
Yi Cai 
Yoshiharu Ishikawa 
Jianliang Xu (Eds.)

 123

LN
CS

 1
09

88

Second International Joint Conference, APWeb-WAIM 2018 
Macau, China, July 23–25, 2018 
Proceedings, Part II

Web and Big Data



Lecture Notes in Computer Science 10988

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409


Yi Cai • Yoshiharu Ishikawa
Jianliang Xu (Eds.)

Web and Big Data
Second International Joint Conference, APWeb-WAIM 2018
Macau, China, July 23–25, 2018
Proceedings, Part II

123



Editors
Yi Cai
South China University of Technology
Guangzhou
China

Yoshiharu Ishikawa
Nagoya University
Nagoya
Japan

Jianliang Xu
Hong Kong Baptist University
Kowloon Tong, Hong Kong
China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-96892-6 ISBN 978-3-319-96893-3 (eBook)
https://doi.org/10.1007/978-3-319-96893-3

Library of Congress Control Number: 2018948814

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

This volume (LNCS 10987) and its companion volume (LNCS 10988) contain the
proceedings of the second Asia-Pacific Web (APWeb) and Web-Age Information
Management (WAIM) Joint Conference on Web and Big Data, called APWeb-WAIM.
This joint conference aims to attract participants from different scientific communities
as well as from industry, and not merely from the Asia Pacific region, but also from
other continents. The objective is to enable the sharing and exchange of ideas, expe-
riences, and results in the areas of World Wide Web and big data, thus covering Web
technologies, database systems, information management, software engineering, and
big data. The second APWeb-WAIM conference was held in Macau during July
23–25, 2018. As an Asia-Pacific flagship conference focusing on research, develop-
ment, and applications in relation to Web information management, APWeb-WAIM
builds on the successes of APWeb and WAIM: APWeb was previously held in Beijing
(1998), Hong Kong (1999), Xi’an (2000), Changsha (2001), Xi’an (2003), Hangzhou
(2004), Shanghai (2005), Harbin (2006), Huangshan (2007), Shenyang (2008), Suzhou
(2009), Busan (2010), Beijing (2011), Kunming (2012), Sydney (2013), Changsha
(2014), Guangzhou (2015), and Suzhou (2016); and WAIM was held in Shanghai
(2000), Xi’an (2001), Beijing (2002), Chengdu (2003), Dalian (2004), Hangzhou
(2005), Hong Kong (2006), Huangshan (2007), Zhangjiajie (2008), Suzhou (2009),
Jiuzhaigou (2010), Wuhan (2011), Harbin (2012), Beidaihe (2013), Macau (2014),
Qingdao (2015), and Nanchang (2016). The first joint APWeb-WAIM conference was
held in Bejing (2017). With the fast development of Web-related technologies, we
expect that APWeb-WAIM will become an increasingly popular forum that brings
together outstanding researchers and developers in the field of the Web and big data
from around the world. The high-quality program documented in these proceedings
would not have been possible without the authors who chose APWeb-WAIM for
disseminating their findings. Out of 168 submissions, the conference accepted 39
regular (23.21%), 31 short research papers, and six demonstrations. The contributed
papers address a wide range of topics, such as text analysis, graph data processing,
social networks, recommender systems, information retrieval, data streams, knowledge
graph, data mining and application, query processing, machine learning, database and
Web applications, big data, and blockchain. The technical program also included
keynotes by Prof. Xuemin Lin (The University of New South Wales, Australia),
Prof. Lei Chen (The Hong Kong University of Science and Technology, Hong Kong,
SAR China), and Prof. Ninghui Li (Purdue University, USA) as well as industrial
invited talks by Dr. Zhao Cao (Huawei Blockchain) and Jun Yan (YiDu Cloud). We
are grateful to these distinguished scientists for their invaluable contributions to the
conference program. As a joint conference, teamwork was particularly important for
the success of APWeb-WAIM. We are deeply thankful to the Program Committee
members and the external reviewers for lending their time and expertise to the con-
ference. Special thanks go to the local Organizing Committee led by Prof. Zhiguo Gong.



Thanks also go to the workshop co-chairs (Leong Hou U and Haoran Xie), demo
co-chairs (ZhixuLi, ZhifengBao, andLisi Chen), industry co-chair (WenyinLiu), tutorial
co-chair (Jian Yang), panel chair (Kamal Karlapalem), local arrangements chair
(Derek Fai Wong), and publicity co-chairs (An Liu, Feifei Li, Wen-Chih Peng, and
Ladjel Bellatreche). Their efforts were essential to the success of the conference. Last
but not least, we wish to express our gratitude to the treasurer (Andrew Shibo Jiang),
the Webmaster (William Sio) for all the hard work, and to our sponsors who generously
supported the smooth running of the conference. We hope you enjoy the exciting
program of APWeb-WAIM 2018 as documented in these proceedings.

June 2018 Yi Cai
Jianliang Xu

Yoshiharu Ishikawa
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Graph Processing: Applications, Challenges,
and Advances

Xuemin Lin

School of Computer Science and Engineering,
University of New South Wales, Sydney

lxue@cse.unsw.edu.au

Abstract. Graph data are key parts of Big Data and widely used for modelling
complex structured data with a broad spectrum of applications. Over the last
decade, tremendous research efforts have been devoted to many fundamental
problems in managing and analyzing graph data. In this talk, I will cover various
applications, challenges, and recent advances. We will also look to the future
of the area.



Differential Privacy in the Local Setting

Ninghui Li

Department of Computer Sciences, Purdue University
ninghui@cs.purdue.edu

Abstract. Differential privacy has been increasingly accepted as the de facto
standard for data privacy in the research community. Recently, techniques for
satisfying differential privacy (DP) in the local setting, which we call LDP, have
been deployed. Such techniques enable the gathering of statistics while pre-
serving privacy of every user, without relying on trust in a single data curator.
Companies such as Google, Apple, and Microsoft have deployed techniques for
collecting user data while satisfying LDP. In this talk, we will discuss the state
of the art of LDP. We survey recent developments for LDP, and discuss pro-
tocols for estimating frequencies of different values under LDP, and for com-
puting marginal when each user has multiple attributes. Finally, we discuss
limitations and open problems of LDP.



Big Data, AI, and HI, What is the Next?

Lei Chen

Department of Computer Science and Engineering, Hong Kong University
of Science and Technology
leichen@cse.ust.hk

Abstract. Recently, AI has become quite popular and attractive, not only to the
academia but also to the industry. The successful stories of AI on Alpha-go and
Texas hold ’em games raise significant public interests on AI. Meanwhile,
human intelligence is turning out to be more sophisticated, and Big Data
technology is everywhere to improve our life quality. The question we all want
to ask is “what is the next?”. In this talk, I will discuss about DHA, a new
computing paradigm, which combines big Data, Human intelligence, and AI.
First I will briefly explain the motivation of DHA. Then I will present some
challenges and possible solutions to build this new paradigm.
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Abstract. Achieving fuzzy searching encryption (FSE) can greatly
enrich the basic function over cipher-texts, especially on encrypted
database (like CryptDB). However, most proposed schemes base on cen-
tralized inverted indexes which cannot handle complicated queries with
wild-cards. In this paper, we present a well-designed FSE schema through
Locality-Sensitive-Hashing and Bloom-Filter algorithms to generate two
types of auxiliary columns respectively. Furthermore, an adaptive rewrit-
ing method is described to satisfy queries with wild-cards, such as percent
and underscore. Besides, security enhanced improvements are provided
to avoid extra messages leakage. The extensive experiments show effec-
tiveness and feasibility of our work.

Keywords: Fuzzy searching encryption · Wild-cards searching
CryptDB

1 Introduction

Cloud database is a prevalent paradigm for data outsourcing. In considera-
tion of data security and commercial privacy, both individuals and enterprises
prefer outsourcing them in encrypted form. CryptDB [21] is a typical out-
sourced encrypted database (OEDB) which supports executing SQL statements
on cipher-texts. Its transparency essentially relies on the design of splitting attri-
butions and rewriting queries on proxy middle-ware. Under this proxy-based
encrypted framework, several auxiliary columns are extended with different
encryptions and query semantics are preserved through modifying or appending
SQL statements.
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To enrich basic functions on cipher-texts, searchable symmetric encryp-
tion (SSE) is proposed for keyword searching with encrypted inverted indexes
[4,13,22,24], and then dynamic SSE (DSSE) achieves alterations on various cen-
tralized indexes to enhance applicability [2,11,12,14]. Besides, the studies about
exact searching with boolean expressions are extended in this field to increase
accuracy [3,10]. Furthermore, the researches of similar searching among docu-
ments or words are widely discussed through introducing locality sensitive hash-
ing algorithms [1,7–9,15,18,19,23,25–27]. However, these proposed schemes are
not applicable to OEDB scenario because of the centralized index design and
cannot handle complex fuzzy searching with wild-cards.

Matched DET valuesPlaintext results

DET determined cipher-texts
OPE preserving order of numbers
FSE fuzzy searching with wild-cards
HOM homomorphism for sum,avg

Different EncrypƟons
DET determined cipher-texts
OPE preserving order of numbers
FSE fuzzy searching with wild-cards
HOM homomorphism for sum,avg

Rewrited SQLsQueries

Fig. 1. The client-proxy-database framework synthesizes various encryptions together,
such as the determined encryption (DET) preserves symmetric character for
en/decryption, the order-preserving encryption (OPE) persists order among numeric
values, the fuzzy searching encryption (FSE) handles queries on text, and the homo-
morphic encryption (HOM) achieves aggregation computing.

Therefore, it is meaningful and necessary to achieve fuzzy searching encryp-
tion over outsourced encrypted database. As shown in Fig. 1, the specific frame-
work accomplishes transparency and homomorphism by rewriting SQL state-
ments on auxiliary columns. In this paper, we focus on resolving the functionality
of ‘like’ queries with wild-cards (‘%’ and ‘ ’). Our contributions are summarized
as follows:

– We propose a fuzzy searching encryption with complex wild-cards queries on
encrypted database which extends extra functionality for the client-proxy-
database framework like CryptDB.

– We present an adaptive rewriting method to handle different query cases on
two types of auxiliary columns. The formal column works for similar search-
ing by locality sensitive hashing and the latter multiple columns work for
maximum substring matching by designed bloom-filter vectors.

– We evaluate the efficiency, correctness rate and space overhead by adjusting
the parameters in auxiliary columns. Besides, security enhanced improve-
ments are provided to avoid extra messages leakage. The extensive experi-
ments also indicate the effectiveness and feasibility of our work.

The rest of paper is organized as follows. Section 2 discusses the related work
and Sect. 3 introduces some basic concepts and definitions. Section 4 describes
our schema including initialization of auxiliary columns, adaptive rewriting
queries and security enhanced improvements. Section 5 presents the experiments
and a brief conclusion is given in Sect. 6.
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2 Related Work

In recent years, many proposed schemes have been attempting to achieve fuzzy
searching encryption with helps of similarity [1,8,9,15,23,25–27]. The most of
them introduce locality sensitive hashing (LSH) to map similar items together
and bloom-filter to change the method of measuring. Wang et al.’s work [23] was
one of the first works to present fuzzy searching. They encode every words in
each file into same large bloom-filter space as a vector and evaluate similarity of
target queries by computing the inner product for top-k results among vectors.
Kuzu et al.’s work [15] generates similar feature vectors by embedding keyword
strings into the Euclidean space which approximately preserves the relative edit
distance. Fu et al.’s work [8] proposes an efficient multi-keyword fuzzy ranked
search schema which is suitable for common spelling mistakes. It benefits from
counting uni-gram among keywords and transvection sorting to obtain ranked
candidates. Wang et al.’s work [26] generates a high-dimensional feature vector
by LSH to support large-scale similarity search over encrypted feature-rich mul-
timedia data. It stores encrypted inverted file identifier vectors as indexes while
mapping similar objects into same or neighbor keyword-buckets by LSH based on
Euclidean distance. In contrast to sparse vectors from bi-gram mapping, their
work eliminates the sparsity and promotes the correctness as well. However,
there are many problems in existing schemes including the insufficient metric
conversion, the coarse-grained similarity comparison, the extreme dependency
of assistant programs and the neglect about wild-card queries.

Meanwhile, the proposal of CryptDB [21] has attracted world-wide attention
because they provide a practical way to combine various attribution-preserving
encryptions over encrypted database. Then many analogous researches [5,16,17,
20] study its security definitions, feasible frameworks, extensible functions and
optimizations. Chen et al. [5] consider these encrypted database as a client-proxy-
database framework and presents symmetric column for en/decryption and aux-
iliary columns for supporting executions. This framework helps execute SQL
statements directly over cipher-texts through appending auxiliary columns with
different encryptions. It also benefits from the transparency of en/decryption
processes and combines various functional encryptions together. Therefore, it is
meaningful to achieve efficient fuzzy searching with complex wild-cards queries
on proxy-based encrypted database.

3 Preliminaries

3.1 Basic Concepts

A. N-gram. In the fields of computational linguistics and probability, the n-
gram method is proposed for measurement by generating a contiguous sequence
of items from given strings. Essentially, it converts texts to fragments sets
for vectorization while preserving some connotative connections. As shown in
Table 1, various n-gram methods are utilized to preserve different implicit inner
relation from origin strings.
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Table 1. Various n-gram forms in our scheme

N-gram methods Value Description

String secure The original keyword

Counting uni-gram [8] s1, e1, c1, u1, r1, e2 Preserve repetitions

Bi-gram #s, se, ec, cu, ur, re, e# Preserve adjacent letters

Tri-gram sec, ecu, cur, ure Preserve triple adjacent letters

Prefix and suffix @s, e@ Beginning and ending of sentence

In general, bi-gram is the most common converting method which maintains
the connotative information between adjacent letters. However, each change of
single letter will double influence bi-gram results and cause reduction of matching
probability. The counting uni-gram preserves repetitions and benefits on letter-
confused comparison cases, such as misspelling of a letter, missing or adding a
letter and reversing the order of two letters. However, it reduces the degree of
constraint along with increasing false positives. The tri-gram is a more strict
method which only suits the specific scene like existing judgment. The prefix
and suffix preserve the beginning and ending of data to meet edge-searching.

B. Bloom-Filter. The Bloom-filter is a compact structure reflecting whether
specific elements exist in prepared union. In our schema, we introduce this algo-
rithm to judge existence about maximized substring fragments and represent
the sparse vector through decimal numbers in separated columns. Given words
fragments set S = {e1, . . . , e#e}, a bloom-filter maps each element ei into a same
l-bit sparse array by k independent hash functions. Positive answer is provided
only if all bits of matched positions are true.

C. Locality Sensitive Hashing. The locality sensitive hashing (LSH) algo-
rithm helps reduce the dimension of high-dimensional data. In our schema, we
introduce this algorithm to map similar items together with high probability.
Besides, the specific manifestation of the algorithm is different under different
measurement standards. However, there is no available method for levenshtein
distance among text. So that a common practice is converting texts to fragment
sets with n-gram methods.

Definition 1 (Locality sensitive hashing). Given a distance metric function
D, a hash function family H = {hi : {0, 1}d → {0, 1}t|i = 1, . . . , M} is
(r1, r2, p1, p2)-sensitive if for any s, t ∈ {0, 1}d and any h ∈ H satisfies:

if D(s, t) ≤ r1 then Pr[hi(p) = hi(q)] ≥ p1;
if D(s, t) ≥ r2 then Pr[hi(p) = hi(q)] ≤ p2.

For nearest neighbor searching, p1 > p2 and r1 < r2 is needed. Practically,
feasible permutations are generated through surjective hashing functions with
our security parameter λ. And the minhash algorithm helps map fragment sets
of every separated words which achieves similar searching.
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3.2 Functional Model

Let D = (d1, . . . , d#D) be sensitive row data (each line contains some words
respectively, as di =

⋃|di|
j=1 wi

j) and C = {cdet, clsh, cbf} be the corresponding
cipher-texts. Two types of indexing methods are enforced: the first one achieves
similar searching among words through dimension reductions with locality sensi-
tive hashing (let m be the dimension of LSH, n be the tolerance and L represents
its conversion); the last one achieves maximum substring matching through bit
operation with bloom-filter (let l be the length of vector space, k be the amount
of hashing functions and B represents its conversion). We consider LSH tokens
set Ti = Ln

m(
⋃|di|

j=1 Gss(wi
j)) be the elementary ciphers for clsh, and BF vector

Vi = Bk
l (

⋃|di|
j=1 Gmsm(wi

j)) be the ciphers of whole continuous sequence for cbf .
Besides, G represents n-gram methods for similar searching or maximum sub-
string matching.

Definition 2 (Fuzzy searching encryption). A proxy-based encrypted database
implements fully fuzzy searching with rewriting SQL statements through the fol-
lowing polynomial-time algorithms:

(Kdet, Ln
m, Bk

l ) ← KeyGen(λ, m, n, l, k): Given security parameter λ,
dimension m of LSH and tolerance n, vector length l of BF and hash amount k,
it outputs a primary key Kdet for determining encryption, Ln

m for LSH, Bk
l for

BF. The security parameter λ helps initialize the hash functions and random-
ization processes.

(cdet, Ti, Vi) ← Index(di, Ln
m, Bk

l ): Given the LSH function Ln
m and the

BF function Bk
l , the plain-text di is encrypted to determined cipher-texts cdet,

ciphers Ti for similar searching and ciphers Vi for maximum substring matching
respectively.

(cdet||Ti||Vi) ← Trapdoor(expression): Given the query expression analyzed
from ‘like’ clause, the adaptive rewriting method help generate representing ele-
ments out of different considerations with wild-cards condition. The determined
cipher-texts would return in next step over encrypted database and Kdet helps
decryption.

As shown in definition of fuzzy searching encryption, we mainly emphasize
transformation processes like building, indexing and executing. There exist other
functional methods such as updating, deleting to achieve dynamically of our
schema. It is applicable for outsourced encrypted database through rewriting
SQL statements including ‘create’, ‘insert’, ‘select’ and so on.

3.3 Security Notions

Our security definition follows the widely-accepted security frameworks in this
field [6,12,15,22]. It is summarized in fuzzy query over encrypted database that
the overall security relies on the cryptographic assurance of indexes and trap-
doors. In our schema, we store extra functional ciphers as indexes and rewrite
queries as trapdoors. The security guarantee means there is no additional infor-
mation leaked other than the functional results of fuzzy query.
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4 Proposed Fuzzy Searching Encryption

4.1 Two Types of Functional Auxiliary Columns

The multiple-attributions-splitting design in cloud database synthesizes various
encryptions to preserve query semantics. As shown in Table 2, two types of aux-
iliary columns (c-LSH and c-BF) are appended on cloud database along with a
symmetrical determined column (DET).

Table 2. Storage pattern of multiple functional columns in database

cdet clsh(m = 4, wid = 2) cbf (1) . . . cbf (
⌈

l
32

⌉
)

0x1234 (“I love apple”) 19030024, 01000409, 00020412 1077036627 . . . 1957741388

0x3456 (“lave banana”) 01000409, 00020303 1079642851 . . . 625017556

0x5678 (“I love coconut”) 19030024, 01000409, 06000700 1626500087 . . . 1687169793

This schema aims at handling queries with wild-cards on cipher-texts. So that
several appended columns could store different functional ciphers with various
encryptions, such as determination (DET) of data for equality, locality sensitive
hashing (LSH) of words fragments for similar searching, bloom-filter (BF) among
lines for maximum substring matching.

A. c-LSH. The c-LSH column, which stores the locality sensitive hashing values
of each sentence, represents a message digest after dimensionality reduction. It

IPA: inverted position array(lave)={1,2,4,7,10,11,12,14,17,20}

Sparse 
vector

N-gram

MinHash
Algorithm p1={8,3,1,6,9,5,2,4,7,12,13,14,15,10,11,16,18,19,17,20} 3

p2={16,13,18,9,1,5,2,4,10,12,14,8,3,6,15,7,17,19,20,11} 5

p3={13,5,15,3,18,6,9,2,4,16,7,10,12,14,19,17,11,8,1,20} 8

p4={19,1,3,6,12,9,2,4,7,10,11,13,20,15,14,16,5,17,18,8} 2

Encrypted data in DB
DET h1 h2 h3 h4

Enc(I lave apple) 1,3,5 2,5,1 6,8,1 2,2,4
Enc(I love apple too) 1,3,5,4 2,5,1,2 6,9,1,2 2,2,4,5

SignaturesPermutation Hashing

c-LSH
1262,3582,5114

1262,3592,5114,4225

Word

Signatures

1

lave

1 0 1 0 0 1 0 0 1

#l la av ve e#

1 1 0 1 0 0 1 0 0 1

Fig. 2. A sample with bi-gram method (counting uni-gram as well) to show trans-
forming process: (1) split sentences in line to multiple words; (2) transport a word
to fragments with n-gram and build inverted position array; (3) execute dimension
reduction with LSH and get m features; (4) link features to a token for each word; (5)
combine tokens in line with comma.
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helps map similar items together with probability which equals to the jaccard
distance between their inverted position arrays (IPA for short).

During transforming process, n-gram methods are utilized (such as bi-gram
and counting uni-gram) for dividing texts into fragments and finally to sparse vec-
tors (IPA for short). As shown in Fig. 2, the transforming process maps every rows
to separate signature collections by steps. This process changes measurement from
levenshtein distance on texts to jaccard similarity on IPAs. So that the particular
minhash algorithm could reduce the dimensions of numeric features for each sub-
ject (words). Finally, each word is converted to a linked sequence as a token and
the c-LSH stores tokens set with comma to represent data of whole line.

B. c-BF. The multiple auxiliary c-BF columns, which represents macroscopic
bloom-filter spaces for each row, are implemented on several ‘bigint’ (32-bit)
columns. The database will return the DET ciphers where all c-BF columns cover
the target sequences through native bit arithmetic operation ‘&’. Briefly, these
columns are proposed for maximum substring matching which is a supplement
to the c-LSH column above.

1 1 1 1 1

{[e1,f1,f2,i1,c1,i2,e1,n1,t1],[#e,ef,ff,fi,ic,ci,ie,en,nt,t#],
[eff,ffi,fic,ici,cie,ien,ent]},

{[s1,u1,b1,s2,t1,r1,i1,n1,g1],[#s,su,ub,bs,st,tr,ri,in,ng,g#],
[sub,ubs,bst,str,tri,rin,ing]},

{[s1,e1,a1,r1,c1,h1],[#s,se,ea,ar,rc,ch,h#],[sea,ear,arc,rch]}
{[@e,h@]}

{[s1,t1,r1,i1,n1,g1],[#s,st,tr,ri,in,ng,g#],[str,tri,rin,ing]}
IPA(string)={2,6,58,...}

1 1 ... 1 ... 0 1 ... 1 1 ... 1 0 1 0 0 1 ... 0 1

0 ... ... 0 ... 0 0 ... 0 0 0 0 ... 0 0

bf_1 bigint bf_2 bigint bf_n bigint

{[e1,f1,f2,i1,c1,i2,e1,n1,t1],[#e,ef,ff,fi,ic,ci,ie,en,nt,t#],
[eff,ffi,fic,ici,cie,ien,ent]},

{[s1,u1,b1,s2,t1,r1,i1,n1,g1],[#s,su,ub,bs,st,tr,ri,in,ng,g#],
[sub,ubs,bst,str,tri,rin,ing]},

{[s1,e1,a1,r1,c1,h1],[#s,se,ea,ar,rc,ch,h#],[sea,ear,arc,rch]}
{[@e,h@]}

string

1.N-gram Methods
2.Bloom-Filter Hashing

efficient  substring  search

{[s1,t1,r1,i1,n1,g1],[#s,st,tr,ri,in,ng,g#],[str,tri,rin,ing]}
IPA(string)={2,6,58,...}

Fig. 3. The maximum substring matching over c-BF vectors which are stored in multi-
ple ‘bigint’ auxiliary columns separately. After mapping fragments from whole sentence
to vectors, queries execute with bit matching.

During mapping process, we respectively generate vectors for each row
through bloom-filter hashing with following n-gram methods: bi-gram, tri-gram,
prefix and suffix. These auxiliary columns are designed for substring matching so
that the implicit information need be maximally persisted from origin strings.
Through matching fragments between target bit vector and stored separated
‘bigint’ numbers, we could obtain all matched rows as shown in Fig. 3.

To meet application scenarios of inextensible cloud database, we accomplish
operations completely through rewriting SQL statements by native bit arith-
metic operation over multiple auxiliary columns, such as select m det from t
where m bf0&1=1 and m bf1&3=3. We experiment the connection between
length of the sparse vector and correct rate of maximum substring matching
in Sect. 5.
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4.2 Adaptive Rewriting Method over Queries with Wild-Cards

In SQL, wild-card characters are used in ‘like’ expression: the percent sign ‘%’
matches zero or more characters and the underscore ‘ ’ matches a single charac-
ter. Usually the former symbol is a coarse-grained comparable delimiter and the
latter could be tolerated by locality sensitive hashing in slightly different cases.
So we construct an adaptive rewriting method over queries with wild-cards as
shown in Fig. 4.

We consider three basic cases according to the number of percent signs to
meet indivisible string fragments. Furthermore in every basic case, we also divide
three sub-cases according to the number of underscore to benefit from different
auxiliary columns. Besides, each query text is considered as whole word and
substring while experiment exhibits the optimal selection.

Fig. 4. Adaptive rewriting method over queries with wild-cards. We consider percent
sign as a coarse-grained separator and few underscore could be tolerated according to
similarity.

Firstly, the double percent signs case means that user attempts finding rows
which contains the given string. Because the LSH function could tolerate small
differences naturally, the sub-case with no underscore could accomplish similar
searching among whole words. We achieve the one underscore sub-case with part
matching method. This clever trick helps adjust fineness of similar searching as
shown in Fig. 5. The multiple underscores sub-case is achieved by maximum
substring matching on c-BF columns with bloom-filter.

Secondly, the single percent sign case need to consider prefix and suffix.
The occurs of this type of queries reflect more detailed information and we
match them all as substrings with maximum degree of constraint through various
N-gram forms on c-BF column. Meanwhile, the prefix and suffix help preserve
beginning and ending information of whole sentences in row. During splitting
process, every fragments with underscore would be abandoned and the rest part
would be mapped to the sparse bloom filter space which represented by IPA.
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Thirdly, in the last no percent sign case, the user might already obtain most
of target information and attempt to match specific patterns with underscore.
Besides no underscore sub-case could be treated as determining equality oper-
ation, the maximum substring matching on c-BF column could meet the rest
sub-cases’ requirements.

Additionally, the tolerance parameter n is proposed as a flexible handler
under the dimension m of locality sensitive hashing auxiliary column. Briefly,
every features of word are set as fixed-length numbers which is filled by zero in
basic scheme. As a linked string with all m features, the token could be con-
verted to different variants where some feature parts replacing with underscores.
We joint every possible cases together for database searching with keyword ‘or’
through a called bubble function as shown in Fig. 5.

...

0 ... 0 1 1 ... 1

m
n

Fig. 5. The part matching method represents the adjustable fineness in c-LSH col-
umn with the tolerance parameter n and the LSH dimension m. For instance, let
m = 4, n = 3 and the target feature set be {1, 2, 3, 4}, therefore the candidate set is
{ 234, 1 34, 12 4, 123 } by this method.

The adaptive rewriting method helps generate trapdoor queries to meet the
wild-cards fuzzy searching encryption in database through similar searching on
c-LSH column and maximum substring matching on c-BF columns.

4.3 LSH-Based Security Improvements

The security of our schema relies on three parts. The symmetric cryptogra-
phy algorithm guarantees the security on determining column and the divided
bloom-filter vectors are presented by unidentifiable hashing ciphers. However,
the content in c-LSH column might leak some extra information such as sizes
and sequences of plain-texts. We present three improvements to enhance security
and an integrated algorithm as followed.

A. Linking Features Without Padding
In basic scheme, we pad each feature with zero by the upper limit wid which
benefits selecting process. To enhance security, we cancel the zero padding before
linking features to a token. Meanwhile, the part matching method is also changed
to an analogous bi-gram form. For instance, a secure enhanced part matching
method is select m det where m lsh like ‘%ab%’ or m lsh like ‘%bc%’ where a,b,c
are multiple features of a word. We discuss the validity with experiments.

B. Modifying Sequences of Tokens
Each line of c-LSH auxiliary column stores a tokens set for whole sentence.
Therefore, the sequences of tokens might exhibit the relevancy among words
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to malicious attacker. To overcome this leakage, we modify the sequences ran-
domly by hashing permutations. Additionally, we implement the permutation
function with P : y = a ∗ x + b mod c where a is relatively-prime to c. This
improvement protects the relation between invisible words and specific tokens.
Since the matching only demands on existing rather than order, so this sequence
modification helps for security protection.

C. Appending Confusing Tokens
The tokens sets in row leak the size of words. Appending tokens is a practical
way for security, but what kind of token content should be added is the target
of our discussion. The first way is appending repeated tokens from itself. It is
simple and effective, but it only improves limited security. The second way is
appending a little random tokens. Because of sparsity and randomization, few
random tokens might not change the matching results. The third way is append-
ing tokens combined from separated features among this tokens set. This way
also influences the matching precision and increases proportion of false positive.
Actually, these ways help greatly enhance security despite of disturbances.

D. Integrated Security Enhanced Algorithm
We present an integrated algorithm for security enhancement which combines all
above implementations. As shown in Algorithm1, this algorithm transforms the
tokens set in each row to an security enhanced one. It helps prevent information
leakage from c-LSH column.

Algorithm 1. Security Enhanced Improvements
Input: tokenm[#wordi] which represents the m-dimensional tokens set of

line i, wid be width of feature with zero padding, amount be the
lower bound for appending tokens

Output: an optimal security enhanced set e token[amount]
1 Let t represent token and each t can be split into m features by wid;
2 Generate a permutation function with F : y = a ∗ x + b mod c where

c = amount and (a, c) = 1;
3 Let c = 0 be the count for permutation;
4 foreach t in tokenm[#wordi] do
5 Generate a temporary string et;
6 for int j=0; j<m; j++ do
7 Remove the zero prefix of t.substr(j ∗ wid, (j + 1) ∗ wid);
8 Link it to et;

9 e token[F(c + +)]=et;

10 while c < amount do
11 Generate a temporary string et; for int k=0; k<m; k++ do
12 Get a feature tokenm[random()].substr(k ∗ wid, (k + 1) ∗ wid);
13 Remove the zero prefix and link it to et;

14 e token[F(c + +)]=et;

15 return e token[amount];
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5 Performance Evaluation

In this section, we evaluate the performance of our work. Firstly, we discuss
the effect of different n-gram methods about matching accuracy in c-LSH col-
umn. Secondly, we discuss the effect of bloom-filter length on collision degree
and space usage of maximum substring matching. Thirdly, we discuss perfor-
mance of adaptive rewriting method. Finally, we compare execution efficiency
and space occupancy among efficient proposed schemes. The proposed scheme
is implemented in Core i5-4460 3.20 GHz PC with 16 GB memory, and the used
datasets include 2000 TOEFL words, the leaked user data of CSDN and the
reuters news.

Manifestations of Different N-gram Methods on c-LSH Column. Uti-
lizing bi-gram and counting uni-gram, we achieve similar searching on c-LSH
column by introducing minhash algorithm based on the jaccard distance of frag-
ments set. Intuitively, every change of character would greatly influence the cor-
responding fragments union over bi-gram method. So we introduce the counting
uni-gram method to balance this excessiveness relativity. In this experiment, we
evaluate the performance of these two n-gram methods and the combined one
respectively.

The dataset we used is a 2000 TOEFL words set and we construct three
variants of them to reveal the efficiency about LSH-based similar searching
under different N-gram methods. The ways getting variants include append-
ing a letter in the middle or in one side for every words, such as ‘word’ into
‘words’,‘wosrd’,‘sword’. We calculate the average matched rows to reflect the
searching results.

As shown in Fig. 6, we choose m = 4, 6, 8 to reveal matched numbers through
part matching method with n. And the accuracy rate has a big promotion when
n is larger than half of m. Besides, the combined method performs well when
m ≥ 6. It is reflected about the variation trend of accuracy that the amount of
false positive reduces while the correct items remain unchanged.

The Bloom-Filter Length on c-BF Columns. In second experiment, we
valuate collision accuracy and space occupancy under impacts of bloom-filter
length and hashing function amount on c-BF columns when executing maximum
substring matching. In detail, we attempt to find out an appropriate setting
about the number of hashing function and the vector length of our bloom-filter
structures.

The dataset we used is a leaked accounts set about CSDN, one of the most
famous technical forum websites in China, and contains user name, password
and e-mail. To guarantee effectiveness and avoid collisions, we change the vector
length and keep the sparsity in several degrees such as half, quarter, one-sixth
and one-eighth. Meanwhile different amount of hashing functions in bloom-filter
influence accuracy and collision.
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Fig. 6. The matching size under the tolerance parameter n and the LSH dimension
m over variants of TOEFL words set. The first three graphs show the performance of
different n-gram methods about part-matching respectively. The last graph shows the
LSH dimension only complete-matching when m = n.

Fig. 7. The experiments show performance of maximum substring searching under
different bloom-filter length l and different hashing amount k. We utilize fifty thousand
rows of leaked CSDN account data and set several degrees of sparsity about bloom-
filter vector while each row contains 50 characters. The left graph shows matching sizes
of substring ‘163.com’ on

⌈
l
32

⌉
auxiliary columns when we build indexes under different

length of bloom-filter. And the right graph represents ‘qq.com’.
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Fig. 8. The experiment shows the performance of adaptive rewriting method under
different combinations, and reveals the most qualified modes for each fuzzy searching
cases. Some expressions are used, such as ‘%america%’, ‘%am rica%’, ‘%am ri a%’.

Because the bloom-filter length l corresponds to the amount of c-BF columns,
this experiment discuss relations between matching accuracy and space occu-
pancy under different amount of bloom-filter hashing functions. As shown in
Fig. 7, the amount of matching size drops rapidly in the first place and then gets
stable when sparsity is close to one-sixth.

The Performance of Adaptive Rewriting Method. This experiment aims
at verifying effectiveness of the adaptive rewriting method. After auxiliary
columns storing values as indexes, the ‘like’ clauses with wild-cards are analyzed
by an adaptive rewriting method and rewritten to trapdoors. In this experiment,
we consider the content of expression as a word or substring for comparison,
and execute different types of queries with basic and security enhanced schemes
respectively.

The dataset we used is Reuters-21578 news of 1987 [28]. In this experiment,
we mainly discuss the double ‘%’ cases because the other single ‘%’ and no ‘%’
cases carry out analogous steps. The only difference is that these cases addition-
ally consider the prefix and suffix.

As shown in Fig. 8, we compare the matched size under different combi-
nations. We also execute the origin SQL statements on extra stored plain-text
column for contrast. It helps find the best combination modes under various wild-
cards cases. We accomplish this experiment with the sparsity of c-BF columns
being one-sixth and the dimension of c-LSH column being six. The graph shows
that ‘W and S’ is fit for double ‘%’ no ‘ ’ and double ‘%’ one ‘ ’ cases while ‘S’ is
fit for double ‘%’ few ‘ ’ case. Besides, we discuss the performance of LSH-based
security enhanced method and the graph confirms its feasibility.

Performance Comparison Among Proposed Schemes. In this section, we
compare the efficiency of proposed schemes about inserting and selecting data.
In general, the inserting process involves generating indexing values in auxiliary
columns, and the selecting process involves decrypting determined cipher-texts.
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Fig. 9. This experiment show the execution efficiency among proposed schemes.

As shown in Fig. 9, our schema verifies this point and performs well comparing
to normal JDBC, Crypt-jdbc and CryptDB.

6 Conclusion

This paper investigates the problem about fuzzy searching encryption with com-
plex wild-cards queries on proxy-based encrypted database, then gives a practi-
cal schema with two types of auxiliary columns and rewriting SQL statements.
Besides, security enhanced implementations and extensive experiments show the
effectiveness. In future, the serialization and compression of functional cipher-
texts would be studied to reduce space overhead.
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Abstract. With the ubiquity of mobile devices and wireless networks,
spatial crowdsourcing (SC) has gained considerable popularity and
importance as a new tool of problem-solving. It enables complex tasks
at specific locations to be performed by a crowd of nearby workers. In
this paper, we study the privacy-preserving travel-time-first task assign-
ment problem where tasks are assigned to workers who can arrive at the
required locations first and no private information are revealed to unau-
thorized parties. Compared with existing work on privacy-preserving
task assignment, this problem is novel as tasks are allocated accord-
ing to travel time rather than travel distance. Moreover, it is challenging
as secure computation of travel time requires secure division which is
still an open problem nowadays. Observing that current solutions for
secure division do not scale well, we propose an efficient algorithm to
securely calculate the least common multiple (LCM) of every workers
speed, based on which expensive division operation on ciphertexts can
be avoided. We formally prove that our protocol is secure against semi-
honest adversaries. Through extensive experiments over real datasets, we
demonstrate the efficiency and effectiveness of our proposed protocol.

Keywords: Spatial crowdsourcing · Privacy-preserving
Task assignment

1 Introduction

Thanks to the ubiquitous wireless networks and powerful mobile devices, spatial
crowdsourcing has gained considerable popularity and importance as a new tool
of problem-solving. It can be applied to simple tasks such as photo-taking where
people act as sensors, or to complex tasks such as handyman service where people
work as intelligent processing units. As an emerging crowdsourcing mode, spatial
crowdsourcing differs from other crowdsourcing modes in that people in spatial
crowdsourcing, also known as workers, must physically move to certain places to
perform those spatial tasks. Recently years have witnessed an upsurge of interest
c© Springer International Publishing AG, part of Springer Nature 2018
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in spatial crowdsourcing applications in daily life, ranging from local search-and-
discovery (e.g., Foursquare) to home repair and refresh (e.g., TaskRabbit).

A typical workflow of spatial crowdsourcing consists of four steps:
task/worker registration, task assignment, answer aggregation, and quality con-
trol [1]. Among them, task assignment focuses on allocating a set of tasks to
a set of workers according to a set of constraints such as location, time, and
budget. Typically finding an optimal assignment subject to multiple constraints
is NP-hard, which calls for efficient yet effective algorithms. Based on specific
optimization goals, a variety of approaches have been proposed, for example,
to maximize the total number of completed tasks [2], to maximize the number
of tasks performed by a single worker [3] and to maximize the reliability-and-
diversity score of assignments [4].

The problem of task assignment becomes even tougher when privacy issues
are taken into account. It is not hard to see that the data used for decision
making in task assignment is usually private and thus need to be kept secret
due to the lack of trust among workers, task requesters, and the spatial crowd-
sourcing server. To achieve privacy, these private data should be protected by
for example encryption using mature cryptographical algorithms or perturbation
using emerging privacy-preserving techniques. However, the noise introduced by
these mechanisms will decrease significantly the utility of the data and sometimes
even will make the data useless. It is therefore more challenging to deal with task
assignment with the extra privacy constraint.

Fig. 1. Spatial crowdsourcing where travel time is more important than travel distance

The above hard problem has been studied by several work recently [5–8]. A
common strategy of task assignment adopted by these work is travel-distance-
first, that is, a task will be assigned to the worker who has the shortest travel
distance to its location. This strategy is simple but sometimes is unreasonable in
practice as it is common for some workers to move faster than others. Consider
a simple example where a user wants to request a car through a spatial crowd-
sourcing platform (e.g., Uber). As shown in Fig. 1, two workers (i.e., drivers)
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named Alice and Bob are available when the task is issued, and their distances
to the user are 500 m and 1,000 m, respectively. Using the aforementioned strat-
egy, the spatial crowdsourcing server will assign this task to Alice as she is nearer
to the user. As shown in the figure, however, Alice is in a traffic jam. On the
other hand, Bob is in a smooth traffic and he can arrive at the users location
before Alice. This simple example motivates us to consider, travel-time-first, a
more effective strategy when allocating tasks to workers in practice.

In this paper, we propose a privacy-preserving task assignment protocol for
spatial crowdsourcing platforms taking travel-time-first strategy, that is, workers
who can first arrive at the location of a given task have priority over others.
While it is more effective than travel-distance-first in practice, travel-time-first
makes privacy-preserving task assignment more challenging due to the required
division operation involved in the computation of travel time. For every user,
his/her location and speed are both private and should be protected. How to
perform division efficiently and accurately on encrypted or perturbed data is still
an open problem. In [9], the authors propose a protocol for secure division based
on ElGamal cryptosystem. However, this protocol does not scale well and cannot
be applied to large spatial crowdsourcing system for the key length should be set
large enough to avoid computation overflow and this will introduce prohibitive
computation cost. To overcome this weakness, we transform the secure division
problem into a secure least common multiple (LCM) problem. We propose an
efficient way to calculate the LCM securely. Through extensive experiments, we
demonstrate the feasibility and efficiency of our solution.

The remainder of this paper is organized as follows: Sect. 2 discusses related
work. Problem definition and background knowledge are presented in Sect. 3.
Section 4 introduces our approach in details. Section 5 analyzes the security and
complexity of our approach theoretically. Section 6 evaluates our approach on
real datasets. Section 7 concludes the paper.

2 Related Work

To be consistent with our contributions, we only review the works that are rele-
vant to task assignment and privacy-preserving. Kazemi and Shahabi [2] propose
several solutions to maximize the overall number of assigned tasks under the
constraints of workers. Similarly, The assignment protocol proposed by [10] is to
assign the time-constrained and multi-skill-required spatial tasks with dynami-
cally moving workers. In [11], Zheng et al. take workers’ rejection into consider-
ation and try to maximize workers’ acceptance in order to improve the system
throughput. Tong et al. [12] devise efficient algorithms with provable competitive
radio with online dynamic scenarios. And in [13], Tong et al. propose an online
task assignment framework based on offline guidance to maximize the task allo-
cation while maintaining the efficient task assignment. In [14], Gao et al. design
a two-level-based framework to recommend suitable teams to accomplish a task.
However, these works are all based on a pre-condition that workers do not refuse
to disclose their private information to the SC platform that is hard to achieve
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in reality. Our work focuses on privacy-preserving during an execution of task
assignment.

In recent years, the public concern over privacy has stimulated lots of research
efforts in privacy-preserving. A location based query solution is proposed by
Paulet et al. [15] that employs two protocols that enables a user to privately
determine and acquire location data. In [16], Liu et al. propose an efficient app-
roach to protecting mutual privacy in location-based queries by performing two
rounds of oblivious transfer (OT) extension on two small key sets. A solution
built on the Paillier public-key cryptosystem is presented by Yi et al. [17] for
mutual privacy-preserving kNN query with fixed k and is extended in [18] where
k is dynamic. Unfortunately, these solutions where workers location are private
data of the SC platform are not suitable for our framework for workers loca-
tion should be known to the SC platform in a secret way. Also, in [19], Sun
et al. focus on the privacy-preserving task assignment in SC by presenting an
approach where location privacy of workers can be protected in a k-annoymity
manner. In [5], To et al. propose a framework for protecting location privacy
of workers participating in SC tasks without protecting task location. Liu et al.
[20] propose an efficient solution to securely compute the similarity between two
encrypted trajectories without revealing nothing about the trajectories. How-
ever, their protocols also cannot be applied to our framework for they have too
heavy computation cost to solve large task assignment problems.

3 Problem and Preliminary

In this section, we first present some definitions used in our work and then briefly
introduce some cryptosystems based on which our protocol is built.

3.1 Problem Definitions

Definition 1 (Spatial Task). A spatial task, denoted as T , is a task to be per-
formed lT .

Definition 2 (Workers). Let W = {w1, · · · , wn} be a set of n workers. Each
worker w has an ID idw, a location lw, a constant speed sw, and an acceptance
rate ARw which is the probability that he/she accepts a task assigned to him/her.

As mentioned in the introduction, we mainly consider travel-time-first, a new
task assignment strategy in privacy-preserving spatial crowdsourcing. Ideally, we
only need to find a worker w ∈ W who can first arrive at lT and then assign T to
w. This works if the worker is certain to accept the assigned task, but sometimes
it is not. Therefore we consider a more general case where every worker w has
an acceptance ratio denoted as ARw for an assignment, and we need to ensure
the probability that a task T is accepted by at least one worker is larger than a
given threshold αT . In this case, we need to find a set of workers U ⊂ W rather
than a single worker. It is easy to see that the probability that T is accepted by
at least one worker in U is αU = 1−∏

w∈U (1−ARw). Hence the travel-time-first
task assignment problem can be formalized as follows:
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Definition 3 (Travel-time-first Task Assignment Problem). Given a set of
workers W , a task T and its acceptance threshold αT , the travel-time-first task
assignment assigns task T to a set of workers U ⊂ W such that:

d (li, lT )
si

≤ d (lj , lT )
sj

and αT ≤ αU (1)

for ∀i ∈ U and ∀j ∈ W \ U .

Privacy-preserving means all the private data should be hidden from unau-
thorized parties in the procedure of task assignment. To accurately define the
ability of unauthorized parties, we adopt a typical adversary model, i.e., the
semi-honest model [21]. Specifically, all parties in this model are assumed to be
semi-honest, that is, they follow a given protocol exactly as specified, but may
try to learn as much as possible about other parties private input from what they
see during the protocols execution. This can be formally defined by the real-ideal
paradigm as follows: for all adversaries, there exists a probabilistic polynomial-
time simulator, so that the view of the adversary in the real world and the
view of the simulator in the ideal world are computationally indistinguishable.
Specifically, the security of a protocol Π is defined as follows:

Definition 4. Let pi(1 ≤ i ≤ n) be n parties involved in a protocol Π. For
pi(1 ≤ i ≤ n), its view, private input and extra knowledge it can infer during
an execution of Pi are defined as Vi,Xi and Ki respectively. A protocol Pi has a
strong privacy guarantee, that is, pi cannot learn any knowledge except the final
output of pi, if these exists a probabilistic polynomial-time simulator Pi such
that:

Pi(Xi,Π(X1, · · · ,Xn),Ki)X1,··· ,Xn
≡ Vi(X1 · · · ,Xn)X1··· ,Xn

(2)

and Ki = ∅, where ≡ means computational indistinguishability. However, this
strong guarantee cannot be achieved sometimes for Ki �= ∅. If Ki �= ∅, Π is said
to be privacy-preserving with Ki disclosure against pi in the sense that it reveals
no more knowledge than Ki and the final output to pi.

Now we are ready to define the problem of privacy-preserving travel-time-first
task assignment as follows:

Definition 5 (Privacy-preserving Travel-time-first Task Assignment Problem).
Given a set of workers W , a task T and its acceptance threshold αT , the travel-
time-first task assignment assigns task T to a set of workers U ⊂ W such that
Eqs. (1) and (2) hold.

3.2 Cryptosystems

The privacy-preserving property of our protocol is built on several well-known
cryptosystems: PRG [22], Paillier [23] and ElGamal [24]. The details of PRG,
Paillier and ElGamal can be found in the given references and all of them are
proved to be secure. Here we only emphasize some important properties of these
cryptosystems.
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PRG can be implemented by using a one-way hash function denoted as Gk.
For Paillier, its encryption and decryption are denoted as Ep and Dp, respec-
tively. For ElGamal, its encryption and decryption are denoted as Ee and De,
respectively. The important properties of Paillier and ElGamal are listed as fol-
lows:

Homomorphic Properties of Paillier: Given m1 and m2 are two messages,
we have:

Ep(m1)Ep(m2) = Ep(m1 + m2). (3)

Ep(m)k = Ep(km). (4)

Commutative-Like Property of ElGamal: Given a message m, we have:

Eha
e (Ehb

e (m)) = Ehb
e (Eha

e (m)). (5)

4 Proposed Privacy-Preserving Framework

In this section, we will introduce our privacy-preserving framework in details and
explain how to get LCM in a safe and secret way by AP encryption strategy.

4.1 Framework Overview

As Fig. 2 shows, our proposed framework consists of six stages, namely Initializa-
tion, Distance, LCM, Time, Comparison and Verification respectively. Different
colors mean different stages.

Fig. 2. Framework overview
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4.2 Detailed Framework

Next, every stage in details is described in this subsection.

Initialization Stage. Firstly, the KP generates a pair of keys for Paillier. Then
the KP keeps the encryption key public and the decryption key private respec-
tively because the computations of the SC platform and workers are based on
encrypted data while the KP has to decrypt data to find the chosen worker.
Besides, the KP generates a cyclic group G for ElGamal based on which the KP
and all workers generate their own pair of keys and keep them secret.

Distance Stage. Given a spatial task T , the SC platform encrypts task location
lT (xT , yT ) with the encryption key of Paillier by calculating Ep(x2

T +y2
T ), Ep(xT )

and Ep(yT ). Then these three ciphertexts are sent to all workers. Without hold-
ing the decryption key of Paillier, every worker wi can calculate the encrypted
square of the distance based on the Euclidean distance and the homomorphic
properties shown in Eqs. 3 and 4 as follows:

Ep(d2(lT , li)) = Ep(x2
T + y2

T )Ep(xT )−2xiEp(yT )−2yiEp(x2
i + y2

i ) (6)

It should be noted that it also works when every worker encrypts location and the
SC platform calculates Ep(d2(lT , li)). However, it will cost much more computing
resources for every worker can calculate in parallel. That is to say, our proposed
method is good for reducing the computation cost of the SC platform.

