
Enabling Concurrency on Smart
Contracts Using Multiversion Ordering

An Zhang(B) and Kunlong Zhang

School of Computer Science and Technology, Tianjin University, Tianjin, China
{zhangan,zhangkl}@tju.edu.cn

Abstract. Blockchain-based platforms, such as Ethereum, allow trans-
actions in blocks to call user-defined scripts named smart contracts. In
the blockchain network, after being generated by a miner, a block will
be validated many times by the peers who accept it. Hence by enabling
concurrency on smart contracts, especially validation, we can improve
the efficiency and the throughput of those platforms.

By introducing multiversion transaction ordering, this paper presents
a concurrent scheme called MVTO to run smart contracts concurrently.
First, the miners are able to use any concurrency control technique to
discover a conflict-serializable schedule. Then, validators use MVTO to
verify the block by replaying this schedule concurrently and deterministi-
cally. The evaluation shows that this mechanism achieves approximately
2.5x speedup in the block validation using a thread pool with 3 threads.

Keywords: Blockchain · Smart contract · Concurrency
Multiversion transaction ordering

1 Introduction

Platforms like Ethereum are essentially instances of distributed Byzantine-fault-
tolerant database. They are built on a decentralized, peer-to-peer network where
peers do not fully trust each other. Generally, there are two kinds of peer nodes
in the network: miner and validator. We briefly describe their work as follows:
Miners repeatedly collect transactions in the network and package them into new
blocks. When creating a new block, the miner incorporates the cryptographic
hash of the preceding block of the new block, i.e., the most recent block in its
local storage, into the header of the newly generated block. The cryptographic
hash in each block’s header acts as the pointer to its preceding block and thus
form a chain of blocks, called blockchain. The newly generated block is then
published to other validators. Validators follow a consensus protocol to decide
whether to accept a newly received block or not and how to synchronize with
other peers to reach consensus of blockchain states across the network. In a
word, the blockchain is a shared immutable database for recording the history
of transactions.

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Cai et al. (Eds.): APWeb-WAIM 2018, LNCS 10988, pp. 425–439, 2018.
https://doi.org/10.1007/978-3-319-96893-3_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96893-3_32&domain=pdf


426 A. Zhang and K. Zhang

Ethereum introduces smart contract into blockchain. A smart contract is a
collection of code (its functions) and data (its states) which are stored on the
blockchain with a unique account and address [1]. A contract will execute when
it is triggered by a transaction sent to its address. The functions called can be
written in several Turing-complete languages such as Solidity [2]. Thus miner
will charge fees from target contract’s account for every computational step to
ensure that the execution will finish. This fee refers to the gas in Ethereum.

Smart Contracts execute on blockchain in two scenarios.

1. Mining: When a miner proposes a new block, it starts to execute contracts
according to the order of the transactions in the block. The merkle root of
final states is then stored in the block.

2. Validating: When a validator receives a new block, it re-executes smart con-
tract with the exact same order adopted by the miner when this block was
generated. Then the validator checks the consistency of the resulting states
by using merkling techniques.

Despite having the advantages such as tamper-proof and Byzantine-fault-
tolerant provided by blockchain, smart contract platforms suffer from the limita-
tion of throughput. This limitation is partly prompted by the lack of concurrent
mechanisms in existing smart contracts designs. When miners and validators
deal with a block, they execute smart contracts serially to produce a determin-
istic result. Furthermore, Ethereum is planning to change its consensus protocol
from proof of work (POW) to an energy saving protocol called proof of stake
(POS). After switching to POS, Ethereum can significantly save time originally
needed in the POW phase. In this trend, Ethereum can execute smart contracts
that are more complicated and time-consuming. However, one needs to apply
concurrency to fully exploit those saved computational powers.

There are three reasons why smart contracts can not employ naive concur-
rent solution. First, a smart contract can be called several times by different
transactions during a block’s execution and therefore race conditions may occur
when those calls of the same contract execute in parallel. Second, smart contracts
need to execute transactionally. In other words, if Ethereum executes multiple
transactions concurrently, it must produce a conflict-serializable schedule where
the final states can be produced by a serial schedule1. Third, validating a block
requires deterministic execution which can not be provided by naive concurrency
approach.

