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Abstract. With the ubiquity of mobile devices and wireless networks,
spatial crowdsourcing (SC) has gained considerable popularity and
importance as a new tool of problem-solving. It enables complex tasks
at specific locations to be performed by a crowd of nearby workers. In
this paper, we study the privacy-preserving travel-time-first task assign-
ment problem where tasks are assigned to workers who can arrive at the
required locations first and no private information are revealed to unau-
thorized parties. Compared with existing work on privacy-preserving
task assignment, this problem is novel as tasks are allocated accord-
ing to travel time rather than travel distance. Moreover, it is challenging
as secure computation of travel time requires secure division which is
still an open problem nowadays. Observing that current solutions for
secure division do not scale well, we propose an efficient algorithm to
securely calculate the least common multiple (LCM) of every workers
speed, based on which expensive division operation on ciphertexts can
be avoided. We formally prove that our protocol is secure against semi-
honest adversaries. Through extensive experiments over real datasets, we
demonstrate the efficiency and effectiveness of our proposed protocol.

Keywords: Spatial crowdsourcing · Privacy-preserving
Task assignment

1 Introduction

Thanks to the ubiquitous wireless networks and powerful mobile devices, spatial
crowdsourcing has gained considerable popularity and importance as a new tool
of problem-solving. It can be applied to simple tasks such as photo-taking where
people act as sensors, or to complex tasks such as handyman service where people
work as intelligent processing units. As an emerging crowdsourcing mode, spatial
crowdsourcing differs from other crowdsourcing modes in that people in spatial
crowdsourcing, also known as workers, must physically move to certain places to
perform those spatial tasks. Recently years have witnessed an upsurge of interest
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in spatial crowdsourcing applications in daily life, ranging from local search-and-
discovery (e.g., Foursquare) to home repair and refresh (e.g., TaskRabbit).

A typical workflow of spatial crowdsourcing consists of four steps:
task/worker registration, task assignment, answer aggregation, and quality con-
trol [1]. Among them, task assignment focuses on allocating a set of tasks to
a set of workers according to a set of constraints such as location, time, and
budget. Typically finding an optimal assignment subject to multiple constraints
is NP-hard, which calls for efficient yet effective algorithms. Based on specific
optimization goals, a variety of approaches have been proposed, for example,
to maximize the total number of completed tasks [2], to maximize the number
of tasks performed by a single worker [3] and to maximize the reliability-and-
diversity score of assignments [4].

The problem of task assignment becomes even tougher when privacy issues
are taken into account. It is not hard to see that the data used for decision
making in task assignment is usually private and thus need to be kept secret
due to the lack of trust among workers, task requesters, and the spatial crowd-
sourcing server. To achieve privacy, these private data should be protected by
for example encryption using mature cryptographical algorithms or perturbation
using emerging privacy-preserving techniques. However, the noise introduced by
these mechanisms will decrease significantly the utility of the data and sometimes
even will make the data useless. It is therefore more challenging to deal with task
assignment with the extra privacy constraint.

Fig. 1. Spatial crowdsourcing where travel time is more important than travel distance

The above hard problem has been studied by several work recently [5–8]. A
common strategy of task assignment adopted by these work is travel-distance-
first, that is, a task will be assigned to the worker who has the shortest travel
distance to its location. This strategy is simple but sometimes is unreasonable in
practice as it is common for some workers to move faster than others. Consider
a simple example where a user wants to request a car through a spatial crowd-
sourcing platform (e.g., Uber). As shown in Fig. 1, two workers (i.e., drivers)
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named Alice and Bob are available when the task is issued, and their distances
to the user are 500 m and 1,000 m, respectively. Using the aforementioned strat-
egy, the spatial crowdsourcing server will assign this task to Alice as she is nearer
to the user. As shown in the figure, however, Alice is in a traffic jam. On the
other hand, Bob is in a smooth traffic and he can arrive at the users location
before Alice. This simple example motivates us to consider, travel-time-first, a
more effective strategy when allocating tasks to workers in practice.

