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Abstract. With the popularity of Location-based Services, LBS
providers have been obtaining more data, by analyzing which they
may infer users’ real locations and patterns of behavior. Unfortunately,
most previous schemes using k-anonymity can hardly resist such fiercer
side information-based privacy attacks. To address existing problems,
we design a novel metric to accurately measure the resulted privacy
level. Additionally, Dual Cloaking Anonymity (DCA) and enhanced-DCA
(enDCA) algorithms, which are based on our metric, are also proposed.
The former (DCA) constructs a k-anonymity set via carefully selecting
k-1 users according to various query probabilities of each area and corre-
lations between users’ query preferences. Then, enDCA further employs
caching and location blurring to enhance the privacy preservation. Evalu-
ations show that our proposals can significantly improve the privacy level.
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1 Introduction

Location-based services are springing up around us, whereas leakages of users’
privacy are inevitable during these services. Even worse, adversaries may ana-
lyze intercepted service data, and extract more privacy like hobbies, health and
property. Hence, privacy preservation is an indispensable guarantee on LBS.

Among existing privacy preservation approaches, ones based on k-anonymity
are widely researched. However, some privacy concern will be aroused if these
schemes are adopted directly. For example (in Fig. 1), an area is divided into
4 × 4 cells, where a target user Ut issues a query “Find the nearest hotel” (his
privacy profile k = 4). DLS algorithm [6] selects four blue cells to construct a
cloaking set because their gross query probabilities are similar. Although such
a set reached the maximum entropy, experienced adversaries can exclude some
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Fig. 1. An example of a cloaking
set. More queries about hotels and
transport occur in cell a & c, while
more queries about entertainment
and shopping occur in cell b & d.
Ut prefers to query for hotels and
conference centers via LBS. U1 and
U2 mainly search for entertainment.

cells if they have richer side information, such
as features of each cell and users in the cells.

According to querying features of differ-
ent cells and Ut’s query content, adversaries
may exclude cell b & d from the set. With the
help of further analyses of query preferences,
if adversaries learn that Ut is a businessman,
they can confidently locate Ut. Thus, location
privacy of Ut is invaded.

To address those defects, we propose a
novel privacy metric which first takes into
account the impact of richer side informa-
tion on privacy. Then, DCA and enDCA
algorithms are designed. They both fulfill
our objectives while either one has different
advantages. Major contributions are summa-
rized as follows:

• A newly-proposed entropy-based privacy metric may measure the privacy
level, and depict the impact of richer side information on privacy.

• We design DCA algorithm, which considers richer side information (query
probabilities & preferences) when constructing k-anonymity sets.

• Based on DCA, location blurring and caching are introduced to enDCA.
These techniques impede invading location privacy, promote the low band-
width overhead and resist the disclosure of users’ preference privacy.

• We adopt a novel Wi-Fi access point based Peer-to-Peer structure.

2 Related Work

Recently, many research efforts have been concentrated in LBS privacy.
Among cryptography based techniques, Ghinita et al. [2] used Computational

PIR, which needs two stages to retrieve POI data. Papadopoulos et al. [10]
proposed cPIR which reduces computational overhead.

Kido et al. [3] cloaked user’s real location by generating k − 1 dummy loca-
tions, but side information is ignored. Casper [5] provided cloaking regions
according to user’s privacy profile and minimum area, whereas maintaining the
pyramid structure leads to high costs. Niu et al. [6,7] designed AP-based k-
anonymity schemes considering query probabilities and caching. However, con-
structing cloaking sets and caching data need high computational and storage
overhead for APs, and k-anonymity isn’t effectively guaranteed due to negligence
in the variety of queries.

Palanisamy et al. [9] constructed adaptive mix-zones centered at road inter-
sections, which replace actual query time with shifted ones, to resist timing
attacks. However, these schemes limit the submissions of queries in Mix-zones.

Miguel et al. [1] migrated differential privacy to LBS privacy preservation by
adding Laplace noise to users’ coordinates.
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3 Preliminaries

3.1 Basic Concepts

Query Probabilities. We classify LBS queries into m types with respect to
contents of queries. Then we define various query probabilities in Eq. 1. For sim-
plicity, an m-dimensional vector Pi is used to represent respective probabilities
of all m types of queries in celli.

