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Abstract. As one of the key features of temporal dependency, time lag
plays an important role in analyzing sequential data and predicting the
developing trend. Huge number of temporal mining approaches have been
successfully applied in many applications, like finance, environmental sci-
ence and health-care. However, these approaches cannot effectively deal
with a more realistic scenario, where more than one types of time lags are
existed in sequences and all of them are fluctuating due to the inevitable
noise. In this paper, we study the problem of discovering multiple time
lags of temporal dependencies from event sequences considering the ran-
domness property of the hidden time lags. We first present a parametric
model as well as an EM-based solution for solving this problem. Then
two approximate approaches are proposed for efficiently finding diverse
types of time lags without significant loss of accuracy. Extensive empiri-
cal studies on both synthetic and real datasets demonstrate the efficiency
and effectiveness of our proposed approaches.
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1 Introduction

In the past several decades, temporal data mining has been widely applied
in many domains, such as finance [8], computer science [19], environmental
science [2]. The goal of temporal data mining is to discover hidden tempo-
ral dependencies, unexpected trends or other subtle relationships in sequential
data [15,27]. As an important task in temporal data mining, temporal depen-
dency discovery has been extensively studied for identifying hidden interactions
and mining useful information from sequential data. Specifically, suppose A and
B are two types of items, a temporal dependency for A and B, written as A → B,
could be discovered when the occurrence of B depends on the occurrence of A.

Traditional temporal mining methods either utilize some statistical tech-
niques [18] or employ a predefined window [6] to discover temporal dependencies.
The main drawback of these previous methods is that they cannot discover inter-
leaved dependencies, since all of these methods are based on an assumption that
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every item A only has a dependency relation with its first following B. However,
interleaved dependencies are very common in real application scenarios, where
an item A could have a dependency relation with any following B. For example,
as shown in Fig. 1, an event High CPU Utilization Alert can be triggered by an
event Abnormal Process in system management domain. Since sometimes one
abnormal process may be solved very quickly after it appeared, it would not
trigger any High CPU Utilization Alert. Hence, this abnormal process (at time
point 38) does not have the corresponding High CPU Utilization Alert. Two
well-designed algorithms are presented in [28] for mining interleaved temporal
dependencies from sequential data with satisfactory time cost and space cost.

Fig. 1. Two types of time lags for temporal dependency Abnormal Process → High
CPU Utilization Alert.

Time lag, one of the key features of temporal dependency, plays an essential
role in interpreting the cause of discovered temporal dependencies and predicting
the evolving trends for future data. Existing work related to time lag discovery
suppose the time lag between two correlated events is constant and fluctuations
can be ignored [9,28]. However, because of fluctuation, noise and missing data,
there are more than one types of time lags are existed in event sequences in the
real application scenarios, and each of them involves randomness property.

As summarized in [30], taking randomness of time lag into consideration
in temporal dependencies discovery is a big challenge, since (1) the number of
time lag candidates in large sequential datasets are tremendous, and (2) the
hidden time lags may oscillate with noise formed in data collection process. The
model proposed in [30] assumes the distribution of time lags follows a normal
distribution N (μ, σ2). Nevertheless, in practice, we find that the interleaved
time lags often follow multiple distributions in one temporal dependency rather
than a single normal distribution. As shown in Fig. 1, there are two types of time
lags, i.e., L1 and L2, between event Abnormal Process and High CPU Utilization
Alert. The reason caused this situation is that event Abnormal Process represents
many different kinds of abnormal processes, and each of them may have different
effects on the system with respect to CPU utilization.

In order to overcome the limitations of existing approaches and deal with
real application scenarios better, in this paper, we study the problem of mining
multiple time lags with randomness property for temporal dependencies. The
contribution of this paper is summarized as follows:
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– Investigates the problem of discovering multiple types of fluctuating inter-
leaved time lags, and proposes a parametric model to formulate the random-
ness of time lags for temporal dependencies between pairwise events.

– Presents an EM-based solution for mining multiple types of time lags. More-
over, for efficiently mining diverse time lags from large event sequences, two
approximate algorithms are proposed with satisfactory performance.

