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Abstract. Memory caching plays a crucial role in satisfying the require-
ments for (quasi-)real-time processing of exploding data on big-data
clusters. As big data clusters are usually shared by multiple computing
frameworks, applications or end users, there exists intense competition
for memory cache resources, especially on small clusters that are sup-
posed to process comparably big datasets as large clusters do, yet with
tightly limited resource budgets. Applying existing on-demand caching
strategies on such shared clusters inevitably results in frequent cache
thrashing when the conflicts of simultaneous cache resource demands
are not mediated, which will deteriorate the overall cluster efficiency.

In this paper, we propose a novel self-adaptive incremental big data
caching mechanism, called EarnCache, to improve the cache efficiency for
shared big data clusters, especially for small clusters where cache thrash-
ing may occur frequently. EarnCache self-adaptively adjusts resource
allocation strategy according to the condition of cache resource com-
petition: turning to incremental caching to depress competition when
resource is in deficit, and returning to traditional on-demand caching to
expedite data caching-in when resource is in surplus. Extensive experi-
mental evaluation shows that the elasticity of EarnCache enhances the
cache efficiency on shared big data clusters, and thus improves resource
utilization.

Keywords: Big data · Cache management
Self-adaptive and Incremental caching

1 Introduction

As big data techniques and infrastructures are being applied to facilitate and
accelerate the processing of big data with formidable size, people are putting
forward eager requests on (quasi-)real-time processing of big datasets yet with
exploding volumes, while meeting the (quasi-)real-time processing requests of
big datasets is usually held back by the disk-based storage subsystem, because
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of the expanding tremendous performance gap lying between magnetic disks
and processing units. Thus memory caching plays a crucial role in bridging
the performance gap between storage subsystems and computing frameworks,
and gradually becomes the determinant factor of whether the processing units
of big data platforms could work at their wire speed to satisfy the vast and
fast data processing requirements. As more and more time-critical applications
commence employing memory to cache their big datasets, big data clusters are
usually concurrently shared by multiple computing frameworks, applications or
end users, just as Fig. 1 shows.

Fig. 1. Big data application hierarchies.

In Web or traditional OLTP database applications, ranges or blocks of the
same datasets (or files) usually show vast variance in “hotness” regarding access
recency and frequency. While big data applications usually scan their input files
as a whole for data processing, and thus all blocks of the same file reveal almost
equal hotness. On the other hand, traditional system-level or database-level data
caching is executed on small data units (i.e. 8 KB-sized pages), while big data
caching is executed on much larger units (i.e. 256 MB-sized blocks). So the cost
of caching in/out a data unit in big data scenarios far exceeds that of traditional
data caching. Accordingly, traditional caching may have millions of caching slots,
which makes hotter data pages less likely to be cached out by colder data pages;
while big data caching may only have thousands of slots, which makes compar-
atively hotter data blocks vulnerable to be cached out by colder data blocks.
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Thus there exists intense competition for memory cache resources, especially on
small clusters which are supposed to process comparably big datasets as large
clusters do, yet with much tightly limited resource budgets.

Intense competition for computational resources would not do much harm
to the clusters’ running efficiency, while intense competitions for memory cache
resources would engender tremendous harm, where frequent cache thrashings
would be incurred if cache resource demands are not coordinated, and CPUs
may constantly run idle. Applying existing on-demand caching strategies, which
cache in data blocks once they are accessed, on small shared clusters inevitably
results in frequent cache thrashings, and thus leads to deteriorated overall clus-
ter efficiency. The principal reason behind is that aggressively caching massive
numbers of data blocks of big datasets on demand causes constant block replace-
ment in cache, and consequently exacerbates the competition of cache resources
when these resources are in strong need. Consequently implementing effective
and adaptive management on memory cache resources becomes increasingly
important for the efficiency of big data clusters, especially for small/medium
enterprises who could only afford non-big (or small) clusters.

Targeting the caching problem existing on non-big clusters, we propose an
adaptive cache mechanism, which is named as EarnCache (from sElf-adaptive
incremental Cache), to coordinate concurrent cache resource demands to pre-
vent exacerbation of cache efficiency, when intense competitions for memory
cache resources occur. As big data applications usually access their input data
in the Write-Once-Read-Many (WORM) fashion, we only consider read caching
in this paper. Major contributions of this paper include: (1) proposing an incre-
mental caching mechanism which could self-adaptively adjust cache allocation
strategies according to the competition condition of cache resources; (2) for-
mulating and solving the cache resource allocation and replacement problem as
an optimization problem; (3) implementing a prototype of the proposed mecha-
nism, and performing extensive experiments to evaluate the effectiveness of the
proposed mechanism.