In the mentioned two scenarios where smart contracts are executed, the com-
putational power spent on these scenarios is unbalanced. A block only gets exe-
cuted one time when created by miners. If this block is accepted, every node
in the network will validate this block. Thus, improving the efficiency of block
validation is more important than block generation in mining phase.

We propose a concurrent scheme for smart contracts. In this scheme, when a
miner proposes a new block, it can employ any concurrent control technique, such

1 A serial schedule is a schedule where transaction are executed serially and do not
interleave each other.



Enabling Concurrency on Smart Contracts Using Multiversion Ordering 427

as 2PL or timestamp, as long as it can produce a conflict-serializable schedule.
During the execution, the miner needs to record the write set of every transac-
tion in the block, i.e., the set which contains the data items that the transaction
tries to write. After the miner finishes the block’s execution, it stores the write
sets into the block. Then, the miner adjusts the transaction order of the block
to match the serial order of the resulting schedule and publish the new block.
Before the validator executes the newly received block, it constructs a “write
chain” on the conflicting data items using the write sets and the transaction
order in the block. The “write chain” pre-determines the contention relation-
ships among block’s transactions and the priority of these transactions. The
proposed mechanism, called multiversion transaction ordering (MVTO), uses
“write chain” to resolve conflicts at runtime and then produces deterministic
results. Meanwhile, by using the multiversion technique in the “write chain”,
MVTO further reduces the conflict at runtime.

This paper makes following contributions:

1. a scheme to run smart contracts called by transactions in a block concur-
rently where miner can employ any concurrent control technique as long as
it produces conflict-serializable schedule.

2. a multiversion concurrency control mechanism to validate a block concur-
rently and deterministically. The evaluation shows that this mechanism
achieves approximately 2.5x speedup in the block validation using a thread
pool with 3 threads.

The rest of the paper is organized as follows. Section 2 introduces a simplified
smart contract model and the notions used in this paper. Section 3 presents the
details of the proposed mechanism called MVTO. Section 4 proves the correctness
of MVTO. Section 5 illustrates the experiments and summarizes the results.
Section 6 reviews the related work. Section 7 concludes the paper.

2 Background

This paper uses a simplified smart contract model to illustrate the proposed
mechanism. This section will introduce the notions that related to this paper.

2.1 Smart Contract

Smart contracts can be seen as a collection of self-defined states maintained in
blockchain and functions that manipulate these states.

A simplified proxy ballot contract is shown in Fig. 1. The contract defines
two persistent states: voters (line 6) and proposals (line 7). “Proposals” is an
array of “Proposal”. Each “proposal” contains the number of votes it owns (line
3). The “voters” maps a unique memberID to the data structure “Voter” (line
2). Voters can vote to a specific proposal and they can only vote once.

Client firstly collects votes to the same proposal. Then it calls the function
“proxyVote” (line 10–16) to cast these votes by sending a transaction to this



428 A. Zhang and K. Zhang

Fig. 1. Simplified ballot smart contract

ballot contract’s address. Voters cast their votes by adding their weight to target
candidate’s “voteCount”. Most of those state changes are vulnerable to race
conditions and may result in inconsistent states. Furthermore, functions can
use throw statement to handle exceptions such as double voting (line 13). The
throw statement can abort the contract, discarding the transient variables and
undoing any state changes.

2.2 Data Action

A data action is a primitive operation (read or write) on a state’s data item [3].
For example, in Fig. 1, voters cast their votes by performing an update action2

on the target proposal in the state variable “proposals” (line 15). We refer to ti
as the i-th transaction in block. Notation ri(x) and wi(x) are the read and write
action on data item x executed by ti respectively.

2.3 Conflict

Two data actions conflict with each other if executing them in either order yields
different results. For example, there are two situations where two actions conflict
in the single-version concurrency control scenario:

1. Two actions of the same transaction, e.g., ri(x) conflict with ri(y).
2. Two actions of different transactions and one of them is a write action, e.g.,

wi(x) conflict with rj(x)(i �= j) and wi(x) conflict with wj(x)(i �= j).

