
Chapter 4
Toward Climate-Resilient Lentils:
Challenges and Opportunities

Dorin Gupta, Rama Harinath Reddy Dadu, Prabhakaran Sambasivam,
Ido Bar, Mohar Singh, Navya beera and Sajitha Biju

Abstract Lentil among legumes has a significant place in crop production and rota-
tion, and the nutritional security of growinghumanpopulation.Current lentil cultivars
have a narrow genetic base and are challenged with many biotic and abiotic stresses.
The pressures from changing climate necessitate more efforts to find durable resis-
tance sources for biotic and abiotic stresses. Distant landraces and wild lentil species
which are less explored are known to possess such genes to develop resilient culti-
vars, one of the best adaptation strategies for climate change. The research efforts are
currently focusing on enhancing lentil grain yield and resilience to climate change
through introgression of desired genes from other gene pools. The current lentil-
breeding efforts have concentrated upon conventional plant breeding techniques for
the inclusion of the cultivated lentil gene pool only. Unlike other crops, genomics-
assisted breeding remains one of the areas to be further explored to speed-up the
climate-smart high-yielding cultivars development process, which is reliant on the
extensive genomic resources. Several lentil linkage maps have been developed and
quantitative trait loci for tolerance to biotic and abiotic stresses have been identified.
However, advances in molecular markers, next-generation sequencing, genomewide
sequencing, and bioinformatics will further help to precisely identify genes of inter-
est that can be best utilized to breed climate-resilient cultivars for higher production
and quality through genetic engineering and plant breeding.
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4.1 Introduction

Lentil (Lens culinaris Medikus) like other food legumes offers a range of bene-
fits from soil to human health and has become an integral part of current farming
system as a valuable cash crop. However, lentil is still one of the neglected crops
especially in developing countries, which has potential to be grown in more drier
areas being fairly drought tolerant and highly nutritious. Legumes are accepted in
farming system around the world but not to the extent as cereal crops. However,
legumes including lentil which can fix atmospheric nitrogen and can minimize the
nitrogen input requirements, provide pest breaks and weed control for subsequent
cereal crop when used in crop rotations. Lentil offers many health benefits due to its
low fat, high prebiotic carbohydrates, high fiber, and low glycemic index (Srivastava
and Vasishtha 2012; Thavarajah 2017). Lentil grain provides 22–25% dietary protein
(one-quarter of total caloric value), carbohydrates, vitamins, and a good balance of
minerals (K, Mg, Fe, Zn), along with high contents of essential amino acids such as
lysine and tryptophan (Erskine et al. 1990; Johnson et al. 2013; Faris et al. 2013; Ray
et al. 2014). Staple cereals are high in sulfur-based amino acids which are lacking in
lentils, therefore, when eaten together, cereal-lentil based diet can provide complete
profile of the essential amino acids. Due to its high protein content, this grain is
also regarded as cost-effective alternative to animal-based protein, especially in the
Indian subcontinent where plant-based diet predominates due to religious believes,
and less affordability of fresh meat. Lentil ranks sixth among important annual grain
legumes with 5.4 million hectare worldwide area under cultivation leading to an
annual production of 6.3 million tons (FAO 2016). It is grown in Canada, Australia,
Southern Europe, Eastern, and Northern Africa, the drier regions of the Middle East
and the Indian subcontinent during cooler season of the year. Lentil productivity
has not seen tremendous rise over the past years and even has not crossed the mark
of one ton per hectare globally (FAO 2016). Climate change will have a significant
impact on global food production and food security of growing human population
as clearly highlighted by Intergovernmental Panel on Climate Change (IPCC), if we
look deeper, major implications will be through reduced soil fertility, reflection of
reduced microbial activity and diversity, and carbon sequestration leading to less
than optimal plant growth and yields (Dhankher and Foyer 2018). The future pro-
jections of drastic climatic events such as frequent droughts and floods, higher or
lower temperatures, salt, and heavy metal stresses leading to higher incidences of
pest infestations will significantly affect crop yields. Adaptation through diversified
new crops and cultivars could be one of the strategies to combat climate change
and sustain food production. Further, to be climate resilient, crop production system
requires tailored solutions through inclusion of past and current knowledge about
crops, beneficial crop rotations, their unique genetic make-up, and specific traits to
be targeted for their inclusion in modern cultivars to cope and produce enough under
various stresses. Lentil being one of the hardy crops can potentially yield higher, to
meet the demands of quality food for growing human population. However, since
past many years, crop is being grown on marginal lands especially in the developing
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countries due to preferential cereal-based cropping, which led to the loss of genes of
higher productivity (Bejiga and Degago 2000). Along with cultivation on marginal
lands which generally have low soil fertility, the crop is mostly grown as rainfed and
is subjected to mainly terminal drought and heat stress (abiotic) and various fungal
and bacterial diseases––Ascochyta blight, rust Stemphylium blight, collar rot, root
rot, white mold, Fusarium wilt, and anthracnose (Kumar et al. 2013; Sharpe et al.
2013a). At parallel, current improved cultivars are bred to yield higher but not primar-
ily to cope with various stresses, if resistant to one or the disease exists, it is not very
durable and traits responsible for tolerance to various abiotic stresses are not intro-
gressed as priory traits. These cultivars have narrow genetic base owing to handful
desired cultivated germplasm parentage (Singh et al. 2014) whereas, not much has
been explored in wild lentil relatives which are more diverse (Ford et al. 1997; Duran
et al. 2004; Gupta and Sharma 2007; Singh et al. 2014). Therefore, these cultivars
cannot yield higher due to their vulnerability tomajor biotic and abiotic stresses under
climatic uncertainties and narrow genetic base. Farmers adopt new crop cultivars and
change their practices to cope with changing environments. However, the pace of
environmental change will be difficult to match along with the expected expansion of
crops to new environments and lands suggesting strong need for research efforts to
develop climate-resilient crops (Dhankher and Foyer 2018). In lentil, the identifica-
tion and inclusion of climate resilient useful and diverse traits/genes to broaden the
genetic base of the existing lentil cultivars from closely or distant relatives should be
prioritized. Therefore, this chapter aims at understanding lentil’s untapped sources of
genetic variation, traits of importance, role of conventional, genomics, and modern
molecular technologies for better use of such identified traits and their inclusion in
breeding programs to breed and develop climate-resilient lentil cultivars.

4.2 Prioritizing Climate-Smart (CS) Traits

To sustain crop yields under uncertain environments, higher yielding climate-smart
crop cultivars should possess multiple resistance and/or tolerance to stresses (biotic
and abiotic). One of the major differences between two types of major stress cate-
gories is that the mechanisms controlling abiotic stresses are governed by multiple
genes, therefore targeting germplasm in breeding programs which shows the poten-
tial for common defense mechanisms can address multiple stress tolerance in plants.
The adaptation to climate change can be sought through the development of new
cultivars with multiple tolerance to abiotic stresses such as heat, cold, frost, drought
and salinity, and resistance to various diseases and pests. At parallel lentil, cultivars
should possess adapted phenology (maturation times and responses) and different
agro-morphological traits whichwill offset the new challenges of changes in growing
season (shorten/longer than usual).
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4.2.1 Flowering Time

The transition from vegetative to reproductive growth is an important trait and a
major component of crop adaptation, particularly in rainfed environments (Subbarao
et al. 1995; Gao et al. 2014). The timing of flowering is dependent upon the genotype,
the seasonal temperature profile, photoperiod, light, nutrient levels, and vernalization
responses of the plant. If flowering occurs prematurely under stressful environments,
seed set and grain filling may be compromised. If flowering is delayed, the plant
risks succumbing to terminal drought stress before producing any seed. A complex
network of genetic pathways allows the plants to detect and integrate external or
internal signals to initiate the floral transition (Bluemel et al. 2015). In indeterminate
species like lentil, early flowering may enable the plants to prolong the reproductive
phase, especially when the flowering duration is delimited by terminal drought stress
that terminates seed set. The transition to flowering stage in lentil is proposed to be a
function of both photoperiod and temperature, longer days and warmer temperatures
accelerate flowering (Summerfield et al. 1985;Roberts et al. 1986;Barghi et al. 2013).
Yuan et al. (2017) showed that the overall days to flowering of lentil genotypes were
mainly influencedby the red/far-red (R/FR)-induced light quality change.Whilemost
of the wild lentil genotypes had reduced responses and flowering time, the cultivated
lentil showed consistent, accelerated flowering in response to the low R/FR light
environment together with three wild lentil genotypes (L. orientalis IG 72611, L.
tomentosus IG 72830, and L. ervoides IG 72815). These genotypes would represent
key genetic resources for developing lentil cultivars with better adaptation to variable
light environments.

The role and importance of vernalization in floral induction for lentils, however,
remains largely undefined. Summerfield et al. (1985) in his analysis of six lentil geno-
types reported a variation in vernalization response with respect to flowering time,
vernalized plants flowered earlier in all instances compared to nonvernalized plants.
Roberts et al. (1986) in contrast proposed that the effect of vernalization on floral
induction was negligible. It has also been suggested that for sensitive genotypes, ver-
nalization exposure reduced the critical or nominal base photoperiod, required for
floral induction (Summerfield et al. 1985; Roberts et al. 1986). Photoperiod-sensitive
and insensitive phases can be identified through experiments in which individual
plants can reciprocally be transferred in a time series from long to short days and
vice versa in growth chambers. This will help to develop cultivars with shorter pre-
inductive photoperiod-insensitive and sensitive phases to fit short growing seasonal
regions. Exploitation of genetic variability for flowering time can assist in the devel-
opment of high yielding early maturing cultivars that are able to adapt to changing
environmental conditions. Exotic and indigenous lentil germplasm were screened to
identify early flowering genotypes (Erskine et al. 1998; Asghar et al. 2010; Kumar
and Solanki 2014; Kumar et al. 2014b; Singh et al. 2014). Sarker et al. (1999a, b)
identified single recessive gene (sn) control for early flowering in lentil. The variants
of early flowering at this locus could be useful for the development of early flowering



4 Toward Climate-Resilient Lentils: Challenges and Opportunities 169

cultivars for water-limited environments and can help to diversify the lentil genetic
base.

4.2.2 Root Characters

Root characters are one of the important agronomic traits, which play vital roles
in crop adaptation and productivity under stressed environments. Developing crops
with better root systems is a promising strategy to ensure productivity in both opti-
mum and stressed environments. A deep and proliferative root system extracts suffi-
cient water and nutrients under stressed conditions. Well-developed root systems are
linked to drought tolerance as an avoidance mechanism guaranteeing productivity
of lentil under water-limited environments (Idrissi et al. 2015a, 2016; Sarker et al.
2005; Verslues et al. 2006; Gaur et al. 2008; Vadez et al. 2008). Drought-tolerant
genotypes tend to elongate their rooting depth significantly more than sensitive ones
under drought stress in lentil (Sarker et al. 2005). Specific rooting patterns can be
associated with drought avoidance mechanisms that can be used in lentil breeding
programs. Modifications in the root architecture allow the plants to increase their
water extraction capacity and drought tolerance.

Gorim and Vandenberg (2017a) found significant differences for root traits and
fine root distribution between and within selected wild lentil species and cultivated
lentil. The authors also observed variability in nodule number and nodule shape
within and between genotypes. Some genotypes used water more efficiently for
either biomass or seed production. The allocation of resources to seed production
also varied between genotypes. These findings could have an impact on the design of
future lentil breeding CS traits in the context of strategies for managing changes in
rainfall amount and distribution for lentil growing regions. The distribution pattern
of root traits and nodulation at different soil depths in both wild and cultivated lentil
genotypes were also analyzed by Gorim and Vandenberg (2017b). Their findings
suggest that wild lentil genotypes from a particular gene pool might have similar-
ity for root traits and nodule distribution in the soil. Furthermore, wild genotypes
with deep root systems allocated their resources mostly toward biomass production
implying that when interspecific hybridization and introgression become part of a
long-term breeding strategy for lentil, it will be necessary to develop appropriate
selection strategies for simultaneous selection of yield and root traits under stressed
environments.

4.2.3 Heat Tolerance

Lentil is similar to other cool-season legumes in its susceptibility to rising temper-
atures (Summerfield et al. 1985; Ahmed et al. 1992; Porch and Jahn 2001; Croser
et al. 2003; Choudhury et al. 2012; Bhandari et al. 2016; Sehgal et al. 2017). It
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requires cooler temperatures during the vegetative growth and warmer temperatures
at maturity; the optimum temperature for lentil growth is 18–30 °C (Choudhury et al.
2012). Susceptibility of vegetative and reproductive stage in lentil crop to heat stress
has been described by (Delahunty et al. 2015; Bhandari et al. 2016; Kumar et al.
2016a, b and Sita et al. 2017). Temperatures greater than 24.4 °C reduced the ger-
mination rate in lentil (Covell et al. 1986). Temperatures above 32/20 °C (max/min)
during flowering and pod filling in lentil drastically reduced seed yield and resulted
in 20–70% yield reductions, equating to $1000/ha loss, through flower drop and pod
abortion (Delahunty et al. 2015; Kumar et al. 2016a, b). Heat stress in lentil causes
a reduction in germination percentage, abnormal seedling growth, nodules degen-
eration, early flowering, reduction in plant biomass, loss in cell membrane stability
and photosynthetic efficiency, and increase in lipid peroxidation, (Ellis and Barret
1994; Muehlbauer et al. 2006; Chakraborty and Pradhan 2010; Sehgal et al. 2017).
Higher expression of ascorbate peroxidase (APX) has been linked with heat toler-
ance in lentil (Chakraborty and Pradhan 2010). Heat tolerance in lentil is attributed to
superior pollen function and higher expression of leaf antioxidants (Sita et al. 2017).
Heat stress especially when combined with drought stress, even for a few days during
flowering and pod filling drastically reduces seed yield in lentil because of accel-
erated development, forced maturity, shortened reproductive period, and damage to
reproductive organs leading to flower drop, pollen sterility, pod abortion, and reduced
seed set (Siddique 1999; Boote et al. 2005; Choudhury et al. 2012; Gaur et al. 2015;
Bhandari et al. 2016).

Even though only limited studies were conducted to screen lentil germplasm for
heat tolerance in both laboratory and field conditions, genetic variations for heat
tolerance have been identified in lentil and are listed in Table 4.1.

