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Abstract. Sketch is a probabilistic data structure designed for the estimation of
item frequencies in a multiset, which is extensively used in data stream pro-
cessing. The key metrics of sketches for data streams are accuracy, speed, and
memory usage. There are various sketches in the literature, but most of them
cannot achieve high accuracy, high speed and using limited memory at the same
time for skewed datasets. Recently, two new sketches, the Pyramid sketch [1]
and the OM sketch [2], have been proposed to tackle the problem. In this paper,
we look closely at five different but important aspects of these two solutions and
discuss the details on conditions and limits of their methods. Three of them,
memory utilization, isolation and neutralization are related to accuracy; the other
two: memory access and hash calculation are related to speed. We found that the
new techniques proposed: automatic enlargement and hierarchy for accuracy,
word acceleration and hash bit technique for speed play the central role in the
improvement, but they also have limitations and side-effects. Other properties of
working sketches such as deletion and generality are also discussed. Our dis-
cussions are supported by extensive experimental results, and we believe they
can help in future development for better sketches.
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1 Introduction

Estimating the frequency of each item in a multiset is one of the most classic tasks in
data stream applications. In many networking scenarios such as real-time IP traffic, IP
phone calls, videos, sensor measurements, web clicks and crawls, massive amount of
data are often generated as high-speed streams [3, 4], requiring servers to process such
stream in a single-pass [5]. Calculating exact statistics (e.g., using hash tables) is often
impractical, because the time and space overhead of storing the whole data stream is
too high. Therefore, it is popular and widely accepted to estimate the frequencies of
each item by the probabilistic data structure [6–8].

Sketches are a family of probabilistic data structure designed for the estimation of
item frequencies in data streams [9, 10], which is extensively used in data stream
processing. They use counters to store frequencies and have two primary operations:
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insertion and query. By using multiple hash functions, sketches summarize massive
data streams within a limited space, which means there might be two or more items
sharing the same counter(s). Sketches can also be applied to other fields, such as
compressed sensing [11], natural language processing [12], and data graph [13].

Conventional sketches (CM sketch [7], CU sketch [14], Count sketch [8], and
Augmented sketch [6]) use a number of counters of fixed size. The size needs to be
large enough to accommodate the highest frequency. However, according to the lit-
eratures [6] and confirmed by our experiments on real datasets, the items in real data
streams often have unbalanced distribution, such as Zipf [15] or Power-law [16]. This
means that most items have low frequency (called cold items), while a few items have
high frequency (called hot items). Such data streams are often called skewed data
streams. Therefore, the high-order bits in most counters of conventional sketches are
wasted, as hot items are much fewer than cold items in real data streams. This kind of
memory inefficiency reduces the number of counters, causing the accuracy of the
conventional sketches to drop drastically. Besides, conventional sketches cannot per-
fectly catch up with the high speed of data streams because they need three or more
hash computations and memory accesses for each insertion or query. Overall, con-
ventional sketches fall short handling skewed data streams, and the goal of this paper is
to discuss how to design better sketches for this matter.

Two novel sketches have been proposed recently, the Pyramid sketch [1] and the
OM sketch [2], which can achieve both high accuracy and high speed using limited
memory, especially for skewed data streams. These two sketches bring new ideas that
are specifically designed for skewed data. For example, automatic enlargement and
hierarchy can greatly improve the accuracy when summarizing skewed datasets, and
word acceleration and hash bit technique can significantly improve the speed for each
insertion or query operation. However, we found that many aspects need to be further
considered when using these techniques, therefore in this paper we will discuss the
strategies of automatic enlargement, the side-effect of hierarchy, the use conditions of
word acceleration and hash bit technique. Furthermore, we found that there are two
other aspects to improve accuracy, which are barely scratched in the original papers [1,
2]. We name these two methods as isolation and neutralization. The usage of them
depends on the specific target application scenario. Moreover, when designing the
sketch, other requirements and constraints brought by the target application scenario
should also be considered, such as deletion and generality [17]. These are also dis-
cussed in this paper.

Our contributions can be summarized as follows.

• We sort out five important aspects to design an accurate and fast sketch for skewed
data streams. Three of them, memory utilization, isolation, and neutralization are to
help improve accuracy, and the other two: memory access and hash computation are
important for speed. Their role in an effective and efficient solution are analyzed.

