
A Data Services Composition Approach
for Continuous Query on Data Streams

Guiling Wang1,2(B), Xiaojiang Zuo1, Marc Hesenius3, Yao Xu2,
Yanbo Han1, and Volker Gruhn3

1 Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream Data,
North China University of Technology, No. 5 Jinyuanzhuang Road,

Shijingshan District, Beijing 100144, China
wangguiling@ict.ac.cn

2 Ocean Information Technology Company,
China Electronics Technology Group Corporation (CETC Ocean Corp.),
No. 11 Shuangyuan Road, Badachu Hi-Tech Park, Shijingshan District,

Beijing 100041, China
3 paluno - The Ruhr Institute for Software Technology,

University of Duisburg-Essen, Schützenbahn 70, 45127 Essen, Germany

Abstract. We witness a rapid increase in the number of data streams
due to Cloud Computing, Big Data and IoT development. We would like
to access and share data streams using a data service approach. In this
paper, we propose a flexible continuous data service model and a continu-
ous data service composition algorithm for answering queries across data
streams. Service operation instance is modeled as a view defined on data
streams composed of two parts: a data part and a time synchronization
part. The composition algorithm extends the traditional Bucket algo-
rithm to find the contained rewriting of user query on views satisfying
the containment relationship of both data part and time synchronization
part. We also present use case and experimental studies indicating that
the approach is effective and efficient.

Keywords: Data streams · Query rewriting · Data services
Service composition · Continuous query

1 Introduction

Web services technology is a general medium for sharing data and functionality
and enabling cross-organization collaboration for enterprise and web systems.
Data services [1] or data-providing services [2] are a kind of services that allow
query-like access to an organization’s data sources. Although the existing data
processing framework provides composition models or query languages which
allow us to retrieve desired data from multiple data sources, data services pro-
vide a flexible, controlled and standardized approach to access or query an orga-
nization’s data sources without exposing its databases directly [3]. Furthermore,
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Cai et al. (Eds.): APWeb-WAIM 2018, LNCS 10988, pp. 106–120, 2018.
https://doi.org/10.1007/978-3-319-96893-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96893-3_9&domain=pdf


A Data Services Composition Approach for Continuous Query 107

when queries require to access data sources across organizations, several services
can be composed to generate a response [4–6].

To bring the benefits of data services, we would like to access and share data
streams using a data service approach. However, data streams are very different
from traditional data sources. This makes the problem of data service modelling
and composition challenging for accessing and sharing data streams. Firstly,
unlike traditional snap-shot queries over data tables, queries over data streams
are continuous. A continuous query is issued once and remains active for a long
time. The answer to a continuous query is constructed progressively as new input
stream tuples arrive [7]. Once executed, data services for queries on data streams
need to continuously return results and consider temporal constraints. Secondly,
for queries over multiple data sources, traditional data providing services are
often modeled as parameterized views over data schemas [3,4]. Based on the
service model, services can be composed using a query rewriting approach to
answer queries over multiple data sources [3,4]. Because most of the stream
query language do not support views [7], how to model data services as views
over data streams is not trivial. And because queries for data streams need to be
updated continuously, the traditional query rewriting approach is inapplicable
to rewrite query over data streams directly.

In this paper, we introduce a data service model for continuous query over
data streams, and call it “continuous data services”. Service operation inputs
are not modeled as fixed query conditions. They are arbitrary query conditions
modeled as a set of optional attributes of the underlying data model and condi-
tion predicates. “sliding window” is introduced into the service model to describe
the temporal feature of services. The instance of the service operation can be
modeled as a view defined on data streams. Based on the continuous data service
model, we propose a continuous data service composition algorithm for answering
queries across data streams. It improve the Bucket algorithm [8] for “answering
queries using views” on persistent relation data to find the contained rewriting
by checking the containment relationship between time synchronization part of
the query and the rewriting. We describe an implementation, a use case and
provide a performance evaluation of the proposed approach.

The rest of this paper is organized as follows: In Sect. 2, we motivate the
need for conjunctive queries across data streams, and discuss the underlying
challenges. In Sect. 3, we describe the continuous data service model. In Sect. 4,
we propose the continuous data service composition algorithm. In Sect. 5, we
describe our implementation and evaluate our approach. We overview related
work in Sect. 6. We provide concluding remarks and future research outlook in
Sect. 7.