– Conducts extensive experiments on different synthetic datasets and several
real datasets. The experimental results demonstrate that all our proposed
algorithms could find multiple types of time lags effectively.

The rest of the paper is organized as follows. Section 2 summarizes the exist-
ing work for temporal data mining. We formulate the problem for discovering
multiple time lags from fluctuating events in Sect. 3. A parametric model as
well as an EM-based solution are presented in Sect. 4. Section 5 presents two
approximate algorithms with better efficiency. Extensive experimental results
are reported in Sect. 6. Finally, we conclude this paper in Sect. 7.

2 Related Work

Temporal dependency discovery approaches have been extensively applied in
numerous real applications with various dataset types. Transaction data, com-
monly known as market basket transactions [27], is a collection of transactions,
in which each transaction contains a set of items. Transaction data arises in
many business related applications, including marketing promotions, advertise-
ments and recommendation systems. Discovering temporal dependencies from
transaction data is equivalent to finding frequent itemsets satisfying some pre-
defined thresholds. Many algorithms are proposed for efficiently mining frequent
itemsets from transaction datasets, such as GSP [26], FreeSpan [10], and Pre-
fixSpan [22].

Mining temporal dependencies from time series data has been recognized
as one of the key tasks in time series analysis [29]. For time series data, each
record is a series of measurements taken over time. A temporal dependency,
often called causal relationship, among time series can be seen as a correlation
on multiple time series, which states one time series is significantly helpful to
predict the future trend of another time series [7,20]. In particular, if time series
A causes time series B, then the prediction of future value of B can be improved
by utilizing A and B together. In recent years, the problem of identifying causal
relationship between various time series has attracted widespread attention, and
two effective frameworks has became very popular in temporal dependency infer-
ence, i.e., Dynamic Bayesian Network [13,25] and Granger Causality [3,4].

Event data, converted from textual logs which generated by modern comput-
ing systems, has been widely used in system and network management related
applications [11]. Differing from time series where the value of data item is con-
tinuous, event data denotes the discrete data item values [16]. An event sequence
is an ordered finite sequence, in which each element is a tuple consisting of one
instance of some event and its corresponding timestamp. A lot of research on
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event mining are proposed for discovering relationships of events [21,23]. Our
work also focuses on event data, where only the timestamps of items are avail-
able and no other information can be utilized to find temporal dependencies.

Unlike previous work which can only discover fixed time lags, in this paper,
we proposed a parametric model to extract the probability distributions of time
lags. Considering probability distributions could precisely depict the randomness
property of time lags, our method provides more flexibility and usability than
fixed ones.

3 Problem Definition and Formulation

3.1 Problem Definition

Let Ω be the event space comprises all possible events. An event sequence S over
Ω is a finite ordered list with the form S = e1e2 . . . eu. Every element ei ∈ S is
a tuple ei = (Ei, ti) indicating an instance of event Ei ∈ Ω occurred at time ti.

Assume A be a type of event coming from event space Ω, SA be a subsequence
of S which only consists of instances of event A. Because all elements in SA

belong to the same type of event, we simplify SA as a sequence of timestamp,
i.e., SA = a1a2 . . . am, where ai is the ith timestamp of event A’s instances.
Similarly, for another type of event B, we denote SB = b1b2 . . . bn.

If there is a temporal dependency A →L B, for any associated timestamp
pair ai and bj , there always exists a relation bj = ai + L indicating an event A
occurred at ai is followed by an event B occurred at bj after a time lag L.

Theoretically, the time lag L should be a constant. However, the noise is
inevitable during data collection process because of various factors, such as miss-
ing records, incorrect values and recording delay. In order to discover underlying
temporal dependencies effectively, in this paper, the time lag L is defined as

L = μ + ε (1)

where μ is a constant representing the true time lag and ε is a random variable
indicating the noise. Hence, time lag L is a random variable.

In our practice, we find that the time lag L often follows a more compli-
cated distribution rather than a single normal distribution supposed in previous
work [30]. Without loss of generality, we assume this complicated distribution
is consisted of K different probability distributions, and we want to discover
multiple time lags following various probability distributions from datasets. Def-
inition 1 provides the formal description of the problem we studied in this paper.