• The specific methods proposed from the latest work [1, 2] are discussed in details,
including the strategies of automatic enlargement, the side-effect of hierarchy, the
usages of isolation and neutralization, the use conditions of word acceleration and
hash bit technique. We also discuss the deletion and generality of the sketch. These
discussions will help better understanding and further utilization of these new ideas.
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2 Related Work

2.1 Conventional Sketches

Typical sketches include CM sketch [7], CU sketch [14], Count sketch [8], and
Augmented sketch [6]. A CM sketch consists of d arrays: A1. . .Ad , and each array
consists of w counters. There are d hash functions, h1. . .hd , in the CM sketch. When
inserting an item e, the CM sketch first computes the d hash functions and locates the
d counters: A1 h1 eð Þ½ �. . .Ad hd eð Þ½ �. Then it increases all the d hashed counters. When
querying an item e, the CM sketch reports the minimum of the d hashed counters as the
estimated frequency of this item. The CU sketch has a slight but effective modification
to the CM sketch, that is, conservative update. It only increases the smallest one(s)
among the d hashed counters during insertions while the query process keeps
unchanged. The Count sketch is similar to the CM sketch except that each array uses an
additional hash function to smooth the accidental errors. The Augmented sketch aims
to improve the accuracy by using one additional filter to dynamically capture hot items,
suffering from complexities, slow insertion and query speed. Among these sketches,
the CU sketch achieves the best performance in terms of both accuracy and speed.
More sketches are detailed in the survey [18].

Unfortunately, the sketches above have two shortcomings for skewed data streams:
(1) the accuracy is poor when using limited memory; (2) requiring multiple memory
accesses and hash computations for each insertion or query thus slow the speed.

2.2 The OM Sketch

The key techniques of OM sketch are hierarchical counter-sharing, word acceleration
and fingerprint check.

As shown in Fig. 1, the OM sketch is organized as a two-layer structure in which
the high layer possesses less memory. The low layer with small counter sizes mainly
records the information of cold items, while the high layer with relatively large counter
sizes mainly records the information of hot items. When one or more counters overflow
at the low layer, the OM sketch uses the high layer to record its number of overflows.
Based on this structure, the OM sketch significantly improves the memory efficiency,
thus improving accuracy. Moreover, the OM sketch constrains the hashed counters
within one or several machine words by using the word acceleration technique. It also

Fig. 1. Basic structure of OM sketch.
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leverages the hash bit technique [19] to locate multiple hashed counters within one or
several machine words at each layer through a 64-bit hash value by one hash function.
Therefore, the OM sketch achieves close to one memory access and one hash com-
putation for each insertion or query. Besides, the OM sketch records the fingerprints of
the overflowed items in their corresponding machine words at the low layer in order to
distinguish them from non-overflowed items during queries.

Insertion: When inserting an item, the OM sketch first computes the low layer hash
function to locate the low layer hashed counters, and then increases the smallest
counter(s). This method makes the low layer counters of each item always overflow
concurrently. If an item overflows, the OM sketch first sets all its low layer hashed
counters to zero, and then uses the fingerprint technique to distinguish it from
non-overflowed items. Finally, the OM sketch computes the high layer hash function to
locate the high layer hashed counters and increases the smallest counter(s).

Query: When querying an item, the OM sketch first gets the value of the smallest
hashed counter(s) at the low layer, denoted by Vl. Then it checks if the item overflows.
If it is, the OM sketch queries the high layer and gets the value of the smallest hashed
counter(s) at the high layer, denoted by Vh. The OM sketch returns Vl þVh � 2dl as the
estimated size of the item, and dl is the counter size at the low layer.

2.3 The Pyramid Sketch

The key techniques of the Pyramid sketch are counter-pair sharing, word acceleration
and Ostrich policy.

As shown in Fig. 2, the Pyramid sketch employs a pyramid-shaped data structure.
The ith layer Li is associated with the iþ 1th layer Liþ 1 in the following way: the left
child counter and the right child counter at Li are associated with the parent counter at
Liþ 1. When the child counter overflows, the Pyramid sketch uses its parent counter to
record its number of overflows. In Pyramid sketch, the first layer is composed of pure
counters, only used for recording frequencies. The other layers are composed of hybrid
counters, which can be split into three parts: the left flag, the counting part and the right

Fig. 2. Basic structure of Pyramid sketch.