2 Motivation

In this section, we describe a motivating scenario we use throughout the paper.
Various systems for maritime freight logistics collect data like vessel trajecto-
ries, vessel basic information and so on. Among these data sources, the data



108 G. Wang et al.

stream vesseltraj(mmsi, long, lat, speed) records trajectory points of a ves-
sel, where mmsi is the Maritime Mobile Service Identity, long and lat is the lon-
gitude and latitude of the vessel location, and speed is the vessel’s speed. The
relation data vesselinfo(mmsi, imo, callsign, name, type, length, width,
po-sitionType, eta, draught)records static information of ships including the
mmsi, the International Maritime Organization (imo) code, call sign, name, type,
length, width, the Estimated Time of Arrival (eta), draught of the vessel. The
relation data vesseltravelinfo(mmsi, dest, source) records the destination
and the identification of the position message source.

These systems are subordinate to different management domains and won’t
expose full data access to their data sources directly. They provide access to the
set of services with constraints described in Table 1. The underlying data streams
of DS1 are vesselinfo and vesseltraj. They have constraints that mmsi must
be greater than 3000 and speed greater than 50 km with a time-based sliding
window of window size 5s and slide size 1s. The underlying data streams of DS2
is vesselinfo and vesseltraj. The time window of the stream has window size
5s and slide size 2s. The underlying data stream of DS3 is vesseltraj. This data
stream has constraints that the speed must be less than 40 km with window size
5s and slide size 2s. The underlying data streams of DS4 are vesseltravelinfo
and vesseltraj. This service has constraints that the mmsi must be less than
2000 with window size 5s and slide size 2s. We also express the underlying query
of the services as conjunctive queries extended with time-based sliding window
semantics. Note that join predicates in this notation are expressed by multiple
occurrences of the same variables.

Table 1. Continuous data services in the ocean data query scenario

Service Functionality and constraints Formal expression of the underlying
data streams

DS1 Query on those vessels whose
mmsi number greater than 3000
and speed greater than 50 km
with a time-based sliding window
of window size 5s and slide size 1s

vesselinfo(mmsi, imo, callsign, name,
type, length, width, positionType, eta,
draught), vesseltraj(mmsi, long, lat,
speed), mmsi > 3000, speed ≥ 50 km,
wsize(5), slide(1)

DS2 Query on those vessels with a
time-based sliding window of
window size 5s and slide size 2s

vesselinfo(mmsi, imo, callsign, name,
type, length, width, positionType, eta,
draught), vesseltraj(mmsi, long, lat,
speed), wsize(5), slide(2)

DS3 Query on those vessels whose
speed is less than 40 km with a
time-based sliding window of
window size 5s and slide size 2s

vesseltraj(mmsi, long, lat, speed),
speed < 40 km, wsize(5), slide(2)

DS4 Query on those vessels whose
mmsi number less than 2000 with
a time-based sliding window of
window size 5s and slide size 2s

vesseltravelinfo(mmsi, dest, source),
vesseltraj(mmsi, long, lat, speed),
mmsi < 2000, wsize(5), slide(2)



A Data Services Composition Approach for Continuous Query 109

Those services with sliding window constraints continuously push output to
the service consumer once the consumer creates a connection with the service
producer. The output is the query results in range of the configured window size
that will be updated every slide size. So we call these services “continuous data
services”.

Now assume the following query asks for vessels that have outstanding speed
over a defined sliding window. Note we express the query as conjunctive queries
extended with time-based sliding window semantics. And note that join predi-
cates in this notation are expressed by multiple occurrences of the same variables.

Q(mmsi, draught, dest, speed):-vesselinfo(mmsi, imo, callsign, name,

type, length, width, positionType, eta, draught), vesseltraj(mmsi, long,

lat, speed), vesseltravelinfo(mmsi, dest, source), speed ≥ 40 km,

wsize(5), slide(4)