Pi = (p1i , p
2
i , . . . , p

m
i ), pj

i =
# of type-j queries in celli

# of total queries over all cells
(1)

Users’ Query Preferences. Different users have various query preferences,
which are closely related to their life patterns. We use a vector Wi to describe
the query preference of user Ui (see Eq. 2). Preference vectors will be updated
periodically using Aging Algorithm.

Wi = (w1
i , w2

i , . . . , wm
i ), wj

i =
# of U ′

is type-j queries (over all cells)
# of U ′

is total queries (over all cells)
(2)

Moreover, we use standardized preference vector W ′
i = (w1′

i , w2′
i , . . . , wm′

i )

instead to preserve users’ preference privacy (Different preference vectors may

have the same standardized vector), where wj′
i = wj

i −μWi

σWi
(μWi

, σWi
are the

mean and the standard deviation of Wi respectively). Then, the correlation
coefficient between arbitrary two LBS users Ux, Uy is defined in Eq. 3.

ρ(Ux, Uy) =
covariance(Wx,Wy)

σWx
· σWy

= covariance(W ′
x,W ′

y) (3)

3.2 Adversary Model

In this paper, we resist eavesdropping attack performed by passive adversaries
via applying SSL on communication channels. We consider LBS servers, who own
global data, as active adversaries. Even worse, those untrusted servers may col-
lude with malicious users to infer normal users’ query preferences and behavior
patterns by exchanging extra information and analyzing obtained data.

3.3 Privacy Metrics

In order to demonstrate the impact of query preferences and various query prob-
abilities on privacy quantitatively, we improve the definition of entropy [6].

Supposing a user Ut issues a type-j query in cellt under the protection of a k-
anonymity set. The query preference of Ut is Wt, and the type-j query probability
of cellt is pj

t . In addition, k − 1 other users are located in cell1, cell2, . . . , cellk−1

(type-j query probabilities of these cells are pj
1, p

j
2, . . . , p

j
k−1). So the confusion

degree (ξ) of the k-anonymity set is defined in Eq. 4.

ξ = −
k∑

i=1

ρ(Ut, Ui) · qj
i · log2 qj

i = −
k∑

i=1

ri · qj
i · log2 qj

i (qj
i =

pj
i∑k

s=1 pj
s

) (4)
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4 Our Proposed Schemes

4.1 System Model

Figure 2 shows our novel AP-based P2P structure. APs1 are designed to under-
take such light workloads as collecting query probabilities, forwarding data,
locating users, and storing caches. Maintenance of users’ query preference vectors
and calculations are conducted by users locally. Besides, LBS users may com-
municate with APs anonymously (i.e. using pseudonyms) to preserve privacy
against APs.

4.2 Schemes Overview

We introduce how APs work via the example in Fig. 2. Suppose that Peter issues
a query Q in cellt. APs construct an anonymity set by taking following steps.

(1) After an AP receives Q and Peter’s real location cellt (together with W ′
Peter

and some other parameters), it will determine the query type of Q.
(2) If Q is a type-j query, APs will search for nearby cells with similar type-j

query probabilities to cellt. (subject to probability threshold β).
(3) APs forward W ′

Peter to users in cells found in step (2).
(4) Any user Ux who has received W ′

Peter computes the correlation coefficient
ρ(Ux, P eter) between his preference vector and Peter’s. Ux will reply APs
with the coefficient if the value is greater than the preference threshold θ.

(5) APs reply Peter with users who have similar query preferences, together with
coefficient values, indexes of probability differences, and indexes of distance
between Peter and them. The distance can be measured by # of hops on
the grid-based map (e.g. In Fig. 1, the distance between Ut and U3 is 2).

(6) Peter filters out k − 1 optimal users locally according to side information
above. Then, he will construct a k-anonymity set and issue the formal query.