4.2.4 Cold/Frost Tolerance

Lentil is prone to radiant frost when compared with other legumes and are less prone
to frost than peas but more susceptible than chickpeas (Murray et al. 1988). Frost
tolerance for lentil at flowering is –2 to –3 °C. Lentil is least tolerant to frost injury
at flowering due to the exposed nature of the flowers and the small size of pods.
Frost injury symptoms in lentil include flower and pod abortion, damage to seed,
and injuries to vegetative tissues. During the pod filling stage, frost can damage the
seed coat and the developing seed. In severe frost events, leaves are damaged and
stem wilts. Plant at the early vegetative stage can quickly recover from underground
axillary buds, however, at the vegetative maturity stage or beyond, the plants will
most likely die because axillary bud initiationwill most likely not occur as the plant is
moving into reproductive stage. Frost damage can also result in an increased vulner-
ability to entry of pathogen causing diseases like anthracnose and botrytis gray mold.
Yield losses from frost damage can be severe for a high-value crop like lentil. Since
1980, considerable research efforts have been put into breeding and characterizing
the genetics of frost tolerance of lentil (Erskine et al. 1981; Summerfield et al. 1985;
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Table 4.1 Genetic variation for tolerance to heat, frost, and waterlogging in lentil

Type of stress Accession Selection criteria References

Heat IPL81, IPL406 Heat tolerance index
(TI) and antioxidant
activities

Chakraborty and
Pradhan (2010)

Ranjan, IC201710, IC208329,
14-4-1

Cell membrane
thermostability

Choudhury et al.
(2012)

Qazvin Cell membrane
thermostability

Barghi et al. (2013)

72578, 70548, 71457, 73838 Seed yield Delahunty et al.
(2015)

ILL2181, ILL82, ILL5151,
ILL5416 ILL4587, ILL956
ILL 598, FLIP2009-55L,
ILL2507, LL4248

Pollen viability,
grain yield

Gaur et al. (2015)

FLIP2009-55L, IG2507,
IG4258

Pollen viability Kumar et al. (2016a,
b)

IG3745, IG4258, IG5146 Number of filled
pods at higher
temperature

Kumar et al. (2016a,
b)

LL931 Seed weight Bhandari et al.
(2016)

GP2961, PL234, LKH2 Biological yield,
grain yield, number
of pods per plant,
pod yield, and
number of seeds per
pod

Kumar et al. (2019)

IG2507, IG3263, IG3297,
IG3312, IG3327, IG3546,
IG3330, IG3745, IG4258,
FLIP2009

Pollen germination,
pollen viability,
ovular viability, pod
number, nodulation,
antioxidants, sucrose

Sita et al. (2017)

Frost/cold LC9978057, LC9977006
LC9977116, LC9978013
ILL759, ILL1878, ILL4400
ILL7155, ILL8146, ILL8611,
ILL9832, Kafcas, Cifei, Ubek

Winter survival
rates, visual rate,
damage percentage
of survival

Hamdi et al. (1996)

ILL5865, Balochistan local Controlled freezing
test

Ali et al. (1999)

(continued)
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Table 4.1 (continued)

Type of stress Accession Selection criteria References

LL1878, ILL662, ILL857,
ILL975, ILL1878

Winter hardiness Sarker et al. (2002)

Morton, WA8649041,
WA8649090

Winter survival rates Kahraman et al.
(2004a)

ILL662, ILL857, ILL975 Rapid ground cover
Early vigor

Sarker et al. (2002)

Waterlogging/
flooding/
submergence

ILL6439, ILL6778, ILL6793 Stomatal
conductance and
biomass

Ashraf and Christi
(1993)

Murray et al. 1988; Spaeth and Muehlbauer 1991; Kusmenoglu and Aydin 1995; Ali
et al. 1999). More recently, several research studies have also been carried out in the
aspects of winter hardiness and frost injury in lentil (Kahraman et al. 2004b; Barrios
et al. 2007, 2010, 2016). Identified genetic variation for tolerance to frost is listed in
Table 4.1.

4.2.5 Drought Tolerance

Lentil is considered as moderately tolerant to drought when compared to other
legumes (Reda 2015). Even though lentil is a hardy crop requiring less water for
its growth compared to other legumes, the plant productivity can decrease from 6
to 70% under drought conditions and can even lead to total crop failure (Saxena
1993; Johansen et al. 1994; Babayeva et al. 2014). Drought stress at reproductive
stage led to 24% grain yield reduction and was 70% when drought occurred at pod
development stage (Shrestha et al. 2006; Allahmoradi et al. 2013). Drought stress
occurring at flowering or podding stage affects vegetative and reproductive growth
leading to reduced leaf area (48–55%), total dry matter (32–50%), flower produc-
tion (22–55%), and number of pods and seeds (27–66%), with significantly higher
flower drop and aborted pods (Table 4.2) (Shrestha et al. 2006). Drought stress can
also lead to fluctuation in concentration of photosynthetic pigments, osmoregulation,
and antioxidant metabolism in lentil (Aksoy 2008; Öktem et al. 2008; Gokcay 2012;
Muscolo et al. 2014;Mishra et al. 2016; Biju et al. 2017). The variable annual rainfall
patterns threaten the sustainability of lentil production by increasing the frequency
of drought periods during the cropping season (Dai 2011). Ninety percent of the
world’s lentil is produced in areas relying upon conserved, receding soil moisture
and therefore, crop productivity is largely dependent on the efficient utilization of
available soil moisture (Kumar and Van Rheenen 2000).

Lentil withstands drought stress through drought tolerance and drought avoid-
ance mechanisms. Drought tolerance mechanisms in lentil include dense pubescence
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Table 4.2 Identified sources of resistance to drought stress in lentil from literature

Accession Selection criteria References

ILL6439, ILL6451 Osmotic adjustment Ashraf et al. (1992)

ILL1983, ILL2501, ILL2526 Seed yield Hamdi et al. (1992)

MI30B, MI52, MI563 Leaf water traits Salam and Islam (1994)

ILL1861, ILL784 Seed yield Hamdi and Erskine (1996)

ILL590, ILL7200 Short duration, rapid
biomass, leaf area
development, high
photosynthetically active
radiation

Clements et al. (1997)

HUL35 Osmotic adjustment Singh (2001)

ILL6002 Stem length, taproot length,
number of lateral roots

Sarker et al. (2005)

TN1768 High yield Salehi et al. (2008)

Naeen, Shiraz7 Stress tolerance index (STI),
geometric mean productivity
(GMP)

Rad et al. (2010)

TN1084, KC210034 GMP, harmonic mean (HM),
STI, stress susceptibility
index (SSI)

Siahsar et al. (2010)

Seyran Antioxidant enzyme
activities (APX, CAT, GR,
and SOD), protein profiles

Gokcay (2012)

Cabralia inta Shoot length, germination
stress index (GSI)

Salehi (2012)

Land race RWC, Fv/Fm, proline,
stomatal resistance

Allahmoradi et al. (2013)

ILL10700, ILL10823,
FLIP96-51

Seedling survivability,
drought tolerance score, root
and shoot length, fresh and
dry weight of roots and
shoots

Singh et al. (2013a)

Eston, Castelluccio Seed germination, water
content, root length

Muscolo et al. (2014)

ILL123613, ILL123466,
ILL123613, ILL123466,
ILL134466, ILL123684,
ILL123679, ILL123648,
ILL123629

Drought tolerance index
(DTI)

Babayeva et al. (2014)

Eston, Castelluccio Seed germination, RWC, root
length, proline content, total
soluble sugars

Muscolo et al. (2014)

(continued)
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Table 4.2 (continued)

Accession Selection criteria References

PDL1, PDL2 Seed yield Singh et al. (2016a, b)

Ranjan Length of shoot and root,
fresh weight of shoot and
root and dry weight of shoot
and root

Dash et al. (2017)

HUL57 Nodulation, yield traits, DSI,
STI, mean productivity (MP)

Mishra et al. (2014, 2016,
2018)

Digger, Cumra, Indianhead,
ILL5588, ILL6002, ILL5582

Crop water stress index
(CWSI), canopy temperature
depression (CTD), Root
Shoot ratio, RWC, harvest
index, and drought tolerance
efficiency

Biju et al. (2018)

Binamasur10 Seed yield www.icarda.org

of leaf, regulated stomatal closure, osmotic adjustment, increased antioxidant
responses, and enhancement in yield components. Drought-avoidance strategy is
shown by short duration genotypes of lentil such as BARIM4, BARIM5, BARIM6,
Precoz, Idlib 3, and Bakaria at the reproductive stage as an adaptation to drought
stress through early flowering, rapid root growth, and early growth vigor with high
yield potential (Erskine and Saxena 1993; Silim et al. 1993a, b; Erskine et al. 1994;
Shrestha et al. 2005). Shoot traits such as canopy structure, stem length, leaf surface,
stomatal characteristics, and leaf movements also have significant roles in drought
avoidance as reported in the lentil mutant line MI-30 (Salam and Islam 1994). Spe-
cific rooting patterns such as root-shoot ratio (RS ratio), can also be associated with
drought avoidance mechanisms that can be used in lentil breeding programs (Idrissi
et al. 2016; Biju et al. 2017). Drought escape was believed to be relatively insignifi-
cant in wild lentil genotypes when compared to cultivated ones (Hamdi and Erskine
1996). Contrary to this finding, recently, Gorim and Vandenberg 2017a) has iden-
tified the different drought mechanisms in wild lentil genotypes across species by
assessing both above ground plant characteristics and their root systems. They found
that wild lentil genotypes employed diverse strategies such as delayed flowering,
reduced transpiration rates, reduced plant height, and deep root systems to either
escape, evade, or tolerate drought conditions, based on the environmental condi-
tions at their centers of origin. Interestingly, in some cases, more than one drought
strategies were observed within the same genotype. The success of increasing lentil
production in drier areas prone to terminal drought mainly depends upon the devel-
opment of short-season cultivars that enable the crop to escape adverse soil–water
scarcity (Siddique et al. 2001). Early sowing of lentil in Southwestern Australia and
Northern Syria develops a large green canopy and rapid ground cover which absorbs
a significant proportion of photosynthetically active radiation (PAR) early in season
when vapour pressure deficits (VPD) or atmospheric demand for water are low and

http://www.icarda.org
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uses more water in post flowering phase thus producing good yield and biomass (Sid-
dique et al. 1998; Chen et al. 2006). Hence, the selection for early flowering lines
with pliability for the maturity that provides a massive yield under high moisture
availability, is therefore required for severely drought-prone areas. The International
Centre for Agricultural Research in Dry Areas (ICARDA) developed early matur-
ing lentil genotypes with good yield and is deposited with ‘International Drought
Tolerant Nursery’ to be shared with the national and international programs.

Changes in several morphological, physiological, and biochemical traits such as
seedling survivability, seedling vigor, plant height, total root length, taproot length
and number of lateral roots, total root weight, early flowering, maturity, pod number
per plant, seed number per pod, grain yield, harvest index, relative water content,
water use efficiency, stomatal conductance, and antioxidant activity have been used in
screening genotypes for drought tolerance in lentil (Sarker et al. 2005; Shrestha et al.
2006; Chakherchaman et al. 2009; Kumar et al. 2012, 2013; Singh et al. 2017a; Biju
et al. 2018). Well-developed vigorous shoot and root system at early seedling stage
are important for drought tolerance (Mia et al. 1996; Aswaf and Blair 2012; Kumar
et al. 2012; Idrissi et al. 2013, 2015a). Deep and well-developed roots will increase
the uptake of water and nutrients in a lowmoisture soil under drought conditions (Wu
and Cheng 2014). Thus, the selection of deep rooting is recommended to increase
the yield of legumes including lentil under drought conditions (Buddenhagen and
Richards 1988).

The extent of membrane damage and the enzymatic antioxidant activity appears
to be a useful method for evaluating the level of plant drought stress. Simple screen-
ing tests like electrolyte leakage measurements after stress can be used for drought
tolerance in cool-season food legumes. Cell leakage studies were performed in dif-
ferent lentil genotypes and found that drought-tolerant lentil genotypes exhibit lower
cell membrane injury along with higher seedling growth, water use efficiency, and
osmotic regulation (Stoddard et al. 2006). Similarly, germination stress index (GSI)
and cell membrane stability (CMS) index can also be used as a good criterion prior
to conducting a field screening for drought tolerance in lentil at a large scale (Salehi
et al. 2008). Polyethylene glycol (PEG) based in vitro screening for drought toler-
ance at seedling stage has been proven to be another suitable method to effectively
screen large sets of germplasm with good accuracy by analyzing the traits like ger-
mination percentage, germination rate, germination index, seedling length, root and
shoot length of seedlings, seedling dry weight, relative water content, proline, and
total soluble sugars (Salehi 2012; Muscolo et al. 2014; Keshtiban et al. 2015; Dash
et al. 2017; Biju et al. 2017). A new phenotyping technique for drought tolerance
assessment in lentil using hydroponics has been developed to screen many geno-
types at seedling stage (Singh et al. 2013a). However, most of these methods are
slow, laborious, time consuming, expensive, and influenced by environmental con-
ditions. Most recently, it has been reported that canopy temperature (Tc) and crop
water stress index (CWSI), both assessed using infrared thermal images, along with
root-shoot (RS) ratio, relative water content (RWC), harvest index (HI), and other
drought tolerance indices are useful in defining the drought stress tolerance variabil-
ity within lentil genotypes (Biju et al. 2018). The water conservation traits, such as
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early partial stomatal closure under soil drying, and limited transpiration under high
atmospheric vapor-pressure deficit have recently been proven to be useful in other
legumes under drought stress (Devi et al. 2010; Zaman-Allah et al. 2011; Belko et al.
2012; Seversike et al. 2013; Ghanem et al. 2017) and these traits can be used in lentil
for defining drought stress along with physiological screenings and mechanistic crop
simulation modeling. Table 4.2 shows the identified sources of resistance to drought
stress in lentil.

Early on partially closed stomata under moisture stress and high VPD will enable
less transpiration loss and could be traits of importance for drought stress tolerance
in lentil.

4.2.6 Flooding and Submergence Tolerance

Flooding and submergence are adverse environmental conditions, which severely
constrain the growth and yield of legume crops growing in the fine-textured and
duplex soils (Solaiman et al. 2007; El-Enany et al. 2013; Kang et al. 2017). Lentil
is the most sensitive of all legumes to waterlogging (Solaiman et al. 2007; Singh
et al. 2013a) and transient waterlogging is an important hindrance for lentil produc-
tion, especially during the early developmental stages (Materne and Siddique 2009).
Waterlogging in lentil affects yield at any growth stage during the growing season
causing most damage (Materne and Siddique 2009). Waterlogging during germi-
nation can cause unsuccessful germination, late emergence, and suppression of root
growth (Jayasundara et al. 1997). Flooding at vegetative stage can induce root system
damage and led extensive leaf senescence and desiccation (Nessa et al. 2007). Lentil
is most susceptible to waterlogging at flowering period causing flowers and pods
to abort. The response of lentil to waterlogging is like its response to low light and
low temperatures, all result in stunted growth and leaf senescence (turning yellowish
to red), wither and eventually die. Lentil germplasm with waterlogging tolerance
associated with their geographic origin was studied by Wiraguna et al. (2017) and
reported that genotypes from Bangladesh are adapted to waterlogged soil at ger-
mination. Waterlogging-tolerant genotypes were characterized by its low biomass,
higher stomatal conductance, early flowering and maturity, and high root porosity
(Ashraf andChishti 1993;Malik et al. 2015; Erskine et al. 2016). Formation of lysige-
nous cavities and aerenchyma are waterlogging responses found in lentil (Hamdi,
1987). Some management practices used to reduce the effects of waterlogging in
lentil involve sowing time, paddock selection, seeding rate, and drainage (Toker
and Mutlu 2011). Studies revealing the biochemical and physiological responses for
waterlogging tolerance and possible measures to combat this abiotic stress in lentil
still deserves more attention.