In this paper, we propose a privacy-preserving task assignment protocol for
spatial crowdsourcing platforms taking travel-time-first strategy, that is, workers
who can first arrive at the location of a given task have priority over others.
While it is more effective than travel-distance-first in practice, travel-time-first
makes privacy-preserving task assignment more challenging due to the required
division operation involved in the computation of travel time. For every user,
his/her location and speed are both private and should be protected. How to
perform division efficiently and accurately on encrypted or perturbed data is still
an open problem. In [9], the authors propose a protocol for secure division based
on ElGamal cryptosystem. However, this protocol does not scale well and cannot
be applied to large spatial crowdsourcing system for the key length should be set
large enough to avoid computation overflow and this will introduce prohibitive
computation cost. To overcome this weakness, we transform the secure division
problem into a secure least common multiple (LCM) problem. We propose an
efficient way to calculate the LCM securely. Through extensive experiments, we
demonstrate the feasibility and efficiency of our solution.

The remainder of this paper is organized as follows: Sect. 2 discusses related
work. Problem definition and background knowledge are presented in Sect. 3.
Section 4 introduces our approach in details. Section 5 analyzes the security and
complexity of our approach theoretically. Section 6 evaluates our approach on
real datasets. Section 7 concludes the paper.

2 Related Work

To be consistent with our contributions, we only review the works that are rele-
vant to task assignment and privacy-preserving. Kazemi and Shahabi [2] propose
several solutions to maximize the overall number of assigned tasks under the
constraints of workers. Similarly, The assignment protocol proposed by [10] is to
assign the time-constrained and multi-skill-required spatial tasks with dynami-
cally moving workers. In [11], Zheng et al. take workers’ rejection into consider-
ation and try to maximize workers’ acceptance in order to improve the system
throughput. Tong et al. [12] devise efficient algorithms with provable competitive
radio with online dynamic scenarios. And in [13], Tong et al. propose an online
task assignment framework based on offline guidance to maximize the task allo-
cation while maintaining the efficient task assignment. In [14], Gao et al. design
a two-level-based framework to recommend suitable teams to accomplish a task.
However, these works are all based on a pre-condition that workers do not refuse
to disclose their private information to the SC platform that is hard to achieve
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in reality. Our work focuses on privacy-preserving during an execution of task
assignment.

In recent years, the public concern over privacy has stimulated lots of research
efforts in privacy-preserving. A location based query solution is proposed by
Paulet et al. [15] that employs two protocols that enables a user to privately
determine and acquire location data. In [16], Liu et al. propose an efficient app-
roach to protecting mutual privacy in location-based queries by performing two
rounds of oblivious transfer (OT) extension on two small key sets. A solution
built on the Paillier public-key cryptosystem is presented by Yi et al. [17] for
mutual privacy-preserving kNN query with fixed k and is extended in [18] where
k is dynamic. Unfortunately, these solutions where workers location are private
data of the SC platform are not suitable for our framework for workers loca-
tion should be known to the SC platform in a secret way. Also, in [19], Sun
et al. focus on the privacy-preserving task assignment in SC by presenting an
approach where location privacy of workers can be protected in a k-annoymity
manner. In [5], To et al. propose a framework for protecting location privacy
of workers participating in SC tasks without protecting task location. Liu et al.
[20] propose an efficient solution to securely compute the similarity between two
encrypted trajectories without revealing nothing about the trajectories. How-
ever, their protocols also cannot be applied to our framework for they have too
heavy computation cost to solve large task assignment problems.

3 Problem and Preliminary

In this section, we first present some definitions used in our work and then briefly
introduce some cryptosystems based on which our protocol is built.

3.1 Problem Definitions

Definition 1 (Spatial Task). A spatial task, denoted as T , is a task to be per-
formed lT .