Obviously service DS3 is not useful to satisfy this query request, because
DS3 has information only on vessels whose speed is less than 40 km whereas
we are interested in vessels which has speed greater than 40 km. Although DS1
is relevant to user query, it only has mmsi information and need to retrieve
destination information by invoking other service like DS4. However, DS1 only has
information on vessels with mmsi greater than 3000, and DS4 has information on
vessels with mmsi less than 2000, meaning DS1 and DS4 are disjoint. So service
DS1 is also not useful to answer this user query. We are left with one possible
plan to use the services to answer this query. Firstly invoke DS2 to retrieve the
list of vessels with a sliding window of window size 5s and slide size 2s. Then
invoke DS4 where mmsi is less than 2000 with a sliding window of window size
5s and slide size 2s. Results from both services are joint to answer Q. Note
that the sliding window constraints of DS2 and DS4 is different, we also need to
judge if the joint results can satisfy the query requirement. Also note that the
results only vessels with mmsi less than 2000, which can satisfy the query is not
equivalent with it. Note in this example, there is only one service composition
plan satisfying the query, but there may be multiple plans in other examples.

3 Model of Continuous Data Service

3.1 Data Model

We use the synchronized relation model for describing the contents of data
stream sources. The data model includes:

– S and �(S). S is a tagged stream with the format of “Tag〈Attrs〉ts”, where
Tag can be either insert (+), update (u), or delete (-) and ts indicates the
time at which the modification takes place. For detailed explanation of what
is a tagged stream, please refer to [7]. Any tagged stream S has a correspond-
ing time-varying relation �(S). The relation is continuously modified by S’s
tuples.



110 G. Wang et al.

– Attrs. Attrs are the attributes of the time-varying relation �(S).
– ts. ts is the time point where the relation �(S) is modified by the underlying
S’s tuples.

– sync. sync synchronized stream is a special tagged stream “+〈timepoint〉ts”,
where timepoint represents a time point which is the only attribute of sync.
Synchronized stream is a kind of tagged stream. So it also has a corresponding
time-varying relation �(sync).

– �sync(S). �sync(S) is a synchronized relation of any arity. Figure 1 illustrates
a synchronized stream of �sync2(Vesseltraj). For traditional persistent data
(e.g. data tables in a database), the tuples are reflected at any time. Here we
denote the synchronized stream associated with the traditional persistent
data as sync0.

Fig. 1. A synchronized stream of �sync2(Vesseltraj)

DataModel of �Sync(S) can be represented as a tuple: 〈Attrs, SyncUnits〉,
where Attrs = {attr} is a set of attributes, SyncUnits is the subscript index of
the synchronization stream sync. For example, the value of SyncUnits is 2 for
sync2, 3 for sync3 and 4 for sync4 etc.

3.2 Continuous Query Containment

Query containment and equivalence provide a formal framework to compare
different queries in a data integration system. In relational databases, a query
Q1 is said to be contained in Q2, denoted by Q1 ⊆ Q2, if and only if Q1(D) ⊆ Q2(D)
for any database instance D. Q1 is equivalent to Q2 if and only if Q1 ⊆ Q2 and
Q2 ⊇ Q1.

In stream processing system, a continuous query over n tagged streams
S1...Sn is semantically equivalent to a materialized view that is defined by a
SQL expression over the time-varying relations �(S1)...�(Sn)[7]. The big dif-
ference between time-varying relations and traditional relations is that the time-
varying relations have arbitrary refresh conditions. The solution is to isolate the
time synchronization streams out of the continuous query expression. Then the
containment relationship is tested from two aspects: (1) test data containment
using traditional query containment test method, and (2) test synchronization
containment.



A Data Services Composition Approach for Continuous Query 111

For example, if we want to check the containment relationship of a query Q
and a data service instance of DS′ like this:

Q(mmsi, draught, dest, speed):-�(T), I, TRAVEL, speed ≥ 40,

(currTime-5) < TS ≤ currTime, sync4

and

QDS′(mmsi, speed, imo):-�(T), I, speed ≥ 30,

(currTime-5) < TS ≤ currTime, sync1

We first test containment of time part of QDS′ and Q. The synchronization
relation part of Q (i.e. �(sync4)) is contained in the synchronization relation
part of QDS′ (i.e. �(sync1)). Because any tuples satisfied by the selection and
projection conditions of Q also satisfied QDS′ , the data part of Q is contained in
data part of QDS′ . We can conclude that Q is contained in QDS′ .

3.3 Continuous Data Service

We model a continuous service as a view defined on the underlying data streams.
Any service subscribes one or multiple data streams or database tables, which
is defined as Subs. Any service has zero to multiple operations in which inputs,
outputs, window range, window slide size should be defined. Input and output
parameters are from the attributes of the underlying synchronized relations cor-
responding with Subs. Every service instance publishes one tagged stream on
message queue.

