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Abstract. Map matching is an important operation of location-based
services, which matches raw GPS trajectories onto real road networks,
and facilitates tasks of urban computing, such as intelligent traffic sys-
tems, etc. More than ten algorithms have been proposed to address this
problem in the recent decade. However, existing algorithms have not
been thoroughly compared under the same experimental framework. For
example, some algorithms are tested only on specific datasets. This makes
it rather difficult for practitioners to decide which algorithms should be
used for various scenarios. To address this problem, in this paper we pro-
vide a survey on a wide spectrum of existing map matching algorithms,
classify them into different categories based on their main techniques,
and compare them through extensive experiments on a variety of real-
world and synthetic datasets with different characteristics. We also report
comprehensive findings obtained from the experiments and provide new
insights about the strengths and weaknesses of existing map matching
algorithms which can guide practitioners to select appropriate algorithms
for various scenarios.

1 Introduction

Given a set of raw GPS trajectories generated by vehicles on an urban road net-
work, the map matching algorithm is to align each raw trajectory onto underlying
road network, where a raw trajectory is a sequence of sampling points of discrete
locations at each sampling time, and a road network is a graph of vertices and
edges modeling an urban traffic network. The need of such algorithms arises
because: (1) the GPS devices have measurement errors, which may incorrectly
report the actual location of a vehicle, and (2) sampling rates are not always
set to high frequency due to transmission, storage and other costs, making it
hard to tell the exact route. Therefore, map matching is an important operation
for applications utilizing trajectory data, such as data management for traffic
analysis [6], frequent path finder [15], taxi pick-up recommending system [20],
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Cai et al. (Eds.): APWeb-WAIM 2018, LNCS 10988, pp. 182–198, 2018.
https://doi.org/10.1007/978-3-319-96893-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96893-3_14&domain=pdf


Map Matching Algorithms: An Experimental Evaluation 183

discovery of functional urban zones [28], location-aware publish/subscribe frame-
work in digital content communication [13], etc. The basic idea of map matching
is to align each sampling point to a “proper” location along some real road, to
recover the actual route travelled by the vehicle. To this end, a number of map
matching algorithms have been proposed in the past two decades [1,3–12,14–29].

A typical map matching framework includes two steps (after proper pre-
processing such as data cleaning and indexing): (1) candidate selection step:
road segments or road vertices are selected as candidates of actual locations
according to certain measurements, and (2) actual route construction step: the
route with the highest matching score is selected as the actual route of the vehicle
reporting that particular raw trajectory. The candidate selection algorithms are
crucial in terms of the map matching quality, and they vary as different strategies
are taken. For example, early algorithms use the closest road segment of each
sampling point as their candidate road and connect all candidate segments as
the actual route, while later algorithms would employ more sophisticated models
(such as the Hidden Markov Model) to address the candidate selection step.

Existing map matching algorithms can be categorized by different perspec-
tives. Algorithms in [18,26] can be used for off-line map matching tasks, and algo-
rithms in [9,22,23] are proper for on-line map matching. Algorithms in [1,14,27]
are designed for low sampling rate (no more than one sample point within a
minute), while most algorithms can work better on higher sampling rate data
sets. According to sampling points used in the candidate selection step, there
are incremental [5,8,10,25] and global [5,14,26,29] map matching algorithms.
Besides, map matching algorithms can also be classified into geometry-based
[11], topology-based [4,5,22,26], probability-based [3,17,19,21], and advanced
algorithms such as [16] utilizing the Hidden Markov Model.

However these algorithms have not been thoroughly compared under the
same experimental framework. For example, most algorithms are tested only
on specific datasets, and there is no uniform quality metrics to demonstrate
qualities of these algorithms. This makes it rather difficult for practitioners to
decide which algorithms should be used for various scenarios.

To address this problem, in this paper we thoroughly compare existing map
matching algorithms on the same experimental framework. We make the follow-
ing contributions. (1) We provide a comprehensive survey on a wide spectrum
of existing map matching algorithms and classify them into different categories
based on their techniques. (2) We compare existing algorithms through exten-
sive experiments on a variety of real-world and synthetic datasets with different
characteristics. (3) We report comprehensive findings obtained from the experi-
ments and provide new insights about the strengths and weaknesses of existing
algorithms which can guide practitioners to select appropriate algorithms for
various scenarios.

