
Aggregate k Nearest Neighbor Queries
in Metric Spaces

Xin Ding1, Yuanliang Zhang1, Lu Chen2, Keyu Yang1, and Yunjun Gao1(B)

1 College of Computer Science, Zhejiang University, Hangzhou, China
{dingxin,yuanlz,kyyang,gaoyj}@zju.edu.cn

2 Department of Computer Science, Aalborg University, Aalborg, Denmark
luchen@cs.aau.dk

Abstract. Aggregate k nearest neighbor (AkNN) queries are useful in
many areas, such as multimedia retrieval and resource allocation, to name
but a few. Most of existing works on AkNN query only focus on Euclidean
space or specific metric space, which employ properties of particular data
to accelerate the query. However, due to the complex data types involved
and the needs for flexible similarity criteria seen in real applications,
properties of particular data cannot be used for general case. Hence, in
this paper, we investigate AkNN search in metric spaces, termed as met-
ric AkNN (MAkNN) search, as metric spaces can support any type of
data and flexible similarity criteria as long as satisfying triangle inequal-
ity. To efficiently answer MAkNN queries, we develop several pruning
techniques and corresponding algorithms based on SPB-tree. Extensive
experiments using three real data sets verify the efficiency of our MAkNN
algorithms.

Keywords: Metric space · Aggregate k nearest neighbor query
Algorithm

1 Introduction

Aggregate k nearest neighbor (AkNN) retrieval is an interesting type of spatial
queries, which finds k objects similar to all the specified query objects using
an aggregate similarity criterion. It is useful in a variety of applications, such
as resource allocation, recommender systems, etc. Here, we give two examples
below.

Resource Allocation. Consider the carpooling, i.e., carpoolers want to take
the same taxi to save money. An AkNN query can be utilized to help find
candidate taxis for the carpoolers with smallest aggregate distances. Here, with
the objective to save time, the aggregate distance summarizes all the distances
from the taxi to each carpooler.

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Cai et al. (Eds.): APWeb-WAIM 2018, LNCS 10988, pp. 317–333, 2018.
https://doi.org/10.1007/978-3-319-96893-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96893-3_24&domain=pdf

318 X. Ding et al.

Table 1. Symbols and description

Notation Description

q A query object

Q or O The set of objects in metric spaces

P The set/table of pivots

o or p An object in O, a pivot in P

|Q|, |O|, |P | The cardinality of Q, O or P

d() The distance function for the generic metric space

D() The L∞-norm metric for the mapped vector space

dagg(Q, o) The aggregate distance between Q and o in generic metric space

φ(o) The data point for o in the mapped vector space

SFC(o) The space-filling curve value of an object o

MAkNN (Q, O, k) The result set of an MAkNN query w.r.t. the query set Q and the object set O

curANDk The current k-th nearest neighbor distance

Recommender Systems. An image recommender system can generate per-
sonalized recommendations (i.e., the images that the user may be interested in)
based on the images the user already reviewed. Here, the aggregate distance
could be the minimum distance between the image to be recommended and the
images reviewed.

Considering the wide range of data types in the above application scenarios,
e.g., taxis and images, a generic model is desirable that is capable of accommo-
dating not just a single type, but a wide spectrum. In addition, the distance
metrics for comparing the similarity of objects, such as road network distance
used for taxis and Lp-norm used for images, are not restricted to the Euclidean
distance (i.e., L2-norm). To accommodate a wide range of similarity notions, we
investigate AkNN retrieval in metric spaces, termed as metric AkNN (MAkNN)
search, where no detailed representations of objects are required and where any
similarity notion that satisfies the triangle inequality can be accommodated.

Most of existing works on AkNN search focus on Euclidean space or particular
metric space (e.g., road network, graph), where properties of particular data
(e.g., geometric property for Euclidean space) are used to improve the query
efficiency. However, these properties cannot be used for the general case, i.e.,
these approaches cannot answer MAkNN search efficiently. Motivated by this,
we develop several pruning lemmas based on the triangle inequality property
of metric spaces, and present corresponding algorithms. To sum up, the key
contributions of this paper are as follows:

– We develop several pruning lemmas based on SPB-tree for sum, min, and
max aggregate functions to accelerate the search.

– We present an efficient algorithm designed for MAkNN search by integrating
the designed pruning lemmas.

– We conduct extensive experiments using three real data sets to verify the
efficiency of our proposed algorithms, compared with a baseline algorithm
extended from the state-of-the art MAkNN framework.

Aggregate k Nearest Neighbor Queries in Metric Spaces 319

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 describes the SPB-tree. Section 4 defines MAkNN search and presents
corresponding algorithms. Considerable experimental results and findings are
reported in Sect. 5. Finally, Sect. 6 concludes the paper with some directions for
future work.

2 Related Work

In this section, we survey existing work on metric access methods, and AkNN
search algorithms. Table 1 summarizes the notations frequently used throughout
this paper.