4 Toward Climate-Resilient Lentils: Challenges and Opportunities 177

4.2.7 Salinity Tolerance

Salinity is amajor abiotic stress for lentil production, especially under drought condi-
tions in shallow subsoils of alkaline soils especially in the arid and semiarid regions of
Australia, Canada, NorthAfrica, and SouthAsia (Muehlbauer et al. 2006; Nuttall and
Armstrong 2010). Lentil is considered as an extremely sensitive species to salinity
than other legumes such as faba bean and soybean (Ashraf and Waheed 1990, 1993;
Katerji et al. 2001, 2003; Sidari et al. 2008), whereas it has greater salinity tolerance
than chickpea and field pea (Siddique 1999). Yield reduction due to salinity stress
has been reported in lentil to be as high as 20% at an electrical conductivity (EC) of 2
dS/m and 90–100%at anECof 3 dS/mby negatively affecting yield attributes (Ayoub
1977; Van Hoorn et al. 2001; Golezani and Yengabad 2012). In lentil, responses to
salinity stress vary with both growth stage, salinity level, and environmental fac-
tors such as soil–water status, temperature relative humidity, and available nutrients
(Lachaâl et al. 2002). Like all other legumes, lentil is more susceptible to salinity
stress during seedling establishment and later growth stages (Ayoub 1977; Rahimi
et al. 2009; Farooq et al. 2017). Lentil roots are highly sensitive to saline soils with
limited root growth, root depth, and moisture extraction capabilities which, in turn,
can badly affect the nodulation and nitrogen fixation probably by limiting the root
hair growth and rhizobium infection (Rai and Singh 1999; Van Hoorn et al. 2001).
Delays in seed germination, reduced seed germination percentage, reduced seed via-
bility, and decreased seedling growth also occurs with increasing levels of salinity
in lentil (AL-Quraan et al. 2014). Salinity intensifies anthocyanin pigmentation in
leaves and stems in lentil resulting in necrosis of the outer margins and yellowing
of the older leaves which ultimately leads to the death and withering of leaves due
to excess accumulation of ions. Salinity also reduces flower production and pod
setting in lentil (Van Hoorn et al. 2001). Increasing level of exchangeable sodium
percentage (10–25%) under salinity stress decreased plant height, leaf area, leaf dry
weight, total biomass production, chlorophyll a and b content, nitrate and nitrite
reductase enzymes activities, DNA and RNA content and finally, the grain yield of
lentil (Tewari and Singh 1991; Singh et al. 1993). Salinity stress also restricts lentil
growth and morphology by adversely affecting various physiological and biochem-
ical attributes such as photosynthesis (AL-Quraan et al. 2014), membrane damage
(Hossain et al. 2017), ion homeostasis (Turan et al. 2007; Hossain et al. 2017),
oxidative damage (Al-Quraan and Al-Omari 2017; Hossain et al. 2017), antioxi-
dant responses (Bandeoglu et al. 2004), γ-aminobutyric acid (GABA) accumulation
(Al-Quraan and Al-Omari 2017), osmolyte accumulation, and proline metabolism
(Turan et al. 2007; Hossain et al. 2017) (Table 4.3). Recently, it has been reported
that the excessive accumulation of betaine and choline in lentil plants might play a
pivotal role in salt tolerance inducing osmotic adjustment or osmoregulation which
causes a fall in water potential (Varshney and Singh 2017).
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Table 4.3 Identified sources of resistance to salinity stress in lentil

Accession Selection criteria References

DL443, PantL406 Nitrogen fixation, grain yield Rai et al. (1985)

ILL5845, ILL6451,
ILL6788, ILL6793,
ILL6796

Seed germination, biomass Ashraf and Waheed (1990)

NEL2704 Seed germination, plant
growth, grain yield

Mamo et al. (1996)

ILL6976 Biomass, soluble sugars,
efficiency of potassium
utilization

Asraf and Zafar (1997)

LC53, DLg103,
Sehore74-3, LC50

Nodulation, seed germination,
seed yield, plant height, root
length, plant growth

Rai and Singh (1999)

ILL8006 Water use efficiency Hamdi et al. (2000)

Masoor93, Mansehra89 Na/K ratio Yasin et al. (2002)

LG128, ILL3534 Grain yield Maher et al. (2003)

ILL5582 Proline, superoxide dismutase
activity

Cicerali (2004)

DL443, Pant L406,
ILL3534 LG 128, ILL6796

Grain yield and biomass Materne and Reddy (2007)

Ustica, Pantelleria Proline, sugar, amylase Sidari et al. (2007)

Çağıl, Altın Toprak Germination percentage, shoot
and root length, shoot and root
dry weight, and salt tolerance
percentage

Kokten et al. (2010)

Nipper, PBA Flash,
ILL2024

Biomass and grain yield Siddique et al. (2013)

Siliana, Local oueslatia
Nefza

Seed germination and seedling
growth

Ouji et al. (2015)

Flash (CIPAL0411),
Bounty CIPAL0415),
Nipper (CIPAL0203)

Plant growth and yield traits GRDC (2013)

Jordan 1 Seed germination,
accumulation of reactive
oxygen species,
γ-aminobutyric acid (GABA)
level

Al-Quraan and Al-Omari
(2017)

(continued)
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Table 4.3 (continued)

Accession Selection criteria References

Sapna, RLG258, RLG234 Dry matter yield, stress indices
(TOL, SSI, STI, MP, GMP, YI,
SSPI, and MSTI)

Kumawat et al. (2017)

Masoor2002, NL20-3-3,
LN0188, M93, NL9775

Root and shoot length, root and
shoot weight, total proteins
contents, α-amylase, total
soluble sugars, sodium ions
(Na+), potassium ions (K+),
sodium-to-potassium ratio
(Na+/K+)

Aslam et al. (2017)

PDL1, PSL9, ILWL95 Seed germination, seedling
growth, biomass accumulation,
seedling survivability, salinity
scores, root and shoot anatomy,
sodium ion (Na+), chloride ion
(Cl−), potassium ion (K+)
concentrations, proline,
antioxidant activities

Singh et al. (2017a)

4.2.8 Disease Resistance

It is anticipated that climate change is likely to exert a substantial effect on vari-
ous insect pest management programs including host-plant resistance, natural plant
products, bio-pesticides, natural enemies, and efficacy of synthetic chemicals. Lentil
crop is often affected by several diseases and economically important diseases
includeAscochyta blight (Ascochyta lentis), botrytis graymold (Botrytis cinereal and
Botrytis fabae), rust (Uromyces viciae-fabae), anthracnose (Colletotrichum lentis),
Stemphylium blight (Stemphylium botryosum), powdery mildew (Erysiphe pisi and
Erysiphe polygoni), and Fusarium wilt (Fusarium oxysporum). In general, foliar
diseases including ascochyta blight, rust, anthracnose, botrytis gray mold, Stem-
phylium blight, and powdery mildew cause premature leaf drop, stem girdling, and
produce shriveled seeds that are unmarketable. While major losses by soil-borne dis-
ease Fusarium wilt are due to leaf curling, reduced root development, discoloration
of vascular tissue and stunted growth. Moderate to heavy yield losses have been
reported for major diseases while some diseases have less economic impact based
on the conducive environment for disease infection and spread and its duration during
the cropping season (Chen et al. 2009). Ascochyta blight in Australia alone has been
reported to cause an estimated loss of $16.2 million AUD in the conducive years
(Murray 2012). Hence, proper management of diseases is suggested to ensure the
sustainable productivity of lentil. Climatic change will have huge implications on our
food production system and impact will also be seen on aggressiveness of pathogen
through its development and survival rates (optimal conditions for infection), simul-
taneously on host reaction to pathogen attack (host specificity and mechanisms of
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plant infection), which will significantly affect the impact of various diseases on crop
growth and production (Elad and Pertot 2014). Among many, host-plant resistance
is the most acceptable, environment–friendly, and economical control strategy to
avert yield losses (Rubiales and Fondevilla 2012). In future also, to develop climate-
resilient cultivars, reliance on durable, diverse, and novel host resistance will be the
key to sustain crop production under various climatic pressures. Accordingly, partial
to complete resistance sources have been identified within the cultivated species of
lentil to various diseases and cultivars with improved resistance have been released.

Resistance sources to Ascochyta blight within the cultivated germplasm have
been reported from several countries including India (Gurdip et al. 1982; Sugha
et al. 1991), New Zealand (Cromey et al. 1987), Pakistan (Iqbal et al. 1990, 2010),
Lebanon (Abi-Antoun et al. 1990), Syria (Erskine et al. 1996), Canada (Andrahen-
nadi 1994), Australia (Nasir and Bretag 1998), and Ethiopia (Ahmed and Beniwal
1991). Several of these prominent sources are still being employed in the current
breeding programs as a source of resistance to Ascochyta blight. Indianhead is still
the major source of resistance in Australian and Canadian breeding programs (Tullu
et al. 2010). Resistance for anthracnose disease was screened with 1771 accessions
of which only 4 accessions from United States collection and 12 accessions from
the German collection had resistance to race Ct1 (Buchwaldt et al. 2004). However,
none of the accessions had resistant against most aggressive race Ct0 (Buchwaldt
et al. 2004). Later, Shaikh et al. (2012) reported 23 genotypes were resistant to
anthracnose in Canada. Of which, 15 genotypes were identified with Ct1 resistance,
while 7 genotypes expressed Ct0 resistance and 1 genotype VIR 2633 from Georgia
was found symptomless to both races. Significant yield losses associated with lentil
rust disease led to evaluation of cultivated lentil germplasm for rust resistance and
release of rust-resistant cultivars in countries where rust is prevalent including India
(Singh et al. 1994), Bangladesh (Sarker et al. 1999a, b), Ethiopia (Negussie et al.
1998; Fikru et al. 2007), Morocco (Sakr et al. 2004), Chile (Peñaloza et al. 2007)
and Pakistan (Sadiq et al. 2008). Likewise, several genotypes resistant to fusarium
wilt have been identified across lentil growing countries such as India, Iraq, Ethiopia,
Lebanon, Iran, Pakistan, Turkey, Syria, and Nepal as reviewed by Choudhary et al.
(2013). Evaluation of lentil germplasm against botrytis gray mold resulted in moder-
ate to high-resistant sources across botrytis gray mold predominant countries (Karki
et al. 1993; Bretag and Materne 1999; Kuchuran et al. 2003; Lindbeck et al. 2008).
Consequently, several cultivars were released with resistance to botrytis gray mold,
such as Nipper, a selection from a cross between Indianhead (resistant) and North-
field (susceptible) was released in 2006 for cultivation in Australia by Pulse Breed-
ing Australia (PBA) (Lindbeck et al. 2008). Efforts have been made by ICARDA
in association with Bangladesh Agricultural Research Institute (BARI) to develop
Stemphylium blight-resistant cultivars to boost the disease resistance and subsequent
yields (Sarker et al. 1999a, b; Sarker et al. 2004). Recently, Kant et al. (2017) screened
Australian lentil germplasm and found significant variation for Stemphylium blight
resistance.

Nonetheless, several of the released lentil cultivars have been reported to have
changed their respective reaction within a short period of commercial release. This
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may be explained by the possible selective adaptation of the pathogen population and
hence selection of highly aggressive isolates that can overcome the resistance with
changing climate. Loss of resistance in Australian cultivars Northfield and Nipper
to A. lentis has been speculated as a case of selective adaptation of pathogen since
several aggressive isolates of the pathogen have been recovered within these culti-
vars (Davidson et al. 2016). Additionally, the narrow pedigree of these cultivars with
paralleled pathogen evolution, threaten the sustainability of several cultivars. Subse-
quently, accessions from exotic germplasm particularly wild species have been tested
to various diseases for resistance. This revealed some great variations for resistance
within the wild species that may be transferred to the cultigen as reviewed by Singh
et al. (2018). A novel primary gene pool accession ILWL 180 has been found highly
resistant to recently recovered highly aggressive A. lentis isolates from Australia
(Dadu et al. 2017). Successful introgression of resistance to anthracnose from wild
lentil to the cultivar has been reported from Canada (Fiala et al. 2009; Vail et al.
2012).

Viruses are known to affect lentils and at least 30 different species of the virus have
been reported to naturally infect lentil. Among them, the most important viruses that
can cause significant yield losses includes bean leafroll virus, bean yellow mosaic
virus, beet western yellow virus, cucumber mosaic virus, faba bean necrotic yellow
virus, pea enation mosaic virus-1, pea seed-borne mosaic virus, and pea streak virus
(Kumari et al. 2009). They cause none or a minimum of 3% to a maximum of 61%
yield losses in lentil depending on the conditions available during the cropping season
(Kumari et al. 2009). Several sources of resistance and cultivars with resistance to
different viruses have been identified and released (Makkouk and Kumari 1990;
Kumari and Makkouk 1995; Makkouk et al. 2001; Latham and Jones 2001; Rana
et al. 2016).

4.2.9 Insect Resistance

Effects of climate change on insect pests is of greater importance as the insects are
involved in many biotic interactions such as plants, natural enemies, pollinators, and
other organisms, which are the key players of the ecological functions (Boullis et al.
2015). Environmental effect will trigger diversified insect populations, changed geo-
graphical distribution, insect–plant interactions, activities and abundance of natural
enemies, emergence of new biotypes, and crop losses associated with insect pests.
Changes in geographical distribution, diversity, and abundance of insect pests will
also be influenced by changes in the cropping pattern influenced by climate change.
Major insect pests may move to temperate regions, leading to greater damage in
crops. Geographical distribution of many tropical and subtropical insect pests will
extend, along with shifts in production areas of their host plants (Gonzalez and Bell
2013; Sharma 2014). Among nearly 36 insect pests infecting lentil crop, aphids
(Aphis craccivora and Acyrthosiphon pisum), leaf weevils (Sitona spp.), lygus bugs,
(Lyguss spp.) and cutworm (Agrotis ipsilon) are of economic significance, some
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minor field pests such as thrips (Thrips, Kakothrips, and Frankiniella), bud weevils
(Apionarrogans), pea moth, (Cydia nigricana), pod borers (Helicoverpa armigera
and Heliothis spp.), lima bean pod borer (Etiella zinckenella), root aphids (Smyn-
thurodes betae), and leaf miners (Liriomyza spp. and Phytomyza spp.) infest the crop
(Stevenson et al. 2007). These minor pests may become a significance in future with
changing climatic conditions. Stevenson et al. (2007) have summarized locations
and regions around the world which specify the status of various insect pests, such
as aphids and lima bean pod borer are major lentil pests in India, lima bean pod
borer and leaf weevils in Turkey, whereas aphids, thrips, and leaf weevils are most
prevalent in central Spain.

Aphids cause significant loss to the lentil as they feed directly on crop and act as a
vector in transmitting plant viruses. Hossain et al. (2017) reported relative abundance
of lentil aphids at different sowing dates during the winter season and its effect on
lentil yield. Aphid population and infestation increased with the delayed sowing. The
crop sown in November received less aphid infestation and consequently produced
higher yield than the December-sown crop. Spotted aphid, and cowpea aphid popula-
tion had negative impact of higher temperature. Sharma et al. (1995) also suggested
that aphid population was sensitive to changing temperature and relative humidity.
High humidity, moderate temperature, and low rainfall are conducive for growth and
multiplication of aphids. In long run with changing patterns of weather and host–pest
interactions, host resistance and effective biological control could be the best strat-
egy instead of heavy reliance on chemical control. Few tolerant genotypes (2 and 23)
have been reported based on 2 and 3 years of screening work, respectively, and were
grouped as five distinctive groups for tolerance based on pedigree analysis (Kumari
et al. 2007).