Definition 2 (Workers). Let W = {w1, · · · , wn} be a set of n workers. Each
worker w has an ID idw, a location lw, a constant speed sw, and an acceptance
rate ARw which is the probability that he/she accepts a task assigned to him/her.

As mentioned in the introduction, we mainly consider travel-time-first, a new
task assignment strategy in privacy-preserving spatial crowdsourcing. Ideally, we
only need to find a worker w ∈ W who can first arrive at lT and then assign T to
w. This works if the worker is certain to accept the assigned task, but sometimes
it is not. Therefore we consider a more general case where every worker w has
an acceptance ratio denoted as ARw for an assignment, and we need to ensure
the probability that a task T is accepted by at least one worker is larger than a
given threshold αT . In this case, we need to find a set of workers U ⊂ W rather
than a single worker. It is easy to see that the probability that T is accepted by
at least one worker in U is αU = 1−∏

w∈U (1−ARw). Hence the travel-time-first
task assignment problem can be formalized as follows:
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Definition 3 (Travel-time-first Task Assignment Problem). Given a set of
workers W , a task T and its acceptance threshold αT , the travel-time-first task
assignment assigns task T to a set of workers U ⊂ W such that:

d (li, lT )
si

≤ d (lj , lT )
sj

and αT ≤ αU (1)

for ∀i ∈ U and ∀j ∈ W \ U .

Privacy-preserving means all the private data should be hidden from unau-
thorized parties in the procedure of task assignment. To accurately define the
ability of unauthorized parties, we adopt a typical adversary model, i.e., the
semi-honest model [21]. Specifically, all parties in this model are assumed to be
semi-honest, that is, they follow a given protocol exactly as specified, but may
try to learn as much as possible about other parties private input from what they
see during the protocols execution. This can be formally defined by the real-ideal
paradigm as follows: for all adversaries, there exists a probabilistic polynomial-
time simulator, so that the view of the adversary in the real world and the
view of the simulator in the ideal world are computationally indistinguishable.
Specifically, the security of a protocol Π is defined as follows:

Definition 4. Let pi(1 ≤ i ≤ n) be n parties involved in a protocol Π. For
pi(1 ≤ i ≤ n), its view, private input and extra knowledge it can infer during
an execution of Pi are defined as Vi,Xi and Ki respectively. A protocol Pi has a
strong privacy guarantee, that is, pi cannot learn any knowledge except the final
output of pi, if these exists a probabilistic polynomial-time simulator Pi such
that:

Pi(Xi,Π(X1, · · · ,Xn),Ki)X1,··· ,Xn
≡ Vi(X1 · · · ,Xn)X1··· ,Xn

(2)

and Ki = ∅, where ≡ means computational indistinguishability. However, this
strong guarantee cannot be achieved sometimes for Ki �= ∅. If Ki �= ∅, Π is said
to be privacy-preserving with Ki disclosure against pi in the sense that it reveals
no more knowledge than Ki and the final output to pi.

Now we are ready to define the problem of privacy-preserving travel-time-first
task assignment as follows:

Definition 5 (Privacy-preserving Travel-time-first Task Assignment Problem).
Given a set of workers W , a task T and its acceptance threshold αT , the travel-
time-first task assignment assigns task T to a set of workers U ⊂ W such that
Eqs. (1) and (2) hold.

3.2 Cryptosystems

The privacy-preserving property of our protocol is built on several well-known
cryptosystems: PRG [22], Paillier [23] and ElGamal [24]. The details of PRG,
Paillier and ElGamal can be found in the given references and all of them are
proved to be secure. Here we only emphasize some important properties of these
cryptosystems.
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PRG can be implemented by using a one-way hash function denoted as Gk.
For Paillier, its encryption and decryption are denoted as Ep and Dp, respec-
tively. For ElGamal, its encryption and decryption are denoted as Ee and De,
respectively. The important properties of Paillier and ElGamal are listed as fol-
lows:

Homomorphic Properties of Paillier: Given m1 and m2 are two messages,
we have:

Ep(m1)Ep(m2) = Ep(m1 + m2). (3)

Ep(m)k = Ep(km). (4)

Commutative-Like Property of ElGamal: Given a message m, we have:

Eha
e (Ehb

e (m)) = Ehb
e (Eha

e (m)). (5)

4 Proposed Privacy-Preserving Framework

In this section, we will introduce our privacy-preserving framework in details and
explain how to get LCM in a safe and secret way by AP encryption strategy.