LCM Stage. At first, we explain why we need to get the LCM of all worker’s
speed. As defined in Definition 3, our framework prefers the worker who has the
shortest travel time. To this end, we have to face division operation on ciphertexts
which is still an open problem nowadays during the computation of travel time.
Though we cannot solve the problem of division operation, a transformation can
be employed to avoid the division operation based on the following lemma:

Lemma 1. Let W = {w1, · · · , wn} be a set of n workers, D = {d1, · · · , dn} be
the distance between task location and the worker wi, Slcm be the LCM of every
worker’s speed si and s′

i = Slcm/si where 1 ≤ i ≤ n. So for any two different
workers wi, wj ∈ W , if dis

′
i < djs

′
j holds then we must infer di/si < dj/sj.

Proof. dis
′
i < djs

′
j ⇐⇒ dis

′
i/Slcm < djs

′
j/Slcm ⇐⇒ di/si < dj/sj .

Deforming the formula of travel time can help us avoid the division operation
over ciphertexts, which is the reason why we need to get the LCM. Note that
the product of all speeds is not suitable here for it may cause the overflow of
the multiplication of all speeds [9]. The process of calculating the LCM by AP
encryption strategy in a safe and secret way will be introduced in the next
subsection. In the end, the SC platform will inform the KP and all workers of
the LCM.

Time Stage. Upon receiving the LCM Slcm, every worker wi can calculate an
equivalent encrypted travel time t′i to replace real encrypted travel time ti based
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on the Lemma 1 where t′i = d(li, lT )s′
i and ti = d(li, lT )/si. For no worker holds

the decryption key of Paillier, homomorphic properties of Paillier are used again
as follows:

Ep(t′2i ) = Ep((d(lt, li)s′
i)

2) = Ep((d(lt, li)Slcm/si)2) = Ep(d2(lT , li))(Slcm/si)
2

(7)
where Ep

(
d2 (lt, li)

)
is calculated by Eq. 6 and si is the speed of worker wi. Then

the worker sends the encrypted equivalent travel time with his own ID to the
SC platform for comparison in the form of (i, Ep(t′2i )).

Comparison Stage. When receiving the list of (i, Ep(t′2i )), the SC platform
adopts a PRG Gk to encrypt the ID of workers as (Gk(i), Ep(t′2Gk(i))) for the
protection of workers especially the chosen worker. Then the SC platform sends
the list (Gk(i), Ep(t′2Gk(i))) to the KP and sends every Gk(i) to the corresponding
worker wi. With the decryption key of Paillier, the KP can decrypt Ep(t′2Gk(i))

to obtain the t′2Gk(i) and the real travel time tGk(i) can be computed by

√
tt′2

Gk(i)

S2
lcm

where Slcm is achieved in the LCM. And then the KP can easily find the chosen
worker who has the shortest tGk(i). Then, the ID of the chosen worker Gk(i∗)
is encrypted by ElGamal, whose output is EKP

e (Gk(i∗)). At last, the KP sends
EKP

e (Gk(i∗)) to the SC platform. This encrypting operation is essential because
the SC platform can infer that who is the chosen worker from Gk(i∗). However,
when AR is not always 100%, we will return a set of chosen workers instead of
a chosen worker.

Verification Stage. To ensure only the chosen worker can learn the true
task location, the SC platform hides the true task location by encrypting
EKP

e (Gk(i∗)) and lT as follows:

E (lT ) = h
(
EKP

e (Gk (i∗))
) ⊕ lT (8)

where function h is a length-match hash function which is used shorten a long
bit-string and it is proved to be semantically secure. We perform exclusive-OR on
the lT and the output of function h because an important property of exclusive-
OR is a⊕ b⊕a = b. Based on this property, only the chosen worker w∗

i can infer
the true task location by ls = E(ls) ⊕ h(EKP

e (Gk(i∗))). The detailed procedure
is as follows:

With their own ElGamal, every worker encrypts their own encrypted ID Gk(i)
received in the comparison stage as Ewi

e (Gk(i)) and sends it to the KP. For all
ElGamals are based on the same cyclic group G, commutative-like encryption
can be implemented by EKP

e (Ewi
e (Gk(i))) = Ewi

e (EKP
e (Gk(i))) with the same

random number for the consistence of EKP
e and the result is sent back to workers.

Every worker wi can decrypt it by the decryption key of his own ElGamal and
get EKP

e (Gk(i)). It is obvious that only the chosen worker can infer EKP
e (Gk(i∗))

and thus infer the true task location.
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Algorithm 1. Calculating LCM
Input: the maximal speed Smax, the speed si of every worker wi(1 ≤ i ≤ n)
Output: the LCM of all speeds Slcm

1: The SC platform and all workers perform the same exclusion algorithm on Smax

to get a same list L of 2-tuples <p, cp> where p is a prime meeting p ≤ Smax and
cp is the maximal times of p meeting pcp ≤ Smax.

2: Every worker wi computes his own factorization Fi of si by Pollard’s rho algorithm.
3: AP performs

∑
p∈P p∗(cp+1) key generations and assigns these secrets respectively

4: for each prime p in L do
5: for number k(0 ≤ k ≤ cp) do
6: Every worker wi generates his own flag data f [k], encrypts it by
7: the assigned AP secrets and sends it to the SC platfrom.

8: Slcm = 1
9: for each prime p in L do

10: for number k(cp ≥ k ≥ 0) do
11: The SC platform decrypts the sum of all f [k], denoted as H.
12: if H > 0 then
13: Slcm = Slcm ∗ pH

14: break
15: return Slcm

4.3 Calculating LCM

To compute the LCM securely, we adopt an aggregation protocol denoted as AP
[25] which can calculate the sum of multiple messages in a privacy-preserving
manner. It works as follows:

Key Generation: Let S be a set of nc random numbers where n is the number
of workers and c is a random number. Then, divide S into n random disjoint
subsets Si with c numbers and define M = 2�log2 nΔ� where Δ is maximum value
of workers’s data. At last, send ki to wi and the sum k0 to the SC platform
where ki = (

∑
s′∈Si

s′) mod M and k0 = (
∑

s′∈S s′) mod M .

Encryption Ea: For each worker wi, he encrypt data mi by computing:

ci = (ki + mi) mod M (9)

Encryption Da: The SC platform can decrypt the sum by computing:

S(
n∑

i=1

mi) = (
n∑

i=1

ci − k0) mod M (10)

Based on a credible assumption that the maximal worker’s speed is limited
and known to all, we explain the Algorithm1 as follow: In line 1 and 2, exclusion
algorithm is performed to get the list L of 2-tuples <p, cp> whose complexity
is O(n log(log n)). For example, our maximal speed is 10. Then 3 is one prime
where 3 < 10, and its maximal times is 2 for 32 ≤ 10. So the tuple <3, 2> will
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be inserted into the list. Besides, every worker calculates the factorization Fi

of his own speed si by Pollard’s rho algorithm whose complexity is O(n
1
4 ). For

example, the factorization F of a worker(si = 6) is F = 2 ∗ 3 for 6 = 2 ∗ 3. Based
on the list L, the AP generates

∑
p∈L p ∗ (cp + 1) different keys for same key

may disclose workers’ speed in line 3. In line 4 to 7, each worker wi generates
his flag data f [k](k ∈ [0, cp]) as follows:

f [k] =

{
1, AT [p] = k

0, otherwise
(11)

where AT [p] is the appearance times of p in the corresponding Fi. Then,
encrypts and sends flag data. In the above examples, when p = 3, this worker
(si = 6) generates these flag data f [0] = 0, f [1] = 1, f [2] = 0. In line 9 to
14, the LCM is computed by Slcm =

∏
p∈L pH . For example, the factorization

of another worker(si = 9) is 3 ∗ 3. If p = 3, this worker generates flag data
f [0] = 0, f [1] = 0, f [2] = 1. So the maximal times of 3 is 2 for the decrypted sum
of f [2] meets the condition in line 12. Meanwhile, the maximal times of 2, 5, 7
are 1, 0, 0 respectively. So Slcm = 21 ∗ 32 ∗ 50 ∗ 70 = 18 will be returned.

5 Security and Complexity Analysis

Denoting the LCM stage as Ea(si) and Da(Slcm), we will prove the security and
complexity of our framework next.

5.1 Security Analysis

Theorem 1. Our framework is allowed to be privacy-preserving with K0 =
Slcm,K−1 =

{
Slcm, tGk(i)

}
and Ki = Slcm(1 ≤ i ≤ n) extra knowledge.

Proof. We firstly consider the SC platform w0 with K0 = Slcm. Then
the view is V0 =

{
EKP

e (Gk(i∗)), Slcm, Ea(sj), Ep(t′2j )
}

(1 ≤ j ≤ n).
There is a probabilistic polynomial-time simulator P0 that generates V ′

0 ={
EKP

e (x1), Slcm, Ea(yi), Ep(zi)
}

where x1 is random number from a cyclic group
G, yi(1 ≤ i ≤ n) are random numbers distributed in Z and zi(1 ≤ i ≤ n) are
random numbers uniformly distributed in ZN . As Paillier, ElGamal and AP are
all secure, it is clear that V0 ≡ V ′

0 .

Next we analyze every worker wi with Ki = Slcm. There is a probabilis-
tic polynomial-time simulator Pi to simulate worker wi’s view. However, There
are two kinds of workers to be analyzed. The difference between them is that
only the chosen worker can infer the chosen ID is his ID. For the chosen
worker w∗

i , his view is Vi∗ =
{
Gk(i), i∗, Slcm, Ep(x2

T + y2
T ), Ep(xT ), Ep(yT )

}
.

So simulator Pi∗ generates V ′
i∗ = {g, i∗, Slcm, Ep(x1), Ep(x2), Ep(x3)} where

xi(i = 1, 2, 3) are random numbers uniformly distributed in ZN and g is a ran-
dom element uniformly distributed over {0, 1}λ. For others, the view for them
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is Vi =
{
Gk(i), Ere(Ewi

e (Gk(i∗))), Slcm, Ep(x2 + y2), Ep(x), Ep(y)
}

and simu-
lator Pi generates V ′

i = {g,Ere(Ewi
e (y)), Slcm, Ep(x1), Ep(x2), Ep(x3)} where

xi and g are the same as V ′
i∗ and y is a random number from G. Based on

the semantic security of Paillier, ElGamal and PRG, we can easily verify that
Vi ≡ V ′

i (1 ≤ i ≤ n).
Finally, we analyze the KP w−1 with K−1 =

{
Slcm, tGk(i)

}
(1 ≤ i ≤ n). The

view of the KP is V−1 =
{
Slcm, tGk(i), E

wi
e (Gk(i))

}
(1 ≤ i ≤ n). There is a proba-

bilistic polynomial-time simulator P−1 that generates V ′
−1 = {Slcm, txi

, Ewi
e (xi)}

where xi(1 ≤ i ≤ n) are random numbers uniformly distributed in G. Due to
the semantic security of ElGamal, V−1 ≡ V ′

−1 is clearly true.
Based on the above proofs, our framework is secure with K disclosure where

K has neglected effects on individual privacy.

5.2 Complexity Analysis

In our framework, every worker computes and communicates in parallel. To this
end, we only need to consider one user. Ignoring some cheap operations, the com-
putation and communication cost are summarized in Table 1 where Li(i = p, e) is
the key size of encryption strategy,e is modular exponentiation and +,− means
sending and receiving. Note that ElGamal encryption and communicative-like
encryption is two and three times longer than Le. Due to the size of ciphertext
by Paillier and ElGamal are larger than plaintext and the ciphertext by AP , we
exclude the latter two from communication cost. In the situation when the AR is
not always 100%, the KP needs |W ∗|Ee instead of 1Ee in computation cost and
the communication cost changes from |2Le| to 2|W ∗|Le during the comparison
stage.

Table 1. Computation and communication cost

Computation cost Communication cost

The SC platform The KP Workers The SC platform The KP Workers

Distance 3Ep 0 1Ep + 2e +3Lp 0 −3Lp

LCM Da 0 Ea 0 0 0

Time 0 0 3e −Lp 0 +Lp

Comparison nPRG nDp + 1Ee 0 +nLp − 2Le −nLp + 2Le 0

Verification 0 nEe Ee + De 0 −2nLe + 3nLe +2Le − 3Le

6 Experiment Study

In the first subsection, we introduce our experiment settings and evaluation cri-
teria. Then we show and analyze the experiment results in the second subsection.
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6.1 Experiment Settings

We conduct our experiments on an area in Pennsylvania of Gowalla dataset
with latitude from 39.804250 to 41.787732 and longitude from −80.418515 to
−75.189944 with 3036 workers.

Three criteria are introduced to evaluate our proposed framework, namely
computing time, travel distance, and worker number respectively. For comput-
ing time, we compare our framework with Liu et al.’s framework [9] for all of
them are based on the public-key cryptosystems. In these two frameworks, it is
meaningless to take the computing time of the SC platform and the KP into
consideration because we pay more attention on the workers computing time in
the task assignment and these two parties are the same in these two frameworks.
For travel distance and worker number, we compare our framework with To et
al.’s framework [7] for Liu et al.’s framework has the same values as ours in travel
distance and worker number. Tables 2 and 3 summarize the parameters in these
two comparisons.

Table 2. Computing time

Parameters Default Range Description

W 200 100, 200, 300, 400, 500 The number of workers

Smax 10 5, 10, 15, 20, 15 The maximal speed

Table 3. Travel distance and worker number

Parameters Default Range Description

ARmax 0.6 0.2, 0.4, 0.6, 0.8, 1.0 The maximal AR

α 0.9 0.8, 0.85, 0.9, 0.95, 0.99 The expected rate of a task

ε 0.6 0.2, 0.4, 0.6, 0.8, 1.0 The privacy budget of To et al.’s
framework

6.2 Performance Analysis

Computing Time. In the computing time comparison, two key sizes (1024 and
2048) of Paillier and ElGamal are considered in our framework and Liu et al.’s
framework.

Firstly, we study the effect of Smax. As described in Fig. 3, no matter what
key size is adopted, our framework has much shorter average computing time
than Liu et al.’s framework which means tasks can be assigned more quickly and
thus improve the service quality of all platforms. Also, there is a fault of Liu et
al.’s framework where Smax is 10 when key size is 1024 because when Smax is
larger than 10, theirs framework based on the product of all speeds will face the
overflow of product. Meanwhile, our framework can support these calculations
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Fig. 3. Effect of Smax
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Fig. 4. Effect of W

for our framework is based on the LCM of all speeds. Note that there is still a
fault where Smax is 100 in Liu et al.’s framework when key size is 2048 which
is not shown in the Fig. 3. That is to say, the most important meaning for our
framework is to break through the speed limitation of Liu et al.’s framework.
Moreover, within our expectations, the computing time of Liu et al.’s framework
increases as Smax grows while ours is a constant for the same reason as before.

Next, the effect of W is evaluated. Similar performance trend can be observed
in Fig. 4 where the larger W is, the computing time grows. In addition, there are
two obvious faults in Fig. 4 where W are 200 and 400 when key sizes are 1024
and 2048 respectively for the same reason as first part. Also, our framework has
much shorter computing time than Liu et al.’s framework. Based on the LCM,
our framework can be applied to more workers and a bigger speed.

Travel Time and Worker Number. In the travel time and worker number
comparison, two functions are used to change the AR of every worker (Linear
and Zipf). As To et al.’s framework does not consider the speed of workers, we
set the speed of all workers is 1.

Firstly, we investigate the effect of ARmax. As depicted in Fig. 5, our frame-
work has much shorter travel distance and smaller number of notified workers
than To et al.’s framework because theirs is to choose some grid cells which
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Fig. 7. Effect of ε

contains a number of workers. Some of them may be far away from task location.
Yet, our framework is to visit the worker sorted by travel distance. In addition,
the travel distance and worker number of our framework decrease when ARmax

increases for a larger ARmax means workers are more willing to achieve this task.
Secondly, we study the effect of α. Figure 6 shows that our framework is much

better than To et al.’s framework for the same reason as before. Also the travel
distance and worker number of our framework grow with α increases for a larger
α means a task has a higher expected rate to be accepted and thus more workers
are required to accomplish the task.

At last, we assess the effect of ε. The higher ε is, the weaker privacy guarantee
To et al.’s framework has. As expected, the change of ε only affects To et al.’s
framework for ours is stable which is shown in Fig. 7. Also, with ε increases, the
travel distance and worker number of their framework decreases by sacrificing of
privacy. But ours still works better than theirs even in weakest privacy guarantee.

7 Conclusion

In this paper, we have identified a new task assignment strategy, travel-time-first,
when allocating workers to tasks in spatial crowdsourcing. We have presented an
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efficient privacy-preserving task assignment protocol for this new strategy. The
proposed protocol scales well because the expensive secure division operation is
replaced by the secure least common multiple (LCM) computation, for which
we have designed an efficient algorithm based on data aggregation. We have
theoretically proved that our approach is secure against semi-honest adversaries.
We have conducted extensive experiments on real-world datasets. Experimental
results have shown that our protocol is efficient and effective.
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Abstract. Despite the prevalence of multi-core processors and large
main memories, most in-memory databases still universally adopt a cen-
tralized ARIES-logging with a single I/O channel, which can be a seri-
ous bottleneck. In this paper, we propose a parallel logging mechanism,
named Plover for in-memory databases, which utilizes the partial order
property of transactions’ dependencies and allows for concurrent logging
in scalable storage devices. To further alleviate the performance over-
heads caused by log partitioning, we present a workload-aware log par-
titioning scheme to minimize the number of cross-partition transactions,
while maintaining load balance. As such, Plover can scale well with the
increasing number of storage devices and extensive experiments show
that Plover with workload-aware partitioning can achieve 2× speedup
over a centralized logging scheme and more than 42% over Plover with
random partitioning.

Keywords: In-memory database · Parallel logging · Scalability

1 Introduction

The advent of multi-core processors makes low-speed disk a major performance
bottleneck. Owing to the increasing size of main memory, many databases can
host the entire data set in main memory to reduce disk I/Os. Unfortunately,
to ensure the durability of transactions, in-memory systems have to flush logs
to permanent storage regularly. Using a single disk as the permanent storage is
not performant, due to its limited I/O bandwidth. Meanwhile, these systems still
rely heavily on a centralized ARIES-style [1] logging mechanism to guarantee the
global order of log entries. Since the total order property of logging implies the
dependencies among transactions, databases can be reconstructed correctly in
accordance of the order of log entries after failure recovery. However, contentions
for the centralized log buffer and limited synchronous I/Os still exist, which may
become a major overhead as system load increases.
c© Springer International Publishing AG, part of Springer Nature 2018
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In this paper, we propose a parallel logging mechanism for the in-memory
database called Plover, which utilizes partial order of transactions’ dependen-
cies. The key idea is to employ distributed logging instead of centralized logging
to mitigate the contention on the centralized data structure, and to use scalable
storage devices to increase the I/O bandwidth. Implementing such a distributed
logging is not trivial, due to two main challenges: (1) how to preserve the tem-
poral order among log entries; (2) how to distribute the log entries across the
storage devices. To address the first challenge, we use a global sequence num-
ber to identify the partial order of log entries, and a persistent group commit
method to ensure all log entries of a transaction are persistent before com-
mitting. To simplify the implementation and accelerate the recovery process, we
adopt tuple-level distributed logging, which partitions log entries by tuples. How-
ever, this leads to the second challenge: cross-partition transactions and work-
load skew, which may significantly deteriorate the performance. To resolve the
potential defects, we propose a workload-aware log partitioning scheme, which
applies a graph partitioning algorithm to find workload balanced partitions,
while minimizing the number of distributed transactions. Finally, we demon-
strate that Plover can achieve linear scalability with an increasing number of
storage devices. In TATP and TPC-C, Plover with workload-aware log parti-
tioning outperformed centralized logging by a factor of 2× and Plover using
random partitioning by a factor of 1.42× on two storage devices.

2 Background and Related Work

Centralized Logging. To recover data from failures, a database system needs
to leverage logging mechanism to guarantee atomicity and durability for trans-
actions. For a in-memory database, the ARIES logging ensures that all REDO
log entries are organized in a global order and a transaction can be commit-
ted only if all of its log entries have been persisted. The log sequence number
(LSN)—which is unique and monotonically increasing— can be used to guaran-
tee the global order of log entries. More specifically, the procedure of logging is
described as follows:

(1) Log entry insertion. Before copying the log entry to the centralized log
buffer, the transaction must acquire an LSN and claim the buffer space it will
eventually fill with the intended log entry by a lock or a mutex. The lock or
mutex will be released once the transaction finishes copying the log entry.

(2) Log entry persistence. The logging subsystem appends the log entries
cached in log buffer to the log file in a single storage device. This can ensure
that the entries are consecutive in the log file.

(3) Transaction committing. The transaction can commit safely after the
log entries whose LSNs are less than or equal to those of its own log entries are
persisted in the storage device.
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However, with the CPU cores increases in a single machine, centralized log-
ging is becoming a main bottleneck, especially in main-memory database sys-
tems, where logging is the only source of synchronous I/Os. Traditional central-
ized logging faces the following challenges: (1) upper limit of generating LSNs;
(2) log buffer contention; and (3) limited synchronous I/Os.

Related Work. To improve the scalability of centralized logging, there have
been active researches on above bottlenecks to develop new logging protocols.
To alleviate the contention of allocation of LSNs, Kim et al. [3] presented a
latch-free approach and Jung et al. [10] designed a concurrent data structure to
ensure the global order of log entries; to improve the performance of log inser-
tion, Johnson et al. [2] proposed a scalable logging with decoupling log inserts
method so that log entries of different transactions can be copied into the log
buffer in parallel; to eliminate the cost of synchronous log writes, most databases
provided asynchronous commit strategy but at expense of durability. And there
have been active researches to develop new logging protocols [7,9] based on the
arrival of non-volatile memory (NVM) technology; to eliminate the limited I/O
bandwidth of single storage device, Zheng et al. [6] implemented a transaction-
level distributed logging mechanism with multiple storage devices and Wang et
al. [8] proposed a universal distributed logging mechanism on multiple NVMs.

To the best of our knowledge, there are not works that can address all the
issues we proposed. Therefore, we design a novel parallel logging mechanism,
which utilizes partial order property of transactions’ dependencies and adopts
multiple log buffers and storage devices.

3 Parallel Logging

Overview. Plover aims at providing excellent performance and scalability for
transaction logging, by leveraging distributed logging and multiple permanent
storage devices. In our approach, the distributed logging is partitioned under
tuple level, each log partition is processed by a dedicated logger thread and all
of the log partitions can be accessed by all the worker threads. As modifications
from a transaction may be written into many log partitions, there are two main
challenges: (1) how to identify transaction dependencies for log entries over mul-
tiple log partitions; (2) how to protect committed work for a transaction. To
tackle the two challenges, we prefer to employ a global sequence number (GSN),
and propose a variant of group commit method, persistent group commit. The
GSN provides a partial order based on logical clock [4] and guarantees the transac-
tion dependencies among log entries over multiple log buffers. And a transaction
can not safely commit until all of its log entries, along with all the log entries
that logically precede them, have become persistent. Therefore, the persistent
group commit starts a daemon thread to periodically monitor the submission of
all logger threads and ensures that transactions can correctly commit.

Normal Processing. Next, we detailedly describe the logging processing of
transactions (t × 6, t × 7, t × 8) in Plover with two log buffers (partitions) par-
tition A, B, as illustrated in Fig. 1.
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Fig. 1. Overview of parallel logging for main-memory database.

(1) Log entry generation. When a transaction is ready to commit, a worker
thread generates a corresponding number of log entries based on the data parti-
tions modified by the transaction. For the running transactions, t× 6 and t× 8
severally have a log entry, but t× 7 produces two log entries.

(2) Log entry insertion. Before writing the generated log entries into matched
log partitions, the worker thread needs to assign a GSN for all the log entries.
The value of GSN is also maintained in each transaction (t GSN) and each log
partition (l GSN). Computing a GSN should get the l GSNs of corresponding
partitions and set the value as max(l GSNi) + 1, where i is the serial number
of corresponding partitions. For tx6 which updates tuple a, it only acquires the
l GSN of partition A (l GSNa = 5) and assigns its GSN as l GSNa + 1 = 6, as
step 1©. For t× 7 which modifies tuple a and b, it must get the l GSN of partition
A and B and computes its GSN as max(l GSNa = 6, l GSNb = 4) + 1 = 7, as
step 2©. To guarantee the true-dependency (RAW) and anti-dependency (WAR)
among transactions, we also consider the case that read and write operation of a
transaction across over multiple partitions. For t× 8, although it only modifies
tuple b, it also needs to acquire l GSNa = 7, l GSNb = 7 and sets its GSN as 8, as
step 3©. In addition to the GSN, each log entry also stores a LSN, which is used
to indicate the space of an individual log buffer. Moreover, to further improve
performance, we release the buffer latch once a transaction have obtained the
GSN so that many worker threads can copy log entries in parallel.

(3) Log entry persistence. When many log entries are accumulated in log
buffers, each logger thread triggers group commit to force them into disk within
a single I/O, and then updates its thread-local variable (pgsn) as the GSN of the
last log entry that have been persistent, as step 4©. Subsequently, the persistent
group commit daemon examines the pgsn of all logger threads and computes
the smallest pgsn as min pgsn, as step 5©. The min pgsn represents the upper
bound of persistent log entries and transactions whose t GSN ≤ min pgsn can
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be allowed to commit, as step 6©. If a logger thread takes too long to update
its pgsn (perhaps because of the corresponding partition accessed by a long
read-only transaction), the persistent group commit daemon updates the logger
thread’s pgsn as the maximum value among all the pgsn of logger threads.

4 Recovery

Checkpoint. To accelerate data recovery from a failure, the in-memory database
mandates a periodic checkpoint of its state during normal processing. In our
Plover, the checkpoint is also partitioned according to tuples. Each checkpoint
partition relates to a log partition and is processed by a dedicated checkpointer
thread. When launching a new checkpoint, a checkpoint manager records the
current min pgsn as c GSN which indicates the timestamp for a consistent snap-
shot, and then starts up n checkpointer threads, where n is the number of storage
devices. Each checkpointer thread stores the consistent snapshot into m check-
point files and reports to the checkpoint manager. At last, the manager writes
the c GSN and checkpoint metadata into a special file.

Failure Recovery. Plover masks outages by loading the most recent check-
points (checkpoints recovery) and then repaying the log entries in log files (log
recovery). In checkpoints recovery phase, a recovery manager thread acquires
the newest metadata and c GSN, where c GSN denotes the starting point for log
recovery, and then initiates m * n threads to recovery all the checkpoint files in
parallel. In log recovery phase, all the recovery threads are used to replay the
log entries whose GSNs are larger than c GSN and less than r GSN. The r GSN is
the latest min pgsn at the database crash, which written into a storage device
by the persistent group commit daemon during transaction processing.
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Fig. 2. Impact of distributed transactions and workload skew on throughput.

5 Workload-Aware Log Partitioning

Performance Issues. Recall that the normal processing of our parallel logging,
we find that the execution of a transaction is closely related to log partitioning
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Fig. 3. Performance of parallel logging when running the microbenchmark.

and application workloads. Therefore, there are two subtle performance pitfalls:
distributed transactions and workload skew. For the distributed transactions, as
their GSN generation involves multiple log buffers, it increases computing over-
head and reduces parallelism for logging processing. For the workload skew, it
causes a log partition to suffer significant contention and excessive I/O over-
head. As shown in Fig. 2, we explore the impact of distributed transaction and
workload skew on throughput. We perform Plover with 2 and 4 log partitions
(referred as 2SDD and 4SDD) respectively in microbenchmark and the experimen-
tal setup is shown in Sect. 6.

Partitioning Design. To solve the problems mentioned above, we implement
a workload-aware log partitioning in our distributed logging. Firstly, we model
the workload as a graph, G = (V,E), where each vertex v ∈ V represents a
tuple, and the edge eij ∈ E between vi and vj represents the connected tuples
accessed by a same transaction. Each edge is associated with an edge weight
we which accounts for the frequency of the transactions. After establishing the
graph, we use a k-way balanced min-cut partitioning [5] to split the graph into
k non-overlapping partitions such that the number of distributed transactions
is minimized, while keeping the partitions within a constant factor perfectly
balanced. To achieve the workload evenly across partitions, we consolidate the
tuple size and access frequencies as a factor and assign the factor to each vertex.

6 Evaluation

Experimental Setup. All of our experiments are run on a single machine
with two Intel Xeon E5-2630 (a total of 20 physical cores). The machine is
equipped with 268GB DRAM and 4 pieces of SATA SSDs. We implemented
a transactional logging prototype Plover in Java and each thread combines
a database worker thread with a workload generator in our implementation.
We compare the performance of our parallel logging equipped with multiple
SSDs (referred to as plover) with two approaches: centralized logging with a
single SSD (classic) and centralized logging equipped with RAID 0 (raid0 ). And
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Fig. 4. Performance of parallel logging with workload-aware log partitioning.

Table 1. Recovery performance.

Variant Checkpoint recovery
time (seconds)

Log recovery time
(seconds)

Total time
(seconds)

Classic 67.7 163.5 231.2

RAID0 37.9 87.9 125.8

Plover 34.8 82.6 117.4

then we conduct experiment on the logging with the proposed workload-aware
partitioning (plover(opt)) and with random partitioning (plover(random)). We
run a microbenchmark which models a single write transaction with a 100 bytes
log entry, TATP (Insert Call Forwarding) and TPC-C (New Order) on all system
variants. For each benchmark and variant, each point reported in all graphs is
the average throughput of three consecutive 120 s runs.

Effectiveness of Parallel Logging. We first compare the throughput and scal-
ability with Plover, Classic and RAID0 in microbenchmark. Figure 3 illustrates
the experimental results.

Throughput. In this experiment, Plover and RAID0 are equipped with two
SSDs. In Fig. 3(a), as we increase the number of worker threads, the throughput
of both Classic and RAID0 rises steadily at first, but dramatically decreases
when the number is larger than 12. However, Plover achieves linear scalability up
to 20 threads. Owing to two logging simultaneously, Plover avoids the intensive
contention of centralized logging and improves near 2× better performance in
terms of peak throughput than Classic and RAID0.

Scalability. As shown in Fig. 3(b), Plover scales effectively as we increase
the number of SSD drivers. The performance of Plover is proportional to the
number of SSDs, but for RAID0, the non-linear speed-up is due to contention on
the centralized log buffer.

Overall Performance. Next, we evaluate the performance of our parallel log-
ging with the workload-aware log partitioning scheme in diverse workloads.
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For TATP, both random partitioning and our approach can perfectly avert
distributed transactions. But the random partitioning may suffers workload-
skew. Hence, as shown in Fig. 4(a), Plover with the workload-ware partition-
ing plover(opt) has the best performance as increasing the number of worker
threads, which improves 2× better peak throughput than Classic and RAID0,
and increases performance more than 30 % compared with plover(random).

For TPC-C, “New Order” produces a variable-sized log entry, about from 800
byte to 2250 byte. The larger size per log entry makes the peak throughput of
Classic and RAID0 quickly become saturated as growing the number of worker
threads, as shown in Fig. 4(b). And the throughput of plover(random) does not
further increase when the number of worker threads is larger than 12. That is
because there are distributed transactions and workload skew in the random log
partitioning. But our proposed scheme, plover(opt) achieves the best perfor-
mance, which improves the peak throughput by factor of 2× over Classic and
RAID0, and more than 42% over plover(random).

Recovery. To investigate the effectiveness of our logging for recovery, we use the
microbenchmark without distributed transactions and workload skew. When the
system fails, we acquire 28 GB checkpoints and 54 GB log files. In this exper-
iment, Plover and RAID0 are equipped with two SSDs. As shown in Table 1,
Classic has the largest total recovery time. This is because all of the check-
point files and log files are stored in a single storage device and the limited
I/O bandwidth seriously reduces its recovery performance. Owing to the par-
allel load, RAID0 and Plover can respectively improve the recovery time by a
factor of 1.83× and 1.97× speedup over Classic.

7 Conclusion

In this paper, we introduce a parallel logging in the main memory database
named Plover, which replaces the centralized log buffer with multiple tuple-
level distributed log buffers and allows log entries to be simultaneously forced
into multiple storage devices. Our distributed logging relies on a logical global
sequence number to identify the uniqueness of log entries and a persistent
group commit method to ensure a transaction can be safely committed. We
also analyze the impacts of distributed transactions and workload skew on per-
formance and present a workload-aware log partitioning scheme based on a
graph-partitioning algorithm to produce high-quality partitions. Our experimen-
tal evaluations demonstrate that Plover can provide linear scalability with the
growing number of storage devices and the increasing number of worker threads.
Due to the parallel design, our approach significantly alleviates the contention
of centralized logging and the limitation of single I/O bandwidth.
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Abstract. Document Type Definition (DTD) and XML Schema Def-
inition (XSD) are two popular schema languages for XML. However,
many XML documents in practice are not accompanied by a schema,
or by a valid schema. Therefore, it is essential to devise efficient algo-
rithms for schema learning. Schema learning can be reduced to the infer-
ence of restricted regular expressions. In this paper, we first propose
a new subclass of restricted regular expressions called Various CHAin
Regular Expression with Interleaving (VCHARE). Then based on single
occurrence automaton (SOA) and maximum independent set (MIS), we
introduce an inference algorithm GenVCHARE. The algorithm has been
proved to infer a descriptive generalized VCHARE from a set of given
sample. Finally, we conduct a series of experiments based on our data
set crawled from the Web. The experimental results show that VCHARE
can cover more content models than other existing subclasses of regular
expressions. And, based on the data sets of DBLP, regular expressions
inferred by GenVCHARE are more accurate and concise compared with
other existing methods.

1 Introduction

Document Type Definition (DTD) and XML Schema Definition (XSD) are two
popular schema languages for XML recommended by World Wide Web Consor-
tium (W3C) [31]. The presence of a schema has numerous advantages such as
data processing, automatic data integration, static analysis of transformations
and so on [2,11,20,22–24,28]. Besides, the existence of schemas is necessary
when integrating (meta) data through schema matching [30] and in the area
of generic model management [3,26]. However, many XML documents are not
accompanied by a (or valid) schema in practice. A survey [19] shows that XML

H. Chen—Work supported by the National Natural Science Foundation of China
under Grant No. 61472405.

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Cai et al. (Eds.): APWeb-WAIM 2018, LNCS 10988, pp. 44–52, 2018.
https://doi.org/10.1007/978-3-319-96893-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96893-3_4&domain=pdf


Inferring Regular Expressions with Interleaving from XML Data 45

documents on the Web which have schema definitions only account for 24.8% in
2013, of which the proportion of valid schemas is only about 8.9%. Therefore, it
is essential to devise algorithms for schema inference. And schema inference can
be reduced to learning restricted regular expressions from a set of given sample
[6,8,16].

Gold [18] proposed a classical language learning model (learning in the limit
or explanatory learning) and pointed out that the class of regular expressions
cannot be learnable from positive examples only. Furthermore, Bex et al. proved
in [4] that even the class of deterministic regular expressions is too rich to be
learnable from positive data. Consequently, researchers have turned to study the
restricted subclasses of regular expressions [27].

The popular existing subclasses of regular expressions used in XML such as
SORE [6], CHARE (Simplified CHARE) [6], eSimplified CHARE [12], Simple
regular expression (CHARE) [5], eCHARE [25] were renamed as in the brackets
and analyzed together in [21]. These subclasses are all based on standard regular
expressions. In data-centric applications using XML, there may be no order
constraint among siblings [1]. However, the relative order within siblings may be
still important. In [9], Ciucanu and Staworko proposed two schema formalisms
for unordered XML: disjunctive multiplicity expressions (DME) and disjunction-
free multiplicity expressions (ME) where the relative order among siblings was
ignored. These two formalisms do not support the concatenation within siblings.
For example, E1 = (a|b)+&c is a DME and E2 = a&b∗&c? is an ME. But
E3 = (a+b?)&c∗ does not satisfy both two formalisms. Peng and Chen in [29]
also focused on the unordered relation among siblings and proposed SIRE. SIRE
supports the concatenation operation within siblings. Therefore E3 is a SIRE.
However, SIRE does not support union operation. In [17], Ghelli et al. proposed a
restricted subclass defined by grammar T ::= ε|a[m,n]|T +T |T ·T |T&T where m ∈
N\{0} and n ∈ N\{0} ∪ {∗}. For this subclass, counters (repetition operation)
can only occur as a constraint for terminal symbols of strings in L(T ). For
example, E4 = a?(b|c|d)∗ is not allowed.

In this paper, we focus on learning a restricted deterministic regular expres-
sion considering interleaving from a set of given positive examples. We propose
a new subclass named as Various CHAin Regular Expression with Interleaving
(VCHARE). VCHARE supports union, concatenation and interleaving opera-
tors together. For example, E5 = a∗&b+&c? and E6 = (a|b?)(c∗d?|e∗)+ are both
VCHAREs.

As for learning algorithms for XML data, Bex et al. [6,7] proposed two infer-
ence algorithms RWR and CRX for SOREs and its Simplified CHAREs, respec-
tively. Freydenberger and Kötzing [13] proposed another two inference algo-
rithms Soa2Chare and Soa2Sore based on Single Occurrence Automaton (SOA)
for Simplified CHAREs and SOREs, respectively. These two algorithms can infer
descriptive generalized regular expressions (explained below) while RWR and
CRX can not. Ciucanu and Staworko introduced an algorithms for DME based
on max clique [9]. Peng and Chen [29] proposed an approximation algorithm and
heuristic solution to infer a descriptive generalized SIRE.
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The concept of descriptive generalization [14], is different from Gold-style
language learning. Gold-style learners are required to infer an exact descrip-
tion for the target language in a class. But descriptive generalization views the
hypothesis space and the space of target language as distinct. Here is a for-
mal explanation. For a class D of language representation mechanisms (e.g., a
class of automata, regular expressions, or grammars), a representation α ∈ D
is called D-descriptive for a set of given sample S if the language of α is an
inclusion-minimal generalization of S. It means that there is no β ∈ D such
that S ⊆ L(β) ⊂ L(α).

In present paper, the inference algorithm (GenVCHARE ) is also based on the
concept of descriptive generalization which aims to infer descriptive generalized
VCHAREs for a set of given sample S. The main idea of GenVCHARE is based
on SOA and Maximum Independent Set (MIS). We first construct an SOA for
S. Then replace each non-trival strongly connected component (NTSCC) by the
return value of RepairRE() as one new node. Next, assign each node a level
number. Finally, all nodes of each level will be converted to one or more chain
factors.

The main contributions of this paper are listed as follows.

– We propose a subclass of restricted regular expressions named as Various
CHAin Regular Expression with Interleaving (VCHARE).

– We design an inference algorithm GenVCHARE to infer descriptive general-
ized VCHAREs.

– We analyze the coverage proportion of VCHARE compared with other sub-
classes based on the real-world data set. Based on the data sets (DBLP), we
compare the inferred results with other inferrence methods. The experimen-
tal results shows that regular expressions inferred by GenVCHARE are more
accurate.

This paper is organized as follows. In Sect. 2 introduces some basic definitions.
Section 3 is the inference algorithm GenVCHARE. Section 4 gives the experi-
ments. Conclusions are drawn in Sect. 5.

2 Preliminaries

Definition 1. Regular Expression with Interleaving. Let Σ be a finite
alphabet. Σ∗ is the set of all strings over Σ. A regular expression with inter-
leaving over Σ is inductively defined as follows: ε or a∈Σ is a regular expres-
sion where a∈Σ. For any regular expressions E1 and E2, the disjunction E1|E2,
the concatenation E1 · E2, the interleaving E1&E2, or the Kleene-Star E∗

1 is
also a regular expression. The language generated by E is defined as follows:
L(∅) = ∅; L(ε) = {ε}; L(a) = {a}; L(E∗

1 ) = L(E)∗; L(E1E2) = L(E1)L(E2);
L(E1|E2) = L(E1) ∪ L(E2); L(E1&E2) = L(E1E2) ∪ L(E2E1). E? and E+ are
used as abbreviations of E + ε and EE∗, respectively.

In the specification of XSD, the interleaving operator is used in the form of
ac1
1 &ac2

2 & · · · &acn
n where ai∈Σ and ci∈{1, ?,+, ∗}. For a, b ∈ Σ, x, y ∈ Σ∗, we

have a&ε = ε&a = a and ax&by = a(x&by) ∪ b(ax&y).
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Let S be the set of given sample. POR(S) is the set of all partial order
relations of each string in S. Using POR(S), we can compute the Constraint Set
(CS) and Non-Constraint Set (NCS) for S by the following formula.

1. CS(S) = {< ai, aj > | < ai, aj >∈ POR(S), and < aj , ai >∈ POR(S)};
2. NCS(S) = {< ai, aj > | < ai, aj >∈ POR(S), but < aj , ai >/∈ POR(S)}.

Clearly, for a set of given sample S, CS(S) ∩ NCS(S) = ∅. If CS(S1) 	=
CS(S2) (or NCS(S1) 	= NCS(S2)), then S1 	= S2.

Definition 2. PS(P,s). PS(P, s) is a function in which P is a finite set of
symbols and s is a string. Each symbol si of s in PS(P, s) is defined as follows:
πs(P, si) = si if si ∈ P ; otherwise πs(P, si) = ε. The return value of PS(P, s) is
a new string s′ with ε removed.

For example, let P = {b, c, r} and s = ebbdfc. s′ = PS(P, s) = bbc.

Definition 3. extended String (eS). Let Σ be a finite set of terminal symbols.
An eS is a finite sequence sc11 sc22 · · · scnn , where si ∈ Σ and ci ∈ {1, ?,+, ∗}.
Definition 4. Various CHAin Regular Expression with Interleaving
(VCHARE). Let Σ be a finite alphabet. A V CHARE is a regular expression
with interleaving over Σ in which each symbol occur once at most. It consists of a
finite sequence of factors of two forms. One form is of ac1

1 &ac2
2 & · · · &acn

n where
n≥2, ai∈Σ and ci∈{1, ?,+, ∗}. The other form is of f1f2 · · · fm where m≥1.
Each factor fi is of the form of (b1|b2| · · · |bn), (b1|b2| · · · |bn)?, (b1|b2| · · · |bn)+ or
(b1|b2| · · · |bn)∗ where bi has two forms: 1. terminal symbol a or a+ with |bi| = 1
for the first two forms; 2. for the last two forms, it can be an eS s = ac1

1 ac2
2 · · · acn

n

where ai∈Σ and ci∈{?, ∗} with n≥1.

Clearly, E1 = a?&b∗&c+ and E2 = a?(b+c+)(c?d∗+e?)+ are both VCHAREs.

3 Inference Algorithm

In this section, we will introduce the inference algorithm GenVCHARE for
VCHARE. The algorithm is based on SOA and MIS.

We use the method 2T-INF [15] to construct a SOA for S. It was proved
that L(SOA(S)) is inclusion-minimal of S. Finding a maximum independent
set from a graph G is a well-known NP-hard problem. Therefore we use the
approximation method clique removal() [10] to find the approximative results.
all mis is the set contained all maximum independent sets iteratively obtained
from G using clique removal(). symbol(A) is the set of all symbols occur in A.
The main procedure of GenVCHARE is described as follows.

– Construct a graph G(V,E) = SOA(S) using method 2T-INF [15].
– For each node v with a self-loop, label it with v+ and remove the self-loop.

Update the graph G.
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– If G is a strongly connected component, then return the result
vc1
1 &vc2

2 & · · · &vcn
n where vi ∈ V and assign the repetition operator ci ∈

{1, ?,+, ∗} using CRX [6]. Otherwise, continue to run the following steps.
– For each non-trival strongly connected component ci, replace it with the

return value of RepairRE() as one new node. All relations with any node
in ci rebuild the relations with the new node.

– Assign level numbers for the new graph and compute all skip levels.
– Nodes of each level are turned into one or more chain factors. If there are

more than one non-letter nodes (label with more than one terminal symbols)
with the same ln, or if ln is a skip level, then ? is appended to every chain
factor on that level.

Pseudo code for GenVCHARE ALT(C) can be found on the web site: http://
lcs.ios.ac.cn/∼zhangxl/.

Algorithm Analysis. For graph G(V,E) = SOA(S), let n = |V | and m = |E|.
It costs time O(n) to find all nodes with self-loops and O(m + n) to find all
NTSCCs. The time complexity of clique removal() is O(n2 + m). For each
NTSCC, computation of all mis costs time O(n3 + m) and the topological sort
for each mis costs time O(m + n). The number of NTSCCs in a SOA is finite.
Therefore computing all mis for all NTSCCs also costs time O(n3 +m). Assign-
ing level numbers and computing all skip levels will be finished in time O(m+n).
All nodes will be converted into specific chain factors of VCHARE in O(n).
Therefore, the time complexity of GenV CHARE is O(n3 + m).

Theorem 1. Suppose that α = GenV CHARE(SOA(S)) where S is a set of
given sample. If there exists another VCHARE β such that S ⊆ L(β) ⊂ L(α),
then L(β) = L(α).

All detail proofs are omitted due to limited space.

4 Experiments and Analysis

In this section, we first investigate the proportion of VCHARE based on real-
world data, and then analyze our inference algorithm on DBLP downloaded
from the Web1. DBLP is a Computer Science Bibliography corpus, a data-
centric database of information on major computer science journals and pro-
ceedings. All our experiments were conducted on a machine with Intel Core
i5-5200U@2.20 GHz, 4G memory, OS: Ubuntu 16.04. All codes were written in
python 3.

1 http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository
.html.

http://lcs.ios.ac.cn/~zhangxl/
http://lcs.ios.ac.cn/~zhangxl/
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html
http://aiweb.cs.washington.edu/research/projects/xmltk/xmldata/www/repository.html
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4.1 Usage of VCHARE in Practice

10 20 30 40 50 60 70 80 90 100

SIRE

Ghelli

VCHARE

SORE

DME

ME DTD

XSD

Relax NG

Fig. 1. Proportions of subclasses

To investigate the proportion of
VCHARE in practice, we crawled
29414 DTDs, 38554 XSDs and 4526
Relax NGs files from the Web and
extracted 118242, 476804 and 509267
regular expressions from them respec-
tively. The coverage proportions of
subclasses: VCHARE, SORE, DME,
ME, Ghelli [17], SIRE are shown in
Fig. 1. Clearly, we can find out that
the proportions of VCHARE are the
highest for XSDs and Relax NG which
are 94.95% and 95.28% respectively.
For DTDs, the proportion (93.54% for VCHARE ) is a little lower than SORE
(96.69%). This is because interleaving operator is not supported in DTD. Inter-
leaving is defined in an unlimited manner in Relax NG with any symbol in strings
to interleave in any order while it is limited in XSD with only single symbols
to interleave in any order. For example, (ab∗)&(c+d?) is not valid in XSD but
it is allowed in Relax NG. Although interleaving defined in SIRE conforms to
Relax NG, the proportion of VCHARE is still higher than SIRE. This means
that in actual data, interleaving is used mostly in a quite simple and concise
form. Therefore, VCHARE is more practical in real-world applications.

4.2 Analysis of Inference Results Compared with GenVCHARE

In this section, we analyze the inference results by GenECHARE [12] (algorithm
for inferring eSimplified CHARE ), Soa2Chare [13], Original Schema, Trang,

Table 1. Results of inference using different methods on inproceedings

Sample size From Element name ND |RE|
1610138 DBLP Inproceedings

Methods Regular expression

1. Original Schema (a1|a2|a3|a4|a5|a6|a7|a8|a9|a10|a11|a12|a13|a14|a15 1 48

|a16|a17|a18|a19|a20|a21|a22|a23)
∗

2. IntelliJ IDEA a∗
2(a1|a3|a4|a5|a6|a10|a11|a12|a13|a14|a15|a17|a18)

+ 1 31

3. Liquid Studio (a1|a2|a3|a4|a5|a6|a10|a11|a12|a13|a14|a15|a17|a18)
+ 1 30

4. Trang a∗
2(a1|a3|a4|a5|a6|a10|a11|a12|a13|a14|a15|a17|a18)

+ 1 31

5. Soa2Chare a∗
2(a1|a3|a4|a5|a6|a10|a11|a12|a13|a14|a15|a17|a18)

+ 1 31

6. GenEchare a∗
2(a

+
1 |a3|a+

4 |a5|a6|a10|a11|a12|a13|a+
14|a+

15|a17|a+
18)

+ 2 36

7. conMiner a∗
1a

?
17a

∗
14&a∗

2a
?
11a4a

?
10&a3a6&a?

