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Abstract. Achieving fuzzy searching encryption (FSE) can greatly
enrich the basic function over cipher-texts, especially on encrypted
database (like CryptDB). However, most proposed schemes base on cen-
tralized inverted indexes which cannot handle complicated queries with
wild-cards. In this paper, we present a well-designed FSE schema through
Locality-Sensitive-Hashing and Bloom-Filter algorithms to generate two
types of auxiliary columns respectively. Furthermore, an adaptive rewrit-
ing method is described to satisfy queries with wild-cards, such as percent
and underscore. Besides, security enhanced improvements are provided
to avoid extra messages leakage. The extensive experiments show effec-
tiveness and feasibility of our work.

Keywords: Fuzzy searching encryption · Wild-cards searching
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1 Introduction

Cloud database is a prevalent paradigm for data outsourcing. In considera-
tion of data security and commercial privacy, both individuals and enterprises
prefer outsourcing them in encrypted form. CryptDB [21] is a typical out-
sourced encrypted database (OEDB) which supports executing SQL statements
on cipher-texts. Its transparency essentially relies on the design of splitting attri-
butions and rewriting queries on proxy middle-ware. Under this proxy-based
encrypted framework, several auxiliary columns are extended with different
encryptions and query semantics are preserved through modifying or appending
SQL statements.
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To enrich basic functions on cipher-texts, searchable symmetric encryp-
tion (SSE) is proposed for keyword searching with encrypted inverted indexes
[4,13,22,24], and then dynamic SSE (DSSE) achieves alterations on various cen-
tralized indexes to enhance applicability [2,11,12,14]. Besides, the studies about
exact searching with boolean expressions are extended in this field to increase
accuracy [3,10]. Furthermore, the researches of similar searching among docu-
ments or words are widely discussed through introducing locality sensitive hash-
ing algorithms [1,7–9,15,18,19,23,25–27]. However, these proposed schemes are
not applicable to OEDB scenario because of the centralized index design and
cannot handle complex fuzzy searching with wild-cards.

Matched DET valuesPlaintext results

DET determined cipher-texts
OPE preserving order of numbers
FSE fuzzy searching with wild-cards
HOM homomorphism for sum,avg

Different Encryp ons
DET determined cipher-texts
OPE preserving order of numbers
FSE fuzzy searching with wild-cards
HOM homomorphism for sum,avg

Rewrited SQLsQueries

Fig. 1. The client-proxy-database framework synthesizes various encryptions together,
such as the determined encryption (DET) preserves symmetric character for
en/decryption, the order-preserving encryption (OPE) persists order among numeric
values, the fuzzy searching encryption (FSE) handles queries on text, and the homo-
morphic encryption (HOM) achieves aggregation computing.

Therefore, it is meaningful and necessary to achieve fuzzy searching encryp-
tion over outsourced encrypted database. As shown in Fig. 1, the specific frame-
work accomplishes transparency and homomorphism by rewriting SQL state-
ments on auxiliary columns. In this paper, we focus on resolving the functionality
of ‘like’ queries with wild-cards (‘%’ and ‘ ’). Our contributions are summarized
as follows:

– We propose a fuzzy searching encryption with complex wild-cards queries on
encrypted database which extends extra functionality for the client-proxy-
database framework like CryptDB.

– We present an adaptive rewriting method to handle different query cases on
two types of auxiliary columns. The formal column works for similar search-
ing by locality sensitive hashing and the latter multiple columns work for
maximum substring matching by designed bloom-filter vectors.

– We evaluate the efficiency, correctness rate and space overhead by adjusting
the parameters in auxiliary columns. Besides, security enhanced improve-
ments are provided to avoid extra messages leakage. The extensive experi-
ments also indicate the effectiveness and feasibility of our work.

