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Abstract. Document Type Definition (DTD) and XML Schema Def-
inition (XSD) are two popular schema languages for XML. However,
many XML documents in practice are not accompanied by a schema,
or by a valid schema. Therefore, it is essential to devise efficient algo-
rithms for schema learning. Schema learning can be reduced to the infer-
ence of restricted regular expressions. In this paper, we first propose
a new subclass of restricted regular expressions called Various CHAin
Regular Expression with Interleaving (VCHARE). Then based on single
occurrence automaton (SOA) and maximum independent set (MIS), we
introduce an inference algorithm GenVCHARE. The algorithm has been
proved to infer a descriptive generalized VCHARE from a set of given
sample. Finally, we conduct a series of experiments based on our data
set crawled from the Web. The experimental results show that VCHARE
can cover more content models than other existing subclasses of regular
expressions. And, based on the data sets of DBLP, regular expressions
inferred by GenVCHARE are more accurate and concise compared with
other existing methods.

1 Introduction

Document Type Definition (DTD) and XML Schema Definition (XSD) are two
popular schema languages for XML recommended by World Wide Web Consor-
tium (W3C) [31]. The presence of a schema has numerous advantages such as
data processing, automatic data integration, static analysis of transformations
and so on [2,11,20,22–24,28]. Besides, the existence of schemas is necessary
when integrating (meta) data through schema matching [30] and in the area
of generic model management [3,26]. However, many XML documents are not
accompanied by a (or valid) schema in practice. A survey [19] shows that XML
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documents on the Web which have schema definitions only account for 24.8% in
2013, of which the proportion of valid schemas is only about 8.9%. Therefore, it
is essential to devise algorithms for schema inference. And schema inference can
be reduced to learning restricted regular expressions from a set of given sample
[6,8,16].

Gold [18] proposed a classical language learning model (learning in the limit
or explanatory learning) and pointed out that the class of regular expressions
cannot be learnable from positive examples only. Furthermore, Bex et al. proved
in [4] that even the class of deterministic regular expressions is too rich to be
learnable from positive data. Consequently, researchers have turned to study the
restricted subclasses of regular expressions [27].

The popular existing subclasses of regular expressions used in XML such as
SORE [6], CHARE (Simplified CHARE) [6], eSimplified CHARE [12], Simple
regular expression (CHARE) [5], eCHARE [25] were renamed as in the brackets
and analyzed together in [21]. These subclasses are all based on standard regular
expressions. In data-centric applications using XML, there may be no order
constraint among siblings [1]. However, the relative order within siblings may be
still important. In [9], Ciucanu and Staworko proposed two schema formalisms
for unordered XML: disjunctive multiplicity expressions (DME) and disjunction-
free multiplicity expressions (ME) where the relative order among siblings was
ignored. These two formalisms do not support the concatenation within siblings.
For example, E1 = (a|b)+&c is a DME and E2 = a&b∗&c? is an ME. But
E3 = (a+b?)&c∗ does not satisfy both two formalisms. Peng and Chen in [29]
also focused on the unordered relation among siblings and proposed SIRE. SIRE
supports the concatenation operation within siblings. Therefore E3 is a SIRE.
However, SIRE does not support union operation. In [17], Ghelli et al. proposed a
restricted subclass defined by grammar T ::= ε|a[m,n]|T +T |T ·T |T&T where m ∈
N\{0} and n ∈ N\{0} ∪ {∗}. For this subclass, counters (repetition operation)
can only occur as a constraint for terminal symbols of strings in L(T ). For
example, E4 = a?(b|c|d)∗ is not allowed.

In this paper, we focus on learning a restricted deterministic regular expres-
sion considering interleaving from a set of given positive examples. We propose
a new subclass named as Various CHAin Regular Expression with Interleaving
(VCHARE). VCHARE supports union, concatenation and interleaving opera-
tors together. For example, E5 = a∗&b+&c? and E6 = (a|b?)(c∗d?|e∗)+ are both
VCHAREs.