With EarnCache, applications or end users do not get their datasets cached
once they are accessed, but have to incrementally earn cache resources from
other applications or end users by accessing their datasets. A dataset is cached
gradually as the upper-level application or end user accesses the dataset, and
more blocks of the dataset get cached each time it is accessed. In the rest of
this paper, we illustrate the system design and the implementation details of
EarnCache in Sect. 2. We provide empirical evaluation results in Sect. 3, and
present related work in Sect. 4. We finally conclude the paper in Sect. 5.

2 Framework and Techniques

We illustrate how EarnCache works in this section. Firstly we present the
overview about the caching mechanism of EarnCache, and then discuss its archi-
tecture design, and finally explain the incremental cache-earning policy and its
implementation.
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2.1 Overview

On a shared non-big cluster with relatively limited cache capacity, cache resource
conflicts would be normal. If the cluster is concurrently used by a moderate
number of users and the competition for cache resources is mild, hot blocks is
less likely to be cached out by cold blocks, and then applying on-demand caching
could expedite hot blocks taking over cache resources from cold blocks. If more
and more users need to use the cluster concurrently and competition for cache
resources gets wild, applying on-demand caching would leave concurrent cache
resource demands unmediated, and making hot blocks more vulnerable to being
cached out by cold blocks. Then files which are frequently accessed recently could
be totally cached out by files which would rarely be accessed for a second time
in the near future, and the flushed-out hot files would require to be cached in
soon as their next access should occur in the upcoming future. We consequently
need to revisit existing on-demand caching mechanisms for big data caching on
small clusters, and propose more effective measures to improve the efficiency of
data caching on such clusters.

We believe that a good caching strategy for non-big clusters should be self-
adaptive to resource competition conditions, depressing competitions and pre-
venting cache thrashings when cache resources are in desperate deficit. Obvi-
ously caching big data files on demand as a whole could not provide such self-
adaptivity. Not caching-in files entirely on-demand could provide the elasticity
of tuning the amount of cache resources allocated for different files, based on
their access recency and frequency.

Ideally, more recently frequently accessed files should be assigned with more
cache resources, and less recently frequently accessed ones should be assigned
with less cache resources. However, it’s not possible to know in advance what files
would be frequently accessed in the upcoming future, and we could only make
predictions based on historical file access patterns, especially the most recent
information. Based on files’ historical access information, EarnCache implements
an incremental caching strategy, where a user should earn cache resources for
its files from other concurrent users via accessing these files. Cache resources are
incrementally allocated to a file that becomes more frequently accessed, which
gradually takes over cache resources, until all blocks of the file have been cached
in. The more a file is accessed, the more cache resources it takes over. The
incremental caching strategy ensures that files occupying cache resources are
recently frequently accessed, and will not be flushed out by files that are only
accessed occasionally or randomly.

2.2 Architecture

Files originally reside in the under distributed file system (e.g. Hadoop File Sys-
tem), and EarnCache coordinately caches files across the whole cluster. Earn-
Cache consists of a central master and a set of workers residing on storage nodes
as shown in Fig. 2. The master is responsible for:
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1. determining the cache resource allocation plan for a file, concerning how many
cache resources should be allocated to the file based on its recent access
information;

2. informing workers of cache resource allocation plans via heartbeats;
3. keeping track of metadata of which storage node a cached block resides on;
4. answering clients’ queries on cache metadata.

And a worker is responsible for:

1. receiving the resource allocation plan from the master;
2. calculating resource composition plans to determine how many cache

resources a cached file should contribute to compose the allocated resources
depicted in the cache plan;

3. caching in/out blocks according to the calculated resource composition plans;
4. informing the master of cached blocks via heartbeats;
5. serving clients with cached blocks;
6. transferring in-memory blocks to other workers for remote caching.

As illustrated in Fig. 2, a client accesses a block in the following procedures:

1. the client queries the master where the block is cached;
2. the master tells the client which worker the requested block resides on;
3. the client contacts the worker to access the cached block;
4. the worker serves the client with the block data from cache.

One thing worth noting here is that: the client will not contact any worker
to access a block if the block is not cached in any worker node, as the master
only keeps track of cached blocks. In this situation, the client has to fetch data
directly from the under file system.

2.3 Incremental Caching

As we prefer recently frequently accessed files incrementally taking over resources
from less recently frequently accessed files, “recently” should be defined quan-
titatively before we could design the incremental caching strategy, and other
related elements should also be clarified. Table 1 presents the definitions of all
notations involved in our incremental caching strategy.