2 Preliminaries

We introduce following concepts before we formally define the map matching
problem.
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Definition 1 (Trajectory).1 A trajectory T is a sequence of sample points,
T = {p1, p2, · · · , p|T |}, where pk is a sample point (i.e., a geo-location with a
sampling timestamp), and |T | is the number of sample points in T .

Definition 2 (Road Network). A road network is a directed graph G(V,E),
where V = {vi(xi, yi)} is the set of vertices, a vertex vi is represented by a pair
of latitude (xi) and longitude (yi); and E = {ej(vk, vm)} is the set of edges which
are road segments directly connected by vertices in V .

Thus an actual road is composed by one or more road segments sequentially
connected by road vertices.

Definition 3 (Route). Given two road vertices vi and vj, a route R is a
sequence of connected road segments starting from vi and ending at vj.

Therefore, the problem of map matching is to align a raw trajectory T to the
underlying road network and find a matching route R of the highest matching
quality to T , where matching quality can be measured by some matching metrics.
We can broadly classify existing matching quality metrics into several categories:
geometry-based, topology-based, probability-based and statistical metrics.

Geometry-Based Metrics. These metrics quantify the matching quality based
on the similarity of geometry characteristics between a trajectory and a route,
such as distance, angle between the two curves formed by the trajectory and the
route on the digital map. These metrics are fit for high-sampling-rate trajectories
with low measurement error. For low-sampling-rate trajectories, the connectivity
between sampling points can not be measured properly. In early incremental map
matching algorithms (e.g. [11]), nearest road vertices to each trajectory points of
T are selected to compose the route of T , and minimal distance between sample
points and road vertices are used as the matching metric.

Topology-Based Metrics. The topology information employed by this kind
of metrics include connectivity, adjacency, bounding relationship, etc., between
curves or polygons. For example, in the global map matching algorithm [5] the
Fréchet distance [2] is used to measure the matching quality between a trajec-
tory and a route. The topology-based metrics consider not only the distance
between sample points and the potential matching route, but also the topology
connectivity inside the route itself, therefore, they are better metrics for noisy
low-sampling-rate trajectories than the geometry-based metrics.

Probability-Based Metrics. These metrics use the probability that a trajec-
tory may actually go through a certain route to measure the matching quality.
Due to measurement precision, the actual location of each GPS sample point
is restricted to an ellipse confidence area, thus the probability that a sample
point goes through certain route can be calculated according to the relationship
between the point and the part of route within the confidence area [3,17,19,21].

1 In this paper we use ‘trajectory’ to represent any raw GPS trajecotry for simplicity.
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Fig. 1. Matching route example (Color figure online)

In [9], the Hidden Markov Model is used to measure the possibility that a tra-
jectory may actually go through a certain route, and the route with the highest
possibility is selected as the matching route.

Accuracy Metrics. These metrics use statistical knowledge to measure how
accurate a route matches a trajectory. For example, given a route, the accuracy
metric [14] uses the ratio of correctly matched road segments over total number
of segments in the trajectory, to evaluate the accuracy and thus the quality of the
matching route. The problem with such metrics is that ground truth has to be
provided when evaluating matching quality, while the actual routes are unknown
for most raw trajectories, thus restricting the usability of accuracy metrics.

Problem Formulation. Now, we can formalize the problem of map matching.

Definition 4 (Map Matching). Given a raw trajectory T , a road network G
and a matching metric M , the map matching of T onto G is to find a route
Rbest in G, so that M is maximized:

Rbest = arg maxRk
M(G,T,Rk) (1)

In the matching process, more than one possible routes can be generated,
they are referred to as candidate routes. For example, Fig. 1 visualizes a raw
trajectory T (the blue curve) and two candidate routes R1 (the red dot-curve)
and R2 (the green curve) using Google Map. Suppose the vehicle actually went
through route R1, then the accuracy of R1 is higher than R2 because R1 has
more correctly matched road segments for T than R2 does.