As for learning algorithms for XML data, Bex et al. [6,7] proposed two infer-
ence algorithms RWR and CRX for SOREs and its Simplified CHAREs, respec-
tively. Freydenberger and Kötzing [13] proposed another two inference algo-
rithms Soa2Chare and Soa2Sore based on Single Occurrence Automaton (SOA)
for Simplified CHAREs and SOREs, respectively. These two algorithms can infer
descriptive generalized regular expressions (explained below) while RWR and
CRX can not. Ciucanu and Staworko introduced an algorithms for DME based
on max clique [9]. Peng and Chen [29] proposed an approximation algorithm and
heuristic solution to infer a descriptive generalized SIRE.
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The concept of descriptive generalization [14], is different from Gold-style
language learning. Gold-style learners are required to infer an exact descrip-
tion for the target language in a class. But descriptive generalization views the
hypothesis space and the space of target language as distinct. Here is a for-
mal explanation. For a class D of language representation mechanisms (e.g., a
class of automata, regular expressions, or grammars), a representation α ∈ D
is called D-descriptive for a set of given sample S if the language of α is an
inclusion-minimal generalization of S. It means that there is no β ∈ D such
that S ⊆ L(β) ⊂ L(α).

In present paper, the inference algorithm (GenVCHARE ) is also based on the
concept of descriptive generalization which aims to infer descriptive generalized
VCHAREs for a set of given sample S. The main idea of GenVCHARE is based
on SOA and Maximum Independent Set (MIS). We first construct an SOA for
S. Then replace each non-trival strongly connected component (NTSCC) by the
return value of RepairRE() as one new node. Next, assign each node a level
number. Finally, all nodes of each level will be converted to one or more chain
factors.

The main contributions of this paper are listed as follows.

– We propose a subclass of restricted regular expressions named as Various
CHAin Regular Expression with Interleaving (VCHARE).

– We design an inference algorithm GenVCHARE to infer descriptive general-
ized VCHAREs.

– We analyze the coverage proportion of VCHARE compared with other sub-
classes based on the real-world data set. Based on the data sets (DBLP), we
compare the inferred results with other inferrence methods. The experimen-
tal results shows that regular expressions inferred by GenVCHARE are more
accurate.

This paper is organized as follows. In Sect. 2 introduces some basic definitions.
Section 3 is the inference algorithm GenVCHARE. Section 4 gives the experi-
ments. Conclusions are drawn in Sect. 5.

2 Preliminaries

Definition 1. Regular Expression with Interleaving. Let Σ be a finite
alphabet. Σ∗ is the set of all strings over Σ. A regular expression with inter-
leaving over Σ is inductively defined as follows: ε or a∈Σ is a regular expres-
sion where a∈Σ. For any regular expressions E1 and E2, the disjunction E1|E2,
the concatenation E1 · E2, the interleaving E1&E2, or the Kleene-Star E∗

1 is
also a regular expression. The language generated by E is defined as follows:
L(∅) = ∅; L(ε) = {ε}; L(a) = {a}; L(E∗

1 ) = L(E)∗; L(E1E2) = L(E1)L(E2);
L(E1|E2) = L(E1) ∪ L(E2); L(E1&E2) = L(E1E2) ∪ L(E2E1). E? and E+ are
used as abbreviations of E + ε and EE∗, respectively.

In the specification of XSD, the interleaving operator is used in the form of
ac1
1 &ac2

2 & · · · &acn
n where ai∈Σ and ci∈{1, ?,+, ∗}. For a, b ∈ Σ, x, y ∈ Σ∗, we

have a&ε = ε&a = a and ax&by = a(x&by) ∪ b(ax&y).
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Let S be the set of given sample. POR(S) is the set of all partial order
relations of each string in S. Using POR(S), we can compute the Constraint Set
(CS) and Non-Constraint Set (NCS) for S by the following formula.

1. CS(S) = {< ai, aj > | < ai, aj >∈ POR(S), and < aj , ai >∈ POR(S)};
2. NCS(S) = {< ai, aj > | < ai, aj >∈ POR(S), but < aj , ai >/∈ POR(S)}.

Clearly, for a set of given sample S, CS(S) ∩ NCS(S) = ∅. If CS(S1) 	=
CS(S2) (or NCS(S1) 	= NCS(S2)), then S1 	= S2.

Definition 2. PS(P,s). PS(P, s) is a function in which P is a finite set of
symbols and s is a string. Each symbol si of s in PS(P, s) is defined as follows:
πs(P, si) = si if si ∈ P ; otherwise πs(P, si) = ε. The return value of PS(P, s) is
a new string s′ with ε removed.

For example, let P = {b, c, r} and s = ebbdfc. s′ = PS(P, s) = bbc.

