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Abstract. Query reverse engineering is getting important in database
usability since it helps users to gain technical insights about the database
without any intentional knowledge such as schema and SQL. In this
paper, we review some existing techniques that focus on join query dis-
covery, and we devise our efficient algorithm to discover the SQL queries
that contain both joins and OLAP-style aggregations which are substan-
tially for querying OLAP data warehouses. We show that our algorithm
is adaptable and scalable for large databases by performing an empirical
study for TPC-H benchmark dataset.

1 Introduction

Since every organization may have its unique data warehouse and it is always
managed and maintained by a team of technical experts, it is rather hard for ordi-
nary users to make full use of these generated data, especially those spreadsheets
from the data warehouse. For a general purpose, database users are required to
learn both schema and query language, which are important for them to invoke
the tuples from the relevant relations precisely. Thus, the SQL join operations
are definitely important for combining the relevant columns from these tables
into a common (denormalized) table. Besides, these combined data are often
associated with OLAP-style aggregations (e.g., basic mathematical operators)
for offering more valuable insights about the numerical data.

Figure 1 illustrates a motivating example. Figure 1(a) is an example spread-
sheet table, and Fig. 1(b) shows are a pair of or even better minimal join graphs
that could regenerate this spreadsheet table through different join tables, projec-
tions, and aggregations. A candidate join graph is akin to a schema graph. Each
node represents a relation, and it is starred if it contains a projection column.
Therefore, from the candidate join graphs, only the validated join graph would
be executed for discovering other SQL classes, e.g., OLAP group-by, aggregations
and selection filters.

1.1 Related Work

Instead of using a keyword query that is made up of several keywords, there are
many proposals have been implemented to discover join queries by using a tabu-
lar list of tuples as the implication of keyword search in relational databases [7].
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Fig. 1. The different join queries that are possible to generate an example spreadsheet.

Most of the existing solutions (e.g. [10,11,13]) depend on schema-based app-
roach [1,2], and the database schema is illustrated as a graph by taking the
relations as nodes and the foreign key references as edges. In DISCOVER [2]
and its extended works [3,7], given that a set of candidate networks discovered
by a keyword query, the candidate network evaluation needs an optimized execu-
tion plan which is depicted as an operator tree in order to translate each of them
into SQL. Nonetheless, the full-text search is another technique to verify can-
didate queries by emphasizing keyword containments as SQL predicates, which
it is exceptionally useful for text attributes and built-in indexes are required
in advance. Several works [5,6,8] support this full-text search feature, thus the
query discovery is restricted to textual databases in lieu of the OLAP data ware-
houses.

Another critical factor that could optimize the join execution is the index-
ing techniques. In lieu of joining every projection attribute for candidate query
evaluation, the implementation of join indices [12] only require those relevant
primary keys to form a temporal relation so that the overhead memory cost can
be avoided. The well known TALOS framework [10,11] uses the join indices to
build an intermediate join relation and thus applies the decision tree classifier
to classify the tuples for selection predicate generation. In addition, as indicated
in [13], the unique tuple identifiers (tids) within each relation are used to exam-
ine each schema-based connected tree at instance-level in order to invalidate any
schema trees that cannot generate a random output tuple.

Apart from that, besides those fundamental SQL classes which can determine
the schema tables and attributes for query discovery, other classes such as HAVING
and ORDER BY clauses have their specifications to produce the finalized SQL
results. PALEO framework [4] uses the concept of ranked list of tuples to reverse
engineer OLAP queries where each query contains an ORDER BY column.

1.2 Contributions

Our contributions in this paper are presented as follows:

– We provide a solution that generates the candidate join graphs through the
schema and metadata exploration to characterize each distinct column of
query output table.
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– We improve the expressiveness of our solution by discovering SQL HAVING
clause for aggregation queries.

– We prove that our algorithm is adaptable and scalable by conducting an
experimental evaluation over the standard TPC-H dataset.

2 Problem Definition

A relational database D consists of a set of relations and every relation is linked
by referential integrity constraints. The relational schema is defined as a schema
graph SG(R, ζ), where each R is a table and each ζ is an fk/pk constraint. A
subgraph J (G) entails a join query where a relation R ∈ SG may appear more
than once as a node in it. The Project-Join (PJ) queries should contain at least
both projection (π) and join (��) operations where the projection determines the
number of columns and the join determines the number of relations. A subgraph
J (G) connects all the relevant relations through their fk/pk constraints while it
may contain other relations as well as intermediate nodes to interconnect all the
relevant relations. Hence, the schema size is directly proportional to the size of
J (G). To prune the overwhelming unnecessary tuples from the outputted join
table, the selection operation (σ) is used as a filter by specifying the necessary
conditions for the query output table Out. The formulated queries with these
three SQL operations are named as Select-Project-Join (SPJ) queries. In our
work, we intend to discover more complex queries than the SPJ queries, i.e.,
the OLAP queries. Given the query output table Out as input, the GROUP BY
operator will correspond to the number of tuples (groups) of Out. Each group
will be used to produce one or multiple aggregations where each aggregation
takes an aggregate operator (e.g. MAX, MIN, AVG, SUM, and COUNT) for a numeric
attribute. Upon the above OLAP specifications, we define the queries as Select-
Project-Join-Aggregation (SPJA) queries.