Definition 1. For two event types A and B, suppose there are K different tem-
poral dependencies A →L1 B,A →L2 B, . . . , A →LK

B existed in a given dataset,
our goal is to learn a time lag L, which is consisted of K types of time lags
L1, L2, . . . , LK following K different probability distributions, respectively.
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3.2 Problem Formulation

Given two timestamp sequences SA and SB, suppose the distribution of time lag
L is determined by the parameters Θ, which are independent from the occur-
rences of event A. Therefore, the problem of discovering the temporal depen-
dency A →L B is equivalent to learning the distribution of time lag L through
the maximum likelihood parameters Θ defined by

Θ̂ = arg max
Θ

P (Θ|SA,SB). (2)

Applying Bayes’ theorem to Eq. (2), we have

ln P (Θ|SA,SB) = lnP (SB|SA,Θ) + lnP (SA) + lnP (Θ) − ln P (SA,SB). (3)

In Eq. (3), only lnP (SB|SA,Θ) and lnP (Θ) are related to the parameters
Θ. Therefore, the problem of learning time lag L can be simplified into the
problem of solving the following equation

Θ̂ = arg max
Θ

ln P (SB|SA,Θ). (4)

4 Modeling and Solution

4.1 Time Lag Modeling

For a temporal dependency A →L B, we assume that every occurrence of event
B is only determined by event A and time lag L, i.e., every occurrence of event
B is mutually independent with each other. Therefore,

P (SB|SA,Θ) =
n∏

j=1

P (bj |SA,Θ). (5)

For every timestamp bj , a latent variable zijk is introduced to model the
relation between bj and one timestamp of event A, denoted as ai. Specifically,

zijk =

{
1, the ith event A implies the jth event B following kth distribution;
0, otherwise.

(6)
Hence, the relation between bj and sequence SA can be represented by a

latent matrix Zj = {zijk}m×K , in which only one element equals to 1 and all
other elements are 0. If zijk = 1, then cell (i, k) in Zj equals 1.

Based on the definition of latent variable zijk, the distribution of latent
matrix Zj and the conditional distribution of bj given Zj are shown as:

P (Zj) =
m∏

i=1

K∏

k=1

P (zijk = 1)zijk . (7)
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P (bj |Zj,SA,Θ) =
m∏

i=1

K∏

k=1

P (bj |zijk = 1, ai,Θ)zijk . (8)

Therefore, the joint distribution P (bj ,Zj|SA,Θ) can be written as follow:

P (bj ,Zj|SA,Θ) =
m∏

i=1

K∏

k=1

{P (bj |zijk = 1, ai,Θ) × P (zijk =1)}zijk . (9)

So the marginal distribution of bj is obtained by

P (bj |SA,Θ) =
∑

Zj

P (bj ,Zj|SA,Θ) =
m∑

i=1

K∑

k=1

P (bj |zijk = 1, ai,Θ)×P (zijk = 1).

(10)
Combining Eqs. (4), (5) and (10) together, the log-likelihood function can be

rewritten as:

ln P (SB|SA,Θ) =
n∑

j=1

ln
m∑

i=1

K∑

k=1

P (bj |zijk = 1, ai,Θ) × P (zijk = 1). (11)

For simplicity, let πijk =P (zijk =1), where 0 ≤ πijk ≤ 1,
∑m

i=1

∑K
k=1 πijk =1.

Time lag L is consisted of K different time lags L1, L2, . . . , LK with K dif-
ferent probability distributions. For any one temporal dependency A →Lt

B
(1 ≤ t ≤ K), we have Lt = μt + εt. Based on the Central Limit Theorem, we
assume that noise ε follows the normal distribution with zero-mean value, i.e.,
εt ∼ N (0, σ2

t ), where σ2
t represents the variance of current distribution. Since μt

is a constant, the distribution of Lt can be expressed as Lt ∼ N (μt, σ
2
t ). There-

fore, time lag L can be regard as a mixture of K different normal distributions
with various μ and σ2. Hence, if zijk = 1, then

P (bj |zijk = 1, ai,Θ) = P (bj |ai, μk, σ2
k) = N (bj − ai|μk, σ2

k). (12)