The rest of paper is organized as follows. Section 2 discusses the related work
and Sect. 3 introduces some basic concepts and definitions. Section 4 describes
our schema including initialization of auxiliary columns, adaptive rewriting
queries and security enhanced improvements. Section 5 presents the experiments
and a brief conclusion is given in Sect. 6.
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2 Related Work

In recent years, many proposed schemes have been attempting to achieve fuzzy
searching encryption with helps of similarity [1,8,9,15,23,25–27]. The most of
them introduce locality sensitive hashing (LSH) to map similar items together
and bloom-filter to change the method of measuring. Wang et al.’s work [23] was
one of the first works to present fuzzy searching. They encode every words in
each file into same large bloom-filter space as a vector and evaluate similarity of
target queries by computing the inner product for top-k results among vectors.
Kuzu et al.’s work [15] generates similar feature vectors by embedding keyword
strings into the Euclidean space which approximately preserves the relative edit
distance. Fu et al.’s work [8] proposes an efficient multi-keyword fuzzy ranked
search schema which is suitable for common spelling mistakes. It benefits from
counting uni-gram among keywords and transvection sorting to obtain ranked
candidates. Wang et al.’s work [26] generates a high-dimensional feature vector
by LSH to support large-scale similarity search over encrypted feature-rich mul-
timedia data. It stores encrypted inverted file identifier vectors as indexes while
mapping similar objects into same or neighbor keyword-buckets by LSH based on
Euclidean distance. In contrast to sparse vectors from bi-gram mapping, their
work eliminates the sparsity and promotes the correctness as well. However,
there are many problems in existing schemes including the insufficient metric
conversion, the coarse-grained similarity comparison, the extreme dependency
of assistant programs and the neglect about wild-card queries.

Meanwhile, the proposal of CryptDB [21] has attracted world-wide attention
because they provide a practical way to combine various attribution-preserving
encryptions over encrypted database. Then many analogous researches [5,16,17,
20] study its security definitions, feasible frameworks, extensible functions and
optimizations. Chen et al. [5] consider these encrypted database as a client-proxy-
database framework and presents symmetric column for en/decryption and aux-
iliary columns for supporting executions. This framework helps execute SQL
statements directly over cipher-texts through appending auxiliary columns with
different encryptions. It also benefits from the transparency of en/decryption
processes and combines various functional encryptions together. Therefore, it is
meaningful to achieve efficient fuzzy searching with complex wild-cards queries
on proxy-based encrypted database.

3 Preliminaries

3.1 Basic Concepts

A. N-gram. In the fields of computational linguistics and probability, the n-
gram method is proposed for measurement by generating a contiguous sequence
of items from given strings. Essentially, it converts texts to fragments sets
for vectorization while preserving some connotative connections. As shown in
Table 1, various n-gram methods are utilized to preserve different implicit inner
relation from origin strings.
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Table 1. Various n-gram forms in our scheme

N-gram methods Value Description

String secure The original keyword

Counting uni-gram [8] s1, e1, c1, u1, r1, e2 Preserve repetitions

Bi-gram #s, se, ec, cu, ur, re, e# Preserve adjacent letters

Tri-gram sec, ecu, cur, ure Preserve triple adjacent letters

Prefix and suffix @s, e@ Beginning and ending of sentence

In general, bi-gram is the most common converting method which maintains
the connotative information between adjacent letters. However, each change of
single letter will double influence bi-gram results and cause reduction of matching
probability. The counting uni-gram preserves repetitions and benefits on letter-
confused comparison cases, such as misspelling of a letter, missing or adding a
letter and reversing the order of two letters. However, it reduces the degree of
constraint along with increasing false positives. The tri-gram is a more strict
method which only suits the specific scene like existing judgment. The prefix
and suffix preserve the beginning and ending of data to meet edge-searching.

B. Bloom-Filter. The Bloom-filter is a compact structure reflecting whether
specific elements exist in prepared union. In our schema, we introduce this algo-
rithm to judge existence about maximized substring fragments and represent
the sparse vector through decimal numbers in separated columns. Given words
fragments set S = {e1, . . . , e#e}, a bloom-filter maps each element ei into a same
l-bit sparse array by k independent hash functions. Positive answer is provided
only if all bits of matched positions are true.

C. Locality Sensitive Hashing. The locality sensitive hashing (LSH) algo-
rithm helps reduce the dimension of high-dimensional data. In our schema, we
introduce this algorithm to map similar items together with high probability.
Besides, the specific manifestation of the algorithm is different under different
measurement standards. However, there is no available method for levenshtein
distance among text. So that a common practice is converting texts to fragment
sets with n-gram methods.

Definition 1 (Locality sensitive hashing). Given a distance metric function
D, a hash function family H = {hi : {0, 1}d → {0, 1}t|i = 1, . . . , M} is
(r1, r2, p1, p2)-sensitive if for any s, t ∈ {0, 1}d and any h ∈ H satisfies:

if D(s, t) ≤ r1 then Pr[hi(p) = hi(q)] ≥ p1;
if D(s, t) ≥ r2 then Pr[hi(p) = hi(q)] ≤ p2.