2.1 Metric Access Methods

Two broad categories of metric access methods (MAMs) exist, namely, compact
partitioning methods and pivot-based approaches, to accelerate query processing
in metric spaces. Compact partitioning methods partition the space as compact
as possible, and try to prune unqualified regions during search. Many indexes,
e.g., BST [1], GHT [2], GANT [3], SAT [4], M-tree [5] family, D-Index [6], LC
[7], BP [8] exist. Pivot-based methods store pre-computed distances from every
object in the database to a set of pivots, and then utilize these distances and the
triangle inequality to prune objects during search. Many indexes, e.g., LAESA
[9], EP [10], BKT [11], FQT [12], MVPT [13], the Omni-family [14] exist.

Although pivot-based methods clearly outperform compact partitioning
approaches in terms of the number of distance computations (i.e., CPU cost)
[14–17], they generally have high I/O cost because objects are not well clus-
tered on disk. Recently, hybrid methods that combine compact partitioning with
the use of pivots have appeared in the literature. PM-tree [18] uses cut-regions
defined by pivots to accelerate query processing on the M-tree. M-Index [19] gen-
eralizes the iDistance technique for metric spaces, which compacts the objects
by using pre-computed distances to their closest pivots. SPB-tree [20] utilizes
the two mapping phase to further improve the efficiency. Hence, in this paper,
we use SPB-tree as the underlying index.

2.2 AkNN Search Algorithm

Aggregate k nearest neighbor (AkNN) retrieval generalizes kNN search, which
considers multiple query objects. Consequently, the distances from each query
object to an object must be aggregated (min, max or sum) according to an
optimization goal, in order to offer the similarity measure employed to rank
answered objects. Many works [21,22] only focus on AkNN in Euclidean space,
where geometric properties are used to accelerate the search. In addition, AkNN
in particular metric space (e.g., road network [23], graphs [24], trajectories [25])
are also investigated. However, all these approaches cannot solve our MAkNN
search problem, due to the general case we focus on.

320 X. Ding et al.

Razente et al. [26] study circumscription-constrained aggregate similarity
(CCAS) queries in metric spaces, where the region circumscribed by the query
objects limits the search space. However, algorithms developed for CCAS queries
can not be efficiently extended to solve MAkNN search. This is because, they
utilize the circumscription-constrained region to significantly prune search space.
Without the circumscription constraint, they have to scan the whole object set
to obtain the final query result, which is costly. In addition, Ranzente et al. [27]
also develop a framework for MAkNN search that can be adaptive to all kinds
of MAMs. Flowing the framework of [27], we develop a baseline algorithm (BL)
based on the-state-of-the art MAM SPB-tree.

3 The SPB-tree

In this section, we describe the SPB-tree used as the underlying index.

Fig. 1. Pivot mapping and space-filling curve mapping

3.1 Construction Framework

The construction framework of a SPB-tree is based on a two-stage mapping.
The first stage maps the objects in a metric space to data points in a vector
space using well-chosen pivots. The vector space offers more freedom than the
metric space when designing search approaches, since it is possible to utilize the
geometric information that is unavailable in the metric space. The second stage
uses the space-filling curve (SFC) to map the data points in the vector space into
integers in an one-dimensional space. Finally, a B+-tree with MBB information
is employed to index the resulting integers.

Pivot Mapping. Given a pivot set P = {p1, p2, . . ., pn}, a metric space (M ,
d) can be mapped to a vector space (Rn, L∞). Specifically, an object o in the
metric space is represented as a point φ(o) = 〈d(o, p1), d(o, p2), . . ., d(o, pn)〉
in the vector space. For instance, consider the example in Fig. 1, where O = {o1,
o2, . . ., o9} and L2-norm is used. If P = {o1, o6}, O can be mapped to a two-
dimensional vector space, in which the x-axis denotes d(oi, o1) and the y-axis
represents d(oi, o6), 1 ≤ i ≤ 9.

Aggregate k Nearest Neighbor Queries in Metric Spaces 321

Given objects oi, oj , and p in a metric space, d(oi, oj) ≥ |d(oi, p) – d(oj ,
p)| according to the triangle inequality. Hence, for a pivot set P , d(oi, oj) ≥
max{|d(oi, pi) – d(oj , pi)| | pi ∈ P}=D(φ(oi), φ(oj)), in which D() is the L∞-
norm. Consequently, we can conclude that the distance in the mapped vector
space is a lower bound on that in the metric space. For example, in Fig. 1, d(o2,
o3) > D(φ(o2), φ(o3)) = 2.

Space-Filling Curve Mapping. Given a vector φ(o) after pivot mapping and
assume that the range of d() in the metric space is discrete integers (e.g., edit
distance), SFC can directly map φ(o) to an integer SFC (φ(o)). Consider the SFC
mapping examples in Fig. 1, where SFC value SFC (φ(o2)) = 18 for the Hilbert
curve. As a default, we use the Hilbert curve for SPB-tree. If the range of d() in
the metric space is continuous real numbers, we can partition the range of d()
into discrete integers.

3.2 Indexing Structure

An SPB-tree used to index an object set in a generic metric space contains
three parts, i.e., the pivot table, the B+-tree, and the random access file (RAF).
Figure 2 shows an SPB-tree example to index the object set O = {o1, . . . , o9}
in Fig. 1. A pivot table stores selected objects (e.g., o1 and o6) to map a metric
space into a vector space.