Leaf weevils could be another major threat with changing climate and can cause
huge economic losses when abiotic stresses affect seedling growth along with weevil
attack. As larvae feed on root nodules which leads to failure of atmospheric nitrogen
fixation. However, climate change adaptation strategies like early sowing would be
beneficial to escape terminal drought stress, studies have shown that nodule dam-
age by larvae in early sown crops was higher than late sown lentil crop (Weigand
et al. 1992; Stevenson et al. 2007). Future lentil cultivars with chemical defenses
against adult weevil could be one of the important trait s to consider. So far, no
genotypes have been found to be resistant to weevil infection in lentil germplasm
(Erskine et al. 1994). Genetic engineering might help to transfer genes found in red
clover which leads to expression of formononetin and related metabolites offering
chemical defense against adult weevil. Pod borer is another serious pest on many
crops, however, not a major threat to lentil. Pod borer incidence had significantly
negative correlation with low temperature and rainfall. Though rising temperature
might change the population dynamics, host resistance, and plant traits which act
as physical barriers and transgenics for expression of defense chemicals are direct
measures, and in general, resilient lentil cultivars for other biotic and abiotic stresses
will indirectly equip lentil crop to sustain yields through adaption to changing insect
pest infestations.
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4.2.10 Nutrient and Water Use Efficiency (NUE and WUE)

World agricultural soils are deficient in one or more of the essential nutrients to
support healthy and productive plant growth. Overall nutrient use efficiency in the
plant is a function of capacity of the soil to supply adequate levels of nutrients, and
the ability of the plant to acquire, transport in roots and shoot and to remobilize to
other parts of the plant. Inter and intraspecific variation for plant growth and mineral
nutrient use efficiency are known to be under genetic and physiological control and
are modified by plant interactions with environmental variables. Identification of
plant traits for nutrient absorption, transport, utilization, and mobilization in plant
cultivars should greatly enhance nutrient use efficiency. Overall nutrient usage in the
plants is governed by the flux of ions from the soil to the root surface and by the
influx of ions into roots followed by their transport to the shoots and remobilization
to plant organs. The root morphological traits such as length, thickness, surface area,
and volume have profound effect on the plant’s ability to acquire and absorb nutrients
from the soil (Barber, 1995). Plant environment interaction (solar radiation, rainfall,
and temperature) and their response to diseases, insects, and root microbes have a
great influence on nutrient use efficiency of plants and their subsequent yields (Arkin
and Taylor 1981; Fageria 1992; Barber 1995;Marschner 1995; Baligar 1997; Fageria
and Baligar 1997).

Winter legumes require a neutral to alkaline soil pH for their optimum growth
and yield. Root growth of legumes is particularly severely restricted in acid soils.
Lentil is most sensitive to acidic pH followed by chickpea and field pea. Minor
variations in soil pH drastically affect the availability of nutrients for crop growth
and productivity. Sutaria et al. (2010) found that the extensive root system with
balanced fertilization and organic matter in adequate amount assisted in the efficient
absorption and utilization of other nutrients thereby optimizing nutrient use efficiency
in lentil. Organic nutrients enhance macro and micronutrients availability in the root
zone which improved nutrient use efficiency by creating microenvironment for root
growth and number of nodules (Singh et al. 2001).

Water use efficiency (WUE) measures the water quality used by the crop during
its growth period to produce a unit quantity of the crop yield. Therefore, the lower
the water requirement per unit of crop yield, the higher the WUE. With climate
change temperatures will rise and an increase in extremes of rainfall or drought will
be evident in many areas where lentil is grown. Water availability and day length
influence vital physiological processes and determine the input use efficiency of
plants. Light and temperature affecting transpiration and dry matter production will
further have implications on WUE according to weather changes. In short-season
Mediterranean environments, species with early flowering, podding, and seed set
have higher yields and WUE than those with later flowering, podding, and seed
set (Siddique et al. 2001). When the yields and water use of chickpea and lentil
were compared over 12 growing seasons at Tel Hadya in Syria, the WUE for grain
yield varied from 1.9 to 5.5 (kg/ha/mm in chickpea and from 2.1 to 5.2 kg/ha/mm,
respectively, depending on growing season.
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Another important trait that increases WUE is partial stomatal closure, which
generally reduces water loss more than it reduces CO2 uptake, thus increasing dry
matter accumulation per unit of water transpired. However, the factors that alter
transpiration will have a direct impact on mass flow of water to the root surface, and
with it, alter the mechanism of ion transport and possibly nutrient uptake also.

Farmers in Iran usually sow lentil in early spring (March) and harvest around July.
Under these circumstances, the crop encounters low winter rainfall, low WUE, and
often temperature stress and terminal drought during reproductive stages (Azimzadeh
2010). Recently, some farmers tried a dormant seeding management (DS) in lentil.
In this management system, it is assumed that germination would take place once
the initial soil moisture in the top-soil layer filled to the volumetric transpirable soil
water.While the temperature of top-soil layer is above the base of 2 °C. Furthermore,
the crop germination is stopped due to lower temperatures than base temperature of
lentil. This method might increase grain yield, WUE, and duration of lentil growing
season. The change in the management practice could be effective for saving water
for the lentil and better exploiting from precipitations over growing season. The
change in the sowing date management of lentil would be even more effective for
higher grain yield and WUE when early maturing cultivar is selected.

4.3 Genetic Resources of CS Genes

Lentil is a self-pollinating true diploid (2n = 2x = 14) annual plant which belongs
to tribe Vicieae, the genus Lens of family Fabaceae (Leguminosae) and has 4 Gbp
genome size (Arumuganathan and Earle 1991). Based on seed size, lentil encom-
passes two groups—microsperma (small seeded of 2–6 mm size range) and macros-
perma (large seeded of 6–9 mm size range). Cultivated lentil has been presumed to
be originated from close wild species L. orientalis (Zohary 1972), cultivated and
L. orientalis genotypes show high cross compatibility and fertile hybrids. Lentil is
believed to be originated in the Near East around the Fertile Crescent which was fur-
ther domesticated in Southern Turkey following Nile, Europe, Greece, and further
Asia (Renfrew 1969; Ladizinsky 1979; Cubero 1984). Recent classification of genus
Lens has classified it into four gene pools (primary, secondary, tertiary and quater-
nary) and have changed sub-species status of orientalis, odomensis, and tomentosus
from earlier classification (Ferguson et al. 2000) to species level. Primary gene pool
has one cultivated species (L. culinaris) and remaining six wild species belong to
four genes pool such as L. orientalis and L. tomentosus (primary); secondary gene
pool has L. lamotte and L. odemensis; tertiary gene pool comprises L. ervoides and
quaternary gene pool has L. nigricans (Wong et al. 2015). Wild species from primary
and secondary gene pools are easily crossable with cultivated lentil, unlike with the
wild species from the remaining two gene pools (Gupta and Sharma 2007; Singh
et al. 2013b).

For climate-resilient lentil cultivars combined resistance to major biotic stresses
and/or abiotic stresses will help to sustain lentil yield in variable climate. Without
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any doubt, wild crop relatives offer an opportunity to be utilized for untapped rich
source of desirable genes such as resistance to biotic and abiotic stresses Table 4.4.
Improved root traits for better tolerance of stresses especially water and availability
of nutrient for healthy crop growth will be key traits to target and wild lentils could
be most appropriate ones to be explored for such traits. The research so far has
shown that wild lentil species possess huge variation for various agro-morphological
traits along with biotic and abiotic stresses, which is quite understandable as these
untapped sources are preserved in nature and have not lost these genes during the
process of domestication which emphasized more on selection for few important
genes for high yields. Traditional and molecular approaches for gene pyramiding
might be able to bring such traits in common genetic backgrounds to have climate-
resilient lentil cultivars with a broad genetic base. Among few attempts to evaluate
wild lentil accessions for useful climate-smart agro-morphological traits,L. orientalis
accessions has somedesirable traits such as early flowering andmaturity (Hamdi et al.
1991; Gupta and Sharma 2007), higher leaves/plant, peduncles/plant, pods/plant,
seeds/plant and leaf area (Ferguson and Robertson 1999) when cultivated and few
more wild species were evaluated for various morphological, phenological and yield
related characters. Another study revealed useful traits after evaluation of 405 wild
lentil accessions from 4 gene pools which were collected from ICARDA gene bank
(Singh et al. 2014). Among various abiotic stresses, cold stress could be detrimental
and can limit lentil production due to injury to vegetative tissues with further damage
to floral parts leading to flower and pod abortion (Eujayl et al. 1999 and Singh
et al. 2018). L. orientalis accessions originating from high elevation areas revealed
greater tolerance to cold stress than in the cultivated lentil (Hamdi et al. 1996).
Finding diseases resistance sources is one of the key to develop disease-resistant
cultivars which will be able to withstand new disease pressures, as these sources
of resistance could be new and can provide long-term resistance to lentil cultivars.
Amongmany diseases, fusariumwild is quite devastating and few researchers (Bayaa
et al. 1995; Nasir 1998), found seeding and/or adult stage vascular wilt resistance
from L. orientalis, L. nigricans, and L. ervoides accessions. ICARDA researchers
found a good level of resistance from L. orientalis and L. ervoides (year 2000–2007)
for Fusariumwilt and further evaluated them for agronomic traits at various locations
to improve breeding strategies to develop better and well-adapted breeding lines.
The first report of Ascochyta blight-resistant accessions from wild sources was from
Bayaa et al. (1994) who found a fairly large number of accessions to be resistant
from L. orientalis, L. odemensis, L. nigricans and L. ervoides. Ahmad et al. (1997a)
identified sources of resistance to the major diseases of lentil, viz., rust, vascular wilt
and Ascochyta blight in the wild relatives of lentil.

Hybridization efforts to transfer these useful CS traits from wilds to cultivated
background to generate a wide spectrum of variability has not seen groundbreak-
ing efforts. Among few attempts of crossing cultivated x wild lentil species from
primary and secondary gene pools have most successful reports which include to
greater extent L. orientalis accessions followed by L. odomensis to be readily cross-
able with cultivated lentil (Ladizinsky 1979; Ladizinsky et al. 1984; Muehlbauer
et al. 1989; Vandenberg and Slinkard 1989; Ladizinsky and Abbo 1993; Hamdi and
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Table 4.4 Useful wild germplasm for introgression of CS traits in cultivated lentil

Trait Wild resource References

Anthracnose resistance L. ervoides, L. lamottei, L.
nigricans

Tullu et al. (2006)

Ascochyta blight resistance L. ervoides, L. orientalis, L.
odemensis
L. nigricans, L. montbretii

Bayaa et al. (1994)
Tullu et al. (2006, 2010)
Dadu et al. (2016, 2017)

Fusarium wilt resistance L. orientalis, L. ervoides Bayaa et al. (1995), Gupta and
Sharma (2007)

Powdery mildew resistance L. orientalis, L. nigricans Gupta and Sharma (2007)

Rust resistance L. orientalis, L. ervoides, L.
nigricans, L. odemensis

Gupta and Sharma (2007)

Drought tolerance L. odemensis, L. ervoides, L.
nigricans

Hamdi and Erskine (1996),
Gupta and Sharma (2007)

Cold tolerance L. orientalis Hamdi et al. (1996)

Yield attributes L. orientalis Gupta and Sharma (2007)

Resistance to orobanche L. ervoides, L. odemensis, L.
orientalis

Ferna’ Ndez-Aparicio et al.
(2009)

Resistance to sitona weevils L. odemensis, L. ervoides, L.
nigricans, L. orientalis

El-Bouhssini et al. (2008)

Erskine 1994; Fratini et al. 2004; Gupta and Sharma 2007; Kumari et al. 2018).Wide
hybridization between cultivated and wild lentils does not always lead to successful
crosses due to species, and genotypic level differences within species. Genetically
distant remaining species from secondary, tertiary, and quaternary gene pools are not
easily crossable with cultivated lentil and harbor genes for many climate-resilient
traits. The fertilization barriers exist due to asynchronous flowering and mainly due
to hybrid embryo abortion (Abbo and Ladizinsky 1991, 1994; Ahmad et al. 1995;
Gulati et al. 2001; Gupta and Sharma 2005; Fratini and Ruiz 2006; Fiala 2006). Even
some species of primary/secondary gene pool such as L. tomentosis (Ladizinsky
1999) has shown crossability barriers due to embryo abortion and hybrid fertility.
To break these barriers, few remediations are researched and have had successful
results for the inclusion of genotypes of these wild species into cultivated lentil gene
base. Some examples include application of GA3 growth hormone and embryo/ovule
rescue techniques and understanding similarity of species for pollen and pistil mor-
phology to overcome postfertilization barrier (Cohen et al. 1984; Ladizinsky et al.
1988; Ladizinsky 1993; Ahmad et al. 1995; Gupta and Sharma 2005; Fratini et al.
2006). Dadu et al. (2016) reported the success of approximately 100 crosses with
100 ppm GA3 application immediately after pollination from a cross between AB
resistant accession from L. orientalis and cultivated lentil.

The crossability potential and techniques to overcome some existing pre–postfer-
tilization barriers suggest that these wild accessions with CS traits can be exploited
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for breeding climate-resilient cultivars to sustain lentil production under climatic
variability.

Successful introgression through conventional or modified techniques does not
reflect much for breeding programs unless filial generations are advanced and evalu-
ated at field level. There are a handful of reports which evaluated fixed interspecific
lines for various CS traits.

Among few attempts of interspecific hybridization, Gupta and Sharma (2007)
developed interspecifichybrids and segregatinggenerations (F2,BC1) fromcultivated
and L. orientalis and L. odemensis crosses and observed greater genetic variability
with numerous transgressive segregants for various agro-morphological traits. Field
evaluation of 76 advanced breeding lines (Gupta and Sharma 2007) and 20 intraspe-
cific fixed lines for various agro-morphological traits revealed superiority of few
lines for grain yield and related traits (Kumari et al. 2018). Anthracnose resistance
genes identified from L. ervoides (Tullu et al. 2006) were introgressed into cultivated
lentils using embryo rescue technique (Fiala et al. 2009). F7:8 recombinant inbred
lines exhibited resistance and validated successful introgression of anthracnose resis-
tance genes from L. ervoides (Fiala et al. 2009).

Singh et al. (2013b) successfully crossed cultivated lentils with accessions from
various gene pools (L. orientalis, odemensis, lamottei, and ervoides) and studied
F2 generations for yield and related traits indicating transgressive segregants with a
potential for their inclusion inCS breeding program. Some progress has beenmade in
introgression of alien genes for resistance to Ascochyta blight, anthracnose and cold
in cultivated lentil (Hamdi et al. 1996; Ye et al. 2002; Fiala 2006; Dadu et al. 2017,
2018). In Canada, anthracnose resistance was transferred between different gene
pools from L. ervoides to cultivated lentil and 150 recombinant inbred lines were
developed. The same technique can be used to develop hybrids between cultivated
lentil and L. lamottei (Fiala 2006). Gorim and Vandenberg (2017a) studies root
and shoot traits of wild and cultivated lentils for drought tolerance and revealed their
genetic diversity for drought tolerance. Segregation generations (F3, F4, and F5) from
two cultivated lentil and L. orientalis and L. ervoides crosses revealed substantial
variation for most of the agronomic traits, whereas, F5 recombinant inbred lines of
one cross had resistance to wilt (Singh et al. 2017b).

4.4 Classical Mapping and Traditional Breeding for CS
Traits

For the association of markers with different traits of interest, we need to
develop biparental or multiparental mapping populations for classical mapping. The
biparental mapping populations may be F2, backcross, double haploid (DH), and
recombinant inbred lines (RIL). In lentil, some efforts have been made by various
labs around (USA, Australia, India, and Morocco) in the development of biparental
mapping populations for desired traits and are used inmarker trait association studies
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Table 4.5 Recombinant inbred lines mapping populations developed for different traits

Trait Cross Population size Organization

Drought ILL7946 × ILL7979 174 ICARDA

Cold ILL4605 × ILL10657 153 ICARDA

Earliness ILL7115 × ILL8009 150 ICARDA

Rust ILL5888 × ILL6002 152 ICARDA

Fusarium wilt ILL213 × ILL5883,
Precoz × Idlib 2

150 ICARDA

Zinc Content ILL5722 × ILL9888 177 ICARDA

ILL9888 × ILL5480 149 ICARDA

Iron content ILL9932 × ILL9951 193 ICARDA

Early growth vigor DPL15 × ILL7663 160 IIPR, India

Root traits IPL98/193 × EC208362 160 IIPR, India

Earliness Precoz × L4603 160 IIPR, India

Earliness ILL10829 × ILWL30 180 NBPGR, India

Pod number and earliness ILL8006 × ILWL62 185 NBPGR, India

Source Adapted from Kumar et al. (2015); ICARDA International Center for Agricultural Research
in the Dry Areas, Morocco; NBPGRNational Bureau of Plant Genetic Resources, New Delhi, India

(Table 4.5). RIL populations were developed from the crosses developed between
contrasting parents through single seed descent (SSD) method. The Indian Institute
of Pulses Research (IIPR) has recently developed a RIL population from a cross
between ILL6002 and ILL7663 to identify and map early growth vigor genes. Fur-
ther, the identification of markers linked to the genes or quantitative trait loci (QTLs)
governing these traits will help in the development of genotype having high biomass
at an early stage. Furthermore, the National Bureau of Plant Genetic Resources has
also developed wide cross populations against pod number and earliness and val-
idated these traits under multilocation testing under varied ecological conditions
(Singh et al. 2017b). The first genetic map in lentil (linkage analysis) began during
1984 (Zamir and Ladizinsky 1984), the first map comprising DNA based markers
was developed by Havey and Muehlbauer (1989). Subsequent maps were developed
by several other workers in lentils (Table 4.6).