2.4 Schedule

A schedule is the sequence of data actions that transactions actually performed.
A serial schedule is a schedule that meets the following conditions: (i) the actions
that belong to the same transaction preserve the order in transaction; (ii) the

2 The update action can be divided into a read and a write action.



Enabling Concurrency on Smart Contracts Using Multiversion Ordering 429

actions that belong to different transactions don’t interleave with each other.
For example, a serial schedule is shown in Example 1.

Example 1 (serial schedule).

r1(x);w1(x); r1(y);w2(x);w2(y); r3(x).

Conflict-Serializable Schedule. Two schedules are conflict-equivalent if they
can turn into each other by swapping adjacent non-conflicting data actions. A
schedule is conflict-serializable if it is conflict-equivalent to a serial schedule.
The serial order of a conflict-serializable schedule is the transaction order of the
serial schedule which it conflict-equivalent with.

Non-conflicting actions can be fully parallelized because the results won’t
change. However, swapping the execution order of conflict actions might change
results and violate the correctness of transactional execution. In Example 2, we
can observe that conflict-serializable schedules with the same serial order will
produce the same results for each action that belongs to them.

Example 2 (conflict-equivalent). Following schedules are conflict-equivalent with
the serial schedule in Example 1 and therefore have the same serial order t1 <
t2 < t3.

– r1(x);w1(x);w2(x); r1(y);w2(y); r3(x);
– r1(x);w1(x);w2(x); r1(y); r3(x);w2(y);

Hence, in order to ensure the correctness, smart contracts need concurrency
control mechanism to produce conflict-serializable schedule.

Recoverable Schedule. When a transaction writes a data item, the write
action is tentative and may be reverted if the transaction aborts. For the schedule
“w2(x); r3(x)”, r3(x) reads the value of x which is previously written by w2(x).
The effect of r3(x) will not be recoverable and become a dirty data if t2 aborts
after t3 commits. We refer to t2 as a read-from transaction of t3.

A schedule needs to be recoverable to prevent this dirty data issue. A recov-
erable schedule is a schedule where each transaction commits only after all its
read-from transactions have committed. In this way, the changes made by the
transaction that read dirty data are still revertable because the transaction must
wait for its read-from transactions to commit.

2.5 Multiversion Concurrency Control

When using single-version concurrency control methods, transactions may have
to abort because of non-serializable action. This paper employs multiversion con-
currency control (MVCC) to reduce conflict. Instead of overwriting the data item
when performing write action, MVCC preserves each version of write actions to
avoid aborting transactions due to reasons like read too late. Since result of each



430 A. Zhang and K. Zhang

write action is recorded along with its timestamp, a read action can know which
version it should read. We refer to the version of the data item x written by
transaction ti as notation xi.

In MVTO, multiversion reduces the conflict among the data actions. Write
actions on the same data item don’t conflict because they write to different
versions. The conflict happens between the read action and write action on the
same version of the data item where the read action must wait for the write
action finishes.

3 Proposed Mechanism

3.1 Basic Idea

Mining Phase. In mining phase, since correctness of smart contracts’ exe-
cution requires conflict-serializability, any concurrency control mechanism used
in DBMS can be applied to produce a conflict-serializable schedule. The block
generating process can be divided into two steps: (i) contracts’ execution and
(ii) consensus protocol. After block’s execution (step 1), the miner can acquire
the serial order of transactions according to the produced schedule. Then, the
miner adjusts the transaction order of the block to match the serial order. At
this point, the miner can compute the hash of the reorganized block and step
into consensus protocol (step 2). Figure 2 illustrates this block’s reorganization
process. In this example, the original order, which is decided by the miner, is
t1 < t2 < t3 (as shown in the left-hand figure). After the execution, the resulting
schedule shows that the serial order is t1 < t3 < t2 and therefore the miner
reorganizes the block according to the serial order (as shown in the right-hand
figure).

Fig. 2. When mining: reorganize transactions according to schedule

Validation Phase. In the concurrent scenario, verifying the transactions that
call smart contracts need three conditions to ensure the correctness:

1. Conflict-serializability: the resulting schedule of validation must be conflict-
serializable.

2. Schedule replayability: the resulting schedule must be conflict-equivalent with
the schedule produced by the miner of this block.



