Under Conditions (C1)—(C3) and (D1), the
extremal index 0 is given by

E [max;=o h%(T)]

0= .
>0 EIAS(T)]

(6)

We do not raise the question of the estimation of the extremal index in this work.
In many cases, the jump process (3) is a PDMP (Piecewise-Deterministic Markov
Process) and [4] propose a robust estimator for the extremal index; see also [5] and
the application in Sect. 3 for an illustrative example.
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2.1 Proof of Theorem 1

For reader’s convenience, the definitions of the main notions, namely the tail index,
the anti-clustering, and the strong mixing conditions are postponed in the Appendix.

Let us first define the intermediate stationary sequences {Slgm), k > 0},;,>0 such that

k
S =Y Wihi(Te = Th). @

i=k—m

The extremal index 6 of the stationary sequence {Sk}«>0 will be deduced from the

extremal index 6,, of {S,Em), k > 0};,>0 in the following way. In [3, Theorem 4.5],
the authors show that if a jointly regularly varying (see the definition of “jointly
regularly varying” in Definition 1 in the Appendix) stationary sequence (Z;);ez is
strongly mixing and satisfies the anti-clustering condition, then (Z;);c7 admits an
extremal index 6 given by

§=P<maxYk§1>, (8)
=1

where (Y;);eN is the tail process of (Z;);cz. Using this result, we obtain the extremal
index 6,, for each m > 1. Next, we show that the assumptions of Proposition 1.4
in [9] hold to conclude that lim,,_, 6,, = 6. We start by characterizing the tail
process of sequence {S," }ren in the following lemma.

Lemma 1 Assume that Conditions (CI1)—(C3) and (D1) hold. For each m > 1, the
tail process qf{SIEm)}keN denoted by {Yk(m)}keN is defined by

hn,, (Tn,,)

Y(m) _ Iy, (Tn+Nm)Y(§m)’ 0<n<m,
" 0 for n > m,

with P (Yém) > y) =y~ and Ny, is an integer-valued random variable such that

E[hy (T)]

FWn =1 = s ey 05" =

Besides, for any random variable U measurable with respect to (hj, T;) jez, we
have

. L Em@mur
(U1 N =i1= " 05
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Proof (Proof of Lemma 1) For clarity of notation, we omit the superscript (m) and

we assume that iy = 0 if kK > m and we denote X 4 X» when two random
variables X, X, share the same distribution. Then, for a fixed n, we have

P ((maxi=o,...n Si/yi) A So > x)
P(Sy > x) '

=1-

Under the two conditions (C1) and (C2), (W )kez is ani.i.d. sequence and T; — Ty 4
T;_y fori > 0 and k < 0. It follows that

o0
lim 1P>< max S;/yi > x, So > x) ~ Z]P’ (Wk ( max hp(T; — Tk)/y,-) A (=Tp) > x)
i=0,...,n X—00 =0 i=0,...,n

00 n he(T, ;
~ ZE[\/ T Ahg(Tk)] P(W; > x),
=0 Lizo YV
and
0 4 00
So= Y. Wihi(To—Ti) =) Wihi(Ty),
i=—00 i=0

under (C3). Moreover, since the two sequences (h;);cz and (7;);cz are mutually
independent, the results in Section 3 of [15] imply that the series Sp is almost surely
convergent under Condition (D1) and we have

. P(So > x)
L ZE (1] ©)

From Eq. (9), we have proved that Sy is regularly varying at infinity with the same
index « than the jumps (W;);>o. It also follows that

B (Tt
I IP’( Sifvi=xls ) i B[ Vi " ahg ]
im max Vi<x|So>x|=1-

x—o00  \i=0,..., ' Z/?io E[hz(Tk)]
Setting

B
PRy JEme (1))
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we obtain

o0 o hE (T /yi A RS (T)]
1i P S: < N =
i P (o, 103 < °>"> Z L (T0)

- N(N+z _
— 2 PE [\/ . (T 1|N-k]

k=0
N(TN+1
—E [ He (Tw) A 1}
0)’1 NUN

_ " hG (T +i)
_1—113><Y0\/ (T > 1),

i=0 i

where Y is a Pareto random variable independent of {A;, T;};cz. This proves our
claim.

For each m > 1, the strong mixing condition holds for each sequence {S,Em), k >
0} since it is m-dependent. Indeed, by independence o, = O for all h > m +
1. Likewise, since {Slgm), k > 0} is m-dependent, the anti-clustering condition is
satisfied with r,P(Z; > a,) = o(1); see Section 4.1 in [2]. As a first consequence,
we obtain in the following lemma the expression of the extremal index 6,, of the

intermediate sequence {.S ,Em) }e>0-

Lemma 2 Assume that Conditions (C1)—(C3) and (D1) hold. For each m > 1, the
extremal index 60y, of the intermediate sequence {S,Em), k > 0} defined in (7) is given
by

E [\/7:0 hS (Tj)]

O = S
> ico ElRY(T))]

(10)

Proof (Proof of Lemma 2) Fix m > 1 throughout the proof. By Eq. (8), since P(Yy >
x) = x~% we have

O = ]P’(maxY(m) < 1)
k=1

=P (max Yo@lgm) < 1)
k>1

=1—P<I]Iclai§YoO( ) > 1)

ZI_EI:I?Si((O( )) /\1:|,
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where (@,Em))k o refers to the spectral tail process of the intermediate sequence
>

{SIE’"), k > 0} defined in [3]. Applying Lemma 1, we obtain

h T
6, =P (Yo max k+N (Te+n) <
1<k=sm  hn(Twn)

=1—-—E| max h%JFN(THN) /\1
I<k<m  h%(Tn)
- h s N Tkt N)
=1-YE N 1|N=n|P(N=
,; [1I<nka<xm wryy N\ "} N=m

S E [(maxi cimm A2y (Tari)) A BE(Ty)]
S LR (T))]
S0 B[R (Ty) — (maxt <k B (Tai)) A L (Ty)]

= . 11
S ELRS(T))] (o

=1-

Observe that using the identity max(a, b) = a + b — min(a, b) for any a, b in RT,
one can show that for any sequence (a;),<N of nonnegative real numbers such that
Yoo o an < 00, we have

maxa, = E ay —maxduik Nay | . (12)
neN o k>1
n

Under (D1), from Eq. (9), ZZO:O E[h(T:)] < oo and we can apply the relation (12)
to the last equality (11). This proves Lemma 2.

Up to now, we have characterized the extremal index 6,, from the tail process of

{S,Em)}keN. To conclude, it remains to prove that the extremal index of (Si)rez is
given by lim,,_, » 6, = 6. For this purpose, we apply Proposition 1.4 of [9]. We
must check the following two conditions: for all sequence u,, such that

nP(So > u,) — B € (0, 00),
we have

lim lim sup nP((1 — €)u,, < So < (1 +€)u,) =0 (13)

e—~>0 p—oo

and

lim_limsupnP(|So — S."| > €u,) = 0. (14)
m—

X n—oo
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Since we have already proved in Eq. (9) that Sy is regularly varying with index —«,
o > 0, we have

limsup nP((1 — €)uy, < So < (1 4+ uy) = B((1— €)™ — (1 +€)7%).

n—oo

Letting € — 0 proves Eq. (13). Moreover, by the same arguments which lead to the
expression for the tail behavior of Sy, we have

o E[RY(T,
lim nP(|So — S(()m)| > upe) = € B Zn_oZH—l [al( )]
S Yoo BIRS(T,)]
Letting m — oo proves Eq. (14). We finally have
E[\/2, h%(T;
6 = lim Qm = I:O\O/l—o (lx( l)]’
m=00 Y iz E[A (T))]

which concludes the proof of Theorem 1.

3 Application

For the sake of application of Theorem 1, we consider a specific dietary risk
assessment model studied in [6] called KDEM for Kinetic Dietary Exposure Model,;
see also [7] for the statistical analysis of the model and for more details on dynamic
dietary risk processes. For each i > 0, we assume that the intakes (W;);>¢ are
pure Pareto distributed with tail index & > 0 and we set h; (f) = e “i'ljg oo (1),
where I[.1(-) is the indicator function. Besides, we consider that (w;);en is an i.i.d.
sequence of nonnegative r.v.’s with finite expectation. In this context, for each i > 0,
h; is a nonincreasing random elimination function that governs the elimination
process of the i-th intake W; ingested at time 7; up to time 7. Then (w;);en is a
random elimination parameter, which permits to take into account fluctuations in
the assimilation process. The model may be written as

N(@)
S(t) = Z Wie—@it=To) t>0, (15)

i=1

where t — N(t) :=#{i > 0: T; <t} is arenewal process that counts the numbers
of intakes that occurred until time ¢+ > 0. Figure 1 shows how the process (15)
evolves through time.
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Fig. 1 The elimination ° N
driven by the random variable 5

(w;); may vary between two § © -
intakes. Observe the F
PDMP-type trajectory. Due to T < -
the heavy-tailed distribution g
of the intakes (W;);, some =2 o

jumps are rather large \ \ \ \ \ \ \
0 20 40 60 80 100 120

time

To get an explicit result, we consider that the intakes arise regarding a homo-
geneous Poisson process meaning that the duration between intakes is independent
and exponentially distributed. Applying Theorem 1, we get the following explicit
formulae of the extremal index.

Proposition 1 Assume that Model (15) holds with positive i.i.d. (w;)ieN Satisfying
Elwi] < 0o. Assume moreover that H(x) = x ™%, a > Oforallx > 0 and N is a
Poisson process with intensity .. > 0. Then we have

o

0= B (16)

Proof Note first that in this setup, this is straightforward that for all @ > 0,
Assumptions (C1)—(C3) as well as (D1) hold. Indeed, the Pareto distribution is a
particular case of such regularly varying random variables so that (C1) is satisfied.
(C2) holds as a sum of i.i.d. r.v.’s whose distribution is exponential with mean 1/A,
A > 0. Finally, (C3) is satisfied since the random variables (w;);cN are i.i.d., then
the random functions (h;);en are positive i.i.d. r.v.’s with 0 < E[w;] < oo implying
(D1). Now, observe first that for the numerator, we have

E [max{h?m)}} =E [max{e—“”fﬂﬂ[o,oomm}} <1
i>0 i>0
Besides, since Ty = 0 under (C2), we have
E [1%(Tp)] = E [e*“wo] =1,

leading to E [maxizo{hf‘(T,-)}] = 1. It also follows that the denominator may be
written as

Y E[R(M] =1+ ) E[h(T)]

i=0 i=1
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with

oo o0

PALHIED i (/0 e“wdeg"T(t)> dFw ()

i=1 i=1

_ /Ooo ( Sk [e“wAT]i> d Fy (o)

i=1

_ © R [efawAT] JF
- [) 1—FE [e—oza)AT] w(w)

A
f dFy ()

0 oaw
A
Elo™'],
o

where “x” refers to the convolution operator. This concludes the proof.

To conclude this part, we briefly discuss the veracity of Proposition 1. In this regard,
assume Model (15) holds with the assumptions of Proposition 1. Assume moreover
that the elimination parameter @ > 0 is constant. Observe now that its embedded
chain, namely

k
S(T) =Y We T, k>0

i=1
may be expressed as
S(T) = e 2 S(Ti—)) + Wi, k> 0. (17)

The latest equation is nothing else than a particular case of the so-called SRE for
Stochastic Recurrence Equation. It has been studied for a while. In particular, [21]
showed that its extremal index is given by § = 1 —E[e~%“4T1], In the specific setup
of Proposition 1 where the (AT;);en+ are exponentially distributed, the Laplace
transform E[e~471] is explicit. It follows that the extremal index is given by

o

o+ Aol

We retrieve the result of Proposition 1 with constant w > 0.
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Appendix

For reader’s convenience, we recall in this part important notions involved in the
proof of Theorem 1. We start by the definition of the so-called “tail process”
introduced recently by Basrak and Segers [3].

Definition 1 (The Tail Process) Let (Z;);cz be a stationary process in R and let
a € (0, 00).If (Z;);ez is jointly regularly varying with index —c, that is, all vectors
of the form (X, ..., X;), k <l € 7Z are multivariate regularly varying, then there
exists a process (¥;);ez in RT, called the tail process such that P(Yy > y) = y~¢%,
y > landforall (n,m) e Z*>,n >m

lim Pz Zy, -+ 27 Zn) €| Zo > ) = P((Yn, -+, V) € ).
Z—>00

We recall now the strong mixing and anti-clustering conditions.

Definition 2 (Strong Mixing Condition) A stationary sequence (Zj)xcz is said to
be strongly mixing with rate function «, if

sup|P(AN B) — P(A)P(B)| =ap — 0, h — oo, (18)

where the supremum is taken over all sets A € o(---,Z_1,Zp) and B €
0(Zp, Zpg1,-++)

Definition 3 (Anti-clustering Condition) A positive stationary sequence (Zy)kez
is said to satisfy the anti-clustering condition if for all u € (0, 00),

lim limsupP( max Z; > ayu | Zo > anu) =0. (19)

k=00 p—oo k<|i|<rn

“with (a,) a sequence such that lim,_, o, nP(|Zg| > a,) = 1” and r, — 00 is an
integer sequence such that r, = o(n).
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Subsampling for Big Data: Some Recent ®)
Advances et

P. Bertail, O. Jelassi, J. Tressou, and M. Zetlaoui

Abstract The goal of this contribution is to develop subsampling methods in the
framework of big data and to show their feasibility in a simulation study. We
argue that using different subsampling distributions with different subsampling sizes
brings a lot of information on the behavior of statistical procedures: subsampling
allows to estimate the rate of convergence of different procedures and to construct
confidence intervals for general parameters including the generalization error of an
algorithm in machine learning.

1 Introduction

Collecting data is becoming faster and faster but standard statistical tools are not
adapted to analyze such big datasets. Because optimization methods are too time
consuming even for polynomial complexities and most of the time standard methods
(for instance, maximum likelihood estimations) require too many access to the data.
As consequences, maximum likelihood estimations or general methods based on
contrast minimization may be difficult to implement on large scale. Subsampling
techniques is a well-known remedy to the apparent intractability of learning from
databases of explosive size. Such an approach has been implemented in many
applied problems and has been, for instance, developed in [22]. It is also at the
core of some recent developments on survey sampling method in the framework of
big data (see [6-8]).
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One of the main theoretical ideas underlying subsampling related methods is
to use the universal validity of the subsampling method as proved in [25] and
further by Bertail et al. [9, 11] for general converging or diverging statistics. We
recall that these authors proved, under the minimal assumptions that the statistics
of interest has a nondegenerate distribution (for some potentially unknown rate
of convergence) which is continuous at the point of interest that a subsampling
distribution constructed with a much smaller size than the original one is a correct
approximation of the distribution of the statistics of interest. This result allows then
to extrapolate repeated inferential methods from smaller sizes to bigger size. Such
ideas are not new (see [16] or even the first works of Mahalanobis in the 1930s).
They have also been developed in some earlier works by Bickel and Yahav [13]
about bootstrap and Richardson extrapolation, when the computer capacities were
not sufficient to treat even moderate sample size. Such methods are themselves
related to well-known numerical methods (see, for instance, [21]). However, most
of these methods rely on an adequate standardization of the statistics of interests
(see the discussion about interpolations and extrapolations in [4, 10] and Bickel
et al. [14]). Such standardization may be hard to obtain for complicated procedure
(including statistical learning procedure) and even more difficult to extrapolate to
very large sample size.