5&a12&a∗
13&a∗

18a
∗
15 1 37

8. GenVCHARE a∗
2(a

∗
1a

?
17a

∗
14|a3a

?
12a

∗
15|a4|a5|a6|a∗

13|a∗
18a

?
11a

?
10)

+ 2 40
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conMiner [29] (algorithm for inferring SIRE), IntelliJ IDEA and Liquid Studio
compared with GenVCHARE on inproceedings, incollection, phdthesis, master-
sthesis. Using two indicators: Nesting Depth [21] and length of regular expres-
sions (the number of symbols together with operators), we only give the analy-
sis of inferred regular expressions on inproceedings due to limited space reason.
Analysis on other elements can be found on the web site: http://lcs.ios.ac.cn/
∼zhangxl/.

From Table 1, we can find that a2 must occur in the first position if it appears.
However, its position is not fixed in regular expressions inferred from methods
1, 3, 7 which lead to over-generalization.

5 Conclusion and Future Work

After a detailed analysis of real-world data, we propose a new subclass VCHARE
of restricted regular expressions considering interleaving operator. Each terminal
symbol in a VCHARE can only occur at most once. Compared with existing sub-
classes, VCHARE can cover more real-world data. This is useful for applications
such as data process and integration and so on. Further, we proposed an infer-
ence algorithm GenVCHARE for VCHARE based on SOA and MIS. It is proved
that regular expressions inferred by GenVCHARE are descriptive generalized.
Experimental results show that regular expressions inferred by GenVCHARE is
more accurate.

One future work is to consider constructing an automaton for regular expres-
sion with interleaving which is useful for schema inference. In addition, we will
also study SORE extended with interleaving.
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Abstract. Query reverse engineering is getting important in database
usability since it helps users to gain technical insights about the database
without any intentional knowledge such as schema and SQL. In this
paper, we review some existing techniques that focus on join query dis-
covery, and we devise our efficient algorithm to discover the SQL queries
that contain both joins and OLAP-style aggregations which are substan-
tially for querying OLAP data warehouses. We show that our algorithm
is adaptable and scalable for large databases by performing an empirical
study for TPC-H benchmark dataset.

1 Introduction

Since every organization may have its unique data warehouse and it is always
managed and maintained by a team of technical experts, it is rather hard for ordi-
nary users to make full use of these generated data, especially those spreadsheets
from the data warehouse. For a general purpose, database users are required to
learn both schema and query language, which are important for them to invoke
the tuples from the relevant relations precisely. Thus, the SQL join operations
are definitely important for combining the relevant columns from these tables
into a common (denormalized) table. Besides, these combined data are often
associated with OLAP-style aggregations (e.g., basic mathematical operators)
for offering more valuable insights about the numerical data.

Figure 1 illustrates a motivating example. Figure 1(a) is an example spread-
sheet table, and Fig. 1(b) shows are a pair of or even better minimal join graphs
that could regenerate this spreadsheet table through different join tables, projec-
tions, and aggregations. A candidate join graph is akin to a schema graph. Each
node represents a relation, and it is starred if it contains a projection column.
Therefore, from the candidate join graphs, only the validated join graph would
be executed for discovering other SQL classes, e.g., OLAP group-by, aggregations
and selection filters.

1.1 Related Work

Instead of using a keyword query that is made up of several keywords, there are
many proposals have been implemented to discover join queries by using a tabu-
lar list of tuples as the implication of keyword search in relational databases [7].
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Cai et al. (Eds.): APWeb-WAIM 2018, LNCS 10988, pp. 53–62, 2018.
https://doi.org/10.1007/978-3-319-96893-3_5
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Fig. 1. The different join queries that are possible to generate an example spreadsheet.

Most of the existing solutions (e.g. [10,11,13]) depend on schema-based app-
roach [1,2], and the database schema is illustrated as a graph by taking the
relations as nodes and the foreign key references as edges. In DISCOVER [2]
and its extended works [3,7], given that a set of candidate networks discovered
by a keyword query, the candidate network evaluation needs an optimized execu-
tion plan which is depicted as an operator tree in order to translate each of them
into SQL. Nonetheless, the full-text search is another technique to verify can-
didate queries by emphasizing keyword containments as SQL predicates, which
it is exceptionally useful for text attributes and built-in indexes are required
in advance. Several works [5,6,8] support this full-text search feature, thus the
query discovery is restricted to textual databases in lieu of the OLAP data ware-
houses.

Another critical factor that could optimize the join execution is the index-
ing techniques. In lieu of joining every projection attribute for candidate query
evaluation, the implementation of join indices [12] only require those relevant
primary keys to form a temporal relation so that the overhead memory cost can
be avoided. The well known TALOS framework [10,11] uses the join indices to
build an intermediate join relation and thus applies the decision tree classifier
to classify the tuples for selection predicate generation. In addition, as indicated
in [13], the unique tuple identifiers (tids) within each relation are used to exam-
ine each schema-based connected tree at instance-level in order to invalidate any
schema trees that cannot generate a random output tuple.

Apart from that, besides those fundamental SQL classes which can determine
the schema tables and attributes for query discovery, other classes such as HAVING
and ORDER BY clauses have their specifications to produce the finalized SQL
results. PALEO framework [4] uses the concept of ranked list of tuples to reverse
engineer OLAP queries where each query contains an ORDER BY column.

1.2 Contributions

Our contributions in this paper are presented as follows:

– We provide a solution that generates the candidate join graphs through the
schema and metadata exploration to characterize each distinct column of
query output table.
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– We improve the expressiveness of our solution by discovering SQL HAVING
clause for aggregation queries.

– We prove that our algorithm is adaptable and scalable by conducting an
experimental evaluation over the standard TPC-H dataset.

2 Problem Definition

A relational database D consists of a set of relations and every relation is linked
by referential integrity constraints. The relational schema is defined as a schema
graph SG(R, ζ), where each R is a table and each ζ is an fk/pk constraint. A
subgraph J (G) entails a join query where a relation R ∈ SG may appear more
than once as a node in it. The Project-Join (PJ) queries should contain at least
both projection (π) and join (��) operations where the projection determines the
number of columns and the join determines the number of relations. A subgraph
J (G) connects all the relevant relations through their fk/pk constraints while it
may contain other relations as well as intermediate nodes to interconnect all the
relevant relations. Hence, the schema size is directly proportional to the size of
J (G). To prune the overwhelming unnecessary tuples from the outputted join
table, the selection operation (σ) is used as a filter by specifying the necessary
conditions for the query output table Out. The formulated queries with these
three SQL operations are named as Select-Project-Join (SPJ) queries. In our
work, we intend to discover more complex queries than the SPJ queries, i.e.,
the OLAP queries. Given the query output table Out as input, the GROUP BY
operator will correspond to the number of tuples (groups) of Out. Each group
will be used to produce one or multiple aggregations where each aggregation
takes an aggregate operator (e.g. MAX, MIN, AVG, SUM, and COUNT) for a numeric
attribute. Upon the above OLAP specifications, we define the queries as Select-
Project-Join-Aggregation (SPJA) queries.

3 Join Query Discovery

In this section, we discuss how to discover the possible subgraphs based on a given
query output table Out. Its columns are essential to delimit the schema size for
query regeneration. Our join query discovery relies on a graph search algorithm
to determine the possible candidate subgraphs. For instance, the breadth-first
search algorithm in DISCOVER [2] finds the subgraphs where the nodes that
contain the given keywords are taken as the leaf nodes. Apart from just consid-
ering the keywords, our problem is to find out all the possible subgraphs that
can cover all columns in Out. Algorithm 1 indicates the join query discovery.

3.1 Column Mapping Table

Consider a column of Out, it is outputted by the projection operation (π) for
a schema attribute A, either is operated as group-by or aggregation. An SPJA



56 W. C. Tan

query, that aggregates the output tuples from the sets of grouped tuples; there are
some columns whose aggregate values cannot be directly mapped to any schema
attributes. Due to the possibility of unidentified/anonymous schema attribute(s),
the column mapping details may be incomplete. To solve this problem, for each
unmapped column, it can match a set of covering attributes; otherwise it has
to be an integer column that can be corresponded to COUNT aggregation. These
covering attributes are discovered due to different mathematical properties that
are possessed by different aggregate functions. However, it is non-trivial to deter-
mine the set of covering attributes intuitively if the unmapped column tuples
are far beyond any minimum/maximum values of schema attributes which the
only possibility is the SUM computation that relates with both COUNT and AVG.

3.2 Candidate Subgraph Generation

By assuming the schema graph is undirected, the current (in)complete column
mapping table is used to search for the (partial) candidate subgraphs. The
mapped relations are set as leaves so that they must be contained in the candi-
date subgraph generation. A set of partial subgraphs is generated due to incom-
plete column mapping. Given a partial subgraph, it will be either explored or
expanded to find the covering attribute(s) for the unmapped column(s) of column
mapping table. In Fig. 1, the relations named Nation, Lineitem and Orders are
the leaves because the schema attributes Nation.name, Lineitem.linestatus,
and Orders.totalprice are mapped. When exploring the discovered partial sub-
graph, the attribute Lineitem.quantity can be the covering attribute for the
last column of Out.

Partial Subgraph. Consider a set of leaves, the least connected leaf node is
selected as root to connect other leaves to form a subgraph through the undi-
rected schema graph via breadth-first search exploration. If there exists a pair
of same leaf nodes, the node duplication is allowed where a node can be visited
for twice. The schema size thus is determined by the total number of visited
nodes. To control the schema size as well as the cost complexity, the number
of intermediate nodes should be kept as fewer as possible. By heuristically, the
candidates are sorted by the schema size for evaluation.

Join Table Size Estimation. Upon a partial subgraph, by doing schema
exploration, the utmost task is to complete the column mapping table. Once
every column in Out has its corresponding schema attribute(s), the partial sub-
graph thus becomes the complete candidate subgraph. For an unmapped column
that contains aggregation results, the idea is to find the corresponding numeric
attributes. Among the possible candidates, the priority is to quickly prune the
inappropriate ones by inferring its join size. For a partial subgraph, its join size,
Υ is determined by the total number of tuples to generate Out. In addition, its
schema is equivalent to a set of attributes, denoted as A. If an unmapped column
λ contains only natural numbers, its total number is considered the estimated
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Algorithm 1. Join Query Discovery
input : SG: schema graph, Out: query output table
output: {J (G)}: set of candidate subgraphs

//Column Mapping
mapping table φ = ∅
covering table φ̄ = ∅
foreach column λ ∈ Out do

if φ(λ) = schema attribute A then
update φ(λ) ← A

else
insert λ into φ̄

//Candidate Subgraph Generation
foreach mapping φ do

find partial subgraphs from SG
foreach partial subgraph do

if φ̄ �= ∅ and φ̄(λ) = schema attribute A then
update φ̄(λ) ← A
{J (G)} ← partial subgraph

else if φ̄ �= ∅ and !φ̄(λ) = schema attribute A then
find set of neighbour nodes {R}
while expandPartialSubgraph(R) do

if φ̄(λ) = schema attribute A then
update φ̄(λ) ← A
{J (G)} ← partial subgraph

{J (G)} ← partial subgraph

join size, Γ =
∑

Λ, where Λ ∈ λ. The estimated Γ should be within the range of
α ∗ Υ and Υ where α is the selectivity factor that delimits the number of tuples
to generate Out as the impact of applied selection conditions. We assume the
default value of α as 0.1 and all data are in normal distribution. If the statement
is true, then it can be delineated as the computation of COUNT(∗). However, for
the implication of SUM(A), given that A is a schema attribute where A ∈ A and
an unmapped numerical column λ, the estimated join size, Γ can be calculated
by a simple formula as below.

∑|λ|
i=1 Λi

AV G(A)
= Γ

{
α ∗ Υ ≤ Γ ≤ Υ true
otherwise false

An attribute A ∈ A is acceptable if the estimated Γ is between α ∗ Υ and Υ .

Expanding Neighbour Nodes. If it still does not have any covering attribute
for any unmapped column of Out, the partial subgraph cannot establish as a
candidate subgraph. An alternative approach is to expand the current partial
subgraph by adding one of its neighbour nodes to form a new subgraph for
schema exploration. If every column of Out is being mapped or covered, the new
subgraph is added to the set of candidate subgraphs; otherwise, another new
subgraph is generated by adding another selective neighbour node. This process
is iterated until the set of candidate subgraphs is found.
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4 Group-By Discovery, Aggregates Pruning and Filter
Discovery

After determining the possible joins, the next step is to determine the group-by
candidates for query discovery. According to the mapping columns, a group-by
lattice is built where its nodes are the group-by candidates and its edges are
the superset-subset relationships. The invalid nodes are pruned by exploring
the lattice, and the remaining nodes are the possible candidates for subsequent
aggregates pruning. The rule-based aggregation checking is used to generate a
set of group-by key-aggregation pairs. Besides, the candidate SQL queries may
contain any possible selection filters. A selection filter is illustrated as a fuzzy
bounding box that can be cross-validated over a group of multi-dimensional
matrices, which corresponds to a conjunction of selection predicates. The full
implementation is depicted in REGAL [9].

5 Group Selection

Ideally, any constructed SPJA query Q′ should reproduce the given output table
Out, or at least Out ⊂ Q′(D). Since the Out itself may have been skimmed by
source query Q for a summarized version, it contains only some groups whose
corresponding aggregate values are passed a threshold. However, this threshold
is considered as an additional SQL functionality, and it is less being discussed
in the query reverse engineering. The SQL HAVING clause is a specific term can
be used to decide whether a set of groups will be outputted in Out based on
the current query result Q′(D). The HAVING clause contains a condition which
involves one or two output columns. For all groups within current query result
Q′(D), a satisfied HAVING condition will separate them into two distinct subsets,
where one subset is similar as those groups in Out and another subset is taken as
Q′(D)−Out. On the one hand, if the HAVING condition involves only one column,
the current query result Q′(D) is examined by all its groups are arranged based
on one of the numeric columns. On the other hand, if the HAVING condition takes
two columns, where these columns are being compared so that the Out exists a
specified relationship between them, such as one column whose values are always
larger than those from another column. A candidate query Q′ for the motivating
example in Fig. 1 is given as:

select N.name, L.linestatus, max(O.totalprice), sum(L.quantity)
from Nation N, Customer C, Orders O, Lineitem L
where N.nationkey=C.nationkey and C.custkey=O.custkey and

O.orderkey=L.orderkey and L.linenumber > 1
group by N.name, L.linestatus

The generated table Q′(D) contains 50 tuples (groups). However, Out contains
only 12 tuples (groups), and it is a subset of Q′(D). By searching through
the aggregation candidates, e.g., max(O.totalprice) and sum(L.quantity), the
twelve tuples can be discerned by formulating a HAVING condition, as having
max(O.totalprice)> 500000.
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6 Experimental Evaluation

Implementation and Dataset. We implemented our proposed algorithm in
Java with MySQL server as DBMS. The experiments were conducted on an
Ubuntu machine with 2.40 GHz Intel CPU and 16 GB RAM. TPC-H benchmark
is the dataset that used for experiments, with a scale factor of 1 and size of 1 GB.

TPC-H Test Queries. There are a total of 22 test queries for TPC-H bench-
mark. Most of them include different number of joins, except for TQ1 and
TQ6, with the absence of join. We neglect the complex join query discovery,
i.e. the nested joins, fk/fk joins, and equijoins, which are exhibited in TQ5 (e.g.,
S nationkey = C nationkey) and TQ21 (e.g., L1 orderkey = L2 orderkey)
respectively. We test for the remaining join queries and scale them based on the
number of joins, i.e. from 1 to 5.

Query Output Table Generation. Given that a test query Q, we execute it
over TPC-H dataset D to generate the query output table Q(D) = Out which
later the Out will be used as the input of our proposed algorithm to discover
for such a query Q′ where Q′(D) = Out. As we have selected those TPC-H
benchmark queries, however, except for the join relations and join predicates are
remained, other SQL operations are altered. We set several parameters for the
experiments to control the variety of query output tables. For example, we will
produce the query output table Out with the cardinality of m and the arity of
n, and the test query Q contains a N -dimensional filter.

6.1 TPC-H Join Queries

For each of these test queries, we generate a query output table with moder-
ate row size m and column size n = 4 where it must contain both group-by

Table 1. Effect of number of joins.

# Joins TQ Tables Runtime (s)
min-max

# Graphs
min-max

1 4, 12 L, O 144.189–281.529 1

13, 22 C, O

14, 17, 19 L, P

15 L, S

2 11 PS, S, N 60.937–294.624 1

16 P, PS, S

3, 18 C, O, L

3 10 N, C, O, L 313.882 1

4 2 R, N, S, PS, P 68.648–338.248 1–2

20 N, S, L, PS, P

5 7 N1, S, L, O, C, N2 417.508–443.197 2

9 N, S, L, O, PS, P



60 W. C. Tan

statements and aggregations which the number of group-by columns is set at
most two while the other columns are used for aggregations. Each query contains
one-dimensional filter as N = 1. Table 1 records the experimental results based
on the number of joins of TPC-H benchmark test queries. First, the inferred join
table size is essentially crucial as it will impact the time cost for a table scan.
Some of these test queries like TQ2, TQ11, and TQ20 contain the least inferred
join table size (0.8 million tuples), which take less than 70 s for discovering these
queries. Second, the number of join graphs is directly proportional to the total
execution time. For example, test queries like TQ7, TQ9 and TQ20, they need
to evaluate two join candidates to generate the discovered queries.

Fig. 2. Average time for query discovery
against number of joins.

Fig. 3. Individual phase performances
for different aggregations.

6.2 Individual Phase Performances vs. Joins

In order to further analyze the important factors that influence the total exe-
cution time besides the join operations, those TPC-H benchmark queries under
similar considerations (i.e. the same inferred join table size) are examined. As
there are multiple test queries for each number of joins, we run those queries
individually and take their average running time. To avoid the cost of exploring
all candidate queries, the execution time is taken once the least complex Q′ is
returned for a given test query Q. The experimental results are illustrated as
shown in Fig. 2. According to the experimental results, the total execution time
is proportional to the number of joins. As the number of joins is increased, it
indulges more schema tables/attributes for the query discovery and takes longer
time for evaluation. Furthermore, all three individual phases involve table scans.
In the phase of group-by discovery, the Out tuples are verified at instance-level
to validate the group-by nodes. Second, during the phase of grouping and aggre-
gates pruning, the inferred join instance is partitioned by the group-by nodes to
find out the possible aggregations based on the derived constraint rules. Third,
the schema attributes are used to construct the N -dimensional matrices, so that
the selection filter(s) can be found within these matrices.
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6.3 Joins vs. Aggregations

Figure 3 shows the experimental results by comparing the selected aggregations
for test queries w.r.t. different number of joins. Among five basic aggregate opera-
tors that we have discussed, three of them are chosen for this experiment, namely
MAX, SUM and AVG, since MIN and MAX are symmetrical whereas COUNT is assumed
as another SUM operation of a special attribute whose each of its values is set to
1. For the experiment settings, we set the parameters to output every Out with
n = 4, where there must be one aggregation column that is selected between MAX,
SUM and AVG with three group-by columns. First, by looking at each individual
aggregation w.r.t. joins, as the number of joins is increased, the total running
time is also increased. By comparing these aggregations, it is apparent that MAX
takes the largest running time in the phase of group-by discovery regardless
the number of joins if compared to both SUM and AVG aggregations. The size of
group-by lattice for MAX is 24 = 16 nodes whereas the size of group-by lattice for
SUM or AVG is smaller, which is 23 = 8 nodes. However, AVG takes more time in
the phase of filter discovery as compared to SUM and MAX, since the computation
for AVG is more complex than that SUM. Thus, AVG takes the second largest time
for the query discovery.

7 Conclusion

In this paper, we bring these two main features together by integrating the
promising approaches from both existing works with optimizations. Our empir-
ical study has shown that our proposed solution can work in practice with the
TPC-H benchmark dataset.
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Abstract. With the popularity of Location-based Services, LBS
providers have been obtaining more data, by analyzing which they
may infer users’ real locations and patterns of behavior. Unfortunately,
most previous schemes using k-anonymity can hardly resist such fiercer
side information-based privacy attacks. To address existing problems,
we design a novel metric to accurately measure the resulted privacy
level. Additionally, Dual Cloaking Anonymity (DCA) and enhanced-DCA
(enDCA) algorithms, which are based on our metric, are also proposed.
The former (DCA) constructs a k-anonymity set via carefully selecting
k-1 users according to various query probabilities of each area and corre-
lations between users’ query preferences. Then, enDCA further employs
caching and location blurring to enhance the privacy preservation. Evalu-
ations show that our proposals can significantly improve the privacy level.

Keywords: LBS privacy · k-anonymity · Confusion degree

1 Introduction

Location-based services are springing up around us, whereas leakages of users’
privacy are inevitable during these services. Even worse, adversaries may ana-
lyze intercepted service data, and extract more privacy like hobbies, health and
property. Hence, privacy preservation is an indispensable guarantee on LBS.

Among existing privacy preservation approaches, ones based on k-anonymity
are widely researched. However, some privacy concern will be aroused if these
schemes are adopted directly. For example (in Fig. 1), an area is divided into
4 × 4 cells, where a target user Ut issues a query “Find the nearest hotel” (his
privacy profile k = 4). DLS algorithm [6] selects four blue cells to construct a
cloaking set because their gross query probabilities are similar. Although such
a set reached the maximum entropy, experienced adversaries can exclude some

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Cai et al. (Eds.): APWeb-WAIM 2018, LNCS 10988, pp. 63–71, 2018.
https://doi.org/10.1007/978-3-319-96893-3_6
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Fig. 1. An example of a cloaking
set. More queries about hotels and
transport occur in cell a & c, while
more queries about entertainment
and shopping occur in cell b & d.
Ut prefers to query for hotels and
conference centers via LBS. U1 and
U2 mainly search for entertainment.

cells if they have richer side information, such
as features of each cell and users in the cells.

According to querying features of differ-
ent cells and Ut’s query content, adversaries
may exclude cell b & d from the set. With the
help of further analyses of query preferences,
if adversaries learn that Ut is a businessman,
they can confidently locate Ut. Thus, location
privacy of Ut is invaded.

To address those defects, we propose a
novel privacy metric which first takes into
account the impact of richer side informa-
tion on privacy. Then, DCA and enDCA
algorithms are designed. They both fulfill
our objectives while either one has different
advantages. Major contributions are summa-
rized as follows:

• A newly-proposed entropy-based privacy metric may measure the privacy
level, and depict the impact of richer side information on privacy.

• We design DCA algorithm, which considers richer side information (query
probabilities & preferences) when constructing k-anonymity sets.

• Based on DCA, location blurring and caching are introduced to enDCA.
These techniques impede invading location privacy, promote the low band-
width overhead and resist the disclosure of users’ preference privacy.

• We adopt a novel Wi-Fi access point based Peer-to-Peer structure.

2 Related Work

Recently, many research efforts have been concentrated in LBS privacy.
Among cryptography based techniques, Ghinita et al. [2] used Computational

PIR, which needs two stages to retrieve POI data. Papadopoulos et al. [10]
proposed cPIR which reduces computational overhead.

Kido et al. [3] cloaked user’s real location by generating k − 1 dummy loca-
tions, but side information is ignored. Casper [5] provided cloaking regions
according to user’s privacy profile and minimum area, whereas maintaining the
pyramid structure leads to high costs. Niu et al. [6,7] designed AP-based k-
anonymity schemes considering query probabilities and caching. However, con-
structing cloaking sets and caching data need high computational and storage
overhead for APs, and k-anonymity isn’t effectively guaranteed due to negligence
in the variety of queries.

Palanisamy et al. [9] constructed adaptive mix-zones centered at road inter-
sections, which replace actual query time with shifted ones, to resist timing
attacks. However, these schemes limit the submissions of queries in Mix-zones.

Miguel et al. [1] migrated differential privacy to LBS privacy preservation by
adding Laplace noise to users’ coordinates.
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3 Preliminaries

3.1 Basic Concepts

Query Probabilities. We classify LBS queries into m types with respect to
contents of queries. Then we define various query probabilities in Eq. 1. For sim-
plicity, an m-dimensional vector Pi is used to represent respective probabilities
of all m types of queries in celli.

Pi = (p1i , p
2
i , . . . , p

m
i ), pj

i =
# of type-j queries in celli

# of total queries over all cells
(1)

Users’ Query Preferences. Different users have various query preferences,
which are closely related to their life patterns. We use a vector Wi to describe
the query preference of user Ui (see Eq. 2). Preference vectors will be updated
periodically using Aging Algorithm.

Wi = (w1
i , w2

i , . . . , wm
i ), wj

i =
# of U ′

is type-j queries (over all cells)
# of U ′

is total queries (over all cells)
(2)

Moreover, we use standardized preference vector W ′
i = (w1′

i , w2′
i , . . . , wm′

i )

instead to preserve users’ preference privacy (Different preference vectors may

have the same standardized vector), where wj′
i = wj

i −μWi

σWi
(μWi

, σWi
are the

mean and the standard deviation of Wi respectively). Then, the correlation
coefficient between arbitrary two LBS users Ux, Uy is defined in Eq. 3.

ρ(Ux, Uy) =
covariance(Wx,Wy)

σWx
· σWy

= covariance(W ′
x,W ′

y) (3)

3.2 Adversary Model

In this paper, we resist eavesdropping attack performed by passive adversaries
via applying SSL on communication channels. We consider LBS servers, who own
global data, as active adversaries. Even worse, those untrusted servers may col-
lude with malicious users to infer normal users’ query preferences and behavior
patterns by exchanging extra information and analyzing obtained data.

3.3 Privacy Metrics

In order to demonstrate the impact of query preferences and various query prob-
abilities on privacy quantitatively, we improve the definition of entropy [6].

Supposing a user Ut issues a type-j query in cellt under the protection of a k-
anonymity set. The query preference of Ut is Wt, and the type-j query probability
of cellt is pj

t . In addition, k − 1 other users are located in cell1, cell2, . . . , cellk−1

(type-j query probabilities of these cells are pj
1, p

j
2, . . . , p

j
k−1). So the confusion

degree (ξ) of the k-anonymity set is defined in Eq. 4.

ξ = −
k∑

i=1

ρ(Ut, Ui) · qj
i · log2 qj

i = −
k∑

i=1

ri · qj
i · log2 qj

i (qj
i =

pj
i∑k

s=1 pj
s

) (4)
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4 Our Proposed Schemes

4.1 System Model

Figure 2 shows our novel AP-based P2P structure. APs1 are designed to under-
take such light workloads as collecting query probabilities, forwarding data,
locating users, and storing caches. Maintenance of users’ query preference vectors
and calculations are conducted by users locally. Besides, LBS users may com-
municate with APs anonymously (i.e. using pseudonyms) to preserve privacy
against APs.

4.2 Schemes Overview

We introduce how APs work via the example in Fig. 2. Suppose that Peter issues
a query Q in cellt. APs construct an anonymity set by taking following steps.

(1) After an AP receives Q and Peter’s real location cellt (together with W ′
Peter

and some other parameters), it will determine the query type of Q.
(2) If Q is a type-j query, APs will search for nearby cells with similar type-j

query probabilities to cellt. (subject to probability threshold β).
(3) APs forward W ′

Peter to users in cells found in step (2).
(4) Any user Ux who has received W ′

Peter computes the correlation coefficient
ρ(Ux, P eter) between his preference vector and Peter’s. Ux will reply APs
with the coefficient if the value is greater than the preference threshold θ.

(5) APs reply Peter with users who have similar query preferences, together with
coefficient values, indexes of probability differences, and indexes of distance
between Peter and them. The distance can be measured by # of hops on
the grid-based map (e.g. In Fig. 1, the distance between Ut and U3 is 2).

(6) Peter filters out k − 1 optimal users locally according to side information
above. Then, he will construct a k-anonymity set and issue the formal query.

Fig. 2. Schemes overview (data owned by each role is shown in gray blocks)

1 AP-based schemes [4,6–8] have been widely applied to LBS in mobile environments.
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Algorithm 1. Client: DCA Sub-algorithm (issuing a query)

Input: target user Ut’s standardized preference vector W ′
t , an LBS query

Q(qtype, qdetail), real location cellt, privacy profile kt, distance
preference μ, # of sets ns

Output: an optimal k-anonymity set AS
1 send (W ′

t , Q, cellt, kt, μ) to AP (run Algorithm 2);
2 wait until AP returns CS to it; //Alg. 2 (Line 9) shows data structure of CS

3 for (i = 0; i < min(ns,
(

3kt
kt−1

)
); i + +) do

4 construct set Ci with Ut and kt − 1 other users (in set CS) at random;

5 scoreCi =
∑kt

j=1 (index prdiffij · index disij · rij);

6 return arg maxCi
(scoreCi);

4.3 The Dual Cloaking Anonymity Algorithm

According to the division of work, we implement our schemes in three sub-
algorithms. Algorithms 1 and 3 run on clients, and Algorithm2 runs on APs.

Algorithm 1 demonstrates DCA Sub-algorithm which runs on the client of
target user Ut (who issues the query actually). It corresponds to Step 1, 6 in last
section.

Next, we present Algorithm 2 running on APs. This process corresponds to
Step 2, 3, 5 in Sect. 4.2. Index of differences in type-j query probability between
the real location cellt and other cells can be achieved by index prdiff = 1 −
|pr−pqtype

t |
β . In addition, we use the index of distance index dis = e− (dis−µ)2

8 to
describe users’ distance preference. If there aren’t enough candidates in CS, AP
will extend searching areas (Line 2).

Algorithm 3 computes correlation coefficient between query preferences.

Algorithm 2. AP: DCA Sub-algorithm (forwarding information)

Input: Ut’s standardized preference vector W ′
t , an LBS query Q(qtype, qdetail),

real location cellt, privacy profile kt, distance preference μ
Output: a candidate set CS

1 CS=NULL;
2 for (d = 1; CS.size() < 3kt; d + +) do

3 searching for cellx in d-hop area around cellt, s.t. ∀x, |pqtype
t − pqtype

x | < β;

4 send W ′
t to users who are located in these found cells (run Algorithm 3);

5 while ∃ tuples (ũser, r) returned from users do

6 index dis = e− (d−µ)2

8 ;
7 pr = getPr(user, qtype); //retrieve the query probability of a cell

8 index prdiff = 1 − |pr−p
qtype
t |
β

;

9 add tuples (ũser, r, index dis, index prdiff) to CS;

10 return CS;
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4.4 The Enhanced Dual Cloaking Anonymity Algorithm

We introduce more advanced techniques: location blurring and caching to
enDCA, which may upgrade users’ privacy at the expense of limited compro-
mise in QoS.

Location Blurring. When applying k-anonymity, the real location is likely to
be inferred if k is large, as all dummies are distributed around the real one.

Algorithm 3. Client: compute corr

Input: Ut’s standardized preference vector W ′
t , other’s preference vector Wa

Output: Pearson correlation coefficient between Ut and himself(herself)

1 standardize the vector Wa as W ′
a;

2 if (r = covariance(W ′
t , W ′

a)) > θ then
3 return (ũser, r); //user’s ID will be replaced by a pseudonym

To address that privacy issue, location blurring is introduced into enDCA.
Target user’s real location will be shifted to a cell which is randomly selected from
the nearby ones (in the 1-hop area) with similar same-type query probabilities.

Caching. Different from previous work [7,11], we propose the idea of caching the
anonymity sets. Supposing an LBS user Ua (privacy profile is ka) issues a query
Q(qtypea, qdetaila). A cached set t can be used to preserve Ua’s location privacy
if Eq. 5 holds. Caching may relieve the workload of APs, reduce the bandwidth
overhead, and preserve query preference privacy (reducing transmission of users’
preferences). Cache will be maintained by APs in background.

∃t ∈ AS, s.t. (1) t.qtype = qtypea; (2) t.k ≥ ka; (3) ∃i ∈ [1, k], t.Ui = Ua. (5)

The data structure of the cached anonymity sets is as follows:
AS(qtype, k, expire, U1, U2, . . . , Uk), where expire is the lifetime of a set.

Algorithm 4. Client: enDCA Sub-algorithm (issuing a query)

Input: Ut’s standardized preference vector W ′
t , an LBS query Q(qtype, qdetail),

real location cellt, privacy profile kt, distance preference μ, # of sets ns
Output: an optimal k-anonymity set AS (or a cached set CAS)

1 send (W ′
t , Q, cellt, kt, μ) to AP (run Algorithm 5);

2 wait until CS or CAS returned from AP ;
3 if CAS != NULL then
4 return CAS or a subset of CAS according to kt;

5 else
6 run Lines 3-6 in Algorithm 1 (Client: DCA Sub-Algorithm);
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Algorithm 4 presents enDCA Sub-algorithm which runs on clients. If there
exists an appropriate cached set, it’ll call Algorithm1 to construct the set
(Line 6).

Algorithm 5. AP: enDCA Sub-algorithm (forwarding information)

Input: Ut’s standardized preference vector W ′
t , an LBS query Q(qtype, qdetail),

real location cellt, privacy profile kt, distance preference μ
Output: a candidate set CS or a cached anonymity set CAS

1 CS=NULL, T=NULL; //T stores cached anonymity set temporarily
2 foreach t in cache[qtype] do
3 if t.k ≥ kt and (∃i ∈ [1, t.k], t.Ui == Ut) then
4 T = T

⋃{t};

5 if T != NULL then

6 return arg maxt∈T ( ξt
log2 t.k

); //return the set with highest confusion degree

7 run AP: DCA Sub-Algorithm(W ′
t , Q, shiftLocation(cellt), kt, μ); //run

Algorithm 2

Algorithm 5 illustrates enDCA Sub-algorithm running on APs. After AP
receives Ut’s query, it will check in cache whether there exist appropriate
anonymity sets. Otherwise, Algorithm 5 shifts Ut’s real location first, and then
follows ordinary steps to construct a candidate set CS (Line 7).

4.5 Security Analysis (Resistance to Colluding and Inference
Attacks)

Adversaries try to infer Ut’s real location in the way described in Sect. 3.2. How-
ever, the idea of maximizing confusion degree and randomization in our schemes
will obstruct their conspiracies. Compared with DCA, caching in enDCA reduces
exposure of query preferences. Location blurring and standardized preference
vectors may frustrate their inference of real locations when constructing new
anonymity sets.

5 Performance Evaluation

5.1 Simulation Setup

The trajectory data of taxis (From http://soda.datashanghai.gov.cn, involving
about 10,000 trajectories) is used to describe the mobility patterns of LBS users
in a 10 km× 8 km area in downtown Shanghai. The area is divided into 8,000
cells, with the size of each being 100 m × 100 m. The real deployment of APs in
that area will also be simulated. Query probabilities are computed as the users’
density in each cell, and the query preferences of users are randomly assigned
under normal distribution. Parameters used in our simulation are as follows:

http://soda.datashanghai.gov.cn
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Privacy profile k is set from 2 to 15. # of query types m = 5, # of sets
ns = 100. Threshold β = 0.0015, θ = 0.2.

We select Random [3] as the baseline scheme. DLS (enhanced-DLS ) [6], one
of state-of-the-art methods, is also chosen as a comparison.

5.2 Evaluation Results

k vs. Privacy Metrics. Figure 3(a) and (b) show the relation between k and
entropy. Gross query probability is used in Fig. 3(a), so that all schemes except
for Random perform well. On the contrary, various query probability highlights
the advantages of our schemes in Fig. 3(b).

(a) k vs. Entropy (b) k vs. Entropy* (c) k vs. ξ

Fig. 3. Effect of k on privacy metrics

As to confusion degree (Fig. 3(c)), DCA edges out enDCA, as enDCA sacri-
fices some confusion degree to decrease bandwidth overhead. Our schemes have
high but not theoretically optimal results because finding k − 1 nearby users
having approximately the same query preferences is quite tough.

Other Performance Evaluations. Figure 4 depicts that bandwidth over-
head of enDCA outperforms DCA, since caching can serve users’ requests for
anonymity sets. Figure 5 illustrates the relation among k, cache hit ratio and
simulation time t. The hit ratio increases gradually with the t, and smaller k

Fig. 4. Bandwidth Fig. 5. Cache Fig. 6. Guessing Pr. Fig. 7. Efficiency
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usually results in higher ratio. Figure 6 confirms that schemes without location
blurring have the theoretical k-anonymity. enDCA, equipped with location blur-
ring, owns significantly lower probabilities of successful guesses. Figure 7 shows
the running time of all schemes. Our schemes consume moderate time to con-
struct a k-anonymity set, and enDCA costs less time than DCA with the help
of caching.

6 Conclusion

We propose two different LBS privacy-enhancing schemes, and a novel metric
to measure the privacy level. DCA constructs a k-anonymity set via carefully
selecting k−1 users according to various query probability and users’ query pref-
erences. Based on that, caching and location blurring are introduced to enDCA,
which reduce exposure of query preferences, and decrease the bandwidth over-
head. Simulations confirm the effectiveness of our schemes.
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Abstract. Sketch is a probabilistic data structure designed for the estimation of
item frequencies in a multiset, which is extensively used in data stream pro-
cessing. The key metrics of sketches for data streams are accuracy, speed, and
memory usage. There are various sketches in the literature, but most of them
cannot achieve high accuracy, high speed and using limited memory at the same
time for skewed datasets. Recently, two new sketches, the Pyramid sketch [1]
and the OM sketch [2], have been proposed to tackle the problem. In this paper,
we look closely at five different but important aspects of these two solutions and
discuss the details on conditions and limits of their methods. Three of them,
memory utilization, isolation and neutralization are related to accuracy; the other
two: memory access and hash calculation are related to speed. We found that the
new techniques proposed: automatic enlargement and hierarchy for accuracy,
word acceleration and hash bit technique for speed play the central role in the
improvement, but they also have limitations and side-effects. Other properties of
working sketches such as deletion and generality are also discussed. Our dis-
cussions are supported by extensive experimental results, and we believe they
can help in future development for better sketches.

Keywords: Sketch � Skewed data � Data structure

1 Introduction

Estimating the frequency of each item in a multiset is one of the most classic tasks in
data stream applications. In many networking scenarios such as real-time IP traffic, IP
phone calls, videos, sensor measurements, web clicks and crawls, massive amount of
data are often generated as high-speed streams [3, 4], requiring servers to process such
stream in a single-pass [5]. Calculating exact statistics (e.g., using hash tables) is often
impractical, because the time and space overhead of storing the whole data stream is
too high. Therefore, it is popular and widely accepted to estimate the frequencies of
each item by the probabilistic data structure [6–8].

Sketches are a family of probabilistic data structure designed for the estimation of
item frequencies in data streams [9, 10], which is extensively used in data stream
processing. They use counters to store frequencies and have two primary operations:
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insertion and query. By using multiple hash functions, sketches summarize massive
data streams within a limited space, which means there might be two or more items
sharing the same counter(s). Sketches can also be applied to other fields, such as
compressed sensing [11], natural language processing [12], and data graph [13].

Conventional sketches (CM sketch [7], CU sketch [14], Count sketch [8], and
Augmented sketch [6]) use a number of counters of fixed size. The size needs to be
large enough to accommodate the highest frequency. However, according to the lit-
eratures [6] and confirmed by our experiments on real datasets, the items in real data
streams often have unbalanced distribution, such as Zipf [15] or Power-law [16]. This
means that most items have low frequency (called cold items), while a few items have
high frequency (called hot items). Such data streams are often called skewed data
streams. Therefore, the high-order bits in most counters of conventional sketches are
wasted, as hot items are much fewer than cold items in real data streams. This kind of
memory inefficiency reduces the number of counters, causing the accuracy of the
conventional sketches to drop drastically. Besides, conventional sketches cannot per-
fectly catch up with the high speed of data streams because they need three or more
hash computations and memory accesses for each insertion or query. Overall, con-
ventional sketches fall short handling skewed data streams, and the goal of this paper is
to discuss how to design better sketches for this matter.

Two novel sketches have been proposed recently, the Pyramid sketch [1] and the
OM sketch [2], which can achieve both high accuracy and high speed using limited
memory, especially for skewed data streams. These two sketches bring new ideas that
are specifically designed for skewed data. For example, automatic enlargement and
hierarchy can greatly improve the accuracy when summarizing skewed datasets, and
word acceleration and hash bit technique can significantly improve the speed for each
insertion or query operation. However, we found that many aspects need to be further
considered when using these techniques, therefore in this paper we will discuss the
strategies of automatic enlargement, the side-effect of hierarchy, the use conditions of
word acceleration and hash bit technique. Furthermore, we found that there are two
other aspects to improve accuracy, which are barely scratched in the original papers [1,
2]. We name these two methods as isolation and neutralization. The usage of them
depends on the specific target application scenario. Moreover, when designing the
sketch, other requirements and constraints brought by the target application scenario
should also be considered, such as deletion and generality [17]. These are also dis-
cussed in this paper.

Our contributions can be summarized as follows.

• We sort out five important aspects to design an accurate and fast sketch for skewed
data streams. Three of them, memory utilization, isolation, and neutralization are to
help improve accuracy, and the other two: memory access and hash computation are
important for speed. Their role in an effective and efficient solution are analyzed.

• The specific methods proposed from the latest work [1, 2] are discussed in details,
including the strategies of automatic enlargement, the side-effect of hierarchy, the
usages of isolation and neutralization, the use conditions of word acceleration and
hash bit technique. We also discuss the deletion and generality of the sketch. These
discussions will help better understanding and further utilization of these new ideas.
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2 Related Work

2.1 Conventional Sketches

Typical sketches include CM sketch [7], CU sketch [14], Count sketch [8], and
Augmented sketch [6]. A CM sketch consists of d arrays: A1. . .Ad , and each array
consists of w counters. There are d hash functions, h1. . .hd , in the CM sketch. When
inserting an item e, the CM sketch first computes the d hash functions and locates the
d counters: A1 h1 eð Þ½ �. . .Ad hd eð Þ½ �. Then it increases all the d hashed counters. When
querying an item e, the CM sketch reports the minimum of the d hashed counters as the
estimated frequency of this item. The CU sketch has a slight but effective modification
to the CM sketch, that is, conservative update. It only increases the smallest one(s)
among the d hashed counters during insertions while the query process keeps
unchanged. The Count sketch is similar to the CM sketch except that each array uses an
additional hash function to smooth the accidental errors. The Augmented sketch aims
to improve the accuracy by using one additional filter to dynamically capture hot items,
suffering from complexities, slow insertion and query speed. Among these sketches,
the CU sketch achieves the best performance in terms of both accuracy and speed.
More sketches are detailed in the survey [18].

Unfortunately, the sketches above have two shortcomings for skewed data streams:
(1) the accuracy is poor when using limited memory; (2) requiring multiple memory
accesses and hash computations for each insertion or query thus slow the speed.

2.2 The OM Sketch

The key techniques of OM sketch are hierarchical counter-sharing, word acceleration
and fingerprint check.

As shown in Fig. 1, the OM sketch is organized as a two-layer structure in which
the high layer possesses less memory. The low layer with small counter sizes mainly
records the information of cold items, while the high layer with relatively large counter
sizes mainly records the information of hot items. When one or more counters overflow
at the low layer, the OM sketch uses the high layer to record its number of overflows.
Based on this structure, the OM sketch significantly improves the memory efficiency,
thus improving accuracy. Moreover, the OM sketch constrains the hashed counters
within one or several machine words by using the word acceleration technique. It also

Fig. 1. Basic structure of OM sketch.
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leverages the hash bit technique [19] to locate multiple hashed counters within one or
several machine words at each layer through a 64-bit hash value by one hash function.
Therefore, the OM sketch achieves close to one memory access and one hash com-
putation for each insertion or query. Besides, the OM sketch records the fingerprints of
the overflowed items in their corresponding machine words at the low layer in order to
distinguish them from non-overflowed items during queries.

Insertion: When inserting an item, the OM sketch first computes the low layer hash
function to locate the low layer hashed counters, and then increases the smallest
counter(s). This method makes the low layer counters of each item always overflow
concurrently. If an item overflows, the OM sketch first sets all its low layer hashed
counters to zero, and then uses the fingerprint technique to distinguish it from
non-overflowed items. Finally, the OM sketch computes the high layer hash function to
locate the high layer hashed counters and increases the smallest counter(s).

Query: When querying an item, the OM sketch first gets the value of the smallest
hashed counter(s) at the low layer, denoted by Vl. Then it checks if the item overflows.
If it is, the OM sketch queries the high layer and gets the value of the smallest hashed
counter(s) at the high layer, denoted by Vh. The OM sketch returns Vl þVh � 2dl as the
estimated size of the item, and dl is the counter size at the low layer.

2.3 The Pyramid Sketch

The key techniques of the Pyramid sketch are counter-pair sharing, word acceleration
and Ostrich policy.

As shown in Fig. 2, the Pyramid sketch employs a pyramid-shaped data structure.
The ith layer Li is associated with the iþ 1th layer Liþ 1 in the following way: the left
child counter and the right child counter at Li are associated with the parent counter at
Liþ 1. When the child counter overflows, the Pyramid sketch uses its parent counter to
record its number of overflows. In Pyramid sketch, the first layer is composed of pure
counters, only used for recording frequencies. The other layers are composed of hybrid
counters, which can be split into three parts: the left flag, the counting part and the right

Fig. 2. Basic structure of Pyramid sketch.
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flag. The flag parts indicate whether its child counters are overflowed. Based on this
counter-pair sharing technique, the Pyramid sketch dynamically assigns the appropriate
number of bits for different items with different frequencies, thus improving the
memory efficiency. Like OM sketch, the Pyramid sketch uses word acceleration and
hash bit technique to improve its speed.

The Pyramid sketch can be applied to conventional sketches (CM, A, C and CU),
and the results are denoted as Pcm, Pa, Pc and Pcu. It uses a novel strategy, Ostrich
policy, to improve the insertion speed of sketches that need to know the values of the
d mapped counters during each insertion. Here, we take Pcu as an example. The key
idea of Ostrich policy is ignoring the second and higher layers when getting the values
of the d mapped counters, only increases the smallest first layer counter(s).

Insertion: When inserting an item, the Pyramid sketch first computes the hash func-
tion to locate the hashed counters at layer L1. Different sketches will perform different
increase operations on these counters. If any of the counters overflows, the Pyramid
sketch sets the counter to zero, and assigns its parent counter according to its index.
Then, the left/right flag of its parent counter will be set to 1. These operations are called
carryin. The Pyramid sketch repeats the carryin operation at layer L2, and the operation
will be performed layer by layer until there is no overflow.

Query: When querying an item, the Pyramid sketch first locates the hashed counters at
the first layer, and then gets the values of the d mapped counters by accumulating the
values of corresponding counters of each layer. Finally, the Pyramid sketch produces
the query output based on the specific sketch under use.

3 Analysis and Discussion

In this section, we will discuss from five different aspects on how to design an accurate
and fast sketch for skewed data streams. We use the OM sketch and the Pyramid sketch
as latest examples, discussing their methods handling these important aspects. At the
end of this section, we will discuss two more aspects, namely the support for deletion
and generality. Depending on the target scenarios they might also become as important
as the former ones.

3.1 Accuracy Improvement of Sketch for Skewed Datasets

Accuracy is one of the most important indicators of the sketch. We can try tackle the
problem from three different aspects: (1) higher memory utilization, (2) isolation, and
(3) neutralization to improve the accuracy of the sketch. In the following we will
discuss the solutions from the literatures and our findings.

Improvement of Memory Utilization
Improvement of memory utilization means increasing the number of counters in the
same memory, so as to reduce the probability of collision. Automatic enlargement and
hierarchy are techniques that can be used to improve memory utilization.
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Automatic Enlargement Technique
In the process of the automatic enlargement, it’s unnecessary to allocate enough bits to
each counter in advance. When the counter overflows, the sketch enlarges the initial
counter space automatically. In view of the characteristics of skewed data streams, this
technique can greatly improve memory utilization of the sketch.

When using the automatic enlargement technique, the enlargement strategy
depends on the type of counter overflows. There are two types of overflows, one is
called simultaneous overflow and the other is called non-simultaneous overflow.
Simultaneous overflow means that all counters of an item overflow at the same time,
and needs only one enlargement, while non-simultaneous overflow means that not all
counters of an item overflow at the same time, so multiple enlargements are often
necessary. What’s more, if the initial counter space is separated from its enlarged space,
during the automatic enlargement, the non-simultaneous overflow needs to establish
the corresponding relationship between each initial counter space and its enlarged
space, otherwise the sketch cannot be queried. However, it is unnecessary to do so for
the simultaneous overflow. When querying an item, the sketch only needs to query the
two spaces separately. Compared to the non-simultaneous overflow, the simultaneous
overflow has fewer enlargements and relatively simpler enlargement strategy. How-
ever, realizing simultaneous overflow needs to design specific insert operations, which
may require extra cost, such as some trade-offs of performances.

Both the OM sketch and the Pyramid sketch adopt automatic enlargement tech-
nique. For the OM sketch, it only increases the smallest counter(s) during insertion,
thus achieving simultaneous overflow. For the Pyramid sketch, the insert operations
depend on the sketch under use. Counters of an item cannot be guaranteed to overflow
at the same time. Therefore, the Pyramid sketch is a non-simultaneous overflow.
Besides, the initial counter space of the OM sketch and Pyramid sketch is separated
from its enlarged space. The automatic enlargement strategy of OM sketch is to use
another hash function to enlarge the space for all the overflowed counters. When
querying an item, the OM sketch locates the counters of each space by two hash
functions. The automatic enlargement strategy used in the Pyramid sketch is index
calculation, which is to establish the relationship between the initial counter space and
its enlarged space. When querying an item, the parent counters are located through the
indices of their child counters. Specific insert operation lets the OM sketch achieve
simultaneous overflow, simplifying the automatic enlargement strategy. Meanwhile, it
also makes the OM sketch isolate items, which further improve the accuracy (will be
described later). However, the cost is that the OM sketch cannot support deletion.