Enabling Concurrency on Smart Contracts Using Multiversion Ordering 431

3. Execution recoverability: the resulting schedule must be recoverable because
the transactions can abort at any time.

We refer to the proposed mechanism as multiversion transaction ordering
(MVTO). MVTO is similar to timestamp concurrency control because they both
decide the presumptive transactions’ serial order. Timestamp concurrency con-
trol presume the serial order using timestamp and abort those transactions which
violate the presumptive order. Timestamps are assigned at runtime, which means
the presumptive serial order is determined at runtime and the final order may
change due to the abortion of transactions. On the contrary, MVTO presumes
the serial order to be the transaction order3 of the block before the execution
so that it can validate deterministically. Therefore the validator can know the
priority of transactions before the smart contracts’ execution. Hence, MVTO
can make sure that the data actions never violate the presumptive order.

In order to achieve such functionalities, MVTO needs transactions to provide
their write set to the validation. Transaction’s write set is the set which contains
the data items that this transaction will write. Since smart contracts are written
in Turing-compete languages, it is impossible in general to statically determine
which data actions a smart contract will perform. However, every smart contract
called in the block has already been executed when the block is created by the
miner. Since mining phase and validation phase share the same initial states from
the common blockchain history, these two phases also share the same write set of
each transaction as long as their final serial order are identical. Therefore, mining
phase can provide the write set of transactions to validation phase by recording
all the write actions it has performed. By using these write sets, the validator can
pre-determine all the versions that a data item will have and resolve the conflicts
at runtime by letting the transaction with smaller index in the presumptive serial
order execute first. Hence, the conflict-serializability and replayability of schedule
can hold.

When the transaction ti reads the data item’s value which is previously writ-
ten by another transaction tj in this block, ti will record the handler of tj as
its read-from transaction. In order to produce recoverable schedules, ti cannot
commit until all its read-from transactions has committed.

3.2 Data Structure

Transaction. The transaction in the block has four possible status: “Init”,
“Active”, “Aborted” and “Committed”. “Init” is the initial status of transaction.
“Active” means there is a thread executing the transaction. A transaction are
“Committed” when it completes all its tasks. A transaction will be “Aborted”
when it uses up the gas of the contract or throw other exceptions. We refer to
status(ti) as the status of ti.

3 This transaction order is also the serial order in the mining phase.



432 A. Zhang and K. Zhang

Read Set and Write Set. Transactions use read set, i.e., the set of their
read-from transactions, to ensure their recoverability. Read set is constructed at
runtime and will be initialized into an empty set if the transaction restarts. After
read action ri(x) reads the value written by another transaction tj in the block,
a tuple like 〈tj , xi

j〉 is inserted into read set of ti. In this tuple, tj is the read-from
transaction of ti and xi

j is the value which ti read from tj . Note that we use xi
j

to indicate xi
j may be inconsistent with xj at the time ti tries to commit, this

will be discussed later. We refer to rs(ti) as the read set of ti.
Every transaction has a write set that contains all the write actions it will

perform. The write set of a transaction is generated during the first execution
when the block is created by the miner. We refer to ws(ti) as the write set of
transaction ti. The elements in write set are data locators for the data items.
With the write set, Validator can determine the conflict relation among trans-
actions on the specific data items and construct the “write chain” for these data
items accordingly.

Write Chain on Data Item. By using the write set, validator can construct
write chain on every data item that will be accessed by the transactions in the
block.

Figure 3 shows this write chain under an example. There are 5 data items (a,
b, c, d, e). A validator receives a new block containing 4 transactions (Fig. 3a).
According to the data actions of these 4 transactions, their write sets is shown
in Fig. 3b.

(a) Transactions (b) Write set

(c) Write chain

Fig. 3. Extended data structure on data item



Enabling Concurrency on Smart Contracts Using Multiversion Ordering 433

Before the validator replays those transactions, it uses the write sets to con-
struct the write chain. As shown in Fig. 3c, the write chain contains all the
versions the data item will have during the block’s execution. Elements in the
write chain of a data item are 3-tuples: 〈handle, value, write bit〉, each of them
represents a version of this data item. These elements are ordered by the index
of their writer transaction, i.e., the presumptive serial order. The “handle” is the
reference to the transaction which is going to write the value into this element.
Read actions will use this handle to access the index and the status of the writer
transaction. When the transaction writes its version, it writes into the “value”
of the element and set the “write bit” to true. For the read actions that want to
read this version, the “value” is readable only when “write bit” is true. Other-
wise, they have to wait for the writer transaction to write this version. We refer
to 〈ti, xi, wb(xi)〉 as the target element of action wi(x).