Indeed to extrapolate the value of statistics from smaller scales to a large one,
we need first to be able to determine or estimate 1,, the rate of convergence
of the procedure of interest (a statistic or a statistical learning algorithm) : in
many situations, this task is difficult, because this rate depends itself on the true
data generating mechanism. We will present a variant of the subsampling rate
estimation methodology of [9, 11] to derive a consistent estimator of the rate t.
for moderate sizes. It is, then, possible to extrapolate its value to large datasets
and construct confidence intervals for many difficult to analysis procedures. The
underlying idea is that it is possible to construct several subsampling distributions of
the statistics/procedure of interest 7,, (without standardization). The speed at which
it diverges or degenerates to a Dirac measure as n — oo is directly related to the
adequate standardization t5,. As a consequence, constructing several subsampling
distributions for different choices of b, gives valuable information on the shape of
7, as a function of n which allows to extrapolate to bigger size.

In this chapter, we show that subsampling gives invaluable information on
possible Variability (or robustness toward the possible Values) of the procedure of
interest. We will prove the validity of the method and show how it can be practically
efficiently implemented. We will also discuss how to implement the method when
the size of the dataset evolves in time (a fact linked to the Velocity problem).

In Sect. 1, we present the state of the art of the subsampling methods. Then,
we demonstrate how we estimate the convergence rate of the samples statistics
distribution. In Sect. 3, we give our mathematical results and the subsamples sizes.
We show how we integrate the dynamic aspect of the big data environments
(specially in case of streaming and IoT) in our method. Section 5 presents our
results on simulated data. We implemented subsampling techniques on potentially
time-consuming procedures.
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2 Subsampling Methods for Big Data

2.1 Definition

In [9, 11, 25], a general subsampling methodology has been put forth for the
construction of large-sample confidence regions for a general unknown parameter
0 = 0(P) € RY under very minimal conditions. Consider X, = (Xi,., X,) an
i.i.d. sample. To construct confidence intervals for 6, we require an approximation to
the (generally unknown) sampling distribution (under P) of a standardized statistic
T, = T,(X,) that is consistent for § at some known rate 7,. In the statistical
learning methodology, & may be the Bayes Risk and 7}, the estimated risk linked
to a given algorithm. Or in the framework of prediction, 8 may be a value to predict
and T, a predictor.

To fix some notations, assume that there is a nondegenerate asymptotic distri-
bution for the centered “dilated” statistic t,(7, — 6), i.e., there is a distribution
K (x, P), continuous in x, such that for any real number x,

Kn(x, P) =Prp{ta(Ty —0) < x} —> K(x, P) ey

then the subsampling distribution with subsampling size b, is defined by

q
Ky, (x | X, 1) = ¢ Y 1w, (Th,i — T) < x}, )
i=1

where g = (g: ) and T}, ; is a value of the statistic of interest calculated on a subset of
size b, chosen from X, = {X1, ..., X,;}. Using very simple U-statistics arguments,
it was shown in [25] that the subsampling methodology “works”, provided that

b, — o0 3)
n—0o0
and
by
— 0. 4
n n—oo
and
Tp
" — 0, 5)
T, n—>o0

meaning that, under these assumptions, we have

Khn('x | Xna T.) - Kn(-xa P) VL?OO 05
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uniformly in x over neighborhoods of continuity points of K(x, P). The key
point is that when T, is replaced by 6 in (2) we obtain a U-statistics of degree
b, whose variance is of order };”, condition (3) ensures that the mean of this U-
statitics Kp, (x, P) converges to a limiting distribution, condition (4) ensures that
the variance of the U-statistics converges to 0, whereas conditions (1) and (5) ensure
that we can replace the re-centering 7,, by the true value of the parameter. When
choosing an adequate re-centering (for instance, the median of the subsampling
distribution) then condition (5) may be completely dropped as discussed below.

This method may be generalized to dependent data in a weakly mixing context
but even for long range dependent series by constructing blocks of contiguous
observations of length b,. Since for large databases, computing g values of
the statistics 7j,,; may be unfeasible it is recommended to use its Monte-Carlo
approximation

B
K}gf)(x | X,,7)=B"" Z Uy, (Tp,,j — Tn) < x},
j=1

where now {7}, ;};=1,..., 5 are the values of the statistic calculated on B subsamples
of size b, taken without replacement from the original population. It can be easily
shown by incomplete U-statitics arguments that if B is large then the error induced
by the Monte-Carlo step is only of size

(B) 1
Kbn ('x |Xna":.)_Khn(x |Xna":)=0P )

VB

so that if one controls the error induced by Kj, (x | X,,, 7.) on the true distribution,
it is always possible to find a value of B (eventually linked to n) so that the Monte-
Carlo approximation is negligible.

This approach may also be used to infer on the generalization capability of
a given algorithm or an estimation method by estimating some risk 6 by some
empirical counterpart. Moreover, the centering by 7,, may not be adapted for big
data, since calculation of 7}, itself may be too complicated (either because the exact
size is unknown or because the complexity of the algorithm and the cost induced by
retrieving all the information are too high).

The main reason for using the centering by 7, (which converges to the true value
0) is simply due to the fact that under (5)

T, (Th,,j — Tn) = T, (Tp,,j — 0) + 10, (0 — Tyy)
t n
= 1, (Tp,,j —0) + Op

Tn

= 1, (Tp,,; — 0) +op (D).
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This suggests to use any centering whose convergence rate is actually faster
than tp,. This is, for instance, the case if one constructs a subsampling distribution
without any centering nor standardization with a subsampling size m, >> b, such

by, Thy, . 1 B . .
that * — 0 and T:m — 0. In this case we have that j ijl Tyn,,j which is a

proxy of ; Z;f.zl Ty, j (with an error of size 1/ V/B) converges to 0 at a rate as fast
as T, (provided that the expectation of these quantities exists). The same results
hold if one chooses the median rather than the mean (as considered in [9, 11]),
this avoid additional assumption (existence of expectation) which may be difficult
to check in practice. In the following, we will denote by é\mn any centering based on
a subsampling distribution m,, such that

o~ 'Cbn
T, Tb,,j — Om,) = t,(Tp,,j —0) + Op ( )

mp

= 1, (Tp,,; — 0) +op(1).

For simplicity, we use the same notation as before and define the subsampling
distribution as

q
Kp, (x| X,, 1) =q ") W, (Th,i — Om,) < x),

i=1

and its Monte-Carlo approximation

B
K2 (e | X, 1) = B> 1w, (o, j — Om,) < x).
j=1

3 Estimating the Convergence Rate

The main drawback of this approach which is also inherent to the methods proposed
in [22] is the knowledge of the standardization (or rate) t,. However, this rate may
be easily estimated at least when the rate of convergence is of the form 7, = n*L(n)
where « is unknown and L is a normalized slowly varying function that is such that
L(1) = 1and forany A > 0, limy_ o0 LL((*;) =1 (see [15]).

For this, we will first construct the subsampling without any standardization.
Denote by

q
Kp, (x| X,) = Kp,x | X, ) =q"" Y 1T, i — O, <x)
i=1

the subsampling distribution of the root (7,, — 9).



190 P. Bertail et al.

Given a distribution F on the real line and a number t € (0, 1), we will let
F~1(t) denote the quantile transformation, i.e., F7l(t) = inf {x : F(x) > 1},
which reduces to the regular inverse of the function F if F happens to be continuous
non-decreasing. Note that we have

Ky, (x 7, ' | X,) = Kp, (x| X, 7)) (6)
and thus it is easy to see as in [10] that
K1 X, 1) =1, K, ' (1] X,) )

=K~ '(t, P) +op(1). ®)

If t, = n®L(n) where L is a positive normalized slowly varying function , by the
Karamata representation theorem, there exists €(.), e(u) —> 0 such that L(n) =
u— 00

exp [ u~'e(u)du, and (8) may be written
tog (1K, 1 X,)1) = log (1K~ t, P)]) — rlog(bn)
bll
+/iu7QWMu+dD
1

It follows that if we choose two different subsampling sizes satisfying the
conditions stated before and such that b, /b,> = e, then we have

tog (1K, (¢ | X,)1) = log (1K, 1t | X,)1) ©)
bn

:a+/lﬂr%wmu+mn
bu,

=a+o(l)

uniformly in 7. The last equality relies on the property of the Karamata distribution
and slowly varying functions. Indeed, we have - — £(¢on)
y y g : ? L(bnz) - L(bnz)

This trick based on using sample sizes of the same order avoids the complicated
constructions used in [9]. This suggests that the parameter o« may be simply esti-
mated by averaging this quantity over several quantiles and/or several subsampling
distributions even in presence of a slowly varying functions.

Since computing these three subsampling distributions requires mainly the
computation of B * (b, (1 + e) + m,) values of the statistic of interest (whose
calculus may be easily parallelized), we will essentially have to choose a resampling
size which does not perturb too much the subsampling distributions (which is big
enough) but sufficiently small so that the cost in computing these quantities is small

— las by, — oo.
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in comparison with the global cost of computing a single statistic over the whole
database.

Another solution is to consider regression of log range on the log of the
subsampling size by remarking that we also have forany 0 < #; < 1/2 <5 < 1,

log (K2 1 X,) = K1 | X))

=kg<K*aLP)—K‘%an>—amgm)
bn

+/ uile(u)du—i—o(l)
1

The main interest in this version is that it does not depend on the re-centering
of the subsampling distribution. One may choose, for instance, #; = 0.75 and
tp = 0.25, corresponding to the log of inter-quartiles, that will be used in our
simulations. Then we may choose two different sizes b, ; and b, 2 = b, 1/e then
we have similarly that

(Kz;i (| X,)— K, (t1]X,)

" " )=a+MD (10)
Kyl X,) = Kl | X,)

By looking simply at two subsampling distributions, we are able to estimate the
parameter «.

4 Main Results

4.1 A General Subsampling Theorem

For simplicity, we will now assume that t, = n®. The general case 7, = n*L(n)
may be treated similarly with a few additional assumptions on the slowly varying
function (see [11]). For a given estimator of t,, typically T,, = n%, we will use

K, (x, P) = Prp{%,(T, — 6) < x}
Theorem 1 Assume that (1) holds for T, = n*, for some a > 0 and some K (x, P)
continuous in x; also assume (3) and (4). Let & = o + op((log n)~Y), and put

T, = n*. Then

sup | Ky, (x | X,,. %) — K(x, P)| = op(1). (1)
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Let B € (0, 1), and let c,(1 — B) = K,;l(l — B | X,,T) be the 1 — Bth quantile of
the subsampling distribution Kp, (x | X,,, T.). Then

Prp (2T, —0) = a1 = B)) — B (12)
Thus with an asymptotic coverage probability of 1 — B, we have
—t (1= B) <0 T,
and by symmetry
0 —Tu <2, ' ca(B).

Recall that K "a-B1x .» T.) is the 1 — B quantile of the rescaled subsampling
distribution. Assuming that B is such (B + 1) is an integer (for instance, for 8 =

5% B = 1% then B = 999 is fine). Then, it is simply given by 1, (T, * P!~ —

gmn) where T;EBH)U*ﬁn is the (B+1)(1 — B) largest value over the B sub-sampled
values. It then follows that the bound is given by

> fL'\b,, B+1)(1—- -~
B.= . (T, D g ). (13)
n

A straightforward utilization of this result is to compare generalization capability
of statistical learning algorithm, when #n is so large that most algorithms, even with
polynomial complexity, may be hardly used in a reasonable time.

This result also allows to build confidence intervals for 6. For this, assume that
(B 4 1)B/2 is an integer. In that case, by combining (12) and (13) and choosing
é\mn = T,, a confidence interval for 6 is simply given by

~ 7 _ o~
g, — (Th(n(BH)(l B/2) —9m,,) <0

n
Tm,

A

Tm,

3 -
< = (Tb(n(BH)ﬂ/Z) N Gm,,)

which unfortunately is not on the right scale. However, if 7,, may be computed on
the whole database, a scalable confidence interval is simply given by

7 -
T, _ : (Tb(n(ml)(l BID) _ Tn) <0
n

T
<1, (Th((BH)ﬂ/Z) _ Tn) .
Tn "
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In our simulation study, it is seen that the variability of the data may be so high that
somehow there is very little difference between confidence interval even if the first
one should be larger.

Example 1 (Estimating a Parameter on a Large Database: Logistic Regression)
We consider here a very simple parametric model to highlight some inherent
difficulties with subsampling. Consider a linear logistic regression model with
parameter # = (Bp, B) € R x R? . Let X be a d-dimensional marginal vector
of the input random variables. The linear logistic regression model related to a pair
(X, Y) can be written as

Po{Y = +1 | X} = exp(Bo + BT X)/(1 +exp(Bo + BT X)).

In high-dimension, i.e. when d is very large and for large n, the computation of the
full parametric maximum likelihood estimator (MLE) of # may be difficult to obtain
in a reasonable time. We assume that d << n but also that the subsampling sizes
which will be used are such that d << b,,. For unbalanced populations (a lot of 1’s
in comparison with 0’s and vice versa), the probability to get a subsample with only
unit values (or zeros) may be high and the MLE will not be convergent (a similar
problem appears if the labels are fully separated). This is by no means contradictory
with the asymptotic validity of subsampling in this case: actually it has been shown
in [23] that the true variance of the MLE in a finite population is 4-00. Subsampling
simply reproduces this fact on a smaller scale. In that case, one should condition on
the fact that the ratio of the numbers of 1’s to the number of 0’s is not too small (or
not too close to 1). Else, the subsample should be eliminated.

Even on reasonable sizes, this estimation procedure may be useful. For instance
in R, with 1GB of memory, the usual libraries (sampleSelection, glm) fail to
estimate the model with a size of n = 107 observations (for capacity reasons),
whereas it takes only 12 s to get a bound with B = 999 replications of the procedure
and a subsampling size of the order b, = n'/3. First, we do not estimate the rate of
convergence since we know that the rate will be of order 7, = n'/?. The true
extrapolated bound obtained by subsampling is of the same order as the true one,
with an error on the variance less than 107>, for all simulations. If we estimate the
rate of convergence with J = 29 subsampling distributions based on subsampling
sizes equal n!/3+//GU=D) i — 0, . 28,, the largest subsampling size is of order
n*/3, we then get similar results but we need in that case 999 x 29 simulations : it
then takes 6 min to complete these tasks on the same computer.

Example 2 (Pattern Recognition) Itis assumed that ((X1, Y1), ..., (Xn,Yny)isa
sample of i.i.d. random pairs taking their values in some measurable product space
Z x {—1, +1}. In this standard binary classification framework, the r.v. X models
some observations are used to predict the binary label Y. The distribution P can
also be described by the pair (F, ) where F(dx) denotes the marginal distribution
of the input variable X and n(x) = P{Y = +1 | X = x},x € Z, is the conditional
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distribution. The goal is to build a measurable classifier ¢ : 2" +— {—1, 41} with
minimum risk defined by

L. X)) “ 1{p(x) # 1) (14)

where I{.} is the indicator function. It is well known that the Bayes classifier
¢*(x) = 2I{n(x) > 1/2} — 1 is a solution of the risk minimization problem over
the collection of all classifiers, .%, defined on the input space 2 . In that case we
define the minimizer

- R
¢n = argmin ;H{cp(xi) # Yi). (15)

The statistics of interest is now the empirical error on a test set of this optimal
classifier. It is now possible to apply the subsampling procedure to different classes
of functions (algorithm) to estimate their prediction capability.

4.2 How to Choose the Subsampling Sizes

The choice of the subsampling size is a delicate subject which has been discussed
in very few papers including [5, 12, 12, 19]. The main idea underlying most
propositions is to construct several subsampling distributions by using two different
subsampling sizes, say b, and b,>» = gb, for g €]0, 1[. It is easy to see that
when the subsampling distribution is a convergent estimator of the true distribution
then the distance d between the subsampling distribution and the true one is
stochastically equivalent to

d(Kp,, Kgb,)-

The idea is then to find the largest b,, which minimizes this quantity. Several
distances (Kolmogorov distance, Wasserstein metrics, etc.) may be used.