For nearest neighbor searching, p1 > p2 and r1 < r2 is needed. Practically,
feasible permutations are generated through surjective hashing functions with
our security parameter λ. And the minhash algorithm helps map fragment sets
of every separated words which achieves similar searching.
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3.2 Functional Model

Let D = (d1, . . . , d#D) be sensitive row data (each line contains some words
respectively, as di =

⋃|di|
j=1 wi

j) and C = {cdet, clsh, cbf} be the corresponding
cipher-texts. Two types of indexing methods are enforced: the first one achieves
similar searching among words through dimension reductions with locality sensi-
tive hashing (let m be the dimension of LSH, n be the tolerance and L represents
its conversion); the last one achieves maximum substring matching through bit
operation with bloom-filter (let l be the length of vector space, k be the amount
of hashing functions and B represents its conversion). We consider LSH tokens
set Ti = Ln

m(
⋃|di|

j=1 Gss(wi
j)) be the elementary ciphers for clsh, and BF vector

Vi = Bk
l (

⋃|di|
j=1 Gmsm(wi

j)) be the ciphers of whole continuous sequence for cbf .
Besides, G represents n-gram methods for similar searching or maximum sub-
string matching.

Definition 2 (Fuzzy searching encryption). A proxy-based encrypted database
implements fully fuzzy searching with rewriting SQL statements through the fol-
lowing polynomial-time algorithms:

(Kdet, Ln
m, Bk

l ) ← KeyGen(λ, m, n, l, k): Given security parameter λ,
dimension m of LSH and tolerance n, vector length l of BF and hash amount k,
it outputs a primary key Kdet for determining encryption, Ln

m for LSH, Bk
l for

BF. The security parameter λ helps initialize the hash functions and random-
ization processes.

(cdet, Ti, Vi) ← Index(di, Ln
m, Bk

l ): Given the LSH function Ln
m and the

BF function Bk
l , the plain-text di is encrypted to determined cipher-texts cdet,

ciphers Ti for similar searching and ciphers Vi for maximum substring matching
respectively.

(cdet||Ti||Vi) ← Trapdoor(expression): Given the query expression analyzed
from ‘like’ clause, the adaptive rewriting method help generate representing ele-
ments out of different considerations with wild-cards condition. The determined
cipher-texts would return in next step over encrypted database and Kdet helps
decryption.

As shown in definition of fuzzy searching encryption, we mainly emphasize
transformation processes like building, indexing and executing. There exist other
functional methods such as updating, deleting to achieve dynamically of our
schema. It is applicable for outsourced encrypted database through rewriting
SQL statements including ‘create’, ‘insert’, ‘select’ and so on.

3.3 Security Notions

Our security definition follows the widely-accepted security frameworks in this
field [6,12,15,22]. It is summarized in fuzzy query over encrypted database that
the overall security relies on the cryptographic assurance of indexes and trap-
doors. In our schema, we store extra functional ciphers as indexes and rewrite
queries as trapdoors. The security guarantee means there is no additional infor-
mation leaked other than the functional results of fuzzy query.
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4 Proposed Fuzzy Searching Encryption

4.1 Two Types of Functional Auxiliary Columns

The multiple-attributions-splitting design in cloud database synthesizes various
encryptions to preserve query semantics. As shown in Table 2, two types of aux-
iliary columns (c-LSH and c-BF) are appended on cloud database along with a
symmetrical determined column (DET).

Table 2. Storage pattern of multiple functional columns in database

cdet clsh(m = 4, wid = 2) cbf (1) . . . cbf (
⌈

l
32

⌉
)

0x1234 (“I love apple”) 19030024, 01000409, 00020412 1077036627 . . . 1957741388

0x3456 (“lave banana”) 01000409, 00020303 1079642851 . . . 625017556

0x5678 (“I love coconut”) 19030024, 01000409, 06000700 1626500087 . . . 1687169793

This schema aims at handling queries with wild-cards on cipher-texts. So that
several appended columns could store different functional ciphers with various
encryptions, such as determination (DET) of data for equality, locality sensitive
hashing (LSH) of words fragments for similar searching, bloom-filter (BF) among
lines for maximum substring matching.