Fig. 2. Schemes overview (data owned by each role is shown in gray blocks)

1 AP-based schemes [4,6–8] have been widely applied to LBS in mobile environments.
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Algorithm 1. Client: DCA Sub-algorithm (issuing a query)

Input: target user Ut’s standardized preference vector W ′
t , an LBS query

Q(qtype, qdetail), real location cellt, privacy profile kt, distance
preference μ, # of sets ns

Output: an optimal k-anonymity set AS
1 send (W ′

t , Q, cellt, kt, μ) to AP (run Algorithm 2);
2 wait until AP returns CS to it; //Alg. 2 (Line 9) shows data structure of CS

3 for (i = 0; i < min(ns,
(

3kt
kt−1

)
); i + +) do

4 construct set Ci with Ut and kt − 1 other users (in set CS) at random;

5 scoreCi =
∑kt

j=1 (index prdiffij · index disij · rij);

6 return arg maxCi
(scoreCi);

4.3 The Dual Cloaking Anonymity Algorithm

According to the division of work, we implement our schemes in three sub-
algorithms. Algorithms 1 and 3 run on clients, and Algorithm2 runs on APs.

Algorithm 1 demonstrates DCA Sub-algorithm which runs on the client of
target user Ut (who issues the query actually). It corresponds to Step 1, 6 in last
section.

Next, we present Algorithm 2 running on APs. This process corresponds to
Step 2, 3, 5 in Sect. 4.2. Index of differences in type-j query probability between
the real location cellt and other cells can be achieved by index prdiff = 1 −
|pr−pqtype

t |
β . In addition, we use the index of distance index dis = e− (dis−µ)2

8 to
describe users’ distance preference. If there aren’t enough candidates in CS, AP
will extend searching areas (Line 2).

Algorithm 3 computes correlation coefficient between query preferences.

Algorithm 2. AP: DCA Sub-algorithm (forwarding information)

Input: Ut’s standardized preference vector W ′
t , an LBS query Q(qtype, qdetail),

real location cellt, privacy profile kt, distance preference μ
Output: a candidate set CS

1 CS=NULL;
2 for (d = 1; CS.size() < 3kt; d + +) do

3 searching for cellx in d-hop area around cellt, s.t. ∀x, |pqtype
t − pqtype

x | < β;

4 send W ′
t to users who are located in these found cells (run Algorithm 3);

5 while ∃ tuples (ũser, r) returned from users do

6 index dis = e− (d−µ)2

8 ;
7 pr = getPr(user, qtype); //retrieve the query probability of a cell

8 index prdiff = 1 − |pr−p
qtype
t |
β

;

9 add tuples (ũser, r, index dis, index prdiff) to CS;

10 return CS;
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4.4 The Enhanced Dual Cloaking Anonymity Algorithm

We introduce more advanced techniques: location blurring and caching to
enDCA, which may upgrade users’ privacy at the expense of limited compro-
mise in QoS.

Location Blurring. When applying k-anonymity, the real location is likely to
be inferred if k is large, as all dummies are distributed around the real one.

Algorithm 3. Client: compute corr

Input: Ut’s standardized preference vector W ′
t , other’s preference vector Wa

Output: Pearson correlation coefficient between Ut and himself(herself)

1 standardize the vector Wa as W ′
a;

2 if (r = covariance(W ′
t , W ′

a)) > θ then
3 return (ũser, r); //user’s ID will be replaced by a pseudonym

To address that privacy issue, location blurring is introduced into enDCA.
Target user’s real location will be shifted to a cell which is randomly selected from
the nearby ones (in the 1-hop area) with similar same-type query probabilities.

Caching. Different from previous work [7,11], we propose the idea of caching the
anonymity sets. Supposing an LBS user Ua (privacy profile is ka) issues a query
Q(qtypea, qdetaila). A cached set t can be used to preserve Ua’s location privacy
if Eq. 5 holds. Caching may relieve the workload of APs, reduce the bandwidth
overhead, and preserve query preference privacy (reducing transmission of users’
preferences). Cache will be maintained by APs in background.