Of course, for large datasets such method is very computationally expensive, so
that we recommend only to choose a limited range of values for b,, and to discretize
this range so as to compute the distance d(Kp,, K4p,) only on a limited number of
points and to select the ones which minimize this quantity.

Another empirical approach has been proposed in [5] based on the bad behavior
(high volatility) of subsampling distributions for too large subsampling sizes.
Indeed, up to the re-centering which converges quickly to the true value of the
parameter, a subsampling distribution may simply be seen as a U-statistic with
varying kernel of size b,,. The main tools for studying the behavior of subsampling
distribution are Hoeffding decomposition of the U-statistics and empirical process
theory as considered in [1] and [20]. A subsampling distribution may be roughly
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seen as a U-statistic with increasing size b, so that quantiles may also themselves
be seen as U-quantiles. The difficulty for choosing the subsampling size is that in
comparison with U-statistics with fixed degree, the linear part of the U-statistic is
not always the dominating part in the Hoeffding decomposition. For rather small
or moderate b,, it can be shown that the U-statistic is asymptotically normal

with a convergence rate of order \/ h" . However, when b,, becomes too large, the
n

remainder in the Hoeffding decomposition dominates and the U-statistic behaves
very erratically (we conjecture that the limiting distribution belongs to linear
combination of Wiener Chaos). Nevertheless, this idea gives a very easy and
practical way of choosing the optimal subsampling size for the problem of interest.
The idea is simply to look at the quantiles of subsampling distributions and to find
the largest value such that the quantile remains stable.

5 Subsampling Algorithm Versus Velocity and Variability

5.1 Subsampling in a Growing Environment

The size of some database may evolve quickly in time so that we may wish
to implement simple subsampling techniques based on previous observations of
subsamples without having to access to the whole database again. How is it possible
to use the techniques exposed before when the size of the database is large and
increase so fast that taking new subsamples may be too computer expensive? To
solve this problem, we present a very simple sequential algorithm.

The idea is as follows: assume that at time #, we have obtained a subsample

without replacement of size b, (uniformly) from the original population n. That is,

the probability of a given subsample is ( 1:1 )_1. At time ¢ + 1, the new sample size is

n + 1. Then for this newcomer proceed as follows:

* keep the original subsample with probability 1 -5, /(n+1) , that is simply draw a
Bernoulli rvs By with parameter 1 —b,,/(n+1) and stay with the same subsample
if one getsa 1,

* else with probability b, /(n + 1), choose one element of the current subsample
(without replacement, uniformly with probability 1/b,) and replace it by this
newcomer.

If several newcomers arrive at the same date, then use sequentially the same
algorithm by increasing the size of the population. Notice that this algorithm may
be easily implemented sequentially to update all the subsamples already obtained at
some given time.

The arguments below show that the resulting algorithm is the realization of
subsampling without replacement from the total new population.
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It may be simply proved by recurrence. Indeed, assume that the probability of
n

the sample is (hn)_l then

_ —1
* if By = 1, the probability of the new sample is (; ) Y1 - n}fﬁl) = (";“1)

* if B; = 0, the probability of the new sample is (g;)fl * nﬁ’l (bl,, +(m—b,)/b,) =

(n+l)—1.

by

Such result is fully proved in [24]. It follows that the corresponding subsample
at any step is actually a subsample obtained without replacement from the total
population.

If we want to increase the size of subsample, starting from a subsample of size
b, in a population of size n then we simply draw uniformly in the n — b,, remaining

observation an individual (with probability 1/(n — b,,)). It may be sometimes easier
(for instance, using Apache Spark) to use sampling with replacement. It is known

in that case that when b, is small enough such that j’; — 0, then the probability
to draw the same individual twice converges to 0, for large n . Indeed when 52 —

(5,)

0, by Stirling formula we have " — 1, so that with and without replacement
methods are asymptotically equivalent under this condition.

5.2 Subsampling to Assess Variability and Stability (Veracity)
of Learning Algorithms (on the Data)

One question which is also of interest is whether the method of interest is stable
over the whole database especially if its size becomes more and more important.
This question is of prime importance when the data itself is indexed by time.
A first approach hardly applicable with big data is to test for structural changes
in the parameter of interest. This problem has been extensively studied in the
econometric literature in the case of a single break-point and has been extended to
various econometric specification (nonlinear regression model, time series models,
nonlinear simultaneous equations models, etc...) and different stability problems
(tests of finite multiple structural changes, tests of cross sectional consistency), see,
for instance, [17, 18] and the references therein. The intuition behind the proposed
tests is that if we split the sample into two subsamples, the set of observations
before and after a date 7, then the difference between estimations (or monotone
transformations) should be equal to 0 if there is no structural change.

A simple generalization of this idea is to base the estimation of the parameter of
interest 6 or a risk indicator over subsamples of growing sizes. The intuition behind
this idea is that, under the hypothesis of global stability, all the estimations over
subsets of observations must be close to the true parameter. This approach is closely
related to Jackknife techniques, used, for instance, in the detection of outliers (see
[3]). Subsampling can actually be seen as the (N — b,, out of n)-jackknife.
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The algorithm that we propose is the following :
In a population of size n, consider B subsamples of size b, , denoted by

S;"h”, J = 1..., B and compute the corresponding statistics of interest Tj, ; =

T(S;l’b”). Then to evaluate the impact of a new small set of observation of size

I (with! << by,) say s;, we now consider all the new samples of size b, +I by includ-

ing sy, §Hbatl S;.l’l U s; and compute the corresponding statistics Tp,4/,j =
(S}’-l+lsbn+l)

If the observation comes from the same distribution as before (the model is
stable) or if the procedure is robust (in terms of quantitative robustness), then the
corresponding subsampling distributions defined by (for any re-centering 6,,,)

B
K}Si”(x | X,,T)=B"" Z T, (Th,,j — Om,) < X}

j=1
B
B o~ _ ~ o~
K21 X,y ) = B 1, 41(Th, 40, — Om,) < x)
j=1

should be close. In particular, we should have, following the preceding argument
that for any #; and #, , the ratio of the ranges of the two distributions close to O that
is the ratio

KPP x,. 0 - kP 0 x,.7)

"ol = (B)—1 B)—1 1
KO 1 X, %) - K5 0 1 X, 7)

Notice that this quantity is independent of the choice of the centering é\m,,- Thus
a simple graphical diagnostic for ensuring that the model is stable or the estimator
robust is to plot this quantity for some given values of #; and #,, for instance #; =
1-8/2, n=p8/2,for B =0.01, 0.02,....0.25.

It may be difficult to control the rate of convergence of this quantity to one in
the general case with unknown 15,. In the following, we will assume for simplicity
that the rate of convergence 7, = n'/? and give some hint on the optimal choice
of b,, when dealing with simple linear statistics, often encountered when dealing
with empirical risks. Indeed from Babu and Singh [2], for any statistics which
are a function of moments, and provided that we have sufficient moments (and a
absolutely continuous part for this statistics) then we have an Edgeworth expansion
(uniform in x)

Kp, (x, X, T)—¢( )+0P( )+0( ")

~/
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where 0'020 is the asymptotic variance of the quantity of interest. This result holds
almost surely up to 0(l°§;b")) + O(IZ;’). It follows that in that case by simple
inversion of this expansion that we have

0@ 1) = @7 (1)) + O + 0(")

Tl = ba-tl
0o0(@1(12) = @1 (1)) + O ) + 0t
log(by) by
=140 + 0 a.s.
( b ) )
It follows that the optimal subsampling size in that case, which equilibrates the two

errors is of size b, = (nlog(n))*/? yielding an a.s. approximation of order 1(,)1%%) a.s.

Thus we can construct an as. confidence interval for testing the equality of rp, ; to 1
and detect variability in the data.

6 Some Empirical Results

In this section, the implementations were executed under R on a standard PC with a
5 GHz Intel processor and 2G of Ram.

6.1 Maximum Likelihood Estimation for a Simple Probit
Model (See Example 1)

We consider the framework of Example 1. For this we simulate the toy probit model

Y, — 1if3X;+¢6 >0
! 0if else

with X; and ¢; independent N (0, 1) random variables. We choose, respectively, n =
10% and n = 107.

The mean of the estimations of S (and the variances) over the 999 repetitions
with the subsampling procedure are given in table for different subsampling sizes
n'/3,n1/2 n?/3 and on the whole sample with the corresponding execution time
(Table 1).

Notice that even with a size of n!/3 we are able to get the correct order for the
variance, the bias may be important for small subsampling size but almost vanish
for n = n?/3. With a subsampling size of order n?/3 = 46,415 even if the model
is true, we get the same order as the one on the m.1.e. on the whole database: but in
terms of calculus n%/3 is too big, since in that case we are able to proceed the m.l.e



Subsampling for Big Data: Some Recent Advances 199

Table 1 MLE for a probit model with n = 10%, 107 and variance estimations

Subsample (B = 999 replications) Whole sample
Bn
(U&’”(.Bn)l/z )
n b, an v&r(ﬂ[,”)l/2 Time time
100 n'/3 3.19 0.0064 135 2.992
nl/2 3.022 0.0063 365 (0.0061)
n?/3 2.996 0.0060 3.26 min 28.75s
107 n'/3 3.10 0.0020 41s 2.998
ni’? 3.009 0.0020 1.25 min (0.0019)
n?3 2.998 0.0019 12 min 4.69 min

on the whole database in less than 5 min (whereas it takes 12 min to replicate 999
times the procedure on the n%/3 sample size). But for n!/? we get a gain of 4 for a
similar accuracy : of course this strongly depends on the degree of accuracy that one
wishes to obtain on the parameter of interest.

6.2 Estimation of the Out-of-Sample Error with knn (See
Example 2)

Considering the preceding example we now use the subsampling method to estimate
the out-of-sample errors of k-nearest neighbor estimators on several subsampling
sizes and compare them to the one obtained on the full database. We consider a
training set equal to 0.7n and a test set of size 0.3n (similar results have been
obtained for other test sets). The computation times in Table 2 clearly show the
computation gains. A striking result is for » = 107 because it takes almost 5 h to get
an estimator of this quantity on the whole sample whereas the subsampling method
takes at the worst 15min with n?/3. It seems that even with a size of order n'/3
we still get a good approximation in less than 45s. With the subsampling method
by using an extrapolated variance, we are also able to estimate the variance of the

Table 2 Estimation of the out-of-sample error by subsampling and on the whole sample

KNN Subsample (B = 999 replications) Whole sample

n by Out-of-samp. error Time Out-s. err Time

100 n'/3 0.1177 4795 0.1158 5.252 min
ni/? 0.1165 5.76 (0.008)
n?/3 0.1167 4355

107 nl/3 0.1166 44.7s 0.114082 4h 57 min
nl/? 0.1163 50.7s (0.006)

n?/3 0.1161 15.35 min
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out-of-sample error (in parenthesis in the table), which shows that the estimation is
quite accurate.

Notice that, for this data, the out-of-sample error of the probit model is better
(of order 0.050 for both size) : it is because of the way in which the data has been
simulated. For real data, these simulations show that it is possible to compare in
a reasonable time the out-of-sample errors for several competing methods (with
confidence intervals).

7 Technical Proofs

Proof of Theorem 1 Let € > 0; assuming asymptotic convergence of 7,, , we have
that

Prp{|Kp,(x | X, 7) — K(x, P)| = €} = 0,

uniformly in x. Define the quantile z = K 1; l(t — € | X,, t.), then we have with
probability tending to one that

Kp,(z| X,,7)>t—€=K(z, P)>1t—2¢

=2z>K '(t —2¢ P).
Similarly, define y = K~!(¢, P), thus with probability tending to one, we get
K(y,P)=t= Kp,(y| X,,7)=1—¢€
=y>K,(t—€l X, 1)
Hence, for any ¢ and any € > 0, we have the inequality
K~'(t—26,P)<K,'(t—€|X,.7) <K '(t. P).
so that by letting € — 0%, we obtain that
K\t X,.t) =K't P) +op(D).

Now, let x be a real number and note that

q
Kp, (x| X, 2) =g Y 1B Ty, i — Om,) < x)
i=1

q
=q "> UbY(Ty, i —0) = b O, — 0) < x).
i=1
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Now, define U, (x) = ¢~ ' 30 1{b%(T,; — ) < x} and the set E, = {b% [0, —
6| < €}, for some € > 0. Since & = o + 0p((10gn)_1), it follows that n% =
n*(14+o0p(1))and b = b2 (1 +o0p(1)).
Equations (3) and (4) imply that P(E,) —> 1; hence, with probability tending
n—o0
to one, we get that

Uy(x —€) < Kbn(x | Xna:’::.) < Un(x +¢).

We will first show that U, (x) converges to K (x, P) in probability. For this we
introduce the U-statistics with varying kernel defined by

q
Va(x) =g~ Y b (Ty, i — 0) < x},
i=1

that is the equivalent of U, (x), with the true rate rather than the estimated one. Note
that since V, (x) is a U-statistics of degree b,, such that l;f — 0, by Hoeffding
inequality we have V, (x) — K (x, P) in probability.

Now, for any €] > 0, we have that

q
_ b2
Un(r) = g~" Y 1B (Th, i = 0) S %5 ) < Valx + 1)

i=1 n

where the above inequality holds with probability tending to one. A similar
argument shows that U, (x) > V,,(x — €1) with probability tending to one.

But we have V,(x +€¢1) > K(x + €1, P)and V,(x — €1) > K(x — €1, P)
in probability. Therefore, letting ¢; — 0, we have that U,(x) — K(x, P) in
probability as required.

Proving that we have

I?,,(x, P)—K(x,P) > 0asn— o0
follows now by the same arguments as before by recalling that

Ru(x, P) = P(ta(Ty —0) < x ")
T

n

= P(ty(T, — 0) < x(1 +0p(1))

and using the continuity of the limiting distribution.

The second part of the theorem is a straightforward consequence of the uniform
convergence of Kp, (x | X, T)— I?,, (x, P) to 0, for any point of continuity of the
true limiting distribution.



202 P. Bertail et al.

Acknowledgements This research has been conducted as part of the project Labex MME-DII
(ANR11-LBX-0023- 01), and the industrial chair “Machine Learning for Big Data,” Télécom-
-ParisTech.

References

—

10.

11.

12.

13.

14.

15.

16.

17.

18

19.

20.

. Arcones, M. A., Giné, E. (1993). Limit theorems for U-processes. Annals of Probability, 21(3).

1494-1542.

. Babu, G., & Singh, K. (1985). Edgeworth expansions for sampling without replacement from

finite populations. Journal of Multivariate Analysis, 17, 261-278.

. Belsley, D. A., Kuh, E., & Welsh, R. E. (1980). Regression diagnostics: Identifying influential

data and sources of collinearity. New York: Wiley.

. Bertail, P. (1997). Second order properties of an extrapolated bootstrap without replacement

under weak assumptions: The i.i.d. and strong mixing case. Bernoulli, 3, 149-179.

. Bertail, P. (2011). Somme comments on Subsampling weakly dependent time series and

application to extremes. TEST, 20, 487-490.

. Bertail, P., Chautru, E., & Clémencon, S. (2014). Scaling-up M-estimation via sampling

designs: The Horvitz-Thompson stochastic gradient descent. In Proceedings of the 2014 IEEE
International Conference on Big Data, Washington (USA).

. Bertail, P., Chautru, E., & Clémencon, S. (2015). Tail index estimation based on survey data.

ESAIM Probability & Statistics, 19, 28-59.