Definition 3. extended String (eS). Let Σ be a finite set of terminal symbols.
An eS is a finite sequence sc11 sc22 · · · scnn , where si ∈ Σ and ci ∈ {1, ?,+, ∗}.
Definition 4. Various CHAin Regular Expression with Interleaving
(VCHARE). Let Σ be a finite alphabet. A V CHARE is a regular expression
with interleaving over Σ in which each symbol occur once at most. It consists of a
finite sequence of factors of two forms. One form is of ac1

1 &ac2
2 & · · · &acn

n where
n≥2, ai∈Σ and ci∈{1, ?,+, ∗}. The other form is of f1f2 · · · fm where m≥1.
Each factor fi is of the form of (b1|b2| · · · |bn), (b1|b2| · · · |bn)?, (b1|b2| · · · |bn)+ or
(b1|b2| · · · |bn)∗ where bi has two forms: 1. terminal symbol a or a+ with |bi| = 1
for the first two forms; 2. for the last two forms, it can be an eS s = ac1

1 ac2
2 · · · acn

n

where ai∈Σ and ci∈{?, ∗} with n≥1.

Clearly, E1 = a?&b∗&c+ and E2 = a?(b+c+)(c?d∗+e?)+ are both VCHAREs.

3 Inference Algorithm

In this section, we will introduce the inference algorithm GenVCHARE for
VCHARE. The algorithm is based on SOA and MIS.

We use the method 2T-INF [15] to construct a SOA for S. It was proved
that L(SOA(S)) is inclusion-minimal of S. Finding a maximum independent
set from a graph G is a well-known NP-hard problem. Therefore we use the
approximation method clique removal() [10] to find the approximative results.
all mis is the set contained all maximum independent sets iteratively obtained
from G using clique removal(). symbol(A) is the set of all symbols occur in A.
The main procedure of GenVCHARE is described as follows.

– Construct a graph G(V,E) = SOA(S) using method 2T-INF [15].
– For each node v with a self-loop, label it with v+ and remove the self-loop.

Update the graph G.
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– If G is a strongly connected component, then return the result
vc1
1 &vc2

2 & · · · &vcn
n where vi ∈ V and assign the repetition operator ci ∈

{1, ?,+, ∗} using CRX [6]. Otherwise, continue to run the following steps.
– For each non-trival strongly connected component ci, replace it with the

return value of RepairRE() as one new node. All relations with any node
in ci rebuild the relations with the new node.

– Assign level numbers for the new graph and compute all skip levels.
– Nodes of each level are turned into one or more chain factors. If there are

more than one non-letter nodes (label with more than one terminal symbols)
with the same ln, or if ln is a skip level, then ? is appended to every chain
factor on that level.

Pseudo code for GenVCHARE ALT(C) can be found on the web site: http://
lcs.ios.ac.cn/∼zhangxl/.

Algorithm Analysis. For graph G(V,E) = SOA(S), let n = |V | and m = |E|.
It costs time O(n) to find all nodes with self-loops and O(m + n) to find all
NTSCCs. The time complexity of clique removal() is O(n2 + m). For each
NTSCC, computation of all mis costs time O(n3 + m) and the topological sort
for each mis costs time O(m + n). The number of NTSCCs in a SOA is finite.
Therefore computing all mis for all NTSCCs also costs time O(n3 +m). Assign-
ing level numbers and computing all skip levels will be finished in time O(m+n).
All nodes will be converted into specific chain factors of VCHARE in O(n).
Therefore, the time complexity of GenV CHARE is O(n3 + m).

Theorem 1. Suppose that α = GenV CHARE(SOA(S)) where S is a set of
given sample. If there exists another VCHARE β such that S ⊆ L(β) ⊂ L(α),
then L(β) = L(α).

All detail proofs are omitted due to limited space.

4 Experiments and Analysis

In this section, we first investigate the proportion of VCHARE based on real-
world data, and then analyze our inference algorithm on DBLP downloaded
from the Web1. DBLP is a Computer Science Bibliography corpus, a data-
centric database of information on major computer science journals and pro-
ceedings. All our experiments were conducted on a machine with Intel Core
i5-5200U@2.20 GHz, 4G memory, OS: Ubuntu 16.04. All codes were written in
python 3.