A. c-LSH. The c-LSH column, which stores the locality sensitive hashing values
of each sentence, represents a message digest after dimensionality reduction. It

IPA: inverted position array(lave)={1,2,4,7,10,11,12,14,17,20}

Sparse 
vector

N-gram

MinHash
Algorithm p1={8,3,1,6,9,5,2,4,7,12,13,14,15,10,11,16,18,19,17,20} 3

p2={16,13,18,9,1,5,2,4,10,12,14,8,3,6,15,7,17,19,20,11} 5

p3={13,5,15,3,18,6,9,2,4,16,7,10,12,14,19,17,11,8,1,20} 8

p4={19,1,3,6,12,9,2,4,7,10,11,13,20,15,14,16,5,17,18,8} 2

Encrypted data in DB
DET h1 h2 h3 h4

Enc(I lave apple) 1,3,5 2,5,1 6,8,1 2,2,4
Enc(I love apple too) 1,3,5,4 2,5,1,2 6,9,1,2 2,2,4,5

SignaturesPermutation Hashing

c-LSH
1262,3582,5114

1262,3592,5114,4225

Word

Signatures

1

lave

1 0 1 0 0 1 0 0 1

#l la av ve e#

1 1 0 1 0 0 1 0 0 1

Fig. 2. A sample with bi-gram method (counting uni-gram as well) to show trans-
forming process: (1) split sentences in line to multiple words; (2) transport a word
to fragments with n-gram and build inverted position array; (3) execute dimension
reduction with LSH and get m features; (4) link features to a token for each word; (5)
combine tokens in line with comma.
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helps map similar items together with probability which equals to the jaccard
distance between their inverted position arrays (IPA for short).

During transforming process, n-gram methods are utilized (such as bi-gram
and counting uni-gram) for dividing texts into fragments and finally to sparse vec-
tors (IPA for short). As shown in Fig. 2, the transforming process maps every rows
to separate signature collections by steps. This process changes measurement from
levenshtein distance on texts to jaccard similarity on IPAs. So that the particular
minhash algorithm could reduce the dimensions of numeric features for each sub-
ject (words). Finally, each word is converted to a linked sequence as a token and
the c-LSH stores tokens set with comma to represent data of whole line.

B. c-BF. The multiple auxiliary c-BF columns, which represents macroscopic
bloom-filter spaces for each row, are implemented on several ‘bigint’ (32-bit)
columns. The database will return the DET ciphers where all c-BF columns cover
the target sequences through native bit arithmetic operation ‘&’. Briefly, these
columns are proposed for maximum substring matching which is a supplement
to the c-LSH column above.

1 1 1 1 1

{[e1,f1,f2,i1,c1,i2,e1,n1,t1],[#e,ef,ff,fi,ic,ci,ie,en,nt,t#],
[eff,ffi,fic,ici,cie,ien,ent]},

{[s1,u1,b1,s2,t1,r1,i1,n1,g1],[#s,su,ub,bs,st,tr,ri,in,ng,g#],
[sub,ubs,bst,str,tri,rin,ing]},

{[s1,e1,a1,r1,c1,h1],[#s,se,ea,ar,rc,ch,h#],[sea,ear,arc,rch]}
{[@e,h@]}

{[s1,t1,r1,i1,n1,g1],[#s,st,tr,ri,in,ng,g#],[str,tri,rin,ing]}
IPA(string)={2,6,58,...}

1 1 ... 1 ... 0 1 ... 1 1 ... 1 0 1 0 0 1 ... 0 1

0 ... ... 0 ... 0 0 ... 0 0 0 0 ... 0 0

bf_1 bigint bf_2 bigint bf_n bigint

{[e1,f1,f2,i1,c1,i2,e1,n1,t1],[#e,ef,ff,fi,ic,ci,ie,en,nt,t#],
[eff,ffi,fic,ici,cie,ien,ent]},

{[s1,u1,b1,s2,t1,r1,i1,n1,g1],[#s,su,ub,bs,st,tr,ri,in,ng,g#],
[sub,ubs,bst,str,tri,rin,ing]},

{[s1,e1,a1,r1,c1,h1],[#s,se,ea,ar,rc,ch,h#],[sea,ear,arc,rch]}
{[@e,h@]}

string

1.N-gram Methods
2.Bloom-Filter Hashing

efficient  substring  search

{[s1,t1,r1,i1,n1,g1],[#s,st,tr,ri,in,ng,g#],[str,tri,rin,ing]}
IPA(string)={2,6,58,...}

Fig. 3. The maximum substring matching over c-BF vectors which are stored in multi-
ple ‘bigint’ auxiliary columns separately. After mapping fragments from whole sentence
to vectors, queries execute with bit matching.