When a read action ri(x) tries to read x, it must decide which version of x
to read. Starting from x0 which is the original value of x, the ri(x) will find the
version as follows:

Step 1. Find xj that j < i, and there is no other version xk where j < k < i.
Step 2. Determine whether status(tj) = aborted.

(a) If status(tj) �= aborted, then xj is the proper version to read.
(b) If status(tj) = aborted, then trace back through the chain to find

the nearest preceding version xm where status(tm) �= aborted.

3.3 Concurrency Control Mechanism for Validation

Rules for Scheduling. The scheduler deals with the requests of data actions
in MVTO. After the validator constructs all the write chains for data items,
scheduler must follow certain rules to make sure the resulting schedule is conflict-
serializable and the serial order is identical to the presumptive serial order. The
rules are described as follows:

Rule 1. Suppose scheduler receives a request of wi(x).
(a) If wi(x) is legal, i.e., scheduler can find the element of ti on write

chain of x, then scheduler grants the request. Let ti write xi into the
target element and then set wb(xi) = true.

(b) If wi(x) is illegal, then abort ti, the newly received block fails the
validation.

Rule 2. Suppose scheduler receives a request of ri(x). The scheduler will find out
the right version xj for ri(x).

(a) If j = 0, grant the request and return the original value of x.
(b) If j �= 0, then check the status of the read-from transaction tj .

i. If status(tj) = Aborted, then find the proper version again and
restart from rule 2.

ii. If status(tj) = Committed then grant the request, return the
value of xj and add 〈tj , xi

j〉 to rs(ti).
iii. If status(tj) = Active

A. If wb(xj) = true, grant ri(x) as in 2(b)ii.
B. If wb(xj) = false, delay ti until wb(xj) is set to ture, then

grant ri(x) as in 2(b)ii.



434 A. Zhang and K. Zhang

Rules of Commit. After transaction ti finishes all its tasks, ti will try to
commit. The rules for committing transaction, which is shown in Algorithm1,
will maintain the recoverability of schedule.

Algorithm 1. Commit ti

1 foreach 〈tj , val〉 ∈ rs(ti) do
2 while status(tj) �= Committed do
3 if status(tj) = Aborted then
4 go to: RestartPoint
5 end
6 sleep()
7 end
8 if checkConsistency(〈tj , val〉) = false then
9 go to: RestartPoint

10 end
11 end
12 status(ti) = Committed

As discussed earlier, ti can’t commit until all its read-from transactions (line
1) have committed (line 2) and some of its read-from transactions that are active
may abort at any time. Aborting a transaction will discard all its changes to the
states and therefore causing the transactions which have read from this aborted
transaction have to restart (line 3). When a transaction tj restarts, rs(tj) will
be cleared and for ∀x ∈ ws(tj), wb(xj) in x’s write chain must be set to false.
The results of the restarted transaction’s data actions might change because
the read set of transaction will change when its read-from transaction aborts.
Thus, when a transaction ti tries to commit, the original value xi

j in rs(ti) may
be inconsistent with the newest version xj because tj may have restarted and
overwritten the original value with new value x∗

j . So ti must check the consistency
between ∀xi

j ∈ rs(ti) and the newest xj , and ti must restart when finding the
inconsistency (line 8–10). The effect of restart can spread through the write chain
after the element of the aborted transaction, making more active transactions
restart due to the inconsistency.

Note that the consistency between the committing transaction and its com-
mitted read-from transactions will hold because the committed transactions
won’t restart and change the versions they have written.

4 Correctness

Observation 1. For conflicting actions ri(x) and wj(x)(i �= j), if ri(x) read the
version xj which is written by wj(x), MVTO will ensure j <= i and scheduling
rules grant ri(x) only after wj(x) finishes.