Hierarchical Structure
Considering the characteristics of skewed datasets, the higher frequency of an item is,
the less proportion it occupies. Thus, we can design the sketch as a hierarchical
structure. For example, lower layers have smaller size but a larger number of counters,
while higher layers have larger size but a smaller number of counters. The hierarchical
structure increases the number of counters, thus improving the memory utilization. The
more the number of layers, the higher the accuracy of the sketch. However, hierarchy
has a side-effect, which cannot be ignored. With the increase of the number of layers,
the number of memory accesses will be increased, which can slow insertion and query
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speed. Therefore, when using hierarchy technique, the number of layers of the sketch is
selected based on a tradeoff between accuracy and speed.

Both the Pyramid sketch and the OM sketch adopt the hierarchy technique. The
Pyramid sketch is a multi-layer pyramid-shaped structure, while the OM sketch is a
two-layer trapezoid structure. As mentioned earlier, there is a corresponding relation-
ship between the initial counter space and its enlarged space in the Pyramid sketch. If
one child counter monopolizes to one parent counter, massive memory waste will be
caused because of the characteristics of skewed datasets. Therefore, the Pyramid sketch
lets two child counters share one parent counter in order to improve the memory
utilization. With this corresponding relationship, the Pyramid sketch gradually forms a
pyramid type. Using a multi-layer structure rather than a two-layer structure like the
OM sketch is to further increase the memory utilization. However, this hierarchical
structure will slow the insertion and query speed of the Pyramid sketch.

To design the OM sketch as a two-layer structure is a tradeoff between accuracy and
speed. For the OM sketch, the characteristics of the low layer counters conform to the
characteristics of low frequency items, whose sizes are small and numbers are large,
while the characteristics of the high layer counters conform to the characteristics of the
intermediate and high frequency items, whose sizes are large and numbers are small. In
skewed data streams, the vast majority of items are the low frequency items. Therefore,
dividing into two layers can significantly improve the memory utilization of the OM
sketch. The more the layers, the lower the accuracy. Thus, the OM sketch is designed as
a two-layer structure.

Isolation
Improvement of memory utilization is to improve accuracy by reducing hash collisions
between items. In addition to reducing hash collisions, we can limit the range of hash
collisions to reduce the collisions between items of different frequency segments. For
example, we can isolate the low, intermediate and high frequency items in the sketch, so
that the collisions occur only within these frequency segments but not cross. This
method reduces the impact of high frequency items on intermediate and low frequency
items, and the impact of intermediate frequency items on low frequency items, thus
improving the accuracy. Besides, we can design the sketch according to specific
requirements and application scenarios. For example, in some scenarios (e.g., NLP), the
accuracy of low frequency items is very important. Thus, we can design corresponding
sketches to improve the accuracy of low frequency items, and the accuracy of inter-
mediate and high frequency items can be relaxed appropriately.

As mentioned earlier, the simultaneous overflow makes the OM sketch isolate
items. This is because it is unnecessary for the simultaneous overflow to establish the
relationship between the initial counter space and its enlarged space. The low layer of
the OM sketch plays a role of filtering all low frequency items, so only the intermediate
and high frequency items can get into the high layer. Therefore, the impact of inter-
mediate and high frequency items on low frequency items is reduced. The accuracy of
low frequency items can be greatly improved. The Pyramid sketch does not isolate
items. Its child counters are bound to their corresponding parent counter. The low
frequency items that collide with the intermediate and high frequency items at the lower
layer will also get into the higher layer. Therefore, the estimated frequencies of low
frequency items are still affected by the intermediate and high frequency items.
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Neutralization
The evaluation indices of accuracy can be divided into under-estimation rate, correction
rate and over-estimation rate. There are different requirements for them in different
application scenarios. We can improve the accuracy of the sketch by using specific
application features. For example, if the application scenario allows the sketch have
under-estimation error, a small amount of under-estimation error can be introduced to
neutralize part of the over-estimation-error and improve the correction rate. Since the
estimated frequency is already larger than the real frequency in many cases, a little
under-estimation can improve the overall accuracy. However, if the target application
scenario does not allow under-estimation-error, this method will not work. All sketches
with under-estimation error will not be applicable to such scenarios. Therefore, this
neutralization method is related to the tolerance of under-estimation-error, depending
on specific application scenario.

The OM sketch has under-estimation error, which can improve a bit of accuracy.
The cause of under-estimation is that when counters overflowed, the OM sketch set all
these counters to zero. For the Pyramid sketch, if conventional sketch has under-
estimation-error or over-estimation-error, then its corresponding Pyramid sketch will
also have it, otherwise it will not. However, there is a special case, Pcu sketch. Since
the Pcu sketch uses Ostrich strategy, each insertion does not necessarily increase the
smallest hashed counter(s), resulting in a little under-estimation. However, this under-
estimation neutralizes part of over-estimation. Thus, in the original paper [2], the
experimental results show that Ostrich policy can help improve accuracy. Neither the
OM sketch nor the Pcu sketch can be applied to the scenarios that do not allow
under-estimation error.

3.2 Insertion and Query Speed Improvement of Sketch

Another important indicator of the sketch is speed. The speed is mainly related to the
number of memory accesses and the number of hash calculations required for each
insertion and query. Therefore, there are two ways to improve the speed, and in the
following discussions we will reference two methods: (1) word acceleration and
(2) hash bit technique as representing examples.

Reduction in the Number of Memory Accesses
For conventional sketches, the number of memory accesses for each insertion or query
is the same as the number of counters assigned for each item, usually more than three.
Since the counter size of conventional sketches is usually large (e.g., 16 bit), it is
difficult to reduce the number of memory accesses. However, if we use certain tech-
niques to make the counter size smaller, we can constrain the counters of one item
within one or several machine word to reduce the number of memory accesses for each
insertion or query. This is called word acceleration, which use condition is that the
counter size should be relatively smaller. In modern CPUs, a machine word is usually
64 bits in width. In the GPU architecture, the size of a machine word is much larger.
Therefore, one machine word on CPU or GPU can typically contain a reasonably large
number of small counters.
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The hierarchical structure of the Pyramid sketch and the OM sketch increases the
number of memory accesses. However, this structure makes their counters size smaller,
so that both of them can use word acceleration.

The OM sketch constrains the hashed counters of the low layer within one machine
word and the hashed counters of the high layer within two machine words, and scatters
these counters over these machine words evenly. As real data streams are skewed, the
probability of accessing the high layer for each insertion and query is very small (e.g.,
1/20). Therefore, the average number of memory accesses for each insertion and query
is close to 1 (e.g., 1 + 1/20 � 2 = 1.1). The Pyramid sketch constrains the hashed
counters of each layer within one machine word. Most of the insertions only access the
first layer (the Ostrich strategy also makes Pcu so). Therefore, the average number of
memory accesses for each insertion is close to 1, which has been proved in the original
paper [1]. However, for queries, the number of memory accesses depends on the
frequency of queried item. The higher frequency of queried item, larger number of
layers to be accessed and larger number of memory accesses. Therefore, although the
Pyramid sketch adopts word acceleration technique, it does not make great improve-
ment in reducing the average number of memory accesses for queries.

Reduction in the Number of Hash Computations
For conventional sketches, the number of hash calculations for each insertion or query
is also the same as the number of counters assigned for each item. This is because the
size of the counter address is usually large. Thus, one counter can only be positioned by
one hash function. However, if we use certain techniques to make the address size
smaller, we can use fewer hash functions to locate the counters. For example, if we
have adopted the word acceleration to constrain the hashed counters within one or
several machine words, the address size of these counters can be shortened. We can
leverage the hash bit technique from the literature [19] to reduce the number of hash
computations. The key idea is that split one hash value into several bit arrays to locate
one or several machine words and offsets of counters in the corresponding machine
words. In this way, we can use only one hash computation to handle a sketch which
originally required multiple hash computations.

Both OM sketch and Pyramid sketch use hash bit technique. The OM sketch uses
hash bit technique at each layer. Supposing the probability of accessing the high layer
is 1/20, the average number of hash computations for each insertion or query is close to
1 (e.g., 1 + 1/20 � 1 = 1.05). The Pyramid sketch only uses hash function and hash bit
technique at the first layer. Counters of other layers are located by the index of the first
layer counters. Therefore, for the Pyramid sketch, the average number of hash com-
putations for each insertion or query is 1, achieving one hash computation.

3.3 Other Related Aspects

In addition to accuracy and speed, there are also other important properties that need to be
considered in the designing of sketch. Here we will discuss a bit on two of them: the
support for deletion and the support for generality, which are actually considered in [1, 2].

Deletion: In some application scenarios, the sketch is required to support deletion
[18]. If the insert operation is always reversible throughout the use of the sketch,
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the sketch can support deletion, and the delete operation is the inverse operation of
insertion. For example, the insert operation of the CM sketch is to plus 1, then its delete
operation is to subtract 1. Therefore, to make the sketch support deletion, we should
design a reversible insert operation. The insert operation of the OM sketch is the same
as that of the CU sketch, and neither of them supports deletion.

Generality: If the goal of a sketch is to solve a common problem for all sketches, it
can be applied to all sketches to improve the target performance of them. We say such a
sketch has generality. If the design goal of a sketch is to enhance one or more per-
formances and cannot be applied to all sketches, such sketch has no generality.
However, sketches that have no generality are more targeted, thus may be more sig-
nificant to improve the target performances. The OM sketch sacrifices generality, but
brings more significant accuracy and speed.

4 Experimental Result

4.1 Metrics

Average Absolute Error (AAE): AAE is defined as 1
Nj j
PN

i¼1 fi � f̂i
�
�

�
� where fi is the

real frequency of the ith item, f̂i is the estimated frequency of this item, and N is the total
number of distinct items in the query set.

Average Relative Error (ARE): ARE is defined as 1
Nj j
PN

i¼1 fi � f̂i
�
�

�
�
�
fi.

Under-Estimation Rate (UER): UER is defined as Nunder=N where Nunder is the
number of distinct items whose estimated frequency is less than its real frequency.

Correct Rate (CR): CR is defined as Nacc=N where Nacc is the number of distinct
items whose estimated frequency equals to its real frequency.

Over-Estimation Rate (OER): OER is defined as Nover=N where Nover is the number
of distinct items whose estimated frequency is larger than its real frequency.

Throughput: We simulate how sketches actually insert and query on CPU platform
and calculate the throughput using mega-instructions per second (Mips).

4.2 Experimental Setup

We use the real IP trace from the main gateway at our campus. The estimation of item
frequency corresponds to the estimation of the number of packets in a flow. The
number of packets of the trace is 10M and the number of distinct flows is around 1M.

We implement the sketches of CM, CU, C, A, OM sketch and Pyramid sketch in C++.
For the four conventional sketches, we set the counter size to 16 bits and the number of
arrays to 4. Other experimental settings are the same as the original paper [1, 2]. In all our
experiments, unless noted otherwise, the memory size of each sketch is 1 MB by default.
We performed all the experiments on amachinewith 2-core CPUs (2 threads, Pentium(R)
Dual-Core CPU E5800 @3.2 GHz) and 4 GB total DRAM memory.
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4.3 Performance of Different Sketches

The experiment results of Figs. 3 and 4 show that the AAE and ARE of the OM sketch
and the Pyramid sketch are much smaller than those of the conventional sketches. The
experiment results of Figs. 5 and 6 show that the insertion and query throughput of the
OM sketch and the Pyramid sketch are much higher than those of the conventional
sketches. We can see that by using automatic enlargement and hierarchy to improve
accuracy and by using word acceleration and hash bit technique to improve speed, the
OM sketch and the Pyramid sketch achieve a much better performance than the
state-of-the-art in terms of both speed and accuracy.

From the experiment results, we find that in Pyramid versions, Pcu sketch achieves
the highest accuracy and speed. Furthermore, the accuracy and speed of Pcu sketch is
the closest to that of the OM sketch. Besides, the increase operation of the OM sketch is
the same as the Pcu sketch and CU sketch. Therefore, in the following experiments, we
use the Pcu sketch as an example of Pyramid sketch, and compare the performances of
the CU sketch, Pcu sketch and OM sketch.
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4.4 Performances of CU, Pcu and OM Sketch

AAE and ARE
Figures 7 and 8 plots the AAE and ARE of three different sketches on different
memory sizes increasing from 0.40 MB to 2.00 MB with a step of 0.20 MB. Our
experimental results show that the AAE and ARE of the Pcu sketch and the OM sketch
are always lower than those of the CU sketch.

Besides, we find that the ARE of the OM sketch is always lower than that of the
Pcu sketch. As mentioned in the Sect. 3.1, the OM sketch uses the isolation method of
filtering all low frequency items at the low layer, improving the accuracy of low
frequency items. The accuracy of low frequency items has the greatest impact on ARE.
Thus, the ARE of the OM sketch can be improved. Meanwhile, the Pyramid sketch
does not use the isolation method, and the estimated frequencies of low frequency
items are still affected by the intermediate and high frequency items. Therefore, its
ARE is always lower than that of the OM sketch. Our experimental results have proved
that isolation can help improve the accuracy of the sketch.

Under-Estimation Rate, Correct Rate and Over-Estimation Rate
Figures 9, 10 and 11 plots the under-estimation rate, correct rate and over-estimation
rate of three different sketches on different memory sizes increasing from 0.10 MB to
2.00 MB with a step of 0.40 MB. Our experimental results show that expect the CU
sketch, both the Pcu sketch and the OM sketch have under-estimation. The under-
estimation rate of the OM sketch is about 4.33 times higher than that of the Pcu sketch.
The correct rate of the OM sketch is about 1.26 and 8.83 times higher than those of the
Pcu and CU sketch. And the over-estimation rate of the OM sketch is about 1.27 and
1.64 times lower than those of the Pcu and CU sketch.

The experimental results show that the higher under-estimation rate, the lower
over-estimation rate and the higher correct rate. As mentioned in Sect. 3.1, a small
amount of under-estimation-error can be introduced to neutralize part of the
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over-estimation-error and improve the correction rate. Our experimental results have
well proved the neutralization method indeed improve the overall accuracy.

Speed
Figures 12 and 13 plots the insertion throughput and query throughput of different
sketches on different memory sizes increasing from 0.40 MB to 2.00 MB with a step of
0.20 MB. Our experimental results show that the speed of the Pcu sketch and the OM
sketch is always higher than that of the CU sketch. The insertion throughput of the OM
sketch is about 1.18 and 3.39 times higher than those of the Pcu and CU sketch. The
query throughput of the OM sketch is about 1.71 and 4.23 times higher than those of
the Pcu and CU sketch.

From the experimental results, we find that the Pcu sketch can significantly improve
the insertion throughput but cannot greatly improve the query throughput. As men-
tioned in the Sect. 3.2, the OM sketch employs two-layer structure and uses word
acceleration technique, so that can achieve close to one memory access for each
insertion and query. For the Pyramid sketch, although it also uses word acceleration
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technique, the hierarchical structure still highly affects the number of memory accesses
for each query. Our throughput experimental results have well proved our viewpoint
that the hierarchy technique can slow the insertion and query speed and is more
significant to slow the query speed.

Generality
The experimental results above show that the performances of the OM sketch are better
than the Pyramid sketch in terms of both speed and accuracy. As mentioned in
Sect. 3.3, the sketch that does not have generality is more targeted, and may be more
significant to improve the target performances. Thus, our experimental results have
well proved our analysis and discussion on Generality.

5 Conclusion

Sketches have been applied to many fields. In this paper, we sort out five important
aspects in improving the accuracy and speed of sketch for skewed data streams with
limited memory. We provide detailed discussions on the positive and negative effects
of typical and latest methods from different aspects on the performances of the sketch.
Two other properties of the sketch such as deletion and generality are also discussed.
Generally, although the purpose of these aspects are somehow orthogonal to each
other, the methods handling them may have effects on more aspects and need more
thorough considerations with their limitations and side-effects. Experimental results
demonstrate the validity and extendibility of our discussions. We believe our paper can
be a good help to the future study of the accurate and fast sketches.
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Abstract. Pattern matching of streaming time series with lower latency
under limited computing resource comes to a critical problem, especially
as the growth of Industry 4.0 and Industry Internet of Things. How-
ever, against traditional single pattern matching model, a pattern may
contain multiple subpatterns representing different physical meanings in
the real world. Hence, we formulate a new problem, called “consecutive
subpatterns matching”, which allows users to specify a pattern contain-
ing several consecutive subpatterns with various specified thresholds. We
propose a novel representation Equal-Length Block (ELB) together with
two efficient implementations, which work very well under all Lp-Norms
without false dismissals. Extensive experiments are performed on syn-
thetic and real-world datasets to illustrate that our approach outper-
forms the brute-force method and MSM, a multi-step filter mechanism
over the multi-scaled representation by orders of magnitude.

Keywords: Pattern matching · Stream · Time series

1 Introduction

Time series are widely available in diverse application areas, such as Healthcare
[21], financial data analysis [22] and sensor network monitoring [25], and they
turn the interests on spanning from developing time series database [6]. In recent
years, the rampant growth of Industry 4.0 and Industry Internet of Things,
especially the development of intelligent control and fault prevention to complex
equipment on the edge, urges more challenging demands to process and analyze
streaming time series from industrial sensors with low latency under limited
computing resource [24].

As a typical workload, similarity matching over streaming time series has
been widely studied for fault detection, pattern identification and trend predic-
tion, where accuracy and efficiency are the two most important measurements
c© Springer International Publishing AG, part of Springer Nature 2018
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to matching algorithms [11]. Given a single or a set of patterns and a pre-defined
threshold, traditional similarity matching algorithms aim to find matched subse-
quences over incoming streaming time series, between which the distance is less
than the threshold. However, in certain scenarios, the single threshold pattern
model is not expressive enough to satisfy the similarity measurement require-
ments. Let us consider the following example.

Fig. 1. Diverse patterns of Extreme
Operating Gust (EOG). EOG pattern
is composed of three subpatterns and
users tend to specify a larger threshold
for Subpattern 2 comparing with Sub-
pattern 1 and Subpattern 3.

Fig. 2. (a) Pattern P is composed of three
subpatterns: P1 = P [1 : 4], P2 = P [5 : 11]
and P3 = P [12 : 15]. (b) In ELB rep-
resentation, if we set block size w = 3, P
and Wt are divided into 5 pattern/window
blocks.

In the field of wind power generation, Extreme Operating Gust (EOG) [4] is
a typical gust pattern which is a phenomenon of dramatic changes of wind speed
in a short period. Early detection of EOG can prevent the damage to the turbine
[17]. A typical pattern of EOG has three physical phases, where its correspond-
ing shape contains a slight decrease (Subpattern 1), followed by a steep rise,
a steep drop (Subpattern 2), and a rise back to the original value (Subpattern
3). Users usually emphasize the shape feature of the second subpattern much
more than its exact numeric value. In other words, users tend to specify a larger
threshold of distance measurement for Subpattern 2 comparing with Subpattern
1 and Subpattern 3. For instance, all time series in Fig. 1 are regarded as correct
matches of EOG, although they have diverse values in their second subpatterns.

In summary, above example shows that a complex pattern is usually com-
posed of several subpatterns representing different physical meanings, and users
may want to specify various thresholds for different parts. There are similar situ-
ations in other fields like electrocardiogram in Healthcare and technique analysis
in the stock market. Therefore, we formulate a new problem, named as consecu-
tive subpatterns matching over streaming time series. In this scenario, a pattern
contains a list of consecutive subpatterns with different thresholds. A sliding
window on stream matches the given pattern only if each of its components
matches the corresponding subpattern.

Although many techniques have been proposed for time series similarity
matching, they do not aim to solve the problem mentioned above. For stream-
ing time series matching, some recent works take advantage of similarity or
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correlation of multiple patterns and avoid the whole matching of every single
patterns [11,21]. Similarly, most of the previous approaches for subsequence sim-
ilarity search explore and index the commonalities of time series in database to
accelerate the query [14,20]. These approaches are not optimized for the scenario
of matching consecutive subpatterns.

In this paper, we propose Equal-Length Block (ELB) representation together
with the lower bounding property. ELB representation divides both the pattern
and a sliding window into equal-length disjoint pattern/window blocks. Then
ELB characterizes a pattern block as upper/lower bounds and a window block
as a single value. Two ELB implementations are provided which allow us to
process multiple successive windows together, so that speed up the matching
process dramatically while guaranteeing no false dismissals.

In summary, this paper makes the following contributions:

– We introduce a new model, consecutive subpatterns matching, which allows
us to describe pattern more expressively and process streaming time series
more precisely.

– We propose a novel ELB representation which accelerate the matching process
dramatically under all Lp-norms and guarantees no false dismissals.

– We illustrate the efficiency of our algorithms with sufficient experiments on
real-world and synthetic datasets and a comprehensive theoretical analysis.

The rest of the paper is arranged as follows: Sect. 2 gives a brief review
of the related work. Section 3 formally defines our problem. Section 4 proposes
ELB representation together with its two implementations. Section 5 conducts
extensive experiments. Finally, Sect. 6 concludes the paper.

2 Related Work

There are two categories of the related works, multiple patterns matching over
streaming time series and subsequence similarity search.

Multiple Patterns Matching over Streaming Time Series. Traditional
single pattern matching over the stream is relatively trivial, hence recent research
works put more focus on optimizing the multiple pattern scenario. Atomic wedge
[21] is proposed to monitor stream with a set of pre-defined patterns, which
exploits the commonality among patterns. Sun et al. [18] extend atomic wedge for
various length queries and tolerances. Lian et al. [11] propose a multi-scale seg-
ment mean (MSM) representation to detect static patterns over streaming time
series. They discuss the batch processing optimization and the case of dynamic
patterns in its following work [10]. Lim et al. [12] propose SSM-IS which divides
long sequences into smaller windows. Although these techniques are proposed
for streaming time series and some of them speed up the distance calculation
between the pattern and the candidate, most of them focus on exploring the
commonality and correlation among multiple patterns for pruning unmatched
pattern candidates, which doesn’t reduce the complexity brought by the problem
of consecutive subpatterns matching.
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Subsequence Similarity Search. FRM [5] is the first work for subsequence
similarity search which maps data sequences in database into multidimensional
rectangles in feature space. General Match [16] divides data sequences into gen-
eralized sliding windows and the query sequence into generalized disjoint win-
dows, which focuses on estimating parameters to minimize the page access. Loh
et al. [14] propose a subsequence matching algorithm that supports normalization
transform. Lim et al. [13] address this problem by selecting the most appropri-
ate index from multiple indexes built on different windows sizes. Kotsifakos et
al. [9] propose a framework which allows gaps and variable tolerances in query
and candidates. Wang et al. [20] propose DSTree which is a data adaptive and
dynamic segmentation index on time series. This category of researches focuses
on indexing the common features of archived time series, which is not optimized
for pattern matching over the stream.

3 Problem Definition

Pattern P is a time series which contains n number of elements (p1, · · · , pn).
We denote the subsequence (pi, · · · , pj) of P by P [i : j]. Logically, P could be
divided into several consecutive subpatterns which may have varied thresholds
of matching deviation. Given a pattern P , P is divided into b number of non-
overlapping subsequences in time order, represented as P1, P2, · · · , Pb, in which
the k-th subsequence Pk is defined as the k-th subpattern and associated with
a specified threshold εk.

As shown in Fig. 2(a), for instance, pattern P is composed of three subpat-
terns: P1 = P [1 : 4], P2 = P [5 : 11] and P3 = P [12 : 15]. These subpatterns may
be specified different thresholds.

A streaming time series S is an ordered sequence of elements that arrive in
time order. We denote a sliding window on S which starts with timestamp t by
Wt = (st,1, st,2, · · · , st,n). We denote the subsequence (st,i, st,i+1, · · · st,j)in Wt

by Wt[i : j]. According to the sub-pattern division of P , Wt is also divided into
b sub-windows Wt,1,Wt,2, · · · ,Wt,b. For convenience, we refer to pi and st,i as
an element pair.

There are many distance functions such as DTW [3], LCSS [19], Lp-norm
[23], etc. We choose Lp-norm distance which covers a wide range of applications
[1,5,15]. Given two n-length sequences where X = (x1, x2, · · · , xn) and Y =
(y1, y2, · · · , yn), the Lp-Norm Distance between X and Y is defined as follows:

Lp(X,Y ) = (
n∑

i=1

|xi − yi|p) 1
p

Since the Lnorm is a distance function between two equal-length sequences,
there are |Wt| = n and |Wt,k| = |Pk| for k ∈ [1, b]. In addition, we denote by
Lp[i : j] the normalized Euclidean distance between P [i : j] and Wt[i : j].
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Problem Statement: Given a pattern P which contains b number of sub-
patterns P1, P2, · · · , Pb with specified thresholds ε1, ε2, · · · , εb. For a stream S,
consecutive subpatterns matching is to find all sliding windows Wt on S, where
it holds that Lp(Pk,Wt,k) � εk for k ∈ [1, b] (denoted by Wt,k ≺ Pk).

4 Equal-Length Block

In this section, we first sketch a novel representation, Equal-Length Block (ELB),
together with Lower Bounding Property, which enables us to process several
successive windows together while guaranteeing no false dismissals. After that,
we will introduce two ELB implementations in turn.

ELB representation is inspired by the following observation. To avoid false
dismissals, a naive method is to slide the window over the stream by one element
and calculates the corresponding distance, which is computationally expensive.
However, one interesting observation is that in most real-world applications, the
majority of adjacent subsequences of time series might be similar. This heuristic
gives us the opportunity to process multiple successive windows together. Based
on this hint, we propose Equal-Length Block (ELB), and the corresponding lower
bounding property.

ELB divides the pattern P and the sliding window Wt into several disjoint
w-length blocks while the last indivisible part can be safely discarded. The block
division is independent of pattern subpatterns. A block may overlap with two
or more adjacent subpatterns, and a subpattern may contain more than one
block. The number of blocks is denoted by N = �n/w�. Based on the concept of
block, P and Wt are split into P̂ = {P̂1, · · · , P̂N} and Ŵt = {Ŵt,1, · · · , Ŵt,N}
respectively, where P̂j(or Ŵt,j) is the j-th block of P (or Wt), that is, P̂j =
{p(j−1)·w+1, p(j−1)·w+2, · · · , pj·w}, similarly for Ŵt,j . As shown in Fig. 2(b), we
set w = 3, thus P and Wt are divided into 5 blocks. Based on blocks, each pattern
block P̂j is represented by a pair of bounds, upper and lower bounds, which are
denoted by P̂u

j and P̂ l
j respectively. Each window block Ŵt,j is represented by a

feature value, denoted by Ŵ f
t,j .

It is worth noting that the ELB representation is only an abstract format
description, which doesn’t specify how to compute upper and lower bounds of
P̂j and the feature of window Ŵt,j . We can design any ELB implementation,
which just needs to satisfy the following lower bounding property:

Definition 1. (Lower Bounding Property): given P̂ and Ŵt, if ∃ i ∈ [0, w),
Wt+i is a result of consecutive subpatterns matching of P , then ∀j ∈ [1, N ],
P̂ l
j � Ŵ f

t,j � P̂u
j (marked as Ŵt,j ≺ P̂j).

We first provide our matching algorithm based on ELB which satisfies lower
bounding property before introducing our ELB implementation. Instead of pro-
cessing sliding windows one-by-one, lower bounding property enables us to pro-
cess w successive windows together in the pruning phase. Given N number of
window blocks {Ŵt,1, · · · , Ŵt,N}, if anyone in them (e.g. Ŵt,j) doesn’t match
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its aligned pattern block (P̂j correspondingly), we could skip w consecutive win-
dows, Wt,Wt+1, · · · ,Wt+w−1, together. Otherwise, the algorithm takes these
w windows as candidates and calculate exact distances one by one. The lower
bounding property enables us to extend the sliding step to w while guaranteeing
no false dismissals. The critical challenge is how to design ELB implementation
which is both computationally efficient and effective to prune sliding windows.

4.1 Element-Based ELB Representation

In this section, we present the first ELB implementation, element-based ELB,
denoted by ELBele. The basic idea is as follows. According to our problem
statement, if window Wt matches P , for any subpattern Pk and corresponding
Wt,k, their Lp-Norm distance holds that:

Lp(Wt,k, Pk) � εk (1)

It’s easy to infer that any element pair pi together with st,i, which falls into the
k-th subpattern, satisfies that:

|st,i − pi| � εk (2)

In other words, if st,i falls out of the range [pi − εk, pi + εk], we know that Wt

cannot match P .
Based on this observation, we construct two envelope lines for pattern P , as

illustrated in Fig. 3(b). The upper line U = {U1, U2, · · · , Un} and the lower line
L = {L1, L2, · · · , Ln} are defined as follows, 1 � i � n:

{
Ui = pi + εk

Li = pi − εk
(3)

The envelope guarantees that if st,i falls out of [Li, Ui], we know that Wt cannot
match P .

Now we consider how to construct ELB implementation satisfying the lower
bounding property, i.e., how to construct upper/lower bounds of pattern block
and the feature of window block so that we could prune w number of successive
windows together. We show the basic idea with an example in Fig. 3(a). Assume
w = 3 and N = 5. At the sliding window Wt, element st,9 aligns with p9.
Accordingly, in Wt+1 (or Wt+2), st,9 aligns with p8 (or p7). Obviously, if st,9
falls out of all upper and lower envelopes of p9, p8 and p7, these 3 corresponding
windows can be pruned together. Note that st,9 is the last element of block Ŵt,3,
and only in this case, all three elements of P aligning with st,9 belong to a same
pattern block P̂3. Based on this observation, we define P̂u

j , P̂ l
j and Ŵ f

j as follows:

⎧
⎪⎪⎨

⎪⎪⎩

P̂u
j = max

0�i<w
(Uj·w−i)

P̂ l
j = min

0�i<w
(Lj·w−i)

Ŵ f
t,j = last(Ŵt,j) = st,j·w

(4)
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Fig. 3. (a) The element st,9 aligns with p9, p8 and p7 at Wt,Wt+1 and Wt+2 respectively.
(b) P̂u

j and P̂ l
j are constructed by U and L.

As shown in Fig. 3(b), for each pattern block, its upper and lower bounds are set
to the maximum and minimum of its two envelope lines respectively. It’s obvious
that ELBele satisfies the lower bounding property.

4.2 Subsequence-Based ELB Representation

In this section, we introduce the second ELB implementation, subsequence-based
ELB, denoted by ELBseq. Compared to ELBele, ELBseq has a tighter bound
which brings higher pruning power, although it is a little costlier on computing
features of window blocks.

Different from ELBele which uses the tolerance of the whole subpattern to
constrain one element pair, in ELBseq, we use the same tolerance to constrain a
w-length subsequence. Referring to [10], given two sequences X = (x1, · · · , xw)
and Y = (y1, · · · , yw), it holds that:

w |μx − μy|p �
w∑

i=1

|xi − yi|p (5)

where μx and μy are the mean values of X and Y . This theorem allows us to
construct upper/lower envelope with the mean value of the subsequence.

Consider two w-length subsequences P [i′ : i] and Wt[i′ : i] where i′ = i−w+1
(i′ > 0 so i � w). We first consider the case that all elements in P [i′ : i]
(or Wt[i′ : i]) belongs to only one subpattern (like Pk) and the corresponding
subwindow (like Wt,k). If Wt,k matches Pk, referring to Eq. 1, we know that:

Lp(P [i′ : i],Wt[i′ : i])p =
i∑

j=i′
(pj − st,j)p � εpk (6)

We denote by μP [i′:i] and μWt[i′:i] that the mean value of P [i′ : i] and Wt[i′ : i]
respectively. By combining Eqs. 5 and 6, we have:

|μP [i′:i] − μWt[i′:i]| � (
1
w

εpk)
1/p (7)
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We construct the envelope of pattern P as follows, w � i � n:
{

Ui = μP [i′:i] + ( 1
wεpk)

1/p

Li = μP [i′:i] − ( 1
wεpk)

1/p
(8)

Now we consider the case that the interval [i′ : i] overlaps with more than
one subpattern. Suppose P [i′ : i] overlaps with Pkl

, Pkl+1, · · · , Pkr
. Due to the

additivity of the p-th power of Lp-Norm, we deduce from Eq. 6 that:

Lp(P [i′ : i],Wt[i′ : i])p =
i∑

j=i′
(pj − st,j)p �

kr∑

k=kl

εpk (9)

By combining Eqs. 5 and 9, we have that:

|μP [i′:i] − μWt[i′:i]| � (
1
w

kr∑

k=kl

εpk)
1/p (10)

We denoted the right term as θseq(i) and provide the general case of the pattern
envelope as follows, w � i � n:

{
Ui = μP [i′:i] + θseq(i)
Li = μP [i′:i] − θseq(i)

(11)

Note that Eq. 8 is the special case of Eq. 11.
The construction of upper and lower bounds are very similar to ELBele, while

the feature of window block is adopted to the mean value. We show the basic
idea with an example in Fig. 4(a). At the sliding window Wt, the subsequence
Wt[7 : 9] aligns with P [7 : 9]. Similarly, in Wt+1 (or Wt+2), this subsequence
aligns with P [6 : 8] (or P [5 : 7]). According to Eq. 11, we know that if the mean
value of Wt[7 : 9] falls out of all upper and lower bounds of P [7 : 9], P [6 : 8] and
P [5 : 7], these 3 corresponding windows can be pruned together. Based on this
observation, we give the formal implementation of ELBseq as follows:

⎧
⎪⎪⎨

⎪⎪⎩

P̂u
j = max

0�i<w
(Uj·w−i)

P̂ l
j = min

0�i<w
(Lj·w−i)

Ŵ f
t,j = mean(Ŵt,j) = μWt[(j−1)·w+1 : j·w]

(12)

Note that, the upper and lower bounds of P̂1 are meaningless according to the
definition of the envelope of ELBseq.

Figure 4(b) provides an example of ELBseq implementation. For clarity, we
only illustrate the bounds of P̂3. The lower bound P̂ l

3 is set to the minimum of
L7, L8 and L9 and covers 3 successive windows Wt,Wt+1 and Wt+2.
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Fig. 4. (a) The subsequence Wt[7 : 9] aligns with P [7 : 9], P [6 : 8] and P [5 : 7] at
Wt,Wt+1 and Wt+2 respectively. (b) P̂u

j and P̂ l
j are constructed by U and L.

4.3 Complexity Analysis

We first analyze ELBele. For each block Ŵt,j , the time complexities of comput-
ing feature and determining Ŵt,j ≺ P̂j are both O(1). Therefore, the amortized
pruning cost of ELBele is O(1/w). Its space complexity is O(N) = O(�n/w�).
Although ELBele is very efficient, it constrains one element pair with the tol-
erance of the whole subpattern, which makes the envelope loose. Its pruning
effectiveness is better when thresholds are relatively small, or pattern deviates
from the normal stream far enough.

ELBseq calculates the mean value of each window block with O(w) and
determining Ŵt,j ≺ P̂j with O(1). Considering a window block appears in several
consecutive sliding windows, we store feature values in memory to avoid repeated
calculation. Therefore, the amortized pruning cost of ELBseq is reduced to O(1).
Same as ELBele, the space complexity of ELBseq is O(N).

5 Experimental Evaluation

In this section, we first describe datasets and experimental settings in Sect. 5.1
and then present the results of performance evaluation comparing the brute-force
approach Sequential Scanning (SS), the classic method MSM [10] and our two
approaches based on ELBele (ELB-ELE) and ELBseq (ELB-SEQ) respectively.
As presented in Sect. 2, although there are many works after MSM addressing
time series similarity matching, most of them focus on utilizing the commonality
among multiple patterns to build indexes, but not speeding up the problem of
matching stream with a list of consecutive subpatterns.

Our goal is to:

– Demonstrate the efficiency of our approach on all Lp-Norm distance and
different thresholds.
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– Demonstrate the robustness of our approach on different pattern occurrence
probabilities.

– Investigate the impact of block size on performance which helps to choose the
appropriate parameter.

5.1 Experimental Setup

The experiments are conducted on both synthetic and real-world datasets.

Datasets. Real-world datasets are collected from a wind turbine manufacturer,
where each wind turbine has hundreds of sensors generating streaming time
series with sampling rate from 20 ms to 7 s. Our experimental datasets are from 3
turbines. In each turbine, we collect data of 5 sensors including wind speed, wind
deviation, wind direction, generator speed and converter power. We replay the
data as streams with total lengths of 108. For each stream, a pattern containing
consecutive subpatterns with thresholds is given by domain experts.

Synthetic datasets are constructed based on UCR Archive [7]. UCR Archive
is a popular time series repository, which includes a set of datasets widely used in
time series mining researches [2,8,10]. To simulate patterns with various lengths,
we select four datasets, Strawberry (Straw for short), Meat, NonInvasiveFa-
talECG Thorax1 (ECG for short) and MALLAT whose time series lengths are
235, 448, 750 and 1024. Referring to [10], for each selected UCR dataset, we
choose the first time series of class 1 as the pattern and divide it into several
subpatterns according to its shape and trend. Numbers of subpatterns of these
four datasets are 5, 6, 8 and 7 respectively.

Concerning threshold of synthetic datasets, we define threshold ratio as the
ratio of the average threshold to the value range of this subpattern. Given a
threshold ratio and a subpattern Pk, the Lp-Norm threshold of Pk is defined by:

εk = |Pk|1/p × threshold ratio × value range(Pk)

In practice, we observe that threshold ratio being larger than 30% indicates that
the average deviation from a stream element to its aligned pattern element is
more than 30% of its value range. In this case, the candidate may be quite
different from given pattern where similarity matching becomes meaningless.
Therefore, we vary threshold ratio from 5% to 30% in Sect. 5.2.

As for streaming data of synthetic datasets, referring to [2], we first generate
a random walk time series S with length of 108 for each UCR dataset. Element
si of S is si = R +

∑i
j=1(μj − 0.5), where μj is a uniform random number in

[0, 1]. As value ranges of the four patterns are about −3 to 3, we set R as the
mean value 0. Then we randomly embed some time series of class 1 of each UCR
dataset into corresponding steaming data with certain occurrence probabilities.

Algorithm. We compare our approaches to SS and MSM [10]. SS matches
the sliding window one by one. For each window, SS calculates the Lp-Norm
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distances between all subpatterns and subwindows sequentially. In our scene, we
let MSM build hierarchical grid index for each subpattern. For fair comparison,
we adopt its batch version where the batch size is equal to ELB block size. We
perform three schemes of MSM to choose the best one: stop the pruning phase
at the first level of grid index (MSM-1), the second level (MSM-2), or never early
stop the pruning phase (MSM-MAX).

Default Parameter Settings. There are three parameters for datasets: dis-
tance function, threshold and pattern occurrence probability. There is a parame-
ter for our algorithm: block size. The default distance function is set to L2-Norm
(i.e., Euclidean distance). The default value of threshold ratio and pattern occur-
rence probability are set to 20% and 10−4 respectively. We set the default value
of block size to 5% of the pattern length. The impact of all above parameters
will be investigated in following sections.

Performance Measurement. We regard the brute-force method SS as the
baseline and measure the speedup of MSM and our algorithms. Streams and
patterns are loaded into memory in advance where data loading time is excluded.
To avoid the inaccuracy due to cold start and random noise, we run all algorithms
over 10,000 ms and average them by their cycle numbers. All experiments are
run on 4.00 GHz Intel(R) Core(TM) i7-4790K CPU, with 8 GB physical memory.

5.2 Performance Analysis

In this set of experiments, we first show our algorithms together outperform
compared approaches on both synthetic and real-world datasets under different
Lp-Norm functions and provide detailed analysis. After that, we perform experi-
ments on diverse synthetic datasets by varying threshold ratio and pattern occur-
rence probability to demonstrate efficiency and robustness of our approaches.
At last, we also evaluate the impact of block size for optimal parameter
determination.

Performance Under Different Lp-Norm Distance. In this section, we
report experiments of ELB-ELE and ELB-SEQ comparing to SS and MSM under
different distance functions. We performed these experiments on all real-world
and synthetic datasets using Lp-Norm where p = 1, 2, 3,∞.

Figure 5 shows the experimental results. For real-world datasets, the results
are similar among different turbines, so we only illustrate the wind turbine 1. Our
algorithms show a great advantage over MSM and SS. As the distance function
varies from L1-Norm to L∞-Norm, the advantage of our approaches over other
methods gets larger.

We provide the experimental detail on a wind generator dataset in Table 1.
The first two columns present the total and pruning time on each sliding window.
Column pruning power is the percentage of pruned windows. Comparing to
SS, our algorithms could prune numerous windows in the pruning phase, while
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Fig. 5. Speedup vs. Lp-Norm. s1: wind speed, s2: wind deviation, s3: wind direction,
s4: generator speed, s5: converter power.

Table 1. The detail statistics on wind generator dataset

Algorithm L1-Norm L∞-Norm

Total
time (ns)

Pruning
time (ns)

Pruning
power (%)

Total
time (ns)

Pruning
time (ns)

Pruning
power (%)

ELB SEQ 13.04 0.52 97.16 8.78 0.41 97.43

ELB ELE 146.10 0.51 6.48 10.78 0.30 96.18

MSM ONE 556.39 543.15 98.20 691.11 667.34 87.05

MSM TWO 548.42 547.40 99.89 670.51 668.73 99.21

MSM MAX 549.43 548.94 99.96 682.40 682.00 99.97

SS 562.84 - - 413.34 - -

SS has to perform exact matching for each sliding window, resulting in high
time cost. Regarding MSM, its pruning power gets better from MSM-ONE to
MSM-MAX (increased from 98.20% to 99.96% in L1-Norm). Although MSM is
more accurate, our pruning phase is much more efficient than MSM. Concerning
ELB SEQ and MSM TWO (the best one among three MSM schemes) on L1-
Norm, our approach has slightly lower pruning power (97.16% vs. 99.89%), yet
much more efficient pruning cost (0.52 vs. 547.40). On the whole, ELE SEQ has
an advantage of more than one order of magnitude over MSM TWO.

Now we analyze the different performance of ELB on different Lp-Norm. From
L1-Norm to L∞-Norm, the pruning effectiveness of ELB gets better. Although
ELB-ELE spends less time on pruning phase than ELB-SEQ, its pruning power
is very low at L1-Norm (6.48%) due to its too loose bound. As p increases, its
bound becomes tighter and performance gets better. In the case of L∞-Norm,
its performance has been flat with, and even outperformed ELB-SEQ on several
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datasets, as shown in Fig. 5(d) and (h). In contrast to ELB-ELE, ELB-SEQ is
efficient under all Lp-Norms.

Impact of Distance Threshold. In this section, we compare the performance
of ELB-ELE, ELB-SEQ, SS and MSM under different thresholds. We vary thresh-
old ratio from 5% to 30% on synthetic datasets, as described in Sect. 5.1.

(a) UCR Straw (b) UCR Meat (c) UCR ECG (d) UCR MALLAT

Fig. 6. Speedup vs. threshold ratio

(a) UCR Straw (b) UCR Meat (c) UCR ECG (d) UCR MALLAT

Fig. 7. Speedup vs. pattern occurrence probability.

The result on synthetic datasets is shown in Fig. 6. The performances of
our two algorithms are very similar in synthetic datasets. Both ELB-ELE and
ELB-SEQ outperforms MSM and SS by orders of magnitude. As the threshold
gets larger, the speedups of ELB-ELE and ELB-SEQ decrease slightly. Never-
theless, our algorithms keep their advantage over other approaches even though
threshold ratio increases to 30%.

Impact of Pattern Occurrence Probability. In this section, we further
examine the performance by varying the pattern occurrence probability. When
the probability becomes lower, more windows are filtered out in the pruning
phase. In contrast, when the probability becomes higher, more windows enter
the post-processing phase. A good approach should be robust to these situations.

We perform this experiment on synthetic datasets and vary the occurrence
probability over {10−3, 5 × 10−4, 10−4, 5 × 10−5, 10−5}. The largest probability
is set to 10−3 since in this case, the stream of MALLAT, which has largest
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pattern length, has been filled up by embedded UCR time series. As illustrated
in Fig. 7, Our algorithms outperform MSM and SS in all examined probabilities.
Furthermore, our algorithms show a larger speedup when the pattern occurrence
probability becomes lower. This experiment demonstrates the robustness of our
algorithms over different occurrence probabilities.

Impact of Block Size. The block size is an important parameter affecting the
pruning power of our approach. In this experiment, we investigate the effect of
block size by comparing ELB-ELE, ELB-SEQ and MSM on both synthetic and
real-world datasets. We vary the ratio of the block size to the pattern length
from 1% to 40%. A ratio being larger than 50% indicates that the entire pattern
contains only one block, which makes ELE-SEQ meaningless.

(a) UCR Straw (b) UCR Meat (c) wind direction (d) generator speed

Fig. 8. Speedup vs. block ratio.

Figure 8 shows the experimental results on some representative synthetic and
real-world datasets while the rest are consistent. A too small or too large block
size results in performance degradation. In detail, a smaller block size leads
to a tighter bound for each block which improves the pruning effectiveness.
Nevertheless, a small block size, corresponding to a small sliding step, results in
more block computation and higher cost in the pruning phase. A larger block
size may bring less block computation, but a looser bound meanwhile. The loose
bound incurs degradation of the pruning effectiveness. In practice, our algorithms
achieve the optimal performance when the block ratio is about 5% to 10%.

6 Conclusion

In this paper, we propose a new problem, called “consecutive subpatterns match-
ing”, which allows users to specify a pattern containing a list of consecutive
subpatterns with different distance thresholds. We present a novel ELB repre-
sentation to prune sliding windows efficiently under all Lp-Norms. We conduct
extensive experiments on both synthetic and real-world datasets to illustrate
that our algorithm outperforms the baseline solution and prior-arts.
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Abstract. We witness a rapid increase in the number of data streams
due to Cloud Computing, Big Data and IoT development. We would like
to access and share data streams using a data service approach. In this
paper, we propose a flexible continuous data service model and a continu-
ous data service composition algorithm for answering queries across data
streams. Service operation instance is modeled as a view defined on data
streams composed of two parts: a data part and a time synchronization
part. The composition algorithm extends the traditional Bucket algo-
rithm to find the contained rewriting of user query on views satisfying
the containment relationship of both data part and time synchronization
part. We also present use case and experimental studies indicating that
the approach is effective and efficient.

Keywords: Data streams · Query rewriting · Data services
Service composition · Continuous query

1 Introduction

Web services technology is a general medium for sharing data and functionality
and enabling cross-organization collaboration for enterprise and web systems.
Data services [1] or data-providing services [2] are a kind of services that allow
query-like access to an organization’s data sources. Although the existing data
processing framework provides composition models or query languages which
allow us to retrieve desired data from multiple data sources, data services pro-
vide a flexible, controlled and standardized approach to access or query an orga-
nization’s data sources without exposing its databases directly [3]. Furthermore,
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when queries require to access data sources across organizations, several services
can be composed to generate a response [4–6].

To bring the benefits of data services, we would like to access and share data
streams using a data service approach. However, data streams are very different
from traditional data sources. This makes the problem of data service modelling
and composition challenging for accessing and sharing data streams. Firstly,
unlike traditional snap-shot queries over data tables, queries over data streams
are continuous. A continuous query is issued once and remains active for a long
time. The answer to a continuous query is constructed progressively as new input
stream tuples arrive [7]. Once executed, data services for queries on data streams
need to continuously return results and consider temporal constraints. Secondly,
for queries over multiple data sources, traditional data providing services are
often modeled as parameterized views over data schemas [3,4]. Based on the
service model, services can be composed using a query rewriting approach to
answer queries over multiple data sources [3,4]. Because most of the stream
query language do not support views [7], how to model data services as views
over data streams is not trivial. And because queries for data streams need to be
updated continuously, the traditional query rewriting approach is inapplicable
to rewrite query over data streams directly.

In this paper, we introduce a data service model for continuous query over
data streams, and call it “continuous data services”. Service operation inputs
are not modeled as fixed query conditions. They are arbitrary query conditions
modeled as a set of optional attributes of the underlying data model and condi-
tion predicates. “sliding window” is introduced into the service model to describe
the temporal feature of services. The instance of the service operation can be
modeled as a view defined on data streams. Based on the continuous data service
model, we propose a continuous data service composition algorithm for answering
queries across data streams. It improve the Bucket algorithm [8] for “answering
queries using views” on persistent relation data to find the contained rewriting
by checking the containment relationship between time synchronization part of
the query and the rewriting. We describe an implementation, a use case and
provide a performance evaluation of the proposed approach.

The rest of this paper is organized as follows: In Sect. 2, we motivate the
need for conjunctive queries across data streams, and discuss the underlying
challenges. In Sect. 3, we describe the continuous data service model. In Sect. 4,
we propose the continuous data service composition algorithm. In Sect. 5, we
describe our implementation and evaluate our approach. We overview related
work in Sect. 6. We provide concluding remarks and future research outlook in
Sect. 7.