We define a function hi(xi) to denote the cache profit gain of the ith file to
instruct how cache resources should be allocated across all files falling within
the observation window. Then we attempt to maximize the total profit gain of
all files falling in the observation window with the profit gain function, just as
Eq. 1 shows.

N∑

i=1

fi · hi(xi) (1)

According to definitions in Table 1, we can assume that the time it takes to
scan the ith file is:

time(xi) = [a · xi + b · (1 − xi)] · di (2)
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Fig. 2. EarnCache’s architecture.

Table 1. Notation definitions

Notation Definition

W Predefined window size of the most recently accessed data for observing
files falling within

a, b Scan time per unit data from memory(a) and hdd(b)

N Total number of files falling in the observation window

di Data size of the ith file

D Total data size of N files

M Cache capacity of the whole cluster

fi Access frequency of the ith file

F Total access frequency of N files

xi Percentage of data cached for the ith file

hi(xi) The ith file’s profit gain with xi data cached

As mentioned above, we use hi to indicate the ith file’s cache profit gain
with xi data cached. For simplicity, we take the file’s saved scan time as its
cache profit gain, then we can define hi’s deviation at xi as its gain change over
Δxi, which could be further defined as the percentage of increased saving of the
file’s scan time with increased cache share at xi over the total saved scan time
at xi, compared to zero cache share, just formulized as:
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δhi

δxi
=

time(xi) − time(xi + δxi)
time(0) − time(xi)

=
δxi

xi
(3)

Thus we can derive that hi(xi) = lnxi, and now our optimization goal becomes:

N∑

i=1

fi · ln xi (4)

subjected to:
N∑

i=1

xi · di ≤ M (5)

Note that at any given time, xi is the only variant contained in the optimiza-
tion goal, and fi · ln xi is a convex function. After applying Lagrange multiplier
method, our optimization goal turns to:

L =
N∑

i=1

fi · ln xi − λ(
N∑

i=1

xi · di − M) (6)

Let δL
δxi

be 0, then we get

xi · di =
fi

F
· M (7)

The above result shows that the amount of memory resources allocated to a file
is linear to fi at a given moment, as all files’ access frequencies are determined at
that moment, which exactly corresponds to our original intention of incremental
caching. One more thing worth noting is that: if the overall size of files falling
within the whole observation window is smaller than the cache capacity, and
there are cache resources being occupied by files that fall out of the observa-
tion window, EarnCache will collect resources from those obsolete files by LRU
when there is a caching request, and the requesting file could cache in its blocks
once and for all, rather than gradually taking over resources from files falling
within the observation window. EarnCache thereby could adaptively devolve to
traditional on-demand caching so as to expedite the process of collecting cache
resources for actively accessed files when contention for cache resources is light,
and evolve to incremental caching to depress competition when resources are in
deficit.

2.4 Implementation Details

We implemented EarnCache by implanting our incremental caching mechanism
into the modified Tachyon [4]. In EarnCache, we first evenly re-distribute a file’s
cached data blocks across the whole cluster, so that almost the same amount of
blocks are hosted in cache on each cluster node, and all workers can manage their
cache resources independently yet still in concert. As uneven data distribution
will drag down completion of the whole job, evenly distributing cached data
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blocks guarantee that tasks running on each node could ideally finish almost
simultaneously.

When the ith file needs caching, EarnCache pre-allocates fi/F fraction of
cache resources on each node to the file based on Eq. 7. If resources pre-allocated
to the file are more than its aggregated demands, EarnCache has other files in
need of cache resources fairly share the spare cache. Each worker checks its avail-
able cache resources, and allocates as many as possible to them directly, which
could make full use of cache resources. When there are not enough resources
available, the worker calls BlocksToEvict(), which implements the eviction algo-
rithm with incremental caching, to determine which blocks should be cached out.
As all blocks are cached in from the under file system, cached-out blocks need
no more backup and thus workers could discard them directly from cache. When
block eviction process is done, the worker will inform the master to update the
metadata.

Algorithm 1 describes the process of evicting blocks. EarnCache first checks
whether the file requesting cache resources has used up its pre-allocated share
in Lines 1–3. In the while loop, files who have overcommitted the most cache
resources are selected in Lines 7–14. If no such file exists, EarnCache will reject
the cache request (Lines 15–17). Otherwise, blocks of these selected files are
added to the candidate block set until enough cache resources have been col-
lected (Lines 18–24). As recency and frequency of all blocks within the same file
are identical, workers do not differentiate between blocks of the same file when
selecting blocks to cache out.