4.1 Framework Overview

As Fig. 2 shows, our proposed framework consists of six stages, namely Initializa-
tion, Distance, LCM, Time, Comparison and Verification respectively. Different
colors mean different stages.

Fig. 2. Framework overview



Privacy-Preserving Task Assignment in Spatial Crowdsourcing 25

4.2 Detailed Framework

Next, every stage in details is described in this subsection.

Initialization Stage. Firstly, the KP generates a pair of keys for Paillier. Then
the KP keeps the encryption key public and the decryption key private respec-
tively because the computations of the SC platform and workers are based on
encrypted data while the KP has to decrypt data to find the chosen worker.
Besides, the KP generates a cyclic group G for ElGamal based on which the KP
and all workers generate their own pair of keys and keep them secret.

Distance Stage. Given a spatial task T , the SC platform encrypts task location
lT (xT , yT ) with the encryption key of Paillier by calculating Ep(x2

T +y2
T ), Ep(xT )

and Ep(yT ). Then these three ciphertexts are sent to all workers. Without hold-
ing the decryption key of Paillier, every worker wi can calculate the encrypted
square of the distance based on the Euclidean distance and the homomorphic
properties shown in Eqs. 3 and 4 as follows:

Ep(d2(lT , li)) = Ep(x2
T + y2

T )Ep(xT )−2xiEp(yT )−2yiEp(x2
i + y2

i ) (6)

It should be noted that it also works when every worker encrypts location and the
SC platform calculates Ep(d2(lT , li)). However, it will cost much more computing
resources for every worker can calculate in parallel. That is to say, our proposed
method is good for reducing the computation cost of the SC platform.

LCM Stage. At first, we explain why we need to get the LCM of all worker’s
speed. As defined in Definition 3, our framework prefers the worker who has the
shortest travel time. To this end, we have to face division operation on ciphertexts
which is still an open problem nowadays during the computation of travel time.
Though we cannot solve the problem of division operation, a transformation can
be employed to avoid the division operation based on the following lemma:

Lemma 1. Let W = {w1, · · · , wn} be a set of n workers, D = {d1, · · · , dn} be
the distance between task location and the worker wi, Slcm be the LCM of every
worker’s speed si and s′

i = Slcm/si where 1 ≤ i ≤ n. So for any two different
workers wi, wj ∈ W , if dis

′
i < djs

′
j holds then we must infer di/si < dj/sj.

Proof. dis
′
i < djs

′
j ⇐⇒ dis

′
i/Slcm < djs

′
j/Slcm ⇐⇒ di/si < dj/sj .

Deforming the formula of travel time can help us avoid the division operation
over ciphertexts, which is the reason why we need to get the LCM. Note that
the product of all speeds is not suitable here for it may cause the overflow of
the multiplication of all speeds [9]. The process of calculating the LCM by AP
encryption strategy in a safe and secret way will be introduced in the next
subsection. In the end, the SC platform will inform the KP and all workers of
the LCM.

Time Stage. Upon receiving the LCM Slcm, every worker wi can calculate an
equivalent encrypted travel time t′i to replace real encrypted travel time ti based
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on the Lemma 1 where t′i = d(li, lT )s′
i and ti = d(li, lT )/si. For no worker holds

the decryption key of Paillier, homomorphic properties of Paillier are used again
as follows:

Ep(t′2i ) = Ep((d(lt, li)s′
i)

2) = Ep((d(lt, li)Slcm/si)2) = Ep(d2(lT , li))(Slcm/si)
2

(7)
where Ep

(
d2 (lt, li)

)
is calculated by Eq. 6 and si is the speed of worker wi. Then

the worker sends the encrypted equivalent travel time with his own ID to the
SC platform for comparison in the form of (i, Ep(t′2i )).