2 Motivation

In this section, we describe a motivating scenario we use throughout the paper.
Various systems for maritime freight logistics collect data like vessel trajecto-
ries, vessel basic information and so on. Among these data sources, the data
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stream vesseltraj(mmsi, long, lat, speed) records trajectory points of a ves-
sel, where mmsi is the Maritime Mobile Service Identity, long and lat is the lon-
gitude and latitude of the vessel location, and speed is the vessel’s speed. The
relation data vesselinfo(mmsi, imo, callsign, name, type, length, width,
po-sitionType, eta, draught)records static information of ships including the
mmsi, the International Maritime Organization (imo) code, call sign, name, type,
length, width, the Estimated Time of Arrival (eta), draught of the vessel. The
relation data vesseltravelinfo(mmsi, dest, source) records the destination
and the identification of the position message source.

These systems are subordinate to different management domains and won’t
expose full data access to their data sources directly. They provide access to the
set of services with constraints described in Table 1. The underlying data streams
of DS1 are vesselinfo and vesseltraj. They have constraints that mmsi must
be greater than 3000 and speed greater than 50 km with a time-based sliding
window of window size 5s and slide size 1s. The underlying data streams of DS2
is vesselinfo and vesseltraj. The time window of the stream has window size
5s and slide size 2s. The underlying data stream of DS3 is vesseltraj. This data
stream has constraints that the speed must be less than 40 km with window size
5s and slide size 2s. The underlying data streams of DS4 are vesseltravelinfo
and vesseltraj. This service has constraints that the mmsi must be less than
2000 with window size 5s and slide size 2s. We also express the underlying query
of the services as conjunctive queries extended with time-based sliding window
semantics. Note that join predicates in this notation are expressed by multiple
occurrences of the same variables.

Table 1. Continuous data services in the ocean data query scenario

Service Functionality and constraints Formal expression of the underlying
data streams

DS1 Query on those vessels whose
mmsi number greater than 3000
and speed greater than 50 km
with a time-based sliding window
of window size 5s and slide size 1s

vesselinfo(mmsi, imo, callsign, name,
type, length, width, positionType, eta,
draught), vesseltraj(mmsi, long, lat,
speed), mmsi > 3000, speed ≥ 50 km,
wsize(5), slide(1)

DS2 Query on those vessels with a
time-based sliding window of
window size 5s and slide size 2s

vesselinfo(mmsi, imo, callsign, name,
type, length, width, positionType, eta,
draught), vesseltraj(mmsi, long, lat,
speed), wsize(5), slide(2)

DS3 Query on those vessels whose
speed is less than 40 km with a
time-based sliding window of
window size 5s and slide size 2s

vesseltraj(mmsi, long, lat, speed),
speed < 40 km, wsize(5), slide(2)

DS4 Query on those vessels whose
mmsi number less than 2000 with
a time-based sliding window of
window size 5s and slide size 2s

vesseltravelinfo(mmsi, dest, source),
vesseltraj(mmsi, long, lat, speed),
mmsi < 2000, wsize(5), slide(2)
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Those services with sliding window constraints continuously push output to
the service consumer once the consumer creates a connection with the service
producer. The output is the query results in range of the configured window size
that will be updated every slide size. So we call these services “continuous data
services”.

Now assume the following query asks for vessels that have outstanding speed
over a defined sliding window. Note we express the query as conjunctive queries
extended with time-based sliding window semantics. And note that join predi-
cates in this notation are expressed by multiple occurrences of the same variables.

Q(mmsi, draught, dest, speed):-vesselinfo(mmsi, imo, callsign, name,

type, length, width, positionType, eta, draught), vesseltraj(mmsi, long,

lat, speed), vesseltravelinfo(mmsi, dest, source), speed ≥ 40 km,

wsize(5), slide(4)

Obviously service DS3 is not useful to satisfy this query request, because
DS3 has information only on vessels whose speed is less than 40 km whereas
we are interested in vessels which has speed greater than 40 km. Although DS1
is relevant to user query, it only has mmsi information and need to retrieve
destination information by invoking other service like DS4. However, DS1 only has
information on vessels with mmsi greater than 3000, and DS4 has information on
vessels with mmsi less than 2000, meaning DS1 and DS4 are disjoint. So service
DS1 is also not useful to answer this user query. We are left with one possible
plan to use the services to answer this query. Firstly invoke DS2 to retrieve the
list of vessels with a sliding window of window size 5s and slide size 2s. Then
invoke DS4 where mmsi is less than 2000 with a sliding window of window size
5s and slide size 2s. Results from both services are joint to answer Q. Note
that the sliding window constraints of DS2 and DS4 is different, we also need to
judge if the joint results can satisfy the query requirement. Also note that the
results only vessels with mmsi less than 2000, which can satisfy the query is not
equivalent with it. Note in this example, there is only one service composition
plan satisfying the query, but there may be multiple plans in other examples.

3 Model of Continuous Data Service

3.1 Data Model

We use the synchronized relation model for describing the contents of data
stream sources. The data model includes:

– S and �(S). S is a tagged stream with the format of “Tag〈Attrs〉ts”, where
Tag can be either insert (+), update (u), or delete (-) and ts indicates the
time at which the modification takes place. For detailed explanation of what
is a tagged stream, please refer to [7]. Any tagged stream S has a correspond-
ing time-varying relation �(S). The relation is continuously modified by S’s
tuples.
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– Attrs. Attrs are the attributes of the time-varying relation �(S).
– ts. ts is the time point where the relation �(S) is modified by the underlying
S’s tuples.

– sync. sync synchronized stream is a special tagged stream “+〈timepoint〉ts”,
where timepoint represents a time point which is the only attribute of sync.
Synchronized stream is a kind of tagged stream. So it also has a corresponding
time-varying relation �(sync).

– �sync(S). �sync(S) is a synchronized relation of any arity. Figure 1 illustrates
a synchronized stream of �sync2(Vesseltraj). For traditional persistent data
(e.g. data tables in a database), the tuples are reflected at any time. Here we
denote the synchronized stream associated with the traditional persistent
data as sync0.

Fig. 1. A synchronized stream of �sync2(Vesseltraj)

DataModel of �Sync(S) can be represented as a tuple: 〈Attrs, SyncUnits〉,
where Attrs = {attr} is a set of attributes, SyncUnits is the subscript index of
the synchronization stream sync. For example, the value of SyncUnits is 2 for
sync2, 3 for sync3 and 4 for sync4 etc.

3.2 Continuous Query Containment

Query containment and equivalence provide a formal framework to compare
different queries in a data integration system. In relational databases, a query
Q1 is said to be contained in Q2, denoted by Q1 ⊆ Q2, if and only if Q1(D) ⊆ Q2(D)
for any database instance D. Q1 is equivalent to Q2 if and only if Q1 ⊆ Q2 and
Q2 ⊇ Q1.

In stream processing system, a continuous query over n tagged streams
S1...Sn is semantically equivalent to a materialized view that is defined by a
SQL expression over the time-varying relations �(S1)...�(Sn)[7]. The big dif-
ference between time-varying relations and traditional relations is that the time-
varying relations have arbitrary refresh conditions. The solution is to isolate the
time synchronization streams out of the continuous query expression. Then the
containment relationship is tested from two aspects: (1) test data containment
using traditional query containment test method, and (2) test synchronization
containment.
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For example, if we want to check the containment relationship of a query Q
and a data service instance of DS′ like this:

Q(mmsi, draught, dest, speed):-�(T), I, TRAVEL, speed ≥ 40,

(currTime-5) < TS ≤ currTime, sync4

and

QDS′(mmsi, speed, imo):-�(T), I, speed ≥ 30,

(currTime-5) < TS ≤ currTime, sync1

We first test containment of time part of QDS′ and Q. The synchronization
relation part of Q (i.e. �(sync4)) is contained in the synchronization relation
part of QDS′ (i.e. �(sync1)). Because any tuples satisfied by the selection and
projection conditions of Q also satisfied QDS′ , the data part of Q is contained in
data part of QDS′ . We can conclude that Q is contained in QDS′ .

3.3 Continuous Data Service

We model a continuous service as a view defined on the underlying data streams.
Any service subscribes one or multiple data streams or database tables, which
is defined as Subs. Any service has zero to multiple operations in which inputs,
outputs, window range, window slide size should be defined. Input and output
parameters are from the attributes of the underlying synchronized relations cor-
responding with Subs. Every service instance publishes one tagged stream on
message queue.

Such service can be expressed as follows: DS = 〈ID, SubS, PubS, Ops〉, where:

– ID is the unique identity of the service.
– SubS is the stream set of the service subscribed from message queue.
SubS = {〈DSsub, DataConstrs, TimeConstr〉}, where DSsub is a tagged stream
defined in Section II. A Data model 〈Attrs, SyncUnits〉 is corresponding
with a time-varying relations �(DSsub). DataConstrs and TimeConstr are
the constraints applied on content and time of the tagged stream.

– PubS is the stream set of the service published to message queue. PubS =
{〈DSpub, DataConstrs, TimeConstr〉}, where DSpub is a tagged stream. It is
corresponding with a time-varying relation �(DSpub).

– DataConstrs = {DataConstr}, where DataConstr = 〈attr, condop,
constant〉. attr is the attribute of �(DSsub) for SubS and �(DSpub) for
PubS. condop can be one of the condition operator from >, =,<,≥, 	=,≤.
constant is a constant value.

– TimeConstr = 〈range〉, where range is range size of the sliding window of
synchronized relation. Note that tumbling window and hopping window are
both a special form of the sliding window. For tumbling window, range size is
equal to slide size. And for hopping window, range size is a multiple of slide
size.



112 G. Wang et al.

– Ops = {〈inputs, outputs, range, slide〉} is the service operations.
inputs = {input} are a set of attributes of Ssub, the corresponding condition
operator >, =,<,≥, 	=,≤ and constants. outputs = {output} are a set of
output parameters of the service operation. range and slide are the time
constraint of the service request. A SyncSQL expression can be generated
from Ops.

The elements of the input and output set Ops are determined when a service is
instantiated. PubS of a service are also determined when a service is instantiated.

Given a specific user inputs, the service has an associated instance. A service
instance can also be defined as a query view on the underlying time-varying
relations. We use the notation of conjunctive queries extended with synchro-
nization stream to express the view. A data service DS = 〈ID, SubS, PubS, Ops〉
is transformed into a view:

DS(X̄):-�(Ssub1), ...,�(Ssubn), c1, ..., cn, tc, sync1 ∩ ... ∩ syncn

where X̄ is all the attributes from all Ssub elements of SubS, �(Ssubi) are the
underlying time-varying relation corresponding with all the elements of SubS.
Note that not all subscribed streams have data constraints applied on them. If
Ssub1 has no data constraint, we can add a data constraint c on it: -∞ ≤ c ≤ +∞.
Thus all subscribed streams have data constraints represented as c1, ..., cn.
tc is the intersection of all the window range size constraints applied on them.
synci is the synchronization stream applied on �(Ssubi).

A service instance of S = 〈ID, SubS, PubS, Ops〉 can be transformed into a
view like this:

DS(X̄)inst:-�(Ssub1), ...,�(Ssubn), c1, ..., cn, cop1, ..., cops, tc,

sync1 ∩ ... ∩ syncn,∩sync1 ∩ ... ∩ synct

cop1, ..., cops are data constraints from inputs of service operations. sync1∩
... ∩ synct are synchronization stream from the time constraints of service
operations. tc is the intersection of all the window range size constraints applied
on �(Subi) and from service operations.

4 Data Services Composition for Answering Continuous
Query

When services and service instances are transformed into views on time-varying
relations, given a conjunctive query Q, we need to find the service composition
plans to answer it. The problem of answering conjunctive query using views
for traditional persistent data is NP-complete [9]. Bucket algorithm or minicon
algorithm are the approaches to drastically reduce the number of rewritings we
need to consider for a query given a set of views. So we can improve the Bucket
algorithm [8] or MiniCon algorithm [10] to find the service composition plans to
answer query Q. Here we give the improved Bucket algorithm. The main idea of
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Bucket algorithm is that we first consider each subgoal in the query in isolation,
and determine which views may be relevant to that subgoal. Thus the number
of query rewritings that need to be considered can be drastically reduced. In
order to support finding relevant continuous data services or service instances, we
improve the Bucket algorithm by adding the synchronization stream containment
judgement and determining the service operation inputs and outputs after the
relevant services are found.

The first step is shown in Algorithm 1. It constructs for each subgoal g in the
query a bucket of relevant service or service instance atoms. In this algorithm,
we check the containment relationship between the query sub-goal and the view
transformed from the service or service instance.

Algorithm 1. Create buckets
Input: conjunctive query Q in two parts:

data part Qd of the form:
Qd(X̄):-�(R1)(X̄1), ...,�(Rn)(X̄n), c1, ...,

cn, tc

synchronization part SyncQ of the form:
SyncQ = Sync1 ∩ ...Syncn;
a set of views V transformed from services S and service instances Sinst;

Output: list of buckets
1: for 1 ≤ i ≤ n do
2: Initialize Bucketi to ∅
3: end for
4: for each subgoal gi in Q do
5: for each V ∈ V do
6: Let V be of the form:

V(Ȳ):-�(S1)(Ȳ1), ...,�(Sm)(Ȳm),

d1, ..., dm, sync1 ∩ ... ∩ syncm ∩ sync1∩
... ∩ synct

7: if �(SyncV) ⊆ �(Syncq) then
8: if gi is an element of subgoals set of V then
9: if each x ∈ Xi is also an element of Ȳ then

10: if the data constraints of V satisfy the data constraints of Q then
11: add V into Bucketi
12: end if
13: end if
14: end if
15: end if
16: end for
17: end for

The second step considers all the possible combinations of services and ser-
vice instances. Each combination should include one of the service or service
instance atoms from every bucket. Generate the candidate composition plans by
checking if each combination is satisfied (if there exists no self-contradictory in
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the same combination). Keep those plans that is satisfied and delete those that
is unsatisfied.

Algorithm 2. Check whether a candidate plan is equivalent
Input: candidate services and service instances composition plan p(Ȳ);

conjunctive query Q(X̄);
a set of executable equivalent services and/or service instances composition plan
eqCompPlans

Output: the updated result of eqCompPlans
1: Let the set of subgoals of p in the form of goalsOfp, and the subgoals of each plan

eqPlan in eqCompPlans in the form of goalsOfeqPlan
2: Denote the intersection of data constraints of p and Q as D∩ C, where D is the data

constraints set of p and C is the data constraints set of Q
3: Get all of the elements exist in set D ∩ C that don’t exist in set of data constraints

of p, denoted as A = D∩C\D. This set is the additional data constraints that should
be added on p in order to be equivalent to Q

4: if Q ⊆ p then
5: if there exists no plan eqPlan in eqCompPlans satisfying the condition that

goalsOfeqPlan ⊂ goalsOfp then
6: if there exists services (not service instance) in p then
7: for each subgoal g of p do
8: if g is a service then
9: if D ∩ C 
= ∅ then

10: A = genInstance(Ȳ ∩ X̄, A, sync)

11: else
12: genInstance(Ȳ ∩ X̄, ∅, sync)
13: end if
14: end if
15: end for
16: if A = ∅ then
17: delete the redundant plan than p and add p into eqCompPlans

18: end if
19: else
20: if p ⊆ Q then
21: delete the redundant plan than p and add p into eqCompPlans

22: end if
23: end if
24: end if
25: end if

In the example explained in Sect. 2, the returned results contain only ves-
sels with mmsi less than 2000, which is not equivalent with the query. In fact,
the service composition plans that can answer user query can be divided into
two categories: the equivalent composition plans and the contained composition
plans. The former is equivalent with the query and the latter is contained in
the query. There exists a maximally contained composition plan among the con-
tained composition plans. So if a continuous query can be supported by mutiple
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composition plans, we can choose the equivalent or maximally contained com-
position plan among the candidates.

The third step searches the equivalent service composition plans or the con-
tained service composition plans. Take the equivalent service composition plan
as the example, the basic idea is to consider each candidate composition plan p,
check if p ≡ Q when there exists no service atom in p. If there exists services and
there exists data constraint atoms C and synchronization constraint atoms sync
such that Q∧C ≡ Q and they can be used as the additional constraints on service
when we instantiate it. The concrete steps for considering each p are shown in
Algorithm 2.

In steps 4 and 20, when we judge the containment relationship between the
plan and query, time synchronization containment relationship is checked first.

In step 5, we check if the equivalent composition plan that is more concise
than the current plan p already exists. If it already exists, the current plan is
abandoned. In steps 10 and 12, we use the additional data constraints A to instan-
tiate a service. A method genInstance(output, dataConstr, timeConstr) is
called to determine the input and output parameters of the service operation.
In this method, the output parameter value is taken as the output parameter
value of the service operation. In step 10, we take additional data constraints in
A as the input parameter values of the service operation. The time constraints of
Q are taken as the time constraints of the service operation. In this method, we
update A with the unsatisfied data constraints and returned. After the loop 7, all
the services in p are instantiated. If the attributes of all the additional data con-
straints are also the data attributes of �(gsub), it means that all the additional
data constraints can be applied on the services, in other words, the services can
satisfy the data constraints after instantiation. Otherwise, the services can not
satisfy the data constraints and the service composition plan is abandoned.

In step 20, if Q ⊆ p, Q ⊇ p and all atoms of p are service instances, delete the
redundant plan than p (in other words, the redundant plan rePlan satisfying
the condition that goalsOfrePlan ⊃ goalsOfp) from the result set and add p
into equivalent result set.

To search the contained composition plan, if Q ⊇ p and all atoms of p are
service instances, add p into equivalent result set directly. If Q is not contained in
p and sub-goals of Q overlap with that of p, and there exist service atoms in p, we
should instantiate the services. Check whether all the additional constraints can
be applied on the services when instantiating them. If they can’t be applied, this
means that the services can not satisfy the data constraints after instantiation,
in other words, the plan is not executable. We omit the pseudo code of this
algorithm for searching contained composition plans due to limited space.

5 Implementation and Evaluation

In this section, we first describe an implementation of our approach. Then we
provide a use case and experimental evaluation.
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5.1 Implementation

The architecture of our system is shown in Fig. 2. Firstly, relational databases
and data stream sources should be registed and managed. When a query is
posed, the query rewriter module uses the information from service registry to
decide the candidate service composition plan. The service executor module is
responsible for invocation and join/compose the service execution results.

Every service is implemented as a Spark Streaming job. The underlying data
streams are subscribed by the service using Kafka. And the outputs of a service
are published to Kafka, which can be subscribed by later services. For those Web
based clients, we expose continuous data service as REST-like API over HTTP
protocol based on a Web-based push technology - Sever-Sent Events (SSE) [11].
It allows the service to push query results to clients continuously. The client
sends a request to a service and opens a single long-lived HTTP connection.
The service then sends data continuously to the client without further action
from the client.

Fig. 2. Architecture of the implementation.

5.2 Case Study

In this section, we take the example introduced in Sect. 2 as the use case to
introduce how our approach works.

Assume the outputs of Ops of an instance of DS1 are {mmsi, imo} and no
input parameters. range and slide are 5 and 1 separately.

This instance of DS1 can be expressed as:

DS1inst(mmsi, speed, imo):-T(mmsi, long, lat, speed), I(mmsi, imo,
callsign, ...), mmsi > 3000, speed ≥ 50, 5, sync1
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In a similar way, the instance of DS2 is:

DS2inst(mmsi, draught, speed):-T(mmsi, long, lat, speed), I(mmsi, imo,
..., draught), 5, sync2

The instance of DS3 can be expressed as follows:

DS3inst(mmsi, speed):-T(mmsi, long, lat, speed), speed < 40, 5, sync2

Assume there is no instance for service DS4, so it is express as:

DS4(mmsi, speed, dest, source, long, lat):-TRAVEL(mmsi, dest,
source), T(mmsi, long, lat, speed), mmsi < 2000, 5, sync2

Query is expressed as Sect. 2. This query has sub-goals �(T), I and TRAVEL.
According to our algorithm, the steps to answer user query are as follows:
In the first step the algorithm creates buckets for each sub-goal of Q. The

contents of bucket for sub-goal �(T) are: DS1inst,DS2inst, and DS4. DS3inst is
not in this bucket because the interpreted predicates of the view and the query
are not mutually satisfiable. The contents of bucket for sub-goal TRAVEL are:
DS4(mmsi, speed, dest, long, ...). The contents of bucket for sub-goal I are:
DS2inst(mmsi, draught, speed).

In the second step of the algorithm, we combine elements from the buckets.
The first combination, involving the first element from each bucket, yields the
rewriting

Q1(mmsi, draught, speed, dest):-DS1inst(mmsi, speed, imo
′
), DS4(mmsi, speed,

dest
′
, long

′
), DS2inst(mmsi, draught, speed)

However, while both DS1inst and DS4 are relevant to the query in isolation,
their combination is guaranteed to be empty because they cover disjoint sets of
vessel identifiers.

Consider the second elements in the left bucket yields the rewriting

Q2(mmsi, draught, speed, dest):-DS2inst(mmsi, draught, speed),

DS4(mmsi, speed, dest
′, lo-ng′, ...), DS2inst(mmsi, draught, speed)

Then we remove the first sub-goal, which is redundant, and generate service
instance with the additional data constraints speed ≥ 40. The output parame-
ters of DS4 instance operation are set to be variables from attributes of the under-
lying data stream which are also in the head of Q, which is mmsi, dest, speed.
The inputs parameters are speed ≥ 40.

So we would obtain Q2, which is the only contained composition plan the
algorithm finds.
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5.3 Experimental Evaluation

In this section, we give an experimental evaluation of our approach. The goal of
the experimental evaluation is to analyze the factors that affect the performance
of the service composition algorithm.

The service composition algorithm experiments were run on a computer with
Intel(R) Core(TM) i5-2400 CPU 3.10 GHz and 8 GB memory. In order to exper-
imentally evaluate our approach, we generated a set of continuous data services
and service instances. We use three representative queries including the query
example shown in Sect. 2. According to 80/20 rule (also known as Pareto princi-
ple), The method guarantees that the number of services and service instances
that are related to user queries are about 20% of the total services and service
instances generated. For each query, we generated various number of data ser-
vices and data service instances from 100, 200, ... to 500. Figure 3 plots the total
and average time to generate all composition plans for each query against the
number of data sources. We can observe that the average generation time per
composition plan is within 10ms, which is acceptable in real application.

Fig. 3. Total and average time to generate compostion plans.

6 Related Work

Most of the research work on web service composition focus on traditional Effect-
Providing services or application-logic services instead of Data-Providing services
or data services. The traditional application-logic service composition algorithms
are inapplicable and inefficient to data services that all share the same business
function (i.e. data query) and have no side-effects [4].

Data integration approach is often adopted for the purpose of data services
composition. Some use the query rewriting techniques as the composition algo-
rithm [2–5,12]. Others use visual mashup languages or constructs as composition
approach [13,14]. However, the data services model and composition algorithm in
these work are inapplicable to data stream sources and data stream integration.
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There are some related research work from data integration area such as Info-
Master [15] and Information Manifold [8]. Our work differs with these works in
many ways. First, these works target toward resolving specific queries given a set
of data sources, whereas in our work the focus is on constructing a composition
of services that is independent of a particular input value. The composite service
can be reused to answer a set of queries instead of a specific queries. Second,
compared to previous query rewriting algorithms [10,16] that were proposed for
the traditional static relational data model, our composition algorithm is based
on data stream model. As far as we know, our continuous data service model is
the first service model to support data stream query and our algorithm is the
first to address the problem of composing continuous data services to support
data stream integration.

There are some related research work on service modeling for data streams
such as [17,18], however, the work cannot be used to solve the problem of query
across various data sources directly. Some work has addressed the problem of
supporting views in data stream management systems [7], however, the work is
limited only to answering specific queries based on a set of data sources. Our work
propose a continuous data service model which provides a flexible, controlled and
standardized approach to access or query data stream. We address data stream
integration problem by providing service composition approach. The composite
service can access a set of conditions as input instead of limiting to answering
specific queries.

7 Conclusion

In this paper, we presented an approach for conjunctive query on data streams by
composing continuous data services. We introduce a flexible continuous data ser-
vice model with continuous query as service operation. Service operation instance
is modeled as a view defined on data streams in which the data part and time
synchronization part are separated from each other. A continuous data service
composition algorithm is introduced for answering queries across data streams.
An experimental study is provided to evaluate the performance of our approach.
As a future work, we plan to address location concerns when composing contin-
uous data services.
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Abstract. As one of the key features of temporal dependency, time lag
plays an important role in analyzing sequential data and predicting the
developing trend. Huge number of temporal mining approaches have been
successfully applied in many applications, like finance, environmental sci-
ence and health-care. However, these approaches cannot effectively deal
with a more realistic scenario, where more than one types of time lags are
existed in sequences and all of them are fluctuating due to the inevitable
noise. In this paper, we study the problem of discovering multiple time
lags of temporal dependencies from event sequences considering the ran-
domness property of the hidden time lags. We first present a parametric
model as well as an EM-based solution for solving this problem. Then
two approximate approaches are proposed for efficiently finding diverse
types of time lags without significant loss of accuracy. Extensive empiri-
cal studies on both synthetic and real datasets demonstrate the efficiency
and effectiveness of our proposed approaches.

Keywords: Time lag · Temporal dependency · Event mining

1 Introduction

In the past several decades, temporal data mining has been widely applied
in many domains, such as finance [8], computer science [19], environmental
science [2]. The goal of temporal data mining is to discover hidden tempo-
ral dependencies, unexpected trends or other subtle relationships in sequential
data [15,27]. As an important task in temporal data mining, temporal depen-
dency discovery has been extensively studied for identifying hidden interactions
and mining useful information from sequential data. Specifically, suppose A and
B are two types of items, a temporal dependency for A and B, written as A → B,
could be discovered when the occurrence of B depends on the occurrence of A.

Traditional temporal mining methods either utilize some statistical tech-
niques [18] or employ a predefined window [6] to discover temporal dependencies.
The main drawback of these previous methods is that they cannot discover inter-
leaved dependencies, since all of these methods are based on an assumption that
c© Springer International Publishing AG, part of Springer Nature 2018
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every item A only has a dependency relation with its first following B. However,
interleaved dependencies are very common in real application scenarios, where
an item A could have a dependency relation with any following B. For example,
as shown in Fig. 1, an event High CPU Utilization Alert can be triggered by an
event Abnormal Process in system management domain. Since sometimes one
abnormal process may be solved very quickly after it appeared, it would not
trigger any High CPU Utilization Alert. Hence, this abnormal process (at time
point 38) does not have the corresponding High CPU Utilization Alert. Two
well-designed algorithms are presented in [28] for mining interleaved temporal
dependencies from sequential data with satisfactory time cost and space cost.

Fig. 1. Two types of time lags for temporal dependency Abnormal Process → High
CPU Utilization Alert.

Time lag, one of the key features of temporal dependency, plays an essential
role in interpreting the cause of discovered temporal dependencies and predicting
the evolving trends for future data. Existing work related to time lag discovery
suppose the time lag between two correlated events is constant and fluctuations
can be ignored [9,28]. However, because of fluctuation, noise and missing data,
there are more than one types of time lags are existed in event sequences in the
real application scenarios, and each of them involves randomness property.

As summarized in [30], taking randomness of time lag into consideration
in temporal dependencies discovery is a big challenge, since (1) the number of
time lag candidates in large sequential datasets are tremendous, and (2) the
hidden time lags may oscillate with noise formed in data collection process. The
model proposed in [30] assumes the distribution of time lags follows a normal
distribution N (μ, σ2). Nevertheless, in practice, we find that the interleaved
time lags often follow multiple distributions in one temporal dependency rather
than a single normal distribution. As shown in Fig. 1, there are two types of time
lags, i.e., L1 and L2, between event Abnormal Process and High CPU Utilization
Alert. The reason caused this situation is that event Abnormal Process represents
many different kinds of abnormal processes, and each of them may have different
effects on the system with respect to CPU utilization.

In order to overcome the limitations of existing approaches and deal with
real application scenarios better, in this paper, we study the problem of mining
multiple time lags with randomness property for temporal dependencies. The
contribution of this paper is summarized as follows:
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– Investigates the problem of discovering multiple types of fluctuating inter-
leaved time lags, and proposes a parametric model to formulate the random-
ness of time lags for temporal dependencies between pairwise events.

– Presents an EM-based solution for mining multiple types of time lags. More-
over, for efficiently mining diverse time lags from large event sequences, two
approximate algorithms are proposed with satisfactory performance.

– Conducts extensive experiments on different synthetic datasets and several
real datasets. The experimental results demonstrate that all our proposed
algorithms could find multiple types of time lags effectively.

The rest of the paper is organized as follows. Section 2 summarizes the exist-
ing work for temporal data mining. We formulate the problem for discovering
multiple time lags from fluctuating events in Sect. 3. A parametric model as
well as an EM-based solution are presented in Sect. 4. Section 5 presents two
approximate algorithms with better efficiency. Extensive experimental results
are reported in Sect. 6. Finally, we conclude this paper in Sect. 7.

2 Related Work

Temporal dependency discovery approaches have been extensively applied in
numerous real applications with various dataset types. Transaction data, com-
monly known as market basket transactions [27], is a collection of transactions,
in which each transaction contains a set of items. Transaction data arises in
many business related applications, including marketing promotions, advertise-
ments and recommendation systems. Discovering temporal dependencies from
transaction data is equivalent to finding frequent itemsets satisfying some pre-
defined thresholds. Many algorithms are proposed for efficiently mining frequent
itemsets from transaction datasets, such as GSP [26], FreeSpan [10], and Pre-
fixSpan [22].

Mining temporal dependencies from time series data has been recognized
as one of the key tasks in time series analysis [29]. For time series data, each
record is a series of measurements taken over time. A temporal dependency,
often called causal relationship, among time series can be seen as a correlation
on multiple time series, which states one time series is significantly helpful to
predict the future trend of another time series [7,20]. In particular, if time series
A causes time series B, then the prediction of future value of B can be improved
by utilizing A and B together. In recent years, the problem of identifying causal
relationship between various time series has attracted widespread attention, and
two effective frameworks has became very popular in temporal dependency infer-
ence, i.e., Dynamic Bayesian Network [13,25] and Granger Causality [3,4].

Event data, converted from textual logs which generated by modern comput-
ing systems, has been widely used in system and network management related
applications [11]. Differing from time series where the value of data item is con-
tinuous, event data denotes the discrete data item values [16]. An event sequence
is an ordered finite sequence, in which each element is a tuple consisting of one
instance of some event and its corresponding timestamp. A lot of research on
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event mining are proposed for discovering relationships of events [21,23]. Our
work also focuses on event data, where only the timestamps of items are avail-
able and no other information can be utilized to find temporal dependencies.

Unlike previous work which can only discover fixed time lags, in this paper,
we proposed a parametric model to extract the probability distributions of time
lags. Considering probability distributions could precisely depict the randomness
property of time lags, our method provides more flexibility and usability than
fixed ones.

3 Problem Definition and Formulation

3.1 Problem Definition

Let Ω be the event space comprises all possible events. An event sequence S over
Ω is a finite ordered list with the form S = e1e2 . . . eu. Every element ei ∈ S is
a tuple ei = (Ei, ti) indicating an instance of event Ei ∈ Ω occurred at time ti.

Assume A be a type of event coming from event space Ω, SA be a subsequence
of S which only consists of instances of event A. Because all elements in SA

belong to the same type of event, we simplify SA as a sequence of timestamp,
i.e., SA = a1a2 . . . am, where ai is the ith timestamp of event A’s instances.
Similarly, for another type of event B, we denote SB = b1b2 . . . bn.

If there is a temporal dependency A →L B, for any associated timestamp
pair ai and bj , there always exists a relation bj = ai + L indicating an event A
occurred at ai is followed by an event B occurred at bj after a time lag L.

Theoretically, the time lag L should be a constant. However, the noise is
inevitable during data collection process because of various factors, such as miss-
ing records, incorrect values and recording delay. In order to discover underlying
temporal dependencies effectively, in this paper, the time lag L is defined as

L = μ + ε (1)

where μ is a constant representing the true time lag and ε is a random variable
indicating the noise. Hence, time lag L is a random variable.

In our practice, we find that the time lag L often follows a more compli-
cated distribution rather than a single normal distribution supposed in previous
work [30]. Without loss of generality, we assume this complicated distribution
is consisted of K different probability distributions, and we want to discover
multiple time lags following various probability distributions from datasets. Def-
inition 1 provides the formal description of the problem we studied in this paper.

Definition 1. For two event types A and B, suppose there are K different tem-
poral dependencies A →L1 B,A →L2 B, . . . , A →LK

B existed in a given dataset,
our goal is to learn a time lag L, which is consisted of K types of time lags
L1, L2, . . . , LK following K different probability distributions, respectively.
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3.2 Problem Formulation

Given two timestamp sequences SA and SB, suppose the distribution of time lag
L is determined by the parameters Θ, which are independent from the occur-
rences of event A. Therefore, the problem of discovering the temporal depen-
dency A →L B is equivalent to learning the distribution of time lag L through
the maximum likelihood parameters Θ defined by

Θ̂ = arg max
Θ

P (Θ|SA,SB). (2)

Applying Bayes’ theorem to Eq. (2), we have

ln P (Θ|SA,SB) = lnP (SB|SA,Θ) + lnP (SA) + lnP (Θ) − ln P (SA,SB). (3)

In Eq. (3), only lnP (SB|SA,Θ) and lnP (Θ) are related to the parameters
Θ. Therefore, the problem of learning time lag L can be simplified into the
problem of solving the following equation

Θ̂ = arg max
Θ

ln P (SB|SA,Θ). (4)

4 Modeling and Solution

4.1 Time Lag Modeling

For a temporal dependency A →L B, we assume that every occurrence of event
B is only determined by event A and time lag L, i.e., every occurrence of event
B is mutually independent with each other. Therefore,

P (SB|SA,Θ) =
n∏

j=1

P (bj |SA,Θ). (5)

For every timestamp bj , a latent variable zijk is introduced to model the
relation between bj and one timestamp of event A, denoted as ai. Specifically,

zijk =

{
1, the ith event A implies the jth event B following kth distribution;
0, otherwise.

(6)
Hence, the relation between bj and sequence SA can be represented by a

latent matrix Zj = {zijk}m×K , in which only one element equals to 1 and all
other elements are 0. If zijk = 1, then cell (i, k) in Zj equals 1.

Based on the definition of latent variable zijk, the distribution of latent
matrix Zj and the conditional distribution of bj given Zj are shown as:

P (Zj) =
m∏

i=1

K∏

k=1

P (zijk = 1)zijk . (7)
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P (bj |Zj,SA,Θ) =
m∏

i=1

K∏

k=1

P (bj |zijk = 1, ai,Θ)zijk . (8)

Therefore, the joint distribution P (bj ,Zj|SA,Θ) can be written as follow:

P (bj ,Zj|SA,Θ) =
m∏

i=1

K∏

k=1

{P (bj |zijk = 1, ai,Θ) × P (zijk =1)}zijk . (9)

So the marginal distribution of bj is obtained by

P (bj |SA,Θ) =
∑

Zj

P (bj ,Zj|SA,Θ) =
m∑

i=1

K∑

k=1

P (bj |zijk = 1, ai,Θ)×P (zijk = 1).

(10)
Combining Eqs. (4), (5) and (10) together, the log-likelihood function can be

rewritten as:

ln P (SB|SA,Θ) =
n∑

j=1

ln
m∑

i=1

K∑

k=1

P (bj |zijk = 1, ai,Θ) × P (zijk = 1). (11)

For simplicity, let πijk =P (zijk =1), where 0 ≤ πijk ≤ 1,
∑m

i=1

∑K
k=1 πijk =1.

Time lag L is consisted of K different time lags L1, L2, . . . , LK with K dif-
ferent probability distributions. For any one temporal dependency A →Lt

B
(1 ≤ t ≤ K), we have Lt = μt + εt. Based on the Central Limit Theorem, we
assume that noise ε follows the normal distribution with zero-mean value, i.e.,
εt ∼ N (0, σ2

t ), where σ2
t represents the variance of current distribution. Since μt

is a constant, the distribution of Lt can be expressed as Lt ∼ N (μt, σ
2
t ). There-

fore, time lag L can be regard as a mixture of K different normal distributions
with various μ and σ2. Hence, if zijk = 1, then

P (bj |zijk = 1, ai,Θ) = P (bj |ai, μk, σ2
k) = N (bj − ai|μk, σ2

k). (12)

Consequently, Eq. (11) can be expressed as follow:

ln P (SB|SA,Θ) =
n∑

j=1

ln
m∑

i=1

K∑

k=1

πijk × N (bj − ai|μk, σ2
k). (13)

Based on Eq. (13), the problem described in Eq. (4) is equivalent to the fol-
lowing equation

(μ̂k, σ̂2
k) = arg max

μk,σ2
k

k∈{1,...,K}

n∑

j=1

ln
m∑

i=1

K∑

k=1

πijk × N (bj − ai|μk, σ2
k)

s.t. for every j ∈ [1, n],
m∑

i=1

K∑

k=1

πijk = 1. (14)
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4.2 Maximization

Equation (14) can be solved by expectation-maximization (EM) algorithm [5],
since it is one kind of mixture model. For applying EM algorithm, consider
the expected log likelihood function of complete data {SB,Θ} at first. Suppose
parameters Θ is already known and Z = {zijk}m×n×K is a latent matrix. Then,
based on Eqs. (7) and (8), we have

P (SB,Z|SA,Θ)=
n∏

j=1

P (bj |Zj,SA,Θ) × P (Zj)=
m∏

i=1

n∏

j=1

K∏

k=1

{N (bj−ai|μk, σ2
k) × πijk

}zijk .

(15)
Therefore, the expectation can be expressed as

Q(Θ,Θ′) � E[lnP (SB,Z|SA,Θ)]=
m∑

i=1

n∑

j=1

K∑

k=1

E[zijk] ×
{
lnN (bj−ai|μk, σ2

k) + lnπijk

}
.

(16)
where Θ′ is the parameters estimated on the previous iteration. Using rijk to
denote E[zijk], i.e.,

rijk � E[zijk] = P (zijk = 1|SA,SB,Θ′) =
π′

ijk × N (bj − ai|μ′
k, σ′2

k )
∑m

i=1

∑K
k=1 π′

ijk × N (bj − ai|μ′
k, σ′2

k )
.

(17)
Then Eq. (16) can be rewritten as

Q(Θ,Θ′) =
m∑

i=1

n∑

j=1

K∑

k=1

rijk × {
ln N (bj − ai|μk, σ2

k) + lnπijk

}
. (18)

The parameters μk, σ2
k and πijk can be learned by maximizing Q(Θ,Θ′).

μk =
1

Nk

m∑

i=1

n∑

j=1

rijk(bj − ai) (19)

σ2
k =

1
Nk

m∑

i=1

n∑

j=1

rijk(bj − ai − μk)2 (20)

πijk =
1
n

n∑

j=1

rijk (21)

where Nk =
∑m

i=1

∑n
j=1 rijk.

Using this EM-based algorithm, called EMLag algorithm, we can find the
maximum likelihood estimates of parameters Θ. Algorithm 1 states the pseudo-
code of EMLag algorithm with the time complexity O(rmnK), where m and n
are the number of timestamps of event A and B, respectively, K is the number
of distributions and r indicates iteration number.
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Algorithm 1. The EMLag algorithm
1: procedure EMLag(SA, SB) � |SA|=m, |SB|=n
2: Initialize r′

ijk = 1
mK

, choose μ′
k and σ′2

k randomly. � Initialization
3: while TRUE do
4: Evaluate rijk by Eq. (17). � Expectation
5: Update μk and σ2

k by Eqs. (19) and (20), respectively. � Maximization
6: if parameters converge then � Convergence test
7: return μk and σ2

k � k = 1, 2, . . . , K
8: end if
9: end while

10: end procedure

5 Time Lag Discovery

Based on EMLag algorithm, we design two approximate algorithms for min-
ing multiple time lags from large datasets more efficiently. Both of these two
algorithms could achieve good efficiency without significant loss of accuracy.

5.1 winEMLag Algorithm

Intuitively, suppose a temporal dependency A → B is exist, timestamp bj is
more likely to be implied by timestamp ai if the index i is close to the index j
rather than far from j. Hence, for mining various temporal dependencies from
large event sequences efficiently, for every bj , we only select a subset of event A’s
timestamps whose index is close to j for calculation instead of all of them.

Algorithm 2. The winEMLag algorithm
1: procedure Expectation(SA, SB, λ) � λ is predefined, 0 < λ ≤ 1
2: l = λ × m � l is the window length, |SA| = m
3: left = 0, right = 0 � Index bound
4: for each bj do
5: if j − l/2 ≥ 0 and j + l/2 ≤ m − 2 then
6: left = j − l/2, right = left + l − 1
7: else
8: if j − l/2 ≥ 0 then
9: right = m − 1, left = m − l

10: else
11: left = 0, right = l − 1
12: end if
13: end if
14: Select ai into wj where i ∈ [left, right].
15: Evaluate rijk utilizing set wj .
16: end for
17: end procedure
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Let wj be a subset of A’s timestamps used to estimate the relation between
event A and bj . Our goal is to fill in wj so that, compared with remainders,
the indexes of A’s timestamps in wj are much closer to j. Inspired by Sliding
Window Model [1], we design an approximate algorithm winEMLag for speeding
up the mining process of EMLag algorithm. Algorithm 2 shows the Expectation
procedure of winEMLag algorithm. In each iteration, the update operations in
Maximization procedure of winEMLag algorithm will also utilize each subset wj .

In winEMLag algorithm, parameter λ is a user-specified parameter represent-
ing the ratio between the length of window l and the length of event sequence.
Therefore, the length of window l can be calculated by l = λ × |SA|. Since the
size of each wj in winEMLag algorithm is much smaller than the size of sequence
SA in EMLag algorithm, winEMLag algorithm could achieve better efficiency.

5.2 appEMLag Algorithm

During each iteration of EMLag algorithm, we find that, for every specific dis-
tribution k, the responsibility rijk describing the likelihood that the ith event A
implies the jth event B following kth normal distribution, becomes smaller with
the deviation of bj −ai from the estimated time lag μk increasing. In other words,
rijk will close to 0 as |bj −ai −μk| becomes larger. Based on this observation, we
design an approximate algorithm for efficiently estimating parameters μk and
σ2

k by ignoring those rijk(bj − ai) and rijk(bj − ai − μk)2 with small rijk in both
Eqs. (19) and (20). Since in real application scenarios, the time spans of given
event sequences are very long, and most rijk are very small, the loss of accuracy
of this approximate method is acceptable.

We introduce two parameters ε and δ to help distinguishing retained part and
neglected part of rijk. Given bj , let εj be the sum of the responsibility rijk which
will be neglected, i.e., εj =

∑K
k=1

∑
{i|ai is neglected} rijk, and ε be the largest one

among all the εj , that is, ε = max1≤j≤n {εj}. In practice, parameter ε can be
predefined by users based on the application scenario.

Recall that in Eqs. (19) and (20), each pair of μk and σk are calculated by
their corresponding rijk. Therefore, for every bj , we suppose set Cjk includes all
retained rijk which will be used to estimate μk and σk. Since all timestamps of
event A are consecutive in ascending order, the index i for timestamps of event
A in set Cjk are also consecutive. Let δjk be the ratio of the sum of retained
rijk in set Cjk to the sum of all retained rijk for the given bj , and hence δ is a
n × K matrix filled in by all δjk. In each iteration, given bj , δjk can be updated
by the following equations:

AV Gjk �
∑

{rijk∈Cjk} rijk

|Cjk| , δjk =
AV Gjk∑K

k=1 AV Gjk

(22)

To guarantee the sum of neglected rijk is less than ε, for every bj , the sum
of retained rijk should be greater than 1 − ε, i.e.,

∑K
k=1 δjk ≥ 1 − ε. In order to

minimize the size of Cjk, we adopt a greedy way to select timestamps ai from
all timestamps of event A. Specifically, given bj and distribution k, we add ai
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into Cjk with its corresponding rijk in decreasing order until the summation of
rijk in Cjk is greater than δjk. Algorithm 3 describes how to find the minimum
and maximum indexes of ai in Cjk.

Algorithm 3. The greedyBound algorithm
1: procedure greedyBound(SA, bj , μ′

k, δ′
jk, ε)

2: t = bj − μ′
k

3: Locate the closest ai to t using binary search.
4: minjk = i, maxjk = i
5: prob = 0.0
6: while prob < δ′

jk × (1 − ε) do
7: if r(minj−1)jk ≥ r(maxj+1)jk then
8: i = minjk − 1
9: minjk = i

10: else
11: i = maxjk + 1
12: maxjk = i
13: end if
14: Add ai to Cjk.
15: prob = prob + rijk

16: end while
17: return minjk and maxjk

18: end procedure

Based on greedyBound algorithm, we present an approximate algorithm,
called appEMLag algorithm, to efficiently estimate parameters μk and σ2

k with-
out significant loss of accuracy. As described in Algorithm 4, the time cost of

Algorithm 4. The appEMLag algorithm
1: procedure appEMLag(SA, SB, ε) � ε is predefined, 0 < ε ≤ 1
2: Initialize δ′

jk = 1
K

, choose μ′
k and σ′2

k randomly. � Initialization
3: while TRUE do
4: for each bj do
5: for k ← 1, K do
6: Get minjk, maxjk by greedyBound. � Find the index bound of ai

7: end for
8: Evaluate rijk utilizing sets Cj1, . . . , CjK . � Expectation
9: end for

10: Update μk and σ2
k by Eqs. (19) and (20) within the � Maximization

bound, respectively, and update δjk by Eq. (22).
11: if parameters converge then � Convergence test
12: return μk and σ2

k � k = 1, 2, . . . , K
13: end if
14: end while
15: end procedure
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appEMLag algorithm is O(rnK(log m + t), where m and n are the number of
timestamps of event A and B, respectively, r indicates iteration number, K is
the number of distributions, and t is the average size of all Cjk. Since t � m
and log m � m, appEMLag algorithm is much faster than EMLag algorithm.

6 Empirical Study

This section presents empirical studies of our proposed algorithms on both syn-
thetic datasets and real datasets with respect to effectiveness and efficiency. To
demonstrate the performance of our proposed algorithms, we implement all of
them using Java 1.7, and execute them on a computer with Linux 2.6.32. This
computer is equipped with Intel(R) Xeon(R) CPU with 24 cores running at
speed of 2.50 GHz, and the total memory of it is 126G.

6.1 Synthetic Data

Synthetic Data Generation. In our experiments, we execute our proposed
algorithms on five different synthetic datasets. Parameters shown in Table 1
are utilized to generate synthetic datasets. Each dataset consists of two event
sequences SA and SB with same length, and we assume there are two types of
temporal dependency exist in each dataset. That is to say, K = 2. Moreover, we
use the exponential distribution to simulate the inter-arrival time between two
adjacent events [17]. The way of generating SA and SB is shown below.

Table 1. Parameters used for generating synthetic data

Name Description

N The number of events in one synthetic event sequence

K The number of types of time lag

βmin The minimum value for the average inter-arrival time β

βmax The maximum value for the average inter-arrival time β

μmin The minimum value for the true time lag μ

μmax The maximum value for the true time lag μ

σ2
min The minimum value for the variance of time lag

σ2
max The maximum value for the variance of time lag

1. Randomly choose parameters β from [βmin, βmax], μ1 and μ2 from
[μmin, μmax] and σ2

1 and σ2
2 from [σ2

min, σ2
max], respectively.

2. Generate N/2 timestamps for event A, where the inter-arrival time between
two neighbors follows the exponential distribution with parameter β.

3. For each timestamp ai of event A, the time lag is randomly generated accord-
ing to normal distribution with parameters μ1 and σ2

1 .
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4. Combine all the timestamps associated with their types to form two event
sequence SA1 and SB1 .

5. Repeat Steps 2–4 to generate another two event sequences SA2 and SB2 with
parameters μ2 and σ2

2 chosen in Step 1.
6. Merge SA1 and SA2 to form the sequence SA with timestamps in ascending

order, then merge SB1 and SB2 to form the sequence SB based on the indexes
of their corresponding ai.

In our experiments, we set βmin = 5, βmax = 50, μmin = 25, μmax = 100,
σ2

min = 5 and σ2
max = 400 to generate five synthetic datasets with different

parameter N . The number of events in sequence SA in these five synthetic
datasets are 0.5k, 1k, 2k, 10k, 20k, respectively. Note that there are only two
types of events we simulated in synthetic datasets. In practice, a real dataset
typically includes more than hundreds of events types. Therefore, we believe
20k events of two types is enough to represent the real application scenarios in
miniature.