A B+-tree is employed to index the SFC values of objects after a pivot
mapping. Each leaf entry in the leaf node (e.g., N3, N4, N5, and N6) of the
B+-tree records (1) the SFC value key, and (2) the pointer ptr to a real object,
which is the address of the actual object kept in the RAF. For example, in Fig. 2,
the leaf entry E7 associated with the object o2 records the Hilbert value 18 and
the storage address 0 of o2. Each non-leaf entry in the root or intermediate node
(e.g., N0, N1, and N2) of the B+-tree records (1) the minimum SFC value key in
its subtree, (2) the pointer ptr to the root node of its subtree, and (3) the SFC
values min and max for 〈L1, L2,. . . , L|P |〉 and 〈U1, U2,. . . , U|P |〉, to represent the
MBB M(= {[Li, Ui]|i ∈ [1, |P |]}) of the root node N of its subtree. Specifically,
an MBB M denotes the axis aligned minimum bounding box to contain all φ(o)
with SFC(φ(o)) ∈ N , and thus, Li and Ui represent the minimum and maximum

Fig. 2. Example of an SPB-tree

322 X. Ding et al.

values of φ(o) on dimension i. For instance, the non-leaf entry E3 uses min (=
SFC(〈0, 5〉) = 19) and max (= SFC(〈1, 6〉) = 23) to represent the M3 (= {[0, 1],
[5, 6]}) of N3.

RAF is sorted to store the objects in ascending order of SFC values as they
appear in the B+-tree. Each RAF entry records (1) an object identifier id, (2)
the length len of the object, and (3) the real object obj. In Fig. 2, the RAF entry
associated with an object o2 records the object identifier 2, the object length 8,
and the real object o2.

4 Metric Aggregate k Nearest Neighbor Search

In this section, we first formalize AkNN retrieval in metric spaces, and then
propose an efficient algorithm for processing metric AkNN queries based on the
SPB-tree.

4.1 Problem Definition

A metric space is a tuple (M,d), in which M is the domain of objects and d is
a distance function which defines the similarity between the objects in M . In
particular, the distance function d has four properties: (1) symmetry : d(q, o) =
d(o, q), (2) non-negativity : d(q, o) ≥ 0, (3) identity : d(q, o) = 0 iff q = o, and
(4) triangle inequality : d(q, o) ≤ d(q, p) + d(p, o). Based on the properties of the
metric space, AkNN queries in metric spaces have been investigated.

Definition 1. (MAkNN Query). Given a query object set Q, an object set
O, and an integer k , an MAkNN query finds k objects in O with the smallest
aggregate distances dagg(Q, o), i.e., MAkNN(Q, O, k)= {oi|oi ∈ O ∧ 1 ≤ i ≤
k ∧ ∀oj(= oi) ∈ O, dagg(Q, oj) ≥ dagg(Q, oi)}. In particular, dagg(Q, o) can be
computed as f(d(q1, o), d(q2, o), . . . , d(q|Q|, o)), in which the aggregate function
f might be sum, min, or max.

Consider two English word sets Q = {“defoliate”, “defoliates”} and
O = {“citrate”, “defoliation”, “defoliating”, “defoliated”}, for which the edit dis-
tance is the similarity measurement. Suppose k = 2, an MAkNN query MAkNN
(Q, O, 2) finds the two words in O having the smallest aggregate distances from
Q. If f is sum function, the query result is {“defoliated”, “defoliation”}; if f is
min function, the query result is {“defoliated”, “defoliation”}; and if f is max
function, the query result is {“defoliated”, “defoliating”}. It is worth noting that
MAkNN (Q, O, k) may be not unique due to the distance tie. Nonetheless, the
target of our presented algorithms is to find one possible instance.

4.2 MAkNN Query Processing

MAkNN search generalizes the form of MkNN queries, in which there are mul-
tiple (instead of one) query objects. Consider a running example of MAkNN

Aggregate k Nearest Neighbor Queries in Metric Spaces 323

Fig. 3. Illustration of MAkNN (Q, O, k)

retrieval depicted in Fig. 3, where Q = {qi|1 ≤ i ≤ 3} and O = {oj |1 ≤ j ≤ 9}.
Assume that k = 2 and L2-norm is utilized, the result of MAkNN (Q, O, 2) is
{o4, o3} if sum function is used to compute the aggregate distance; the query
result is {o4, o7} if min function is used; and the query result is {o4, o3} if max
function is used. To solve MAkNN search, a simple method BL is to use SPB-
tree and follow the framework [27] developed for MAkNN retrieval. In particular,
BL traverses the B+-tree entries in ascending order of their minimum aggregate
distances to Q in the mapped vector space. As discussed in Sect. 3, the distance
in the mapped vector space is the lower bound distance of the original met-
ric space, we develop Lemma 1 below for MAkNN search, to avoid unnecessary
verifications of B+-tree entries.

Lemma 1. Given a query set Q and a B+-tree entry E, E can be safely pruned
if MINDagg(Q,E) ≥ curANDk, where MINDagg(Q,E) denotes the minimum
aggregate distance between E and Q in the mapped vector space, and curANDk

represents the current k-th aggregate NN distance from Q.