Comparison Stage. When receiving the list of (i, Ep(t′2i )), the SC platform
adopts a PRG Gk to encrypt the ID of workers as (Gk(i), Ep(t′2Gk(i))) for the
protection of workers especially the chosen worker. Then the SC platform sends
the list (Gk(i), Ep(t′2Gk(i))) to the KP and sends every Gk(i) to the corresponding
worker wi. With the decryption key of Paillier, the KP can decrypt Ep(t′2Gk(i))

to obtain the t′2Gk(i) and the real travel time tGk(i) can be computed by

√
tt′2

Gk(i)

S2
lcm

where Slcm is achieved in the LCM. And then the KP can easily find the chosen
worker who has the shortest tGk(i). Then, the ID of the chosen worker Gk(i∗)
is encrypted by ElGamal, whose output is EKP

e (Gk(i∗)). At last, the KP sends
EKP

e (Gk(i∗)) to the SC platform. This encrypting operation is essential because
the SC platform can infer that who is the chosen worker from Gk(i∗). However,
when AR is not always 100%, we will return a set of chosen workers instead of
a chosen worker.

Verification Stage. To ensure only the chosen worker can learn the true
task location, the SC platform hides the true task location by encrypting
EKP

e (Gk(i∗)) and lT as follows:

E (lT ) = h
(
EKP

e (Gk (i∗))
) ⊕ lT (8)

where function h is a length-match hash function which is used shorten a long
bit-string and it is proved to be semantically secure. We perform exclusive-OR on
the lT and the output of function h because an important property of exclusive-
OR is a⊕ b⊕a = b. Based on this property, only the chosen worker w∗

i can infer
the true task location by ls = E(ls) ⊕ h(EKP

e (Gk(i∗))). The detailed procedure
is as follows:

With their own ElGamal, every worker encrypts their own encrypted ID Gk(i)
received in the comparison stage as Ewi

e (Gk(i)) and sends it to the KP. For all
ElGamals are based on the same cyclic group G, commutative-like encryption
can be implemented by EKP

e (Ewi
e (Gk(i))) = Ewi

e (EKP
e (Gk(i))) with the same

random number for the consistence of EKP
e and the result is sent back to workers.

Every worker wi can decrypt it by the decryption key of his own ElGamal and
get EKP

e (Gk(i)). It is obvious that only the chosen worker can infer EKP
e (Gk(i∗))

and thus infer the true task location.
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Algorithm 1. Calculating LCM
Input: the maximal speed Smax, the speed si of every worker wi(1 ≤ i ≤ n)
Output: the LCM of all speeds Slcm

1: The SC platform and all workers perform the same exclusion algorithm on Smax

to get a same list L of 2-tuples <p, cp> where p is a prime meeting p ≤ Smax and
cp is the maximal times of p meeting pcp ≤ Smax.

2: Every worker wi computes his own factorization Fi of si by Pollard’s rho algorithm.
3: AP performs

∑
p∈P p∗(cp+1) key generations and assigns these secrets respectively

4: for each prime p in L do
5: for number k(0 ≤ k ≤ cp) do
6: Every worker wi generates his own flag data f [k], encrypts it by
7: the assigned AP secrets and sends it to the SC platfrom.

8: Slcm = 1
9: for each prime p in L do

10: for number k(cp ≥ k ≥ 0) do
11: The SC platform decrypts the sum of all f [k], denoted as H.
12: if H > 0 then
13: Slcm = Slcm ∗ pH

14: break
15: return Slcm

4.3 Calculating LCM

To compute the LCM securely, we adopt an aggregation protocol denoted as AP
[25] which can calculate the sum of multiple messages in a privacy-preserving
manner. It works as follows:

Key Generation: Let S be a set of nc random numbers where n is the number
of workers and c is a random number. Then, divide S into n random disjoint
subsets Si with c numbers and define M = 2�log2 nΔ� where Δ is maximum value
of workers’s data. At last, send ki to wi and the sum k0 to the SC platform
where ki = (

∑
s′∈Si

s′) mod M and k0 = (
∑

s′∈S s′) mod M .