∃t ∈ AS, s.t. (1) t.qtype = qtypea; (2) t.k ≥ ka; (3) ∃i ∈ [1, k], t.Ui = Ua. (5)

The data structure of the cached anonymity sets is as follows:
AS(qtype, k, expire, U1, U2, . . . , Uk), where expire is the lifetime of a set.

Algorithm 4. Client: enDCA Sub-algorithm (issuing a query)

Input: Ut’s standardized preference vector W ′
t , an LBS query Q(qtype, qdetail),

real location cellt, privacy profile kt, distance preference μ, # of sets ns
Output: an optimal k-anonymity set AS (or a cached set CAS)

1 send (W ′
t , Q, cellt, kt, μ) to AP (run Algorithm 5);

2 wait until CS or CAS returned from AP ;
3 if CAS != NULL then
4 return CAS or a subset of CAS according to kt;

5 else
6 run Lines 3-6 in Algorithm 1 (Client: DCA Sub-Algorithm);
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Algorithm 4 presents enDCA Sub-algorithm which runs on clients. If there
exists an appropriate cached set, it’ll call Algorithm1 to construct the set
(Line 6).

Algorithm 5. AP: enDCA Sub-algorithm (forwarding information)

Input: Ut’s standardized preference vector W ′
t , an LBS query Q(qtype, qdetail),

real location cellt, privacy profile kt, distance preference μ
Output: a candidate set CS or a cached anonymity set CAS

1 CS=NULL, T=NULL; //T stores cached anonymity set temporarily
2 foreach t in cache[qtype] do
3 if t.k ≥ kt and (∃i ∈ [1, t.k], t.Ui == Ut) then
4 T = T

⋃{t};

5 if T != NULL then

6 return arg maxt∈T ( ξt
log2 t.k

); //return the set with highest confusion degree

7 run AP: DCA Sub-Algorithm(W ′
t , Q, shiftLocation(cellt), kt, μ); //run

Algorithm 2

Algorithm 5 illustrates enDCA Sub-algorithm running on APs. After AP
receives Ut’s query, it will check in cache whether there exist appropriate
anonymity sets. Otherwise, Algorithm 5 shifts Ut’s real location first, and then
follows ordinary steps to construct a candidate set CS (Line 7).

4.5 Security Analysis (Resistance to Colluding and Inference
Attacks)

Adversaries try to infer Ut’s real location in the way described in Sect. 3.2. How-
ever, the idea of maximizing confusion degree and randomization in our schemes
will obstruct their conspiracies. Compared with DCA, caching in enDCA reduces
exposure of query preferences. Location blurring and standardized preference
vectors may frustrate their inference of real locations when constructing new
anonymity sets.

5 Performance Evaluation

5.1 Simulation Setup

The trajectory data of taxis (From http://soda.datashanghai.gov.cn, involving
about 10,000 trajectories) is used to describe the mobility patterns of LBS users
in a 10 km× 8 km area in downtown Shanghai. The area is divided into 8,000
cells, with the size of each being 100 m × 100 m. The real deployment of APs in
that area will also be simulated. Query probabilities are computed as the users’
density in each cell, and the query preferences of users are randomly assigned
under normal distribution. Parameters used in our simulation are as follows:

http://soda.datashanghai.gov.cn
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Privacy profile k is set from 2 to 15. # of query types m = 5, # of sets
ns = 100. Threshold β = 0.0015, θ = 0.2.

We select Random [3] as the baseline scheme. DLS (enhanced-DLS ) [6], one
of state-of-the-art methods, is also chosen as a comparison.

5.2 Evaluation Results

k vs. Privacy Metrics. Figure 3(a) and (b) show the relation between k and
entropy. Gross query probability is used in Fig. 3(a), so that all schemes except
for Random perform well. On the contrary, various query probability highlights
the advantages of our schemes in Fig. 3(b).

(a) k vs. Entropy (b) k vs. Entropy* (c) k vs. ξ

Fig. 3. Effect of k on privacy metrics

As to confusion degree (Fig. 3(c)), DCA edges out enDCA, as enDCA sacri-
fices some confusion degree to decrease bandwidth overhead. Our schemes have
high but not theoretically optimal results because finding k − 1 nearby users
having approximately the same query preferences is quite tough.