3 ST Methods for the Map-Matching Problem

For the map matching problem, a classic method called ST-Matching [14] con-
siders geometric and topological structures of the road network, as well as the
temporal/speed constraints of the trajectories. Based on spatial-temporal anal-
ysis, a candidate route is concluded, from which the best matching score matrix
is identified. The ST-Matching algorithm could be divide into two major parts:
Candidate Filtering, and Spatial and Temporal Analysis. We review how to filter
the candidate points in Sect. 3.1 and discuss its spatial and temporal analysis
in Sect. 3.2. After that we focus on two improved versions of the ST-Matching
algorithm in Sect. 3.3.
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(a) Candidate Road Segments/Points (b) Candidate Graph

Fig. 2. Candidate road segments/points & candidate graph

3.1 Candidate Filtering

Given trajectory T = {p1, p2, · · · , p|T |}, ST-Matching first obtains a set of can-
didate road segments within radius r of each unmatched trajectory point pi
(1 ≤ i ≤ |T |). As illustrated in Fig. 2(a), within the circle of radius r, c1i , c2i , and
c3i are candidate points for trajectory point pi; and e1i , e2i , and e3i are candidate
road edges for pi.

Once the candidate point sets are proposed for all points in trajectory T , the
problem becomes how to choose one candidate from each set in order to make
cj11 → cj22 → · · · → cjn

n best matches T .

3.2 Spatial and Temporal Analysis

The spatial analysis function measures the similarity of the unmatched part
between two trajectory points and the link with the shortest path between
the two corresponding candidate points. First, a candidate graph is constructed
(Fig. 2(b)). The distribution of the GPS measurement error is assumed to take
the Gaussian distribution N(μ, σ2). For each candidate point in the candidate
point set, its observation probability to pi is:

N(cji ) =
1√
2πσ

e− (x
j
i

−μ)
2

2σ2 (2)

where xj
i is the Euclidean distance from candidate cji to unmatched point pi.

From candidate point cti−1 to csi , the spatial analysis is defined as:

Fs(cti−1 → csi ) = N(csi ) ∗ V (cti−1 → csi ), 2 ≤ i ≤ n. (3)

where V (cti−1 → csi ) is the transition probability:

V (cti−1 → csi ) =
d(i − 1, i)
w(cti−1, c

s
i )

. (4)

where d(i − 1, i) is the Euclidian distance from pi−1 to pi, and w(cti−1, c
s
i ) is the

length of the shortest path between cti−1 to csi .
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The temporal analysis of ST-Matching considers the speed information:

Ft(cti−1 → csi ) =

∑k
u=1(e

′
uv ∗ vct

i−1→cs
i
)

√∑k
u=1 (e′

uv)2 ∗
√∑k

u=1 v2ct
i−1→cs

i

. (5)

where point set e′ is the shortest path connecting cti−1 and csi .
Combining the spatial and temporal analysis, the ST-Matching function to

score the route between two candidate points can be achieved:

F (cti−1 → csi ) = Fs(cti−1 → csi ) ∗ Ft(cti−1 → csi ). (6)

Therefore, for trajectory T , the route with the best score from one candidate
point of the starting point of T to one candidate point of the end point of T is
identified as the matching route for T . However, ST-Matching is based on an
assumption that a driver always chooses the shortest route, which may not be
consistent with the real world.

3.3 Improvements of ST-Matching

The GridST [7] tries to improve the first part of ST-Matching, and the IVMM [27]
algorithm aims to improve the second part of ST-Matching.

(1) The ST-Matching Based on the Locality of Road Networks
The GridST algorithm ameliorates the candidate filtering of ST-Matching.

The error circle radius and the maximum number of selected candidate points are
dynamically adjusted according to the locality of the road network. Subsequently,
the number of shortest path computations is reduced, shortening the overall
running time. In order to generate the locality of road network, GridST splits
the road network graph into grids. Before the map-matching process, all grids’
information are calculated and organized to ensure the running time of this
algorithm. If a grid has a higher density of road segments, the candidate filtering
will have higher possibilities to select enough number of candidate point in a
smaller error circle, vice versa. Therefore, GridST reduces the number of shortest
path computations and the overall running time of map-matching process.