Encryption Ea: For each worker wi, he encrypt data mi by computing:

ci = (ki + mi) mod M (9)

Encryption Da: The SC platform can decrypt the sum by computing:

S(
n∑

i=1

mi) = (
n∑

i=1

ci − k0) mod M (10)

Based on a credible assumption that the maximal worker’s speed is limited
and known to all, we explain the Algorithm1 as follow: In line 1 and 2, exclusion
algorithm is performed to get the list L of 2-tuples <p, cp> whose complexity
is O(n log(log n)). For example, our maximal speed is 10. Then 3 is one prime
where 3 < 10, and its maximal times is 2 for 32 ≤ 10. So the tuple <3, 2> will
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be inserted into the list. Besides, every worker calculates the factorization Fi

of his own speed si by Pollard’s rho algorithm whose complexity is O(n
1
4 ). For

example, the factorization F of a worker(si = 6) is F = 2 ∗ 3 for 6 = 2 ∗ 3. Based
on the list L, the AP generates

∑
p∈L p ∗ (cp + 1) different keys for same key

may disclose workers’ speed in line 3. In line 4 to 7, each worker wi generates
his flag data f [k](k ∈ [0, cp]) as follows:

f [k] =

{
1, AT [p] = k

0, otherwise
(11)

where AT [p] is the appearance times of p in the corresponding Fi. Then,
encrypts and sends flag data. In the above examples, when p = 3, this worker
(si = 6) generates these flag data f [0] = 0, f [1] = 1, f [2] = 0. In line 9 to
14, the LCM is computed by Slcm =

∏
p∈L pH . For example, the factorization

of another worker(si = 9) is 3 ∗ 3. If p = 3, this worker generates flag data
f [0] = 0, f [1] = 0, f [2] = 1. So the maximal times of 3 is 2 for the decrypted sum
of f [2] meets the condition in line 12. Meanwhile, the maximal times of 2, 5, 7
are 1, 0, 0 respectively. So Slcm = 21 ∗ 32 ∗ 50 ∗ 70 = 18 will be returned.

5 Security and Complexity Analysis

Denoting the LCM stage as Ea(si) and Da(Slcm), we will prove the security and
complexity of our framework next.

5.1 Security Analysis

Theorem 1. Our framework is allowed to be privacy-preserving with K0 =
Slcm,K−1 =

{
Slcm, tGk(i)

}
and Ki = Slcm(1 ≤ i ≤ n) extra knowledge.

Proof. We firstly consider the SC platform w0 with K0 = Slcm. Then
the view is V0 =

{
EKP

e (Gk(i∗)), Slcm, Ea(sj), Ep(t′2j )
}

(1 ≤ j ≤ n).
There is a probabilistic polynomial-time simulator P0 that generates V ′

0 ={
EKP

e (x1), Slcm, Ea(yi), Ep(zi)
}

where x1 is random number from a cyclic group
G, yi(1 ≤ i ≤ n) are random numbers distributed in Z and zi(1 ≤ i ≤ n) are
random numbers uniformly distributed in ZN . As Paillier, ElGamal and AP are
all secure, it is clear that V0 ≡ V ′

0 .

Next we analyze every worker wi with Ki = Slcm. There is a probabilis-
tic polynomial-time simulator Pi to simulate worker wi’s view. However, There
are two kinds of workers to be analyzed. The difference between them is that
only the chosen worker can infer the chosen ID is his ID. For the chosen
worker w∗

i , his view is Vi∗ =
{
Gk(i), i∗, Slcm, Ep(x2

T + y2
T ), Ep(xT ), Ep(yT )

}
.