. Bertail, P., Chautru, E., & Clémengon, S. (2016). Empirical processes in survey sampling.

Scandinavian Journal of Statistics, 44(1), 97-111.

. Bertail, P., Haeffke, C., Politis, D., & White H. (2004). A subsampling approach to estimating

the distribution of diverging statistics with applications to assessing financial market risks.
Journal of Econometrics, 120, 295-326.

Bertail, P., & Politis, D. (2001). Extrapolation of subsampling distribution estimators in the
i.i.d. strong-mixing cases. Canadian Journal of Statistics, 29(4), 667-680.

Bertail, P., Politis, D., & Romano, J. (1999). Undersampling with unknown rate of convergence.
Journal of the American Statistical Association, 94(446), 569—-579.

Bickel, P. J., & Sakov, A. (2008). On the choice of the m out n bootstrap and confidence bounds
for extrema. Statistica Sinica, 18, 967-985.

Bickel P. J., & Yahav, J. A. (1988). Richardson extrapolation and the bootstrap. Journal of the
American Statistical Association, 83(402), 387-393.

Bickel, P. J., Gotze, F., & van Zwet, W. R. (1997). Resampling fewer than n observations, gains,
losses and remedies for losses. Statistica Sinica, 7, 1-31.

Bingham, N. H., Goldie, C. M., & Teugels, J. L. (1987). Regular variation. Cambridge:
Cambridge University Press.

Bretagnolle, J. (1983). Lois limites du bootstrap de certaines fonctionelles. Annales de I’Institut
Henri Poincaré B: Probability and Statistics, 19, 281-296.

Carlstein, E. (1988). Nonparametric change-point estimation. Annals of Statistics, 16(1),
188-197.

. Darkhovshk, B. S. (1976). A non-parametric method for the a posteriori detection of the

“disorder” time of a sequence of independent random variables. Theory of Probability and
Its Applications, 21, 178-83.

Gotze Rauckauskas, F. A. (1999). Adaptive choice of bootstrap sample sizes. In M. de Gunst,
C. Klaassen, & A. van der Vaart (Eds.), State of the art in probability statistics: Festschrift
for Willem R. van Zwet. IMS lecture notes, monograph series (pp. 286-309). Beachwood, OH:
Institute of Mathematical Statistics.

Heilig, C., & Nolan, D. (2001). Limit theorems for the infinite degree U-process. Statistica
Sinica, 11, 289-302.



Subsampling for Big Data: Some Recent Advances 203

21. Isaacson, E., & Keller, H. B. (1966). Analysis of numerical methods. New York: John Wiley.

22. Kleiner, A., Talwalkar, A., Sarkar, P., & Jordan, M. I. (2014). A scalable bootstrap for massive
data. Journal of the Royal Statistical Society: Series B, 76(4), 795-816.

23. Le Cam, L. (1990). Maximum likelihood: An introduction. Revue Internationale de Statistique,
58(2), 153-171.

24. McLeod, 1., & Bellhouse, D. R. (1983). Algorithm for drawing a simple random sample.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 32(2), 182-184.

25. Politis, D., & Romano, J. P. (1994). Large sample confidence regions based on subsamples
under minimal assumptions. Annals of Statistics, 22, 2031-2050.



Probability Bounds for Active Learning )
in the Regression Problem s

A.-K. Fermin and C. Ludeiia

Abstract In this contribution we consider the problem of active learning in
the regression setting. That is, choosing an optimal sampling scheme for the
regression problem simultaneously with that of model selection. We consider a
batch type approach and an on-line approach adapting algorithms developed for
the classification problem. Our main tools are concentration-type inequalities which
allow us to bound the supreme of the deviations of the sampling scheme corrected
by an appropriate weight function.

1 Introduction

Consider the following regression model
yi=xot)+ei, i=1....n (1)

where the observation noise ¢; are i.i.d. realizations of a random variable ¢.

The problem we consider in this chapter is that of estimating the real-valued
function xo based on 11, ..., f, and a subsample of size N < n of the observations
Y1, ..., yp measured at a well-chosen subsample of 71, . . ., #,. This is relevant when,
for example, obtaining the values of y; for each sample point #; is expensive or time
consuming.
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In this work we propose a statistical regularization approach for selecting a
good subsample of the data in this regression setting by introducing a weighted
sampling scheme (importance weighting) and an appropriate penalty function over
the sampling choices.

We begin by establishing basic results for a fixed model, and then the problem
of model selection and choosing a good sampling set simultaneously. This is what
is known as active learning. We will develop two approaches. The first, a batch
approach (see, for example, [7]), assumes the sampling set is chosen all at once,
based on the minimization of a certain penalized loss function for the weighted
sampling scheme. The second, an iterative approach [1], considers a two-step
iterative method choosing alternatively the best new point to be sampled and the
best model given the set of points.

The weighted sampling scheme requires each data point #; to be sampled
with a certain probability p(#;) which is assumed to be inferiorly bounded by a
certain constant p,,;,. This constant plays an important role because it controls the
expected sample size IE (N) = >/, p(ti) > npmin. However, it also is inversely
proportional to the obtained error terms in the batch procedure (see Theorems 2.1
and 2.2), so choosing p,;, too small will lead to poor bounds. Thus essentially, the
batch procedure aims at selecting the best subset of data points (points with high
probability) for the user chosen error bound. In the iterative procedure this problem
is addressed by considering a sequence of sampling probabilities { p;} where at each
step j p;(t) is chosen to be as big as the greatest fluctuation for this data point over
the hypothesis model for this step.

Following the active learning literature for the regression problem based on
ordinary least squares (OLS) and weighted least squares learning (WLS) (see, for
example [5-7] and the references therein) in this chapter we deal mainly with a
linear regression setting and a quadratic loss function. This will be done by fixing
a spanning family {¢ j}’j":1 and considering the best L? approximation x,, of xq
over this family. However, our approach is based on empirical error minimization
techniques and can be readily extended to consider other models whenever bounds
in probability are available for the error term.

Our results are based on concentration-type inequalities. Although variance
minimization techniques for choosing appropriate subsamples are a well-known
tool, giving adequate bounds in probability allowing for optimal non-asymptotic
rates has been much less studied in the regression setting.

This is also true for the iterative procedure, where our results generalize previous
ones obtained only in the classification setting for finite model spaces.

This chapter is organized as follows. In Sect. 2 we formulate the basic problem
and study the batch approach for simultaneous sample and model selection. In
Sect. 3 we study the iterative approach to sample selection and we discuss effective
sample size reduction. All the proofs are available in the extended arXiv version [3].
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2 Preliminaries

2.1 Basic Assumptions

We assume that the observations noise &; in (1) are i.i.d. realizations of a random
variable ¢ satisfying the moment condition

MC  Assume the r.v. ¢ satisfies [E¢ = 0, [E(|e|"/o”) < r!/2 forall r > 2 and
E(e2) = o2

It is important to stress that the observations depend on a fixed design #1, ..., .
For this, we need some notation concerning this design. For any vectors u, v r, we
define the normalized norm and the normalized scalar product by

n

1 o 1
||u||ﬁ’r = Zr,'(ul-)z, and < u,v>,,= . Zriuivi.

i=1 i=1

We drop the letter r from the notation when r = 1. With a slight abuse of notation,
we will use the same notation when u, v, or r are functions by identifying each
function (e.g. u) with the vector of values evaluates as #; (e.g. (u(t1), ..., u(t,)). We
also require the empirical max-norm ||u||c = max; |u;|.

2.2 Discretization Scheme

To start with we will consider the approximation of function xp over a finite-
dimensional subspace S,,. This subspace will be assumed to be linearly spanned
by the set {¢;} jc.z, C {¢;};>1, with ., a certain index set. Moreover, we shall, in
general, be interested only in the vector (xo(z;))?_; which we shall typically denote
just by x¢ stretching notation slightly.

We will assume the following properties hold:

AB  There exists an increasing sequence ¢, such that [|¢ [l < ¢y for j < m.

AQ There exist a certain density ¢ and a positive constant Q such that g(#;) <
Q,i=1,...,nand

/¢z(t)¢k(t)CI(t) dt = 8k,

where § is the Kronecker delta.
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We will also require the following discrete approximation assumption. Let
Gy = [¢;(t)];,j be the associated empirical n x m Gram matrix. We assume that
G',DyGy, is invertible and moreover that ! G!,DyG, — I, where Dy is the
diagonal matrix with entries ¢g(#;), for i = 1,...,n and I, the identity matrix of
size m. More precisely, we will assume

AS  There exist positive constants « and ¢, such that
1 t —1—«
||Im—nGmeGm|| <cn .

Given [AQ], assumption [AS] is a numerical approximation condition which is
satisfied under certain regularity assumptions over g and {¢;}. To illustrate this
condition we include the following example.

Example 2.1 Haar Wavelets: let ¢ (1) = 1j0,1)(t), ¥ (1) = ¢(2t) — (2t — 1) (see,
for example, [4]), with g (¢) = 10,1](¢). Define

Gjx(t) =2/2¢p(2/t —k), t €[0,1], j >0andk € Z;
Vik@) =272y @2/t —k), t€[0,1], j>Oandk € Z .

For all m > 0, S;, denotes the linear space spanned by the functions (¢, x, k € Z).
In this case ¢, < 2"/2 and condition [AS] is satisfied for the discrete sample #; =
ij2mi=0,-..,2m1

We will denote by X,, € S, the function that minimizes the weighted norm
lx — y||%’q over S, evaluated at points 71, . . ., t,. This is,

. L1
Sin = arg min Eq(m(yi —x(t))? = Ruy,
1=

with R,, = G (G, Dy GG, D, the orthogonal projector over S, in the g-
empirical norm || - [|,.4.

Let x,, := R;xo be the projection of xo over S,, in the g-empirical norm
Il - lln,g, evaluated at points 71, ...,%,. Our goal is to choose a good subsample
of the data collection such that the estimator of the unobservable vector xo in
the finite-dimensional subspace S, based on this subsample, attains near optimal
error bounds. For this we must introduce the notion of subsampling scheme and
importance weighted approaches (see [1, 7]), which we discuss below.

2.3 Sampling Scheme and Importance Weighting

In order to sample the data set we will introduce a sampling probability p(¢) and a
sequence of Bernoulli(p(#;)) random variables w;, i = 1, ..., n independent of ¢;
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with p(t;) > pmin. Let Dy 4, p be the diagonal matrix with entries g (#;)w; /p(t;).
So that E (Dy,4,p) = Dy. Sometimes it will be more convenient to rewrite w; =
1 <p(;) for {u;}; ani.i.d. sample of uniform random variables, independent of {e;};
in order to stress the dependence on p of the random variables w;.

The next step is to construct an estimator for x,, = R, xo, based on the
observation vector y and the sampling scheme p. For this, we consider a modified
version of the estimator x,,.

Consider a uniform random sample u1, ..., u, and let w; = w;(p) = 1y, <p@y)
for a given p. For the givenrealizationof uy, ..., u,, Dy 4, p Will be strictly positive
for those w; = 1. Moreover, as follows from the singular value decomposition, the
matrix (Gﬁan,q,me) is invertible as long as at least one w; # 0. Set Ry, =
Gu(GE, Dw,q,me)’1 G!,Dy.q,p- Then Ry, p is the orthogonal projector over Sy, in
the wg / p-empirical norm || - ||, wq/p and it is well defined if at least one w; # 0. If
all w; = 0, the projection is defined to be 0.

As the approximation of x,,, we then consider (for a fixed m, p and (u1, ..., uy))
the random quantity

n

1
A . 2 .
x = arg min ||x — = arg min E
m,p gxesm l yun’q;;r gxesm n
1=

Yt (i — x(1))*
payy T A

Note that

im,p = Rm,py, (2)

This estimator depends on y; only if w; = 1. However, as stated above, this depends
on p(t;) for the given probability p.

2.4 Choosing a Good Sampling Scheme

To begin with, given n, we will assume that Sy, is fixed with dimension |.%,| = d;,
and d,, = o(n). Remark that the bias |l xo — xp ||%’ 4 1s independent of p so for our
purposes it is only necessary to study the approximation error || x,, — X, p ||%’ 4 Which
does depend on how p is chosen.

Let & := {pk, k > 1} be a numerable collection of [0, 1] valued functions over
{t1, ..., ta}. Set px.min = min; pi(z;). We will assume that ming pk min > Pmin. The
way the candidate probabilities are ordered is not a major issue, although in practice
it is sometimes convenient to incorporate prior knowledge (certain sample points are
known to be needed in the sample, for example) letting favourite candidates appear
first in the order. To get the idea of what a sampling scheme may be, consider the
following toy example:
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Example 2.2 Let IT = {0.1,0.4,0.6,0.9} and set & = {p, p(t;) =nj € I,i =
1,...,n} whichis a set of [[1|" functions. In this example, any given p will tend to
favour the appearance of points #; with p(#;) = 0.9 and disfavour the appearance of
those #; with p(¢;) = 0.1.

A good sampling scheme p, based on the data, should be the minimizer over & of
the non-observable quantity || x,, — X, , ||%’ g-1n order to find a reasonable observable
equivalent we start by writing,

[fm,p —Xm] = Rm,p[xo — Xm] + Rm,pg

=K (Rm,p) [x0 — xm] + (Rm,p -k (Rm,p))[x() — Xm] + Rm,pg- 3)

Consider first the deterministic term It (Rm, p) [xo — xmm] in (3). We have the next
lemma which is proved in the extended arXiv version.

Lemma 2.1 Under condition [AS] if m = o(n), then

nilia llxo — xm ”n,q

IE (Rm,p) [x0 — xm]”n,q = O(
Pmin

).

From Lemma 2.1, we can derive that the deterministic term is small with respect
to the other terms. Thus, it is sufficient for a good sampling scheme to take into
account the second and third terms in (3). We propose to use an upper bound with
high probability of those two last terms as in a penalized estimation scheme and to
base our choice on this bound.

Define
Bi(m, pi. 8) = llxo = xm 12, Buic (1 + B,/ D) “
with
~ 17+ 1 d
B = Y17 )\/ Q2 log2T dklh + 1)/5). 5)
2 NPk, min

The second square root appearing in the definition of Em,k is included in order to
give uniform bounds over the numerable collection &7.
In the following, the expression tr(A) stands for the trace of the matrix A. Set

T, p, = t0((Rpn, py D;/z)tRm,pk D;/z) and define

m, pi + Q +02Qlog2(2/8)
n

~ T,
By(m, pi,8) = o*r(1 4 6x) i ©6)

withr > 1 andd = d(r) < 1 a positive constant that depends on r. The sequence
6 > 0 is such that 3", e~ V4 dnt1) < | holds.



Probability Bounds for Active Learning in the Regression Problem 211

It is thus reasonable to consider the best p as the minimizer

p = argminB(m, pi, 8, y, n), )
pe?

where, fora given0 < y < 1,

B(m, pr, 8, y.n) = {(1 + y)Bi(m, pr, 8) + (1 + 1/y)Ba(m, px, 8)}.

The different roles of B; and B, appear in the following lemmas:

Lemma 2.2 Assume that the conditions [AB], [AS], and [AQ] are satisfied and that
there is a constant pmin > 0 such that foralli = 1,...,n, p(;) > Pk,min > Pmin
Assume B to be selected according to (4). Then for all § > 0 we have

P[S;)p{”(Rm,p —-E (Rm,p))[x() - xm]”iq - El(ma p,0)} > 0:| <4/2

Lemma 2.3 Assume the observation noise in Eq.(1) is an i.i.d. collection of
random variables satisfying the moment condition [MC]. Assume that the condition
[AQ] is satisfied and assume that there is a constant ppin, > 0 such that p(t;) >
Pmin foralli = 1,...,n. Assume Ez to be selected according to (6) withr > 1,
d = d(r) and 6y > 0, such that the following Kraft inequality )", e~ Vdrom+1) |
holds. Then,

P(s;zp{uRm,psui,q — By(m, p, 8)} > 0) < §/2.