Proof. Since the aggregate function is monotonically increasing, the aggregate
distance in the mapped vector space is still the lower bound distance of that in
the original metric space. Then, we can get that mindagg(E, Q) ≥ MINDagg(E,
Q), with mindagg(E, Q) denoting the minimum aggregate distance between E
and Q in the original metric space. If MINDagg(E, Q) ≥ curANDk, then for
each o (∈ E), dagg(o, Q) ≥ mindagg(E, Q) ≥ curANDk. Consequently, E can
be discarded safely. �

Note that, curANDk used in Lemma 1 is obtained and updated during
MAkNN search. In particular, after computing the aggregate distance of an
object, we can update immediately the result set and curANDk if necessary.
Consider the example depicted in Fig. 3 with the corresponding SPB-tree in
Fig. 2. Assume that curANDk = 1 and min function is used, E3 and E6 can be
safely pruned as MINDagg(E3,MQ) = MINDagg(E6,MQ) = curANDk.

Since MINDagg(E,Q) is computed as f(MIND(E, q1), MIND(E, q2), . . .,
MIND(E, q|Q|)), it is costly (because it needs |Q| computations of MIND).

324 X. Ding et al.

Motivated by this, we build MBB MQ (= {[LQi, UQi] | 1 ≤ i ≤ |P |}) for Q in
the mapped vector space, to reduce MINDagg(E, Q) computation cost. Back to
the running example illustrated in Fig. 3, the thick black rectangle in Fig. 3(b)
represents MBB MQ (= {[2, 4], [2, 5]}) for Q in the mapped vector space using
P = {o1, o6}. Let MIND i(E, qt) be the minimum distance between E and qt (∈
Q) on dimension i (1 ≤ i ≤ |P |), and MIND i(E, Q) be the minimum aggregate
distance between E and Q on dimension i.

MINDagg(E,Q)
= f(MIND(E, q1), . . . ,MIND(E, q|Q|))
= f(max{MINDi(E, q1)|1 ≤ i ≤ |P |},

. . . ,max{MINDi(E, q|Q|)|1 ≤ i ≤ |P |})
≥ max{f(MINDi(E, q1), . . . ,

MINDi(E, q|Q|))|1 ≤ i ≤ |P |}
= max{MINDi(E,Q)|1 ≤ i ≤ |P |}

(1)

According to Eq. (1), the lower bound distance of MINDagg(E, Q), termed
as EMINDagg(E, Q), can be computed as max{MINDi(E,Q)|1 ≤ i ≤ |P |}.
To obtain EMINDagg(E, Q), we only need to compute MIND i(E, Q) on each
dimension i, with the detailed computations stated below for sum, min, or max
function, respectively.

Sum function. If LEi ≥ UQi (as shown in Fig. 4(a)), MIND i(E, Q) =
∑

1≤t≤|Q|
MIND i(E, qt) =

∑
1≤t≤|Q| (LEi − d(qt, pi)) = |Q| × LEi − ∑

1≤t≤|Q|d(qt, pi). If
UEi ≤ LQi (as depicted in Fig. 4(b)), then MIND i(E, Q) =

∑
1≤t≤|Q|MIND i(E,

qt) =
∑

1≤t≤|Q| (d(qt, pi) − UEi) =
∑

1≤t≤|Q|d(qt, pi) − |Q| × UEi. Otherwise,
i.e., MQ and ME are intersected on dimension i, MIND i(E, Q) is estimated as 0.

Note that,
∑

1≤t≤|Q| d(qt, pi) used in MIND i(E, Q) computation for sum
function can be obtained and stored for reuse when building MQ. Hence, for
sum function, the computational cost of EMINDagg(E, Q) is O(1), which is
much smaller than O(|Q|) of MINDagg(E, Q) computation. For example, in
Fig. 3, and assume that sum function is used on dimension x, as UE3x < LQx,
MINDx (E3, Q) = d(q1, o1) + d(q2, o1) + d(q3, o1) − 3 × UE3x = 6. Thus, we
can get that EMINDagg(E3, Q) = max{MINDx (E3, Q), MINDy(E3, Q)} = 6,
which is a tight lower bound of MIND(E3, Q) (= 6).

Min function. If LEi ≥ UQi (as shown in Fig. 4(a)), then MIND i(E, Q) =
min1≤t≤|Q|MIND i(E, qt) =LEi − UQi. If UEi ≤ LQi (as depicted in Fig. 4(b)),
then MIND i(E, Q) = min1≤t≤|Q|MIND i(E, qt) =LQi − UEi. Otherwise, i.e., MQ

and ME are crossed on dimension i, MIND i(E, Q) is estimated as 0.
Similarity, the EMINDagg(E, Q) computational cost is also reduced to O(1)

for min function. Back to the example shown in Fig. 3 and suppose that min
function is used, since UE3x < LQx on dimension x, MINDx(E3, Q) =LQx −

Aggregate k Nearest Neighbor Queries in Metric Spaces 325

Fig. 4. MIND i(Q,E) computation

UE3x = 1. Hence, we can get that EMINDagg(E3, Q) = max{MINDx(E3, Q),
MINDy(E3, Q)} = 1, which is a tight lower bound of MIND(E3, Q) (= 1).