3 Empirical Evaluation

We deploy an HDFS cluster on Amazon EC2 as the under distributed file sys-
tem to evaluate EarnCache’s performance, on which Spark and EarnCache are
deployed as the upper-level application tier and the middle-level caching tier
respectively. The cluster consists of five Amazon EC2 m4.2xlarge nodes, one
of which serves as the master and the other four serve as slaves. Each cluster
node has 32 GB of memory, 12 GB memory is reserved as working memory and
the remaining 20 GB of memory is employed as cache resources, summing up to
80 GB of overall cache in total.

We mainly evaluate EarnCache’s performance by issuing jobs from Spark
to scan files in parallel without any further processing, and compare the per-
formance of EarnCache incremental caching, with LRU and LFU on-demand
caching, and MAX-MIN fair caching. We set the size of FILE-1, FILE-2 and
FILE-3 equally to 40 GB and unequally to 70 GB, 40 GB and 10 GB respectively,
and then evaluate EarnCache with different caching strategies and frequency pat-
terns. We set the observation window size of EarnCache to 1000 GB by default.
For each experiment, we issue file scanning jobs on three input files, denoted as
FILE-1, FILE-2 and FILE-3, with the following three various frequency patterns,
denoted as ROUND, ONE and TWO respectively.



EarnCache: Self-adaptive Incremental Caching for Big Data Applications 387

Algorithm 1. Eviction Algorithm: BlocksToEvict()
Input: s, requested cache resources; r, the requesting file id; A={a1, a2...aN}, a list

of files’ pre-allocated memory bytes; C={c1, c2...cN}, a list of current consumed
memory bytes in local node; M, memory capacity of local node

Output: a list of candidate blocks to evict
1: if cr ≥ ar then
2: algorithm ends as file r has already consumed all its allocated memory
3: end if
4: candidate ← {} � candidate cached out blocks
5: mem ← 0 � free resources obtained from evicting candidates
6: while mem < s do
7: j ← −1
8: overj ← 0
9: for ai in A and i �= r do

10: if ci − ai > overj then
11: j ← i
12: overj ← ci − ai

13: end if
14: end for
15: if j = −1 then
16: return as request failure
17: end if
18: find bj as a block of file j and not in candidate
19: candidate ← candidate + bj
20: mem ← mem + sizeof(bj)
21: cj ← cj − sizeof(bj)
22: if mem ≥ s then
23: return candidate
24: end if
25: end while

– ROUND Three files are accessed in pattern: FILE-1, FILE-2, FILE-3, . . . ,
where three files are accessed with equal frequency.

– ONE Three files are accessed in pattern: FILE-1, FILE-2, FILE-1, FILE-3,
. . . , where one file is accessed more frequently than other two files.

– TWO Three files are accessed in pattern: FILE-1, FILE-2, FILE-1, FILE-2,
FILE-3, . . . , where two files are accessed more frequently than the other file.

Figure 3(a) and (b) show the averaged overall running time of file scanning
jobs. Each group of columns involves the scanning of files contained within the
whole period of a frequency pattern, namely 3, 4, and 5 files respectively. We
can see that EarnCache yields the best performance, which exceeds that of the
LRU and LFU on-demand caching by a large margin, and leads the MAX-MIN
fair caching by a smaller margin. The reason of EarnCache achieving the best
performance is straight-forward, as it prevents cache thrashings and thus more
blocks are accessed from memory. We can see that the performance of EarnCache
is only slightly better than the MAX-MIN caching strategy, and sometimes they
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achieve similar performance. This is because files receive similar amounts of cache
resources from these two caching strategies, as far as our experimental settings
are concerned.
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Fig. 3. Running time of file scanning jobs.

In the meanwhile, we also observe that the performance of EarnCache is not
as mighty as we have expected, especially compared with the LRU and LFU
on-demand caching. The reasons are twofold: (1) EarnCache could not hold all
blocks in cache, and thus file scanning jobs are sped up partially; (2) cache-
locality is not guaranteed, and a prohibitive number of blocks are accessed from
remote cache, rather than local cache. We analyze the distribution of blocks
accessed from local cache, remote cache, and the under file system respectively
in detail, and the results are shown in Fig. 4. We can see that EarnCache has
the largest number of blocks accessed from cache, whether locally or remotely,
which means that it yields the highest memory efficiency than other caching
strategies. However, we observe that EarnCache has the largest number of blocks
accessed from remote cache among the four evaluated strategies. This means
EarnCache has the largest potential of performance improvement. If cache-aware
task scheduling can be integrated into the upper-level task scheduler, more blocks
will be accessed from local cache and EarnCache could obtain much better overall
performance.