(2) The Interactive Voting-Based Map-Matching algorithm (IVMM)
This algorithm utilizes a voting process among all sampling points to reflect

their interactive influence after spatial and temporal analysis of candidate points.
For each sampling point, IVMM will repeatedly select an optimal route which
passes through it. Every candidate point will get one vote when the optimal
path includes this candidate point. Then the global optimal route will be chosen
according to the vote result.

Given the spatial and temporal result of ST-Matching: F (cti−1 →
csi ) = Fs(cti−1 → csi ) ∗ Ft(cti−1 → csi ), a Static Score Matrix M =
diag(M1,M2, . . . ,Mn) is built, M i = (F (cti−1 → csi ))ai−1×ai

. Each item in this
matrix represents the possibility of a candidate point to be a correct match point.
However, this possibility only considers the information of two adjacent points.
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To model the weighted influence of candidate points, a (n − 1)-dimension
Matrix Wi is created for each sampling point pi. And these matrix only have
items in diagonal line: wj

i = f(dist(pi, pj)), (j = 1, 2, . . . , n), where j is the
sequence number of diagonal line in Wi. And dist() is the Euclidean distance.

f(x) = e− x2

β2 , where β is a parameter related to the road network. Then M is
recalculated with the weighted influence in Wi, and every item in M is multiplied
by their weighted score. Matrix M becomes weighted score matrix Φ.

Next, voting based on the interaction of candidate points starts. For each
candidate point cki , IVMM attempts to find an optimal route using the weighted
score matrix Φ. If a candidate point cki is included in an optimal route, this
candidate point cki gains one vote. Then the candidate point with the largest
number of votes for each sampling point pi is identified. Finally, the best route
which passes through every corresponding candidate point is selected as the
matching route.

4 Other Algorithms

4.1 The Fuzzylogic Algorithm

The FuzzyLogic algorithm [12] is different from afore-mentioned algorithms: it
exploits fuzzy logic to construct the degree of similarity between a matched route
and a raw trajectory. The matching route is selected based on its possibility to
achieve the best similarity.

(1) Candidate Filtering
In FuzzyLogic, it first plots the candidate area of an ellipse around the cur-

rent trajectory point whose radius is the GPS positioning error. FuzzyLogic
checks all roads in the candidate area and connects them with the already-
matched road. If the candidate area can not satisfy the conditions, then
FuzzyLogic directly gives up this matching. Otherwise, each sampling point
has a candidate set including all candidate roads within the candidate area.

(2) Fuzzy Analysis
FuzzyLogic uses the fuzzy comprehensive judgement and constructs the set

of fuzzy factors F = {Fx, Fy, Fz}, representing three aspects: car running direc-
tion, the distance between candidate road and sampling point and comparability
of unmatched trajectory with candidate roads.

(2.1) The Membership Factor of Direction
Let θ

′
(j,k) denote the direction angle between the jth sampling point and the

kth candidate point for each sampling point, θj denote the direction angle of each
sampling point. Their difference Δθj denotes direction angle factor set Fx, and
it represents the angle between the vehicle’s running direction and the candidate
road direction (Fig. 3). Five classes of degree are identified: “very small”, “small”,
“medium”, “big”and “very big” for fuzzy reasoning.
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Fig. 3. Membership function of direction

(2.2) The Membership Factor of Distance
Let Δd(j,k) represent the projection distance from the jth sampling point to

the kth candidate road. Δd(j,k) is regarded as the distance factor set: Fy. This
distance can be classified to five fuzzy degrees: “very small”, “small”, “medium”,
“big”and “very big”, as shown in Fig. 4.
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Fig. 4. Membership function of distance

(2.3) The Membership Factor of Comparability of Positioning Trajectory
The handling for this factor is similar to the previous two factors. Candidate

roads are resembled to an assumption point with the computing rules used by
foregone sampling point and use the distance between the assumption point and
sampling point as the third factor in this fuzzy model.

With all three fuzzy factors, FuzzyLogic performs fuzzy transform. The fuzzy
vector Q would be the result set aimed at F = {Fx, Fy, Fz}, where each element
within Q denotes the possibility degree of candidate road for each sampling point.
The candidate road with the largest matching degree is the matched road [12].