Max function. If LEi ≥ UQi (as shown in Fig. 4(a)), then MIND i(E, Q) =
max1≤t≤|Q|MIND i(E, qt) = LEi − LQi. If UEi ≤ LQi (as depicted in Fig. 4(b)),
then MIND i(E, Q) = max1≤t≤|Q|MIND i(E, qt) =UQi − UEi. Otherwise, i.e.,
MQ and ME are intersected on dimension i, MIND i(E, Q) is estimated as 0.
Note that, for the case when ME is intersected with MQ, if E is a leaf entry (as
illustrated in Fig. 4(c)), then MIND i(E, Q) = max{d(E, pi) − LQi, UQi − d(E,
pi)}.

For max function, the EMINDagg(E, Q) computational cost is also reduced
to O(1). Back to the example depicted in Fig. 3 and assume that max function
is used, on dimension x, as UE3x < LQx, MINDx(E3, Q) =UQx − UE3x = 3;
on dimension y, MINDy(E3, Q) = d(E10, o6) − LQy = 2. Thus, we can get that
EMINDagg(E3, Q) = max{MINDx(E3, Q), MINDy(E3, Q)} = 3, which is a tight
lower bound of MIND(E3, Q) (= 3). For object o3, on dimension y, since LQy <
d(o3, o6) < UQy, MINDy(o3, Q) = max{d(o3, o6) − LQi, UQi − d(o3, o6)} = 2.
therefore, we can get that EMINDagg(o3, Q) = max{MINDx(o3, Q)), MINDy(o3,
Q)} = 2, which is also a tight lower bound of MIND(o3, Q) (= 2).

Based on EMINDagg(E, Q) derived, we develop a lemma to avoid unneces-
sary MINDagg(Q, E) computations.

Lemma 2. Given a query set Q and a B+-tree entry E, E can be safely pruned
if EMINDagg(Q, E) ≥ curANDk.

Proof. Since EMINDagg(Q,E) ≤ MINDagg(Q,E), if EMINDagg(Q,E) ≥
curANDk, then MINDagg(Q,E) ≥ curANDk. Hence, E can be safely pruned
due to Lemma 1, which completes the proof. �

326 X. Ding et al.

Consider the example depicted in Fig. 3 with the corresponding SPB-tree in
Fig. 2. Assume that sum function is used and curANDk = 5, E3 can be safely
discarded due to EMINDagg(E3,MQ) > curANDk.

Lemma 2 utilizes MBB to reduce the computational cost in the mapped vec-
tor space. In order to further reduce the computational cost of the aggregate
distance dagg(Q, o) between the object o and the query set Q, we can also build
a minimum bounding circle (MBC) for Q in original metric space. The MBC
CQ is centered at CQ.o with the radius CQ.r equaling to the maximum distance
d(q, CQ.o) (q ∈ Q). Consider the example illustrated in Fig. 3(a), the thick black
circle, centered at object o4 with the radius CQ.r = d(o4, q3), denotes the MBC
for Q. With the assistant of MBC, we can get the lower bound edagg(Q, o) of
dagg(Q, o), with the detailed derivation stated as follows for sum, min, and max
function, respectively.

Sum function. According to the triangle inequality,

dagg(Q, o) =
∑

1≤t≤|Q|
d(o, qt)

≥
∑

1≤t≤|Q|
|d(o, CQ.o) − d(CQ.o, qt)|

≥ |
∑

1≤t≤|Q|
(d(o, CQ.o) − d(CQ.o, qt))|

= |d(o, CQ.o) × |Q| −
∑

1≤t≤|Q|
d(CQ.o, qt)|

(2)

Hence, edagg(Q, o) can be computed as |d(o, CQ.o) × |Q| − ∑
1≤t≤|Q| d(CQ.o,

qt)| for sum function. Note that,
∑

1≤t≤|Q| d(CQ.o, qt) can be computed and
stored for reuse when building MBC CQ. For example, in Fig. 3(a), suppose
that sum function is used, edagg(Q, o6) = 3 × d(o6, o4) − ∑

1≤t≤3 d(o4, qt) =
9−d(o4, q1) = 7.2, which is a lower bound value of dagg(Q, o6) (= 5 + d(q1, o6) =
10).

Min function. Based on the triangle inequality,

dagg(Q, o) = min
1≤t≤|Q|

d(o, qt)

≥ min
1≤t≤|Q|

|d(o, CQ.o) − d(CQ.o, qt)|

≥ min
1≤t≤|Q|

(d(o, CQ.o) − d(CQ.o, qt))

= d(o, CQ.o) − max
1≤t≤|Q|

d(CQ.o, qt)

= d(o, CQ.o) − CQ.r

(3)

Aggregate k Nearest Neighbor Queries in Metric Spaces 327

Thus, edagg(Q, o) can be computed as d(o, CQ.o) − CQ.r for max function.
Back to the example shown in Fig. 3(a), and assume that min function is used,
edagg(Q, o6) = d(o6, o4) − CQ.r = 2, which is a tight lower bound of dagg(Q, o6)
(= 2).