Such service can be expressed as follows: DS = 〈ID, SubS, PubS, Ops〉, where:

– ID is the unique identity of the service.
– SubS is the stream set of the service subscribed from message queue.
SubS = {〈DSsub, DataConstrs, TimeConstr〉}, where DSsub is a tagged stream
defined in Section II. A Data model 〈Attrs, SyncUnits〉 is corresponding
with a time-varying relations �(DSsub). DataConstrs and TimeConstr are
the constraints applied on content and time of the tagged stream.

– PubS is the stream set of the service published to message queue. PubS =
{〈DSpub, DataConstrs, TimeConstr〉}, where DSpub is a tagged stream. It is
corresponding with a time-varying relation �(DSpub).

– DataConstrs = {DataConstr}, where DataConstr = 〈attr, condop,
constant〉. attr is the attribute of �(DSsub) for SubS and �(DSpub) for
PubS. condop can be one of the condition operator from >, =,<,≥, 	=,≤.
constant is a constant value.

– TimeConstr = 〈range〉, where range is range size of the sliding window of
synchronized relation. Note that tumbling window and hopping window are
both a special form of the sliding window. For tumbling window, range size is
equal to slide size. And for hopping window, range size is a multiple of slide
size.



112 G. Wang et al.

– Ops = {〈inputs, outputs, range, slide〉} is the service operations.
inputs = {input} are a set of attributes of Ssub, the corresponding condition
operator >, =,<,≥, 	=,≤ and constants. outputs = {output} are a set of
output parameters of the service operation. range and slide are the time
constraint of the service request. A SyncSQL expression can be generated
from Ops.

The elements of the input and output set Ops are determined when a service is
instantiated. PubS of a service are also determined when a service is instantiated.

Given a specific user inputs, the service has an associated instance. A service
instance can also be defined as a query view on the underlying time-varying
relations. We use the notation of conjunctive queries extended with synchro-
nization stream to express the view. A data service DS = 〈ID, SubS, PubS, Ops〉
is transformed into a view:

DS(X̄):-�(Ssub1), ...,�(Ssubn), c1, ..., cn, tc, sync1 ∩ ... ∩ syncn

where X̄ is all the attributes from all Ssub elements of SubS, �(Ssubi) are the
underlying time-varying relation corresponding with all the elements of SubS.
Note that not all subscribed streams have data constraints applied on them. If
Ssub1 has no data constraint, we can add a data constraint c on it: -∞ ≤ c ≤ +∞.
Thus all subscribed streams have data constraints represented as c1, ..., cn.
tc is the intersection of all the window range size constraints applied on them.
synci is the synchronization stream applied on �(Ssubi).

A service instance of S = 〈ID, SubS, PubS, Ops〉 can be transformed into a
view like this:

DS(X̄)inst:-�(Ssub1), ...,�(Ssubn), c1, ..., cn, cop1, ..., cops, tc,

sync1 ∩ ... ∩ syncn,∩sync1 ∩ ... ∩ synct

cop1, ..., cops are data constraints from inputs of service operations. sync1∩
... ∩ synct are synchronization stream from the time constraints of service
operations. tc is the intersection of all the window range size constraints applied
on �(Subi) and from service operations.

4 Data Services Composition for Answering Continuous
Query

When services and service instances are transformed into views on time-varying
relations, given a conjunctive query Q, we need to find the service composition
plans to answer it. The problem of answering conjunctive query using views
for traditional persistent data is NP-complete [9]. Bucket algorithm or minicon
algorithm are the approaches to drastically reduce the number of rewritings we
need to consider for a query given a set of views. So we can improve the Bucket
algorithm [8] or MiniCon algorithm [10] to find the service composition plans to
answer query Q. Here we give the improved Bucket algorithm. The main idea of



A Data Services Composition Approach for Continuous Query 113

Bucket algorithm is that we first consider each subgoal in the query in isolation,
and determine which views may be relevant to that subgoal. Thus the number
of query rewritings that need to be considered can be drastically reduced. In
order to support finding relevant continuous data services or service instances, we
improve the Bucket algorithm by adding the synchronization stream containment
judgement and determining the service operation inputs and outputs after the
relevant services are found.