Synthetic Data Evaluation. Since all of our proposed algorithms are based
on the EM algorithm, which cannot guarantee the global optimum [5], we define
a batch operation to avoid this problem as much as possible. Specifically, every
10 rounds execution of the algorithm with different initial parameters chosen at
random is regarded as a batch. For each batch, we choose the output with the
maximum likelihood among 10 rounds as the result of a batch. For each synthetic
dataset, we conduct five such batches on it, and calculated the average values
of the results of five batches as the final result. Table 2 shows the outcome of
experiments running EMLag, winEMLag, and appEMLag on such five synthetic
datasets with different parameters settings, respectively.

Each algorithm terminates execution when it satisfies one of the following
conditions: (1) it converges; (2) the number of iterations exceeds 500; or (3) the
differences of all learned parameters between two adjacent iterations are less
than 10−5. winEMLag algorithm takes one more parameter λ as its input, where
λ determines the length of windows used in the algorithm. In our experiments,
we set λ to 0.002, 0.02 and 0.2. Similarly, appEMLag algorithm has a prede-
fined parameter ε, which is used to calculate the proportion of the neglected
part during the parameter estimation of each iteration. In order to evaluate the
performance of appEMLag algorithm sufficiently, ε is set to 0.001, 0.01, and 0.1.
As shown in Table 2, we find that parameters μs learned by EMLag, winEMLag,
and appEMLag are quite close to the ground truth.

In addition, for evaluating the difference between the distributions of time
lags given by the ground truth and learned by our proposed algorithms shown in
Table 2, we introduce Kullback-Leibler (KL) divergence [14]. Figure 2 shows the
evaluation results with various sizes of dataset from 0.5k to 10k, respectively.
Here we can see, all proposed algorithms could effectively discovery the distri-
butions of time lags from event sequences. Moreover, compared with winEMLag,
appEMLag algorithm performs better in terms of KL divergence.
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Table 2. The experimental results for various synthetic datasets with sizes from 0.5k
to 20k. The values of μ and σ2 for “ground truth” are given in advance; μ and σ2

represent the average values of μ and σ2; LLopt is the maximum log-likelihood obtained
by running the algorithm; Entries with “N/A” are not available since they take more
than 7 days to get corresponding results.

(a) Size = 0.5k (b) Size = 1k (c) Size = 2k (d) Size = 10k

Fig. 2. The KL distance between the ground truth and the one learned by each algo-
rithm over different datasets.

The efficiency comparison between all proposed algorithms is measured by
the CPU running time. As shown in Fig. 3, the time cost of winEMLag and
appEMLag are much less than the EMLag algorithm. Since both parameter ε
and λ could effectively decrease the number of events needed to be considered
in each iteration, the efficiency of these two algorithms are satisfactory.

In summary, based on the extensively comparative experiments on synthetic
data, all of our proposed algorithms have the capabilities for finding time lags
from fluctuating events effectively. Two approximate algorithms winEMLag and
appEMLag could achieve a good balance in terms of accuracy and efficiency.
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Fig. 3. Time cost comparison

6.2 Real Data

We employ two real datasets collected from several IT outsourcing centers by
IBM Tivoli monitoring system [12] to verify the performance of our proposed
algorithms in real application scenarios. Each dataset is a collection of system
events generated by the automatic monitoring system running on servers. Most
of these events are system alerts triggered by some monitoring situations, for
example, the disk capacity is almost full. Table 3 lists the statistical information
of these two real event datasets.

Table 3. Real event datasets

Dataset Time span # of events # of types

Dataset1 32 days 100k 104

Dataset2 54 days 1, 000k 136

In order to discover the time lags of temporal dependencies more effectively
and efficiently, we choose appEMLag algorithm with parameter setting ε = 0.001
to deal with these two real event datasets. For increasing the probability of
acquiring the global optimal value, we run appEMLag in a batch of 30 rounds
with randomly initialize parameters every round. Table 4 provides a snippet of
some discovered temporal dependencies with multiple time lags from two real
datasets. We employ the metric signal-to-noise ratio [24], a concept in signal
processing domain, to evaluate the impact of noise relative to the expected time
lag. Signal-to-noise ratio (SNR) can be calculated as the ratio of the expect time
lag μ to the standard deviation σ. Here, we use the average value of SNR for
two discovered distributions as the measure.

The time lags of temporal dependency AIX HW Error →L NV390MSG
MVS discovered from dataset1 follow two types of normal distribution, one is
μ = 55.41 and σ2 = 0.39, and the other one is μ = 93.09 and σ2 = 0.32.
Compared with algorithms proposed in [30], which can only find one time lag
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Table 4. Snippet of discovered temporal dependencies with multiple time lags

Dataset Temporal dependency (μ1, σ2
1) (μ2, σ2

2) Ave.

SNR

Dataset1 AIX HW Error →L NV390MSG MVS (55.41, 0.39) (93.09, 0.32) 126.64

generic postemsg →L NV390MSG AO Platform Server (63.55, 9.34) (18.23, 16.37) 12.65

generic postemsg →L Sentry2 0 diskusedpct (219.38, 10.18) (146.27, 10.41) 57.05

NV390MSG AO Platform Server →L

Info set ticket number using eventid

(2.62, 4.49) (18.09, 2981.51) 0.78

MQ CONN NOT AUTHORIZED →L ITM NT Services (1912.78, 47.63) (88.16, 34.00) 146.14

Ticket Retry →L TEC Notice (360.59, 41.20) (269.17, 44.76) 48.21

TEC Error →L ITM KGB AVAILABILITY (468.66, 76.77) (434.34, 36.88) 62.50

Dataset2 Generic Source Event →L Candle Universal Messages (383.49, 104.02) (43.17, 24.80) 23.13

ITM Process →L PATROL APP (461.84, 0.93) (168.13, 2433.03) 241.16

ITM Process →L OV IF Down (36.66, 256.39) (244.63, 261.73) 8.71

with the expected time lag μ = 33.89 and the variance σ2 = 1.95, our method
discover one more type of time lag. Moreover, since the variances of these two
discovered time lags are quit small, these two time lags are very close to the true
time lags.

The temporal dependency generic postemsg →L Sentry2 0 diskusedpct has
two time lags with different expected time lags μ and similar variances σ2. Event
Sentry2 0 diskusedpct appears 2.5 or 3.5 min later after generic postemsg occurs.
Conversely, the expected time lags between ITM KGB AVAILABILITY and
TEC Error are similar, while the variances are different. Because the expected
time lags are very similar with each other, it is not trivial to capture two nor-
mal distributions from large datasets. Previous temporal dependency mining
methods only return one constant time lag as the result, due to they ignore the
existence of the noise and are not able to distinguish two very similar time lags.

The variances of the time lags between Info set ticket number using eventid
and NV390MSG AO Platform Server in dataset1 are quite large relative to the
expected time lags, since the average SNR is less than 1. For every single time
lag, the variance is still relative large. Hence, we think this is a week dependency
between these two events due to the discovered time lags contain too much noise.

We find the time lags of temporal dependency ITM Process →L

PATROL APP in dataset2 are quite different with other dependencies. Specifi-
cally, one time lag has large value of the expect time lag μ and small value of the
variance σ2, and the other one has small value of μ and large value of σ2. Both
of them are very difficult for previous inter-arrival pattern mining methods to
discover, where the inter-arrival time lags are small time lags. In our methods,
we use the expected time lag μ and its variance σ2 to find multiple interleaved
time lags.

7 Conclusions

In this paper, we study the problem of discovering multiple time lags of temporal
dependencies over event sequences, where the time lags between two pairwise
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events are fluctuating since the existence of the noise. To solve this problem, an
EM-based algorithm is proposed to capture the distribution of time lags. We also
propose two approximate algorithms for speeding up the time lag mining process.
Extensive empirical studies on both synthetic and real datasets demonstrate the
efficiency and effectiveness of our proposed algorithms.

In future work, we plan to implement distributed versions of our algorithms
for handling applications with massive data. Furthermore, mining dependencies
among multiple events other than pairwise events is also attractive to us.
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Abstract. Time series prediction is not easy to achieve high accuracy.
non-linear and unstable characteristics make the time series prediction
difficult. The variety of dataset make the prediction result debatable.
In order to solve this problem, in this paper we propose a deep learning
prediction method based on decomposition, reconstruction and combina-
tion, which combines ways of communication field. The model is decom-
posed by Empirical Mode Decomposition, Principal Component Anal-
ysis and Long Short-Term Memory networks (EPL below). And also,
the proposed interval EPL (IEPL below) improve and consummate the
EPL model. The EPL and IEPL experiment results will bring average
5% higher accuracy than that of existing research.

Keywords: Time series prediction · Deep learning · EPL · IEPL

1 Introduction

Time series prediction with high accuracy benefits the investors. In recent years,
the emergence of relevant approaches make the time series prediction for financial
market no longer out of reach. However, the prediction of financial market is still
a challenging subject because of the linkage between the global financial markets
and the particularity of the prediction time span. Generally, most of the data
in financial market are non-linear, non-stationary and multi-scale interval time
series with many noisy components. The difficulty is self-evident when choosing
the effective information set from complex intervals with numerous noises and
setting up the predicting mathematical model. Modern research approaches are
divided into linear and non-linear methods to deal with the above problems.
For linear ones, the ARIMA model is the most classical method, where non-
stationary time series are transformed into stationary time series by differential
operations. Yet, using differential data instead of actual data will reduce the
prediction accuracy. Overall, the above method is somewhat farfetched as well
as other linear approaches. For non-linear ones, the methods are able to better
deal with the data, such as Artificial Neural Network, Support Vector Machine
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Y. Cai et al. (Eds.): APWeb-WAIM 2018, LNCS 10988, pp. 138–147, 2018.
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and so on. Comparing with linear models, non-linear models are more prevalent
in financial markets prediction. In order to find a more accurate prediction model
of financial market time series, scholars have done a lot of efforts to build model
algorithms and a large number of neural networks based on different algorithms
are studied. Although results show that the “neural network-based” models have
made some achievements, they are still difficult to cover the global minimum,
which hardly do well in prediction. Therefore, this paper tries to find a new way
to combine the idea of decomposition, reconstruction and combination, where
the innovation devotes to improve the input and output of neural networks. The
ideal goal is to create a mathematical model that can effectively predict the
short-term trend of the time series of financial markets. At the same time, the
interval EPL (IEPL) combined model is further introduced. So as to effectively
make comparison between the combined model proposed in this paper and the
existing research models, ARIMA, GARCH and other traditional models are
used as contrast models in this paper. The selected dataset concludes S&P500
series, FTSE index, US dollar index and BDI index in the last 6 years. A variety
of financial derivatives are chosen to test the effectiveness of the method.

The reminder of the rest contests is organized as follows: Sect. 2 is related
work; Sect. 3 is the construction of the model; Sect. 4 is the experimental results
and analysis; Sect. 5 is the summary.

2 Related Work

There are many ways to make predictions. Usually, the original approach is the
“linear-based” method, which is suitable for stock index prediction, effective
market test and asset pricing model establishment. Some traditional models like
ARIMA or GARCHs provide a theoretical basis. However, most of these methods
are linear stationary models and need to be based on efficient market hypothesis.
Financial market time series itself is non-linear and non-stationary time data,
so that the results predicted by the above methods are more or less biased.

Gradually, “non-linear-based” methods domain the prediction field. non-
linear models have higher prediction accuracy than the “linear-based” meth-
ods, which have been already verified by related scholars. Hu et al. [1] proposed
deep belief network used for stock prediction, in the shallow layer, the Bayesian
network is used, and the Restricted Boltzmann Machine is used in depth. Cao
et al. [2] put forward to Autoencoder self-coder, which can be used to quan-
tify transactions of financial time series. Sezer et al. [3] proposed a Convolu-
tional Neural Network for visual pattern recognition, which was mainly applied
to automatic feature selection of time series. Pérez-Ortiz et al. [7] set up long
and short memory units and modified the memory function that was realized
by the switch of the door, so as to prevent the gradient from disappearing.
Although the “non-linear-based” models can alleviate the high degree of non-
convexity of multilayer neural networks to some extent, a large number of local
advantages might cause severe overfitting in practical applications. With the
continuous progress of technology, the prediction accuracy of a single model is
also questioned. Combined models explored a new way for thinking. Lahmiri [5]
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used wavelet neural networks to quantify the high frequency trading financial
calendar, and the empirical results showed that neural network can also effec-
tively depict the trend of financial calendar. Ismail et al. [6] optimized the ini-
tial input weights of BP neural network, and established the PSO-BP neural
network prediction model. The deviation between predicted and actual results
was reduced to negligible. The research results of the above scholars show the
combined model with combined structure in an effective method. Paralleling to
combined model’s research route, in some steps, the decomposition of time series
in signal processing provides us with another method for constructing input and
output of deep neural network model. For example, Empirical Mode Decomposi-
tion (EMD below) has a technical similarity to the establishment of multi-scale
or multi-level time series models. Furlaneto et al. [4] recently proposed a pre-
diction model based on EMD. The model first decomposed and transformed the
original data of time series, and thus multiple levels of decomposition sequences
were obtained. This is an interdisciplinary approach and is currently less involved
in the prediction of time series in financial markets. The method of separating
time series into stable term and influencing factor is worthy of reference. Based
on above steps, a new combined model prediction scheme is proposed in this
paper.

3 Model Construction

3.1 EMD for Financial Time Series

It is assumed that the time series of financial markets can be expressed as
X(t) = (XO(t), XH(t), XL(t), XC(t), XV (t)). The above five parameters rep-
resent the opening price time series XO(t), maximum price time series XH(t),
lowest price time series XL(t), closing price time series XC(t)and trading vol-
ume time series XV (t). The EMD method can be decomposed by the above
series dimensions. Because of the non-linear and non-stationary characteristics
of financial time series, the EMD is different from the traditional time series.
The traditional scheme directly transforms the original time series without pro-
gressive stripping, but the EMD is indirect. Usually, time series is decomposed
into Intrinsic Mode Function (IMF below) sequences and a trend term. By cor-
responding with the Hilbert Spectrum, multi-scale oscillation characteristics of
time series will be obtained. The IMF component explains the oscillation charac-
teristics reflecting different time scales of the original time series, while the trend
term reflects the long-term trend of the original time series, in which series are
monotonic and smooth. However, the above IMF component contains two con-
straints: One is that the number of zero crossing and extreme points need to be
the same, the other is that the IMF signals should be about the zero mean. Sup-
pose X(t) is the original signal, with the upper envelope and the lower envelope.
The upper envelope is connected with all local maxima by the three-order spline
interpolation curve, and the lower envelope is obtained by connecting three local
spline interpolation curves to all local minima. The whole concluded maxima and
minima are between the upper and lower envelopes. It is assumed the mean line
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of the upper and lower envelopes is m1(t). The h1(t) is the difference between
the original time series X(t) and the mean line m1(t):

h1(t) = X(t) − m1(t) (1)

If h1(t) satisfies the two conditions of the IMF at one point, then h1(t) is a
filtered IMF component, and vice versa. The signal characteristics of the IMF
must be satisfied that the absolute value for the total number of zeros and max-
ima of the signal are not more than one in the whole-time series. The average
between the upper and lower envelopes is zero mean the whole time. That is,
the upper and lower envelopes are locally symmetric at the zero axis. In general,
there are many clutters at the crest or trough of a filter, which cannot be com-
pletely screened. Therefore, the screening process needs to be repeated times.
The screening process is supposed to reach two goals, one is that the decom-
posed time series is transformed from maximum value to zero mean value, then
from zero mean to minimum value, and then the repeated waveform is used to
eliminate the clutters through the above shock process. The other is to make
the local peaks and valleys symmetric. At the next screening, h1(t) becomes the
original sequence. Let h11(t) be the difference between the new original sequence
h1(t) and the new mean line m11(t):

h11(t) = h1(t) − m11(t) (2)

Repeatedly iterating until k times, if the results meet the two characteristics of
the IMF sequence. The first component of input characteristics is C1:

C1 = h1k = h1(k−1) − m1k (3)

When the screening process stops, a precision requirement is needed. In this
paper, the ST coefficient is used as the threshold of the screening process, and
the formula is expressed as the threshold value of the screening process:

ST =
T∑

n=1

|h1(k−1)(t) − h1k(t)|2
h2
1(k−1)(t)

, k = 1, 2, 3... (4)

The ST value is determined by the empirical value. The magnitude of the signal
sequence elements is different, which depends on the value of ST . In the process
of repeated experiments, if the order of time series elements is 10, 0.3–0.5 is
more appropriate. As for the order of magnitude is 100, 1–3 is more appropriate.
When the ST value of the screening results is within or below the threshold
in five consecutive times, the screening can be stopped and the C1(t) takes as
an IMF component. If the first IMF component is selected, the C1(t) is deleted
from the original sequence, and the remaining sequence is r1:

r1 = X(t) − C1 (5)

According to the above operations, the IMF component in “n-term” results can
be selected as:

r2 = r1 − C2, · · · , · · · , rn = r(n−1) − Cn (6)
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A series of finite IMF components are obtained through the screening process.
When the trend item rn becomes a monotonic function, the IMF component
cannot be sifted out from the new sequence, and the whole EMD empirical
mode decomposition process finishes. Screening the IMFs can be considered as
features in the limited time scale from signal which are from high to low frequency
process. The below is the sum of the expression of EMD:

ST =
n+1∑

i=1

Ci =
n∑

i=1

Ci + rn (7)

where Cn+1=rn.

3.2 Interval EMD Application

The general EMD decomposition process uses the three-spline interpolation
function to calculate the upper and lower envelope. But for a financial series
X(t) = (XO(t), XH(t), XL(t), XC(t), XV (t)), the information is not used in all.
This paper will make extra use of these loss information, and proposes interval
EMD (IEMD below) algorithm on the basis of EMD algorithm.

As the Algorithm 1 below, for arbitrary time series X(t), all the local maxima
of the highest price XH(t) and all the local minima of the lowest price XL(t)
should be recognized. The three-spline interpolation method is used to calculate
the maximum envelope U(t) and the lower envelope L(t) of the lowest price.

The difference between EMD algorithm and IEMD algorithm is that when
the IEMD algorithm calculates the mean of the upper and lower envelope lines,
the upper envelope is calculated by the maximum value, and the lower envelope
is calculated by the minimum value. However, the EMD algorithm uses the upper
and lower envelopes of the closing price. The difference lies in the chosen of the
envelope.

Algorithm 1. Interval EMD decomposition algorithm.
Begin:

Step1: Make c(t)=x(t);

Step2: Caculate the U(t) and L(t), U(t)=Upper envelope curves of c(t), L(t)=Lower envelope curves

of c(t);

Step3: Caculate the m(t), m(t)=(U(t)+L(t))/2;

Step4: Make iteration of c(t), update the c(t)=c(t)-m(t);

Step5: Make a judgment whether the IMF condition is satisfied, if so, go to Step6 ; otherwise, go back

to Step2 and put iter=iter+1;

Step6: Output c(t) and update the x(t)=x(t)-c(t);

Step7: Make a judgment whether the IMF decomposition is completed(comp=M), if so, end the pro-

gram; otherwise, go to Step1 and put comp=comp+1.

3.3 PCA Dimensionality Reduction and LSTM

In the EPL, the signal will be extracted from the sliding window; while the
IMF sequence will be obtained by EMD decomposition. Each time in the EPL,
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the sequence expresses as a matrix. The first k principal component is selected
as the training sample data for input into LSTM after the PCA. According to
the theoretical experience, the cumulative contribution of the variance of the
k principal components should be more than 95%, and the KMO coefficient
determines the principal component:

KMO =

∑
i=1

∑
j=1,j �=i r

2
ij∑

i=1

∑
j=1,j �=i r

2
ij +

∑
i=1

∑
j=1,j �=i p

2
ij

(8)

rij is the correlation coefficient of row i in column j, and pij is the partial
correlation coefficient in column i of row j. Generally, the values of the KMO
series are between zero and one. When the value of KMO is more than 0.9,
the correlation degree of the original variables is higher; and when the value is
more than 0.8, the correlation is high; the value of 0.7 is normal; the correlation
degree is weak about 0.6; the weakest correlation degree is below 0.5 and 0.5.

Different from the conventional LSTM, in this paper the structure adds up
the peephole connections proposed by Pérez-Ortiz et al. [7]. The memory cell
state is transmitted to the t time as input to the input gate and the output gate,
where memory states are not processed by output gates at t− 1 time.

3.4 Model Evaluation Criteria

In order to verify the prediction result of the new combined EPL and IEPL
model proposed in this paper, we use the following 3 indicators for performance
evaluation: Mean absolute percentage error (MAPE below), Root mean square
error (RMSE below), DS rate (DS below). According to their definitions and
usages, MAPE and RMSE are used to assess the prediction error, and the
lower the prediction error is the smaller the two values are. The DS index is used
to measure the direction of the development of the time series. It is expressed in
the form of percentage, which describes the rise and fall rather than the accurate
prediction. The calculation formula of the three indexes is as follows:

MAPE : MAPE =
1
n

n∑

i=1

|Ti − Ai

Ti
| ∗ 100% (9)

RMSE : RMSE =

√√√√ 1
n

n∑

i=1

(Ti − Ai)2 (10)

DS : DS =
100
n

∗
n∑

i=1

ci, ci =

{
1 (Ti-Ai) ∗ (Ai-Ai−1) ≥ 0
0 otherwise

(11)

Ai and Ti represent real and predicted values respectively, and n represents the
number of samples.
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4 Experiment Results

4.1 Data Set Selection

This paper selects four kinds of time series data for experiment. Each group
follows a reference standard in the field. The data sources come from Yahoo
financial database. In this paper, the selection time of empirical data sets is
from January 4, 2011 to December 30, 2016, and the total is 1510. The data
is divided into 80% data training sets, 10% data validation sets and 10% data
test sets. In the EMD, three-spline interpolation algorithms are needed to ensure
that each IMF sequence is orthogonal to each other. Here is an example of the
S&P500 data set. The results of the specific IMF decomposition are as follows:
It can be seen from the Fig. 1 that each IMF component gradually presents a
regular state with the number of decomposition increasing, which reflects the
fluctuation characteristics of external shocks at different frequencies. High fre-
quency IMF1 and IMF2 reflect the impact of a short period of internal and
external microcosmic factors on the index, while low frequency IMF8 and IMF9
reflect the macro impact of a long period of time, such as the policy economy.

Fig. 1. IMF decomposition results.

4.2 Comparison and Analysis of Empirical Results Between EPL
and IEPL

In this paper, a new combined prediction model EPL used in the time series
of financial markets is proposed. Referring to the research results of relevant
scholars, this paper will adopt the following single or combined models for the
horizontal comparison. The contrast models used are ARIMA, GARCH, BP-
NN, LSTM, SVM-LSTM, WD-LSTM. The ARIMA and GARCH models belong
to linear models, while the remaining ones are non-linear models. All the data
are averaged in 100 times experiment. The following is the evaluation of the
performance between the models: As shown in Table 1. The results show that the
EPL/IEPL combined model with LSTM in this paper is more forward-looking.
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Table 1. Comparison of different model in prediction results.

Model MAPE RMSE DS rate(%)

ARIMA 2.0358 239.3565 54.69

GARCH 2.1536 262.5644 56.25

BP-NN 2.0865 218.6302 59.30

RNN (LSTM) 1.7734 193.2633 65.39

SVM-LSTM 1.7587 182.2698 68.57

WD-LSTM 1.7087 178.2698 70.57

EPL 1.3598 148.3983 72.53

IEPL 1.3368 146.9801 73.96

4.3 Performance of Combined Models on Different Data Sets

In addition to the S&P 500 data set, this paper also compares the other three
time series, FTSE index, US dollar index and BDI index. The purpose is to verify
whether the same combined model can achieve similar results when the random
selection of sequence data sets is selected. As shown in Fig. 2, the EPL combined

Fig. 2. The first three figures are comparison of different models in MAPE, RMSE
and DS rate observation index. The last figure is the increasing rate of each evaluation
criteria.
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model has poor prediction results on some models except a few indicators, most
of the predictions are outstanding. In particular, when using EMD to split the
original data, the prediction results are better than the original LSTM or data
processing used by SVM and WD methods. Therefore, the combined model
proposed in this paper can be regarded as an improvement to the original LSTM
or improvements to the other combined models. As for the IEPL model, it’s
more excellent than EPL in most cases. We can regard the IEPL model as a
more microscopic prediction on the basis of the EPL model.

5 Conclusion

In this paper, a new combined model, EPL, is proposed. Combined with the
EMD empirical mode decomposition method of signal processing, the prediction
performance of neural network model can be improved. To some extent, the EPL
model proposed in this paper is superior to the non-linear models and most of
the combined prediction models. On this basis, this paper puts forward the
interval EPL model, that is, IEPL. The difference between IEPL and EPL is in
the envelope of EMD decomposition selection of different calculation methods.
Experimental results show that the experimental results of IEPL is superior to
EPL model. To sum up, this paper draws the following conclusions:

The EMD algorithm makes effective sense in helping the neural network
to improve the prediction performance. The EMD algorithm works by means
of decomposing the time series into IMF sequences with multiple frequencies
from high to low, and IMF sequences are regarded as signals of external shocks,
which can explain the inherent law of time series. The PCA method improves the
prediction performance of the model as an optimization tool, and its mechanism
devotes to remove the redundancy of data. The IEPL model will help optimizing
the EPL model to some extent.
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Abstract. User locations in social networks are needed in many appli-
cations which utilize location information to recommend local news and
places of interest to users, as well as detect and alert emergencies around
users. However, considering individual privacy, only a small portion users
share their location on social networks. Thus, to predict the fine-grained
locations of user tweets, we present a joint model containing three sub
models: content-based model, social relationship based model and behav-
ior habit based model. In the content-based model, we filter out those
location-independent tweets and use deep learning algorithm to mine the
relationship between semantics and locations. User trajectory similarity
measure is used to build a social graph for users, and historical check-ins
is used to provide users’ daily activity habits. We conduct experiments
using tweets collected from Shanghai during one year. The result shows
that our joint model perform well, especially the content-based model.
We find that our approach improves accuracy compared to the state-of-
the-art location prediction algorithm.

1 Introduction

Since the on-line social media grows, Twitter, Facebook and Sina Weibo have
accumulated a large number of users up to now. In China, Sina Weibo, a form of
unstructured short texts, has become one of the most popular social networking
tools. In Sina Weibo, people post tweets about their daily routines, emergencies
they meet, and comments to news. They also attach to their tweets with current
locations, a.k.a. check-ins. Check-ins play an important role in location based
recommendation and emergency detection/alert, which are utilized by a large
number of business organizations. For example, when a user comes to a place
and posts her location, she can get recommendation about local news and places
of interest around, and also get alerts of unexpected events nearby. But recently,
due to concerns about data privacy, weibo users have been increasingly avoiding
sharing location information while posting tweets. According to a recently sta-
tistical analysis in [9] over 1 billion tweets spanning three months, only 0.58%
tweets have location tags. It is becoming harder and harder for business organi-
zations to extract user locations, hindering recommendation and detection.
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Cai et al. (Eds.): APWeb-WAIM 2018, LNCS 10988, pp. 151–165, 2018.
https://doi.org/10.1007/978-3-319-96893-3_12
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In this paper, we present a novel approach which combines three features
including textual content, social relationships and user behavior habits to predict
user’s current locations for tweets without any location tags. Recent works only
consider the first two features, while ignore users’ behavior habits. However,
based on our study in our work, users’ behavior habits play an important role in
tweets location prediction. Actually, a Weibo user with a regular everyday life,
will have similar daily activities. That is to say, his or her trajectories are similar.
In content based model, we leverage Convolutional Neural Network (CNN) to
mine location information in tweets. And we also mine another social relationship
called user similarity in social relationship based model which cluster users with
similar trajectories. Based on behavior similarities, we build a similarity graph
which cluster similar users together to help find users with similar daily behavior
for a specific user. Through a probabilistic model, we predict a user’s location
from his or her similar users.

The remainder of this paper is organized as follows. Section 2 overviews
related works. The location prediction model is introduced in Sect. 3. Section 4
describes the experiments conducted to verify the accuracy of our model. Finally,
Sect. 5 draws the conclusion of the paper.

2 Related Work

With the wide use of social networks, mining user location information from
them and apply this to many occasions is significant, such as location based rec-
ommendation, emergency detection and alert. Thus, many related works utilized
different features and approaches to roughly predict where the users were when
they post tweets in their personal devices. The features used in previous works
can be categorized into two types: content based and social relationship based.

Content Based. User’s tweets content often contains many features, such as
textual content, photos, videos and user URLs. [15] generates probabilistic lan-
guage model based on the photo tags posted by users, and then estimate the
location of each photo rely on the language model and Bayesian inference. Com-
paring with photos, textual content often contains more location clues, since
users may mention location names or location related words when posting tweets.

Location prediction approaches based on text are classified to two basic types
as well. One is identifying the related geographic terms from textual content, the
other is building a probabilistic language model to predict tweets locations. For
the reason that a small number users post exact geographic terms in their tweets,
most recent works prefer to construct probabilistic models for location predic-
tion based on the statistical linguistic features in textual content. In [1], author
uses a variation of probabilistic framework in [2] which adds the feature of rela-
tionship between tweets and related reply-tweets, in order to enhance accuracy
by estimating the geographic location of the user. [16] proposes a probabilistic
model leveraging the Maximum Likelihood Estimation to infer users resident
locations, which mines the relationship between locations and words.
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Some related works are dissatisfied with such coarse-grained location predic-
tion. In [9], Lee et al. utilize external location sharing services platforms, and
the user ‘Check-In’ information to study the mobility characteristics of the users.
This work builds language model for each PoI (Place of Interest) which is the
basis of location prediction. However, the cost of building language models is
huge, and they just predict site located in a part of city. Our work keeps the
idea of mining the relationship between the semantics of tweet content and the
locations, but builds language model for all locations through a novel approach.

Graph Based. Social relationship is one of the most essential part of on-line
networks. Friendship as a kind of social relationship, always provides pivotal
clues for predicting user locations. The way of building user friendship network
is usually utilizing users profile, response and dialogues. Backstrom et al. pro-
pose a probabilistic model representing the likelihood of relationship between
any two users in [3]. Based on this model, user locations can be inferred when
given the geographic distribution of the locations. [8] presents several extensions
to the model shown in [3], which adding weighting strategies that user friends
have different influence on user. In [14], Sadilek et al. add up the time overlaps
two users spend at their respective locations and scale each overlap by distance
between the locations. Thus, distance value can be used for detecting friendship
between users and representing the tightness of this relationship. Friends may
stay in the same city in most situations, however, they may not always stay
at the same site or regions in the city all times. So we define another social
relationship called user similarity to solve this problem. Thus, user tweets can
be regarded as a trajectory with timestamps and coordinates. And we leverage
trajectory similarity algorithm shown in [4,5,13] to calculate the user similarity.

3 Problem Formulation

User location information in social media plays an important role in many appli-
cations, however, only a small portion users share their location for protecting
privacy. Our goal is to estimate the location based on features that are minded
from tweets which are lack of check-ins. Sina Weibo, one of social applications
with a large number of users, provides users a lot of choices that they can post
tweets containing textual data, photos and videos, interact with other users
or record their lives. Tweets content, especially textual content, often contains
location names or location related words, which can extract location related
information directly. Trajectory similar users can be clustered through user sim-
ilarity graph, they probably share the same location at most circumstances.
Besides, when users record their daily lives, we can extract their behavior habits
through these records. So except check-in data, we can mine user location infor-
mation through other methods as well. In this work, users tweets content, social
relationships and user behavior habits are used to get location information.

Location Estimation Problem: Given a set of tweets Ttweets(u) posted by
a Weibo user u, estimate a user’s probability of being located at a site, such
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that the location with maximum probability lcur(u) is the user’s actual location
lact(u).

With the definition of the problem solved in this paper, we list the Notations
in Table 1 used throughout the remainder of this work.

Table 1. Notations used in the paper

Notation Explanation Notation Explanation

U User set of ui e(ui, uj) Relationship between ui and uj

Ei Relationship set of ui A Tweet matrix constructed with word vector

Ttweets(u) Tweet set of u Xi The i-th word vector

Swords(u) Words set of u’s tweets θsimilar Trajectory similarity threshold

T A trajectory s(Ti, Tj) Similarity between two trajectories Ti and Tj

p A trajectory point lpre Location of previous tweet

V Similar user set lcur Predictive location of tweet

V ct Region vector lact Actual location of tweet

N Region number of city M User location transition matrix

L Candidate location set P Location transition probability matrix

As we noted that location estimation is a difficult and challenging problem.
The check-in data in users’ tweets is always sparse, and the frequency of user
posting tweets is not high. So we divide the map of the city into square grids
of different degrees to overcome the sparsity of locations, which are described in
Sect. 4.2.

3.1 System Architecture

In this work, we propose a joint probabilistic model which contains the three
sub models. Figure 1 provides a sketch of our system architecture for predicting
the city area which the tweet belongs to. In this architecture, we define three
channels to mine location information:

(1) Textual Content: Since users may post their locations or location related
words in their tweets, the textual part of tweets becomes the most important
clue of location prediction. We extract the textual part of tweets in dataset,
filter out tweets without any location clues and train CNN model to predict
tweet location based on these textual data.

(2) Social Relationship: On-line social relationship has different definitions in
this work, we define it as user similarity for the reason that it has stronger
connection on location than friendship mentioned in related works. User
historical data can be regarded as a trajectory and used to calculate the
similarity between users.
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Fig. 1. Framework architecture

(3) Behavior Habit: Behavior habit of users provides clues of tweet location
for the fact that users prefer to take their own familiar routes. User behavior
habits are extracted from historical data as well. From these habits, we know
how a user is moving between his or her resident locations.

Based on these features which we considered as location dependent information,
we also present corresponding models to predict users’ current locations. Specif-
ically, CNN model is used to mine location information from n − gram words
of a tweet, user similarity cluster model finds similar users of a specific user and
then follows them to where the user is, Markov Chain and Transition Probability
Matrix build a customary trajectory for each user based their historical check-in
data.

3.2 Content-Based Model

Textual content is the most frequently-used feature, since users may mention
location names or location related words while posting tweets. However most
words are distributed consistently with the population across different locations,
meaning that most words provide little power at distinguishing the location
of a user. For example, any user may post tweets like “I’m eating dinner”, so
tweets like this are called location-independent tweets. Without filter, many noise
tweets in dataset increase the difficulty of extracting and distinguishing the loca-
tion feature for our model. So we utilize tfidf Value to evaluate whether a word
is related to a location and filter out location-independent tweets without these
location related words firstly. Besides, we use grid-based neighborhood smooth-
ing approach which clusters locations into grids according to their coordinates,
to overcome the sparsity of location across tweets in dataset. Thus we divide the
entire city into equal-sized grid cells, which applies in the whole work.
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Under this circumstance, a novel approach, Convolutional Neural Network
(CNN), is used to mine the relationship between textual data and locations
avoiding complex feature extractions and data reconstruction process compar-
ing prior works. To get better training effect, traditional content-based models
always need multiple parameter adjustments, while we just need pre-training
word vectors in CNN model whose parameters are adjusted through backprop-
agation algorithm. In addition, CNN can extract information from different n-
gram words sequence at the same time and is more suitable for large-scale data
processing. Thus, we present a CNN architecture for tweets location prediction
based on the model in [6] with a slight variance.

Firstly, when given a text portion with several sentences of a tweet, we seg-
ment these sentences into tokens which then are converted to a TweetMatirx
A ∈ R

n×d. Suppose that Xi is the d−dimensional word vector for the i−th word
in n words tweet and the text portion of any user’s tweet can be also descried as
a matrix X1:n. Then we define Xi:i+j as the cascade of words Xi,Xi+1, · · · ,Xi+j

in tweets. To extract feature in tweet, a filter W ∈ R
h×d applied to a window

of h words is used in convolution operation. For example, given a tweet with
n words, a fixed filter W and filter width h, a new feature ci generated from
sub-matrix Xi:i+h−1 by Eq. 1. Here b ∈ R is the bias term and f is an activation
function such as the hyperbolic tangent (tanh) or Rectified Linear Units (ReLu).

ci = f(W · Xi:i+h−1 + b) (1)

Then, a feature map c = [c1, c2, · · · , cn−h+1], with c ∈ R
n−h+1, are produced

by each possible sub-matrix of the given tweet {X1:h,X2:h+1, · · · ,Xn−h+1:n}.
A maximum value ĉ = max{c} is taken as the feature corresponding to this
particular filter after applying this max-pooling operation. This representation
is then fed through a softmax function to generate the final classification. During
the training process, the purpose is minimizing categorical cross-entropy loss,
and optimizing the parameters including weight vectors for filtering and biases
in activation function.

3.3 Social Relationship Model

Although location information can be extracted from textual data of tweets in
most cases, users may not always post tweets containing hints about locations.
For example, the location-independent tweets like “I’m eating dinner” are not
suitable for the CNN model. By mining the social relationship of users, we use
the location of the neighbors in users similarity graph to predict their current
locations. Related works define user social relationship as friendship through
user interactions in social applications. However, not all users may share the
closely similar trajectory with their on-line friends even they are off-line friends
at all times. We can just estimate which city a user locate in through friendship,
but not her real-time locations in the city. Thus, we define another on-line social
relationship as similar users who have similar trajectories. For instance, some
users work in a same area such as same office buildings may have similar daily
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activities but not friends whether in real life or on the Internet. Thus, we can
predict a user’s current location according to her similar users’ locations instead
of her friends’ locations. The core components include the similar user clustering
model and location prediction model that are described in the next part.

Similar User Clustering Model. In our work, we present an novel approach
to cluster similar users based on the fact that they share nearly the same tra-
jectories. Next, we define the notations used in this part and the operations on
them.

Definition 1 (Trajectory Point). A trajectory point is a pair: (p, t), where
p is a location in d-dimensional space, and t is the timestamp at which p is
observed.

In this model, users move in a two-dimensional space, that is, p is a 2-dimensional
vector, and the time attribute is discrete.

Definition 2 (Trajectory). Trajectory T is a sequence of trajectory points,
extracted from user’s check-ins and ordered by timestamps t. Trajectory T is
represented as a sequence of trajectory sample points. Therefore, T = [(p1, t1),
(p2, t2), ...,(pn, tn)], where (t1 < t2 < ... < tn).

With the definition of user trajectory, we define some operations on the point p
and trajectory T .

1. s(T1, T2): s(T1, T2) represents the similarity rate of two users’ trajectories T1

and T2.
2. Head(T ): For trajectory T = [p1, p2, · · · , pn], Head(T ) is to get the first point

of the trajectory, that is Head(T ) = p1.
3. Time(p1, p2): Time(p1, p2) represents the time difference of points p1 and p2.
4. Rest(T ): For trajectory T = [p1, p2, · · · , pn], Rest(T ) is to get the tail points

of the trajectory except the first point. Therefore, Rest(T ) = p2, p3, · · · , pn.

In order to calculate the similarity of user trajectories, we use Spatial-Temporal
Longest Common Subsequence Similarity (STLCSS) measure. This measure
involved two constants:

1. δ: a real number which controls how far in time we can go in order to match
a given point from one trajectory to a point in another trajectory.

2. ε: a real number that is the matching threshold. Only when the distance
between two points is less than ε, can these two points be regarded as the
same point.

sδ,ε(T1, T2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ifT1 orT2 is empty

1 + sδ,ε(Rest(T1), Rest(T2)) if |Head(T1) − Head(T2)| < ε and

|Time(Head(T1), Head(T2))| ≤ δ

max (sδ,ε(Rest(T1), T2), sδ,ε(T1, Rest(T2))) otherwise

(2)
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Given δ and ε, we define the similarity measure s(T1, T2) between two trajectories
T1 and T2, shown as follows:

s(T1, T2) =
sδ,ε(T1, T2)
min(n,m)

(3)

It is observable that the larger the value of s(T1, T2) is, the more similar two
trajectories are according to the Eq. 3. So if the similarity of two user trajectories
is high, they are deemed to be similar users. Based on this conclusion, we can
infer each other’s positions when no location clues in user’s tweets, which is
shown in following part. Here we define a parameter θsimilar as a threshold to
judge whether the two trajectories are similar. That is to say, if the similarity
s(Ti, Tj) between trajectories of ui and uj exceeds θsimilar, they are similar users
to each other. So the influence e(ui, uj) between two users is described by their
trajectory similarity s(Ti, Tj).

Location Prediction Model. The goal of Location prediction Model is to
infer the most likely location of user u while posting a tweet. Based on Similar
User Clustering Model, we get any user ui’s personal similarity graph Ei which
contains the influences on her similar users. For example, the influence of user
ui on uj as well as uj on ui is described as e(ui, uj) that can also be regarded as
the weights of user similarity. Since the higher the similarity of user trajectories
is, the greater the influence they have on each other.

We firstly define similar user list of u as Vu = {v1, v2, · · · , vm}, the location
set of user u’s similar users as L = {l1, l2, · · · , lm} and the influence on u as
Eu = {e(v1, u), e(v2, u), · · · , e(vm, u)}. Then we define d(li, lj) as the Euclidean
distance between location li and lj , and t(vi, u) as the time difference between
tweets posted by u and vi . In this model, user u’s current location lcur can be
estimated through u’s previous location lpre and location list L of his similar
users during this period, and the weights list Eu of u.

p(li|u) =

{
[1 − d(li,lpre)∑m

j=1 d(lj ,lpre)
] × e(vi, u) if d(li, lpre) � ε and t(vi, u) � δ

0 otherwise
(4)

Equation 4 shows the probability of user u appearing at i-th similar user’s loca-
tion li. Since user’s moving distance during a set time period is limited, the closer
the distance between u and his similar user vi, the higher the probability that
u is at li. There are two kinds of measures to finally estimate user’s actual loca-
tion: one is obtaining location with the top one probability, another is gaining
the locations whose probability rank in the top k(k<m).

lcur = argmax
li∈L

p(li|u) (5)

Here we choose the first measure which deems the site lact with the highest
probability among the candidate locations collected from similar users as user’s
current location.
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3.4 Behavior Habit Model

Although most users’ current location can be predicted through tweets content
and their similar users, there are still part of users who have few similar users and
dislike to post textual content. For example, a user may have relatively stationary
trajectory. Therefore, we use user behavior habits based on the supposition that
users have their own daily behavior habits to predict their locations. Thus, a
location point can be regarded as a state of user. When given a list of states,
we can use Markov chain introduced in [12] to predict the next state on the
basis of Markov property that the current state is only related to the previous
state but not to the earlier states. Then we construct two matrices extended
from [10] to depict user behavior habits. For overcoming the sparsity of tweets
across location, the city is divided into equal-sized grid cells which represent the
regions of city in this subsection.

Definition 3 (Location Transition Matrix). The location transition matrix
Mi ∈ R

N×N of user vi, where N refers to the number of regions divided from
the city. Any element of this matrix Mi(r, c) represents the frequency that ui

transferred from region r to region c.

Definition 4 (Region Vector). The region vector V cti of user vi is a N -
dimension vector. Element V cti(r) refers to the number of trajectories that vi

transfers from region r to other regions.

Definition 5 (Location Transition Probability Matrix). Pi(r, c) in this
matrix Pi ∈ R

N×N is the probability of transferring to region c when the current
position of user vi is region r.

According to the Location Transition Matrix Mi and Region Vector V cti, we
can get the Location Transition Probability Matrix rely on the Eq. 6.

Pi(r, c) = Mi(r, c)/V cti(r) (6)

Then when vi’s previous location belongs to region c, her current location is
calculated as:

lcur = argmax
j∈N

Pi(rj , c) (7)

3.5 Joint Model

The framework architecture and sub models are introduced specifically in the
previous subsections. These models leverage textual content, user social rela-
tionship and individual behavior habit to mine location information. For the
purpose of building a fruitful content-based location prediction model, we use
tfidf Value to measure the influence of each word on the locations and define
location related words whose tfidf values exceed the threshold θtfidf . Depending
on whether the textual content contains location related words, we determine if
the location of a given tweet can be predicted using content-based model, since
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almost no location features can be extracted from location-independent tweets.
Then the locations of tweets which were filtered out can be predicted by a linear
combination model that combines social relationship model and behavior habit
model.

4 Experiments

In this section, we evaluate the location prediction framework presented in above
section through a set of experiments. Our framework is built by three sub mod-
els: content-based model, relationship-based model and habit-based model. We
report the dataset used in our work and define the general setup of models. Then
we design a set of experiments to illustrate the prediction accuracy of different
models. In addition, there are several thresholds in these models, such as ε and
θsimilar. So we also test how these parameters influence the result.

4.1 Datasets

It is not a difficult task to predict users resident cities for the reason that lots of
city information can be extracted according to related works. So we can naturally
suppose that we know which city the user belongs to. In this paper we gathered
data from shanghai, China, since shanghai is one of the most densely populated
cities of world whose population is more than 10 million and coverage area is
nearly 6340 km2. We collected about 90 million tweets from nearly 60 thousand
users, but only 9 million tweets as well as 10% of the initial data are tagged.
While some of them post few tweets or just post links or advertisements of other
applications, which do few favor of predicting location. After removing these
users and tweets, there are only 1036386 tweets from 10 thousand users left in
the dataset.

4.2 Experiment Setup

To predict the fine-grained location of a tweet, we divide the entire city into
equal-sized grid cells and each cell is labeled by its diagonal latitude/longitude
coordinates. And those locations whose coordinates are falling into the same
cell cluster into one category. In this part, we use a turning parameter cellsize
to control the granularity of city area division which also is regarded as the
prediction error distance. And then we vary the parameter cellsize form 1 to
15 km with the step of 5 km.

In order to evaluate the capability of our model, we calculate the accuracy
(ACC) of prediction by:

ACC =
|{lcur|lcur = lact}|

|lcur| (8)

Here lcur represents the location of a tweet predicted by our model, and lact is
the actual location of this tweet. Throughout our work, we set threshold θtfidf to
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0.1 and filter out tweets without words whose tfidf values exceed θtfidf . Thus,
on the basis of whether mining location information from contents, we can divide
the dataset into two parts: one is location correlation dataset and the other is
location-independent dataset.

4.3 Capability of Content-Based Model

Data filter using tfidf Value in our work is significant, because the more noise
or location-independent tweets, the worse the effect of CNN model will be. So
we filter out location dependent tweets utilizing the threshold θtfidf . After the
data filter, we obtain the correlation dataset whose tweets directly or indirectly
contain location information and use about 80% as the training set, the rest
as the testing set. To build CNN model for location prediction, we firstly turn
the check-ins of tweets to the corresponding grid cell, a classification label. And
then we segment the textual part of tweets into tokens, remove stop words and
punctuations in these tokens at the same time. After these operations, we get
a set of words of each tweet and turn these words into word vectors based on
the word2vector model trained by Wikipedia Chinese corpus and incrementally
trained by weibo corpus extracted from dataset. Thus, each tweet turns to an
matrix whose rows represent word vectors with 60 dimension and the matrix
composed by word vectors can be used as a word embedding in this model.
What’s more, to solve the problem of different length of tweet, we specify a
maximum input tweet length and fill the part whose length is not enough with
zero.

To illustrate the significance of data screening, we design experiments to com-
pare the accuracy of this model using raw dataset and filtered dataset respec-
tively. Meanwhile, to better illustrate the validity of our model, we compare
other two approaches in related works [2,7] with our method. In [2], a prob-
ability model, Content-Based User Location Estimation (CBULE), based on
maximum likelihood estimation, builds the probability distribution over regions
in the city for each word in the dataset. [7] uses external location-specific data
source Foursquare to train language model for each region and then uses tfidf
Value approach to predict user’s current locations. Here we use the training set
to build language model for regions. The prediction results on testing set are
shown as Fig. 2.

Fig. 2(a) shows the prediction accuracy of our content-based model with and
without data filter. The accuracy of model using filtered dataset is much higher
than using row dataset, for data filter greatly reduces the ratio of location-
independent tweets in dataset. The results of different content-based approaches
are shown in Fig. 2(b). Using CNN model has better performance than using
tfidf Value and CBULE model. The prediction accuracy of CNN model is
40.63% within 1 km. What’s more, when the error distance is increased by 5 km,
the accuracy is raised by nearly 10%. Content-Based User Location Estimation
also perform well within different error distances, but tfidf Value measure can
just reach 36.92% at maximum error distance. The probable reason of this result
is that location related words in training set used to build language model (LM)
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Fig. 2. The capability of content based model

are sparse across locations. Overall, CNN model can handle the data with sparse
distribution of location related words better than other two models.