Consequently, Eq. (11) can be expressed as follow:

ln P (SB|SA,Θ) =
n∑

j=1

ln
m∑

i=1

K∑

k=1

πijk × N (bj − ai|μk, σ2
k). (13)

Based on Eq. (13), the problem described in Eq. (4) is equivalent to the fol-
lowing equation

(μ̂k, σ̂2
k) = arg max

μk,σ2
k

k∈{1,...,K}

n∑

j=1

ln
m∑

i=1

K∑

k=1

πijk × N (bj − ai|μk, σ2
k)

s.t. for every j ∈ [1, n],
m∑

i=1

K∑

k=1

πijk = 1. (14)
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4.2 Maximization

Equation (14) can be solved by expectation-maximization (EM) algorithm [5],
since it is one kind of mixture model. For applying EM algorithm, consider
the expected log likelihood function of complete data {SB,Θ} at first. Suppose
parameters Θ is already known and Z = {zijk}m×n×K is a latent matrix. Then,
based on Eqs. (7) and (8), we have

P (SB,Z|SA,Θ)=
n∏

j=1

P (bj |Zj,SA,Θ) × P (Zj)=
m∏

i=1

n∏

j=1

K∏

k=1

{N (bj−ai|μk, σ2
k) × πijk

}zijk .

(15)
Therefore, the expectation can be expressed as

Q(Θ,Θ′) � E[lnP (SB,Z|SA,Θ)]=
m∑

i=1

n∑

j=1

K∑

k=1

E[zijk] ×
{
lnN (bj−ai|μk, σ2

k) + lnπijk

}
.

(16)
where Θ′ is the parameters estimated on the previous iteration. Using rijk to
denote E[zijk], i.e.,

rijk � E[zijk] = P (zijk = 1|SA,SB,Θ′) =
π′

ijk × N (bj − ai|μ′
k, σ′2

k )
∑m

i=1

∑K
k=1 π′

ijk × N (bj − ai|μ′
k, σ′2

k )
.

(17)
Then Eq. (16) can be rewritten as

Q(Θ,Θ′) =
m∑

i=1

n∑

j=1

K∑

k=1

rijk × {
ln N (bj − ai|μk, σ2

k) + lnπijk

}
. (18)

The parameters μk, σ2
k and πijk can be learned by maximizing Q(Θ,Θ′).

μk =
1

Nk

m∑

i=1

n∑

j=1

rijk(bj − ai) (19)

σ2
k =

1
Nk

m∑

i=1

n∑

j=1

rijk(bj − ai − μk)2 (20)

πijk =
1
n

n∑

j=1

rijk (21)

where Nk =
∑m

i=1

∑n
j=1 rijk.

Using this EM-based algorithm, called EMLag algorithm, we can find the
maximum likelihood estimates of parameters Θ. Algorithm 1 states the pseudo-
code of EMLag algorithm with the time complexity O(rmnK), where m and n
are the number of timestamps of event A and B, respectively, K is the number
of distributions and r indicates iteration number.
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Algorithm 1. The EMLag algorithm
1: procedure EMLag(SA, SB) � |SA|=m, |SB|=n
2: Initialize r′

ijk = 1
mK

, choose μ′
k and σ′2

k randomly. � Initialization
3: while TRUE do
4: Evaluate rijk by Eq. (17). � Expectation
5: Update μk and σ2

k by Eqs. (19) and (20), respectively. � Maximization
6: if parameters converge then � Convergence test
7: return μk and σ2

k � k = 1, 2, . . . , K
8: end if
9: end while

10: end procedure

5 Time Lag Discovery

Based on EMLag algorithm, we design two approximate algorithms for min-
ing multiple time lags from large datasets more efficiently. Both of these two
algorithms could achieve good efficiency without significant loss of accuracy.

5.1 winEMLag Algorithm

Intuitively, suppose a temporal dependency A → B is exist, timestamp bj is
more likely to be implied by timestamp ai if the index i is close to the index j
rather than far from j. Hence, for mining various temporal dependencies from
large event sequences efficiently, for every bj , we only select a subset of event A’s
timestamps whose index is close to j for calculation instead of all of them.