The first step is shown in Algorithm 1. It constructs for each subgoal g in the
query a bucket of relevant service or service instance atoms. In this algorithm,
we check the containment relationship between the query sub-goal and the view
transformed from the service or service instance.

Algorithm 1. Create buckets
Input: conjunctive query Q in two parts:

data part Qd of the form:
Qd(X̄):-�(R1)(X̄1), ...,�(Rn)(X̄n), c1, ...,

cn, tc

synchronization part SyncQ of the form:
SyncQ = Sync1 ∩ ...Syncn;
a set of views V transformed from services S and service instances Sinst;

Output: list of buckets
1: for 1 ≤ i ≤ n do
2: Initialize Bucketi to ∅
3: end for
4: for each subgoal gi in Q do
5: for each V ∈ V do
6: Let V be of the form:

V(Ȳ):-�(S1)(Ȳ1), ...,�(Sm)(Ȳm),

d1, ..., dm, sync1 ∩ ... ∩ syncm ∩ sync1∩
... ∩ synct

7: if �(SyncV) ⊆ �(Syncq) then
8: if gi is an element of subgoals set of V then
9: if each x ∈ Xi is also an element of Ȳ then

10: if the data constraints of V satisfy the data constraints of Q then
11: add V into Bucketi
12: end if
13: end if
14: end if
15: end if
16: end for
17: end for

The second step considers all the possible combinations of services and ser-
vice instances. Each combination should include one of the service or service
instance atoms from every bucket. Generate the candidate composition plans by
checking if each combination is satisfied (if there exists no self-contradictory in



114 G. Wang et al.

the same combination). Keep those plans that is satisfied and delete those that
is unsatisfied.

Algorithm 2. Check whether a candidate plan is equivalent
Input: candidate services and service instances composition plan p(Ȳ);

conjunctive query Q(X̄);
a set of executable equivalent services and/or service instances composition plan
eqCompPlans

Output: the updated result of eqCompPlans
1: Let the set of subgoals of p in the form of goalsOfp, and the subgoals of each plan

eqPlan in eqCompPlans in the form of goalsOfeqPlan
2: Denote the intersection of data constraints of p and Q as D∩ C, where D is the data

constraints set of p and C is the data constraints set of Q
3: Get all of the elements exist in set D ∩ C that don’t exist in set of data constraints

of p, denoted as A = D∩C\D. This set is the additional data constraints that should
be added on p in order to be equivalent to Q

4: if Q ⊆ p then
5: if there exists no plan eqPlan in eqCompPlans satisfying the condition that

goalsOfeqPlan ⊂ goalsOfp then
6: if there exists services (not service instance) in p then
7: for each subgoal g of p do
8: if g is a service then
9: if D ∩ C 
= ∅ then

10: A = genInstance(Ȳ ∩ X̄, A, sync)

11: else
12: genInstance(Ȳ ∩ X̄, ∅, sync)
13: end if
14: end if
15: end for
16: if A = ∅ then
17: delete the redundant plan than p and add p into eqCompPlans

18: end if
19: else
20: if p ⊆ Q then
21: delete the redundant plan than p and add p into eqCompPlans

22: end if
23: end if
24: end if
25: end if

In the example explained in Sect. 2, the returned results contain only ves-
sels with mmsi less than 2000, which is not equivalent with the query. In fact,
the service composition plans that can answer user query can be divided into
two categories: the equivalent composition plans and the contained composition
plans. The former is equivalent with the query and the latter is contained in
the query. There exists a maximally contained composition plan among the con-
tained composition plans. So if a continuous query can be supported by mutiple



A Data Services Composition Approach for Continuous Query 115

composition plans, we can choose the equivalent or maximally contained com-
position plan among the candidates.

The third step searches the equivalent service composition plans or the con-
tained service composition plans. Take the equivalent service composition plan
as the example, the basic idea is to consider each candidate composition plan p,
check if p ≡ Q when there exists no service atom in p. If there exists services and
there exists data constraint atoms C and synchronization constraint atoms sync
such that Q∧C ≡ Q and they can be used as the additional constraints on service
when we instantiate it. The concrete steps for considering each p are shown in
Algorithm 2.

In steps 4 and 20, when we judge the containment relationship between the
plan and query, time synchronization containment relationship is checked first.