1 http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository
.html.

http://lcs.ios.ac.cn/~zhangxl/
http://lcs.ios.ac.cn/~zhangxl/
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html
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4.1 Usage of VCHARE in Practice

10 20 30 40 50 60 70 80 90 100

SIRE

Ghelli

VCHARE

SORE

DME

ME DTD

XSD

Relax NG

Fig. 1. Proportions of subclasses

To investigate the proportion of
VCHARE in practice, we crawled
29414 DTDs, 38554 XSDs and 4526
Relax NGs files from the Web and
extracted 118242, 476804 and 509267
regular expressions from them respec-
tively. The coverage proportions of
subclasses: VCHARE, SORE, DME,
ME, Ghelli [17], SIRE are shown in
Fig. 1. Clearly, we can find out that
the proportions of VCHARE are the
highest for XSDs and Relax NG which
are 94.95% and 95.28% respectively.
For DTDs, the proportion (93.54% for VCHARE ) is a little lower than SORE
(96.69%). This is because interleaving operator is not supported in DTD. Inter-
leaving is defined in an unlimited manner in Relax NG with any symbol in strings
to interleave in any order while it is limited in XSD with only single symbols
to interleave in any order. For example, (ab∗)&(c+d?) is not valid in XSD but
it is allowed in Relax NG. Although interleaving defined in SIRE conforms to
Relax NG, the proportion of VCHARE is still higher than SIRE. This means
that in actual data, interleaving is used mostly in a quite simple and concise
form. Therefore, VCHARE is more practical in real-world applications.

4.2 Analysis of Inference Results Compared with GenVCHARE

In this section, we analyze the inference results by GenECHARE [12] (algorithm
for inferring eSimplified CHARE ), Soa2Chare [13], Original Schema, Trang,

Table 1. Results of inference using different methods on inproceedings

Sample size From Element name ND |RE|
1610138 DBLP Inproceedings

Methods Regular expression

1. Original Schema (a1|a2|a3|a4|a5|a6|a7|a8|a9|a10|a11|a12|a13|a14|a15 1 48

|a16|a17|a18|a19|a20|a21|a22|a23)
∗

2. IntelliJ IDEA a∗
2(a1|a3|a4|a5|a6|a10|a11|a12|a13|a14|a15|a17|a18)

+ 1 31

3. Liquid Studio (a1|a2|a3|a4|a5|a6|a10|a11|a12|a13|a14|a15|a17|a18)
+ 1 30

4. Trang a∗
2(a1|a3|a4|a5|a6|a10|a11|a12|a13|a14|a15|a17|a18)

+ 1 31

5. Soa2Chare a∗
2(a1|a3|a4|a5|a6|a10|a11|a12|a13|a14|a15|a17|a18)

+ 1 31

6. GenEchare a∗
2(a

+
1 |a3|a+

4 |a5|a6|a10|a11|a12|a13|a+
14|a+

15|a17|a+
18)

+ 2 36

7. conMiner a∗
1a

?
17a

∗
14&a∗

2a
?
11a4a

?
10&a3a6&a?

5&a12&a∗
13&a∗

18a
∗
15 1 37

8. GenVCHARE a∗
2(a

∗
1a

?
17a

∗
14|a3a

?
12a

∗
15|a4|a5|a6|a∗

13|a∗
18a

?
11a

?
10)

+ 2 40
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conMiner [29] (algorithm for inferring SIRE), IntelliJ IDEA and Liquid Studio
compared with GenVCHARE on inproceedings, incollection, phdthesis, master-
sthesis. Using two indicators: Nesting Depth [21] and length of regular expres-
sions (the number of symbols together with operators), we only give the analy-
sis of inferred regular expressions on inproceedings due to limited space reason.
Analysis on other elements can be found on the web site: http://lcs.ios.ac.cn/
∼zhangxl/.

From Table 1, we can find that a2 must occur in the first position if it appears.
However, its position is not fixed in regular expressions inferred from methods
1, 3, 7 which lead to over-generalization.

5 Conclusion and Future Work

After a detailed analysis of real-world data, we propose a new subclass VCHARE
of restricted regular expressions considering interleaving operator. Each terminal
symbol in a VCHARE can only occur at most once. Compared with existing sub-
classes, VCHARE can cover more real-world data. This is useful for applications
such as data process and integration and so on. Further, we proposed an infer-
ence algorithm GenVCHARE for VCHARE based on SOA and MIS. It is proved
that regular expressions inferred by GenVCHARE are descriptive generalized.
Experimental results show that regular expressions inferred by GenVCHARE is
more accurate.

One future work is to consider constructing an automaton for regular expres-
sion with interleaving which is useful for schema inference. In addition, we will
also study SORE extended with interleaving.
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