Max function. According to the triangle inequality,

dagg(Q, o) = max
1≤t≤|Q|

d(o, qt)

≥ max
1≤t≤|Q|

|d(o, CQ.o) − d(CQ.o, qt)|

= max{ max
1≤t≤|Q|

d(CQ.o, qt) − d(o, CQ.o),

d(o, CQ.o) − min
1≤t≤|Q|

d(CQ.o, qt)}

= max{CQ.r − d(o, CQ.o), d(o, CQ.o)−
min{d(CQ.o, qt)|1 ≤ t ≤ |Q|}}

(4)

Therefore, edagg(Q, o) can be computed as max{d(o, CQ.o) − CQ.r,
d(o, CQ.o) − min{d(CQ.o, qt)|1 ≤ t ≤ |Q|}} for min function. Note that,
min{d(CQ.o, qt)|1 ≤ t ≤ |Q|} can be computed and stored for reuse when build-
ing CQ. Back to the example depicted in Fig. 3(a), and suppose that max func-
tion is used, edagg(Q, o6) = d(o6, o4) − d(o4, q2) = 3, which is a lower bound
value of dagg(Q, o6)(= d(q1, o6) = 5).

According to Eqs. 2–(4), it only needs one distance computation for
edagg(Q, o) calculation, instead of |Q| distance computations for dagg(Q, o) cal-
culation, which reduces significantly the computational cost. Thus, we develop
a new lemma based on edagg(Q, o) derived, to avoid unnecessary computations
of dagg(Q, o).

Lemma 3. Given a query set Q and an object o, o can be safely pruned if
edagg(Q, o) ≥ curANDk.

Proof. As edagg(Q, o) ≤ dagg(Q, o), dagg(Q, o) ≥ curANDk if edagg(Q, o) ≥
curANDk. Hence, o can be safely pruned due to the definition of the aggregate
kNN query, which completes the proof. �

Consider the example shown in Fig. 3 with the corresponding SPB-tree in
Fig. 2. Assume that max function is used and curANDk = 5, object o6 can be
safely discarded due to EMINDagg(o6,MQ) > curANDk, without any further
verification.

328 X. Ding et al.

To achieve the strongest pruning power of Lemma 3, i.e., the lower bound
edagg(Q, o) must approach to dagg(Q, o) as much as possible, we need to tight
the MBC. In other words, we need to choose an MBC center to obtain the
minimal MBC radius. A simple way to obtain the optimal center is to perform
an MAkNN (Q, O, 1) query using max function. However, it is costly to perform
an additional aggregate NN query. Therefore, we can update the center of MBC
using the object o (∈ O) during MAkNN search when verifying whether o is
contained in the final result.

Based on Lemmas 1 to 3, we present an efficient Aggregate kNN Algo-
rithm (AkNNA), with the pseudo-code depicted in Algorithm 1. To begin with,
AkNNA sets curANDk to infinity, and initializes the MBC CQ and min-heap H
to empty. Then, it computes φ(q) for each q ∈ Q using P , and obtains the MBB
MQ in the mapped vector space. Next, the algorithm pushes the root entries
of a B+-tree into H. In the sequel, a while-loop is performed until H is empty
(lines 4–17). In every while-loop, AkNNA de-heaps the top entry E from H, and
stops searching if MINDagg(Q, E) is no smaller than curANDk by Lemma 1. If
E is a non-leaf entry, the algorithm pushes all the qualified sub entries of E into
H according to Lemmas 1 and 2 (lines 8–11). Otherwise (i.e., E is a leaf entry),
if CQ exists, AkNNA computes edagg(Q, e.ptr) and prunes object e.ptr with-
out any further verification using Lemma3 (lines 13–14). Thereafter, if dagg(Q,
e.ptr) is smaller than curANDk, the algorithm inserts e.ptr into the result set
MAkNN (Q, O, k) (line 16), and updates curANDk and CQ if necessary (line
17). In the end, the final query result set MAkNN (Q, O, k) is returned.

Example 1. We illustrate AkNNA using the example depicted in Fig. 3 with the
corresponding SPB-trees shown in Fig. 2. Assume that k = 2 and sum function

Aggregate k Nearest Neighbor Queries in Metric Spaces 329

is utilized. First of all, curANDk is initialized to infinity, and CQ and the min-
heap H are set to empty. Then, AkNNA computes φ(q1) = 〈2, 5〉, φ(q2) = 〈3, 3〉,
and φ(q3) = 〈4, 2〉 using P , obtains MBB MQ = {[2, 4], [2, 5]}, and pushes the
root entries into H (= {E1, E2}). Next, it performs a while-loop. In the first
loop, AkNNA pops the top entry E1 from H. Since E1 is a non-leaf entry, the
algorithm pushes its qualified sub entries E3 and E4 into H (= {E4, E2, E3}), due
to EMINDagg and MINDagg of E3 and E4 from Q are smaller than curANDk.
Similarly, in the second loop, AkNNA pops E4 and pushes the qualified sub
leaf entries into H(={E9, E10, E2, E3}). Then, AkNNA pops the leaf entry E9

and inserts o4 into MAkNN (Q, O, 2) as dagg(o4, Q) < curANDk. After that,
CQ.o and CQ.r are set as o4 and 2, respectively. In the sequel, it pops and
evaluates entries in H similarly until MINDagg(E3, Q) > curANDk, after which
MAkNN (Q, O, 2) = {o4, o3}. Finally, AkNNA stops and returns MAkNN (Q, O,
2) as the final result set. �

5 Performance Study

In this section, we experimentally evaluate the performance of MAkNN retrieval
algorithms based on the SPB-tree. We implemented the algorithms in C++. All
experiments were conducted on an Intel Core 2 Duo 2.93 GHz PC with 3 GB
RAM.