In step 5, we check if the equivalent composition plan that is more concise
than the current plan p already exists. If it already exists, the current plan is
abandoned. In steps 10 and 12, we use the additional data constraints A to instan-
tiate a service. A method genInstance(output, dataConstr, timeConstr) is
called to determine the input and output parameters of the service operation.
In this method, the output parameter value is taken as the output parameter
value of the service operation. In step 10, we take additional data constraints in
A as the input parameter values of the service operation. The time constraints of
Q are taken as the time constraints of the service operation. In this method, we
update A with the unsatisfied data constraints and returned. After the loop 7, all
the services in p are instantiated. If the attributes of all the additional data con-
straints are also the data attributes of �(gsub), it means that all the additional
data constraints can be applied on the services, in other words, the services can
satisfy the data constraints after instantiation. Otherwise, the services can not
satisfy the data constraints and the service composition plan is abandoned.

In step 20, if Q ⊆ p, Q ⊇ p and all atoms of p are service instances, delete the
redundant plan than p (in other words, the redundant plan rePlan satisfying
the condition that goalsOfrePlan ⊃ goalsOfp) from the result set and add p
into equivalent result set.

To search the contained composition plan, if Q ⊇ p and all atoms of p are
service instances, add p into equivalent result set directly. If Q is not contained in
p and sub-goals of Q overlap with that of p, and there exist service atoms in p, we
should instantiate the services. Check whether all the additional constraints can
be applied on the services when instantiating them. If they can’t be applied, this
means that the services can not satisfy the data constraints after instantiation,
in other words, the plan is not executable. We omit the pseudo code of this
algorithm for searching contained composition plans due to limited space.

5 Implementation and Evaluation

In this section, we first describe an implementation of our approach. Then we
provide a use case and experimental evaluation.



116 G. Wang et al.

5.1 Implementation

The architecture of our system is shown in Fig. 2. Firstly, relational databases
and data stream sources should be registed and managed. When a query is
posed, the query rewriter module uses the information from service registry to
decide the candidate service composition plan. The service executor module is
responsible for invocation and join/compose the service execution results.

Every service is implemented as a Spark Streaming job. The underlying data
streams are subscribed by the service using Kafka. And the outputs of a service
are published to Kafka, which can be subscribed by later services. For those Web
based clients, we expose continuous data service as REST-like API over HTTP
protocol based on a Web-based push technology - Sever-Sent Events (SSE) [11].
It allows the service to push query results to clients continuously. The client
sends a request to a service and opens a single long-lived HTTP connection.
The service then sends data continuously to the client without further action
from the client.

Fig. 2. Architecture of the implementation.

5.2 Case Study

In this section, we take the example introduced in Sect. 2 as the use case to
introduce how our approach works.

Assume the outputs of Ops of an instance of DS1 are {mmsi, imo} and no
input parameters. range and slide are 5 and 1 separately.

This instance of DS1 can be expressed as:

DS1inst(mmsi, speed, imo):-T(mmsi, long, lat, speed), I(mmsi, imo,
callsign, ...), mmsi > 3000, speed ≥ 50, 5, sync1



A Data Services Composition Approach for Continuous Query 117

In a similar way, the instance of DS2 is:

DS2inst(mmsi, draught, speed):-T(mmsi, long, lat, speed), I(mmsi, imo,
..., draught), 5, sync2

The instance of DS3 can be expressed as follows:

DS3inst(mmsi, speed):-T(mmsi, long, lat, speed), speed < 40, 5, sync2

Assume there is no instance for service DS4, so it is express as:

DS4(mmsi, speed, dest, source, long, lat):-TRAVEL(mmsi, dest,
source), T(mmsi, long, lat, speed), mmsi < 2000, 5, sync2

Query is expressed as Sect. 2. This query has sub-goals �(T), I and TRAVEL.
According to our algorithm, the steps to answer user query are as follows:
In the first step the algorithm creates buckets for each sub-goal of Q. The

contents of bucket for sub-goal �(T) are: DS1inst,DS2inst, and DS4. DS3inst is
not in this bucket because the interpreted predicates of the view and the query
are not mutually satisfiable. The contents of bucket for sub-goal TRAVEL are:
DS4(mmsi, speed, dest, long, ...). The contents of bucket for sub-goal I are:
DS2inst(mmsi, draught, speed).