3 Join Query Discovery

In this section, we discuss how to discover the possible subgraphs based on a given
query output table Out. Its columns are essential to delimit the schema size for
query regeneration. Our join query discovery relies on a graph search algorithm
to determine the possible candidate subgraphs. For instance, the breadth-first
search algorithm in DISCOVER [2] finds the subgraphs where the nodes that
contain the given keywords are taken as the leaf nodes. Apart from just consid-
ering the keywords, our problem is to find out all the possible subgraphs that
can cover all columns in Out. Algorithm 1 indicates the join query discovery.

3.1 Column Mapping Table

Consider a column of Out, it is outputted by the projection operation (π) for
a schema attribute A, either is operated as group-by or aggregation. An SPJA
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query, that aggregates the output tuples from the sets of grouped tuples; there are
some columns whose aggregate values cannot be directly mapped to any schema
attributes. Due to the possibility of unidentified/anonymous schema attribute(s),
the column mapping details may be incomplete. To solve this problem, for each
unmapped column, it can match a set of covering attributes; otherwise it has
to be an integer column that can be corresponded to COUNT aggregation. These
covering attributes are discovered due to different mathematical properties that
are possessed by different aggregate functions. However, it is non-trivial to deter-
mine the set of covering attributes intuitively if the unmapped column tuples
are far beyond any minimum/maximum values of schema attributes which the
only possibility is the SUM computation that relates with both COUNT and AVG.

3.2 Candidate Subgraph Generation

By assuming the schema graph is undirected, the current (in)complete column
mapping table is used to search for the (partial) candidate subgraphs. The
mapped relations are set as leaves so that they must be contained in the candi-
date subgraph generation. A set of partial subgraphs is generated due to incom-
plete column mapping. Given a partial subgraph, it will be either explored or
expanded to find the covering attribute(s) for the unmapped column(s) of column
mapping table. In Fig. 1, the relations named Nation, Lineitem and Orders are
the leaves because the schema attributes Nation.name, Lineitem.linestatus,
and Orders.totalprice are mapped. When exploring the discovered partial sub-
graph, the attribute Lineitem.quantity can be the covering attribute for the
last column of Out.

Partial Subgraph. Consider a set of leaves, the least connected leaf node is
selected as root to connect other leaves to form a subgraph through the undi-
rected schema graph via breadth-first search exploration. If there exists a pair
of same leaf nodes, the node duplication is allowed where a node can be visited
for twice. The schema size thus is determined by the total number of visited
nodes. To control the schema size as well as the cost complexity, the number
of intermediate nodes should be kept as fewer as possible. By heuristically, the
candidates are sorted by the schema size for evaluation.

Join Table Size Estimation. Upon a partial subgraph, by doing schema
exploration, the utmost task is to complete the column mapping table. Once
every column in Out has its corresponding schema attribute(s), the partial sub-
graph thus becomes the complete candidate subgraph. For an unmapped column
that contains aggregation results, the idea is to find the corresponding numeric
attributes. Among the possible candidates, the priority is to quickly prune the
inappropriate ones by inferring its join size. For a partial subgraph, its join size,
Υ is determined by the total number of tuples to generate Out. In addition, its
schema is equivalent to a set of attributes, denoted as A. If an unmapped column
λ contains only natural numbers, its total number is considered the estimated
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Algorithm 1. Join Query Discovery
input : SG: schema graph, Out: query output table
output: {J (G)}: set of candidate subgraphs