Algorithm 2. The winEMLag algorithm
1: procedure Expectation(SA, SB, λ) � λ is predefined, 0 < λ ≤ 1
2: l = λ × m � l is the window length, |SA| = m
3: left = 0, right = 0 � Index bound
4: for each bj do
5: if j − l/2 ≥ 0 and j + l/2 ≤ m − 2 then
6: left = j − l/2, right = left + l − 1
7: else
8: if j − l/2 ≥ 0 then
9: right = m − 1, left = m − l

10: else
11: left = 0, right = l − 1
12: end if
13: end if
14: Select ai into wj where i ∈ [left, right].
15: Evaluate rijk utilizing set wj .
16: end for
17: end procedure
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Let wj be a subset of A’s timestamps used to estimate the relation between
event A and bj . Our goal is to fill in wj so that, compared with remainders,
the indexes of A’s timestamps in wj are much closer to j. Inspired by Sliding
Window Model [1], we design an approximate algorithm winEMLag for speeding
up the mining process of EMLag algorithm. Algorithm 2 shows the Expectation
procedure of winEMLag algorithm. In each iteration, the update operations in
Maximization procedure of winEMLag algorithm will also utilize each subset wj .

In winEMLag algorithm, parameter λ is a user-specified parameter represent-
ing the ratio between the length of window l and the length of event sequence.
Therefore, the length of window l can be calculated by l = λ × |SA|. Since the
size of each wj in winEMLag algorithm is much smaller than the size of sequence
SA in EMLag algorithm, winEMLag algorithm could achieve better efficiency.

5.2 appEMLag Algorithm

During each iteration of EMLag algorithm, we find that, for every specific dis-
tribution k, the responsibility rijk describing the likelihood that the ith event A
implies the jth event B following kth normal distribution, becomes smaller with
the deviation of bj −ai from the estimated time lag μk increasing. In other words,
rijk will close to 0 as |bj −ai −μk| becomes larger. Based on this observation, we
design an approximate algorithm for efficiently estimating parameters μk and
σ2

k by ignoring those rijk(bj − ai) and rijk(bj − ai − μk)2 with small rijk in both
Eqs. (19) and (20). Since in real application scenarios, the time spans of given
event sequences are very long, and most rijk are very small, the loss of accuracy
of this approximate method is acceptable.

We introduce two parameters ε and δ to help distinguishing retained part and
neglected part of rijk. Given bj , let εj be the sum of the responsibility rijk which
will be neglected, i.e., εj =

∑K
k=1

∑
{i|ai is neglected} rijk, and ε be the largest one

among all the εj , that is, ε = max1≤j≤n {εj}. In practice, parameter ε can be
predefined by users based on the application scenario.

Recall that in Eqs. (19) and (20), each pair of μk and σk are calculated by
their corresponding rijk. Therefore, for every bj , we suppose set Cjk includes all
retained rijk which will be used to estimate μk and σk. Since all timestamps of
event A are consecutive in ascending order, the index i for timestamps of event
A in set Cjk are also consecutive. Let δjk be the ratio of the sum of retained
rijk in set Cjk to the sum of all retained rijk for the given bj , and hence δ is a
n × K matrix filled in by all δjk. In each iteration, given bj , δjk can be updated
by the following equations:

AV Gjk �
∑

{rijk∈Cjk} rijk

|Cjk| , δjk =
AV Gjk∑K

k=1 AV Gjk

(22)

To guarantee the sum of neglected rijk is less than ε, for every bj , the sum
of retained rijk should be greater than 1 − ε, i.e.,

∑K
k=1 δjk ≥ 1 − ε. In order to

minimize the size of Cjk, we adopt a greedy way to select timestamps ai from
all timestamps of event A. Specifically, given bj and distribution k, we add ai
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into Cjk with its corresponding rijk in decreasing order until the summation of
rijk in Cjk is greater than δjk. Algorithm 3 describes how to find the minimum
and maximum indexes of ai in Cjk.