4.2 The Statistic Algorithm

The Statistic algorithm [24] is based on multiple hypothesis technique. For
one unmatched trajectory, Statistic first selects all nodes within the radius r
around the sampling point. After that, it adds all roads in the network which
connect to at least one of these selected nodes to the candidate road set. For each
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road candidate, the sampling point is assigned to the road, and the matching
score is calculated and stored in the list of current road candidates. The matching
score is calculated by combining the heading of sampling point compared to the
heading of road, the current speed of sampling point and the free-flow speed on
the road, which is shown below:

Scoreroad = d(pi, lj) + ((v(pi) − vff (lj))
2
θij) (7)

where pi represents the ith sampling point and lj is the jth candidate road for
pi, v(pi) stands for current speed of pi and vff (lj) represents the free-flow speed
of lj road. The parameter θ equals 1 if v(pi) > vff (lj), and 0 otherwise.

When all candidates road have been processed for the current sampling point,
this algorithm selects the road which got the highest score to be the matched
road. But if the number of candidate roads is not enough, it repeatedly increase
radius r until there are enough candidates for each sampling point.

5 Experimental Study

We experimentally compare existing map matching algorithms. Our experimen-
tal goal is to evaluate the matching quality, running time, and impacts of param-
eters to the performance of different algorithms. The matching quality is mea-
sured by accuracy-based metrics to reveal how close the matching results are to
the actual routes. The running time is the total time to match a given set of raw
trajectories. The parameters in question are (1) number of candidate points, and
(2) sampling rate, as these two are crucial to the algorithms’ performance.

5.1 Experimental Settings

Algorithms. We compare the following algorithms: ST-Matching [14], IVMM
[27], GridST [7], FuzzyLogic [12] and Statistic [24].

Data Sets

Road Network. We use the road network of Beijing which has 1,285,215 vertices
and 2,690,296 edges.

Real Trajectory Data. We use two real datasets: Taxi (www.datatang.com/
data/45888) and UCar (www.10101111.com/). Taxi contains trajectories gen-
erated by more than 8,000 public taxicabs in Beijing of one month; UCar con-
tains trajectories of nearly 2,000 cars registered in the platform of ShenZhou
Zhuanche(like Uber) within one week in Beijing.

Synthetic Trajectory Data. We implement a simulator to generate synthetic data
as follows. First, a starting point vs and a destination point vd are randomly
selected from the vertex set of the road network. Then, a connected path from
vs to vd is generated (this path does not have to be the shortest path between
vs and vd). Next, assuming the vehicle is moving at some fixed speed (e.g.,

http://www.datatang.com/data/45888
http://www.datatang.com/data/45888
http://www.10101111.com/


Map Matching Algorithms: An Experimental Evaluation 191

Table 1. Trajectory data sets

Data set Num. of traj. Avg point num. Max point num. Min point num. Avg sample rate

Taxi 200,000 27 50 5 x

UCar 120,000 16 20 3 x

Syn 10,000 388.6 1333 10 20 s

60 km/h), the simulator selects a set of sample points along the path for a given
sampling rate (e.g., 1 min), and randomly deviates the sampling point (which
is originally on the road) to a location within an error range of latitude and
longitude. Our default settings are: the vehicular speed is 45 km/h, the sampling
rate is 20 s, and the latitude and longitude deviations are both ±0.0002o.

Table 1 shows the statistics of the three datasets.

Ground Truth. As stated before, our synthetic trajectories are generated by first
selecting a route from a starting location to a destination, and then adding some
noises to simulate real trajectories. Therefore, the correct routes are known and
can be used as ground truth. In addition to our synthetic data, we also pro-
vide a set of 30 real trajectories manually labeled as ground truth, denoted as
HL-30. These trajectories are selected from Taxi and UCar datasets and man-
ually labelled with the true routes. Trajectory lengths varies from 5.090 km to
23.933 km, averaging at 10.568 km; number of points set to 30.

Settings. All the algorithms are implemented by C++, compiled by Visual
C++. All the experiments are conducted on a Windows Server 2012 with an
Intel Xeon E52682 CPU (two cores, 2.5 GHz) and 4 GB memory.