78 S. Sun and D. Li



flag. The flag parts indicate whether its child counters are overflowed. Based on this
counter-pair sharing technique, the Pyramid sketch dynamically assigns the appropriate
number of bits for different items with different frequencies, thus improving the
memory efficiency. Like OM sketch, the Pyramid sketch uses word acceleration and
hash bit technique to improve its speed.

The Pyramid sketch can be applied to conventional sketches (CM, A, C and CU),
and the results are denoted as Pcm, Pa, Pc and Pcu. It uses a novel strategy, Ostrich
policy, to improve the insertion speed of sketches that need to know the values of the
d mapped counters during each insertion. Here, we take Pcu as an example. The key
idea of Ostrich policy is ignoring the second and higher layers when getting the values
of the d mapped counters, only increases the smallest first layer counter(s).

Insertion: When inserting an item, the Pyramid sketch first computes the hash func-
tion to locate the hashed counters at layer L1. Different sketches will perform different
increase operations on these counters. If any of the counters overflows, the Pyramid
sketch sets the counter to zero, and assigns its parent counter according to its index.
Then, the left/right flag of its parent counter will be set to 1. These operations are called
carryin. The Pyramid sketch repeats the carryin operation at layer L2, and the operation
will be performed layer by layer until there is no overflow.

Query: When querying an item, the Pyramid sketch first locates the hashed counters at
the first layer, and then gets the values of the d mapped counters by accumulating the
values of corresponding counters of each layer. Finally, the Pyramid sketch produces
the query output based on the specific sketch under use.

3 Analysis and Discussion

In this section, we will discuss from five different aspects on how to design an accurate
and fast sketch for skewed data streams. We use the OM sketch and the Pyramid sketch
as latest examples, discussing their methods handling these important aspects. At the
end of this section, we will discuss two more aspects, namely the support for deletion
and generality. Depending on the target scenarios they might also become as important
as the former ones.

3.1 Accuracy Improvement of Sketch for Skewed Datasets

Accuracy is one of the most important indicators of the sketch. We can try tackle the
problem from three different aspects: (1) higher memory utilization, (2) isolation, and
(3) neutralization to improve the accuracy of the sketch. In the following we will
discuss the solutions from the literatures and our findings.

Improvement of Memory Utilization
Improvement of memory utilization means increasing the number of counters in the
same memory, so as to reduce the probability of collision. Automatic enlargement and
hierarchy are techniques that can be used to improve memory utilization.
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Automatic Enlargement Technique
In the process of the automatic enlargement, it’s unnecessary to allocate enough bits to
each counter in advance. When the counter overflows, the sketch enlarges the initial
counter space automatically. In view of the characteristics of skewed data streams, this
technique can greatly improve memory utilization of the sketch.

When using the automatic enlargement technique, the enlargement strategy
depends on the type of counter overflows. There are two types of overflows, one is
called simultaneous overflow and the other is called non-simultaneous overflow.
Simultaneous overflow means that all counters of an item overflow at the same time,
and needs only one enlargement, while non-simultaneous overflow means that not all
counters of an item overflow at the same time, so multiple enlargements are often
necessary. What’s more, if the initial counter space is separated from its enlarged space,
during the automatic enlargement, the non-simultaneous overflow needs to establish
the corresponding relationship between each initial counter space and its enlarged
space, otherwise the sketch cannot be queried. However, it is unnecessary to do so for
the simultaneous overflow. When querying an item, the sketch only needs to query the
two spaces separately. Compared to the non-simultaneous overflow, the simultaneous
overflow has fewer enlargements and relatively simpler enlargement strategy. How-
ever, realizing simultaneous overflow needs to design specific insert operations, which
may require extra cost, such as some trade-offs of performances.