Those two lemmas together with Lemma 2.1 assure that the proposed esti-
mation procedure, based on the minimization of l~3, is consistent establishing
non-asymptotic rates in probability.

We may now state the main result of this section, namely, non-asymptotic
consistency rates in probability of the proposed estimation procedure. The proof
follows from Lemmas 2.2 and 2.3 and is given in the extended arXiv version along
with the proof of the lemmas.

Theorem 2.1 Assume that the conditions [AB], [AS], and [AQ] are satisfied.
Assume p to be selected according to (7). Then the following inequality holds with
probability greater than 1 — §

o 2 . 2 o
I = S gl < L 6(||1E (Ru.p) G — 30112, + B(m, p. 3. 7, n)).

Remark 2.1 In the minimization scheme given above it is not necessary to know the
term || xg — X, ||%’ p in By as this term is constant with regard to the sampling scheme

p. Including this term in the definition of l~31, however, is important because it leads
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to optimal bounds in the sense that it balances pj,;, with the mean variation, over
the sample points, of the best possible solution x,, over the hypothesis model set
S . This idea shall be pursued in depth in Sect. 3.

Moreover, minimizing B essentially just requires selecting k such that pg min is
largest and doesn’t intervene at all if pg min = pmin for all k. Minimization based on
Pk (t;) for all sample points is given by the trace T, ,, which depends on the initial
random sample u# independent of {(#;, y;),i = 1, ..., n}. A reasonable strategy in
practice, although we do not have theoretical results for it, is to consider several
realizations of u and select sample points which appear more often in the selected
sampling scheme p.

Remark 2.2 Albeit the appearance of weight terms which depend on k both in the
definition of B; and B», actually the ordering of &2 does not play a major role. The
weights are given in order to assure convergence over the numerable collection &.
Thus in the definition of Em,k any sequence of weights 9,2 (instead of [k(k + 1)]’1)
assuring that the series ), 6, < oo is valid. Of course, in practice &7 is finite.
Hence for M = |£?| a more reasonable bound is just to consider uniform weights
0, = 1/M instead.

Remark 2.3 Setting Hy, , = (Gﬁan,q,kam)*lG,’%Dw,q,pk we may write
Tin,py = (G, DgGumHp,p, Hy, p,) in the definition of B;. Thus our convergence
rates are as in Lemma 1, [5]. Our approach, however, provides non-asymptotic
bounds in probability as opposed to asymptotic bounds for the quadratic estimation
error.

Remark 2.4 As mentioned at the beginning of this section, the expected “best”
sample size given u is N = ) ; p(t;), where u is the initial random sample
independent of {(;, yi),i = 1,...,n}. Of course, a uniform inferior bound for

this expected sample size is [E (]\7 ) > npmin, S0 that the expected size is inversely

proportional to the user chosen estimation error. In practice, considering several
realizations of the initial random sample provides an empirical estimator of the non-
conditional “best” expected sample size.

2.5 Model Selection and Active Learning

Given a model and n observations (#1, y1), ..., (t,, y») we know how to estimate
the best sampling scheme p and to obtain the estimator %, 5. The problem is that
the model m might not be a good one. Instead of just looking at fixed m we would
like to consider simultaneous model selection as in [7]. For this we shall pursue a
more global approach based on loss functions.

We start by introducing some notation. Set /(u, v) = (u — v)? the squared loss
and let L, (x,y, p) = ,11 Z?:l q(t) p'ft"i)l(x(t,-), yi) be the empirical loss function
for the quadratic difference with the given sampling distribution. Set L(x) :=
E (L,(x,y, p)) with the expectation taken over all the random variables involved.
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LetL,(x, p) :=E; (L,(x, y, p)) where IE, () stands for the conditional expectation
given the initial random sample u, that is the expectation with respect to the random
noise ¢. It is not hard to see that

1 n
L) = > q@E (@), y),

i=1

and
Ly(x, p) = Zq(t, E (1(x(t), i) -

Recall that )?m,p = Ry, py is the minimizer of L, (x, y, p) over each §,, for given p
and that x;,, = R,,x0 is the minimizer of L(x) over S;,. Our problem is then to find
the best approximation of the target x over the function space So := (J,,c.# Sm. In
the notation of Sect.2.2 we assume for each m that S, is a bounded subset of the
linearly spanned space of the collection {¢;} jey,, With |.Z,| = dj

Unlike the fixed m setting, model selection requires controlling not only the
variance term ||x,, — X, plln,q but also the unobservable bias term |lxg — x, ||%’q
for each possible model S,,. If all samples were available this would be possible just
by looking at L, (x, y, p) for all S,, and p, but in the active learning setting labels
are expensive.

Set e, := ||x0—Xm ||co- In what follows we will assume that there exists a positive
constant C such that sup,, e¢;,, < C. Remark this implies sup,, [|xo — Xmlln,q < OC,
with Q defined in [AQ].

As above py € & stands for the set of candidate sampling probabilities and
Pk,min = min; (pi(%;)).

Define
0C? |1 . 6du(dn+1)
peno(m, pi,8) = InC ", (8)
Pk, min 2n 8
1/2 2
peni(m, pi, 8) = QCﬁmk(l +B, 07 )]
with
Cm(~/17+1) 3*27/4d2 (dm + Dk(k + 1)
Bmk = 2log )s
NPk, min 8
. . 1/2y; 1/2
and finally setting Tp, m = tr((Rm, p, Dg' ") Rin,p Dy’ *), define
In?(6/8
peny(m, px,8) = o {r(1+9m %) Tm+Q | Q nd( /%) (10)
n n
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where 6, x > 0 is a sequence such that ), e~ V/Armkdnth) _ | holds,

We remark that the change from é to 6 /(dy, (d;+1)) in peng and pen is required
in order to account for the supremum over the collection of possible model spaces
S

Also, we remark that introducing simultaneous model and sample selection
results in the inclusion of term peng ~ Cc? / Pk.min+/1/n which includes an L type
bound instead of an L, type norm which may yield non-optimal bounds. Dealing
more efficiently with this term would require knowing the (unobservable) bias term
lx0—Xmlln,q - A reasonable strategy is selecting px min = Pi,min(m) = |X0—Xmlln.q
whenever this information is available.

In practice, pkmin can be estimated for each model m using a previously
estimated empirical error over a subsample if this is possible. However this yields a
conservative choice of the bound. One way to avoid this inconvenience is to consider
iterative procedures, which update on the unobservable bias term. This course of
action shall be pursued in Sect. 3.

With these definitions, for a given 0 < y < 1 set

1 1
pen(m,p,S, )/,l’l) :zpo(m7 P, 6)+( . + V)Penl(m, P, 6)

'min
n—(l+01) ocC

Pmin

12 1 )
+( , ( +1)+V)Penz(mvpv5)+2((6+1) )°

Pmin

and define

Ln,l(-xv Y, P) = Ln(xv Y, p) +pen(m, pvav j/,l’l)

The appropriate choice of an optimal sampling scheme simultaneously with that
of model selection is a difficult problem. We would like to choose simultaneously
m and p, based on the data in such a way that optimal rates are maintained. We
propose for this a penalized version of %,, j, defined as follows.

We start by choosing, for each m, the best sampling scheme

p(m) = argmin pen(m, p, 8, y,n), (11)
p

computable before observing the output values {y;}?_,, and then calculate the
estimator X,, 5(m) = Rin, pomyy Which was defined in (2).
Finally, choose the best model as

i = argmin Ly, 1(Y, X, pmys P(M))- (12)
The penalized estimator is then X, := %5 5a)- It is important to remark that for

each model m, p(m) is independent of y and hence of the random observation error
structure. The following result assures the consistency of the proposed estimation
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procedure, although the obtained rates are not optimal as observed at the beginning
of this section.

Theorem 2.2 With probability greater than 1 — §, we have

R 1+ . 1
LGy < 7 [LGm) +min@poGm, pi.8) +  peny(m, pi. )
1 - 4V m,k Pmin
1
+ , (L+2/y)pens(m, pi, 8))]
pmin
l+y .
S mln[L(xm)+m1npen(ma pka(s’ V,n)]
1—4y m k

Remark 2.5 In practice, a reasonable alternative to the proposed minimization pro-
cedure is estimating the overall error by cross-validation or leave one out techniques
and then choose m minimizing the error for successive essays of probability p.
Recall that in the original procedure of Sect. 2.5, labels are not required to obtain
p for a fixed model. Cross-validation or empirical error minimization techniques
do, however, require a stock of “extra” labels, which might not be affordable in
the active learning setting. Empirical error minimization is specially useful for
applications where what is required is a subset of very informative sample points,
as for example when deciding what points get extra labels (new laboratory runs, for
example) given a first set of complete labels is available. Applications suggest that p
obtained with this methodology (or a threshold version of p which eliminates points
with sampling probability p; < n a certain small constant) is very accurate in finding
“good” or informative subsets, over which model selection may be performed.

3 Iterative Procedure: Updating the Sampling Probabilities

A major drawback of the batch procedure is the appearance of ppin in the
denominator of error bounds, since typically pmin must be small in order for the
estimation procedure to be effective. Indeed, since the expected number of effective
samples is given by E (N) := & (Zl p(t,-)), small values of p(#;) are required in
order to gain in sample efficiency.

Proofs in Sect. 2.5 depend heavily on bounding expressions such as

1 " wj
ZQ(G)
e pUi

1

)€i(x —x) (1)
or

, D& - (t)

1

li ("
" i:lq G
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where x and x’ belong to a given model family S,. Thus, it seems like a
reasonable alternative to consider iterative procedures for which at time j, p; (%) ~
maxy yes; |x (1) — x'(t;)| with S; the current hypothesis space. In what follows
we develop this strategy, adapting the results of [1] from the classification to the
regression problem. Although we continue to work in the setting of model selection
over bounded subsets of linearly spanned spaces, results can be readily extended to
other frameworks such as additive models or kernel models. Once again, we will
require certain additional restrictions associated to the uniform approximation of xg
over the target model space.

More precisely, we start with an initial model set S(= S,) and set x* to be the
overall minimizer of the loss function L(x) over S. Assume additionally

AU sup,cgMaXeefs,...r) [¥0(t) —x(@)| < B

,,,,,

Let L,(x) = L,(x,y, p) and L(x) be as in Sect. 2.5. For the iterative procedure
introduce the notation

L) = Zq(z‘/l ot; (x(t/l) yi)?, j=0,....n

t

withn; =no+ jforj=0,...,n —no.
In the setting of Sect.2 for each 0 < j < n, §; will be the linear space spanned
by the collection {¢g}g5yj with || =d;,d;j = o(n).
In order to bound the fluctuations of the initial step in the iterative procedure we
consider the quantities defined in Egs. (4) and (6) for r = y = 2. That is,
4o = 2020 {2«10 +1) | log?(2/9) }
no no

2B (1 + Bmg))* B2

with
5, _ m17+D /

) D0 \/2 log(27/4my/3).

nQ Pmin

As discussed in Sect. 2.4, Ag requires some initial guess of ||xg — X, ||%’ 7 Since

this is not available, we consider the upper bound B2. Of course this will possibly
slow down the initial convergence as Ay might be too big, but will not affect the
overall algorithm. Also remark we do not consider the weighting sequence 6; of
Eq. (6) because the sampling probability is assumed fixed.
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Nextset Bj = sup, yes; , MaXres,...1,} 1X (1) — x'(t)| and define

,,,,,

. 204n:(n;
A, =\/02Q[(2(d1 +1, log (4nj(n-] +D/3),

nj nj

+\/10g(4nj(nj +1)/8)

2 . 202
168328 A 1)2Q +4\/4(dj+1)10gn.
. _

nj

The iterative procedure is stated as follows:
1. For j = 0:

* Choose (randomly) an initial sample of size ng, Mo = {t,, .. ., T, }.

* Let o be the chosen solution by minimization of Lg(x) (or possibly a
weighted version of this loss function).

e SetSy C{xeS:Lokx) < Lo(Xo) + Ao}

2. Atstep j:

* Select (randomly) a sample candidate point ¢;,; & M;_1.
Set M; = M;_1 U {t;}

* Setp(t)) = (maxy yes;_ lx(tj)—x'(t;)| A1) and generate w; ~ Ber(p(t})).
Ifw; =0,set j = j+ 1 and go to (2) to choose a new sample candidate.
If w; = 1 sample y; and continue.

¢ LetX; =argminces; | L;(x) +Aj-1(x)

. SetSjC{xeSj,l:Lj(x)<Lj()?j)+Aj}

* Setj = j+ 1and go to (2) to choose a new sample candidate.

Remark that, such as it is stated, the procedure can continue only up until time n
(when there are no more points to sample). If the process is stopped at time T < n,
the term log(n(n + 1)) can be replaced by log(7T (T + 1)). We have the following
result, which generalizes Theorem 2 in [1] to the regression case.

Theorem 3.1 Let x* = argminycg L(x). Set § > 0. Then, with probability at least
1—36forany j <n

o |L(x) = L(x")| <24y, forallx,x" € S
© LX) = [L(x™) +24;-1]

Remark 3.1 An important issue is related to the initial choice of mg and ng. As the
overall precision of the algorithm is determined by L(x*), it is important to select a
sufficiently complex initial model collection. However, if d;;,, >> no, then Aq can
be big and p; ~ 1 for the first samples, which leads to a more inefficient sampling
scheme.
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3.1 Effective Sample Size

For any sampling scheme the expected number of effective samples is, as already
mentioned, |E (Zl p(t,-)). Whenever the sampling policy is fixed, this sum is not
random and effective reduction of the sample size will depend on how small
sampling probabilities are. However, this will increase the error bounds as a conse-
quence of the factor 1/ pmin. The iterative procedure allows a closer control of both
aspects and under suitable conditions will be of order ) j \/ L(x*) + Aj. Recall
from the definition of the iterative procedure we have p;(;) ~ max, ¢ S; |x(t) —
x'(t;)|, whence the expected number of effective samples is of the order of
Zj max, yes; [X(4) — x'(#;)|. Tt is then necessary to control SUP, yes; lx () —
x'(t;)| in terms of the (quadratic) empirical loss function L j- For this we must
introduce some notation and results relating the supremum and L, norms [2].

Let § C Ly N Lo be a linear subspace of dimension d, with basis @ := {¢;, j €
ms}, |ms| = d. Setr := inf 4 r 4, where A stands for any orthonormal basis of S.

We have the following result

Lemma 3.1 Let X; be the sequence of iterative approximations to x* and p;(t)
be the sampling probabilities in each step of the iteration, j = 1,...,T. Then,
the effective number of samples, that is, the expectation of the required samples

N, =E (Zle Pj (tj)) is bounded by

T T
Ne < 2V2r(LGx%) Y Jdj + Y Jd;jAp).
j=1

j=1
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Elemental Estimates, Influence, )
and Algorithmic Leveraging ik

K. Knight

Abstract It is well-known (Subrahmanyam, Sankhya Ser B 34:355-356, 1972;
Mayo and Gray, Am Stat 51:122-129, 1997) that the ordinary least squares estimate
can be expressed as a weighted sum of so-called elemental estimates based on
subsets of p observations where p is the dimension of parameter vector. The
weights can be viewed as a probability distribution on subsets of size p of the
predictors {x; : i = 1, --- , n}. In this contribution, we derive the lower dimensional
distributions of this p dimensional distribution and define a measure of potential
influence for subsets of observations analogous to the diagonal elements of the “hat”
matrix for single observations. This theory is then applied to algorithmic leveraging,
which is a method for approximating the ordinary least squares estimates using a
particular form of biased subsampling.