5.2 Evaluating Accuracy

Accuracy Metrics. Given a trajectory T whose ground truth is denoted as T ,
we measure the matching quality of a route R to T as follows:

NAcc =
num. of road segments in R

⋂
T

num. of all road segments in R
(8)

LAcc =
∑

length of road segments in R
⋂

T

length of R
(9)

Parameter Selection and Default Values. For ST-Matching algorithm, we
set k = 5, r=100 m, μ = 0, and δ=20 m. For IVMM algorithm, we set k = 5,
r =100 m, μ = 0, and δ=20 m. For GridST algorithm, we set μ = 0, and δ=20 m.
These settings are used as default values through out our experiments.

Figures 5 and 6 show the results on HL-30 and Syn datasets respectively. We
have the following observations.

First, for HL-30 dataset (sampling rate ≥ 1 min), the IVMM algorithm and
ST-Matching algorithm achieve top NAcc and LAcc accuracy. For IVMM, this
is because the voting step strengthens scores of candidate points which have
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higher possibility to be on the real route. For ST-Matching, the spatial and
temporal analysis can return high quality candidates especially for low-sampling-
rate trajectories, explaining the top accuracy achieved by ST-Matching. GridST
achieves the third accuracy, demonstrating that the policy to divide the road
network into grids and adjust candidate numbers dynamically can not beat the
original ST-Matching algorithm in case of low-sampling-rate. For FuzzyLogic,
it chooses the best route based on the similarity between the trajectory and the
route, when the sampling rate decreases, the similarity between the trajectory
and the route is discounted, resulting in the fourth accuracy among all the
algorithms tested. The Statistic algorithm is inferior to other algorithms on
accuracy because its scoring model for candidate route sometimes could not
select the “right”candidate.

Second, for synthetic dataset Syn (sampling rate 20 s), the IVMM algorithm
and FuzzyLogic algorithm achieve top NAcc and LAcc accuracy. For IVMM, the
voting step provides stable functionality despite the sampling rate as just ana-
lyzed. For FuzzyLogic, this is because that it chooses the best route based on
the similarity between the trajectory and the route, the geometry and topology
factors can filter high quality candidate in case of high-sampling-rate trajecto-
ries. The ST-Matching and GridST algorithms can also achieve 80%+ NAcc and
LAcc accuracy because the spatial and temporal analysis can return high quality
candidates. The Statistic algorithm is inferior to other algorithms on accu-
racy because its scoring model for candidate route sometimes could not select
the “right” candidate, despite the sampling rate.

Third, for a given dataset, all five algorithms have similar ranking for both
accuracy metrics. Although NAcc focuses on the number of correctly matched
road segments, and LAcc focuses on the length of correctly matched road seg-
ments, on average, the number of road segments in a trajectory is proportional
to the length of a trajectory, because lengths of road segments vary within a
limited range (e.g., 20 m–50 m).

Fourth, for the two datasets, the ST-Matching and IVMM algorithms report
similar accuracy, demonstrating stable matching quality on different sampling
rates. The FuzzyLogic, GridST and Statistic algorithms work better for high-
sampling-rate trajectories.
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Fig. 6. Evaluating accuracy: LAcc

5.3 Evaluating Running Time

We compare the running time of all the algorithms by varying the number of
trajectories tested from the Taxi, UCar and Syn datasets. Figure 7(a), (b) and
(c) show the respective results. We have the following observations.

First, the runtime efficiencies of all five algorithms present similar trends on
all of the three datasets tested, demonstrating stability despite the underlying
trajectory data.

Second, the Statistic and FuzzyLogic algorithms have top runtime effi-
ciency, which is linear to the dataset size. This is because the logic of these
two algorithms does not involve time-consuming matrix calculation as in the
ST-Matching and GridST algorithms.

Third, the ST-Matching and GridST algorithms also present linear runtime
efficiency in terms of dataset size. The reason that these two algorithms is
less efficient than the Statistic and FuzzyLogic algorithms, as just stated,
is because their logic involves matrix calculation which is time-consuming.