Algorithm 3. The greedyBound algorithm
1: procedure greedyBound(SA, bj , μ′

k, δ′
jk, ε)

2: t = bj − μ′
k

3: Locate the closest ai to t using binary search.
4: minjk = i, maxjk = i
5: prob = 0.0
6: while prob < δ′

jk × (1 − ε) do
7: if r(minj−1)jk ≥ r(maxj+1)jk then
8: i = minjk − 1
9: minjk = i

10: else
11: i = maxjk + 1
12: maxjk = i
13: end if
14: Add ai to Cjk.
15: prob = prob + rijk

16: end while
17: return minjk and maxjk

18: end procedure

Based on greedyBound algorithm, we present an approximate algorithm,
called appEMLag algorithm, to efficiently estimate parameters μk and σ2

k with-
out significant loss of accuracy. As described in Algorithm 4, the time cost of

Algorithm 4. The appEMLag algorithm
1: procedure appEMLag(SA, SB, ε) � ε is predefined, 0 < ε ≤ 1
2: Initialize δ′

jk = 1
K

, choose μ′
k and σ′2

k randomly. � Initialization
3: while TRUE do
4: for each bj do
5: for k ← 1, K do
6: Get minjk, maxjk by greedyBound. � Find the index bound of ai

7: end for
8: Evaluate rijk utilizing sets Cj1, . . . , CjK . � Expectation
9: end for

10: Update μk and σ2
k by Eqs. (19) and (20) within the � Maximization

bound, respectively, and update δjk by Eq. (22).
11: if parameters converge then � Convergence test
12: return μk and σ2

k � k = 1, 2, . . . , K
13: end if
14: end while
15: end procedure



Discovering Multiple Time Lags from Fluctuating Events 131

appEMLag algorithm is O(rnK(log m + t), where m and n are the number of
timestamps of event A and B, respectively, r indicates iteration number, K is
the number of distributions, and t is the average size of all Cjk. Since t � m
and log m � m, appEMLag algorithm is much faster than EMLag algorithm.

6 Empirical Study

This section presents empirical studies of our proposed algorithms on both syn-
thetic datasets and real datasets with respect to effectiveness and efficiency. To
demonstrate the performance of our proposed algorithms, we implement all of
them using Java 1.7, and execute them on a computer with Linux 2.6.32. This
computer is equipped with Intel(R) Xeon(R) CPU with 24 cores running at
speed of 2.50 GHz, and the total memory of it is 126G.

6.1 Synthetic Data

Synthetic Data Generation. In our experiments, we execute our proposed
algorithms on five different synthetic datasets. Parameters shown in Table 1
are utilized to generate synthetic datasets. Each dataset consists of two event
sequences SA and SB with same length, and we assume there are two types of
temporal dependency exist in each dataset. That is to say, K = 2. Moreover, we
use the exponential distribution to simulate the inter-arrival time between two
adjacent events [17]. The way of generating SA and SB is shown below.

Table 1. Parameters used for generating synthetic data

Name Description

N The number of events in one synthetic event sequence

K The number of types of time lag

βmin The minimum value for the average inter-arrival time β

βmax The maximum value for the average inter-arrival time β

μmin The minimum value for the true time lag μ

μmax The maximum value for the true time lag μ

σ2
min The minimum value for the variance of time lag

σ2
max The maximum value for the variance of time lag

1. Randomly choose parameters β from [βmin, βmax], μ1 and μ2 from
[μmin, μmax] and σ2

1 and σ2
2 from [σ2

min, σ2
max], respectively.

2. Generate N/2 timestamps for event A, where the inter-arrival time between
two neighbors follows the exponential distribution with parameter β.

3. For each timestamp ai of event A, the time lag is randomly generated accord-
ing to normal distribution with parameters μ1 and σ2

1 .
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4. Combine all the timestamps associated with their types to form two event
sequence SA1 and SB1 .

5. Repeat Steps 2–4 to generate another two event sequences SA2 and SB2 with
parameters μ2 and σ2

2 chosen in Step 1.
6. Merge SA1 and SA2 to form the sequence SA with timestamps in ascending

order, then merge SB1 and SB2 to form the sequence SB based on the indexes
of their corresponding ai.

In our experiments, we set βmin = 5, βmax = 50, μmin = 25, μmax = 100,
σ2

min = 5 and σ2
max = 400 to generate five synthetic datasets with different

parameter N . The number of events in sequence SA in these five synthetic
datasets are 0.5k, 1k, 2k, 10k, 20k, respectively. Note that there are only two
types of events we simulated in synthetic datasets. In practice, a real dataset
typically includes more than hundreds of events types. Therefore, we believe
20k events of two types is enough to represent the real application scenarios in
miniature.