The classical manipulations refer to the transfer of genes through conventional
hybridization. Most of the cultivars developed worldwide are only through intraspe-
cific hybridization followed by pure line selection (Kumar et al. 2004b). The genetic
manipulation of lentil is primarily based on the exploitation of two broad categories
of cultivated lentils, i.e., macrosperma and microsperma through hybridization of
desirable genes from one another (Chahota et al. 1996, 1997; Lal et al. 2000). The
hybridization criteria are to introgress elite traits from macrosperma (erect growth
habit and tolerance against prevailing biotic and abiotic stresses) and from micros-
perma (higher number of branches/plant, higher number of seeds/plant and higher
seed yield/plant), which are considered important CS traits to address one or the
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Table 4.6 List of various maps developed in lentil populations

Cross Type and size (in
parenthesis) of
population

Type of marker
mapped

Mapped length
(cM) and no. of loci
(in parenthesis)

References

L. culinaris × L.
orientalis

RIL (14–180) Isozyme and four
morphological
markers

– (20) Tahir and
Muehlbauer (1994)

L. culinaris × L.
orientalis

F2 Isozymes – (10) Zamir and
Ladizinsky (1984)

L. culinaris × L.
ervoides

F3 (107)
F3 (22–56)

Isozymes
258(18)

258 (18) Tadmor et al. (1987)

L. culinaris × L.
orientalis

F2 (113) RAPD, ISSR,
AFLP, SSR, CAPS,
SRAPS, and
morphological
markers

2234 (200) Duran et al. (2004),
Fratini et al. (2004),
de la Puente et al.
(2013)

ILL5588 ×
L692-16-1 (s)

RIL (86) SSR, AFLP 751 (283) Hamwieh et al.
(2005)

ILL5588 × ILL7537 F2 (150) RAPD, ISSR, and
RGA

784 (114) Rubeena et al.
(2003a)

Eston × PI320937 RIL (94) AFLP, RAPD, and
SSR

1868 (207) Tullu et al. (2008)

Precoz ×
WA8649041

RIL (94) AFLP, ISSR,
RAPD, and
morphological
markers

1396 (166) Tanyolac et al.
(2010)

ILL6002 × ILL5888 RIL (206) SSR, RAPD, SRAP,
and morphological
markers

1565 (139) Saha et al. (2013)

ILL5722 × ILL5588 RIL (94) RAPD, ISSR, ITAP,
and SSR

1392 (211) Gupta et al. (2012a)

L830 × ILWL77 F2 (114) SSR, ISSR, and
RAPD

3843 (199) Gupta et al. (2012b)

CDC Robin ×
964a-46

RIL (139) SNP, SSR, and seed
color genes

697 (561) Sharpe et al.
(2013a), Fedoruk
et al. (2013)

Cassab × ILL2024 RIL (126) SSR and SNP 1178 (318) Kaur et al. (2014)

PI320937 × Eston RIL (96) AFLP, SSR, and
SNP

840 (194) Sever et al. (2014)

Precoz ×
WA8649041

RIL (101) SNP 540 (519) Temel et al. (2014)

ILL8006 × CDC
Milestone

– AFLP, SSR, and
SNP

497 (149) Aldemir et al.
(2014)

(continued)
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Table 4.6 (continued)

Cross Type and size (in
parenthesis) of
population

Type of marker
mapped

Mapped length
(cM) and no. of loci
(in parenthesis)

References

Precoz × L830 RIL (126) SSR 1184 (219) Verma et al. (2015)

Indianhead ×
Northfield;
Indianhead ×
Digger; Northfield ×
Digger

RILs (117, 112,
114)

SNP 2429.6 (689) Sudheesh et al.
(2016)

L01-827A (L.
ervoides) × IG
72815 (L. ervoides)

RIL (94) SNP 740.9 (543) Bhadauria et al.
(2017)

ILL8006 × CDC
Milestone

RIL (118) SNP 497.1 (4177) Aldemir et al.
(2017)

Source Adapted from Kumar et al. (2015); Markers: AFLP Amplified fragment length polymorphism, RAPD Random
amplified polymorphic DNA, ISSR Inter simple sequence repeat, SSR Simple sequence repeat, CAPS Cleaved amplified
polymorphic sequences, SRAPS Sequence-related amplified polymorphism, RGA Resistance gene analog, ITAP Intron
targeted amplified polymorphism, SNP Single nucleotide polymorphism

other stress. In lentil genetic improvement program, much has been reported about
the creation of large amount of variation following hybridization of the microsperma
and macrosperma lentils primarily for higher yields. Chahota et al. (2007) reported
transgressive segregants for seed yield and other important agro-morphological traits
from 77% of microsperma × macrosperma crosses. The prime advantage of such
hybridization is that two classes are easily crossable, but this hybridization provides
limited variability for further improvement (Muench et al. 1991; Ferguson 2000;
Duran et al. 2004). In many crops, the wild relatives still possess useful variation and
source of the desirable trait that no longer exist in these cultivated counterparts.

4.5 Diversity Analysis

Since the middle of twentieth century, breeders have been successful in improving
the performance of the germplasm with the higher yield potential, adaptation to
mechanization, and new agricultural practices (Perez-de-Castro et al. 2012). How-
ever, breeding cultivars for higher yield potential gradually prompted replacement
of traits useful to future climates in the cultivated crop community (Grassini et al.
2013). Hence, continuous development of new CS cultivars that can withstand and
perform against the environmental changes without compromising on the genetic
gain is needed. However, the genetic gain within a progeny is always dependent on
the amount of variation existing between the parents that are selected for hybridiza-
tion (Roy et al. 2013). Therefore, an estimate of genetic diversity for a given trait is
sought to allow selection of better parents from the existing plant genetic resources.
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4.5.1 Phenotype-Based Diversity Analysis

Visually accessible morphological traits are used to estimate the phenotypic frequen-
cies within and between the populations of lentil (Singh et al. 2014). Traits that were
routinely phenotyped may be classified into three major categories such as qualita-
tive, phenological, and yield related. Qualitative traits included growth habit, leaf
pubescence, leaflet size, stem pigmentation, flower petal color, tendrils, pod inde-
hiscence, cotyledon color, seed coat color, seed coat pattern, and seed shape. Traits
such as time to emergence, days to flowering, days to 50% flowering, and days to
maturity were recorded to understand the variation for phenology within the lentil
germplasm.While yield-related traits such as plant height, number of branches/plant,
number of flowers/peduncle, number of nodes/plant, number of pods/plant, number
of seeds/plant, 100 seed weight, biomass/plant, and yield/plant were used to esti-
mate the genetic divergence for yield potential of the lentil germplasm. The first
noted assessment of genetic variability for lentil was made by Barulina (1930),
who reported variations between accessions for various morphological characters.
Since then, several authors made useful contributions to unravel the genetic diversity
through agro-morphological traits (Hoffman et al. 1988; Lázaro et al. 2001; Roy et al.
2013; Choudhary et al. 2017). Variations are evident for almost all the morphological
traits within the species and among different species of lentil and thus allow for an
effective selection. Diversity assessments of 405 accessions collected from 7 lentil
species revealed remarkable variations for traits such as leaf pubescence, leaflet size,
tendril length, and seed coat pattern both within and between the species (Singh et al.
2014).

Lentil germplasm also exhibited quite a variation for various phenological traits.
Considerable variation was demonstrated within a global collection of 1370 acces-
sions for days toflower andmaturity (Erskine et al. 1989). Itwas also observed that the
accessions varied with the changes in temperature and photoperiod for the time taken
to flower (Erskine et al. 1990; Erskine et al. 1994; Bicer and Sakar 2008). Under-
standably, maximum number of studies were undertaken to decipher the genetic
divergence for yield and yield contributing traits (Erskine and Choudhary 1986;
Tullu et al. 2001; Zaccardelli et al. 2012; GAAD et al. 2018). Significant variation
has been reported for seed yield and traits such as number of pods/plant, number
of seeds/plant, and biomass/plant that are said to have a positive relationship with
yield. Alternatively, significant and positive correlations between seed yield and traits
including biological yield/plant, plant height, number of pods/plant, and number of
seeds/pod have been reported (Bicer and Sakar, 2008; Zaccardelli et al. 2012). This
implies that a greater potential still exists within lentil germplasm to mine and select
for yield and yield contributing traits.

Lentil is confounded with several production constraints including biotic and abi-
otic stresses. Diseases that cause substantial yield lose. Interestingly, several sources
of resistance to each disease have been detected within the cultivated, landraces, and
wild species of lentil as reviewed by Chen et al. (2009). Similarly, significant differ-
ences within the germplasm were reported for boron toxicity, a problem in arid areas
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of West Asia (Yau and Erskine 2000; Hobson et al. 2006). In addition, the evidence
of ample genetic diversity within the germplasm for various minerals, mainly, iron
(Fe) and Zinc (Zn) concentrations demonstrated a likely strategy to address the prob-
lem of micronutrient deficiencies usually associated with cultivars of lentil (Karaköy
et al. 2012; Kumar et al. 2014a, 2018c; Shrestha et al. 2018).

4.5.2 Genotype-Based Diversity Analysis, Molecular Markers
Applied

Although morphological characterization made useful contributions to the genetic
diversity of lentil, these traits are often influenced by environment and display phe-
notypic plasticity (Bicer and Sakar 2008; Mondini et al. 2009; Govindaraj et al.
2015). Alternatively, biochemical andmolecular markers offer numerous advantages
over traditional morphological traits (Govindaraj et al. 2015). Biochemical markers
involve analysis of seed storage proteins and isozymes (allele variants of an enzyme),
and provide genotypic frequencies within and among the populations at functional
gene level. Polymorphisms within number and molecular weight of polypeptides
revealed through SDS-PAGE of seed storage proteins showed evidence for a greater
genetic variation within the lentil germplasm (de la Rosa and Jouve 1992; Echeverri-
garay et al. 1998; Piergiovanni and Taranto 2005; Zaccardelli et al. 2012). Addition-
ally, proteomic technology using two-dimensional electrophoresis aided to analyze
substantially higher number of proteins and demonstrated useful variations within
lentil landraces of Italy (Scippa et al. 2008, 2010; Ialicicco et al. 2012). Isozyme
and allozyme markers highlighted the differences within the functions of an enzyme
between individuals and are routinely used to detect the differences within the lentil
germplasm prior to the introduction of molecular markers (Zamir and Ladizinsky
1984; Hoffman et al. 1986; Erskine and Muehlbauer 1991; Ferguson et al. 1998b;
Sultana and Ghafoor 2008).

The introduction and gradual evolution of molecular markers along with the
shortcomings associated with morphological and biochemical markers observed
the integration of various molecular markers to analyze and characterize the
lentil germplasm. Molecular markers differentiate individuals by highlight-
ing the differences within the genome caused due to either by an inser-
tion/deletion/translocation/duplication/point mutation, etc. In addition, they are
highly stable and detectable in all the plant tissues regardless of growth and devel-
opment. Significant amount of variation has been reported within lentil germplasm
by using various types of molecular markers such as restriction-hybridization-based
restriction fragment length polymorphisms (RFLPs) (Havey and Muehlbauer 1989;
Muench et al. 1991) PCR-based random amplified polymorphic DNAs (RAPDs)
(Abo-Elwafa et al. 1995; Ford et al. 1997; Ferguson et al. 1998a; Sonnante and
Pignone 2001; Sultana and Ghafoor 2008), and amplified fragment polymorphisms
(AFLPs) (Sharma et al. 1996; Alghamdi et al. 2013; Idrissi et al. 2015b), microsatel-
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lite variable number tandem repeats (VNTRs) (Závodná et al. 2000) and inter-simple
sequence repeats (ISSRs) (Sonnante and Pignone 2001; de la Vega and Durán 2004;
Sonnante and Pignone 2007; Scippa et al. 2008; Fikiru et al. 2007; Toklu et al. 2009;
El-Nahas et al. 2011; Seyedimoradi and Talebi 2014; Datta et al. 2016), genomic
SSRs (Jin et al. 2008; Hamwieh et al. 2009; Babayeva et al. 2009; Zaccardelli et al.
2012; Kumar et al. 2014b; Verma et al. 2014; Idrissi et al. 2015a; Roy et al. 2015;
Koul et al. 2017) and expressed sequence tag (EST)-derived simple sequence repeats
(SSRs) (Dikshit et al. 2015a; Kumar et al. 2018a). Utilizing comparative genomics,
cross-genera SSR markers derived from ESTs sequences of Medicago truncatula,
Pisum sativum andTrioliumpratense have been used to characterize lentil germplasm
(Reddy et al. 2010; Alo et al. 2011). More recently, the highly abundant genome-
wide and gene-based single-nucleotide polymorphisms (SNPs) have been used to
assess the genetic diversity of lentil (Lombardi et al. 2014; Basheer-Salimia et al.
2015). Additionally, an exome capture array targeting the protein-coding genes was
developed and applied in lentil to evaluate the variation within and among the lentil
species (Ogutcen et al. 2018).

4.5.3 Relationship with Wild Relatives

An understanding of the intra- and interspecies relationships in the genus and multi-
plicity of the taxa is needed for the improvement and climate-resilient lentil cultivars.
This may be because all taxa are morphologically similar and differ only for a few
(Galasso 2003). Thereafter, several studies attempted to revise the classification and
thereby relationships among the species by using biochemical and molecular meth-
ods. These included isozymes (Hoffman et al. 1986; de la Rosa and Jouve 1992; Fer-
guson and Robertson 1996), SDS-PAGE (Ahmad and McNeil 1996; Ahmad et al.
1997b; Zimniak-Przybylska et al. 2001), chloroplast DNA (Muench et al. 1991;
Mayer and Soltis 1994), RFLP (Havey and Muehlbauer 1989), RAPD (Abo-Elwafa
et al. 1995; Sharma et al. 1995; Ahmad and McNeil 1996; de la Vega and Durán
2004), AFLP (Sharma et al. 1996), FISH karyotype (Galasso, 2003), ISSR (de la
Vega and Durán 2004) and ITS (Mayer and Bagga 2002; Sonnante et al. 2003) and
genomic and EST-SSRs (Alo et al. 2011; Dikshit et al. 2015b) and genome-wide
SNPs (Wong et al. 2015). While the outcomes of all the studies did not agree with
each other, the most agreed facts of all these studies has been that (i) L. orientalis
is the progenitor of the cultivated lentil; (ii) L. nigricans is the distant relative as
supported by the crossability experiments (Ladizinsky et al. 1984; Fiala et al. 2009);
(iii) the relationships among the remaining taxa need reassessment. Recently, clas-
sification and four gene pool categories (Wong et al. 2015) were validated through
an exome capture array method, which represents the coding fraction of the genome
(Ogutcen et al. 2018). The results also supported that Lens nigricans as a distant
relative to the cultivated species as it showed only a 70% alignment similarity with
the exome of the cultivated species.
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4.5.4 Relationship with Geographical Distribution

Lentil is one of the oldest domesticated crops (Ladizinsky 1979). The oldest remains
of lentil found in Greece and Syria dated back to 11,000 BC and 8500–7500 BC,
respectively (Erskine 1997). Ferguson et al. (1998a) mapped the highest genetic
diversity for wild progenitor L orientalis within southeast Turkey and northwest
Syria using the PCR-based markers such as RAPDs. Similarly, southern Syria,
coastal border region between Syria and Turkey and west Turkey are suggested to
be the centers for maximum variation and unique diversity for taxa Lens odemensis,
L ervoides, and L nigricans, respectively.