Fourth, the IVMM algorithm does not scale well as the data size increases.
As indicated in [27], this algorithm has to be parallel-programming in order to
achieve satisfying efficiency, which is non-trivial work.
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5.4 Evaluating Impact on Accuracy and Running Time by
Candidate Point Numbers

Both the ST-Matching and IVMM algorithms have an explicit parameter in terms
of the maximum candidate points for each trajectory point. For the FuzzyLogic
and Statistic algorithms, they also select a number of possible matching road
points in early state of each algorithm, therefore we treat this parameter as
maximum candidate points in this section as well. We evaluate the impact on
accuracy by varying this parameter from 1 to 5. Figures 8, 9 and 10 show the
corresponding results of NAcc, LAcc and runtime efficiency on HL-30 dataset and
a 1000-trajectory Syn dataset. We have the following observations.

First, on each dataset, the algorithms compared exhibit similar matching
quality variation and runtime efficiency trends as the number of candidate points
increases, demonstrating stability despite the underlying trajectory data.

Second, for the ST-Matching and IVMM algorithm, the accuracy improvement
over the number of candidate points is more obvious on the HL-30 dataset than
on the Syn dataset. This is because HL-30 contains low-sampling trajectories, as
the number of candidate points increases, the possibility that the “right” road
segments are taken into consideration is increased, therefore, increasing accuracy.

Third, for the FuzzyLogic and Statistic algorithms, their matching quality
is not comparable to the ST-Matching and IVMM algorithm. But since the Syn
dataset contains high-sampling-rate trajectories, when the number of candidate
points is big enough (e.g., 4 and above), the matching accuracy can be improved.
Note that for FuzzyLogic, it is almost as good as ST-Matching and IVMM when
the number of candidate points is 5.

Fourth, the Statistic algorithm has the best runtime efficiency, the
FuzzyLogic algorithm has comparable efficiency, and the ST-Matching con-
sumes more time as the number of candidate points increases. This indicates
that the ST-Matching is not suitable for more than 5 candidate points. Besides,
the runtime efficiency of IVMM is not plotted in Fig. 10 since it explodes as the
number of candidate points increases, proving again that it can not scale well
unless parallel programming is used.
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Fig. 8. Evaluating impact by max. candidate point num. on accuracy: NAcc
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Fig. 9. Evaluating impact by max. candidate point num. on accuracy: LAcc
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Fig. 10. Evaluating impact by max. candidate point num. on running time
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Fig. 11. Evaluating impact by sampling rate on accuracy: NAcc and LAcc (Syn: 1000
trajectories for each sampling interval)

5.5 Evaluating Impact on Accuracy by Sampling Rates

In this section, we compare the matching quality in terms of accuracy with
respect to the sampling rate on our synthetic dataset Syn. Figure 11(a) and (b)
show the corresponding results on NAcc and LAcc. The result of IVMM is not
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reported because the running time is more than one order of magnitude to that
of the other algorithms. We have the following observations.

First, the four tested algorithms exhibit similar matching quality as mea-
sured by both NAcc and LAcc. Second, the FuzzyLogic algorithm is the most
insensitive to the sampling rate variation, and has the best matching quality.
Third, the ST-Matching and GridST algorithms have similar matching quality,
as their basic logic consent. Last, the Statistic has the worst matching quality,
as demonstrated in above experiments.

6 Conclusion

This paper provides an experimental survey on existing map matching algo-
rithms, including, ST-Matching, GridST, IVMM, FuzzyLogic, and Statistic,
and compares them through extensive experiments on both real-world and syn-
thetic datasets with different characteristics. We provide the following experi-
mental findings.

(1) For better matching quality (measured by NAcc and LAcc accuracy), the
ST-Matching and IVMM algorithms are the best choice on low-sampling-
rate trajectory datasets as they outperform other algorithms; and the
FuzzyLogic algorithm is also a good choice on high-sampling-rate trajectory
datasets.

(2) The FuzzyLogic and Statistic algorithms always achieve better efficiency
on both high-sampling-rate and low-sampling-rate trajectory datasets.

(3) Generally speaking, as the sampling rate increases, the matching quality of
all tested algorithms increases.

(4) Among all tested algorithms, the Statistic algorithm reports the worst
matching quality.
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