During mapping process, we respectively generate vectors for each row
through bloom-filter hashing with following n-gram methods: bi-gram, tri-gram,
prefix and suffix. These auxiliary columns are designed for substring matching so
that the implicit information need be maximally persisted from origin strings.
Through matching fragments between target bit vector and stored separated
‘bigint’ numbers, we could obtain all matched rows as shown in Fig. 3.

To meet application scenarios of inextensible cloud database, we accomplish
operations completely through rewriting SQL statements by native bit arith-
metic operation over multiple auxiliary columns, such as select m det from t
where m bf0&1=1 and m bf1&3=3. We experiment the connection between
length of the sparse vector and correct rate of maximum substring matching
in Sect. 5.
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4.2 Adaptive Rewriting Method over Queries with Wild-Cards

In SQL, wild-card characters are used in ‘like’ expression: the percent sign ‘%’
matches zero or more characters and the underscore ‘ ’ matches a single charac-
ter. Usually the former symbol is a coarse-grained comparable delimiter and the
latter could be tolerated by locality sensitive hashing in slightly different cases.
So we construct an adaptive rewriting method over queries with wild-cards as
shown in Fig. 4.

We consider three basic cases according to the number of percent signs to
meet indivisible string fragments. Furthermore in every basic case, we also divide
three sub-cases according to the number of underscore to benefit from different
auxiliary columns. Besides, each query text is considered as whole word and
substring while experiment exhibits the optimal selection.

Fig. 4. Adaptive rewriting method over queries with wild-cards. We consider percent
sign as a coarse-grained separator and few underscore could be tolerated according to
similarity.

Firstly, the double percent signs case means that user attempts finding rows
which contains the given string. Because the LSH function could tolerate small
differences naturally, the sub-case with no underscore could accomplish similar
searching among whole words. We achieve the one underscore sub-case with part
matching method. This clever trick helps adjust fineness of similar searching as
shown in Fig. 5. The multiple underscores sub-case is achieved by maximum
substring matching on c-BF columns with bloom-filter.

Secondly, the single percent sign case need to consider prefix and suffix.
The occurs of this type of queries reflect more detailed information and we
match them all as substrings with maximum degree of constraint through various
N-gram forms on c-BF column. Meanwhile, the prefix and suffix help preserve
beginning and ending information of whole sentences in row. During splitting
process, every fragments with underscore would be abandoned and the rest part
would be mapped to the sparse bloom filter space which represented by IPA.
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Thirdly, in the last no percent sign case, the user might already obtain most
of target information and attempt to match specific patterns with underscore.
Besides no underscore sub-case could be treated as determining equality oper-
ation, the maximum substring matching on c-BF column could meet the rest
sub-cases’ requirements.

Additionally, the tolerance parameter n is proposed as a flexible handler
under the dimension m of locality sensitive hashing auxiliary column. Briefly,
every features of word are set as fixed-length numbers which is filled by zero in
basic scheme. As a linked string with all m features, the token could be con-
verted to different variants where some feature parts replacing with underscores.
We joint every possible cases together for database searching with keyword ‘or’
through a called bubble function as shown in Fig. 5.

...

0 ... 0 1 1 ... 1

m
n

Fig. 5. The part matching method represents the adjustable fineness in c-LSH col-
umn with the tolerance parameter n and the LSH dimension m. For instance, let
m = 4, n = 3 and the target feature set be {1, 2, 3, 4}, therefore the candidate set is
{ 234, 1 34, 12 4, 123 } by this method.

The adaptive rewriting method helps generate trapdoor queries to meet the
wild-cards fuzzy searching encryption in database through similar searching on
c-LSH column and maximum substring matching on c-BF columns.

4.3 LSH-Based Security Improvements

The security of our schema relies on three parts. The symmetric cryptogra-
phy algorithm guarantees the security on determining column and the divided
bloom-filter vectors are presented by unidentifiable hashing ciphers. However,
the content in c-LSH column might leak some extra information such as sizes
and sequences of plain-texts. We present three improvements to enhance security
and an integrated algorithm as followed.