Other Performance Evaluations. Figure 4 depicts that bandwidth over-
head of enDCA outperforms DCA, since caching can serve users’ requests for
anonymity sets. Figure 5 illustrates the relation among k, cache hit ratio and
simulation time t. The hit ratio increases gradually with the t, and smaller k

Fig. 4. Bandwidth Fig. 5. Cache Fig. 6. Guessing Pr. Fig. 7. Efficiency
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usually results in higher ratio. Figure 6 confirms that schemes without location
blurring have the theoretical k-anonymity. enDCA, equipped with location blur-
ring, owns significantly lower probabilities of successful guesses. Figure 7 shows
the running time of all schemes. Our schemes consume moderate time to con-
struct a k-anonymity set, and enDCA costs less time than DCA with the help
of caching.

6 Conclusion

We propose two different LBS privacy-enhancing schemes, and a novel metric
to measure the privacy level. DCA constructs a k-anonymity set via carefully
selecting k−1 users according to various query probability and users’ query pref-
erences. Based on that, caching and location blurring are introduced to enDCA,
which reduce exposure of query preferences, and decrease the bandwidth over-
head. Simulations confirm the effectiveness of our schemes.

Acknowledgment. Our research is supported by the National Key Research and
Development Program of China (2016YFB1000905), NSFC (61772327, 61370101,
61532021, U1501252, U1401256 and 61402180), Shanghai Knowledge Service Plat-
form Project (No. ZF1213), Shanghai Science and Technology Committee Grant
(15110500700).

References

1. Andrés, M.E., et al.: Geo-indistinguishability: differential privacy for location-
based systems. In: 2013 ACM SIGSAC, pp. 901–914 (2013)

2. Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.L.: Private queries
in location based services: anonymizers are not necessary. In: ACM SIGMOD
(2008)

3. Kido, H., Yanagisawa, Y., Satoh, T.: An anonymous communication technique
using dummies for location-based services. In: ICPS, pp. 88–97 (2005)

4. Luo, W., Hengartner, U.: VeriPlace: a privacy-aware location proof architecture.
In: ACM SIGSPATIAL GIS, pp. 23–32 (2010)

5. Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new casper: query processing for
location services without compromising privacy. In: VLDB, pp. 763–774 (2006)

6. Niu, B., Li, Q., Zhu, X., Cao, G.: Achieving k-anonymity in privacy-aware location-
based services. In: IEEE INFOCOM, pp. 754–762 (2014)

7. Niu, B., Li, Q., Zhu, X., Cao, G.: Enhancing privacy through caching in location-
based services. In: IEEE INFOCOM, pp. 1017–1025 (2015)

8. Okamoto, M., Fujita, N., Inomae, G., Tate, H.: Wi-Fi LBS: information delivery
services using Wi-Fi access point location. NTT Tech. Rev. 11(9) (2013)

9. Palanisamy, B., Liu, L.: MobiMix: protecting location privacy with mix-zones over
road networks. In: IEEE ICDE, pp. 494–505 (2011)

10. Papadopoulos, S., Bakiras, S., Papadias, D.: pCloud: a distributed system for prac-
tical PIR. IEEE TDSC 9(1), 115–127 (2012)

11. Shokri, R., Theodorakopoulos, G., Papadimitratos, P., Kazemi, E.: Hiding in the
mobile crowd: locationprivacy through collaboration. IEEE TDSC 11(3), 266–279
(2014)


	DCA: The Advanced Privacy-Enhancing Schemes for Location-Based Services
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Basic Concepts
	3.2 Adversary Model
	3.3 Privacy Metrics

	4 Our Proposed Schemes
	4.1 System Model
	4.2 Schemes Overview
	4.3 The Dual Cloaking Anonymity Algorithm
	4.4 The Enhanced Dual Cloaking Anonymity Algorithm
	4.5 Security Analysis (Resistance to Colluding and Inference Attacks)

	5 Performance Evaluation
	5.1 Simulation Setup
	5.2 Evaluation Results

	6 Conclusion
	References