So simulator Pi∗ generates V ′
i∗ = {g, i∗, Slcm, Ep(x1), Ep(x2), Ep(x3)} where

xi(i = 1, 2, 3) are random numbers uniformly distributed in ZN and g is a ran-
dom element uniformly distributed over {0, 1}λ. For others, the view for them
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is Vi =
{
Gk(i), Ere(Ewi

e (Gk(i∗))), Slcm, Ep(x2 + y2), Ep(x), Ep(y)
}

and simu-
lator Pi generates V ′

i = {g,Ere(Ewi
e (y)), Slcm, Ep(x1), Ep(x2), Ep(x3)} where

xi and g are the same as V ′
i∗ and y is a random number from G. Based on

the semantic security of Paillier, ElGamal and PRG, we can easily verify that
Vi ≡ V ′

i (1 ≤ i ≤ n).
Finally, we analyze the KP w−1 with K−1 =

{
Slcm, tGk(i)

}
(1 ≤ i ≤ n). The

view of the KP is V−1 =
{
Slcm, tGk(i), E

wi
e (Gk(i))

}
(1 ≤ i ≤ n). There is a proba-

bilistic polynomial-time simulator P−1 that generates V ′
−1 = {Slcm, txi

, Ewi
e (xi)}

where xi(1 ≤ i ≤ n) are random numbers uniformly distributed in G. Due to
the semantic security of ElGamal, V−1 ≡ V ′

−1 is clearly true.
Based on the above proofs, our framework is secure with K disclosure where

K has neglected effects on individual privacy.

5.2 Complexity Analysis

In our framework, every worker computes and communicates in parallel. To this
end, we only need to consider one user. Ignoring some cheap operations, the com-
putation and communication cost are summarized in Table 1 where Li(i = p, e) is
the key size of encryption strategy,e is modular exponentiation and +,− means
sending and receiving. Note that ElGamal encryption and communicative-like
encryption is two and three times longer than Le. Due to the size of ciphertext
by Paillier and ElGamal are larger than plaintext and the ciphertext by AP , we
exclude the latter two from communication cost. In the situation when the AR is
not always 100%, the KP needs |W ∗|Ee instead of 1Ee in computation cost and
the communication cost changes from |2Le| to 2|W ∗|Le during the comparison
stage.

Table 1. Computation and communication cost

Computation cost Communication cost

The SC platform The KP Workers The SC platform The KP Workers

Distance 3Ep 0 1Ep + 2e +3Lp 0 −3Lp

LCM Da 0 Ea 0 0 0

Time 0 0 3e −Lp 0 +Lp

Comparison nPRG nDp + 1Ee 0 +nLp − 2Le −nLp + 2Le 0

Verification 0 nEe Ee + De 0 −2nLe + 3nLe +2Le − 3Le

6 Experiment Study

In the first subsection, we introduce our experiment settings and evaluation cri-
teria. Then we show and analyze the experiment results in the second subsection.
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6.1 Experiment Settings

We conduct our experiments on an area in Pennsylvania of Gowalla dataset
with latitude from 39.804250 to 41.787732 and longitude from −80.418515 to
−75.189944 with 3036 workers.

Three criteria are introduced to evaluate our proposed framework, namely
computing time, travel distance, and worker number respectively. For comput-
ing time, we compare our framework with Liu et al.’s framework [9] for all of
them are based on the public-key cryptosystems. In these two frameworks, it is
meaningless to take the computing time of the SC platform and the KP into
consideration because we pay more attention on the workers computing time in
the task assignment and these two parties are the same in these two frameworks.
For travel distance and worker number, we compare our framework with To et
al.’s framework [7] for Liu et al.’s framework has the same values as ours in travel
distance and worker number. Tables 2 and 3 summarize the parameters in these
two comparisons.