5.1 Experimental Setup

We employ three real datasets, namely, Words, Color, and DNA, as depicted in
Table 2. Words1 contains proper nouns, acronyms, and compound words taken
from the Moby Project, and the edit distance is used to compute the distance
between two words. Color2 denotes the color histograms extracted from an image
database, and L5-norm is utilized to compare the color image features. DNA3

consists of 1 million DNA data, and the cosine similarity is used to measure its
similarity under the tri-gram counting space.

We investigate the efficiency of MAkNN retrieval algorithms under various
parameters, which are listed in Table 3. Note that, in every experiment, only
one factor varies, whereas the others are fixed to their default values. The main

Table 2. Statistics of the datasets used

Dataset Cardinality Dim. Ins. Dim. Measurement

Words 611,756 1–34 4.9 Edit distance

Color 112,682 16 2.9 L5-norm

DNA 1,000,000 108 6.9 Cosine similarity under tri-gram counting space

1 Words is available at http://icon.shef.ac.uk/Moby/.
2 Color is available at http://www.sisap.org/Metric Space Library.html.
3 DNA is available at http://www.ncbi.nlm.nih.gov/genome.

http://icon.shef.ac.uk/Moby/
http://www.sisap.org/Metric_Space_Library.html
http://www.ncbi.nlm.nih.gov/genome

330 X. Ding et al.

Table 3. Parameter ranges and default values

Parameter Setting Default

k 1, 2, 4, 8, 16, 32 8

query set cardinality |Q| 4, 16, 64, 256, 1024 64

query set area AQ of the whole space 2%, 4%, 8%, 16%, 32% 8%

performance metrics include the number of page accesses (PA), the number of
distance computations (compdists), and the CPU time. Each measurement we
report is the average of 500 queries.

Fig. 5. AkNN query performance vs. k

5.2 Results on AkNN Queries

We verify the performance of our proposed algorithms (i.e., BL and AkNNA) in
answering MAkNN queries in metric spaces. BL is a baseline method directly
extended from MkNN framework [27] using SPB-tree. We inspect the influence of
various parameters, containing (1) the area of query set AQ, (2) the cardinality of
query set |Q|, and (3) the value of k, i.e., the number of aggregate NNs required.

Figures 5, 6, and 7 show the experimental results w.r.t. k, AQ, and |Q|, respec-
tively. The first observation is that, AkNNA achieves better performance in
terms of the number of distance computations and the CPU time, but has simi-
lar number of page accesses as BL. This is because, AkNNA employs Lemmas 2
and 3 to save the distance computational cost and avoid unnecessary distance
computations, while BL only uses Lemma 1. However, the I/O cost of MAkNN
search is related with the search region. In other words, the I/O cost is mostly
related with the distribution of the query set and the dataset, which can hardly
be reduced by Lemmas 2 and 3. Thus, BL and AkNNA have similar I/O cost.
The second observation is that, the query cost increases with AQ and k, due to
the growth of search space. Note that, the query cost of AkNNA, including the
number of distance computations and the CPU time, approaches to that of BL
as AQ grows. The reason is that, with the growth of AQ, the minimum bounding
box and minimum bounding circle for the query set becomes larger, and thus,
the pruning power of Lemmas 2 and 3 decreases. In addition, the number of dis-
tance computations and the CPU time increase with |Q|. This is because, the

Aggregate k Nearest Neighbor Queries in Metric Spaces 331

Fig. 6. AkNN query performance vs. query set area AQ

Fig. 7. AkNN query performance vs. query set cardinality |Q|

aggregate distance computation needs more distance computations and becomes
more costly as the number of query objects |Q| ascends. Nevertheless, the I/O
cost drops as |Q| grows, since the search region decreases due to the dropping
k-the aggregate NN distance (ANDk) value for min and max functions, and
ANDk/|Q| value for sum function.

6 Conclusions

Metric aggregation k nearest neighbor (MAkNN) search is useful in many areas
of computer science, such as multimedia retrieval, resource allocation, and so
forth, because it can support various data types and flexible similarity measure-
ments as long as the measurements satisfy the triangle inequality. To answer
MAkNN efficiently, we develop several pruning lemmas that utilizes the triangle
inequality and present efficient algorithms based on SPB-tree. Extensive experi-
ments show that, our MAkNN search algorithm is more efficient than the baseline
algorithm extended from the state-of-the art MAkNN search framework. In the
future, we plan to extend the MAkNN search algorithms to various distributed
environments.

Acknowledgments. This work was supported in part by the 973 Program of China
under Grant No. 2015CB352502, the NSFC under Grant No. 61522208, the NSFC-
Zhejiang Joint Fund under Grant No. U1609217, and the ZJU-Hikvision Joint Project.