Lemma 1. MVTO will produce conflict-serializable schedule.

Proof. According to the conflict relation among data actions in final schedule,
we can build a precedence-graph [3] which shows the dependency among the



Enabling Concurrency on Smart Contracts Using Multiversion Ordering 435

transactions in the block. The conflict notion in MVTO which is presented in
Sect. 2.5 shows that the conflict happens between read actions and write action
on the same version of the data item. With Observation 1, we can conclude that
the precedence-graph is acyclic. As proved elsewhere [3], the schedule with an
acyclic precedence graph is conflict-serializable.

Lemma 2. Final schedule produced by MVTO is conflict-equivalent to serial
schedule that matches the transaction order in the block.

Proof. The precedence-graph of the final schedule produced by MVTO is a
directed acyclic graph (Lemma 1). We can observe that the result of the topo-
logical sort of this precedence-graph is the serial order of the final schedule. In
this graph, for all edges that are pointing from ti to tj , MVTO makes sure that
i < j (Observation 1), where i and j are also the index of transactions in the
block. Therefore, the serial order of schedule produced by MVTO is equivalent
to transaction order in the block. Thus we can conclude that the final schedule
is conflict-equivalent to serial schedule that matches the transaction order in the
block.

Lemma 3. Validation will succeed if the block is legal.

Proof. Concurrent schedules of a block’s validation in MVTO will produce the
same results for each data action as long as the (i) initial states are identical and
(ii) these schedules are conflict-equivalent.

Blockchain makes sure the honest miners and validators share the same his-
tory of blocks when creating or validating the new block. Therefore, the initial
states of the new block in validation phase are identical to those initial states in
mining phase.

The final schedule of the validation is conflict-equivalent to serial schedule
that matches the transaction order in the block (Lemma 2). Meanwhile, since
the miner adjusts the transaction order in the block to match the serial order
of the produced concurrent schedule, the final schedule of the validation and
the concurrent schedule produced by miner are both conflict-equivalent to the
same serial schedule. Therefore these two schedules are conflict-equivalent to
each other.

Hence, we can conclude that mining and validation can produce the same
result as long as the block is legal.

5 Evaluation

MVTO aims to improve the throughput for blocks validation by executing smart
contracts in parallel. We use a benchmark for MVTO that vary the workload of
a transaction, the percentage of abortion, the percentage of conflict and the size
of the thread pool to evaluate this approach.



436 A. Zhang and K. Zhang

5.1 Benchmark

The benchmark is the block that only contains the “ProxyBallot” contract which
is shown in Fig. 1. Each block contains 200 transactions. In a transaction that
calls “ProxyBallot” contract, the workload is the number of the voters which
are collected by this transaction. The conflict percentage is defined to be the
percentage of transactions that vote to “proposals[0]”. Other non-conflicting
transactions will vote to different proposals. To control the abort rate of a block,
some transactions are set to abort after they finish.

We set up four experiments where we vary the workload, percentage of abor-
tion, percentage of conflict and size of thread pool respectively. (1) Experiment
1 varies the workload for each transaction from 2000 to 20000 voters with 15%
data conflict and 10% abort. (2) Experiment 2 varies the percentage of data
conflict in the block from 0% to 100% with 20000 workload and 10% abort. (3)
Experiment 3 varies the percentage of abortion in the block from 0% to 100%
with 20000 workload and 15% data conflict. All the above three experiments
use a thread pool with 3 worker threads. (4) Experiment 4 varies the size of the
thread pool from 3 to 15 and the conflict percentage from 5% to 15% with 20000
workload and 10% abort.

5.2 Results

We use C++ implementation to run the evaluation on a machine with 4-core
4.00 GHz CPU. All the results are the mean of 100 times executions. Results are
shown in Fig. 4, each contains the results of serial and concurrent validation on
the same block. Results of serial validation serve as the baseline when showing
MVTO’s speedup.

Figure 4a shows the speedup of MVTO over serial validation when varying
the workload per transaction with 15% conflict and 10% abort. Because of the
overhead of multithreading, MVTO is slower than serial validation when work-
load is lower than 4000. MVTO achieves speedup when workload is higher than
4000 and achieves 2.5x speedup when workload is 20000.