Both the OM sketch and the Pyramid sketch adopt automatic enlargement tech-
nique. For the OM sketch, it only increases the smallest counter(s) during insertion,
thus achieving simultaneous overflow. For the Pyramid sketch, the insert operations
depend on the sketch under use. Counters of an item cannot be guaranteed to overflow
at the same time. Therefore, the Pyramid sketch is a non-simultaneous overflow.
Besides, the initial counter space of the OM sketch and Pyramid sketch is separated
from its enlarged space. The automatic enlargement strategy of OM sketch is to use
another hash function to enlarge the space for all the overflowed counters. When
querying an item, the OM sketch locates the counters of each space by two hash
functions. The automatic enlargement strategy used in the Pyramid sketch is index
calculation, which is to establish the relationship between the initial counter space and
its enlarged space. When querying an item, the parent counters are located through the
indices of their child counters. Specific insert operation lets the OM sketch achieve
simultaneous overflow, simplifying the automatic enlargement strategy. Meanwhile, it
also makes the OM sketch isolate items, which further improve the accuracy (will be
described later). However, the cost is that the OM sketch cannot support deletion.

Hierarchical Structure
Considering the characteristics of skewed datasets, the higher frequency of an item is,
the less proportion it occupies. Thus, we can design the sketch as a hierarchical
structure. For example, lower layers have smaller size but a larger number of counters,
while higher layers have larger size but a smaller number of counters. The hierarchical
structure increases the number of counters, thus improving the memory utilization. The
more the number of layers, the higher the accuracy of the sketch. However, hierarchy
has a side-effect, which cannot be ignored. With the increase of the number of layers,
the number of memory accesses will be increased, which can slow insertion and query

80 S. Sun and D. Li



speed. Therefore, when using hierarchy technique, the number of layers of the sketch is
selected based on a tradeoff between accuracy and speed.

Both the Pyramid sketch and the OM sketch adopt the hierarchy technique. The
Pyramid sketch is a multi-layer pyramid-shaped structure, while the OM sketch is a
two-layer trapezoid structure. As mentioned earlier, there is a corresponding relation-
ship between the initial counter space and its enlarged space in the Pyramid sketch. If
one child counter monopolizes to one parent counter, massive memory waste will be
caused because of the characteristics of skewed datasets. Therefore, the Pyramid sketch
lets two child counters share one parent counter in order to improve the memory
utilization. With this corresponding relationship, the Pyramid sketch gradually forms a
pyramid type. Using a multi-layer structure rather than a two-layer structure like the
OM sketch is to further increase the memory utilization. However, this hierarchical
structure will slow the insertion and query speed of the Pyramid sketch.

To design the OM sketch as a two-layer structure is a tradeoff between accuracy and
speed. For the OM sketch, the characteristics of the low layer counters conform to the
characteristics of low frequency items, whose sizes are small and numbers are large,
while the characteristics of the high layer counters conform to the characteristics of the
intermediate and high frequency items, whose sizes are large and numbers are small. In
skewed data streams, the vast majority of items are the low frequency items. Therefore,
dividing into two layers can significantly improve the memory utilization of the OM
sketch. The more the layers, the lower the accuracy. Thus, the OM sketch is designed as
a two-layer structure.

Isolation
Improvement of memory utilization is to improve accuracy by reducing hash collisions
between items. In addition to reducing hash collisions, we can limit the range of hash
collisions to reduce the collisions between items of different frequency segments. For
example, we can isolate the low, intermediate and high frequency items in the sketch, so
that the collisions occur only within these frequency segments but not cross. This
method reduces the impact of high frequency items on intermediate and low frequency
items, and the impact of intermediate frequency items on low frequency items, thus
improving the accuracy. Besides, we can design the sketch according to specific
requirements and application scenarios. For example, in some scenarios (e.g., NLP), the
accuracy of low frequency items is very important. Thus, we can design corresponding
sketches to improve the accuracy of low frequency items, and the accuracy of inter-
mediate and high frequency items can be relaxed appropriately.

As mentioned earlier, the simultaneous overflow makes the OM sketch isolate
items. This is because it is unnecessary for the simultaneous overflow to establish the
relationship between the initial counter space and its enlarged space. The low layer of
the OM sketch plays a role of filtering all low frequency items, so only the intermediate
and high frequency items can get into the high layer. Therefore, the impact of inter-
mediate and high frequency items on low frequency items is reduced. The accuracy of
low frequency items can be greatly improved. The Pyramid sketch does not isolate
items. Its child counters are bound to their corresponding parent counter. The low
frequency items that collide with the intermediate and high frequency items at the lower
layer will also get into the higher layer. Therefore, the estimated frequencies of low
frequency items are still affected by the intermediate and high frequency items.
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Neutralization
The evaluation indices of accuracy can be divided into under-estimation rate, correction
rate and over-estimation rate. There are different requirements for them in different
application scenarios. We can improve the accuracy of the sketch by using specific
application features. For example, if the application scenario allows the sketch have
under-estimation error, a small amount of under-estimation error can be introduced to
neutralize part of the over-estimation-error and improve the correction rate. Since the
estimated frequency is already larger than the real frequency in many cases, a little
under-estimation can improve the overall accuracy. However, if the target application
scenario does not allow under-estimation-error, this method will not work. All sketches
with under-estimation error will not be applicable to such scenarios. Therefore, this
neutralization method is related to the tolerance of under-estimation-error, depending
on specific application scenario.