Table 2. Computing time

Parameters Default Range Description

W 200 100, 200, 300, 400, 500 The number of workers

Smax 10 5, 10, 15, 20, 15 The maximal speed

Table 3. Travel distance and worker number

Parameters Default Range Description

ARmax 0.6 0.2, 0.4, 0.6, 0.8, 1.0 The maximal AR

α 0.9 0.8, 0.85, 0.9, 0.95, 0.99 The expected rate of a task

ε 0.6 0.2, 0.4, 0.6, 0.8, 1.0 The privacy budget of To et al.’s
framework

6.2 Performance Analysis

Computing Time. In the computing time comparison, two key sizes (1024 and
2048) of Paillier and ElGamal are considered in our framework and Liu et al.’s
framework.

Firstly, we study the effect of Smax. As described in Fig. 3, no matter what
key size is adopted, our framework has much shorter average computing time
than Liu et al.’s framework which means tasks can be assigned more quickly and
thus improve the service quality of all platforms. Also, there is a fault of Liu et
al.’s framework where Smax is 10 when key size is 1024 because when Smax is
larger than 10, theirs framework based on the product of all speeds will face the
overflow of product. Meanwhile, our framework can support these calculations
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Fig. 3. Effect of Smax
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Fig. 4. Effect of W

for our framework is based on the LCM of all speeds. Note that there is still a
fault where Smax is 100 in Liu et al.’s framework when key size is 2048 which
is not shown in the Fig. 3. That is to say, the most important meaning for our
framework is to break through the speed limitation of Liu et al.’s framework.
Moreover, within our expectations, the computing time of Liu et al.’s framework
increases as Smax grows while ours is a constant for the same reason as before.

Next, the effect of W is evaluated. Similar performance trend can be observed
in Fig. 4 where the larger W is, the computing time grows. In addition, there are
two obvious faults in Fig. 4 where W are 200 and 400 when key sizes are 1024
and 2048 respectively for the same reason as first part. Also, our framework has
much shorter computing time than Liu et al.’s framework. Based on the LCM,
our framework can be applied to more workers and a bigger speed.

Travel Time and Worker Number. In the travel time and worker number
comparison, two functions are used to change the AR of every worker (Linear
and Zipf). As To et al.’s framework does not consider the speed of workers, we
set the speed of all workers is 1.

Firstly, we investigate the effect of ARmax. As depicted in Fig. 5, our frame-
work has much shorter travel distance and smaller number of notified workers
than To et al.’s framework because theirs is to choose some grid cells which
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Fig. 5. Effect of ARmax
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Fig. 6. Effect of α
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Fig. 7. Effect of ε

contains a number of workers. Some of them may be far away from task location.
Yet, our framework is to visit the worker sorted by travel distance. In addition,
the travel distance and worker number of our framework decrease when ARmax

increases for a larger ARmax means workers are more willing to achieve this task.
Secondly, we study the effect of α. Figure 6 shows that our framework is much

better than To et al.’s framework for the same reason as before. Also the travel
distance and worker number of our framework grow with α increases for a larger
α means a task has a higher expected rate to be accepted and thus more workers
are required to accomplish the task.

At last, we assess the effect of ε. The higher ε is, the weaker privacy guarantee
To et al.’s framework has. As expected, the change of ε only affects To et al.’s
framework for ours is stable which is shown in Fig. 7. Also, with ε increases, the
travel distance and worker number of their framework decreases by sacrificing of
privacy. But ours still works better than theirs even in weakest privacy guarantee.

7 Conclusion

In this paper, we have identified a new task assignment strategy, travel-time-first,
when allocating workers to tasks in spatial crowdsourcing. We have presented an
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efficient privacy-preserving task assignment protocol for this new strategy. The
proposed protocol scales well because the expensive secure division operation is
replaced by the secure least common multiple (LCM) computation, for which
we have designed an efficient algorithm based on data aggregation. We have
theoretically proved that our approach is secure against semi-honest adversaries.
We have conducted extensive experiments on real-world datasets. Experimental
results have shown that our protocol is efficient and effective.
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