332 X. Ding et al.

References

1. Kalantari, I., McDonald, G.: A data structure and an algorithm for the nearest
point problem. IEEE Trans. Softw. Eng. 9(5), 631–634 (1983)

2. Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees.
Inf. Process. Lett. 40(4), 175–179 (1991)

3. Brin, S.: Near neighbor search in large metric spaces. In: VLDB, pp. 574–584 (1995)
4. Navarro, G.: Searching in metric spaces by spatial approximation. VLDB J. 11(1),

28–46 (2002)
5. Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity

search in metric spaces. In: VLDB, pp. 426–435 (1997)
6. Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: D-index: distance searching index

for metric data sets. Multimed. Tools Appl. 21(1), 9–33 (2003)
7. Chavez, E., Navarro, G.: A compact space decomposition for effective metric index-

ing. Pattern Recogn. Lett. 26(9), 1363–1376 (2005)
8. Almeida, J., Torres, R.D.S., Leite, N.J.: BP-tree: an efficient index for similarity

search in high-dimensional metric spaces. In: CIKM, pp. 1365–1368 (2010)
9. Mico, L., Oncina, J., Carrasco, R.C.: A fast branch & bound nearest neighbour

classifier in metric spaces. Pattern Recogn. Lett. 17(7), 731–739 (1996)
10. Ruiz, G., Santoyo, F., Chavez, E., Figueroa, K., Tellez, E.S.: Extreme pivots for

faster metric indexes. In: SISAP, pp. 115–126 (2013)
11. Burkhard, W., Keller, R.: Some approaches to best-match file searching. Commun.

ACM 16(4), 230–236 (1973)
12. Baeza-Yates, R.A., Cunto, W., Manber, U., Wu, S.: Proximity matching using

fixed-queries trees. In: CPM, pp. 198–212 (1994)
13. Bozkaya, T., Ozsoyoglu, M.: Distance-based indexing for high-dimensional metric

spaces. In: SIGMOD, pp. 357–368 (1997)
14. Traina Jr., C., Filho, R.F.S., Traina, A.J.M., Vieira, M.R., Faloutsos, C.: The

Omni-family of all-purpose access methods: asimple and effective way to make
similarity search more efficient. VLDB J. 16(4), 483–505 (2007)

15. Ares, L.G., Brisaboa, N.R., Esteller, M.F., Pedreira, O., Places, A.S.: Optimal
pivots to minimize the index size for metric access methods. In: SISAP, pp. 74–80
(2009)

16. Chavez, E., Navarro, G., Baeza-Yates, R.A., Marroquin, J.L.: Searching in metric
spaces. ACM Comput. Surv. 33, 273–321 (2001)

17. Mosko, J., Lokoc, J., Skopal, T.: Clustered pivot tables for I/O-optimized similarity
search. In: SISAP, pp. 17–24 (2011)

18. Skopal, T., Pokorny, J., Snasel, V.: PM-tree: pivoting metric tree for similarity
search in multimedia databases. In: ADBIS, pp. 803–815 (2004)

19. Novak, D., Batko, M., Zezula, P.: Metric index: an efficient and scalable solution
for precise and approximate similarity search. Inf. Syst. 36(4), 721–733 (2011)

20. Chen, L., Gao, Y., Li, X., Jensen, C.S., Chen, G.: Efficient metric indexing for
similarity search. In: ICDE (2015, to appear)

21. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor
queries in spatial databases. ACM Trans. Database Syst. (TODS) 30(2), 529–576
(2005)

22. Li, F., Yi, K., Tao, Y., Yao, B., Li, Y., Xie, D., Wang, M.: Exact and approximate
flexible aggregate similarity search. VLDB J. 25(3), 317–338 (2016)

Aggregate k Nearest Neighbor Queries in Metric Spaces 333

23. Wang, H., Zheng, K., Su, H., Wang, J., Sadiq, S., Zhou, X.: Efficient aggregate
farthest neighbour query processing on road networks. In: Wang, H., Sharaf, M.A.
(eds.) ADC 2014. LNCS, vol. 8506, pp. 13–25. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-08608-8 2

24. Liu, Z., Wang, C., Wang, J.: Aggregate nearest neighbor queries in uncertain
graphs. World Wide Web 17(1), 161–188 (2014)

25. Abbasifard, M.R., Naderi, H., Fallahnejad, Z., Alamdari, O.I.: Approximate aggre-
gate nearest neighbor search on moving objects trajectories. J. Central South Univ.
22(11), 4246–4253 (2015)

26. Razente, H.L., Barioni, M.C.N., Traina, A.J.M., Traina Jr., C.: Constrained aggre-
gate similarity queries in metric spaces. In: SBBD, pp. 145–159 (2007)

27. Razente, H.L., Barioni, M.C.N., Traina, A.J.M., Faloutsos, C., Traina Jr., C.: A
novel optimization approach to efficiently process aggregate similarity queries in
metric access methods. In: CIKM, pp. 193–202. ACM (2008)

https://doi.org/10.1007/978-3-319-08608-8_2
https://doi.org/10.1007/978-3-319-08608-8_2

	Aggregate k Nearest Neighbor Queries in Metric Spaces
	1 Introduction
	2 Related Work
	2.1 Metric Access Methods
	2.2 AkNN Search Algorithm

	3 The SPB-tree
	3.1 Construction Framework
	3.2 Indexing Structure

	4 Metric Aggregate k Nearest Neighbor Search
	4.1 Problem Definition
	4.2 MAkNN Query Processing

	5 Performance Study
	5.1 Experimental Setup
	5.2 Results on AkNN Queries

	6 Conclusions
	References