//Column Mapping
mapping table φ = ∅
covering table φ̄ = ∅
foreach column λ ∈ Out do

if φ(λ) = schema attribute A then
update φ(λ) ← A

else
insert λ into φ̄

//Candidate Subgraph Generation
foreach mapping φ do

find partial subgraphs from SG
foreach partial subgraph do

if φ̄ �= ∅ and φ̄(λ) = schema attribute A then
update φ̄(λ) ← A
{J (G)} ← partial subgraph

else if φ̄ �= ∅ and !φ̄(λ) = schema attribute A then
find set of neighbour nodes {R}
while expandPartialSubgraph(R) do

if φ̄(λ) = schema attribute A then
update φ̄(λ) ← A
{J (G)} ← partial subgraph

{J (G)} ← partial subgraph

join size, Γ =
∑

Λ, where Λ ∈ λ. The estimated Γ should be within the range of
α ∗ Υ and Υ where α is the selectivity factor that delimits the number of tuples
to generate Out as the impact of applied selection conditions. We assume the
default value of α as 0.1 and all data are in normal distribution. If the statement
is true, then it can be delineated as the computation of COUNT(∗). However, for
the implication of SUM(A), given that A is a schema attribute where A ∈ A and
an unmapped numerical column λ, the estimated join size, Γ can be calculated
by a simple formula as below.

∑|λ|
i=1 Λi

AV G(A)
= Γ

{
α ∗ Υ ≤ Γ ≤ Υ true
otherwise false

An attribute A ∈ A is acceptable if the estimated Γ is between α ∗ Υ and Υ .

Expanding Neighbour Nodes. If it still does not have any covering attribute
for any unmapped column of Out, the partial subgraph cannot establish as a
candidate subgraph. An alternative approach is to expand the current partial
subgraph by adding one of its neighbour nodes to form a new subgraph for
schema exploration. If every column of Out is being mapped or covered, the new
subgraph is added to the set of candidate subgraphs; otherwise, another new
subgraph is generated by adding another selective neighbour node. This process
is iterated until the set of candidate subgraphs is found.



58 W. C. Tan

4 Group-By Discovery, Aggregates Pruning and Filter
Discovery

After determining the possible joins, the next step is to determine the group-by
candidates for query discovery. According to the mapping columns, a group-by
lattice is built where its nodes are the group-by candidates and its edges are
the superset-subset relationships. The invalid nodes are pruned by exploring
the lattice, and the remaining nodes are the possible candidates for subsequent
aggregates pruning. The rule-based aggregation checking is used to generate a
set of group-by key-aggregation pairs. Besides, the candidate SQL queries may
contain any possible selection filters. A selection filter is illustrated as a fuzzy
bounding box that can be cross-validated over a group of multi-dimensional
matrices, which corresponds to a conjunction of selection predicates. The full
implementation is depicted in REGAL [9].

5 Group Selection

Ideally, any constructed SPJA query Q′ should reproduce the given output table
Out, or at least Out ⊂ Q′(D). Since the Out itself may have been skimmed by
source query Q for a summarized version, it contains only some groups whose
corresponding aggregate values are passed a threshold. However, this threshold
is considered as an additional SQL functionality, and it is less being discussed
in the query reverse engineering. The SQL HAVING clause is a specific term can
be used to decide whether a set of groups will be outputted in Out based on
the current query result Q′(D). The HAVING clause contains a condition which
involves one or two output columns. For all groups within current query result
Q′(D), a satisfied HAVING condition will separate them into two distinct subsets,
where one subset is similar as those groups in Out and another subset is taken as
Q′(D)−Out. On the one hand, if the HAVING condition involves only one column,
the current query result Q′(D) is examined by all its groups are arranged based
on one of the numeric columns. On the other hand, if the HAVING condition takes
two columns, where these columns are being compared so that the Out exists a
specified relationship between them, such as one column whose values are always
larger than those from another column. A candidate query Q′ for the motivating
example in Fig. 1 is given as:

select N.name, L.linestatus, max(O.totalprice), sum(L.quantity)
from Nation N, Customer C, Orders O, Lineitem L
where N.nationkey=C.nationkey and C.custkey=O.custkey and

O.orderkey=L.orderkey and L.linenumber > 1
group by N.name, L.linestatus

The generated table Q′(D) contains 50 tuples (groups). However, Out contains
only 12 tuples (groups), and it is a subset of Q′(D). By searching through
the aggregation candidates, e.g., max(O.totalprice) and sum(L.quantity), the
twelve tuples can be discerned by formulating a HAVING condition, as having
max(O.totalprice)> 500000.
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6 Experimental Evaluation

Implementation and Dataset. We implemented our proposed algorithm in
Java with MySQL server as DBMS. The experiments were conducted on an
Ubuntu machine with 2.40 GHz Intel CPU and 16 GB RAM. TPC-H benchmark
is the dataset that used for experiments, with a scale factor of 1 and size of 1 GB.

TPC-H Test Queries. There are a total of 22 test queries for TPC-H bench-
mark. Most of them include different number of joins, except for TQ1 and
TQ6, with the absence of join. We neglect the complex join query discovery,
i.e. the nested joins, fk/fk joins, and equijoins, which are exhibited in TQ5 (e.g.,
S nationkey = C nationkey) and TQ21 (e.g., L1 orderkey = L2 orderkey)
respectively. We test for the remaining join queries and scale them based on the
number of joins, i.e. from 1 to 5.