Figure 4b shows the result when varying the conflict percentage of the block
with 20000 workload per transaction and 10% abort. As the conflict percentage
raise, the speedup of MVTO keeps dropping from 2.5x to nearly 0.5x. When
conflict percentage reaches 60%, MVTO becomes slower than serial validation.

Figure 4c shows the speedup of MVTO when varying the abort percentage of
the block with 20000 workload per transaction and 15% conflict. We can observe
that serial execution is significantly slower when there are more transactions
abort during validation. The reason is the difference between single-version and
multiversion when dealing with transaction’s abortion. To abort transactions in
single-version, the undo logs are commonly needed to roll back every tentative
change that made on state variables. While MVTO can just discard the version
which is written by the aborted transaction. Hence MVTO shows lower cost of
restarting transactions compared to single-version technique.



Enabling Concurrency on Smart Contracts Using Multiversion Ordering 437

(a) speedup against workload per trans-
action

(b) speedup against conflict percentage

(c) speedup against abort percentage (d) speedup against size of thread pool

Fig. 4. Evaluation results

Figure 4d shows that how the size of thread pool affect the speedup of MVTO
under blocks with or without conflict. When the block admit no conflict, the
speedup is generally higher with lager thread pool and MVTO cannot achieve
more than 4x speedup due to the limitation of 4-core CPU. However, when the
block contains 15% conflict, the effect of speedup begins to drop when using
thread pool larger than 5 threads. This is because more active threads can lead
to more possibility to have synchronization on the conflicting data item between
active transactions at runtime.

5.3 Discussion

As we mentioned in Sect. 1, Ethereum can deal with more complicated and time-
consuming contracts when it switch to POS. Hence, despite MVTO can only
achieve desirable speedup when executing smart contracts with enough work-
load due to the overhead of multithreading (Fig. 4a), it can bring speedup to
Ethereum and any other platforms which will deal with complicated smart con-
tracts.

The results in Fig. 4c shows the advantage of multiversion technique used in
MVTO compared to single-version implementation when dealing with data roll
back which caused by aborting and restarting transactions. Results in Fig. 4d
shows that MVTO may slow down when using a thread pool with too much
worker threads because of the overhead of the synchronization between conflict-
ing data action. In this evaluation, the transactions in benchmark only calls the



438 A. Zhang and K. Zhang

same smart contract so that the conflict percentage can be very high (as shown
in Fig. 4b). In practice, miner will receive many transactions that trigger unre-
lated smart contracts, thus the blocks in reality might face less data conflict than
the blocks used in this evaluation.

6 Related Work

Dickerson et al. [4] treat every smart contract invocation as a speculative atomic
action. Therefore the miner can discover a serializable schedule when creating the
new block by using locks in a 2PL manner. When executing, the miner records
the schedule by storing the trace of the lock on every data item into the block, so
that validator can retrieve and replay that same schedule deterministically. Serge
and Hobor [5] present the similarities between multi-transactional behaviors of
smart contract and problems of shared-memory concurrency. Bocchino et al. [6]
survey many techniques for replaying a concurrent schedule deterministically.

Ethereum [1] may be the most popular platform among all the smart contract
platforms on public blockchain. Its recent project Plasma [7] tries to remission
the low throughput by employing the sharding techniques. Plasma split the state
space into multiple partitions where each runs on a different child blockchain,
forming a multiple blockchains ecosystem with tree hierarchy. Other ongoing
platforms such as Polkadot [8], EOS [9] and Aelf [10] also adopt similar tech-
niques to parallelize contracts that working on different state space.

Garcia-Molina et al. [3] introduces concurrency control mechanism that
employ multiversion techniques. Many software transactional memory (STM)
techniques [11,12] fit well with smart contract because smart contracts must be
executed transactionally. Ghosh et al. [13] uses “update chain” that similar to the
write chain in MVTO to implement a concurrency control mechanism using mul-
tiversion timestamp under STM. This mechanism aims to reduce aborts when
facing conflicting update transactions. The “update chain” is constructed at
runtime while MVTO constructs write chain before the execution.