A. Linking Features Without Padding
In basic scheme, we pad each feature with zero by the upper limit wid which
benefits selecting process. To enhance security, we cancel the zero padding before
linking features to a token. Meanwhile, the part matching method is also changed
to an analogous bi-gram form. For instance, a secure enhanced part matching
method is select m det where m lsh like ‘%ab%’ or m lsh like ‘%bc%’ where a,b,c
are multiple features of a word. We discuss the validity with experiments.

B. Modifying Sequences of Tokens
Each line of c-LSH auxiliary column stores a tokens set for whole sentence.
Therefore, the sequences of tokens might exhibit the relevancy among words
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to malicious attacker. To overcome this leakage, we modify the sequences ran-
domly by hashing permutations. Additionally, we implement the permutation
function with P : y = a ∗ x + b mod c where a is relatively-prime to c. This
improvement protects the relation between invisible words and specific tokens.
Since the matching only demands on existing rather than order, so this sequence
modification helps for security protection.

C. Appending Confusing Tokens
The tokens sets in row leak the size of words. Appending tokens is a practical
way for security, but what kind of token content should be added is the target
of our discussion. The first way is appending repeated tokens from itself. It is
simple and effective, but it only improves limited security. The second way is
appending a little random tokens. Because of sparsity and randomization, few
random tokens might not change the matching results. The third way is append-
ing tokens combined from separated features among this tokens set. This way
also influences the matching precision and increases proportion of false positive.
Actually, these ways help greatly enhance security despite of disturbances.

D. Integrated Security Enhanced Algorithm
We present an integrated algorithm for security enhancement which combines all
above implementations. As shown in Algorithm1, this algorithm transforms the
tokens set in each row to an security enhanced one. It helps prevent information
leakage from c-LSH column.

Algorithm 1. Security Enhanced Improvements
Input: tokenm[#wordi] which represents the m-dimensional tokens set of

line i, wid be width of feature with zero padding, amount be the
lower bound for appending tokens

Output: an optimal security enhanced set e token[amount]
1 Let t represent token and each t can be split into m features by wid;
2 Generate a permutation function with F : y = a ∗ x + b mod c where

c = amount and (a, c) = 1;
3 Let c = 0 be the count for permutation;
4 foreach t in tokenm[#wordi] do
5 Generate a temporary string et;
6 for int j=0; j<m; j++ do
7 Remove the zero prefix of t.substr(j ∗ wid, (j + 1) ∗ wid);
8 Link it to et;

9 e token[F(c + +)]=et;

10 while c < amount do
11 Generate a temporary string et; for int k=0; k<m; k++ do
12 Get a feature tokenm[random()].substr(k ∗ wid, (k + 1) ∗ wid);
13 Remove the zero prefix and link it to et;

14 e token[F(c + +)]=et;

15 return e token[amount];
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5 Performance Evaluation

In this section, we evaluate the performance of our work. Firstly, we discuss
the effect of different n-gram methods about matching accuracy in c-LSH col-
umn. Secondly, we discuss the effect of bloom-filter length on collision degree
and space usage of maximum substring matching. Thirdly, we discuss perfor-
mance of adaptive rewriting method. Finally, we compare execution efficiency
and space occupancy among efficient proposed schemes. The proposed scheme
is implemented in Core i5-4460 3.20 GHz PC with 16 GB memory, and the used
datasets include 2000 TOEFL words, the leaked user data of CSDN and the
reuters news.

Manifestations of Different N-gram Methods on c-LSH Column. Uti-
lizing bi-gram and counting uni-gram, we achieve similar searching on c-LSH
column by introducing minhash algorithm based on the jaccard distance of frag-
ments set. Intuitively, every change of character would greatly influence the cor-
responding fragments union over bi-gram method. So we introduce the counting
uni-gram method to balance this excessiveness relativity. In this experiment, we
evaluate the performance of these two n-gram methods and the combined one
respectively.

The dataset we used is a 2000 TOEFL words set and we construct three
variants of them to reveal the efficiency about LSH-based similar searching
under different N-gram methods. The ways getting variants include append-
ing a letter in the middle or in one side for every words, such as ‘word’ into
‘words’,‘wosrd’,‘sword’. We calculate the average matched rows to reflect the
searching results.