Query Output Table Generation. Given that a test query Q, we execute it
over TPC-H dataset D to generate the query output table Q(D) = Out which
later the Out will be used as the input of our proposed algorithm to discover
for such a query Q′ where Q′(D) = Out. As we have selected those TPC-H
benchmark queries, however, except for the join relations and join predicates are
remained, other SQL operations are altered. We set several parameters for the
experiments to control the variety of query output tables. For example, we will
produce the query output table Out with the cardinality of m and the arity of
n, and the test query Q contains a N -dimensional filter.

6.1 TPC-H Join Queries

For each of these test queries, we generate a query output table with moder-
ate row size m and column size n = 4 where it must contain both group-by

Table 1. Effect of number of joins.

# Joins TQ Tables Runtime (s)
min-max

# Graphs
min-max

1 4, 12 L, O 144.189–281.529 1

13, 22 C, O

14, 17, 19 L, P

15 L, S

2 11 PS, S, N 60.937–294.624 1

16 P, PS, S

3, 18 C, O, L

3 10 N, C, O, L 313.882 1

4 2 R, N, S, PS, P 68.648–338.248 1–2

20 N, S, L, PS, P

5 7 N1, S, L, O, C, N2 417.508–443.197 2

9 N, S, L, O, PS, P
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statements and aggregations which the number of group-by columns is set at
most two while the other columns are used for aggregations. Each query contains
one-dimensional filter as N = 1. Table 1 records the experimental results based
on the number of joins of TPC-H benchmark test queries. First, the inferred join
table size is essentially crucial as it will impact the time cost for a table scan.
Some of these test queries like TQ2, TQ11, and TQ20 contain the least inferred
join table size (0.8 million tuples), which take less than 70 s for discovering these
queries. Second, the number of join graphs is directly proportional to the total
execution time. For example, test queries like TQ7, TQ9 and TQ20, they need
to evaluate two join candidates to generate the discovered queries.

Fig. 2. Average time for query discovery
against number of joins.

Fig. 3. Individual phase performances
for different aggregations.

6.2 Individual Phase Performances vs. Joins

In order to further analyze the important factors that influence the total exe-
cution time besides the join operations, those TPC-H benchmark queries under
similar considerations (i.e. the same inferred join table size) are examined. As
there are multiple test queries for each number of joins, we run those queries
individually and take their average running time. To avoid the cost of exploring
all candidate queries, the execution time is taken once the least complex Q′ is
returned for a given test query Q. The experimental results are illustrated as
shown in Fig. 2. According to the experimental results, the total execution time
is proportional to the number of joins. As the number of joins is increased, it
indulges more schema tables/attributes for the query discovery and takes longer
time for evaluation. Furthermore, all three individual phases involve table scans.
In the phase of group-by discovery, the Out tuples are verified at instance-level
to validate the group-by nodes. Second, during the phase of grouping and aggre-
gates pruning, the inferred join instance is partitioned by the group-by nodes to
find out the possible aggregations based on the derived constraint rules. Third,
the schema attributes are used to construct the N -dimensional matrices, so that
the selection filter(s) can be found within these matrices.
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6.3 Joins vs. Aggregations

Figure 3 shows the experimental results by comparing the selected aggregations
for test queries w.r.t. different number of joins. Among five basic aggregate opera-
tors that we have discussed, three of them are chosen for this experiment, namely
MAX, SUM and AVG, since MIN and MAX are symmetrical whereas COUNT is assumed
as another SUM operation of a special attribute whose each of its values is set to
1. For the experiment settings, we set the parameters to output every Out with
n = 4, where there must be one aggregation column that is selected between MAX,
SUM and AVG with three group-by columns. First, by looking at each individual
aggregation w.r.t. joins, as the number of joins is increased, the total running
time is also increased. By comparing these aggregations, it is apparent that MAX
takes the largest running time in the phase of group-by discovery regardless
the number of joins if compared to both SUM and AVG aggregations. The size of
group-by lattice for MAX is 24 = 16 nodes whereas the size of group-by lattice for
SUM or AVG is smaller, which is 23 = 8 nodes. However, AVG takes more time in
the phase of filter discovery as compared to SUM and MAX, since the computation
for AVG is more complex than that SUM. Thus, AVG takes the second largest time
for the query discovery.

7 Conclusion

In this paper, we bring these two main features together by integrating the
promising approaches from both existing works with optimizations. Our empir-
ical study has shown that our proposed solution can work in practice with the
TPC-H benchmark dataset.
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