4.4 Capability of Relation Based Model

In this section, we predict a user’s current location based on the location of his
or her similar users’ locations. For each user u, the first step is finding users
who have similar trajectories with u. Here, we use Spatial-Temporal Longest
Common Subsequence Similarity (STLCSS) to calculate the trajectory similar-
ity between users according to Eq. 3 shown in Sect. 3.3. After this operation, the
similarity graph among all users is built. For any user u in the dataset, his or her
similarity graph can be consisted of Vu = {v1, v2, · · · , vm} and the correspond-
ing relationships are described as Eu = {e(v1, u), e(v2, u), · · · , e(vm, u)}, where
e(vi, u) is equivalent to s(Ti, Tu) that exceeds θsimilar. To explain the influence of
the similarity of users on the accuracy of location prediction, we define different
threshold values: θsimilar which is set from 0.3 to 0.5 at the interval of 0.05. As
with content-based model, we also test the influence of different error distance
on prediction accuracy. The result is shown in Fig. 3.
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Figure 3(a) shows that the accuracy of prediction is increasing gently with
the interval of 0.05 of θsimilar when the error distance is 5 km. Although the
accuracy rate shows the trend of overall rise, the increase is small. The reason is
that there is a trade-off between the accuracy and the threshold θsimilar. Namely,
when θsimilar increases, a smaller number of similar users are selected for the
prediction. So we fix the threshold θsimilar on 0.4 when testing the effect of error
distance based on the result shown in Fig. 3(a). From Fig. 3(b), the prediction
accuracy leveraging user similarity continuously increases with the raise of error
distance. Because of the low frequency of user posting tweets and small scale of
similar user sets in current dataset, the accuracy of this model is low at a very
fine granularity.

4.5 Capability of Behavior Habit Based Model

User behavior habit is another important feature for predicting user location,
since users always lead regular everyday lives that they have similar daily activ-
ities. So we split the whole dataset into two parts, the prior part as the training
set and the rest part as testing set. In the training set, we obtain all users’ his-
torical data which contains time stamps and latitude/longitude coordinates. For
the reason that users are more likely to move within certain regions, we cluster
the user locations into regions according to the approach mentioned in Sect. 4.2.
Then we will show the effect of different error distance leveraging behavior habit
model.
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Figure 4 shows that the accuracy of this location prediction model increases
with the raise of error distance and locates about 41% of predicted tweets within
5 km from their actual locations. Because users daily activity habits are always
repeat nearly everyday. In addition, the larger error distance which also repre-
sents the grid cell size, the more locations clustered into a region and the higher
accuracy of prediction is.
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4.6 Capability of Linear Combination Model

In order to evaluate the effects of last two models, we build a linear combination
model to combine these two features and predict tweets locations. Next, we
test the effect of different user similarity threshold θsimilar and error distance
on behavior habit based model and the combination model of this and social
relation based model.
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Fig. 5. The capability of behavior habit based model

Figure 5(a) shows that user behavior habit performs better than user social
relationship in location prediction, and combining these two models can nearly
double the accuracy of prediction leveraging the social relationship based model.
Because almost all users’ daily behavior habits are nearly settled, we mine a lot
of location information from users’ historical data. As with the reason mentioned
in Sect. 4.4, the accuracy of combination model is a little higher than behavior
habit based model separately used. In Fig. 5(b), the accuracy of behavior habit
model increases with the raising of error distance. We also find that comparing
the social relationship based model, behavior habit based model has obvious
advantages in predicting fine-grained locations of tweets, while the advantages
are gradually weakened in larger error distance. The probable reason is that the
number of similar users increases as well as candidate locations in coarse-grained
prediction.

5 Conclusion

We present a joint model for tweets location prediction which contains three sub
models based on different features mining from tweets data. These models utilize
textual content, social relationship and user behavior habit to extract location
information, and obtain high prediction precision. From the experimental results,
we conclude that content-based model is more suitable for tweets containing
location related words, while other tweets can use the combination model to
predict current locations.
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Moreover, this work can be extended in user social relationships that takes
into account user interaction information for building more sophisticated user
social graphs. We would like to further reduce the prediction error to get a more
granular predictive location of a given tweet as well.
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Abstract. This paper studies the problem of discovering longest
streak in multidimensional sequence dataset. Given a multidimensional
sequence dataset, the contextual longest streak is the longest consecu-
tive tuples in a context subspace which match with a specific measure
constraint. It has various applications in social network analysis, compu-
tational journalism, etc. The challenges of the longest streak discovery
problem are (i) huge search space, and (ii) non-monotonicity property of
streak lengths. In this paper, we propose a novel computation framework
with a suite of optimization techniques for it. Our solutions outperform
the baseline solution by two orders of magnitude in both real and syn-
thetic datasets. In addition, we validate the effectiveness of our proposal
by a real-world case study.

Keywords: Computational journalism
Multidimensional sequence data

1 Introduction

Computation Journalism [2,3] has been emerged as an interdisciplinary field in
recent years. In traditional news media organizations, reporters always manually
bring out attention-seizing factual statements backed by data, which may lead
to news stories and investigation. However, the qualities of findings are hard to
guarantee. In contrast, Computation Journalism brings together experts in tra-
ditional news organization, social science and computer science, and advances
journalism by innovations in computational techniques. One of the goals of Com-
putation Journalism is to discover newsworthy facts efficiently and effectively.
In data engineering community, unstructured data analytical techniques become
more sophisticated, which push the database and data mining researchers be
the frontiers of the Computation Journalism filed. E.g., discovering newsworthy
themes [4], finding prominent streaks [6,13], exploring situational facts [8], etc.
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Contextual longest streak is a set of maximal contiguous tuples with mea-
sure values satisfying a threshold in a context (i.e., a subset of multidimensional
sequence data), which has found applications in computational journalism. Con-
sider NBA dataset as an example, the following two news articles are user cases
of contextual longest streaks:

– (I) Longest 100+ Streak at Home: March 10, 2017, Golden State War-
riors’ 100+ Points Streak at Home Ends at 56 Games.1

– (II) Longest 100+ Streak at the History of Cleveland Cavaliers:
December 3, 2017, Cleveland Cavaliers’ 16-game streak of 100+ points ties
longest in franchise history.2

In news (I) the contextual longest streak is a 56 consecutive Home games of
Golden State Warriors with the score values are 100 or above, and in news (II) the
contextual longest streak is a subset of 16 consecutive game records of Cleveland
Cavaliers with the score values are 100 or above.

Given data table R(O,D,M), where O is a(n) sequential/ordinal dimension,
D is a set of dimensional attributes, and M is a set of measure attributes. A
context subspace S is a subset of R, resulting from a conjunctive constraints on
a one or more dimension attributes in D. The measure constraint C was defined
by specific values in M. The longest streak in a context subspace (i.e.,contextual
longest streak) is the longest consecutive tuples/records in context subspace S,
which matches with the given measure constraint C. For example, in news (I),
the context subspace S is {Court = Home,Team = GoldenStateWarriors} and the
measure constraint C is {Score ≥ 100}, the length of its corresponding longest
streak is 56. In this paper, we study how to discover longest streak of a specified
measure constraint C in an append-only multidimensional sequence data table R,
i.e., it discovers the largest contextual longest streak by exploring every possible
context subspace in R(O,D,M). The technical challenges of the longest streak
discovery problem are:

– Exponential subspaces in R: The number of subspaces is exponential to
the number of dimension attributes. It also is polynomial to the domain sizes
of dimensions. We will analyze it shortly.

– Non-monotonicity of the longest streak length: As we will explain
in Sect. 4, the length of streaks is not monotonic. For example, with mea-
sure constraint C = {Score ≥ 100}, the length of longest streak at subspace
{Team = ClevelandCavaliers} is 16, it does not guarantee that the length of
longest streak of its descendant subspaces is no larger than 16.

While the longest streak discovery problem is challenging, we develop a suite
of optimization techniques to address it. The contributions of this paper are:

1 http://bleacherreport.com/articles/2697055-golden-state-warriors-100-point-streak
-at-home-ends-at-56-games.

2 https://cavsnation.com/cavs-news-clevelands-16-game-streak-of-100-points-ties-lo
ngest-in-franchise-history/.

http://bleacherreport.com/articles/2697055-golden-state-warriors-100-point-streak-at-home-ends-at-56-games
http://bleacherreport.com/articles/2697055-golden-state-warriors-100-point-streak-at-home-ends-at-56-games
https://cavsnation.com/cavs-news-clevelands-16-game-streak-of-100-points-ties-longest-in-franchise-history/
https://cavsnation.com/cavs-news-clevelands-16-game-streak-of-100-points-ties-longest-in-franchise-history/
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1. We study the novel problem of discovering longest streak in multidimensional
sequence data.

2. We devise efficient algorithms by exploiting the upper bound of context sub-
space and segments among tuple sets.

3. We evaluate the efficiency and effectiveness of our proposal in synthetic and
real datasets, respectively.

The rest of the paper is organized as follows. Section 2 reviews related works.
Section 3 gives the formal problem definition. Section 4 develops the computa-
tion framework. Section 5 devises a suite of optimization techniques to reduce
the computation cost. Section 6 presents the case studies and performance eval-
uations. Section 7 concludes the paper.

2 Related Work

Computation Journalism: It has emerged recently as a interdisciplinary filed,
which exploits the advances in computer science to assist the experts in tradi-
tional news organization [2,3] . We summarize the related works as follows.

One-of-the-k problem was investigated in [12]. For a given object o, it reports
the non-empty subset of measure attributes (a.k.a., measure attributes in OLAP)
if o is dominated by fewer than k objects. Fan et al. [4] proposed a novel k-
Sketch query that aims to find k streaks to best summarize a given subject with
scoring function. Finding a set of maximal contiguous subsequences with value
all above (or below) a certain threshold (a.k.a., prominent streaks) was proposed
in [6]. In its extension version [13], the authors extend the techniques in [6]
for discovering general top-k, multi-sequence, and prominent streaks in multiple
measures dataset. Both assume there is single dimension (i.e., ordinal dimension)
in the dataset. In contrast, our proposal take an OLAP table with is a set of
dimensions (i.e., D). Discovering a set of records (i.e., skyline) with regard to a
context and several measures (a.k.a., prominent situational facts) was studied in
[8]. It finds situational facts pertinent to new tuple in an append-only database.
In our proposal, user are focusing on whole dataset, instead of the new append
tuple. We summarize the major differences between these works and our proposal
in Table 1.

Table 1. Comparison with related works

Related work User input Problem output Sequence
data?

Multi-
dimensions?

Multi-
measures?

Wu et al. [12] Object o, k Measure subset No No Yes

Jiang et al. [6,13] Nil Streaks Yes No Yes

Sultana et al. [8] New tuple t Dimension subset
and measure subset

No Yes Yes

Fan et al. [4] Subject Top-k streaks Yes No No

This work Measure subset Longest streak Yes Yes Yes
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Longest Subsequence Discovery: In addition, discovering longest subse-
quences is a well-known research problem computer science [1,5,7]. However,
these existing techniques cannot be adapted our problem as we consider all pos-
sible contexts (i.e., subspaces in OLAP) in the dataset.

Exploratory Analysis: The data engineering community has developed sub-
space mining techniques to discover interesting subspaces from a dataset [9–11].
Our problem differs from them in two ways. First, we consider the multidimen-
sional sequence dataset, while the others does not requires that. Second, our
findings (i.e., longest streak) have not been studied yet.

3 Problem Statement

In this section, we give the formal definitions of the concepts in our problem,
and formulate our longest streak discovery problem.

Given a multidimensional sequence dataset R(O,D,M), where O is a(n)
sequence/ordinal attribute, D = {D1, · · · ,Dd} is a set of dimension attributes,
and M = {M1, · · · ,Mm} is set of measure attributes. For example, Table 2 is
a NBA dataset, the ordinal attribute of NBA dataset is O = ID, the dimen-
sion attributes are D = {Player, Oppteam, Season}, and the measure attributes
are M = {Points, Rebounds}. We denote the domain size of dimension Di as
|dom(Di)|, e.g., |dom(Player)| = 3 in Table 2, there are three players in dimen-
sion Player.

Table 2. NBA dataset

ID Player Oppteam Season Points Rebounds

t1 Russell Westbrook Los Angeles Clippers 2015–16 35 6

t2 Kevin Love Golden State Warriors 2015–16 18 15

t3 James Harden Indiana Pacers 2015–16 17 8

t4 Kevin Love Golden State Warriors 2015–16 17 16

t5 Russell Westbrook Cleveland Cavaliers 2015–16 31 11

t6 Kevin Love Phoenix Suns 2016–17 23 8

t7 James Harden Sacramento Kings 2016–17 22 13

t8 James Harden Los Angeles Clippers 2016–17 18 9

t9 Russell Westbrook Los Angeles Clippers 2016–17 35 6

t10 Kevin Love Golden State Warriors 2016–17 18 15

t11 James Harden Indiana Pacers 2016–17 21 14

t12 Russell Westbrook Phoenix Suns 2016–17 31 9

Definition 1 (Context Subspace). A context subspace is an array S =
〈a1, · · · , ad〉, where ai ∈ dom(Di) ∪ {∗} and ∗ refers to all values. We denote
the tuples in context subspace S as TS. A context subspace S1 = 〈a1, a2, · · · , ad〉,
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which is called a child subspace of S2 = {b1, b2, · · · , bd}, iff there exists a j such
that aj �= ∗ ∧ bj = ∗ and ai = bi for any i �= j. Conversely, S2 is a parent
subspace of S1.

Example. Given a context subspace S = 〈Kevin Love, ∗, ∗〉 in Table 2, TS =
{t2, t4, t6, t10}.

We shall find longest streak in a multidimensional sequence dataset with
regard to the user specific measure constraint. We then introduce Measure Con-
straint and (Longest) Streak.

Definition 2 (Measure Constraint). A measure constraint is a measure
record C = 〈v1, · · · , vm〉. A tuple t in R matches with constraint C =
〈v1, · · · , vm〉 iff t.Mi ≥ vi,∀i ∈ [1,m].

For the sake of presentation, we assume the constraints in C are “greater than”
operators (i.e., t.Mi ≥ vi). Nevertheless, our solution is extensible to other kinds
of operators, e.g., “less than”, “range from”, etc. We will discuss the extensions
in Sect. 4.4.

Example. In Table 2, given a constraint C = 〈10, 10〉, it is double-double3 on
combination of Points and Rebounds. t2 is qualified tuple w.r.t. C as t2.Points =
18 ≥ 10 and t2.Rebounds = 15 ≥ 10, and t6 is not qualified as t6.Rebounds =
8 < 10.

The definitions of Streak and Longest Streak are as follows.

Definition 3 (Streak in a Context Subspace). Given a constraint C, a
streak in a context subspace S is a set of consecutive tuples STS, where STS ⊆
TS, and ∀ti ∈ STS matches with C. The length of the streak is |STS |.

Example. Given constraint C = 〈10, 10〉, context subspace S = 〈Kevin Love,
∗, ∗〉. The tuple set of S is TS = {t2, t4, t6, t10}, a streak in S with constraint C
is STS = {t2, t4}. Its length is |STS | = 2, i.e., Kevin Love got double-double in
two consecutive games.

For a given context subspace S and constraint C, there are probably multiple
streaks in it. Take Fig. 1(a) as an example, S = 〈∗, ∗, ∗〉 with C = 〈20, 0〉. It
has four streaks, they are ST1

S = {t1}, ST2
S = {t5, t6, t7}, ST3

S = {t9}, and
ST4

S = {t11, t12}, respectively.

Definition 4 (Longest Streak in a Context Subspace). Given a constraint
C, the longest streak in context subspace S is LSTS, such that ∀ STi

S ∈ TS, we
have |LSTS | ≥ |STi

S |.
As shown in Fig. 1(a), (b), (c) and (d), the longest streak in these four context

subspaces are {t5, t6, t7}, {t1, t5, t9, t12}, {t6} and {t7} (or {t11}), respectively.
The lengths of the corresponding longest streaks are 3, 4, 1, and 1.

Given a constraint C, Definition 5 defines the longest streaks in a multidi-
mensional sequence dataset R(O,D,M).
3 https://en.wikipedia.org/wiki/Double (basketball).

https://en.wikipedia.org/wiki/Double_(basketball)
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Fig. 1. (Longest) streaks in different context subspaces

Definition 5 (Longest Streak in R(O,D,M)). Given a constraint C, the
longest streaks in R(O,D,M) is LS = {(S, LSTS) : ∀ S′ ⊆ R, |LS.LSTS | ≥
|LSTS′ |}.

Given NBA dataset in Table 2 with constraint C = 〈20, 0〉, the longest streak
LS in it is (〈Rusell Westbrook, ∗, ∗〉, {t1, t5, t9, t12}).

Problem 1 (Longest Streak Discovery). Given a multi-dimensional dataset
R(O,D,M) and a constraint C = 〈v1, · · · , vm〉. The longest streak discovery
problem is finding LS, which consists of context subspace and its corresponding
longest streaks pairs, such that context subspaces have the longest streaks length
in the whole search space.

Example. Consider records in Table 2 with constraint C = 〈10, 10〉, the longest
streak LS = {(〈Kevin Love,Golden State Warriors, ∗〉,{t2, t4, t10})}. In compu-
tational journalism, it shows the fact that Kevin Love achieved three consecutive
double-double against Golden State Warriors.

Problem Complexity Analysis: Before presenting our solutions, we first ana-
lyze the complexity of our problem from the following two aspects.
Search space: The search space of Problem 1 is equivalent to the total number
of context subspaces in R(O,D,M), it is as follows. Please note that the search
space is exponential to the number of dimension attributes |D|.
Lemma 1 (Problem search space). The number of context subspaces of data
table R(O,D,M) is

∏d
i=1(|dom(Di)| + 1).

Proof. For each Di ∈ S, the number of distinct values is dom(Di) + 1, i.e., the
domain size and the “all” value. Thus, the total number of context subspace in
R is

∏d
i=1(|dom(Di)| + 1).
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Non-monotonicity property: Typical sequence mining algorithms exploit the
monotone property to devise efficient pruning techniques. To make the matter
worse, in Problem 1, it does not hold the monotone property. Formally:

Lemma 2 (Non-monotonicity). Given two context subspaces S and S′,
where S is the parent of S′. It holds that |LSTS | is neither monotone increasing
nor monotone decreasing with respect to |LSTS′ |.

We provide a counter example to demonstrate the non-monotonicity as
follows. Consider constraint C = 〈10, 10〉 in Table 2. Context subspace S
= 〈Kevin Love, ∗, ∗〉, LSTS = {t2, t4} with length 2. However, the longest
streaks of its child subspaces S1 = 〈Kevin Love, Phoenix Suns, ∗〉 and S2 =
〈Kevin Love,Golden State Warriors, ∗〉 are LSTS1 = ∅ with length 0, and
LSTS2 = {t2, t4, t10} with length 3, respectively.

4 Discovering Longest Streak

In this section, we propose a novel computation framework to discover longest
streak in multidimensional sequence dataset (i.e., data table R(O,D,M)).

4.1 Computation Framework

Algorithm 1 is the pseudo-code of our computation framework. It employs a
set LS to store the longest streaks found so far and use an integer maxlen
to denote the length of longest streak (Line 1–2). The algorithm traverses all

Algorithm 1. LongestStreaks(dataset R(O,D,M), constraint C)
1: Initialize result LS ← ∅, longest streak length maxlen ← 1 � Initialization
2: Initialize root S ← 〈∗, ∗, · · · , ∗〉 and its corresponding tuple set TS ← R
3: LSTS ← FindLS(TS ,C) � Find longest streak in context subspace S
4: if |LSTS | ≥ maxlen then
5: Update LS by (S, LSTS), maxlen ← |LSTS |
6: for i ← 1 to d do � Enumerate context subspace by instantiating Di

7: EnumerateSubspace(S,TS , Di)

8: return LS
Function: EnumerateSubspace(S,TS , Di)

9: foreach v ∈ dom(Di) do
10: S′ ← S, S′

i ← v
11: Obtain TS′ from TS

12: LSTS′ ← FindLS(TS′ ,C) � Find longest streak in context subspace S′

13: if |LSTS′ | ≥ maxlen then
14: Update LS by (S′, LSTS′), maxlen ← |LSTS′ |
15: for j ← i + 1 to d do � Enumerate context subspace at dimension Dj

16: EnumerateSubspace(S′,TS′ , Dj)
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possible context subspaces from the root subspace 〈∗, ∗, · · · , ∗〉. For each context
subspace S, it discovers the longest streak LSTS in it by calling function FindLS,
which will be discussed shortly in Sect. 4.2, and updates LS accordingly.

The context subspaces are traversed by recursive function Enumerate
Subspace. All child context subspaces of S are enumerated by instantiating the
value on dimension Di (Line 10). For each child S′, its tuple set TS′ was derived
from S’s tuple set TS (Line 11). Then FindLS was called to discover the longest
streak in S′ and update result set LS (Line 12–14). Finally, we further traverse
the context subspaces by instating the values in dimension Dj where j > i at
Line 15–16.

4.2 Discover Longest Streak in a Context Subspace S

Discovering the longest streak in a context subspace S, i.e., Function FindLS in
Algorithm 1, is a core subroutine of Problem 1. In this section, we first present
the straight forward solution of it. We then propose two simple but effective
optimizations to improve its performance.

Algorithm 2. FindLS(context subspace tuple set TS , constraint C)
1: Initialize result LSTS ← ∅
2: Initialize streak ST ← ∅
3: for i ← 1 to |TS | do
4: j ← i, ST ← ∅
5: while TS [j] matches with C do
6: ST ← ST ∪ TS [j]; j ← j + 1

7: if |ST| ≥ |LSTS | then
8: LSTS ← ST

return LSTS

Reduce Tuple Testing: In Algorithm 2, we verify whether tuple TS [j] matches
with constraint C at Line 5. It incurs expensive computation cost as the measure
values of tuple TS [j] are compared |TS | − j + 1 times. In order to avoid it, we
compare the measure values of each tuple in R with constraint C once, and store
the result in a bit set B. The corresponding bit set of TS is denoted as BS . As
illustrated in Fig. 2, given measure constraint C = 〈10, 10〉, we can convert each
tuple in Table 2 to a bitset BS . Thus, Line 5 can be replaced by a cheaper
boolean testing BS [j] == True.

1 2 3 4 5 6 7 8 9 10 11 12

0 1 0 1 1 0 1 0 0 1 1 0

= 10,10
Fig. 2. Convert TS to a bitset BS
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 3. Skip unqualified candidates

Skip Unqualified Candidates: Unlike discovering the streak with different
starting position one by one in Line 3, Algorithm 2. We propose to set step size
as maxlen based on the observation below.

Observation 1. Given context subspace S, its corresponding tuple set TS and
bitset BS, and the longest streak length found so far is maxlen. Consider a
streak with start position j in it, if BS [j+maxlen] is False, then all streaks with
starting position from j to j + maxlen can be pruned.

Consider the example illustrated in Fig. 3, it includes 15 tuples, maxlen = 5.
The gray cells are the tuples which match with constraint C, and the white cells
are not. Suppose the streak with starting tuple t1, we found that t1+5 = t6 does
not match with C, then we can conclude the streaks with starting tuple t1, · · · , t6
are not the longest streak in S. We next process the case BS [j+maxlen] is True,
e.g., t11 in Fig. 3. Since t11 is true, there is a streak which includes t11. In order
to identify the starting and ending tuple of the above streak, we search from
both directions of t11. Then we found t7 and t15 are starting and ending tuple,
respectively. The length of the streak is 15−7+1 = 9, it is large than maxlen = 5,
LSTS is updated accordingly.

Through this, the time complexity of FindLS can be reduced from O(|TS |2)
to O(|TS |), where |TS | is the tuple size of context subspace S.

4.3 Time Complexity Analysis of Algorithm 1

The time complexity of Algorithm 1 is the number of context subspaces and the
cost of discovering the longest streak in each subspace. the number of context
subspaces in data table R is

∏d
i=1(|dom(Di)| + 1) (cf. Lemma 1). The cost of

discovering the longest streak in a given subspace is O(|TS |) ≤ O(n), where n is
the total tuples in R (cf. Sect. 4.2). Thus, the time complexity of Algorithm 1 is
O(n · ∏d

i=1(|dom(Di)| + 1)).

4.4 Extensions

We provide a computation framework for longest streak discovery problem. We
suggest the constraint comparison operator, i.e., “greater than”. Nevertheless,
our framework is extensible.

Comparison Operators: Since we convert constraints verification to a prepro-
cessed bitset (cf. Sect. 4.2), then our framework can adapt to any other operators,
e.g., ≥, >,≤, <. We also can put different comparison constraints in different
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measure attributes. For example, our system could discover the longest streak
with constraint C = {Points ≥ 25,Rebound ≥ 10,Turnover ≤ 5}. In practice, it is
finding the longest streak of the player who achieves 25+ points, 10+ rebounds
and 5− turnovers.

Top-k Longest Streaks: In this work, we only focus on the longest streak in the
dataset, however, our framework can extend to discover top-k longest streaks.
The adoption is straight forward by maintaining the top-k longest streaks in a
min-heap in Algorithm 1.

Customize Search Space: In this work, we search the whole space to identify
the longest streak. However, user also can specify the search space to discover
the longest streak with her interests.

5 Optimizations

In this section, we devise several optimization techniques to reduce the compu-
tation cost of our computation framework in Algorithm 1.

5.1 Context Subspace Pruning

As Sect. 4.3 shown, the dominate part is the number of context subspaces, i.e.,∏d
i=1 (|dom(Di)| + 1). In order to reduce the total computation cost, for a given

context subspace we propose an upper bound of its longest streak length.
Given a constraint C and data table R(O,D,M), the upper bound of the

longest streak length in context subspace S is the total number of tuples in TS

which match with C,

UBS = {|CT| : CT = ∪ti∈TS
(BS [i] = True)}.

According to the definition of longest streak length upper bound, we have
Lemma 3.

Lemma 3 (The upper bound of longest streak length in S). The longest
streak in a context subspace S is LSTS, we have UBS ≥ |LSTS |. We denote S′

is the child subspace of S, we have UBS ≥ |LSTS′ |.
Proof. For the first part UBS ≥ |LSTS |, the proof is trivial as the tuples in the
longest streak must match with constraint C, i.e., LSTS ⊆ CT. For the second
part, suppose there exists a child context subspace S′ in S that |LSTS′ | > UBS .
Since UBS′ ≥ |LSTS′ |, we can conclude UBS′ > UBS . It is contradicted with S′

is a child subspace of S. ��

Example: In Table 2, given constraint C = 〈10, 10〉 and context subspace S =
〈Kevin Love, ∗, ∗〉. |LSTS | = 2 and its length upper bound is UBS = 3. S′ =
〈Kevin Love, Golden State Warriors, ∗〉 is a child subspace of S, |LSTS′ | = 3 ≤
UBS .
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In addition, with the upper bound property we sort S’s child context sub-
spaces by its upper bound in descending order, it will turn to a local best first
search strategy. We then incorporate these two optimization techniques to the
computation framework and show it in Algorithm 3.

Algorithm 3. LongestStreaksI(dataset R(O,D,M), constraint C)
1: Same with Lines 1–8 in Algorithm 1

Function: EnumerateSubspace(S,TS , Di)
2: Same with Line 12 in Algorithm 1
3: Derive S’s children context subspaces in Di upper bounds from TS

4: Sort S’s children context subspaces by the upper bounds of Di

5: foreach v ∈ dom(Di) do
6: S′ ← S, S′

i ← v
7: if UBS′ ≥ maxlen then
8: Same with Lines 11–16 in Algorithm 1

Analysis: Compare with Algorithms 1 and 3 computes the upper bounds of each
children context subspace S′. However, these bounds can be derived on-the-fly as
in Line 11, Algorithm 1, it also need obtain its corresponding tuple set TS′ . Thus,
in worst case, the time complexity of Algorithm 3 is the same as Algorithm 1 in
terms of Big-O notation. However, Algorithm 3 performs extremely better than
Algorithm 1, we will show it in experimental section, as it equips upper bound
pruning techniques and local best first search strategy.

5.2 Segmentation Techniques

In our previous discussion, for a given context subspace S, we process the tuples
in its corresponding tuple set TS one by one. In this section, we propose to
process these records one segment by one segment, which provide benefits in
two aspects: (i) we can use a divide-and-conquer methodology to find the longest
streak in the context subspace, and (ii) we could prune the unqualified records
during the context subspace traversal progress. We first define the segment of
tuples in TS .

Definition 6 (Segment of Tuples). Given a constraint C on dataset
R(O,D,M), consider a context subspace S with tuple set TS, a segment in TS is
an interval [i, j], where (1) ∀k ∈ [i, j], TS [k] matches with C (or does not match
with C), and (2) TS [i − 1],TS [j + 1] do not match with C (or match with C).

According to Definition 6, we transform the tuple set TS in Fig. 4(a) to a
segment set SGS in Fig. 4(b).

Suppose SG[i] records the starting position of the tuples in this segment, as
the arrows shows in Fig. 4.
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Fig. 4. Tuple set TS to segment set SGS

Observation 2. We obtain the following observations.

– (1) If SG[i] matches with constraints C, then SG[i− 1] and SG[i+1] either do
not match with C or do not exist (i.e., SG[i] is the first or last segment). For
example, SG[2] matches with C, and SG[1], SG[3] do not match with C.

– (2) The length of SG[i] is SG[i + 1] − SG[i]. For example, the length of SG[2]
is SG[3] − SG[2] = 7 − 4 = 3.

– (3) If the first segment (or last segment) does not matches with C, it can
be removed as it will not affect the length of the longest streak in it or its
descendant context subspaces.

Pruning Unqualified Tuples/Segments: Tuples in SG[1] and SG[5] could
be removed from that context subspaces S (cf. Observation (3)), none of S’s
descendant context subspaces will consider them as the two segments will not
affect the length of longest streaks in them. After pruned the unqualified tuples
(or segments), the segment set turns to Fig. 4(c).

Divide-and-Conquer Strategy: Unlike previous FindLS function, here we
commence the FindLS find at the middle of segment set SG. Suppose the current
maxlen = 4, take Fig. 4(c) as an example, we first check SG[3], it skipped as it
does not match with C. Then it incurs two FindLS function calls, the first one is
for the left side of SG[3] (i.e., SG[2]), the second one is for the right side of SG[3]
(i.e., SG[4]). Since the length of its left-side is 3, it is less than maxlen = 4, so
we can skip it directly. Finally, we discovered the longest streak of the context
subspace S is SG[4] with length 5. In general, we could use the divide-and-
conquer strategy with the additional pruning (cf. the pruning progress of the
left side of SG[3]) recursively.

Generating Segment Set of S’s Children: The idea of generating the seg-
ment set of S’s children context subspaces by instantiating the values in dimen-
sion Di is straight forward, We only need to maintain |dom(Di)| segment sets
and process the tuples in TS one by one. The upper bound of each context
subspace S′ also can be derived with the above progress.

Put All it Together: We incorporate the above ideas to Algorithm 3, we omit
the details of the algorithm due to space limitation. The time complexity of the
algorithm is the same as Algorithm 3, however it improves the performance as
shown in Sect. 6.
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6 Experimental Evaluation

In this section, we evaluate the effectiveness of longest streaks in real dataset
and the efficiency of our proposed techniques. We first introduce the experiment
setting in Sect. 6.1. We then conduct the case studies in Sect. 6.2, and finally, we
evaluate the superiority of our proposal in Sect. 6.3.

6.1 Experiment Setting

We describe the details of the datasets, implementation of our proposed algo-
rithms and hardware configurations in this section.

Dataset: We used two real datasets NBA and Weather, and one synthetic
dataset Synthetic in our experiments.

NBA.4 It contains 795,149 tuples of NBA box scores from 1985–2016 regular
seasons. There are 8 dimension attributes and 5 measure attributes in each
tuple. The dimension attributes are: Player, Team, Oppteam, RegularOrPlayoff,
Court, Week, Month, Season. The measure attributes includes: Points, Rebounds,
Assists, Steals and Blocks.

Weather.5 There are 28,661,310 tuples about site specific forecasts for over
6,000 sites in the UK from 2012 to 2014. Each tuple has 8 dimension attributes
and 6 measure attributes. The dimension attributes includes site name, wind
direction, visibility, etc. The measure attributes are: Wind Speed Day, Wind Speed
Night, Relative Humidity Day, Relative Humidity Night, Wind Gust Day and Wind
Gust Night.

Synthetic. We generate 50,000,000 tuples by using uniform distribution. Each
tuple has 8 dimension attributes and 6 measure attributes. The domain size of
the 8 dimensions are range from 13 to 3000.

Compared Algorithms: For brevity, we denote Algorithm 1 with optimiza-
tions in Sect. 4 as LS, Algorithm 3 in Sect. 5.1 as LSI and Algorithm 3 in Sect. 5.1
with the segmentation techniques in Sect. 5.2 as LSII.

All algorithms are written in C++ and compiled using g++ 6.4.0 with opti-
mization on level 3 in Ubuntu. All experiments were conducted on a machine
with 3.4 GHz i7-6700 processors, 8 GB of memory with single thread. We study
the performance of our methods for various parameters. The default parameter
setting is: the number of tuples n = 25,000,000 (for Weather dataset)/ 30,000,000
(for Synthetic dataset), the number of dimensions d = 6, the number of measures
m = 3. We randomly generated 100 measure constraints for each dataset, and
measure the average response time in each dataset.

6.2 Case Study

In this section, we demonstrate the effectiveness of longest streak discovered
by our algorithm in NBA dataset. In summary, (I) our method could find the
4 https://www.basketball-reference.com/leagues/.
5 https://www.metoffice.gov.uk/datapoint/product/uk-3hourly-site-specific-forecast.

https://www.basketball-reference.com/leagues/
https://www.metoffice.gov.uk/datapoint/product/uk-3hourly-site-specific-forecast
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well-known news facts, i.e., these also were discovered by journalists and pub-
lished in the news website. E.g., “Kevin Love obtained double-doubles in 53
consecutive games during 2010–11 season”6, “Russell Westbrook’s Jordan-esque
triple-double streak ends at 7”7. (II) our method could explore some interesting
facts, which are not found by the journalists. Journalist found that Kobe Bryant
obtained 40+ points in 9 consecutive games in 2002–03 season which tied the
record of Michael Jordan in 1986-87 season, as shown in https://goo.gl/vpp55R.
However, they omitted a fact that Michael Jordan got 40+ points in 9 consec-
utive road games from Nov.28th, 1986 to Dec.18th, 1986, which found by our
algorithm. (III) our algorithm could explore these news facts in milliseconds in
a commodity computer by a freshman. However, it probably could not be found
without the domain expert in several minutes or hours.

6.3 Performance Evaluation

We start by comparing the overall performance of our solutions in Weather
dataset with default parameters setting. As shown in Fig. 5(a), both of LSI and
LSII performs better than LS by two orders of magnitude. Even though LSII
is only slightly better than LSI in terms of response time. However, the number
of tuple visited times of LSII is only 10% of LSI as shown in Fig. 5(b), it implies
LSII has better scalability than LSI.
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Fig. 5. Overall performance on Weather dataset

Effect of n: We evaluate the effect of the number of tuples n in Weather and
Synthetic datasets, the results shows in Fig. 6(a) and (d), respectively. LSI
and LSII outperform LS by at most two orders of magnitude on both datasets.
Interestingly, the performance gap between LSI and LSII widens as n increases.
It also verified the efficiency of segmentation techniques in LSII.

6 http://www.cleveland.com/ohio-sports-blog/index.ssf/2011/03/kevin loves double-
double stre.html.

7 https://www.cbssports.com/nba/news/russell-westbrooks-jordan-esque-triple-doub
le-streak-ends-at-7/.

https://goo.gl/vpp55R
http://www.cleveland.com/ohio-sports-blog/index.ssf/2011/03/kevin_loves_double-double_stre.html
http://www.cleveland.com/ohio-sports-blog/index.ssf/2011/03/kevin_loves_double-double_stre.html
https://www.cbssports.com/nba/news/russell-westbrooks-jordan-esque-triple-double-streak-ends-at-7/
https://www.cbssports.com/nba/news/russell-westbrooks-jordan-esque-triple-double-streak-ends-at-7/


180 W. Wang et al.

10-1

100

101

102

103

1 10 15 20 25

Ex
ec

ut
io

n 
tim

e 
(s

ec
)

n (× 106)

LS
LSI

LSII

(a) Vary n,Weather

10-1

100

101

102

103

104

 3  4  5  6  7  8

R
es

po
ns

e 
tim

e 
(s

ec
)

d

LS
LSI

LSII

(b) Vary d,Weather

100

101

102

103

 3  4  5  6

R
es

po
ns

e 
tim

e 
(s

ec
)

m

LS
LSI

LSII

(c) Vary m, Weather

101

102

103

 1  2  3  4  5

Ex
ec

ut
io

n 
tim

e 
(s

ec
)

n (× 107)

LS
LSI

LSII

(d) Vary n, Synthetic

101

102

103

 3  4  5  6  7  8

R
es

po
ns

e 
tim

e 
(s

ec
)

d

LS
LSI

LSII

(e) Vary d, Synthetic

102

103

 3  4  5  6

R
es

po
ns

e 
tim

e 
(s

ec
)

m

LS
LSI

LSII

(f) Varym, Synthetic

Fig. 6. Performance evaluation by varying different parameters

Effect of d: We then verify the effect of d in both datasets. We vary the number
of dimension attributes from 3 to 9. We omit the response time of LS when
d ≥ 8 on Weather dataset and d ≥ 7 on Synthetic dataset, as it is too slow. The
response time of all solutions rise exponentially with d in Fig. 6(b) and (e), as
the time complexity analysis shown in the paper. However, the increasing speed
of LSII is the smallest as it employed all optimization techniques.

Effect of m: As illustrated in Fig. 6(c) and (f), we vary the number of measure
attributes m from 3 to 6. As we discussed in Sect. 4.2, we convert the measure
constraints comparison to bitset testing. Thus, the number of measure attributes
will not effect the execution time of all algorithms. However, in LSI and LSII,
the more measure constraints, the tighter upper bound we can derive from con-
text subspace S. Thus, the response time slightly goes down with the growing
of m.

7 Conclusion

We proposed a novel computation framework with a suite of performance opti-
mization techniques for the longest streak discovery problem in multidimensional
sequence data in this work. The case study demonstrated the effectiveness of the
discovered longest streaks. Our best solution outperforms the baseline solution
by two orders of magnitude in both real and synthetic dataset. We plan to inves-
tigate automatic news generation techniques in computation journalism area in
the future.
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Abstract. Map matching is an important operation of location-based
services, which matches raw GPS trajectories onto real road networks,
and facilitates tasks of urban computing, such as intelligent traffic sys-
tems, etc. More than ten algorithms have been proposed to address this
problem in the recent decade. However, existing algorithms have not
been thoroughly compared under the same experimental framework. For
example, some algorithms are tested only on specific datasets. This makes
it rather difficult for practitioners to decide which algorithms should be
used for various scenarios. To address this problem, in this paper we pro-
vide a survey on a wide spectrum of existing map matching algorithms,
classify them into different categories based on their main techniques,
and compare them through extensive experiments on a variety of real-
world and synthetic datasets with different characteristics. We also report
comprehensive findings obtained from the experiments and provide new
insights about the strengths and weaknesses of existing map matching
algorithms which can guide practitioners to select appropriate algorithms
for various scenarios.

1 Introduction

Given a set of raw GPS trajectories generated by vehicles on an urban road net-
work, the map matching algorithm is to align each raw trajectory onto underlying
road network, where a raw trajectory is a sequence of sampling points of discrete
locations at each sampling time, and a road network is a graph of vertices and
edges modeling an urban traffic network. The need of such algorithms arises
because: (1) the GPS devices have measurement errors, which may incorrectly
report the actual location of a vehicle, and (2) sampling rates are not always
set to high frequency due to transmission, storage and other costs, making it
hard to tell the exact route. Therefore, map matching is an important operation
for applications utilizing trajectory data, such as data management for traffic
analysis [6], frequent path finder [15], taxi pick-up recommending system [20],
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Cai et al. (Eds.): APWeb-WAIM 2018, LNCS 10988, pp. 182–198, 2018.
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discovery of functional urban zones [28], location-aware publish/subscribe frame-
work in digital content communication [13], etc. The basic idea of map matching
is to align each sampling point to a “proper” location along some real road, to
recover the actual route travelled by the vehicle. To this end, a number of map
matching algorithms have been proposed in the past two decades [1,3–12,14–29].

A typical map matching framework includes two steps (after proper pre-
processing such as data cleaning and indexing): (1) candidate selection step:
road segments or road vertices are selected as candidates of actual locations
according to certain measurements, and (2) actual route construction step: the
route with the highest matching score is selected as the actual route of the vehicle
reporting that particular raw trajectory. The candidate selection algorithms are
crucial in terms of the map matching quality, and they vary as different strategies
are taken. For example, early algorithms use the closest road segment of each
sampling point as their candidate road and connect all candidate segments as
the actual route, while later algorithms would employ more sophisticated models
(such as the Hidden Markov Model) to address the candidate selection step.

Existing map matching algorithms can be categorized by different perspec-
tives. Algorithms in [18,26] can be used for off-line map matching tasks, and algo-
rithms in [9,22,23] are proper for on-line map matching. Algorithms in [1,14,27]
are designed for low sampling rate (no more than one sample point within a
minute), while most algorithms can work better on higher sampling rate data
sets. According to sampling points used in the candidate selection step, there
are incremental [5,8,10,25] and global [5,14,26,29] map matching algorithms.
Besides, map matching algorithms can also be classified into geometry-based
[11], topology-based [4,5,22,26], probability-based [3,17,19,21], and advanced
algorithms such as [16] utilizing the Hidden Markov Model.

However these algorithms have not been thoroughly compared under the
same experimental framework. For example, most algorithms are tested only
on specific datasets, and there is no uniform quality metrics to demonstrate
qualities of these algorithms. This makes it rather difficult for practitioners to
decide which algorithms should be used for various scenarios.

To address this problem, in this paper we thoroughly compare existing map
matching algorithms on the same experimental framework. We make the follow-
ing contributions. (1) We provide a comprehensive survey on a wide spectrum
of existing map matching algorithms and classify them into different categories
based on their techniques. (2) We compare existing algorithms through exten-
sive experiments on a variety of real-world and synthetic datasets with different
characteristics. (3) We report comprehensive findings obtained from the experi-
ments and provide new insights about the strengths and weaknesses of existing
algorithms which can guide practitioners to select appropriate algorithms for
various scenarios.

2 Preliminaries

We introduce following concepts before we formally define the map matching
problem.
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Definition 1 (Trajectory).1 A trajectory T is a sequence of sample points,
T = {p1, p2, · · · , p|T |}, where pk is a sample point (i.e., a geo-location with a
sampling timestamp), and |T | is the number of sample points in T .

Definition 2 (Road Network). A road network is a directed graph G(V,E),
where V = {vi(xi, yi)} is the set of vertices, a vertex vi is represented by a pair
of latitude (xi) and longitude (yi); and E = {ej(vk, vm)} is the set of edges which
are road segments directly connected by vertices in V .

Thus an actual road is composed by one or more road segments sequentially
connected by road vertices.

Definition 3 (Route). Given two road vertices vi and vj, a route R is a
sequence of connected road segments starting from vi and ending at vj.

Therefore, the problem of map matching is to align a raw trajectory T to the
underlying road network and find a matching route R of the highest matching
quality to T , where matching quality can be measured by some matching metrics.
We can broadly classify existing matching quality metrics into several categories:
geometry-based, topology-based, probability-based and statistical metrics.

Geometry-Based Metrics. These metrics quantify the matching quality based
on the similarity of geometry characteristics between a trajectory and a route,
such as distance, angle between the two curves formed by the trajectory and the
route on the digital map. These metrics are fit for high-sampling-rate trajectories
with low measurement error. For low-sampling-rate trajectories, the connectivity
between sampling points can not be measured properly. In early incremental map
matching algorithms (e.g. [11]), nearest road vertices to each trajectory points of
T are selected to compose the route of T , and minimal distance between sample
points and road vertices are used as the matching metric.

Topology-Based Metrics. The topology information employed by this kind
of metrics include connectivity, adjacency, bounding relationship, etc., between
curves or polygons. For example, in the global map matching algorithm [5] the
Fréchet distance [2] is used to measure the matching quality between a trajec-
tory and a route. The topology-based metrics consider not only the distance
between sample points and the potential matching route, but also the topology
connectivity inside the route itself, therefore, they are better metrics for noisy
low-sampling-rate trajectories than the geometry-based metrics.

Probability-Based Metrics. These metrics use the probability that a trajec-
tory may actually go through a certain route to measure the matching quality.
Due to measurement precision, the actual location of each GPS sample point
is restricted to an ellipse confidence area, thus the probability that a sample
point goes through certain route can be calculated according to the relationship
between the point and the part of route within the confidence area [3,17,19,21].

1 In this paper we use ‘trajectory’ to represent any raw GPS trajecotry for simplicity.
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Fig. 1. Matching route example (Color figure online)

In [9], the Hidden Markov Model is used to measure the possibility that a tra-
jectory may actually go through a certain route, and the route with the highest
possibility is selected as the matching route.

Accuracy Metrics. These metrics use statistical knowledge to measure how
accurate a route matches a trajectory. For example, given a route, the accuracy
metric [14] uses the ratio of correctly matched road segments over total number
of segments in the trajectory, to evaluate the accuracy and thus the quality of the
matching route. The problem with such metrics is that ground truth has to be
provided when evaluating matching quality, while the actual routes are unknown
for most raw trajectories, thus restricting the usability of accuracy metrics.

Problem Formulation. Now, we can formalize the problem of map matching.

Definition 4 (Map Matching). Given a raw trajectory T , a road network G
and a matching metric M , the map matching of T onto G is to find a route
Rbest in G, so that M is maximized:

Rbest = arg maxRk
M(G,T,Rk) (1)

In the matching process, more than one possible routes can be generated,
they are referred to as candidate routes. For example, Fig. 1 visualizes a raw
trajectory T (the blue curve) and two candidate routes R1 (the red dot-curve)
and R2 (the green curve) using Google Map. Suppose the vehicle actually went
through route R1, then the accuracy of R1 is higher than R2 because R1 has
more correctly matched road segments for T than R2 does.

3 ST Methods for the Map-Matching Problem

For the map matching problem, a classic method called ST-Matching [14] con-
siders geometric and topological structures of the road network, as well as the
temporal/speed constraints of the trajectories. Based on spatial-temporal anal-
ysis, a candidate route is concluded, from which the best matching score matrix
is identified. The ST-Matching algorithm could be divide into two major parts:
Candidate Filtering, and Spatial and Temporal Analysis. We review how to filter
the candidate points in Sect. 3.1 and discuss its spatial and temporal analysis
in Sect. 3.2. After that we focus on two improved versions of the ST-Matching
algorithm in Sect. 3.3.
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(a) Candidate Road Segments/Points (b) Candidate Graph

Fig. 2. Candidate road segments/points & candidate graph

3.1 Candidate Filtering

Given trajectory T = {p1, p2, · · · , p|T |}, ST-Matching first obtains a set of can-
didate road segments within radius r of each unmatched trajectory point pi
(1 ≤ i ≤ |T |). As illustrated in Fig. 2(a), within the circle of radius r, c1i , c2i , and
c3i are candidate points for trajectory point pi; and e1i , e2i , and e3i are candidate
road edges for pi.

Once the candidate point sets are proposed for all points in trajectory T , the
problem becomes how to choose one candidate from each set in order to make
cj11 → cj22 → · · · → cjn

n best matches T .

3.2 Spatial and Temporal Analysis

The spatial analysis function measures the similarity of the unmatched part
between two trajectory points and the link with the shortest path between
the two corresponding candidate points. First, a candidate graph is constructed
(Fig. 2(b)). The distribution of the GPS measurement error is assumed to take
the Gaussian distribution N(μ, σ2). For each candidate point in the candidate
point set, its observation probability to pi is:

N(cji ) =
1√
2πσ

e− (x
j
i

−μ)
2

2σ2 (2)

where xj
i is the Euclidean distance from candidate cji to unmatched point pi.

From candidate point cti−1 to csi , the spatial analysis is defined as:

Fs(cti−1 → csi ) = N(csi ) ∗ V (cti−1 → csi ), 2 ≤ i ≤ n. (3)

where V (cti−1 → csi ) is the transition probability:

V (cti−1 → csi ) =
d(i − 1, i)
w(cti−1, c

s
i )

. (4)

where d(i − 1, i) is the Euclidian distance from pi−1 to pi, and w(cti−1, c
s
i ) is the

length of the shortest path between cti−1 to csi .
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The temporal analysis of ST-Matching considers the speed information:

Ft(cti−1 → csi ) =

∑k
u=1(e

′
uv ∗ vct

i−1→cs
i
)

√∑k
u=1 (e′

uv)2 ∗
√∑k

u=1 v2ct
i−1→cs

i

. (5)

where point set e′ is the shortest path connecting cti−1 and csi .
Combining the spatial and temporal analysis, the ST-Matching function to

score the route between two candidate points can be achieved:

F (cti−1 → csi ) = Fs(cti−1 → csi ) ∗ Ft(cti−1 → csi ). (6)

Therefore, for trajectory T , the route with the best score from one candidate
point of the starting point of T to one candidate point of the end point of T is
identified as the matching route for T . However, ST-Matching is based on an
assumption that a driver always chooses the shortest route, which may not be
consistent with the real world.

3.3 Improvements of ST-Matching

The GridST [7] tries to improve the first part of ST-Matching, and the IVMM [27]
algorithm aims to improve the second part of ST-Matching.

(1) The ST-Matching Based on the Locality of Road Networks
The GridST algorithm ameliorates the candidate filtering of ST-Matching.