Interestingly, lentil adapted well to the conditions in South Asia region and
subsequently emerged as a major contributor to world’s lentil production (Erskine
et al. 1998). While lentil cultivation in countries like Canada and Australia has been
relatively new but took over Indian subcontinent as major producers of lentil with
the help of high-yielding cultivars supplemented by mechanization and advanced
agricultural management practices. Genetic distinctness between the South Asian
landraces and other region landraces were made evident through morphological,
phenological, biochemical, and molecular markers. Based on the morphological
variation, lentil landrace collectionwas divided into threemajor regional groups such
as levantine group (Egypt, Jordon, Lebanon, and Syria), northern group (Greece,
Iran, Turkey, and USSR), and Indian group, which included Indian subcontinent and
Ethiopian collections (Erskine et al. 1989). However, there was a clear differentiation
between Indian and Ethiopian collections at gene level as diagnosed by RAPD
marker analysis (Ferguson et al. 1998b). Additionally, accessions from Afghanistan
were clustered along with South Asian group and thus conclude that lentil was
introduced into Indian subcontinent fromWest Asia through Afghanistan. A similar
observation of germplasm relatedness between Afghanistan and South Asian was
also made by Khazaei et al. (2016) at gene level using SNP markers. Nevertheless,
the diversity within the South Asian group was predicted as low and is affected by
limited introductions (Erskine et al. 1998; Lombardi et al. 2014).

While the landraces collected from the Mediterranean region, especially from
countries Turkey and Greece demonstrated higher diversity and suggest the presence
of substantial level of genetic variation within the germplasm (Lombardi et al. 2014).
Several other authors also reported higher genetic diversity nature of Mediterranean
region compared to Asia and USA (Erskine et al. 1989; Piergiovanni and Taranto
2003; Toklu et al. 2009). Alternatively, similarities were found among the collections
from Mediterranean, North Africa, and Chile (Ferguson et al. 1998b; Lombardi
et al. 2014; Khazaei et al. 2016). Northern temperate group was recently proposed
based on the differences in agro-ecological regions around the world where lentil
is grown (Khazaei et al. 2016). Assessment of the variation within the northern
temperate region, especially of Canada, currently top producer of lentil, showed a
narrow genetic variability among the breeding lines (Khazaei et al. 2016). A similar
trend was observed within the Australian lentil germplasm and is attributable to
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the limited introductions and also selection pressure for higher yield and specific
adaptations such as disease resistance (Ford et al. 1997; Lombardi et al. 2014).

4.5.5 Extent of Genetic Diversity

In the process of domestication, lentil has been understood to have lost approximately
40% of genetic diversity (Alo et al. 2011). Evidently, breeding programs around the
world possess a limited diversity within the cultivated lentil (Ferguson et al. 1998b;
Lombardi et al. 2014; Khazaei et al. 2016). Especially, the diversity of South Asian,
Canadian, and Australian germplasm is low as estimated by several authors using
different methods. An assessment of a historic collection of Indian lentil accessions
including cultivars released since 1975, advanced breeding lines, ready for release
and a collection of germplasm lines using 260 SSR markers could reveal a mean
polymorphic information content of 0.30 (Kumar et al. 2018b). This again resulted
in 48–74% of genetic similarity between the genotypes and thus indicated a nar-
row genetic base. Contrary to this, the germplasm within the Mediterranean region
demonstrated higher genetic diversity. The landraces from Turkey and Greece within
theMediterranean region showed greater divergence to that of other region landraces
including America, Africa, Northern Europe, and Middle-East at gene level (Lom-
bardi et al. 2014). Similarly, two ancient landraces (Capracotta and Conca casale)
collected from South Central Italy showed greater variation between themselves and
commercial cultivars at morphological, protein and DNA level (Scippa et al. 2008).
While genetic variation within the wild species of lentil was found to be high com-
pared to that of cultivated species at morphological, quantitative, protein, and DNA
level (Havey and Muehlbauer 1989; de la Rosa and Jouve 1992; Singh et al. 2014).
These evidence suggest the presence of substantial variation within the cultivated
and wild species that could be mined for widening the genetic base, particularly of
South Asia, Australia, and Canada regions (Dikshit et al. 2015a).

Estimation of the extent of genetic diversity also depends on the method used
for analyzing the diversity as significant differences were claimed between different
methods for their ability to detect the polymorphism. Assessment of lentil diversity
observed an evolution of type of method used from morphological characters to
SNP markers and with each upgradation, the polymorphism detectability power
increased.Morphological evaluation of 405wild accessions revealed only a variation
of 18.97% but 98.26% of genetic dissimilarity was estimated using quantitative
traits (Singh et al. 2014). A comparison of SDS-PAGE and ISSR marker techniques
revealed greater differences between the two methods as seed proteins showed only
a low level of genetic diversity as compared to that of ISSR markers (El-Nahas
et al. 2011). Likewise, ISSR markers revealed a higher degree of variation within a
collection of Italian landraces compared to RAPDs (Sonnante and Pignone, 2001).
Interestingly, genome-derived SSRs revealed a higher average number of alleles and
genetic diversity compared to EST derived SSRs within a collection of accessions
from three species of lentil (Dikshit et al. 2015b). Sequence-based, and genome-wide
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SNPmarkers have become preferred alternatives to the othermarkers because of their
abundance throughout the genome, highly polymorphic status, and suitability for use
in high-throughput genotyping and automated analysis (Rafalski 2002).

4.6 Molecular Mapping of CS Genes and QTLs

During the past several years, tremendous progress has been made for the devel-
opment of molecular markers in lentil. These markers associated and tightly linked
to gene/QTL controlling a trait of interest can be used to introgress that gene/QTL
in the background of improved lines through marker-assisted selection (MAS) and
breeding. Genetic linkage map construction has become a necessary tool for molec-
ular genetics and plant breeding programs (Tanyolac et al. 2010). The availability
of large numbers of molecular markers and large mapping populations is the first
step for the construction of genetic linkage maps. These maps have served many
purposes in basic and applied research. They have become a key tool for physical
mapping of genomes and high-density linkage maps are directly used in breeding
researches (Tanksley et al. 1989; Hamwieh et al. 2005). In lentil, most genome maps
have been created with anonymous and dominant RAPD, AFLP, and ISSR markers.
Eujayl et al. (1998b) first identified markers suitable for the selection of a simply
inherited resistance trait loci for Fusarium wilt resistance (Fw). Subsequently, Ford
et al. (1999) identified RAPD markers that were close and flanking the major dom-
inant locus for Ascochyta blight resistance in the ILL5588 accession (Ral1/AbR1).
Chowdhury et al. (2001) also developed RAPD markers that flanked the recessive
Ascochyta blight resistance locus in the cultivar Indianhead (ral2). Rubeena et al.
(2006) identified markers that flank the codominant Ascochyta blight resistance loci
in ILL7537. Tullu et al. (2003) identified markers linked to the anthracnose resis-
tance locus in accession PI320937 (LCt-2) (Eujayl et al. 1997, 1998a; Rubeena et al.
2003b). Nevertheless, these first-generation maps served as foundations upon which
more detailedmaps have been andwill be generated. Tomaximize polymorphism for
map construction in lentil, interspecific hybrid populations have been used (Paterson
et al. 1991; Eujayl et al. 1997; Durán et al. 2004). Such populations have also been
used to map quantitative traits related to plant structure, growth habit, and yield in
lentil (Fratini et al. 2007). Though the use of F2 populations in the identification of
QTLs has been done widely in lentil, their use in marker-trait analysis has led to
identification of only major QTLs. Thus, several minor QTLs were overlooked in
such populations and identification of environmental responsive QTLs was difficult.
Because quantitative traits are influenced by both genetic and environmental effects,
RILs or near-isogenic lines (NILs) aremore suitable populations to accurately dissect
their components.

In lentil, although molecular markers linked to desirable genes/QTLs have been
reported, only those with tight association (<1.0 cM) and positive effect can be used
inMAS. Among CS traits, other than biotic and abiotic stresses, agro-morphological
traits also play an important role being directly or indirectly related to complex
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trait like yield. Duran et al. (2004) detected five QTLs each for the height of the first
ramification and flowering time, three for plant height, seven for pod dehiscence, and
one each for shoot number and seed diameter. Other studies identified several QTLs
using biparental mapping populations that control flowering time in lentil (Tahir et al.
1994; Fratini et al. 2007; Tullu et al. 2008; Kahraman et al. 2015). One QTL each
for the seed weight (qSW ) and seed size (qSS) traits explaining 48.4% and 27.5% of
phenotypic variance, respectively, were identified. These QTLs were located on an
average at 5.48 cM frommarkers indicating close marker-trait association and hence
can be useful in marker-assisted breeding for improving the seed size and weight
(Verma et al. 2015). Morphological markers, viz., cotyledon (Yc), anthocyanin in
stem (Gs), pod indehiscence (Pi), seed coat pattern (Scp), flower color (W), radiation
frost tolerance locus (Rf), early flowering (Sn), and ground color of the seed (Gc)
weremapped as qualitativemarkers (Eujayl et al. 1998a; Duran et al. 2004; Hamwieh
et al. 2005; Tullu et al. 2008).

QTLs for biotic and abiotic stress tolerances will play a key role for tagging genes
of interest to develop CS cultivars which can harbor more than one key traits. For
Ascochyta blight disease, three QTLs each were detected for resistance at seedling
andmaturity stages (Gupta et al. 2012a). These accounted for 34 and 61% of the total
assessed phenotypic variation and demonstrated that resistance at different stages is
potentially conditioned by different genomic regions. The flanking markers iden-
tified may be useful for MAS and pyramiding of potentially resistance genes into
elite genetic backgrounds that are resistant throughout the cropping period. Tullu
et al. (2003) mapped for anthracnose disease resistance (Lct-2). Whereas, Taran
et al. (2003) identified lines with combined resistance to Ascochyta blight resistance
(AbR1 and ral1) and Anthracnose (OPO61250) using gene pyramiding approach for
developing cultivars resistance to both Ascochyta blight and anthracnose in lentil.
Recently, QTLs conferring resistance to Stemphylium blight and rust using RIL
populations were identified (Saha et al. 2010a, b).

Among abiotic stresses, Kahraman et al. (2004b) identified the QTLs for winter
survival and winter injury, using a RIL population of 106 lines and showed that
tolerance to low temperature is a multigenic trait. QTLs related to frost response
were also related to yield under winter-sown conditions as reported by Barrios et al.
(2007). In continuation with this finding, Barrios et al. (2017) also found that QTLs
with a major effect for winter hardiness and yield seem to be closely located within a
single linkage group, and they are tracked by using some molecular markers. Super-
SAGE (serial analysis of gene expression) genomic analysis was used to analyze
the allele-specific differential expression of transcripts potentially involved in frost
tolerance by bulk segregant analysis among 90 F9 RILs derived from the Precoz ×
WA8649041 lentil cross (Barrios et al. 2010). QTLs (qHt ss and qHt_ps, with 12.1
and 9.23% phenotypic variance) and its molecular mapping for heat tolerance in
lentil based on seedling survival and pod set per plant under hydroponic assay were
reported by Singh et al. (2017c). These QTLs would provide further opportunities to
dissect the candidate genes and the development of molecular markers for improving
lentil with heat tolerance. Kaur et al. (2014) identified QTLs for boron tolerance
in Cassab × ILL2024 mapping population. The flanking markers identified may
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be useful for MAS and pyramiding of potentially different resistance genes into
elite backgrounds that are resistant throughout the cropping season. Recently, some
considerable progress has beenmade in identifyingQTLs related to drought tolerance
in lentil. Genetic control and linkage of SSR markers for drought tolerance in lentil
were first reported by Singh et al. (2016a, b). They identified a molecular marker
associated with Sdt locus controlling seedling survival drought tolerance in lentil.
These linkedmarkers could be used inmolecular breeding programs for introgression
of seedling survival drought tolerance gene in high-yielding genotypes. A linkage
map, fortified with 291 SSR markers and 75 QTLs for drought tolerance and yield-
related traits were established in lentil using intraspecific RIL mapping population
(L830 × Precoz) (Rana et al. 2016).

Subsequently, 18 QTLs for root and shoot traits (dry root biomass, number of
lateral roots, RS ratio, and specific root length) associated with drought tolerance
in a lentil recombinant inbred line population (RIL), ILL 6002 × ILL 5888, was
identified by Idrissi et al. (2016) as a promising step toward a MAS approach. The
authors also confirmed the stability of detected QTLs by performing the analysis on
two consecutive seasons. They also identified a QTL-hotspot genomic region related
to a number of root and shoot characteristics associated with drought tolerance such
as dry root biomass, root surface area, lateral root number, dry shoot biomass, and
shoot length was identified. Results from various studies could be used for marker-
assisted selection in lentil breeding programs targeting CS traits for further genetic
enhancement of this crop species (Tables 4.5 and 4.6). Further, the application of
the next-generation sequencing (NGS) and genotyping by sequencing (GBS) tech-
nologies have facilitated speeding up the lentil genome or transcriptome sequencing
projects and large discovery of genome-wide SNP markers for genetic and associa-
tion mapping.