The OM sketch has under-estimation error, which can improve a bit of accuracy.
The cause of under-estimation is that when counters overflowed, the OM sketch set all
these counters to zero. For the Pyramid sketch, if conventional sketch has under-
estimation-error or over-estimation-error, then its corresponding Pyramid sketch will
also have it, otherwise it will not. However, there is a special case, Pcu sketch. Since
the Pcu sketch uses Ostrich strategy, each insertion does not necessarily increase the
smallest hashed counter(s), resulting in a little under-estimation. However, this under-
estimation neutralizes part of over-estimation. Thus, in the original paper [2], the
experimental results show that Ostrich policy can help improve accuracy. Neither the
OM sketch nor the Pcu sketch can be applied to the scenarios that do not allow
under-estimation error.

3.2 Insertion and Query Speed Improvement of Sketch

Another important indicator of the sketch is speed. The speed is mainly related to the
number of memory accesses and the number of hash calculations required for each
insertion and query. Therefore, there are two ways to improve the speed, and in the
following discussions we will reference two methods: (1) word acceleration and
(2) hash bit technique as representing examples.

Reduction in the Number of Memory Accesses
For conventional sketches, the number of memory accesses for each insertion or query
is the same as the number of counters assigned for each item, usually more than three.
Since the counter size of conventional sketches is usually large (e.g., 16 bit), it is
difficult to reduce the number of memory accesses. However, if we use certain tech-
niques to make the counter size smaller, we can constrain the counters of one item
within one or several machine word to reduce the number of memory accesses for each
insertion or query. This is called word acceleration, which use condition is that the
counter size should be relatively smaller. In modern CPUs, a machine word is usually
64 bits in width. In the GPU architecture, the size of a machine word is much larger.
Therefore, one machine word on CPU or GPU can typically contain a reasonably large
number of small counters.
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The hierarchical structure of the Pyramid sketch and the OM sketch increases the
number of memory accesses. However, this structure makes their counters size smaller,
so that both of them can use word acceleration.

The OM sketch constrains the hashed counters of the low layer within one machine
word and the hashed counters of the high layer within two machine words, and scatters
these counters over these machine words evenly. As real data streams are skewed, the
probability of accessing the high layer for each insertion and query is very small (e.g.,
1/20). Therefore, the average number of memory accesses for each insertion and query
is close to 1 (e.g., 1 + 1/20 � 2 = 1.1). The Pyramid sketch constrains the hashed
counters of each layer within one machine word. Most of the insertions only access the
first layer (the Ostrich strategy also makes Pcu so). Therefore, the average number of
memory accesses for each insertion is close to 1, which has been proved in the original
paper [1]. However, for queries, the number of memory accesses depends on the
frequency of queried item. The higher frequency of queried item, larger number of
layers to be accessed and larger number of memory accesses. Therefore, although the
Pyramid sketch adopts word acceleration technique, it does not make great improve-
ment in reducing the average number of memory accesses for queries.

Reduction in the Number of Hash Computations
For conventional sketches, the number of hash calculations for each insertion or query
is also the same as the number of counters assigned for each item. This is because the
size of the counter address is usually large. Thus, one counter can only be positioned by
one hash function. However, if we use certain techniques to make the address size
smaller, we can use fewer hash functions to locate the counters. For example, if we
have adopted the word acceleration to constrain the hashed counters within one or
several machine words, the address size of these counters can be shortened. We can
leverage the hash bit technique from the literature [19] to reduce the number of hash
computations. The key idea is that split one hash value into several bit arrays to locate
one or several machine words and offsets of counters in the corresponding machine
words. In this way, we can use only one hash computation to handle a sketch which
originally required multiple hash computations.