1 Introduction

Given observations {(x;, y;) : i = 1,---, n}, we define the ordinary least squares
(OLS) estimate f as the minimizer of

i(yi —x! ).

i=1

We are implicitly assuming that ﬁ estimates a p-dimensional parameter § in the
model y; = xl-Tﬂ +¢& (i =1,---,n)for some errors {g; }. However, we will not use
this assumption in the sequel.
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The OLS estimate can be written as a weighted sum of so-called elemental
estimates, which are based on subsets of observations of size p. If s = {i; < --- <
ip}isasubsetof {1, ---,n}, then we can define the elemental estimate 8 satisfying

x[];ﬂszyij fOI'j:l,-“,p

provided that the solution ﬁs exists. Subrahmanyam [16] showed that the OLS
estimate can be written as

| X, 2 3
ZZm '

where the summation is over all subsets of size p, |K | denotes the determinant of a
square matrix K and

Xs = (xiy Xiy---xi,). (D

Therefore, we can think of the OLS estimate ﬁ as an expectation of elemental
estimates with respect to a particular probability distribution; that is,

B=E»®Bs
where the random subset S has a probability distribution

2
P(s)= P(S=5)= ] ?)

Do IXul
u

where X is defined in (1). Hoerl and Kennard [10] note that the OLS estimate can
also be expressed as a weighted sum of all OLS estimates based on subsets of k > p
observations.

An analogous result holds for weighted least squares (WLS) where we minimize

Y wili —x[ B’

i=1

for some non-negative weights {w;}. Again in this case, the WLS estimate ﬁ can be
written as B = E(Bg) where now S has the probability distribution

X1 T Tw; 2 [ w;

jes jes

ey {|Xu|2ﬁj6u D1 KO o)
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Henceforth, we will focus on the distribution &?(s) defined in (2) for the OLS
estimate where the results for the WLS estimate will follow mutatis mutandis.

The probability Z?(s) defined in (2) describes the weight and therefore the
potential influence of a subset s (of size p) on the OLS estimate f. In particular,
greater weight is given to subsets where the vectors x;,, - - - , x;, are more dispersed;
for example, if x; = (1, x,-)T, then |(x; ,vcj)l2 = (x; — xj)z. We can also use the
probability distribution & to define measures of influence of arbitrary subsets of
observations.

In Sect. 2, we will derive the lower dimensional distributions of &2 defined in (2)
while in Sect. 3, we will discuss the potential influence of a subset of observations.

In situations where n and p are large, the OLS estimate E may be difficult to
compute in which case one can attempt to approximate 23\ by sampling m < n
observations from {(x;, y;)} leading to a subsampled estimate ﬁs s=Lo9 (’ﬁ\ s) where
S has a distribution 2. The goal here is to find a subsampling scheme so that £ ~
& in some sense. This will be explored further in Sect. 4.

2 Lower Dimensional Distributions of &

The probability distribution & defined in (2) describes the weight given to each
subset of p observations in defining the OLS estimate. It is also of interest to
consider the total weight given to subsets of k < p observations. It turns out that
these lower dimensional distributions depend on the elements of the so-called “hat”
matrix. (The “hat” matrix is the orthogonal projection onto the column space of the
matrix X whose rows are xlT, el x,{.)

We start by re-expressing & (s). Since

lexul2 =
u

n
>
i=1

[14], it follows that

n -1 hiyiy hiyiy -+ hiyi,
P(s) = |XT (Zx;xf) Xs| = S
=l h hipiZ e hipip

ipi
where {h;; : i, j =1, ---, n} are the elements of the “hat” matrix [9]:

1

n —
T T
h,’j:hjile- (Zx,-xl-> Xj.
i=1
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Henceforth, unless specified otherwise, all probabilities and expected values are
based on the probability distribution &.

If S is a random subset of size p drawn from {1, ---,n} with probability
distribution &, it is convenient to describe the distribution of S using the equivalent
random vector W = (Wy, .-, W,) where W; = I(j € S)and Wi +-- -+ W, = p.
The moment generating function ¢(¢) = E[exp(t’ W)] of W is given by

n
Z exp(t;)x;x]

i=1

() =

n

-1

DO [ expteip) ¢ =
: Zx,-xiT
i=1

Ljes

n
>
i=1

Thus for k < p,

k

= t
oty - -+ 0ty ()

k
P(ir, - iy ) =E | [[ W
j=1

t1=t)=---=t,=0

The following result gives the lower dimensional distributions of &7.

Proposition 1 Suppose that S has the distribution & defined in (2). Then for

k< p,

hiyiy Riyis + - iy

P({ir,--- ik} C8) = SRR
higiy Pigia «+ higiy

Proof Define the k x k matrix

1] n -1
Hj .. (8) = exp(tiy + -+ + ;) (Z exp(ti)xix,'T> (xil e ‘xik)

i=1

and define for 1 < i, j <n,

n -1
hij(t) = xJT (Z exp(t,-)x,-xl-T) X;.

i=1
It suffices to show that
k

o1y, -0ty o(t) = () |Hj\..iy 0] . 3)
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We will prove (3) by induction using Jacobi’s formula [8]

d _ . d _ 1, d
dt |K (¢)| = trace <adJ(K(t)) dr K(t)) = |K (t)|trace <K (1) dr K(t))

where adj(K (¢)) is adjugate (the transpose of the cofactor matrix) of K (¢) as well
as the identity

‘(ﬁ Z)‘ — a|D| — vTadj(D)v (4)

where a is a real number, v a vector of length k, and D a k x k matrix. For k = 1,
we have

-1

a n

a1 @(t) = p(t)trace (Z exp(ti)xixiT> exp(t,-l)x,'lxiT1
1 i=1

n -1
= @(t) exp(t,'l)xl-Tl (Z exp(t,-)xixiT) Xi

i=1
= (/)(t) eXp(til)hilil (t)
= o(t) |Hy (1)].

Now suppose that (3) holds for some k¥ < p and set £ = k + 1. Then

" p(t) = i {o@) |Hi\..iy )|}
aty, -+ 0t;, at;, 1tk
= |Hi..i, (@) a. P(t) + o) a. |Hj iy )]
at;, at;,

First,

]

o, £O = 9O [Hi (0] = p(&) exp(tihici, ().

ig

Second,

a a
(p(t) ) |Hi1~~-ik (t)| = Qp(t) {trace (adj(Hilmik (t)) Hl']ml'k (t)> }
ti, dt;

124
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with
d hi]ig ®)
ot Hiy--ie ®=- eXp(til Tl tif) (hiliz @--- hikiz (t)) .
i
e hikig (t)
Applying (4) with
hi[iz (t)
a=hj,i,(t), D=H.(t), and v = 7
hikiz (t)
we get
¢
t) = @(t) |Hj...;, (t
3ti1~--3t,~z(p() (/)()| 3l le()|

and the conclusion follows by setting £ = 0.

3 Measuring Influence for Subsets of Observations

The diagonal elements {/;;} of the “hat” matrix are commonly used in regression
analysis to measure the potential influence of observations [9]. Similar influence
measures for subsets of observations have been proposed; see [2] as well as [15] for
surveys of some of these methods.

From Proposition 1, it follows that P(W; = 1) = h;; = E(W;), which suggests
that an analogous measure of the influence of a subset of observations whose indices

are iy, - -- , iy might be based on the distribution of W;,, --- , W;,.
Suppose that A is a subset of {1, - - - , n} and define
N(A) = Z w;. (5)
JjeA

Giventhat E(W;) = h;; and P(W; =1, W; = 1) = E(W; W;) = hi;hj; _hizj from
Proposition 1, it follows that

E[N(A)] =) hjj
jeA

Var[N(A)] = > hj; =YY b

JjEA icA jeA
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More generally, the probability distribution of N(A) in (5) can be determined from
the probability generating function

thjx/T +ijxjr

E [tN(A)] _ | jea jgA

n
>
i=1

This gives, for example, if A = {i1, - - - , ik},

T
fox/

jgA

P(NA)=0=,
> e
i=1
n -1
T T
=l - (inxi) ijxj
i=1 jeA
L= hiyiy —hiyiy -+ —hiyi
—hiyiy 1= hiyiy -+ —hiyi
_ :2 1 : 202 . :2 k ) (6)
_hikil _hikiz el = hikik
In the case where h;,;,, - - - , hj,;, are uniformly small and k < n then

k
1
P(N(A) =0)~exp | = hiji; =, ) ) iy,
j=1

j=1t=1
Also note that (6) can also be computed as

k
P(NA) =0 =[] {1-x oo xx] | x
j=1 ieA\{iy,,ij-1}
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where the quadratic form

-1

T X7 .
X, E X;X; Xxi

icA\{i1,-,ij_1}

is a diagonal of the “hat” matrix with observations iy, - -- ,i;—1 deleted.

Suppose that ﬁA is the OLS estimate of B based on {(x;,y;)) : i ¢ A} and
define 4 to be the probability distribution on subsets S so that /3 A=Ez, (/3 5).
If P, is close to &, then we would expect /3 4 to be close to ﬂ—ln other words,
the influence of the subset A on estimation of B is small. More generally, if we
delete the observations in A, we may want to define an estimate based on elemental
estimates from subsets s with s N A = ¢ using a different probability distribution 2
(with 2(s) = 0if s N A # @) so that

EA = ZEVQ(S)

N

The following result provides a simple formula the total variation (TV) distance
between &4 and & as well as giving a condition on £ that minimizes the TV
distance between 2 and Z.

Proposition 2 (a) Define 4 (s) = P (s)/P(N(A) = 0) for subsets s with sNA =
#. Then

dpy (Pa, P) = Sl;p|«@A(B) —ZB)|=P(NA) =1

where P (N(A) > 1) can be evaluated using (6). (b) Suppose that 2 is a probability
distribution on subsets s with 2(s) = 0if s N A # @. Then dy, (2, P) >
P (N(A) > 1) where the lower bound is attained if 2(s) = L(s) P(s) (forsNA =
) where A(s) > 1.

Proof

(a) We can compute the TV distance as
1
div (Pa, P) =, ?%(s) ~ Z).
IfsNA =, then

_ P(s)
Za6) = b vy = 0)
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with Z4(s) = 0 when s N A # (. Thus

1
di (Pa, P) = 5 3 | Pa(s) = P5)]

1
=1 2 1240 = 2G|+ 3 1246) = 26)]

sNA=( SNAZD
— P(N(A) > 1).

(b) For probability distributions 2 concentrated on subsets s satisfying s N A = ¢,
we have

Y 12() — P(s)l = P (N(A) = D);
SNAF£Y
thus it suffices to minimize
> 126) — 2]
sNA=0
subject to

Z 2(s) = 1.

SNA=0

The first order condition implies that the minimizer 2* must satisfy 2*(s) > Z(s)
for all s and so 2*(s) = A(s) P (s) where A(s) > 1 and

Z A($)P(s) = 1.

sNA=0

Now

1
diy (2%, P) =, ) 12°(5) = 2)]

N

1
=2[ Y12 - 2o+ Y. |Q*(s>—9(s>|=

sNA=0) SNAF£YD

1
- 2[ > 0@ -D2@+ Y 9@)}

sNA={ SNAZD
=P(N@A) =1,

which completes the proof.
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Part (a) of Proposition 2 suggests that P (N(A) > 1) is a natural analogue of the
“hat” diagonals for measuring the potential influence of observations with indices in

A. More precisely, we can define the leverage lev(A) of the subset A = {iy, - - - , ik}
as
L —hiiy —hiyi, -+ —hii,
S A T A A
lev(A) = P (N(A) = 1) =1 - S ()

_hikil _hikiz R hikik

As before, if h;jy, -+, hj,, are uniformly small and £k <« n, then we can
approximate lev(A) in (7) by

k

k k k
lev(A) ~ 1 —exp [ =Y hiji; — ;Zzhi‘iz “Zhiﬂﬂr;z
j=1 j J j=rte

j=1t=1 j=1

k
2
hiji['
1

As noted in [4], the matrix in Eq. (7) as well as its determinant (that is, 1 — lev(A))
plays a role in a number of diagnostic tests (for example, those of [1] and [3]) for
assessing the influence of observations whose indices lie in A; see also [11].

Part (b) of Proposition 2 implies that when P (N(A) > 1) < 1, any probability
distribution of the form 2*(s) = A(s) Z?(s) where A(s) > 1 for sNA = @ attains the
minimum TV distance to ZZ; this condition is always satisfied by 4. In particular,
as P (N(A) > 1) decreases, the family of distributions attaining the minimum TV
distance becomes richer. (If we replace the TV distance by the Hellinger distance in
part (b), then the minimum is attained uniquely at &4.)

4 Application: Algorithmic Leveraging

In least squares problems where n and p are very large, it is often useful to
solve a smaller problem where m < n observations are sampled (possibly using
some weighting scheme) with B estimated using OLS or WLS estimation on the
sampled observations. For example, algorithmic leveraging [6, 7, 12, 13] samples
observations using biased sampling where the probability that an observation
(x;, y;) is sampled is proportional to its leverage h;; or an approximation to
h;;; efficient methods for approximating {h;;} are discussed in [5]. The sampled
observations are then used to estimate f using OLS or some form of WLS. In
addition, the observations may also be “pre-conditioned”: If y is the vector of
responses and X is the n x p matrix whose i row is xl.T, then we can transform
y > Vyand X +— VX for some n x n matrix; V is chosen so that the “hat”
diagonals of V X are less dispersed than those of X.



Elemental Estimates, Influence, and Algorithmic Leveraging 229

Suppose that a given subsample does not include observations with indices in A;
in the case of leveraging, these observations more likely have small values of &;;
and so P (N(A) > 1) will be smaller than if the observations were sampled using
simple random sampling. We now estimate 8 by minimizing

Y wilyi —x[B)?
igA
for some weights {w; > 0:i ¢ A}. The resulting estimate ﬁw can be written as
Bis= Y. 28,
SNA=0

where

2@) [ [w;

jes

Z f@(u)l_[wj‘

uNA=y JjEu

2(s) =

From Proposition 2, 2 attains the lower bound on the TV distance to & if
2(s) = A(s) P (s) for some A(s) > 1 when s N A = @J; in other words, we require

P
[[wizPw@y=0 > P(N(:)’): 0 []w, ®)

jes uNA=y JjEu

for all s with s N A = . The condition (8) is always satisfied if all the weights
{w;} are equal, in which case, B, is an OLS estimate. For non-equal weights, the
situation becomes more complicated. For example, if w; = 1/h;; and the variability
of {h;; : i & A} is relatively large, then (8) may be violated for some subsets s,
particularly when P (N(A) = 0) is close to 1 (so that the lower bound for the TV
distance is close to 0). This observation is consistent with the results in [12] as
well as [13] where unweighted estimation (setting w; = 1) generally outperforms
weighted estimation. Proposition 2 also suggests that it may be worthwhile selecting
m observations so as to maximize P (N(A) = 0) and thereby minimizing the TV
distance. This effectively excludes low-leverage observations from the sample,
which may not be desirable from a statistical point of view; moreover, determining
the exclusion set A will be computationally expensive for large p and n.