4.7 Marker-Assisted Breeding for CS Traits

The use of cost-effective DNAmarkers derived from the fine mapped position of the
genes for important agronomic traits, biotic and abiotic stress tolerance regions, and
MAS strategies will provide opportunities for breeders to develop high-yielding,
climate smart, and better-quality genotypes. Marker-assisted backcross breeding
(MABCB) will be more effective to integrate major genes or QTLs with large effect
into widely grown genotypes.
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4.7.1 Germplasm Characterization and Distinctiveness,
Uniformity, and Stability (DUS) Test

Characterization of germplasm plays a vital role in identifying desirable genotypes
to enhance yield and crop improvement. A Distinctiveness, Uniformity, and Stability
(DUD) test is a descriptive assessment that establishes the identity of the new cul-
tivar, by using morphological traits, as well as its uniformity and stability. The new
cultivar is compared with the existing cultivars to establish its distinctness (Kwon
et al. 2005). Remarkable variations among the traits for use in breeding and selec-
tion programs have been reported (Ramgiry et al. 1989; Tullu et al. 2001). Barulina
(1930) first reported the detailed morphological descriptions of lentil landraces and
species from Asia. Morphological markers like color of stem, flower and foliage
color, plant habit, cotyledon and testa color, and testa pattern are important for test-
ing hybridity and keeping genetic purity to be used in MAS. Different lentil cultivars
were found to be distinct, uniform and stable for different seed, seedling, and flow-
ering traits (Dixit et al. 2009; ul Hussan et al. 2018). Conventionally, morphological
descriptors are routinely used for establishing the identity of cultivars. But these
morphological descriptors have many drawbacks, such as influence of environment
on trait expression, epistatic interactions, pleiotropic effects, etc. Recently, molec-
ular marker techniques are used for varietal identification, differentiation between
species, and in resolving many breeding problems in lentil (Lombardi et al. 2014).
The most commonly used methods for DNA profiling and genotype characterization
by determining their distance and uniformity are the RFLP, PCR-based techniques
(RAPD,AFLP, andSSR).They are used selectively dependingon the crop species and
genetic constitution of the genotype. Several types of molecular markers including
RAPD, RFLP, STS, SCAR, SNP, CAPS, AFLP, ISSR, and resistance gene analogue
(RGA)markers have been identified and effectively used in lentil genotyping (Eujayl
et al. 1998a; Rubeena et al. 2003a; Hamwieh et al. 2005; Saha et al. 2010a; Sharpe
et al. 2013a). The transcriptome sequencing approach has generated EST databases,
delivering large numbers of EST-derived SSR and SNP markers (Kaur et al. 2011;
Sharpe et al. 2013b). Diverse promising interspecific and intraspecific lentil geno-
types have also been studied for useful genetic variability and genetic diversity using
morphological and molecular markers (Kumari et al. 2018; Tsanakas et al. 2018).
Genetic linkage maps are essential tools for genomic and genetic studies, especially
in mapping phenotypic traits. Several genetic linkage maps of lentil have been con-
structed using a range ofmolecular marker systems andmapping populations (Eujayl
et al. 1998a; Gupta et al. 2012b; Rubeena et al. 2003a), including SSR (Hamwieh
et al. 2005; Phan et al. 2007) and SNPmarkers (Fedoruk et al. 2013; Kaur et al. 2014;
Sharpe et al. 2013b; Rodda et al. 2017).
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4.7.2 Scope of Marker-Assisted Breeding (MAB)
and Marker-Assisted Backcrossing (MABC)

As conventional breeding system requires more number of breeding cycles to com-
bine many target traits in a genotype. Molecular-assisted breeding programs have
reported twice the rate of genetic gain over phenotypic selection for various traits
such as yield, biotic and abiotic stress resistance and quality attributes (Oliveira
et al. 2008). A high correlation must exist between the desirable gene and molecu-
lar markers for practicability and success of MAS and the markers must be stable,
reproducible and easy to assay (Yu et al. 2004). MAS has been effectively used for
detecting, tracking, retaining, combining, and pyramiding different desirable genes
for biotic and abiotic stresses (O’Boyle et al. 2007). However, MAS has not been
employed successfully in lentil breeding program due to the absence of tightly linked
markers. Inspite of huge potential as described earlier in the chapter, various CS traits
have been mapped and tagged on linkage map which potentially through fine map-
ping can be used in MAS for breeding climate-resilient cultivars. Expression QTL
(eQTL) can be identified for desirable traits by using suitable genetic materials and
global genome expression profiling. The markers linked to this eQTLs will have
huge potential in MAS compared to the markers identified by traditional QTL anal-
ysis since eQTL affect the expression of the genes for the desirable traits (Ford et al.
2018).

Simultaneous expression of more than one genes in a cultivar to develop durable
resistance against biotic and abiotic stresses in crops will require stacking of multi-
ple genes from multiple parents also known as gene pyramiding (Shi et al. 2009). In
this technique, genetic markers are employed to identify and select specific genes or
combine multiple resistance genes (Brahm and Friedt 2000; Richardson et al. 2006).
The concept of gene pyramiding was proposed by Nelson (1978) to develop crop
cultivars with few to several different oligo genes for durable disease resistance.
This technique has been named as multitrait introgression, since genes governing
two or more traits are often introgressed into a single recurrent parent (Rana et al.
2019). Gene pyramiding involves different methods such as multiple parent cross-
ing, backcrossing, and recurrent section (Ribaut et al. 2010). Gene pyramiding using
molecular markers depends upon several factors such as the number of genes/QTLs,
the number of parents containing the target genes/QTLs, the heritability of target
genes/QTLs, marker-target gene associations, duration needed to complete the gene
assembly, and relative cost. It is a realistic approach that can be exploited in lentil
breeding programs for the development of genetic stocks and precise development
of CS traits. The possible breeding schemes that can be used for gene pyramid-
ing involving MAS and the required population size in each segregating population
have been discussed in lentil (Gupta et al. 2010). Pyramiding genes for resistance to
Ascochyta blight and anthracnose in lentil were done by Taran et al. (2003) and Sari
et al. (2018). Marker-assisted gene pyramiding has been used in other cereals and
legumes for combining multiple genes/QTLs controlling both qualitative and quan-
titative stress resistance (Concibido et al. 2004; Richardson et al. 2006; Shi et al.
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2009; Li et al. 2010; Wang et al. 2007; Luo et al. 2016). To date, no information is
available on pyramiding genes for resistance to abiotic stresses in lentil crops. There
is a great opportunity to take advantage of gene pyramiding in lentil, to develop elite
lines, combining traits from multiple parents, particularly for resistance to biotic
and abiotic stresses. MABC using trait-linked markers may also be used to develop
superior lines once a major gene or QTL is identified and validated in the donor, as it
will facilitate retaining the whole genome of the recurrent parent. MABC is a good
choice when phenotyping of a trait of interest is expensive or difficult, the heritability
of desirable trait is low, the expression of trait is in late stages of plant development,
or traits controlled by a recessive gene or multiple genes need to combine for one
or more traits. In chickpea, root traits, drought tolerance score, canopy temperature
differential, and seed size in chickpea are governed by many QTLs (Varshney et al.
2013). The same QTLs hold for yield and yield-contributing characters such as seed
number and seed weight. These traits will get more attention in the final selection of
genotypes for abiotic stress tolerance. Under such situations, Marker-assisted recur-
rent selection (MARS), which involves intercrossing among selected individuals in
each cycle of selection, may be used to avoid the limitations of MABC. The initial
cost of using markers in MABCwould be more expensive compared to conventional
breeding in the short term, however, time savings could lead to an accelerated cultivar
release which could translate into much profits in the long term.

4.8 Map-Based Cloning of CS Genes

Ideally, the genes controlling a trait of interest are the perfect marker for MAS. How-
ever, this is often made difficult because cloning of a gene is labor intensive and time
consuming. Alternatively, marker(s) that are tightly linked to and flanking a gene
locus that conditions a sizable genetic variation for the trait may be selected for with
the premise that the associated chromosomal region contains the functional gene(s).
Often, genetically linked markers to traits of interest are identified by coarse map-
ping and these have limited use in MAS because of the distance and hence chance
of recombination between the marker and actual gene locus. Therefore, genomic
regions where the trait is mapped should be fine mapped at high resolution and be
validated across genetic backgrounds to determine their utility in MAS. Also, physi-
cal characterization of genomic regions of interest will facilitate cloning of the gene
to develop direct markers (candidate genes) and/or physically closer markers to the
gene, increasing the reliability for MAS. The most useful marker system for MAS
should be locus specific, highly reproducible and easy to discern. These include
sequence tagged site (STS), sequence characterized amplified region (SCAR) or
allele specific amplified primer (ASAP), specific polymorphic locus amplification
test (SPLAT), and PCR-based RFLP markers. When locus-specific markers are not
polymorphic among the parental lines used in the breeding programs, sequence dis-
criminative methods are required. These include SNP, cleaved amplified polymor-
phic site (CAPS), and derived CAPS (dCAPS) markers. More recently, a cleaved
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amplified polymorphic sequences marker was developed to facilitate breeding and
establishes a basis for map-based cloning of Ruv2 and breeding for rust resistance
in cowpea and other legume crops (Wu et al. 2018).

In the last decade, few transcriptome sequencing works (Kaur et al. 2011; Verma
et al. 2013) aid in the marker discovery and SNP-based linkage maps (Sharpe et al.
2013b, Temel et al. 2014). However, a comprehensive genome-wide physical map,
and its integration with genetic maps possessing QTLs for important targeted traits
and draft genome of lentil, is the need of the hour for facilitating cloning of can-
didate genes and enhancing molecular breeding programs. Most recently, a high-
density consensus map was constructed using three different RIL populations based
on DArT markers (Ates et al. 2018). The consensus map could provide insight into
the lentil genome, also help to construct a physical map using a Bacterial Artificial
Chromosome library and map-based cloning studies. To identify the genes responsi-
ble for the target QTL, fine mapping and map-based cloning strategies are necessary
(Salvi and Tuberosa 2005).

4.9 Genome Libraries

Large-insert genomic DNA libraries are essential genomic resources for physical
mapping, positional cloning, and genome sequencing of higher eukaryotes (Tanksley
et al. 1995; Zhang et al. 1996). The BAC cloning system has become an invaluable
tool in genomic studies because of its ability to stably maintain large DNA fragments
and its ease of manipulation (Wang et al. 1995; Zhang et al. 1996). BAC libraries are
an important resource for the development of molecular markers that can be used for
MAS for desirable agronomic traits. The development of SSR markers from BAC-
end sequences is very cost-effective (Temnykh et al. 2001) and offers genome-wide
coverage as all repeat types are systematically sampled in the randomly selected
BACs (Cho et al. 2004). Since the development of the BAC vector (O’Connor et al.
1989), many BAC libraries have been developed for the major crop species, such as
wheat, rice, corn, and soybean. In recent years, however, BAC libraries have also been
developed for several pulse crops including mungbean (Vigna radiata L.), cowpea
(V. unguiculata L.), lupin (Lupinus angustifolius L.), chickpea (Cicer arietinum L.),
pigeonpea (Cajanus cajan L.), field pea (Pisum sativum L.), lima bean (Phaseolus
lunatus L.), and common bean (P. vulgaris L.).

Integrated physical, genetic and genome map should provide a foundation for
cloning and isolation of QTLs/genes for molecular dissection of traits as well as
markers for molecular breeding for lentil improvement. A physical map of chickpea
was developed for the reference chickpea genotype (ICC 4958) using BAC libraries
targeting 71,094 clones (~12 × coverage). Comprehensive analysis of markers in
abiotic andbiotic stress toleranceQTL regions led to identification of 654, 306, and23
genes in drought tolerance ‘QTL-hotspot’ region, Ascochyta blight resistance QTL
region and Fusarium wilt resistance QTL region, respectively (Varshney et al. 2017).
In addition, several large-insert BAC and binary bacterial artificial chromosome
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(BIBAC) based libraries were also constructed earlier for chickpea (Lichtenzveig
et al. 2005; Zhang et al. 2010).

Most of the BAC applications in pulse crops to date are of structural genomics
nature; however, the application of BACs in functional genomics analysis of pulses
also has great potential. Since large-insert clones in BAC vectors are more likely
to contain the necessary promoter, enhancer, and silencer combination, mimicking
the natural expression of the gene of interest, the advantages of the BAC transgenic
approach are significant compared to the conventional transgenic approach (Yang and
Gong 2005). However, this has not been applied yet on lentil due to non-availability
of BAC or YAC libraries. The need of the hour is to develop BAC/BIBAC or YAC
libraries to facilitate map-based cloning of genes in lentil. Alternatively, the genome
libraries developed in the closely related model legumes chickpeas and Medicago,
will help lentil breeders to speedup the understanding of lentil genomes and assist
map-based cloning of genes.

4.10 Genetic Transformations

Transgenic approach uses functional genes which are not available within the cross-
able gene pool. Thus, cloned genes are important genomic resources for making
genetic manipulation through transformation. Commonly, the particle bombardment
and the Agrobacterium tumefaciens infection methods have been used to introduce
genes with novel functions. With the explosion of sequence information available
in the databases, transformation systems have also become useful tools to study
gene function via RNA interference ‘knockout,’ T-DNA insertion or transforming a
genotype lacking a particular gene. Thus, a robust, reproducible, and efficient trans-
formation system combined with a protocol to regenerate complete fertile plants
from transformed cells is essential to fully study the plant gene functions. To date,
the transformation of lentil has been reported through A. tumefaciens-mediated gene
transfer (Lurquin et al. 1998) and biolistic transformation including electroporation
(Chowrira et al. 1996) and particle bombardment (Gulati et al. 2002; Mahmoudian
et al. 2002). Warkentin and McHughen (1992) reported the susceptibility of lentil to
A. tumefaciens. All explants showed transient b-glucuronidase (GUS) expression at
the wound sites except cotyledonary nodes, which were subsequently transformed
by Sarker et al. (2003). Oktem et al. (1999) reported the first transient and stable
chimeric transgene expression on cotyledonary lentil nodes using particle bombard-
ment. Gulati et al. (2002) reported regeneration of the first fertile transgenic lentil
plants on MS medium with 4.4 μM benzyladenine (BA), 5.2 μM gibberellic acid
(GA3), and chlorsulfuron (5 nM for 28 days and 2.5 nM for the rest of the culture
period), followed by micrografting and transplantation in soil. The first success-
ful work was reported by Barton et al. (1997), using pCGP1258 plasmid construct
on four lentil genotypes. Khatib et al. (2007) have developed herbicide-resistant
lentil through A. tumefaciens mediated transformation. This was achieved with the
same plasmid construct pCGP1258, harboring the gene conferring resistance to the
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herbicide glufosinate ammonium that was transformed using A. tumefaciens strain
AgL0. Akcay et al. (2009) reported the production of transgenic lentil plants via
Agrobacterium-mediated transformation and the stable transmission of the nptII and
gusA genes in the subsequent generations. However, these studies were mostly con-
fined to establish transformation techniques rather than the introduction of genes into
improved cultivars. Khatib et al. (2011) reported for the first time the introduction of
theDREB1A gene into lentil for enhancing drought and salinity tolerance. The results
showed that mRNA was accumulated and thus, the DREB1A gene was expressed in
the transgenic plants.

Advanced molecular technology has enabled plant modifications at the genomic
level. Several horizontal gene transfer approaches have addressed the issues related
to challenges and limitations of genome boundary in transferring the alien gene of
interest through vertical gene transfer methods. Techniques such as genetic transfor-
mation (Agrobacterium-mediated transformation and direct gene delivery system)
have opened new pathways to transfer functional genes precisely from any organism
into plant genome.

Trans-mitochondrial gene expression can be studied using reverse genetics when
transformation strategy targets mitochondria instead of nucleus (Havey et al. 2002),
which can target mitochondrial genes for transgenic crops. Kemble et al. (1988)
put an effort to transform Brassica napus hybrid mitochondria through polyethylene
glycol (PEG) or electroporation mediated protoplast fusion using recombinant vec-
tors. Among other organelles, plastids with small genome size are used to construct
suitable vectors by targeting their specific sequences for genetic transformation.
Boynton et al. (1988) were the first to report the transformation of Chlamydomonas
chloroplast. Since then there are many reports of transformation of new genes from
chloroplast genomes via organogenesis in several plant species (Skarjinskaia, et al.
2003; Khan and Maliga 1999; Hou et al. 2003; Kumar et al. 2004a).

Plastid genetic engineering has seen success in crops of economic importance.
Complete legume genome sequences will be essential for comparing intergenic
spacer regions to develop transformation vectors for plastid genetic engineering as
plastid genome information is not fully understood (Sabir et al. 2014). Fabaceae
(legumes) in Papilionoids have certain level of variation for cell structural features
and inverted repeat lacking clade (IRLC) offers opportunity to enhance understanding
of genomic evolution mechanisms and its feasibility for genetic improvement (Sabir
et al. 2014), which is mainly due to comprehensive knowledge of the genomes for
vector construct followed by stable intergenic integration site selection in transplas-
tomic crop legume species (Dufourmantel et al. 2004, 2006;Wei et al. 2011). Six new
IRLC plastomes have complete sequences and lentil is among few which has most
repetitive sequences, these findings highlight plastome evolution, transfer of func-
tional genes over time, losses of introns indicative of new genomic rearrangements
(Sabir et al. 2014).