Both OM sketch and Pyramid sketch use hash bit technique. The OM sketch uses
hash bit technique at each layer. Supposing the probability of accessing the high layer
is 1/20, the average number of hash computations for each insertion or query is close to
1 (e.g., 1 + 1/20 � 1 = 1.05). The Pyramid sketch only uses hash function and hash bit
technique at the first layer. Counters of other layers are located by the index of the first
layer counters. Therefore, for the Pyramid sketch, the average number of hash com-
putations for each insertion or query is 1, achieving one hash computation.

3.3 Other Related Aspects

In addition to accuracy and speed, there are also other important properties that need to be
considered in the designing of sketch. Here we will discuss a bit on two of them: the
support for deletion and the support for generality, which are actually considered in [1, 2].

Deletion: In some application scenarios, the sketch is required to support deletion
[18]. If the insert operation is always reversible throughout the use of the sketch,
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the sketch can support deletion, and the delete operation is the inverse operation of
insertion. For example, the insert operation of the CM sketch is to plus 1, then its delete
operation is to subtract 1. Therefore, to make the sketch support deletion, we should
design a reversible insert operation. The insert operation of the OM sketch is the same
as that of the CU sketch, and neither of them supports deletion.

Generality: If the goal of a sketch is to solve a common problem for all sketches, it
can be applied to all sketches to improve the target performance of them. We say such a
sketch has generality. If the design goal of a sketch is to enhance one or more per-
formances and cannot be applied to all sketches, such sketch has no generality.
However, sketches that have no generality are more targeted, thus may be more sig-
nificant to improve the target performances. The OM sketch sacrifices generality, but
brings more significant accuracy and speed.

4 Experimental Result

4.1 Metrics

Average Absolute Error (AAE): AAE is defined as 1
Nj j
PN

i¼1 fi � f̂i
�
�

�
� where fi is the

real frequency of the ith item, f̂i is the estimated frequency of this item, and N is the total
number of distinct items in the query set.

Average Relative Error (ARE): ARE is defined as 1
Nj j
PN

i¼1 fi � f̂i
�
�

�
�
�
fi.

Under-Estimation Rate (UER): UER is defined as Nunder=N where Nunder is the
number of distinct items whose estimated frequency is less than its real frequency.

Correct Rate (CR): CR is defined as Nacc=N where Nacc is the number of distinct
items whose estimated frequency equals to its real frequency.

Over-Estimation Rate (OER): OER is defined as Nover=N where Nover is the number
of distinct items whose estimated frequency is larger than its real frequency.

Throughput: We simulate how sketches actually insert and query on CPU platform
and calculate the throughput using mega-instructions per second (Mips).

4.2 Experimental Setup

We use the real IP trace from the main gateway at our campus. The estimation of item
frequency corresponds to the estimation of the number of packets in a flow. The
number of packets of the trace is 10M and the number of distinct flows is around 1M.

We implement the sketches of CM, CU, C, A, OM sketch and Pyramid sketch in C++.
For the four conventional sketches, we set the counter size to 16 bits and the number of
arrays to 4. Other experimental settings are the same as the original paper [1, 2]. In all our
experiments, unless noted otherwise, the memory size of each sketch is 1 MB by default.
We performed all the experiments on amachinewith 2-core CPUs (2 threads, Pentium(R)
Dual-Core CPU E5800 @3.2 GHz) and 4 GB total DRAM memory.

84 S. Sun and D. Li



4.3 Performance of Different Sketches

The experiment results of Figs. 3 and 4 show that the AAE and ARE of the OM sketch
and the Pyramid sketch are much smaller than those of the conventional sketches. The
experiment results of Figs. 5 and 6 show that the insertion and query throughput of the
OM sketch and the Pyramid sketch are much higher than those of the conventional
sketches. We can see that by using automatic enlargement and hierarchy to improve
accuracy and by using word acceleration and hash bit technique to improve speed, the
OM sketch and the Pyramid sketch achieve a much better performance than the
state-of-the-art in terms of both speed and accuracy.