To illustrate, we consider a simple linear regression with xl.T = (1 x;) fori =
1,---,n = 1000 where {x;} are drawn from a two-sided Gamma distribution with
shape parameter @ = 0.5; this produces a large number of both large (h;; > 4p/n =
0.008) and small (h;; =~ 1/n = 0.001) leverage points. We then draw a sample of
200 (unique) observations using leverage sampling and compute the TV distance
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TV distance
0.872 0.874 0.876 0.878 0.880
1 1 1

T T T T T T
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Fig. 1 TV distance as a function of y for a leverage sample of size m = 200

TV distance
0.820 0.822 0.824 0.826 0.828 0.830

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

gamma

Fig. 2 TV distance as a function of y for a sample of m = 200 where the exclusion set A is
chosen to (approximately) maximize P (N(A) = 0)

for WLS with w; = hl._l.y for 0 < y < 1; a plot of the TV distance as a function of
y is shown in Fig. 1.

A second sample of 200 (unique) observations is obtained by excluding a set
A of 800 observations to maximize (approximately) P (N(A) = 0); a plot of the
TV distance as a function of y is shown in Fig.2. In both cases, the TV distance
is minimized (that is, condition (8) is satisfied) for values of y between 0 and
approximately 0.5 with the minimum TV distance being smaller (0.82 versus 0.87)
for the second sample.
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Bootstrapping Nonparametric )
M-Smoothers with Independent Error e
Terms

Matas Maciak

Abstract On the one hand, nonparametric regression approaches are flexible
modeling tools in modern statistics. On the other hand, the lack of any parameters
makes these approaches more challenging when assessing some statistical inference
in these models. This is crucial especially in situations when one needs to perform
some statistical tests or to construct some confidence sets. In such cases, it is
common to use a bootstrap approximation instead. It is an effective alternative to
more straightforward but rather slow plug-in techniques. In this contribution, we
introduce a proper bootstrap algorithm for a robustified version of the nonparametric
estimates, the so-called M-smoothers or M-estimates, respectively. We distinguish
situations for homoscedastic and heteroscedastic independent error terms, and
we prove the consistency of the bootstrap approximation under both scenarios.
Technical proofs are provided and the finite sample properties are investigated via a
simulation study.

1 Introduction

Let us consider a simple situation where we have some random sample
{(Xi,Y); i=1,...,n}ofsizen € N, drawn from some unknown two dimensional
population (%, ), where the following association structure is assumed to be
valid within the data:

Y =m(X;) +o(Xp)ei, fori =1,...,m; (D
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The random error terms {g;}" ; are assumed to be independent and identically
distributed (i.i.d.) with some symmetric distribution function G. The expression
in (1) is commonly used for a standard heteroscedastic regression model. If, in
addition, we assume that the unknown scale function o (-) is constant over the
whole domain, for instance, interval [0, 1], the scenario above reduces to a simple
homoscedastic regression case. The unknown regression function m(-) is, in general,
used to model the dependence of the mean of some generic random variable ¥ on
some random covariate X. The random sample (X;, Y;),fori = 1, ..., nis assumed
to be drawn from the joint distribution of (X, Y). The main task is to estimate the
unknown dependence function m(-). Alternatively, if the model is heteroscedastic,
a simultaneous estimation of both, m(-) and o (-), is performed instead.

There is a huge body of literature available on how to estimate the unknown
regression function and the scale function, respectively. The simplest approach is
to assume some well-defined parametric shape for m(-) (and o (-), respectively),
and to use the least squares approach to estimate the parameters defining the
shape. The whole inference is later based on the estimated parameters only. More
flexible approaches are mostly represented by semi-parametric techniques where
there are still parameters involved in the estimation, but these parameters do
not directly restrict the shape of the unknown regression function. They rather
represent some alternative expression of the estimate using, for instance, fractional
polynomials, splines, or wavelets. The estimate of m(-) is then defined as some
linear combination of the estimated parameters and some, let’s say, basis functions.
Any consequent inference needs to target the corresponding linear combination.
Finally, the nonparametric estimation is considered to be the most flexible modeling
technique, but the resulting estimate usually cannot be expressed explicitly any
more. This makes any inference in the nonparametric regression model more
challenging and also more difficult to prove. This is also the case that we focus
on in this work.

In addition to the overall model flexibility we also introduce some robust flavor
in the estimation process: we would like to obtain an estimate of the unknown
regression function m(-) which will be robust with respect to the distribution
of the random error terms, the distribution G. In fact, beside no parametric
assumptions on m(-) and o (-), we also assume no specific distribution family for
G. It is only required to be symmetric and continuous, with a unit scale, such that
G(1) — G(—1) = !. Thus, the resulting estimate is robust with respect to outlying
observations and heavy-tailed random error distributions. The asymptotic properties
of the final estimate, however, depend on some unknown quantities; therefore, for
practical utilization, either some plug-in techniques need to be adopted to do the
proper inference or one can also try some bootstrap approximation instead.

This chapter is organized as follows: local polynomial M-smoothers are briefly
discussed in the next session. Some important theoretical properties summarized as
well. In Sect. 3, the bootstrap algorithm is introduced for the M-smoother estimates
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under both scenarios, the homoscedastic and heteroscedastic random error terms.
Finite sample properties of the bootstrap approximation are investigated in Sect. 4,
and technical details and proofs are given in the appendix part at the end.

2 Asymptotics for the M-Smoothers

For the purposes of this work we only limit our attention to situations where the
unknown regression function is continuous, and moreover, it is considered to be
smooth up to some specific order, p € N. Under this smoothness assumption the
local polynomial M-smoother estimates are defined as higher order generalizations
of the local linear M-smoother introduced in [15] and also discussed in [8]. Robust
approaches in nonparametric regression are also presented in [5] and briefly also in
[1]. Considering the given data, the local polynomial M-smoother of m(-), at some
given point x € (0, 1), which is considered to be the domain of interest, is defined
as a solution of the minimization problem

—~ . " P _ X; —
B,= Argmin z;,o<Yi—ij(X,»—x)J).K< N x>7 (2)

(bo,....bp) TeRPH! j=0

where ﬁx = (,g(), E Ly ens E,,)T. Function K (-) stands for a classical kernel function
common for the nonparametric regression estimation (e.g., [13, 17]), and 4, > 0
is some bandwidth parameter. Function p stands for a general loss function and it
is assumed to be symmetric and convex, such that for its derivative (or one-sided
derivatives at least) it holds that o = 1 almost everywhere (a.e.).

The M-smoother estimate 7#1(x) of the regression function m at the given point
x € (0, 1) is defined as 7i(x) = Bo. In general, it holds that m (") (x) = V!B, where
v =0, ..., p stands for the order of the corresponding derivative of m (-). Unlike the
classical nonparametric regression where p(-) = ()% and m(x) = E[Y |X = x], the
functional representation of the unknown regression function for some general loss
function depends now on a specific choice of p(-)—the parameter estimates are not
given in explicit forms by default and the asymptotic mean squared error (AMSE),
which is commonly used to define a right value for the bandwidth parameter, can
now lead to a biased bandwidth selection once some outlying observations are
present (see [9, 10]). Instead, one needs to find an asymptotic representation for
the vector of unknown parameter estimates and to use alternative methods to choose
the optimal value of the bandwidth parameter (for instance, robust cross-validation
criterion). Similarly, there is also a broad discussion on how to choose the degree
of the polynomial approximation p € N U {0}, or the kernel function K. We do not
discuss these issues here in this chapter. If the reader is interested, more details can
be found, for instance, in [3].
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The M-smoother estimate of the unknown regression function m (-) at some given
point x € (0, 1) is not explicit; however, under some rather mild conditions, it
can be shown that it is asymptotically normal with zero mean and some unknown
variance. Before we state the asymptotic properties we provide a set of assumptions
which are needed for the theoretical results to hold. For brevity, we only present
the assumptions for the heteroscedastic scenario and the assumptions for the
homoscedastic case follow as a straightforward simplification.

A.1 The marginal density function f(-) of the i.i.d. random variables X;, fori =
1,...,n, is absolutely continuous, positive, and bounded on interval [0, 1],
which is considered to be the support of X. In addition, the scale function o (-)
is Lipschitz and positive on [0, 1];

A.2 The random error terms €1, . . . , &, are assumed to be i.i.d., mutually indepen-
dent of X;, fori = 1,...,n, with a symmetric and continuous distribution
function G(-), such that G(1) — G(=1) = J;

A.3 The regression function m(-) and its derivatives mDx), ..., mPtD for p €
N being the degree of the local polynomial approximation are Lipschitz on
(0, 1). In addition, the loss function p(-) is symmetric, convex, and absolutely
continuous. Moreover, it holds that p’ = v almost everywhere (a.e.);

A.4 Function Ag(t,v) = — f Y (ve — t)dG(e) is Holder of the order y > 0 in
argument v > 0. The partial derivative )JG (t,v) = i?t)‘G(t’ v) exists and it is
continuous in ¢ for some neighborhoods of t = 0 and v = o (x), for given x €
(0, 1). Moreover, it holds that f |1/f(a(x)e)|2dG(e) < oo and )J(;(O, o(x)) =
i?r)‘G (t,0(x))|s=0 # 0. Finally, the following

4G (e) < K - lenl. 3)

[ [pote—en —vowe
2
[ et +ana—vewoldoe < jent. @

holds for the given x € (0, 1), any sequence ey — 0, and some % > 0.

A.5 Function K () is a kernel function which is assumed to be a symmetric density
with its support on [—1, 1], such that f—ll K2(u)du < oo. The bandwidth
parameter h, satisfies the following: A, — 0 as n — oo, such that i, ~ nt,

for& € (“5“5, 141r5>’ where § > 0 small enough.

The assumptions stated above are derived as a straightforward combination of
the assumptions required for the classical local polynomial regression (see, for
instance, [3]) and the robust M-estimates introduced in [16]. Expression (3) and (4)
in A.4 can be seen as generalized versions of the Lipschitz condition and they are
trivially satisfied, for example, for ¢ and o being Lipschitz. Assumption A.5 can
be markedly simplified for the homoscedastic case: function Ag(ve — t) does not
depend on v > 0 and thus, all statements regarding this argument can be omitted.
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Let us also introduce some necessary notation which will be needed for the
formulation of the results and the consecutive proofs: for K being some arbitrary
density function which satisfies A.5, we define (p+ 1) x (p+ 1) type matrices S =

{jjl uf+11<(u)(d)u] and S, = {jjl uf'+’1<2(u)(d)u} forjl=0,....p.
Js Js

Theorem 1 (Asymptotic Normality for the Heteroscedastic Model) Let the
model in (1) hold and let the assumptions in A.1-A.5 be all satisfied. Then the M-
smoother estimate of the unknown regression function m(-), at some given point
x € (0, 1), is consistent and moreover, it holds that
2
NI (’%(x) _m(x)> LAY (O, E[Y (o (x)e)]” - v )
N—o0 (150, 0 ()] - f(x)

with v11 being the first diagonal element of matrix V = SflSsz1 = {vij}gf’jill).
Proof A detailed proof of Theorem 1 is given in [11] where the homoscedastic and
heteroscedastic scenarios are considered separately. ]

Remark 1 For the homoscedastic scenario the scale function o (x) can be consid-
ered to be equal to a constant (e.g., one) over the whole domain [0, 1], therefore, the
EYy2(e)vn1

A O f(x)’
density function f(x). For completeness, we used the notation )JG 0) = )JG O, 1).

asymptotic variance reduces to which now only depends on x via the

Remark 2 The result in Theorem 1 can be generalized for an arbitrary v-order
derivative m) (x) of m(x), for v € {1,..., p} and the given x € (0, 1). In such

case the convergence rate changes to \/ Nh ]IV+2” and the asymptotic variance equals

VIE[Y (o (x)en)]?
(15 (0.0 ()12 f (x)
the position (v + 1) (and zeros otherwise).

. evT Ve,, where e, € RPt! denotes a unit vector with value one on

It is easy to see that under both scenarios the asymptotic variance depends
on some unknown quantities—indeed, in many practical applications the design
density f(-) is usually left unknown and the same also holds for the distribution
G () which plays the role in the expectation term in the nominator and also in
LG (0, 0 (x)) in the denominator. In addition, for the heteroscedastic models, the
scale function o (-) is usually unknown as well. One can either use some plug-
in techniques to consistently estimate the unknown quantities firstly and to plug
these estimates into the variance expression to obtain the asymptotic distribution.
This distribution can be further used for making statistical tests of constructing
confidence intervals. The plug-in techniques, however, are well known for their
rather slow convergence, therefore, it is usually recommended to use some bootstrap
approximation if possible. The asymptotic normality result stated above is, however,
crucial for proving the bootstrap consistency. In the next section we present two
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algorithms which can be used to mimic the asymptotic distribution of interest under
both scenarios—the homoscedastic and heteroscedastic model—and we prove the
bootstrap consistency for the proposed algorithms.

3 Smooth Bootstrapping of M-Smoothers

The bootstrap approaches are, in general, used to mimic some distribution of
interest—either the true distribution is unknown and the bootstrap simulations are
used to estimate it or the distribution of interest is too complicated to be used directly
and thus, bootstrapping is employed to get an approximated distribution, which is
simpler and more straightforward to be used for the statistical inference procedures.

This is also the situation presented in this contribution. The asymptotic distribu-
tion of the M-smoothers presented in Theorem 1 is unknown (in terms that unknown
quantities are needed to specify the exact normal distribution) and thus, it cannot
be used directly to run any inference on the M-Smoothers estimates. However, the
bootstrap approximation can be effectively used to mimic this distribution. In the
following we provide two versions of the bootstrapping algorithm (homoscedastic
and heteroscedastic cases) and we prove the bootstrap consistency for both.

The bootstrap algorithms proposed below are based on the idea presented in [14].
The notion of the smooth bootstrap comes from the step B3 in both algorithms:
this step firstly ensures the right centering of the bootstrapped residuals, while
the second part—the smoothing element introduced by ay Z;—ensures a proper
convergence of the bootstrapped distribution to an unknown distribution of the
true random errors. Another advantage of this approach relies in the fact that no
additional over-smoothing is needed (see [14] and also [6]) and, at the same time, the
bootstrap distribution is automatically centered and symmetric. Using the smooth
version of the bootstrap algorithm one can conveniently handle both, a proper
centering of bootstrapped residuals in order to eliminate the systematic bias and
also preserving the robust flavor of the whole procedure.

The centering of the bootstrapped residuals is usually done by subtracting their
empirical mean, e.g., average rll Z;’Zl g; from each ¢;, however, bearing in mind
the robust flavor of the whole M-smoother estimation framework, where we also
allow for outlying observations or heavy-tailed distributions of random errors, such
centering would not be computationally stable because of the outliers and heavy-
tailed error distributions.