In the second step of the algorithm, we combine elements from the buckets.
The first combination, involving the first element from each bucket, yields the
rewriting

Q1(mmsi, draught, speed, dest):-DS1inst(mmsi, speed, imo
′
), DS4(mmsi, speed,

dest
′
, long

′
), DS2inst(mmsi, draught, speed)

However, while both DS1inst and DS4 are relevant to the query in isolation,
their combination is guaranteed to be empty because they cover disjoint sets of
vessel identifiers.

Consider the second elements in the left bucket yields the rewriting

Q2(mmsi, draught, speed, dest):-DS2inst(mmsi, draught, speed),

DS4(mmsi, speed, dest
′, lo-ng′, ...), DS2inst(mmsi, draught, speed)

Then we remove the first sub-goal, which is redundant, and generate service
instance with the additional data constraints speed ≥ 40. The output parame-
ters of DS4 instance operation are set to be variables from attributes of the under-
lying data stream which are also in the head of Q, which is mmsi, dest, speed.
The inputs parameters are speed ≥ 40.

So we would obtain Q2, which is the only contained composition plan the
algorithm finds.



118 G. Wang et al.

5.3 Experimental Evaluation

In this section, we give an experimental evaluation of our approach. The goal of
the experimental evaluation is to analyze the factors that affect the performance
of the service composition algorithm.

The service composition algorithm experiments were run on a computer with
Intel(R) Core(TM) i5-2400 CPU 3.10 GHz and 8 GB memory. In order to exper-
imentally evaluate our approach, we generated a set of continuous data services
and service instances. We use three representative queries including the query
example shown in Sect. 2. According to 80/20 rule (also known as Pareto princi-
ple), The method guarantees that the number of services and service instances
that are related to user queries are about 20% of the total services and service
instances generated. For each query, we generated various number of data ser-
vices and data service instances from 100, 200, ... to 500. Figure 3 plots the total
and average time to generate all composition plans for each query against the
number of data sources. We can observe that the average generation time per
composition plan is within 10ms, which is acceptable in real application.

Fig. 3. Total and average time to generate compostion plans.

6 Related Work

Most of the research work on web service composition focus on traditional Effect-
Providing services or application-logic services instead of Data-Providing services
or data services. The traditional application-logic service composition algorithms
are inapplicable and inefficient to data services that all share the same business
function (i.e. data query) and have no side-effects [4].

Data integration approach is often adopted for the purpose of data services
composition. Some use the query rewriting techniques as the composition algo-
rithm [2–5,12]. Others use visual mashup languages or constructs as composition
approach [13,14]. However, the data services model and composition algorithm in
these work are inapplicable to data stream sources and data stream integration.



A Data Services Composition Approach for Continuous Query 119

There are some related research work from data integration area such as Info-
Master [15] and Information Manifold [8]. Our work differs with these works in
many ways. First, these works target toward resolving specific queries given a set
of data sources, whereas in our work the focus is on constructing a composition
of services that is independent of a particular input value. The composite service
can be reused to answer a set of queries instead of a specific queries. Second,
compared to previous query rewriting algorithms [10,16] that were proposed for
the traditional static relational data model, our composition algorithm is based
on data stream model. As far as we know, our continuous data service model is
the first service model to support data stream query and our algorithm is the
first to address the problem of composing continuous data services to support
data stream integration.

There are some related research work on service modeling for data streams
such as [17,18], however, the work cannot be used to solve the problem of query
across various data sources directly. Some work has addressed the problem of
supporting views in data stream management systems [7], however, the work is
limited only to answering specific queries based on a set of data sources. Our work
propose a continuous data service model which provides a flexible, controlled and
standardized approach to access or query data stream. We address data stream
integration problem by providing service composition approach. The composite
service can access a set of conditions as input instead of limiting to answering
specific queries.

7 Conclusion

In this paper, we presented an approach for conjunctive query on data streams by
composing continuous data services. We introduce a flexible continuous data ser-
vice model with continuous query as service operation. Service operation instance
is modeled as a view defined on data streams in which the data part and time
synchronization part are separated from each other. A continuous data service
composition algorithm is introduced for answering queries across data streams.
An experimental study is provided to evaluate the performance of our approach.
As a future work, we plan to address location concerns when composing contin-
uous data services.