From the experiment results, we find that in Pyramid versions, Pcu sketch achieves
the highest accuracy and speed. Furthermore, the accuracy and speed of Pcu sketch is
the closest to that of the OM sketch. Besides, the increase operation of the OM sketch is
the same as the Pcu sketch and CU sketch. Therefore, in the following experiments, we
use the Pcu sketch as an example of Pyramid sketch, and compare the performances of
the CU sketch, Pcu sketch and OM sketch.
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4.4 Performances of CU, Pcu and OM Sketch

AAE and ARE
Figures 7 and 8 plots the AAE and ARE of three different sketches on different
memory sizes increasing from 0.40 MB to 2.00 MB with a step of 0.20 MB. Our
experimental results show that the AAE and ARE of the Pcu sketch and the OM sketch
are always lower than those of the CU sketch.

Besides, we find that the ARE of the OM sketch is always lower than that of the
Pcu sketch. As mentioned in the Sect. 3.1, the OM sketch uses the isolation method of
filtering all low frequency items at the low layer, improving the accuracy of low
frequency items. The accuracy of low frequency items has the greatest impact on ARE.
Thus, the ARE of the OM sketch can be improved. Meanwhile, the Pyramid sketch
does not use the isolation method, and the estimated frequencies of low frequency
items are still affected by the intermediate and high frequency items. Therefore, its
ARE is always lower than that of the OM sketch. Our experimental results have proved
that isolation can help improve the accuracy of the sketch.

Under-Estimation Rate, Correct Rate and Over-Estimation Rate
Figures 9, 10 and 11 plots the under-estimation rate, correct rate and over-estimation
rate of three different sketches on different memory sizes increasing from 0.10 MB to
2.00 MB with a step of 0.40 MB. Our experimental results show that expect the CU
sketch, both the Pcu sketch and the OM sketch have under-estimation. The under-
estimation rate of the OM sketch is about 4.33 times higher than that of the Pcu sketch.
The correct rate of the OM sketch is about 1.26 and 8.83 times higher than those of the
Pcu and CU sketch. And the over-estimation rate of the OM sketch is about 1.27 and
1.64 times lower than those of the Pcu and CU sketch.

The experimental results show that the higher under-estimation rate, the lower
over-estimation rate and the higher correct rate. As mentioned in Sect. 3.1, a small
amount of under-estimation-error can be introduced to neutralize part of the
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over-estimation-error and improve the correction rate. Our experimental results have
well proved the neutralization method indeed improve the overall accuracy.

Speed
Figures 12 and 13 plots the insertion throughput and query throughput of different
sketches on different memory sizes increasing from 0.40 MB to 2.00 MB with a step of
0.20 MB. Our experimental results show that the speed of the Pcu sketch and the OM
sketch is always higher than that of the CU sketch. The insertion throughput of the OM
sketch is about 1.18 and 3.39 times higher than those of the Pcu and CU sketch. The
query throughput of the OM sketch is about 1.71 and 4.23 times higher than those of
the Pcu and CU sketch.

From the experimental results, we find that the Pcu sketch can significantly improve
the insertion throughput but cannot greatly improve the query throughput. As men-
tioned in the Sect. 3.2, the OM sketch employs two-layer structure and uses word
acceleration technique, so that can achieve close to one memory access for each
insertion and query. For the Pyramid sketch, although it also uses word acceleration
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technique, the hierarchical structure still highly affects the number of memory accesses
for each query. Our throughput experimental results have well proved our viewpoint
that the hierarchy technique can slow the insertion and query speed and is more
significant to slow the query speed.

Generality
The experimental results above show that the performances of the OM sketch are better
than the Pyramid sketch in terms of both speed and accuracy. As mentioned in
Sect. 3.3, the sketch that does not have generality is more targeted, and may be more
significant to improve the target performances. Thus, our experimental results have
well proved our analysis and discussion on Generality.

5 Conclusion

Sketches have been applied to many fields. In this paper, we sort out five important
aspects in improving the accuracy and speed of sketch for skewed data streams with
limited memory. We provide detailed discussions on the positive and negative effects
of typical and latest methods from different aspects on the performances of the sketch.
Two other properties of the sketch such as deletion and generality are also discussed.
Generally, although the purpose of these aspects are somehow orthogonal to each
other, the methods handling them may have effects on more aspects and need more
thorough considerations with their limitations and side-effects. Experimental results
demonstrate the validity and extendibility of our discussions. We believe our paper can
be a good help to the future study of the accurate and fast sketches.
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