Synthetic Data Evaluation. Since all of our proposed algorithms are based
on the EM algorithm, which cannot guarantee the global optimum [5], we define
a batch operation to avoid this problem as much as possible. Specifically, every
10 rounds execution of the algorithm with different initial parameters chosen at
random is regarded as a batch. For each batch, we choose the output with the
maximum likelihood among 10 rounds as the result of a batch. For each synthetic
dataset, we conduct five such batches on it, and calculated the average values
of the results of five batches as the final result. Table 2 shows the outcome of
experiments running EMLag, winEMLag, and appEMLag on such five synthetic
datasets with different parameters settings, respectively.

Each algorithm terminates execution when it satisfies one of the following
conditions: (1) it converges; (2) the number of iterations exceeds 500; or (3) the
differences of all learned parameters between two adjacent iterations are less
than 10−5. winEMLag algorithm takes one more parameter λ as its input, where
λ determines the length of windows used in the algorithm. In our experiments,
we set λ to 0.002, 0.02 and 0.2. Similarly, appEMLag algorithm has a prede-
fined parameter ε, which is used to calculate the proportion of the neglected
part during the parameter estimation of each iteration. In order to evaluate the
performance of appEMLag algorithm sufficiently, ε is set to 0.001, 0.01, and 0.1.
As shown in Table 2, we find that parameters μs learned by EMLag, winEMLag,
and appEMLag are quite close to the ground truth.

In addition, for evaluating the difference between the distributions of time
lags given by the ground truth and learned by our proposed algorithms shown in
Table 2, we introduce Kullback-Leibler (KL) divergence [14]. Figure 2 shows the
evaluation results with various sizes of dataset from 0.5k to 10k, respectively.
Here we can see, all proposed algorithms could effectively discovery the distri-
butions of time lags from event sequences. Moreover, compared with winEMLag,
appEMLag algorithm performs better in terms of KL divergence.
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Table 2. The experimental results for various synthetic datasets with sizes from 0.5k
to 20k. The values of μ and σ2 for “ground truth” are given in advance; μ and σ2

represent the average values of μ and σ2; LLopt is the maximum log-likelihood obtained
by running the algorithm; Entries with “N/A” are not available since they take more
than 7 days to get corresponding results.

(a) Size = 0.5k (b) Size = 1k (c) Size = 2k (d) Size = 10k

Fig. 2. The KL distance between the ground truth and the one learned by each algo-
rithm over different datasets.

The efficiency comparison between all proposed algorithms is measured by
the CPU running time. As shown in Fig. 3, the time cost of winEMLag and
appEMLag are much less than the EMLag algorithm. Since both parameter ε
and λ could effectively decrease the number of events needed to be considered
in each iteration, the efficiency of these two algorithms are satisfactory.

In summary, based on the extensively comparative experiments on synthetic
data, all of our proposed algorithms have the capabilities for finding time lags
from fluctuating events effectively. Two approximate algorithms winEMLag and
appEMLag could achieve a good balance in terms of accuracy and efficiency.
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Fig. 3. Time cost comparison

6.2 Real Data

We employ two real datasets collected from several IT outsourcing centers by
IBM Tivoli monitoring system [12] to verify the performance of our proposed
algorithms in real application scenarios. Each dataset is a collection of system
events generated by the automatic monitoring system running on servers. Most
of these events are system alerts triggered by some monitoring situations, for
example, the disk capacity is almost full. Table 3 lists the statistical information
of these two real event datasets.

Table 3. Real event datasets

Dataset Time span # of events # of types

Dataset1 32 days 100k 104

Dataset2 54 days 1, 000k 136

In order to discover the time lags of temporal dependencies more effectively
and efficiently, we choose appEMLag algorithm with parameter setting ε = 0.001
to deal with these two real event datasets. For increasing the probability of
acquiring the global optimal value, we run appEMLag in a batch of 30 rounds
with randomly initialize parameters every round. Table 4 provides a snippet of
some discovered temporal dependencies with multiple time lags from two real
datasets. We employ the metric signal-to-noise ratio [24], a concept in signal
processing domain, to evaluate the impact of noise relative to the expected time
lag. Signal-to-noise ratio (SNR) can be calculated as the ratio of the expect time
lag μ to the standard deviation σ. Here, we use the average value of SNR for
two discovered distributions as the measure.