Acknowledgments. This work is supported by Beijing Natural Science Foundation
No. 4172018, National Natural Science Foundation of China No. 61672042, and Uni-
versity Cooperation Projects Foundation of CETC Ocean Corp.

References

1. Carey, M.J., Onose, N., Petropoulos, M.: Data services. Commun. ACM 55(6),
86–97 (2012)

2. Vacuĺın, R., Chen, H., Neruda, R., Sycara, K.: Modeling and discovery of data
providing services. In: 2008 IEEE International Conference on Web Services, pp.
54–61, September 2008



120 G. Wang et al.

3. Barhamgi, M., Benslimane, D., Ouksel, A.M.: Composing and optimizing data
providing web services. In: Proceedings of the 17th International Conference on
World Wide Web, pp. 1141–1142. ACM (2008)

4. Barhamgi, M., Benslimane, D., Medjahed, B.: A query rewriting approach for web
service composition. IEEE Trans. Serv. Comput. 3(3), 206–222 (2010)

5. Zhou, L., Chen, H., Yu, T., Ma, J., Wu, Z.: Ontology-based scientific data ser-
vice composition: a query rewriting-based approach. In: AAAI Spring Symposium:
Semantic Scientific Knowledge Integration, pp. 116–121 (2008)

6. Zhang, F., Wang, G., Han, Y.: Automatic generation of service composition plans
for correlated queries. In: 2013 10th Web Information System and Application
Conference, pp. 143–149, November 2013

7. Ghanem, T.M., Elmagarmid, A.K., Larson, P.Å., Aref, W.G.: Supporting views in
data stream management systems. ACM Trans. Database Syst. 35(1), 1–47

8. Levy, A.Y., Rajaraman, A., Ordille, J.J.: The world wide web as a collection of
views: query processing in the information manifold. In: VIEWS, pp. 43–55 (1996)

9. Doan, A., Halevy, A., Ives, Z.: Principles of Data Integration, 1st edn. Morgan
Kaufmann Publishers Inc., San Francisco (2012)

10. Pottinger, R., Halevy, A.: MiniCon: a scalable algorithm for answering queries
using views. Int. J. Very Large Data Bases 10(2–3), 182–198 (2001)

11. Hickson, I.: Server-sent events. https://www.w3.org/TR/eventsource/. Accessed
25 October 2015

12. Zhao, W., Liu, C., Chen, J.: Automatic composition of information-providing web
services based on query rewriting. Sci. China Inf. Sci. 55(11), 2428–2444 (2012)

13. Wang, G., Yang, S., Han, Y.: Mashroom: end-user mashup programming using
nested tables. In: Proceedings of the 18th International Conference on World Wide
Web, pp. 861–870. ACM (2009)

14. Han, Y., Wang, G., Ji, G., Zhang, P.: Situational data integration with data services
and nested table. Serv. Oriented Comput. Appl. 7(2), 129–150 (2013)

15. Genesereth, M.R., Keller, A.M., Duschka, O.M.: Infomaster: an information inte-
gration system. SIGMOD Rec. 26(2), 539–542 (1997)

16. Levy, A.Y., Rajaraman, A., Ordille, J.J.: Querying heterogeneous information
sources using source descriptions. In: Proceedings of the 22th International Confer-
ence on Very Large Data Bases. In: VLDB 1996, pp. 251–262. Morgan Kaufmann
Publishers Inc., San Francisco (1996)

17. Han, Y., Liu, C., Su, S., Zhu, M., Zhang, Z., Zhang, S.: A proactive service model
facilitating stream data fusion and correlation. Int. J. Web Serv. Res. (IJWSR)
14(3), 1–16 (2017)

18. Gil, D., Ferrández, A., Mora-Mora, H., Peral, J.: Internet of things: a review of
surveys based on context aware intelligent services. Sensors 16(7), 1069 (2016)

https://www.w3.org/TR/eventsource/

	A Data Services Composition Approach for Continuous Query on Data Streams
	1 Introduction
	2 Motivation
	3 Model of Continuous Data Service
	3.1 Data Model
	3.2 Continuous Query Containment
	3.3 Continuous Data Service

	4 Data Services Composition for Answering Continuous Query
	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Case Study
	5.3 Experimental Evaluation

	6 Related Work
	7 Conclusion
	References