7 Conclusion

We have proposed a concurrent scheme called MVTO to increase the through-
put of blockchain-based smart contract platform. In this scheme, the miner can
use any concurrency control technique to discover a conflict-serializable sched-
ule. The write set of each transaction is recorded into the newly generated block
along with the final states. The order of transactions in block is adjusted by
the miner to match the serial order of the resulting schedule thereby validators
can know which serial order they should replay. Before the validation, validators
use those write sets and the transaction order to construct “write chain” on
conflicting data items, therefore they can pre-determine the dependency among
transactions in the block. In summary, validators can validate a block in a concur-
rent and deterministic manner. The Evaluation shows that MVTO can achieve



Enabling Concurrency on Smart Contracts Using Multiversion Ordering 439

approximately 2.5x speedup when validating a block with conflicting input data
using a thread pool with 3 worker threads.

Furthermore, MVTO can be integrated into existing systems without com-
promising their original architecture. Developers just need to implement the con-
currency control and multiversion on the underlying basic data items. Existing
platforms mostly plan to increase throughput by employing sharding. MVTO
is compatible with the sharding techniques where sharding scale through the
multi-chains architecture and MVTO enable concurrency within each child chain.
Hence, MVTO can achieve significant scalability by using sharding techniques
to divide the states into different partitions.

In conclusion, MVTO can speed up the block validation and increase the
throughput of smart contract platforms.

References

1. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, vol. 151 (2014)

2. Ethereum: Solidity documentation. http://solidity.readthedocs.io/en/develop
3. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database System Implementation,

pp. 883–940. Prentice-Hall, Upper Saddle River (2000)
4. Dickerson, T.D., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to

smart contracts. In: Proceedings of the ACM Symposium on Principles of Dis-
tributed Computing, PODC 2017, Washington, DC, USA, 25–27 July 2017, pp.
303–312 (2017)

5. Sergey, I., Hobor, A.: A concurrent perspective on smart contracts. In: FC 2017
International Workshops on Financial Cryptography and Data Security, WAHC,
BITCOIN, VOTING, WTSC, and TA, Sliema, Malta, 7 April 2017, pp. 478–493
(2017). Revised Selected Papers

6. Bocchino, R., Adve, V., Adve, S., Snir, M.: Parallel programming must be deter-
ministic by default. In: Proceedings of the First USENIX Conference on Hot Topics
in Parallelism, p. 4 (2009)

7. Poon, J., Buterin, V.: Plasma: scalable autonomous smart contracts. White Paper
(2017)

8. Wood, G.: Polkadot: vision for a heterogeneous multi-chain framework. White
Paper (2016)

9. EOS: EOS.IO technical white paper. https://eos.io/
10. AELF: a multi-chain parallel computing blockchain framework. https://aelf.io/
11. Herlihy, M., Luchangco, V., Moir, M., Scherer III., W.N.: Software transactional

memory for dynamic-sized data structures. In: Proceedings of the Twenty-Second
ACM Symposium on Principles of Distributed Computing, PODC 2003, Boston,
Massachusetts, USA, 13–16 July 2003, pp. 92–101 (2003)

12. Zhang, D., Dechev, D.: Lock-free transactions without rollbacks for linked data
structures. In: Proceedings of the 28th ACM Symposium on Parallelism in Algo-
rithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA,
USA, 11–13 July 2016, pp. 325–336 (2016)

13. Ghosh, A., Chaki, R., Chaki, N.: A new concurrency control mechanism for multi-
threaded environment using transactional memory. J. Supercomput. 71(11), 4095–
4115 (2015)

http://solidity.readthedocs.io/en/develop
https://eos.io/
https://aelf.io/

	Enabling Concurrency on Smart Contracts Using Multiversion Ordering
	1 Introduction
	2 Background
	2.1 Smart Contract
	2.2 Data Action
	2.3 Conflict
	2.4 Schedule
	2.5 Multiversion Concurrency Control

	3 Proposed Mechanism
	3.1 Basic Idea
	3.2 Data Structure
	3.3 Concurrency Control Mechanism for Validation

	4 Correctness
	5 Evaluation
	5.1 Benchmark
	5.2 Results
	5.3 Discussion

	6 Related Work
	7 Conclusion
	References