The time lags of temporal dependency AIX HW Error →L NV390MSG
MVS discovered from dataset1 follow two types of normal distribution, one is
μ = 55.41 and σ2 = 0.39, and the other one is μ = 93.09 and σ2 = 0.32.
Compared with algorithms proposed in [30], which can only find one time lag
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Table 4. Snippet of discovered temporal dependencies with multiple time lags

Dataset Temporal dependency (μ1, σ2
1) (μ2, σ2

2) Ave.

SNR

Dataset1 AIX HW Error →L NV390MSG MVS (55.41, 0.39) (93.09, 0.32) 126.64

generic postemsg →L NV390MSG AO Platform Server (63.55, 9.34) (18.23, 16.37) 12.65

generic postemsg →L Sentry2 0 diskusedpct (219.38, 10.18) (146.27, 10.41) 57.05

NV390MSG AO Platform Server →L

Info set ticket number using eventid

(2.62, 4.49) (18.09, 2981.51) 0.78

MQ CONN NOT AUTHORIZED →L ITM NT Services (1912.78, 47.63) (88.16, 34.00) 146.14

Ticket Retry →L TEC Notice (360.59, 41.20) (269.17, 44.76) 48.21

TEC Error →L ITM KGB AVAILABILITY (468.66, 76.77) (434.34, 36.88) 62.50

Dataset2 Generic Source Event →L Candle Universal Messages (383.49, 104.02) (43.17, 24.80) 23.13

ITM Process →L PATROL APP (461.84, 0.93) (168.13, 2433.03) 241.16

ITM Process →L OV IF Down (36.66, 256.39) (244.63, 261.73) 8.71

with the expected time lag μ = 33.89 and the variance σ2 = 1.95, our method
discover one more type of time lag. Moreover, since the variances of these two
discovered time lags are quit small, these two time lags are very close to the true
time lags.

The temporal dependency generic postemsg →L Sentry2 0 diskusedpct has
two time lags with different expected time lags μ and similar variances σ2. Event
Sentry2 0 diskusedpct appears 2.5 or 3.5 min later after generic postemsg occurs.
Conversely, the expected time lags between ITM KGB AVAILABILITY and
TEC Error are similar, while the variances are different. Because the expected
time lags are very similar with each other, it is not trivial to capture two nor-
mal distributions from large datasets. Previous temporal dependency mining
methods only return one constant time lag as the result, due to they ignore the
existence of the noise and are not able to distinguish two very similar time lags.

The variances of the time lags between Info set ticket number using eventid
and NV390MSG AO Platform Server in dataset1 are quite large relative to the
expected time lags, since the average SNR is less than 1. For every single time
lag, the variance is still relative large. Hence, we think this is a week dependency
between these two events due to the discovered time lags contain too much noise.

We find the time lags of temporal dependency ITM Process →L

PATROL APP in dataset2 are quite different with other dependencies. Specifi-
cally, one time lag has large value of the expect time lag μ and small value of the
variance σ2, and the other one has small value of μ and large value of σ2. Both
of them are very difficult for previous inter-arrival pattern mining methods to
discover, where the inter-arrival time lags are small time lags. In our methods,
we use the expected time lag μ and its variance σ2 to find multiple interleaved
time lags.

7 Conclusions

In this paper, we study the problem of discovering multiple time lags of temporal
dependencies over event sequences, where the time lags between two pairwise
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events are fluctuating since the existence of the noise. To solve this problem, an
EM-based algorithm is proposed to capture the distribution of time lags. We also
propose two approximate algorithms for speeding up the time lag mining process.
Extensive empirical studies on both synthetic and real datasets demonstrate the
efficiency and effectiveness of our proposed algorithms.

In future work, we plan to implement distributed versions of our algorithms
for handling applications with massive data. Furthermore, mining dependencies
among multiple events other than pairwise events is also attractive to us.
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