We showcase the change of cache shares of different files during the process
of executing file scanning jobs iteratively, and the results are shown in Fig. 5.
We can see that the cache shares of different files with EarnCache remain stable
across the whole experimental process, while the LRU and LFU on-demand
caching strategies witness cache thrashings with huge variance of cache shares.
The MAX-MIN caching statically allocates cache resources based on present
files, rather than caching blocks on demand, and thus also witnesses no variance
of cache shares and avoid cache thrashings. However, we can also see that the
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Fig. 4. Distribution of blocks accessed in local cache, remote cache and under file
system.

MAX-MIN caching is unable to dynamically re-allocate resources properly when
there exist files not receiving any further accesses. To illustrate this, we present
the process of resource re-allocation of EarnCache and the MAX-MIN caching
in Fig. 6(a) and (b), where two out of the three equal-sized files stop receiving
further accesses. We can see that the file remaining accessed gradually takes
over cache resources from those obsolete files as time passes, while with MAX-
MIN fair caching, the amount of cache resources held by each file does not
change. Correspondingly, the running time of each job gradually decreases with
EarnCache, yet remains stable with MAX-MIN.

Finally, we experimentally analyze the impact of the predefined observation
window size, and the results are presented in Fig. 7. When observation window is
set with small sizes, the competition for cache resources could not be coordinated
properly, and thus the overall cache efficiency and performance degrades greatly.
When the observation window size exceeds 200 GB, which is larger enough com-
pared with the file sizes, EarnCache effectively coordinates cache resources and
the performance improves correspondingly.

4 Related Work

There has been extensive work on memory storage and caching, as more and
more time-critical applications [19,22] require to store or cache data in mem-
ory to gain improved data access performance, such as Ousterhout et al. pro-
posed RAMCloud [2] to keep data entirely stored in memory for large-scale Web
applications, and Spark [9,21] enables in-memory MapReduce [3]-style parallel
computing by leveraging memory to store and cache distributed (intermediate)
datasets. While caching on distributed parallel systems is tremendously differ-
ent from traditional centralized page-based file system or database caching, and
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Fig. 5. Change of cache shares as files being accessed.

directly applying centralized caching usually does not help much to improve and
sometimes even hurts cache efficiency and performance.

Some previous work focuses on implementing an additional layer on existing
distributed file system, which enables applications to cache distributed datasets
from the underlying distributed file system. Zhang et al. [1] and Luo et al. [11]
respectively proposed the HDCache and RCSS distributed cache system based
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Fig. 7. Impact of the observation window size.

on HDFS [6,20], which manages cached data just as HDFS manages disk data.
Li et al. [4] further implemented a distributed memory file system for data
caching by checkpointing data to the underlying file system. Luo et al. [16]
proposed a just-in-time data prefetching mechanism for Spark applications so as
to depress the resource demands for caching memory. EARNCache imbeds the
incremental caching into Tachyon [4] to coordinate resource competitions and
avoid cache thrashings, and improves cache efficiency and resource fairness to a
certain degree.

Some work focuses on optimizing data caching for specific frameworks or
goals. Zhang et al. [10] proposed to cache MapReduce intermediate data to speed
up MapReduce applications. Luo et al. [14,15] optimized cache resource alloca-
tions in cloud environments to improve database workload processing efficiency.
Ananthanarayanan et al. [7] found the important All-or-Nothing property, which
implies that all or none input data blocks of tasks within the same wave should
be cached, and then proposed PACMan to coordinate memory caching for paral-
lel jobs. Li et al. [5], Tang et al. [17] and Ghodsi et al. [18] respectively proposed
dynamic resource partition strategies to improve fairness, and maximize the
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overall performance in the meanwhile. Pu et al. [8] extended the MAX-MIN fair-
ness [12,13] with probabilistic blocking, and proposed FairRide to avoid cheating
and improve fairness for shared cache resources.

5 Conclusion

In this paper, we propose the EarnCache incremental big data caching mecha-
nism, which adaptively adjusts resource allocation strategy according to resource
competition condition. Concretely, when the resources are in deficit, it adopts
incremental caching to depress competition, and turns to traditional on-demand-
caching to expedite data caching-in when resources are in surplus. On-demand
big data cache usually leads to cache thrashings. With EarnCache, files are not
cached on demand. Instead, applications or end users incrementally take over
cache resources from others by accessing their datasets. EarnCache manages to
achieve improved resource utilization and performance with such an incremen-
tal caching strategy. Experimental results show that EarnCache can elastically
manage cache resources and yields better performance against the LRU, LFU
and MAX-MIN cache replacement policies.
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