As shown in Fig. 6, we choose m = 4, 6, 8 to reveal matched numbers through
part matching method with n. And the accuracy rate has a big promotion when
n is larger than half of m. Besides, the combined method performs well when
m ≥ 6. It is reflected about the variation trend of accuracy that the amount of
false positive reduces while the correct items remain unchanged.

The Bloom-Filter Length on c-BF Columns. In second experiment, we
valuate collision accuracy and space occupancy under impacts of bloom-filter
length and hashing function amount on c-BF columns when executing maximum
substring matching. In detail, we attempt to find out an appropriate setting
about the number of hashing function and the vector length of our bloom-filter
structures.

The dataset we used is a leaked accounts set about CSDN, one of the most
famous technical forum websites in China, and contains user name, password
and e-mail. To guarantee effectiveness and avoid collisions, we change the vector
length and keep the sparsity in several degrees such as half, quarter, one-sixth
and one-eighth. Meanwhile different amount of hashing functions in bloom-filter
influence accuracy and collision.
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Fig. 6. The matching size under the tolerance parameter n and the LSH dimension
m over variants of TOEFL words set. The first three graphs show the performance of
different n-gram methods about part-matching respectively. The last graph shows the
LSH dimension only complete-matching when m = n.

Fig. 7. The experiments show performance of maximum substring searching under
different bloom-filter length l and different hashing amount k. We utilize fifty thousand
rows of leaked CSDN account data and set several degrees of sparsity about bloom-
filter vector while each row contains 50 characters. The left graph shows matching sizes
of substring ‘163.com’ on

⌈
l
32

⌉
auxiliary columns when we build indexes under different

length of bloom-filter. And the right graph represents ‘qq.com’.
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Fig. 8. The experiment shows the performance of adaptive rewriting method under
different combinations, and reveals the most qualified modes for each fuzzy searching
cases. Some expressions are used, such as ‘%america%’, ‘%am rica%’, ‘%am ri a%’.

Because the bloom-filter length l corresponds to the amount of c-BF columns,
this experiment discuss relations between matching accuracy and space occu-
pancy under different amount of bloom-filter hashing functions. As shown in
Fig. 7, the amount of matching size drops rapidly in the first place and then gets
stable when sparsity is close to one-sixth.

The Performance of Adaptive Rewriting Method. This experiment aims
at verifying effectiveness of the adaptive rewriting method. After auxiliary
columns storing values as indexes, the ‘like’ clauses with wild-cards are analyzed
by an adaptive rewriting method and rewritten to trapdoors. In this experiment,
we consider the content of expression as a word or substring for comparison,
and execute different types of queries with basic and security enhanced schemes
respectively.

The dataset we used is Reuters-21578 news of 1987 [28]. In this experiment,
we mainly discuss the double ‘%’ cases because the other single ‘%’ and no ‘%’
cases carry out analogous steps. The only difference is that these cases addition-
ally consider the prefix and suffix.

As shown in Fig. 8, we compare the matched size under different combi-
nations. We also execute the origin SQL statements on extra stored plain-text
column for contrast. It helps find the best combination modes under various wild-
cards cases. We accomplish this experiment with the sparsity of c-BF columns
being one-sixth and the dimension of c-LSH column being six. The graph shows
that ‘W and S’ is fit for double ‘%’ no ‘ ’ and double ‘%’ one ‘ ’ cases while ‘S’ is
fit for double ‘%’ few ‘ ’ case. Besides, we discuss the performance of LSH-based
security enhanced method and the graph confirms its feasibility.

Performance Comparison Among Proposed Schemes. In this section, we
compare the efficiency of proposed schemes about inserting and selecting data.
In general, the inserting process involves generating indexing values in auxiliary
columns, and the selecting process involves decrypting determined cipher-texts.
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Fig. 9. This experiment show the execution efficiency among proposed schemes.

As shown in Fig. 9, our schema verifies this point and performs well comparing
to normal JDBC, Crypt-jdbc and CryptDB.

6 Conclusion

This paper investigates the problem about fuzzy searching encryption with com-
plex wild-cards queries on proxy-based encrypted database, then gives a practi-
cal schema with two types of auxiliary columns and rewriting SQL statements.
Besides, security enhanced implementations and extensive experiments show the
effectiveness. In future, the serialization and compression of functional cipher-
texts would be studied to reduce space overhead.
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