The proposed version of the smooth residual bootstrap can preserve the robust
flavor of the M-smoother and, therefore, it nicely suits our model scenario(s).
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Smooth residual bootstrap under homoscedasticity

B1  Calculate the set of residuals {&;; i = 1,...,n}, where §; = ¥; — m(X;), for m(X;) being
the M-smoothers estimate of m(X;) defined by (2);

B2 Resample with replacement from the set of residuals {€;; i = 1, ..., n} in order to obtain
new residuals &;, fori =1,...,n;

B3  Define new bootstrapped residuals as &} = V; - & +a, - Z;, where P[V; = —1] = P[V; =
1] = é and Z; ~ N(0, 1) are i.i.d. standard normal random variables and a,, = o(1) is a
bootstrap bandwidth parameter, such that nh,,aﬁ /logh, 1 — o0, and a% /h,lf‘s = o(1) as
n — oo, for some § > 0 small enough;

B4 Define a new dataset—the bootstrapped sample {(X;,Y); i = 1,...,n}, where ¥ =
m(X;)+ €},

B5 Re-estimate the unknown regression function m(x) at the given point x € (0, 1) based on the
new data sample {(X;, Y); i =1, ..., n} using (2) and obtain m*(x);

B6  Repeat the steps in B2-B5 to get multiple copies of the M-smoother estimates 7} (x), for
b =1,...,B, where B € N is sufficiently large, and use these quantities to mimic the

asymptotic distribution of interest;

Smooth residual bootstrap under heteroscedasticity

B1  Calculate residuals {¢;; i = 1,...,n}, where §; = Y’;@(ﬁ){"), for m(X;) being the M-
smoother estimate of m(X;) defined by (2) and 5 (X;) is the corresponding estimate of the
scale function o (-), given at the point X;;

B2 Resample with replacement from the set of residuals {€;; i = 1, ..., n} in order to obtain
new residuals &;, fori =1,...,n;

B3  Define new bootstrapped residuals as &} = V; - & +a, - Z;, where P[V; = —1] = P[V; =
1] = ; and Z; ~ N(O, 1) are i.i.d. standard normal random variables and a, = o(1) is
a bootstrap bandwidth parameter, such that nh,,a,zl /log hn_1 — 00, Nalz\,(p RN 0, and
a%/h,ll""S =o0(1) asn — oo, for § > 0 small enough;

B4 Define a new bootstrapped sample {(X;,Y); i = 1,...,n}, where now we have ¥ =
m(X;) +0(X;)ef;

B5 Re-estimate the unknown regression function m(x) at the given point x € (0, 1) based on the
new data sample {(X;, ¥}); i = 1, ..., n} using (2) and obtain m*(x);

B6  Repeat the steps in B2-B5 to get multiple M-smoother estimates 1 5x), forb=1,...,B,
where B € N is sufficiently large, and use these quantities to mimic the underlying
asymptotic distribution;

Comparing the bootstrap algorithm for the heteroscedastic model with the
previous version for the homoscedastic model one can see some minor difference:
indeed, in the later version one needs to deal with the scale function o (-) in addition.
On the other hand, it is easy to see that for the scale function being constant
the heteroscedastic algorithm reduces to the homoscedastic version. There were
many different methods proposed on how to estimate the scale function in the
nonparametric regression models (see, for instance, [4, 12]). However, in order to
keep the robust flavor of the whole estimation process, the scale function o (-) should
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be also obtained in some robust manner. The M-estimator of the scale function
which is suitable for this situation was proposed in [2] and it is defined as

n—1 Y _y
3(X)=inf:z>0; E wm-(X)-x< ’;1 . ') Saz}, (5)
-

i=1

where wy; (x) are some weights, x (-) is some score function, and o1, @y > 0 are
some constants, such that Ex(Z;) = «; and Ex (Zza_lzl> = ay, for Z; and Z»
being some independent random variables with the distribution which corresponds
with the distribution or the random error terms {e;}_, . For the score function y (-) it
is additionally assumed that it is continuous, bounded, and strictly increasing, such
that x(0) = 0 and O < sup, g x (x). Under some regularity conditions (see [2] for
further details and exact proofs) it was derived that the estimate of the scale function
o (-) defined by (5) for some given point x € (0, 1) yields a strong consistency once
the number of the sample size n tends to infinity. In addition, it can be shown that

the obtained estimate is also asymptotically normal.

Theorem 2 (Bootstrap Consistency) Let the model in (1) hold with Assumptions
A.1-A.5 being satisfied, and let the bootstrap bandwidth parameter a, — 0 satisfy
the conditions in B3. Then the proposed smooth residual bootstrap algorithm is
consistent and it holds that

j‘elllé p* [\/nhn (m*(x) — m(x)) < Z:I —-P [\/nh,, (m(x) —m(x)) < z]} angoO,

where P*[ - ] stands for a conditional probability given data {(X;,Y:); i =
1,...,n}.

Proof The proof of the theorem is given in Appendix. O

Having the consistency result stated in Theorem 2 we have an efficient tool for
performing practically any statistical inference in the models being estimated within
the M-smoothers regression framework. The bootstrapped distribution can be used
to construct confidence intervals for m(x), for some x € (0, 1), or it can be used to
draw critical values to decide about some set of hypothesis, again related to m(x),
at some given point from the domain.

Remark 3 Theorem 2 can be only used to make inference about the unknown
regression function m(-) at some given point from the domain. If one is interested
in providing a confidence bound for the whole regression function m(-), there has to
be more advanced methods used to do so—see, for instance, [6].

Remark 4 Similarly as in Theorem 1 and Remark 2 the statement in Theorem 2
can be again generalized for v € {0, 1, ..., p}. In such case m™ (x) stands for the
corresponding v-order derivative of m at the given point x € (0, 1).
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Let us briefly mention that it is also possible to deal with data sequences
which are not independent. Under some mild assumptions (for instance, an o-
mixing structure of the error terms {¢;}) one can prove the consistency results of
the M-smoother estimate of m(x) at some given point x € (0,1) (see [7] for
details). However, when performing the inference based on the bootstrap approach,
it is not possible to rely on the simple version of the smooth residual bootstrap
presented in this work. The reason is that the independent resampling in B2 step (of
both algorithms) is not capable of preserving the covariance structure in the data.
Instead, some block bootstrap modification needs to be employed to obtain a valid
approximation of the true distribution function (see [7]).

4 Finite Sample Properties

For the simulation purposes we considered a simple regression function of the
form m(x) = (—8x)sin(wx), for x € (0,1), and we run the simulations for
various settings: three different sample sizes n € {50, 100, 500}; three different loss
functions (squared loss, absolute loss, Huber loss); three degrees of the polynomial
approximation p € {0, 1, 3}, and also three different distribution functions for the
random error terms were considered:

91—standard Gaussian;
9r,—mixture of the standard Gaussian with 5% of N (0, ol = 625);
23—Cauchy C(0, 1).

For each combination of the sample size, error distribution, loss function, and
the approximation degree p, we generated the data for 100 times and we ran the M-
smoothers estimation to reconstruct the “unknown” regression function. Out of these
100 independent repetitions the empirical behavior of the M-smoother estimate at
some given point was investigated (see histograms in Fig. 1).

Later, for one specific data scenario we employed the bootstrap resampling
and we obtained the bootstrapped distribution based on 500 independent bootstrap
resamples (according to the algorithms stated in Session 3). The bootstrapped
distributions are plotted as solid red lines in Fig.1. The M-smoother behavior
together with the bootstrap performance is summarized in Tables 1, 2, and 3 below.
As the bootstrap consistency result stated in Theorem 2 is meant to be used for some
given point x € (0, 1), which is the domain of m(-), we only considered the value of
x = 0.2 and the results are stated for m(0.2) = —1.5217. However, quite analogous
results can be obtained for any other choice of x € (0, 1).

From the simulations results in Tables 1, 2, and 3 it is clear that the robust flavor
of the M-smoothers estimates is crucial especially in situations when the random
error terms have some distribution with heavy tails (e.g., Cauchy distribution).
The classical squared loss based estimation is not able to handle this scenario and
the variance of the estimates even increases as the sample size tends to infinity
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(which is indeed, an expected behavior). On the other hand, the absolute loss and
the Huber function can still provide consistent estimates and valid inference.

5 Conclusion

In this contribution, we consider a standard nonparametric regression scenario,
however, with a set of very weak assumptions. The error terms are assumed to be
independent but the distribution is free of any moment conditions. Thus, the model
and the M-smoother estimation approach both allow for some outlying observations
in the data or, even, some heavy-tailed random error distribution. The M-smoother
estimation approach is stated to be consistent and asymptotically normal but the
limiting distribution depends on a few unknown quantities. Instead of using some
rather slow plug-in techniques we introduce two versions of the smooth residual
bootstrap algorithm which can be used to mimic the underling distribution.

The proposed bootstrap approaches are proved to be consistent and finite sample
properties are investigated via an extensive simulation study and the results are
shown to correspond with the theory.

The proposed smooth residual bootstrap for nonparametric and robust M-
smoother estimates can be considered as an effective alternative to more straight-
forward, however, less reliable plug-in techniques.

The proposed model scenarios can be further extended in account, for instance,
for dependent error terms (such as various mixing sequences) but the bootstrap
algorithm needs to be modified accordingly. The smooth residual bootstrap cannot
capture the true variance—covariance structure in the data, and therefore, more
appropriate block bootstrap version needs to be used instead.

Acknowledgements The author’s research was partly supported by the Grant P402/12/G097.

Appendix

In this section we provide some technical details and the proof of the bootstrap
consistency result stated in Theorem 2. Let {(X;, Y*); i = 1,...,n} be the
bootstrapped data where Y* = m(X;) + o (X;)e], for m(X;) being the M-smoother
estimate of m (X;), 0 (X;) the estimate of o (X;) in sense of (5), and the random error
terms {e7}!"_, are defined in B3 step of the bootstrap algorithm in Sect. 3. Then, we
can obtain the bootstrapped version of 771 (x), for some x € (0, 1), given as a solution
of the minimization problem

n

a* . * z j Xi —
B, = Argmin ZP<Y1 —Z:;)bj(X,-—x)J>.K< N x>7 (6)

(bg,..., bp)TER1’+1 i=1
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where ﬁ; = (ES, e E;)T, and m*(x) = ES Using the smoothness property of
m(-) we can apply the Taylor expansion of the order p and given the model definition
in (1) we can rewrite the minimization problem as an equivalent problem given by
the following set of equations:

n p . i - ¢ -
\/ih ZW(E(Xi)S;_ij<th x>])'<th x) K(Xh x)zo’

for{ =0,..., p, where v = p’. Next, forany £ € {0,...,p}and b € RPH! Jet
us define an empirical process M, (b, £) and its bootstrap counterpart M, (b, £) as
follows:

n

1 “ ;
Mu(b, &) = > [vf (cr(x,»)s,- = bjE] (x)) - w(o(xos,»)]l((s} ()E (),
Vnhy = =0
()

and

| b
M} (b, 0) = > [vf (E(X»s; —> bjg] (x)) - w(a\(X[)s,-*)]K(s} ())E (x),
Vil = =0

®)
. . ¢ Xi—x ¢ . .
where for brevity we used the notation & (x) = ( h ) . We need to investigate

the behavior of M (b, £), conditionally on the sample {(X;,Y;); i = 1,...,n)},
and we will compare it with the behavior of M,, (b, £).

Let G*(-) be the distribution function of the bootstrap residuals {¢}}?_, defined
in B3. It follows from the definition that

G*(e) = P*le] <el=P*[V;-& tan-Zi < e]

qih> ]
- 1 oo 00+ [ Y T
nl Jr i Ri—1

1 <& e—35 e+7%E
= @ ¢ b
w2l () e (L))

where ¢(-) and @(-) stand for the density and the distribution function of Z;’s,
which are assumed to be normally distributed with zero mean and unit variance.
It is easy to verify that G*(-) is continuous, symmetric, and moreover, it satisfies
Assumption A.2. Thus, for E* being the conditional expectation operator when
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conditioning by the initial data sample, we obtain the following:

n P
.= S EfpEae -3 b )] KE ane
Jnh
ni=1 j=0

-1 & P S
" Jnh Zko(zbﬁf (). a(X») K& g ),
" i=1 j=0

where we used the symmetric property of the distribution function G*. Next, we
obtain

AG*(Zb,-é{ (x), E(Xi)) =- /R w(a(xi)e —> bjg (x))dG*(e)

Jj=0 Jj=0
p .
= Ao ( > b (x). 6<Xl-)) ©)
j=0
p .
- /R w(axi)e — D b (x))d(G* - G)(e).
j=0

where the last term can be shown to be asymptotically negligible due to the
properties of ¥ (-) and the fact that sup, . |G*(x) — G(x)| — 0 in probability (see
Lemma 2.19 in [14]). For (9) we can use the Holder property of A (-) (Assumption
A.4) and we get that

AG<Zb,~é{ (x),6<x,->) - AG(Zb,-s,-f (x), a(&-))‘ = o(1),

j=0 j=0

and

P . 14 .
m(Zb,-s,/(x),a(X,»)) - AG(ijs,/ (x»o(x))‘ = o(1),
j=0 j=0

where the first equation follows from the fact that 5 (X;) is a consistent estimate of
o (X;) and the second follows from the fact that | X; — x| < &,,. Both equations hold
almost surely.

Putting everything together we obtain that

E*M;;(b. &) = EMy (b, 0) + op(),
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and, moreover, repeating the same steps also for the second moment E* [M; (b, 6)]2
and applying (3) and (4) we also obtain that E* [M; (b, 6)]2 — 0 in probability.
To finish the proof we need the following lemma.

Lemma 1 Let the model in (1) hold and let Assumptions A.1-A.5 be all satisfied.
Then the following holds:

5, / n X, —x 14
sup (M} (8,b,0) + A (0, 0(x)) < ) X
i<cl " Vnhy "¢ ; hn

) 4
X —x\’ X;—x
x ij( " ) K( " )=op(1),
j=0

where £ = 0,...,p, C > 0, |bl = |bo| + -+ + |bpl, 84 = (nhy)7"/% and
y € (yo, 1], for some 0 < yp < 1.

Proof Lemma 1 is a bootstrap version of Lemma 4 in [11] or a more general
Lemma A.3 in [7]. The proof follows the same lines using the moment properties
derived for M (8,b, £). m|

Lemma 4 in [11] allows us to express the classical M-smoother estimates B\x in
terms of the asymptotic Bahadur representations as

) (k)12 V(o (X1)er)

-1
= . T T .
(ﬂhn)l/zﬂx 2500, 0(x)) <X" W”X”) Xy Wa : +op(D),
V(o (Xn)en)

while Lemma 1 allows us to express the bootstrapped counterparts B\; in a similar
manner as

. Y@ (X1)e})
(X,Iwnxn) - X, Wy : +op(1),
¥ (@ (Xn)ep)

AP
where W, = Diag{K(X,;nx>,...,K(X',;nx)},and X, = ((X;;‘)f)' o
i=1,j=

To finish the proof one just needs to realize that the sequences of random
variables {£,}_; and (&5}, for & = ! wo(XDen (Y, ) K (%) and
£y = Jihn W(E(X;)S;)(X;l;x )ZK (X,';x) both comply with the assumptions of the
central limit theorem for triangular schemes and thus, random quantities Y 7_; &
and Y 7_, & both converge in distribution, conditionally on X;’s and the original

Lo (b2
(k)12 P = 20,0 (x))
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data {(X;, Y;); i = 1,...,n}, respectively, to the normal distribution with zero
mean and the same variance parameter. ]
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Extension Sampling Designs for Big )
Networks: Application to Twitter e

A. Rebecq

Abstract With the rise of big data, more and more attention is paid to statistical
network analysis. However, exact computation of many statistics of interest is
of prohibitive cost for big graphs. Statistical estimators can thus be preferable.
Model-based estimators for networks have some drawbacks. We study design-based
estimates relying on sampling methods that were developed specifically for use on
graph populations. In this contribution, we test some sampling designs that can be
described as “extension” sampling designs. Unit selection happens in two phases:
in the first phase, simple designs such as Bernoulli sampling are used, and in the
second phase, some units are selected among those that are somehow linked to the
units in the first-phase sample. We test these methods on Twitter data, because the
size and structure of the Twitter graph is typical of big social networks for which
such methods would be very useful.

1 Introduction

1.1 Problem

With more and more businesses and public administrations producing larger raw
datasets every day, statistical analysis of the so-called big data has risen. Conse-
quently, more research in computer science and statistics have focused on methods
to tackle such problems. However, a significant part of datasets that fall under the
general “big data” framework are actually graphs. Graph-specific data analysis has
applications in domains as diverse as social networks, biology, finance, etc. Since
the rise of the web, statistical literature for networks has been growing rapidly,
especially in the field of model-based estimation. In the past 20 years, models
such as Barabdsi—Albert [1], Watts—Strogatz [33], stochastic block models [22],

A. Rebecq (0<)
Modal’X, UPL, University Paris Nante