To fast track gene discoveries plant metabolomics offers huge potential to iden-
tify novel genes relate to biosynthetic pathway mechanisms of plant-based natural
products.Metabolomics aidedwith transcriptomics has paved theway to identify var-
ious genes functions and their characterization (Saito and Matsuda 2010). Among
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legumes, most of the studies have concentrated in model legumes only. The traits
described below are important for climate-resilient crops and shows the potential of
this technology to be implemented in lentil crop. A decrease in oxylipins inMedicago
was due to the effect of rhizobial node factor (Nod) (Zhang et al. 2012). Survival of
salt-tolerant Lotus species involved successive changes for metabolic adjustments
of shoot components (Sanchez et al. 2011), whereas, large number of mitochondria
associated metabolites were identified for flooding stress in soybean which suggests
requirement of higher levels of metabolites (amino acids, NAD, and NADH along
with depleted free ATPs) for respiration and glycolysis (Komatsu et al. 2011). Spe-
cific metabolite markers (threonate, asparagine/ornithine and alanine/homoserine)
for stresses like drought and salinity were developed through metabolite phenotyp-
ing of fourMediterranean lentil genotypes under drought and salinity stress (Muscolo
et al. 2015). Metabolomics has huge potential though various challenges including
metabolite identification at a large scale, limits its application.

Gene silencing which limits the mRNA availability for translation and eventually
reduces the protein amount is another powerful technology for desired trait devel-
opment. Different RNA silencing strategies as tools are available for selectively
knocking down of specific genes/functions. MicroRNAs (miRNAs) are involved in
the plant development process as well as in various stress responses, affecting the
gene expression at the posttranscriptional level (Zhang et al. 2006). Therefore, under
stress, increased gene expression of tolerant genotypes can be correlated to changes
in miRNAs, which makes them good candidates for enhancing crop stress tolerance
through transgenic breeding. Drought tolerance related miRNAs are discovered for
various crops, 11 of them are identified in cowpea (Barrera-Figueroa et al. 2011)
and heat stress response related eight miRNAs are being identified in common bean
(Jyothi et al. 2015). RNA silencing has evolved as a natural defense to protect plants
against viruses. Virus-induced gene silencing (VIGS) is promising to suppress plant
gene expression using virus vectors with host gene’s target region (Baulcombe 2004;
Britt andMay, 2003), though not used extensively in legumes. Vertical and horizontal
approaches including RNAi and VIGS can be explored to understand the molecular
mechanisms of host resistance in lentil. Cisgenesis offers the opportunity to modify
genetic constitution of host plant via gene present naturally in a crossable and sexually
compatible donor plant.Many genes from cropwild relatives and distant landraces of
various crops have been identified which code for abiotic and biotic stress tolerance
and resistance, various agronomical and quality traits, and been introgressed into the
desired genotypes of crops. Such genes are known as cisgenes to separate them from
the transgenes (Sprink et al. 2016) and cisgenesis take care of undesirable issues of
linkage drag (Podevin et al. 2012), and introgression of desired genes into the host
genotypes without affecting their other desirable traits. Abiotic stress tolerance is
controlled by many genes and is complex, therefore, one gene or QTL introgression
will not be enough for the introduction of stress tolerant (Hartung and Schiemann,
2014). Cisgenesis still need to emerge and can off-set concerns of genetically mod-
ified crops and technology at least for those traits which are still present in distant
relatives of the crops.
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4.11 Role of Bioinformatics

4.11.1 Gene and Genome Databases

With the advent ofmolecular approaches for plant breeding, based on geneticmarkers
and genes, a need emerged for comprehensive sequence databases that will enable
the annotation of these genomic features into functional proteins or transcription
regulators such as transcription factors, methylation sites, or ncRNAs. This need
was particularly crucial for non-model crops such as lentil, which lack the genomic
resources available for well-studiedmodel organisms. One of the first publicly acces-
sible sequence databases, emerged in the early 1990s with the development of the
internet, is the American National Center for Biotechnology Information (NCBI)
GenBank collection. Three decades after its development it is still considered the
most comprehensive and updated database, thanks to the International Nucleotide
Sequence Database Collaboration, along with the DNA DataBank of Japan and the
European Nucleotide Archive of The European Bioinformatics Institute in the Euro-
pean Molecular Biology Laboratory (EMBL-EBI). The NCBI databases now hold
hundreds of trillions of existing cDNA, RNA, DNA, and protein sequences from col-
lections spanning all available phyla groups (Cochrane et al. 2016). Since its foun-
dation, the GenBank collection offered web-based platform equipped with a suite
of bioinformatics tools for querying of genes of interest and performing homology-
based searches, most notably the BLAST suite of tools, to find and retrieve the closest
available sequences and provide certain functional and taxonomic annotation of the
results (Camacho et al. 2009). The era of next-generation-sequencing (NGS), which
introduced massively parallel high-throughput sequencing in 2005 and led to an
explosion of sequencing projects that were submitted toNCBI’s databases, also intro-
duced reduced accuracy in the annotation of the submitted sequences, which were
mostly annotated using high-throughput computational methods (Bidartondo 2008;
Schnoes et al. 2009). Despite its reduced annotation accuracy, NCBI’s databases are
still widely used for annotation of sequences from non-model species, thanks to their
unmatched coverage of sequences and taxonomy groups.

In the early 2000s, as sequencing technologies evolved and became more acces-
sible and affordable, a new type of databases was developed and deployed, ones that
were dedicated to specific species or narrow taxonomic groups and covered the entire
(or close to) gene repertoire. These databases, however, were initially developed for
just a handful of model plant species, which benefitted from fully sequenced, anno-
tated, and curated genomes, such as Arabidopsis, rice, poplar, corn and in the legume
family, the wild Lotus japonicus and cultivated alfalfa and soy (Yon Rhee et al. 2003;
Retzel et al. 2007; Yamazaki et al. 2008; Sjödin et al. 2009; Grant et al. 2010; Andorf
et al. 2016; Mun et al. 2016). As it was for GenBank, utilizing these databases for
nonmodel crop researchwas still useful, bymeans of comparative genomics, or using
homology-based searches to annotate an unknown gene and infer its function based
on its closest annotated relatives.
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4.11.2 Comparative Genome Databases

The shortcoming of using species-specific databases for comparative genomics is
that it relies on prior knowledge of the evolutionary relationship between the crop
and model species to select the most suitable database. In addition, this approach
requires multiple comparisons against different databases, each using a potentially
different interface and producing results in a different format, making the entire
procedure extremely complicated, cumbersome and labor intensive. To overcome
this, ‘themed’ databases were developed, combining information from multiple
genomes, often focusing on a taxonomic group of interest. These databases pro-
vide advanced bioinformatic tools for comparing gene sequences and functions
between species, as well as genome browsers, genetic maps and known genetic
variants, markers, and even QTLs. This allows for a more targeted approach for
annotating and comparing unknown genes and markers across crop plants. Notable
comparative genome databases include the Phytozome Plant Comparative Genomics
portal (https://phytozome.jgi.doe.gov/pz/portal.html, USA Department of Energy’s
Joint Genome Institute), which currently encompasses genomes of 64 plant species
(including 8 legume species) (Goodstein et al. 2012). Another example of plant-
specific database is Plaza (https://bioinformatics.psb.ugent.be/plaza, Ghent Univer-
sity), which covers 55 species of dicots (including 7 legume species) and 29monocots
(Van Bel et al. 2017). The Gramene database (http://www.gramene.org/, Gramene
project), a resource for plant and crop comparative genomics, is based on Ensembl
technology with collaboration with EMBL-EBI and offers access to curated genomic
data both via its web portal and through data mining and programmatic access tools
(Tello-Ruiz et al. 2018). More relevant to lentil are the Cool-Season Food Legume
Crop Database (https://www.coolseasonfoodlegume.org/, Washington State Univer-
sity), which provides comparative genomics and genetics tools for chickpea, pea,
lentil, and faba bean, though it only includes the full genome of chickpea; and
KnowPulse (http://knowpulse.usask.ca/portal/, University of Saskatchewan Pulse
Crop Research Group) which currently hosts the only publicly available annotated
draft genome of lentil (Sanderson et al. 2011).

4.11.3 Protein and Pathway Databases

Relying on nucleotide sequences alone for homology-based functional annotation of
unknown genes is limited to well-conserved genes which were previously identified
and characterized in closely related species. When these requirements are not met, a
more general approach is needed, based on the conservation of the protein amino acid
sequence, which generally diverges in a slower pace than the nucleotide sequence,
due to selection pressure to preserve the protein’s function.

In addition to its nucleotide collections, NCBI hosts a broad protein database,
named RefSeq, with over 121 million annotated proteins from 84,276 species

https://phytozome.jgi.doe.gov/pz/portal.html
https://bioinformatics.psb.ugent.be/plaza
http://www.gramene.org/
https://www.coolseasonfoodlegume.org/
http://knowpulse.usask.ca/portal/


208 D. Gupta et al.

(Release 90, September 17, 2018), which can be searched against a query sequence.
The European-based Universal Protein Resource (https://www.uniprot.org/), a col-
laboration between EMBL-EBI, the Swiss Institute of Bioinformatics and the Protein
Information Resource, offers a similar computationally-annotated protein database
(TrEMBL), but in addition, a smaller manually curated and reviewed protein collec-
tion (Swiss-Prot), which can be used with high confidence for functional annotations
(TheUniProt Consortium2008). A plant-specific protein annotation project in under-
way at UniProt, to identify protein families unique to plants, which so far includes
39,669 entries from 1,998 species of Viridiplantae.

When a whole-protein approach is still unable to identify a candidate homologous
gene, it is possible to perform homology searches against databases of protein sub-
domains to identify at least some elements of the gene that can be annotated and
associated with a known function. Such search is performed using a profile hidden
Markov model (profile HMM) algorithm and the available databases include the
Protein Family database (http://pfam.xfam.org/) and the all-inclusive InterPro (http://
www.ebi.ac.uk/interpro/, EMBL-EBI) database, which integrates protein families,
domains and functional sites from a diverse range of source databases.

Once a protein or its domains are annotated, its functional role in molecular path-
ways can be depicted from pathway databases such as the Gene Ontologies (http://
www.geneontology.org/), EggNOG (http://eggnogdb.embl.de), the Kyoto Encyclo-
pedia of Genes and Genomes (https://www.genome.jp/kegg/) and Reactome (https://
reactome.org/) databases (GOConsortium 2013; Huerta-Cepas et al. 2016; Kanehisa
et al. 2016; Fabregat et al. 2018). The Plant Reactome (http://plantreactome.gramene.
org/, Gramene project) enables a focused pathway search within the plants kingdom
(Naithani et al. 2017), however, given the generalized nature of the protein-based
approach, and the relatively modest computational resources required compared to
nucleotide-based homology searches, it might be useful not to restrict the search to
a particular phyla.

4.11.4 Gene Expression Databases

The actual function of genes of interest cannot always be inferred based on their
nucleotide and protein sequences and domains, especially if they share little
similarity to known annotated genes. In these cases, it is helpful to observe the
gene’s expression profiles under different environmental and biotic conditions and
relate it to well-described molecular pathways by clustering with other genes who
share similar expression patterns and their role had been previously established.
For this purpose, gene expression databases were developed to collate and com-
bine expression information from multiple species, under multiple experimental
design. As it is for genomic data, the NCBI’s Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/gds) is leading in terms of sheer breadth
of stored data, originating from high-throughput microarray and RNA-Sequencing
experiments (Clough and Barrett 2016). Following closely behind is the Expression

https://www.uniprot.org/
http://pfam.xfam.org/
http://www.ebi.ac.uk/interpro/
http://www.geneontology.org/
http://eggnogdb.embl.de
https://www.genome.jp/kegg/
https://reactome.org/
http://plantreactome.gramene.org/
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Atlas (https://www.ebi.ac.uk/gxa/plant/experiments, EMBL-EBI), which allows
focusing on plant species and offers expression sets of ‘baseline’ and ‘differential’
experiments (Papatheodorou et al. 2018). Additional plant-only gene expression
databases include Plexdb (http://www.plexdb.org), which in addition to plant
species includes expression profiles of common plant pathogens, but unfortunately
it was last updated in 2011 and is now outdated (Dash et al. 2012); and PLANEX
(http://planex.plantbioinformatics.org/), a server offering analysis of co-expressed
genes across plant species, based on the GEO database (Yim et al. 2013). Other
useful resources for species-specific gene expression are the aforementioned model
species genomic portals such as the Arabidopsis Information Resource (https://
www.arabidopsis.org/), the Maize Genetics and Genomics Database (https://www.
maizegdb.org/), SoyBase (https://soybase.org/soyseq/), and others.

As is the case for genomic resources, the vast majority of expression datasets in
all of these databases focus on several model species, while only a single experiment,
containing just 10 lentil samples, was found in NCBI’s GEO (accession GSE11374,
Mustafa et al. 2009). The same challenges exist therefore, when attempting to use
gene expression databases for annotation of lentil genes and they require reliance on
less than ideal datasets of closely related model species such as alfalfa and soybean.

4.11.5 Integration of Different Data

The genomic databases detailed in the previous sections offer different data types and
strategies to query it, but their overarching aim is similar: to annotate and character-
ize genomic features. The abundance of distributed databases which often compete,
however, complicates the annotation efforts. Several web portals were developed to
streamline this process, by bringing together multiple databases and using a com-
mon system to query them, identify genes and smoothly transition results from one
analysis to another.

The Gramene project (http://www.gramene.org/) brings together genome
sequences, gene expression data and pathway databases for a range of crop and
model plant species. In addition to a suite of data accessing and querying tools, the
portal provides a tool to predict the functional consequences of known and unknown
variants uploaded by the user (Tello-Ruiz et al. 2018).

Another web portal, the Legume Information System (LIS; https://legumeinfo.
org/, National Center for Genome Resources), integrates legume genomes, gene
families, protein domains, gene expression data, QTL, and genetic maps; and pheno-
typing data as a one-stop shop for legume researchers. LIS advocates use of common
data templates, formats, schemas, and interfaces to facilitate data acquisition and
analysis across all users and data types (Dash et al. 2016). A continued collaboration
effort toward building genomic resources and capacity for crop legumes, as being
done by KnowPulse, LIS and to a lesser extent the Cool-Season Food Legume Crop
Database, is vital to fill in the gap and equip legume and lentil researchers with tools
for molecular-based breeding methods.

https://www.ebi.ac.uk/gxa/plant/experiments
http://www.plexdb.org
http://planex.plantbioinformatics.org/
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4.12 Conclusion

Lentil gene pools consist of many wild relatives offering resistance to abiotic and
biotic stresses as well as other important agronomic traits. Further, continuous efforts
have been made in the past in cultivated x wild lentil genotype hybridization and
few successful examples are there in which promising efforts were made to transfer
CS targeted traits into cultivated lentils. However, so far, conventional breeding
approaches have helped to utilize the available genetic variability of target traits
within cultivated genepool, resulting in the development of several cultivars of lentil
with tolerance or resistance to biotic and abiotic stresses. Recently, the linkage maps
have provided the basis for development and increase the availability of genetic
markers for genome studies such as the construction of physical mapping and map-
based gene cloning. Limited population size, low heritability, lack of lentil-specific
candidate genes, and nonavailability of genome libraries (BAC/YAC) are the main
limiting factors in lentil genomics and thus reducing the pace of the genome-aided
cultivar development. The access to high-throughput phenotyping and genotyp-
ing, construction of high-density maps with desirable markers and sequencing
technologies are expected to speedup cultivar development with improved CS traits.
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