The error circle radius and the maximum number of selected candidate points are
dynamically adjusted according to the locality of the road network. Subsequently,
the number of shortest path computations is reduced, shortening the overall
running time. In order to generate the locality of road network, GridST splits
the road network graph into grids. Before the map-matching process, all grids’
information are calculated and organized to ensure the running time of this
algorithm. If a grid has a higher density of road segments, the candidate filtering
will have higher possibilities to select enough number of candidate point in a
smaller error circle, vice versa. Therefore, GridST reduces the number of shortest
path computations and the overall running time of map-matching process.

(2) The Interactive Voting-Based Map-Matching algorithm (IVMM)
This algorithm utilizes a voting process among all sampling points to reflect

their interactive influence after spatial and temporal analysis of candidate points.
For each sampling point, IVMM will repeatedly select an optimal route which
passes through it. Every candidate point will get one vote when the optimal
path includes this candidate point. Then the global optimal route will be chosen
according to the vote result.

Given the spatial and temporal result of ST-Matching: F (cti−1 →
csi ) = Fs(cti−1 → csi ) ∗ Ft(cti−1 → csi ), a Static Score Matrix M =
diag(M1,M2, . . . ,Mn) is built, M i = (F (cti−1 → csi ))ai−1×ai

. Each item in this
matrix represents the possibility of a candidate point to be a correct match point.
However, this possibility only considers the information of two adjacent points.
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To model the weighted influence of candidate points, a (n − 1)-dimension
Matrix Wi is created for each sampling point pi. And these matrix only have
items in diagonal line: wj

i = f(dist(pi, pj)), (j = 1, 2, . . . , n), where j is the
sequence number of diagonal line in Wi. And dist() is the Euclidean distance.

f(x) = e− x2

β2 , where β is a parameter related to the road network. Then M is
recalculated with the weighted influence in Wi, and every item in M is multiplied
by their weighted score. Matrix M becomes weighted score matrix Φ.

Next, voting based on the interaction of candidate points starts. For each
candidate point cki , IVMM attempts to find an optimal route using the weighted
score matrix Φ. If a candidate point cki is included in an optimal route, this
candidate point cki gains one vote. Then the candidate point with the largest
number of votes for each sampling point pi is identified. Finally, the best route
which passes through every corresponding candidate point is selected as the
matching route.

4 Other Algorithms

4.1 The Fuzzylogic Algorithm

The FuzzyLogic algorithm [12] is different from afore-mentioned algorithms: it
exploits fuzzy logic to construct the degree of similarity between a matched route
and a raw trajectory. The matching route is selected based on its possibility to
achieve the best similarity.

(1) Candidate Filtering
In FuzzyLogic, it first plots the candidate area of an ellipse around the cur-

rent trajectory point whose radius is the GPS positioning error. FuzzyLogic
checks all roads in the candidate area and connects them with the already-
matched road. If the candidate area can not satisfy the conditions, then
FuzzyLogic directly gives up this matching. Otherwise, each sampling point
has a candidate set including all candidate roads within the candidate area.

(2) Fuzzy Analysis
FuzzyLogic uses the fuzzy comprehensive judgement and constructs the set

of fuzzy factors F = {Fx, Fy, Fz}, representing three aspects: car running direc-
tion, the distance between candidate road and sampling point and comparability
of unmatched trajectory with candidate roads.

(2.1) The Membership Factor of Direction
Let θ

′
(j,k) denote the direction angle between the jth sampling point and the

kth candidate point for each sampling point, θj denote the direction angle of each
sampling point. Their difference Δθj denotes direction angle factor set Fx, and
it represents the angle between the vehicle’s running direction and the candidate
road direction (Fig. 3). Five classes of degree are identified: “very small”, “small”,
“medium”, “big”and “very big” for fuzzy reasoning.
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Fig. 3. Membership function of direction

(2.2) The Membership Factor of Distance
Let Δd(j,k) represent the projection distance from the jth sampling point to

the kth candidate road. Δd(j,k) is regarded as the distance factor set: Fy. This
distance can be classified to five fuzzy degrees: “very small”, “small”, “medium”,
“big”and “very big”, as shown in Fig. 4.

0 20 40 60 80 100
0

0.2
0.4
0.6
0.8
1

1.2
1.4

Δd(j,k)

Fu
zz
y
de

gr
ee

Fig. 4. Membership function of distance

(2.3) The Membership Factor of Comparability of Positioning Trajectory
The handling for this factor is similar to the previous two factors. Candidate

roads are resembled to an assumption point with the computing rules used by
foregone sampling point and use the distance between the assumption point and
sampling point as the third factor in this fuzzy model.

With all three fuzzy factors, FuzzyLogic performs fuzzy transform. The fuzzy
vector Q would be the result set aimed at F = {Fx, Fy, Fz}, where each element
within Q denotes the possibility degree of candidate road for each sampling point.
The candidate road with the largest matching degree is the matched road [12].

4.2 The Statistic Algorithm

The Statistic algorithm [24] is based on multiple hypothesis technique. For
one unmatched trajectory, Statistic first selects all nodes within the radius r
around the sampling point. After that, it adds all roads in the network which
connect to at least one of these selected nodes to the candidate road set. For each
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road candidate, the sampling point is assigned to the road, and the matching
score is calculated and stored in the list of current road candidates. The matching
score is calculated by combining the heading of sampling point compared to the
heading of road, the current speed of sampling point and the free-flow speed on
the road, which is shown below:

Scoreroad = d(pi, lj) + ((v(pi) − vff (lj))
2
θij) (7)

where pi represents the ith sampling point and lj is the jth candidate road for
pi, v(pi) stands for current speed of pi and vff (lj) represents the free-flow speed
of lj road. The parameter θ equals 1 if v(pi) > vff (lj), and 0 otherwise.

When all candidates road have been processed for the current sampling point,
this algorithm selects the road which got the highest score to be the matched
road. But if the number of candidate roads is not enough, it repeatedly increase
radius r until there are enough candidates for each sampling point.

5 Experimental Study

We experimentally compare existing map matching algorithms. Our experimen-
tal goal is to evaluate the matching quality, running time, and impacts of param-
eters to the performance of different algorithms. The matching quality is mea-
sured by accuracy-based metrics to reveal how close the matching results are to
the actual routes. The running time is the total time to match a given set of raw
trajectories. The parameters in question are (1) number of candidate points, and
(2) sampling rate, as these two are crucial to the algorithms’ performance.

5.1 Experimental Settings

Algorithms. We compare the following algorithms: ST-Matching [14], IVMM
[27], GridST [7], FuzzyLogic [12] and Statistic [24].

Data Sets

Road Network. We use the road network of Beijing which has 1,285,215 vertices
and 2,690,296 edges.

Real Trajectory Data. We use two real datasets: Taxi (www.datatang.com/
data/45888) and UCar (www.10101111.com/). Taxi contains trajectories gen-
erated by more than 8,000 public taxicabs in Beijing of one month; UCar con-
tains trajectories of nearly 2,000 cars registered in the platform of ShenZhou
Zhuanche(like Uber) within one week in Beijing.

Synthetic Trajectory Data. We implement a simulator to generate synthetic data
as follows. First, a starting point vs and a destination point vd are randomly
selected from the vertex set of the road network. Then, a connected path from
vs to vd is generated (this path does not have to be the shortest path between
vs and vd). Next, assuming the vehicle is moving at some fixed speed (e.g.,

http://www.datatang.com/data/45888
http://www.datatang.com/data/45888
http://www.10101111.com/
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Table 1. Trajectory data sets

Data set Num. of traj. Avg point num. Max point num. Min point num. Avg sample rate

Taxi 200,000 27 50 5 x

UCar 120,000 16 20 3 x

Syn 10,000 388.6 1333 10 20 s

60 km/h), the simulator selects a set of sample points along the path for a given
sampling rate (e.g., 1 min), and randomly deviates the sampling point (which
is originally on the road) to a location within an error range of latitude and
longitude. Our default settings are: the vehicular speed is 45 km/h, the sampling
rate is 20 s, and the latitude and longitude deviations are both ±0.0002o.

Table 1 shows the statistics of the three datasets.

Ground Truth. As stated before, our synthetic trajectories are generated by first
selecting a route from a starting location to a destination, and then adding some
noises to simulate real trajectories. Therefore, the correct routes are known and
can be used as ground truth. In addition to our synthetic data, we also pro-
vide a set of 30 real trajectories manually labeled as ground truth, denoted as
HL-30. These trajectories are selected from Taxi and UCar datasets and man-
ually labelled with the true routes. Trajectory lengths varies from 5.090 km to
23.933 km, averaging at 10.568 km; number of points set to 30.

Settings. All the algorithms are implemented by C++, compiled by Visual
C++. All the experiments are conducted on a Windows Server 2012 with an
Intel Xeon E52682 CPU (two cores, 2.5 GHz) and 4 GB memory.

5.2 Evaluating Accuracy

Accuracy Metrics. Given a trajectory T whose ground truth is denoted as T ,
we measure the matching quality of a route R to T as follows:

NAcc =
num. of road segments in R

⋂
T

num. of all road segments in R
(8)

LAcc =
∑

length of road segments in R
⋂

T

length of R
(9)

Parameter Selection and Default Values. For ST-Matching algorithm, we
set k = 5, r=100 m, μ = 0, and δ=20 m. For IVMM algorithm, we set k = 5,
r =100 m, μ = 0, and δ=20 m. For GridST algorithm, we set μ = 0, and δ=20 m.
These settings are used as default values through out our experiments.

Figures 5 and 6 show the results on HL-30 and Syn datasets respectively. We
have the following observations.

First, for HL-30 dataset (sampling rate ≥ 1 min), the IVMM algorithm and
ST-Matching algorithm achieve top NAcc and LAcc accuracy. For IVMM, this
is because the voting step strengthens scores of candidate points which have
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higher possibility to be on the real route. For ST-Matching, the spatial and
temporal analysis can return high quality candidates especially for low-sampling-
rate trajectories, explaining the top accuracy achieved by ST-Matching. GridST
achieves the third accuracy, demonstrating that the policy to divide the road
network into grids and adjust candidate numbers dynamically can not beat the
original ST-Matching algorithm in case of low-sampling-rate. For FuzzyLogic,
it chooses the best route based on the similarity between the trajectory and the
route, when the sampling rate decreases, the similarity between the trajectory
and the route is discounted, resulting in the fourth accuracy among all the
algorithms tested. The Statistic algorithm is inferior to other algorithms on
accuracy because its scoring model for candidate route sometimes could not
select the “right”candidate.

Second, for synthetic dataset Syn (sampling rate 20 s), the IVMM algorithm
and FuzzyLogic algorithm achieve top NAcc and LAcc accuracy. For IVMM, the
voting step provides stable functionality despite the sampling rate as just ana-
lyzed. For FuzzyLogic, this is because that it chooses the best route based on
the similarity between the trajectory and the route, the geometry and topology
factors can filter high quality candidate in case of high-sampling-rate trajecto-
ries. The ST-Matching and GridST algorithms can also achieve 80%+ NAcc and
LAcc accuracy because the spatial and temporal analysis can return high quality
candidates. The Statistic algorithm is inferior to other algorithms on accu-
racy because its scoring model for candidate route sometimes could not select
the “right” candidate, despite the sampling rate.

Third, for a given dataset, all five algorithms have similar ranking for both
accuracy metrics. Although NAcc focuses on the number of correctly matched
road segments, and LAcc focuses on the length of correctly matched road seg-
ments, on average, the number of road segments in a trajectory is proportional
to the length of a trajectory, because lengths of road segments vary within a
limited range (e.g., 20 m–50 m).

Fourth, for the two datasets, the ST-Matching and IVMM algorithms report
similar accuracy, demonstrating stable matching quality on different sampling
rates. The FuzzyLogic, GridST and Statistic algorithms work better for high-
sampling-rate trajectories.
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5.3 Evaluating Running Time

We compare the running time of all the algorithms by varying the number of
trajectories tested from the Taxi, UCar and Syn datasets. Figure 7(a), (b) and
(c) show the respective results. We have the following observations.

First, the runtime efficiencies of all five algorithms present similar trends on
all of the three datasets tested, demonstrating stability despite the underlying
trajectory data.

Second, the Statistic and FuzzyLogic algorithms have top runtime effi-
ciency, which is linear to the dataset size. This is because the logic of these
two algorithms does not involve time-consuming matrix calculation as in the
ST-Matching and GridST algorithms.

Third, the ST-Matching and GridST algorithms also present linear runtime
efficiency in terms of dataset size. The reason that these two algorithms is
less efficient than the Statistic and FuzzyLogic algorithms, as just stated,
is because their logic involves matrix calculation which is time-consuming.

Fourth, the IVMM algorithm does not scale well as the data size increases.
As indicated in [27], this algorithm has to be parallel-programming in order to
achieve satisfying efficiency, which is non-trivial work.

 0

 50

 100

 150

 200

 250

 0  1  2  3  4  5  6

ru
nn

in
g 

tim
e(

s)

number of trajectories(thousands)

Fuzzylogic
GridST

Statistic
ST-matching

IVMM

(a) Taxi

 0

 200

 400

 600

 800

 1000

 0  1  2  3  4  5  6  7  8  9  10

ru
nn

in
g 

tim
e(

s)

number of trajectories(thousands)

Fuzzylogic
GridST

Statistic
ST-matching

IVMM

(b) UCar

 0

 50

 100

 150

 200

 250

 0  1  2  3  4  5  6  7  8  9  10

ru
nn

in
g 

tim
e(

s)

number of trajectories(thousands)

Fuzzylogic
GridST

Statistic
ST-matching

IVMM

(c) Syn

Fig. 7. Evaluating running time



194 N. Ta et al.

5.4 Evaluating Impact on Accuracy and Running Time by
Candidate Point Numbers

Both the ST-Matching and IVMM algorithms have an explicit parameter in terms
of the maximum candidate points for each trajectory point. For the FuzzyLogic
and Statistic algorithms, they also select a number of possible matching road
points in early state of each algorithm, therefore we treat this parameter as
maximum candidate points in this section as well. We evaluate the impact on
accuracy by varying this parameter from 1 to 5. Figures 8, 9 and 10 show the
corresponding results of NAcc, LAcc and runtime efficiency on HL-30 dataset and
a 1000-trajectory Syn dataset. We have the following observations.

First, on each dataset, the algorithms compared exhibit similar matching
quality variation and runtime efficiency trends as the number of candidate points
increases, demonstrating stability despite the underlying trajectory data.

Second, for the ST-Matching and IVMM algorithm, the accuracy improvement
over the number of candidate points is more obvious on the HL-30 dataset than
on the Syn dataset. This is because HL-30 contains low-sampling trajectories, as
the number of candidate points increases, the possibility that the “right” road
segments are taken into consideration is increased, therefore, increasing accuracy.

Third, for the FuzzyLogic and Statistic algorithms, their matching quality
is not comparable to the ST-Matching and IVMM algorithm. But since the Syn
dataset contains high-sampling-rate trajectories, when the number of candidate
points is big enough (e.g., 4 and above), the matching accuracy can be improved.
Note that for FuzzyLogic, it is almost as good as ST-Matching and IVMM when
the number of candidate points is 5.

Fourth, the Statistic algorithm has the best runtime efficiency, the
FuzzyLogic algorithm has comparable efficiency, and the ST-Matching con-
sumes more time as the number of candidate points increases. This indicates
that the ST-Matching is not suitable for more than 5 candidate points. Besides,
the runtime efficiency of IVMM is not plotted in Fig. 10 since it explodes as the
number of candidate points increases, proving again that it can not scale well
unless parallel programming is used.
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5.5 Evaluating Impact on Accuracy by Sampling Rates

In this section, we compare the matching quality in terms of accuracy with
respect to the sampling rate on our synthetic dataset Syn. Figure 11(a) and (b)
show the corresponding results on NAcc and LAcc. The result of IVMM is not
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reported because the running time is more than one order of magnitude to that
of the other algorithms. We have the following observations.

First, the four tested algorithms exhibit similar matching quality as mea-
sured by both NAcc and LAcc. Second, the FuzzyLogic algorithm is the most
insensitive to the sampling rate variation, and has the best matching quality.
Third, the ST-Matching and GridST algorithms have similar matching quality,
as their basic logic consent. Last, the Statistic has the worst matching quality,
as demonstrated in above experiments.

6 Conclusion

This paper provides an experimental survey on existing map matching algo-
rithms, including, ST-Matching, GridST, IVMM, FuzzyLogic, and Statistic,
and compares them through extensive experiments on both real-world and syn-
thetic datasets with different characteristics. We provide the following experi-
mental findings.

(1) For better matching quality (measured by NAcc and LAcc accuracy), the
ST-Matching and IVMM algorithms are the best choice on low-sampling-
rate trajectory datasets as they outperform other algorithms; and the
FuzzyLogic algorithm is also a good choice on high-sampling-rate trajectory
datasets.

(2) The FuzzyLogic and Statistic algorithms always achieve better efficiency
on both high-sampling-rate and low-sampling-rate trajectory datasets.

(3) Generally speaking, as the sampling rate increases, the matching quality of
all tested algorithms increases.

(4) Among all tested algorithms, the Statistic algorithm reports the worst
matching quality.
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Abstract. Transit prediction is a important task for public transport
institutions and urban planners to provide better transit scheduling and
urban planning. In recent years, there are a lot of research on traffic
prediction, but the existing works focus predicting the monolithic traffic
trend, and few works focus on passenger’s public transportation travel
route. In this paper, we study the passenger’s travel route and dura-
tion prediction. We propose a prediction model based on LSTM neural
network to predict passenger’s travel route and duration. Specifically, we
leverage multimodal embedding to extract passenger’s features which are
highly related to passenger’s travel route and then use a LSTM-based
model to improve the prediction accuracy. To verify the effectiveness of
our model, we conduct extensive experiments using a real dataset which
is collected from Brisbane in Australia for four months. The experimen-
tal results show that the accuracy of our model is better than baseline
models.

Keywords: Transit prediction · Multimodal embedding · Smart card

1 Introduction

With the growing awareness of environmental protection, people are more and
more like to take public transport. Public transportation access and corridors are
natural focal points for economic and social activities. These activities help create
strong neighborhood centres that are economically stable, safe, and productive.
A number of studies have shown that the ability to travel conveniently in an area
without a car is an important component of a community’s livability. Public
c© Springer International Publishing AG, part of Springer Nature 2018
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transportation provides opportunity, access, choice, and freedom, all of which
contribute to an improved quality of life.

Under the theme of intelligent city and intelligent transportation, more and
more people use smart card to take buses. Therefore, large scale passengers
travel data can be collected. The smart card system can automatically and effi-
ciently record passenger’s travel routes and transactions without any additional
equipment [2]. It is very important for the research and development of urban
computing [11]. Through the processing of the passenger’s historical data, we
can predict the passenger’s public transportation travel route and duration. On
the one hand, according to the prediction result of passenger’s public trans-
portation travel route and duration, we can predict traffic peak time of city
and formulate corresponding bus scheduling policy to alleviate the current bus
scheduling imbalance and reduce passenger’s waiting time. Further more, by
analysing passenger’s public transportation travel route and duration, we can
depict the connection between the urban areas and plan out more reasonable
bus routes, making people transfer less times.

First, we propose two baseline prediction models, which are based on
Bayesian and Random Forest(RF) respectively. One model uses naive Bayes
which makes conditional independence assumption and another model uses RF
which treat information gain ratio as the criteria of attribute division. Accord-
ing to the historical dataset, models predict the passenger’s current travel route.
However, the prediction models based on Bayesian and RF have the following
shortcomings: (1) the models do not take into account the impact of passenger’s
travel route at different time periods, and they only make an independent pre-
diction of passenger’s travel route at a certain time period. (2) the models do
not predict the passenger’s travel duration.

To address these challenges, this paper propose Long Short-Term Memory
(LSTM)-based prediction model that enables accurately predict the passenger’s
travel route and duration from the passenger’s historical dataset. The model is
based on the LSTM [7], which maps the passenger’s travel duration to different
time periods. Through the interaction of each neuron, the model predicts the
passenger’s travel route at each time period. Then the passenger’s travel route
and duration are predicted under the given condition of features.

Built upon the LSTM, the prediction model uses multimodal embedding to
achieve higher prediction accuracy. Before the training model, the features and
labels are preprocessed by multimodal embedding [17]. The multimodal embed-
ding learner maps all the passenger, time, week, stop and route units into the
same space with their correlation preserved. If two units are highly correlated,
then the distance is very close between their distributed representations of vec-
tors. The multimodal embedding not only allows us to capture the similarity
between subtle semantic units, but also provides us with background informa-
tion, which reveals the relationship among passenger, time, week, stop and route.
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In summary, we make the following major contributions in this paper:

1. We propose two kinds of baseline models, including Bayesian-based prediction
model and RF-based prediction model. But there are a lot of defects in two
models. So we design the prediction model based on LSTM. The model can
not only predict the passenger’s travel route, but also predict the passenger’s
travel duration. Compared with the baseline algorithm, the model has higher
accuracy.

2. We employs a multimodal embedding learner that jointly maps the passenger,
time, week, stop and route into a latent space with their correlation preserved.
Such multimodal embedding not only make us to capture the subtle semantics
of travel records, but also serve as background knowledge to extract features
for travel records.

3. We conduct massive experiments using smart card dataset by 83515 travel
records over a period of four months. The experimental results show that the
proposed algorithm is very effective and outperforms baselines significantly.
It can predict the passenger’s travel route and duration very accurately.

The remainder of the paper is organised as follows: Sect. 2 introduces prelim-
inary concepts and the work-flow of the proposed model. Section 3 introduces
the baseline models. Our proposed prediction model is presented in Sect. 4. The
experimental results are presents in Sect. 5, followed by a brief review of related
work in Sect. 6. Section 7 concludes the paper.

2 Problem Statement

In this section, we introduce preliminary concepts and formally define the prob-
lem. We summarize the major notations used in the rest of the paper in Table 1.

Table 1. Summary of notations

Notation Definition

r A bus route

u A passenger

t The tth time of the day

s The sth stop in all station

w Denote weekday or weekend

wi An input vector in multimodal embedding

wo An output vector in multimodal embedding

S Feature set in dataset

xt The input vector of the tth neuron in the prediction model

yt The label vector of the tth neuron in the prediction model

ỹ(t) The output vector of the tth neuron in the prediction model
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2.1 Preliminary Concepts

Definition 1 TIME PERIOD. Time period is the discrete number that identi-
fies the time period in a day. We divide each k minute into a time period from
0:00 to 24:00 in a day.

Definition 2 STOP. A stop s is a fixed location in the space where a passenger
u get on or get off the bus in public transportation.

Definition 3 ROUTE. A route r is a bus route, which is consisted of a set
stops, i.e., r = [s1, s2, . . . , sm].

Definition 4 TRAVEL ROUTE. Travel route is a route r which a passenger
takes at time period t at stop s.

Definition 5 TRAVEL DURATION. Travel duration is the time duration
which a passenger spends on a route r. When a passenger u gets on the bus
at t1 and gets off the bus at ti, his travel duration is about (ti − t1) · k.

2.2 Problem Description

Given a passenger u, his location s and the current time t, predict the public
transportation travel route which he will take and how long he will stay on the
public transportation travel route.

2.3 System Overview

In this section, we present the work-flow of generating prediction result.

Fig. 1. System overview of model

Figure 1. Shows the system overview of prediction model. The input of the
model is historical dataset, and the output is prediction result. The framework
contains three main component steps: data preprocessing, model training, and
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model prediction. The data preprocessing uses the embedding learner including
skip-gram and embedding that maps the passenger, time, week, stop and route
units into the same low-dimensional space using extensive data from historical
dataset. Then the model is trained and predicted based on the preprocessed
data, and finally the prediction result is generated.

3 Baseline Models

We propose two baseline models. The first prediction model is based on Bayesian
which makes conditional independence assumption and the second prediction
model is based on RF which treat information gain ratio as the criteria of
attribute division.

3.1 Prediction Model Based on Bayesian

It is very difficult to directly predict the passenger’s travel route under given con-
ditions. In order to solve the posterior probability problem, we adopt the Naive
Bayes decision algorithm. The algorithm makes a strong hypothesis-attribute
conditional independence assumption. It transforms the posterior probability
(which is very difficult to be solved) to the prior probability(which is easy to
solve).

We define the prediction model to predict passenger’s travel route under
certain conditions. Different models are generated for different passengers using
Eq. (1):

r = arg max
r

p(r|t, s, w) (1)

where t is travel time, s is a stop by stopID, and w is a tag indicating whether it
is a weekday or weekend(if w is weekend, then w=0, otherwise w=1), p(r|t, s, w)
is the probability of the passenger choosing to take route r under the conditions
of t, s and w.

It is very natural to calculate posterior probability p(r|t, s, w) with Naive
Bayesian classification algorithm. The formula is shown as following:

p(r|t, s, w) =
p(t, s, w|r)p(r)

p(t, s, w)
(2)

where p(t, s, w|r) is conditional probability(or likelihood). Because the Naive
Bayesian model assumes that the conditions are independent and identically
distributed, the likelihood can be evaluated by Eq. (3). p(r) is the prior proba-
bility calculated by Eq. (4). p(t, s, w) is the probability of known condition and
the value is constant C.

p(t, s, w|r) = P (t|r)p(s|r)p(w|r) =
|Dt,r|
|Dr|

|Ds,r|
|Dr|

|Dw,r|
|Dr| (3)

p(r) =
|Dr|
|D| (4)
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D is the number of training dataset samples; |Dr| is the number of records in
D that the passenger takes route r; |Dt,r| is the number of records in D that
the passenger takes route r at the time period t; |Ds,r| is the number of records
in D that the passenger takes route r in the stop s; |Dw,r| is the number of
records in D that the passenger takes route r under the condition of w. After
calculating likelihood probability by Eq. (3) and the prior probability by Eq. (4),
we can calculate the posterior probability of passenger choosing to take route r
under the conditions of t, s, and w by Eq. (5):

p(r|t, s, w) = p(t|r)p(s|r)p(w|r)p(r) =
|Dt,r||Ds,r||Dw,r|

|Dr||Dr||D|C (5)

Then, we enumerate all routes passing stop s and evaluate all the probabilities
of a passenger to travel each route. At last, we choose the route with the greatest
probability as the result.

3.2 Prediction Model Based on RF

Random Forest(RF) adopts the idea of ensemble learning. It takes decision tree
as a base learner, then votes the classification results of all the decision trees,
and finally selects the classification result with the largest number of votes as
the result of prediction. RF makes use of sample disturbance and attribute dis-
turbance to make the prediction model to achieve high generalization ability.

For RF-based prediction model, we select the features, i.e., passenger, stop,
time, week, and use the information gain ratio as criterion. The decision tree is
then constructed by m samples of bootstrap sampling and selection of a feature.
In this way, we construct M decision trees to form a random forest. Finally, the
relative majority voting method is adopted to select the final forecast result as
shown in Eq. (6):

H(x) = yargmax
∑M

i=1 hj
i (x)

j

(6)

where M is number of decision trees in random forest, yj is sample label and hi

is a decision tree in random forest. hj
i (x) is the output of hi on yj(0 or 1).

4 LSTM-based Prediction Model

In the baseline prediction models, passenger’s travel route are regarded as dis-
crete to predict, that is, the travel route is predicted respectively between time
periods t and t + 1. In reality, the passenger’s travel route at the time period
t may have an significant impact on the travel route at the time period t + 1.
Therefore, the prediction accuracy can be improved by considering the impact
of passenger’s travel route at different time periods. At the same time, the base-
line prediction models do not consider getting off time and can not predict the
passenger’s travel duration.
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The Recurrent Neural Network(RNN) model solves the above problems. The
neurons in the hidden layer connect each other, and the state of neurons at t+1
is affected by the state of neurons at t, thus RNN can consider the influence of
passenger’s travel route at different time periods. Meanwhile, the RNN can make
the information persistent transfer so as to conduct the serialized prediction.
Thus, The RNN model not only predicts the passenger’s travel route at the time
period t, but also can predicts the travel duration.

Thus, we propose to maximize the probability of correct choice given the
passenger’s features using the following formulation:

θ∗= argmax
∑

(X,R)

log p(R|X; θ) (7)

where X is the input feature, R is the passenger’s travel route and θ denotes
user-defined parameters of our models. It is common to apply the chain rule to
model the joint probability over R(1), . . . , R(T ), where T is number of hidden
layer neurons. logp(R|X) is measured as following:

log p(R|X) =
T∑

t=1

log p(R(t)|X,R(1), . . . , R(t−1)) (8)

We can optimize the sum of the probabilities as described in (8) by using stochas-
tic gradient descent(SGD).

We model p(R(t)|X,R(1), . . . , R(t−1)) using RNN, where the state of t is deter-
mined by the state of t − 1 and the input of t. The current state is updated by
using nonlinear function f :

h(t) = f(h(t−1), x(t)) (9)

4.1 LSTM Model

In the training process of most neural networks, there are problems of gradient
vanishing and explosion [7]. In order to solve these challenges, RNN evolves
the particular form,called LSTM [7]. LSTM is widely used in natural language
processing [1,13], picture and sound capture [3] and sequence prediction [4], and
has achieved great success.

The key to LSTM is the cell state, as shown in Fig. 2. The horizontal line
running through the top is the cell state. The cell state runs directly throughout
the LSTM, and it allow the state of all neurons to be easily transmitted across
the entire neural network through a small number of linear operations. The core
components of the LSTM structure are the forget gate, the input gate and the
output gate. The blue box means forget gate, the green box means input gate
and the red box means output gate. The forget gate determines what information
is discarded from the cell state. The input gate determines which information is
stored in the cell state. The output gate determines which information will be
output. The gate value is the number between 0 and 1. If the gate value is 1,
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all the information will be reserved. If the gate value is 0, all the information
will be discarded. The output h at time t − 1 and the input x at time t together
determine the output h at time t through three gates. Cell state c at time t − 1
is altered by forget gate. Output h at time t is calculated by softmax function,
and finally the prediction results are obtained.

Fig. 2. LSTM cell structure (Color figure online)

The definition of gates and cell update and output are as follows:

i(t) = σ(Wixx(t) + Wihh(t−1) + bi)

f (t) = σ(Wfxx
(t) + Wfhh(t−1) + bf )

c̃(t) = tanh(Wchh(t−1) + Wcxx(t) + bc)

c(t) = f (t) ⊗ c(t−1) + i(t) ⊗ c̃(t)

o(t) = σ(Woxx(t) + Wohh(t−1) + bo)

h(t) = o(t) ⊗ tanh(c(t))

ỹ(t) = softmax(h(t))

(10)

where ⊗ represents the product with a gate value, W is respectively input
weights, output weights, and forget weights, b is respectively the input bias,
output bias and forget bias in LSTM networks, σ(·) nonlinear sigmoid function
and tanh(·) is hyperbolic tangent function. The last equation ỹ is a probabil-
ity distribution over taking all routes by h(t) feed to a softmax. In the LSTM,
multiplicative gates make it possible to deal well with exploding and vanishing
gradients.
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4.2 Multimodal Embedding

In LSTM-based prediction model, if one-hot encoded passenger, time, week and
stop are used as input vector directly, the feature vector will be particularly
discrete and the weight matrix will be sparse, which is unfriendly to the training
of neural network. At the same time, the dimension of matrix and feature vector
is very large, which will cause extremely long training time and prediction time.
So we transform one-hot into distributed representation. We employ the method
of multimodal embedding [17] which maps all the passenger, time, week, stop,
and route units into the same low-dimensional space with their correlations pre-
served. If two units often appear together, their similarity is very large and their
embedding tend to be close in latent space(for example, passenger A often takes
a route at B stop, the distance between A and B is very close in latent space).
When passenger, week, stop, and route are all natural and discrete units, we can
directly use them as embedded units. However, time is continuous and there is
no natural embedding units. To address this problem, we divide every k minute
into a time period in a day and consider each time period as a basic time unit.

Our embedding algorithm is inspired by the Skip-gram model [10] that pre-
dicts the surrounding context by one unit. Here, we regard each element (pas-
senger, time, week, stop, and route) in a travel record as a unit. Given a travel
record d, We calculate the similarity between the two units, defined as

s(wi, wo) = V T
wi

Vwo
(11)

where Vwi
is the embedding of unit wi, Vwo

is the embedding of unit wo. We
model the likelihood using softmax function as follows:

p(wo|wi) = exp(s(wi, wo))/
∑

w∈d

exp(s(w,wi)) (12)

where wi is the training feature and wo is the target feature. s(wi, wo) is the
similarity score between wi and wo.

For all passengers’ records dataset S, the objective of the multimodal embed-
ding is to predict all the units in S. We define the loss function as follows:

JS = −
∑

d∈S

∑

wi∈d

∑

−m≤j≤m

log p(wi+j |wi) (13)

where m is the size of the training context. In order to minimize the above loss
function, we use the method of stochastic gradient descent(SGD) and negative
sampling [10] to update the weight value. We use Noise Contrastive Estima-
tion(NCE) [5] which makes the training time shorter and improves the accuracy
of the representation of feature vector. At each time we randomly select a record
d from S(d ∈ S) and randomly select a unit i from d(i ∈ d). Then we randomly
select K negative units that have the same type with i from S (not appear in
d). We define negative samples(NEG) by the following objection function.

Jd = − log σ(s(wi, wo)) −
K∑

k=1

log σ(−s(wk, wi)) (14)
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where σ(·) is the sigmoid function. The updating rules of variable updates can
easily be obtained by the above objective function and using SGD.

4.3 Model Description

LSTM predicts the passenger’s travel route using Eq. (8). First, multimodal
embedding is used to project features and labels into a same z-dimensional space.
Here, using vu, vt, vw, vs and vr to represent the features(passenger, time, week,
stop) and labels(route). Then we use the mean value v̄ = (vu +vt +vw +vs)/4 of
the features’ distributed representation as the input of the first LSTM cell, and
the input of the next LSTM cell in turn are the output of the LSTM cell in the
previous time. When the output of a certain time is a special value, which does
not represent any route, we stop the prediction. Figure 3 shows the expansion
form of the prediction sequence. If the maximum travel time in the dataset is l,
the longest length of the LSTM prediction sequence is T = �l/k�.

Fig. 3. LSTM-Based prediction model

And as shown in Fig. 3, x(t) is the input vector at the time period t(1 ≤
t ≤ T ). ỹ(t) is the output vector of the model at the time period t, which
is represented by a vector, and each element in the vector is the probability of
the corresponding prediction result. From the output vector, we choose the route
with the maximum probability as the prediction result of the model. Conversion
converts the one-hot form of the prediction result into a distributed representa-
tion. When t = 1, x(t) = v̄ and when t > 1, x(t) is a distributed representation
of prediction results through Conversion.

However, a passenger will leave the route at a certain time. To characterize
this particular state, we add an additional dimension to the one-hot encoding
vector of the route to indicate whether a passenger has left the current route.
For example, (0, . . . , 0, 1) indicate that passenger isn’t in a travel route, while
(0, . . . , 1, . . . , 0) indicate that passenger is in a travel route. The label vector is
as follows:

y(t) = (r1, r2, . . . , rn+1), s.t. ri = 0 or 1(i = 1, 2, . . . , n + 1) (15)

where n is the number of routes.
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4.4 Model Training

In the model training phase, we still use the mean of the features’ distributed
representation as the input vector of the first LSTM cell like the prediction phase.
However, unlike the prediction phase, starting from the second LSTM cell, we
take the distributed representation corresponding to the true travel route as the
input rather than the prediction at last time step. After constructing the model,
we use cross entropy as the loss function. The SGD and the back-propagation
through time(BPTT) algorithm [12] are used to train the parameters in the
LSTM-based model.

5 Experiment

In this section, we present our experimental results to evaluate the performance
of proposed prediction model. We conduct the experiments on a computer with
Intel Xeon E5-2620 2.10GHz CPU, Titan X GPU, and 128G memory.

5.1 Experimental Setup

DataSet. In our experiments, we use the passenger data in Brisbane, Australia
from Translink. We use dataset from January 2013 to April 2013. The infor-
mation contained in the dataset is shown in Table 2. We choose the ’Inbound’
direction in dataset. According to the actual situation, most passengers do not
have to travel by more than five hours in a record, so we assume that the max-
imum travel time is five hours. After removing the noise data. There are 1000
passengers, 3189 stops and 532 routes with a total of 83515 records in dataset.
We divide the dataset into a training set and a test set. The training set contains
61646 records, and the test set contains 21869 records.

Table 2. Meaning of each field

Field Meaning

Smartcard ID Encrypted unique id of passenger

Direction Inbound/Outbound

Route Route number of the bus

Boarding time Date/Time touch on a card

Alighting time Date/Time touch off a card

Boarding stop Boarding stop (ID & Description)

Alighting stop Alighting stop (ID & Description)



210 C. Yang et al.

Metrics. To evaluate the performance of all the models, we use the following
metrics:

(1) Accuracy. The prediction accuracy is the main factor to measure the perfor-
mance of the model, p = Ntrue/Ntotal, where Ntrue is the number of correctly
predicted samples and Ntotal is the number of all the test samples.

(2) Running Time. The time that a model takes to predict the samples is also
an effective indicator in measuring the performance of a model. We calculate
time from beginning to ending of model predict.

5.2 Performance Evaluation

In this section, we evaluate the performance of the proposed model by conduct-
ing both objective and subjective experiments. In Effectiveness Evaluation and
Efficiency Evaluation, we set the length of time period k = 15 min.

Effectiveness Evaluation. We use the same training set and test set to get
the effectiveness of the baseline models and the LSTM-based model we have
proposed. We use different number of samples (30 days, 60 days and 90 days)
as training sets. The prediction accuracy of different models is shown in Fig. 4.
It shows the relationship between the scale of training set and the prediction
accuracies of the Bayesian-based, RF-based and LSTM-based respectively. The
accuraies in corresponding partitions are referred as a1, a2, a3. From Fig. 4, we
have the following two main observations: (1) both a1 and a2 are much smaller
than a3, it is because that with multimodal embedding, distributed representa-
tion can represent the correlation between features and the interaction between
LSTM cells improves the prediction accuracy; (2) as the number of samples
increases, both a1 and a2 have small increases, while a3 has a significant change.
The reason is that using more training samples means models can better capture
the passenger’s diverse lifestyle. And for LSTM-based model, each weight matrix
can be trained more robustly.

Efficiency Evaluation. We proceed to report the accumulated prediction time
of different methods. Table 3 shows the change of running time with the different
sample sizes in prediction. From Table 3, we can discover that both Bayesian-
based and RF-based models can complete the forecast task in a very short time,
while the LSTM-based model needs to take a few seconds due to the matrix
operations between the different time steps.

Effects of Parameter. k is the length of time period and can be used to control
the number of LSTM cells in LSTM-based model. As a result, k will affect all
models’ prediction accuracies, and it also has an impact on the prediction time
for LSTM-based model. Figure 5(a) demonstrates the change of prediction time
for predicting 30000 samples with the increase of the length of time period.
This is because that, for a fixed length of time intend when the passenger is
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Fig. 4. Prediction accuracy. The total number of samples in different days v.s. accuracy.

Table 3. Prediction time of different models

Model 10000 20000 30000 40000 50000

Bayesian-based 0.0030 0.0055 0.0090 0.0130 0.0281

RF-based 0.2552 0.4702 0.7239 0.9430 1.1761

LSTM-based 2.3155 3.0906 4.6520 6.1690 7.7438

on the route, LSTM-based model only needs a few of time steps to predict
the travel duration with a large k. Figure 5(b) demonstrates the relationship
between the length of time period and prediction accuracy. From Fig. 5(b), we
can observe that the fluctuation of accuracy is very little for Bayes-based and
RF-based models, while it is obvious for LSTM-based model. But in general, the
fluctuation range is in 0.05. For LSTM-based model, when the length of time
period is 23, the prediction accuracy is maximum. But when the length of the
time period is increased, the subtle state of the passenger can not be predicted.
Therefore, setting k to 15 can better take all aspects of impact into account.

6 Related Work

We study the related work in this section. Most of the previous works are mainly
divided into three parts: (1) the study of the urban structure; (2) the recom-
mendation system; (3) passenger’s travel destination prediction. However, none
of these problems is same with ours.

Urban Structure Discovery. Ma et al. [9] put forward the use of spatial
clustering and multi criteria analysis to study urban structure. Jiang et al. [8]
measure spatial and temporal structure of cities by defining space activities with
time information.
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Fig. 5. Efficiency Evaluation

Friends Recommend. Xiao et al. [15] proposed an algorithm for measuring
the similarity of different users based on the historical track of semantics and
then recommend friends to a user. Yu et al. [16] proposed a three-step statistical
recommendation approach to build a heterogeneous information network.

Destination Prediction. Wang et al. [14] proposed a method which insteads
of searching similar trajectories in sparse dataset to predict the destination. He
et al. [6] proposed a model based on kernel density estimation to predict destina-
tion by using smart card dataset, and the model achieves a great improvement
in prediction accuracy.

7 Conclusions

In this paper we have proposed a LSTM-based model to study passenger’s travel
route and duration in public transportation using smart card data. As far as we
know, we are the first to mention passenger’s travel route in urban computing.
With the multimodal embedding of the passenger, time, week, stop and route, we
extract the features which reserve the correlation in a low-dimension space. We
conduct extensive experiments in a real dataset. The experimental results show
that the performance of our model is better than the baseline models. In the
future, we are interested in extending the method for passenger transfer during
a journey, and have a better prediction for the details of individual transit.
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Abstract. Taxis are a major means of public transportation in large
cities, and speeding is a common problem among motor vehicles, includ-
ing taxis. Unless caught by sensors or patrol officers, many speeding
incidents go unnoticed, which pose potential threat to road safety. In
this paper, we propose to detect speeding behaviors of individual taxis
from taxi trajectory data. Such detection results are useful for driver
risk analysis and road safety management. However, the taxi trajec-
tory data are geographically sparse and the sample rate is low. Further-
more, existing methods mainly deal with the estimation of collective road
speeds whereas we focus on the speeds of individual vehicles. As such,
we propose to use a two-fold collective matrix factorization (CMF)-based
model to estimate the individual vehicle speed. We have evaluated our
method on real-world datasets, and the results show the effectiveness of
our method in detecting taxi speeding behaviors.

Keywords: Speeding · Collective matrix factorization · Trajectory

1 Introduction

In many large cities, with the popularity of private cars and taxis traveling
around, the incidence of traffic accidents has been rapidly increasing, which
often causes damage to personal properties and public facilities, and even leads
to traffic congestions. One of the most common inducements of these accidents
is speeding. Taxi speeding is the most common violation among taxi drivers [4],
which reduces the quality of road safety in modern cities.

In order to solve the major problem of speeding, authorities nowadays have
paid a lot of attention and effort by distributing sensors (such as loops and
c© Springer International Publishing AG, part of Springer Nature 2018
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cameras) along roadways to monitor the real-time driving speeds. Due to the
nontrivial cost, most of these sensors are limited in covering freeways and arte-
rial roads. Unfortunately, collector roads, referring to secondary main roads that
connect arterial roads in cities, are often sparsely covered by these sensors. As a
result, the driving speed information collected in this way is not complete. On the
other hand, the ubiquitous taxi trajectory data provides alternative opportuni-
ties to estimate the driving speeds and detect speeding. Most of these trajectory
data contains the instant speed information recorded by speed meters embed-
ded on taxis. Unfortunately, due to the low sampling rate, these information are
usually too sparse to cover the entire travel paths. Several approaches [2,3,5–8]
have been trying to predict traffic conditions in terms of road speeds by uti-
lizing taxi trajectory data. However, these approaches are not able to monitor
the driving speeds of individual vehicles, thus cannot be applied to detect taxi
speeding behaviors.

In this paper, we propose a prediction system to detect individual taxi speed-
ing behaviors by utilizing taxi trajectory data. Different from previous works,
we try to estimate the driving speed for each individual taxi along the road
it traveled. We first propose a two-fold collective matrix factorization (CMF)-
based model to predict the individual driving speed, capturing the spatial and
temporal patterns of traffic conditions, and predict individual speeding based on
the estimation result. We evaluate our system on real-world taxi trajectory data,
and the results show that our system is effective to detect speeding. Moreover,
we conduct an empirical study on the occurrence of taxi speeding.

2 Overview

2.1 Preliminary

Definition 1 (Road Segment). A road segment e is a directed polyline
between two road intersections vi and vj, and there is no other road intersection
on e. We denote vi ∈ e and vj ∈ e.

Definition 2 (Road Network). A road network is a weighted directed graph
G = (V,E), where V is a set of road intersections (or vertices), and E is a set
of road segments (or edges). The weight of a road segment is represented by its
properties.

Definition 3 (Tracing Record). A tracing record r of a taxi is denoted as a
tuple r = 〈id, t, p, v〉, where r(id) is the taxi id, r(t) is the record time, r(p) is the
location point of the taxi at r(t) represented by its latitude and longitude, and
r(v) is the instant speed of the taxi at r(t).

Definition 4 (Trajectory). A trajectory T of a taxi with id tid is a sequence
of tracing records denoted as T = (r1, r2, · · · , rn), where ri(id) = tid for i =
1, · · · , n. We denote ri ∈ T for i = 1, · · · , n and |T | = n.
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Fig. 1. The workflow of taxi speeding prediction.

Definition 5 (Path). A path P = (e1, e2, · · · , en) is a sequence of road seg-
ments where ei and ei+1 are connected for i = 1, 2, · · · , n−1. Two road segments
ei and ej are connected if there exists some intersection v such that v ∈ ei and
v ∈ ej.

Definition 6 (Trajectory Speed). Given a trajectory T and its map-matched
path P = (e1, e2, · · · , ene

), the trajectory speed of T is denoted as v(T ) =
(v1(T ), v2(T ), · · · , vne

(T )), where vi(T ) is the driving speed of T on road seg-
ment ei ∈ P .

Definition 7 (Speeding). Given a trajectory T of a taxi and its map-matched
path P = (e1, e2, · · · , ene

), we say the taxi is speeding on road segment ei if
vi(T ) > vmax, where vmax is the speed limit of road segment ei.

In this paper, we will solve the problem of finding all the speeding behaviors
from a trajectory dataset.

2.2 Framework

Figure 1 shows the process of our taxi speeding prediction system. We first map
raw trajectories into connected paths constrained to the road network, and then
extract the instant speed information in terms of three matrices, namely collec-
tive road speed matrix, driving speed distribution matrix, and individual trajec-
tory speed matrix. Next, we implement a two-fold CMF-based model to estimate
the driving speed of individual trajectories. The first fold of our CMF-based
model is built to predict the missing values of the collective road speed matrix
by utilizing the road features extracted from the road network data, and the sec-
ond fold is built to predict the missing values of the individual trajectory speed
matrix by utilizing the other two matrices as well as the road features. Finally,
we use the completed matrices to predict speeding based on the threshold of
road speed limits.
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3 Methodology

3.1 Matrix Construction

In order to extract spatial features from raw trajectories, we use the Hidden
Markov Model (HMM)-based map-matching algorithm [10] to convert raw loca-
tion points into travel paths along the road network. In order to distinguish
the traffic conditions the road network and different time slot within a day, we
extract the collective road speeds from map-matched trajectories by construct-
ing 2D matrices with the two dimensions standing for road segments and time
slots. Given a trajectory dataset and the road network G = (V,E), suppose we
split the time in one day into a number of slots μt, the collective road speed vij
is the average instant speed of taxis recorded on road segment ei ∈ E during
the jth time slot. We assume that the instant speeds of all the taxis passing a
certain road segment ei during the jth time slot follows a Gaussian distribution
N (μij , σ

2
ij) [7]. Thus, the speed distribution matrix can be constructed similar

to the collective road speed matrix. Note that vij and N (μij) is missing if no
taxi is traveling on ei during the jth time slot. Thus, the collective road speed
matrix Vc ∈ R

|E|×µt with a large percentage of values missing due to data spar-
sity. In our dataset, if the time slot is set with an interval of 30 min, only 1.8%
entries of Vc have values. With such a low sparsity, it is difficult to predict the
missing values only using its own non-zero values.

In order to solve this problem, we build another dense matrix by extracting
road features from the road network data, and use it for supplementing the speed
estimation. Besides the spatial and topological information, the road network
data consists of road contexts including road level, road direction, road width,
road type (indicating the road is one-way or bi-directional), road length, and
curvature. Each categorical feature is flattened into a vector with 0 and 1, and
each numerical feature is normalized into (0, 1).

3.2 Collective Road Speed Estimation

We implement a two-fold CMF-based model to estimate the driving speed of
individual trajectories. The first fold of our CMF-based model is constructed
to predict the missing values of the collective road speed matrix. Given the
collective road speed matrix Vc, suppose the dimensionality of latent feature
vectors for matrix factorization is k, Vc can be factorized into two latent feature
matrices Vc ≈ W × X = V̂c. The dimension of W and X are |E| × k and k × μt.
The loss function between Vc and V̂c is denoted as:

Jv =
∑

vij �=null

(vij −
k∑

s=1

wisxsj)2 (1)

where vij �= null means that vij is not missing, wis and xsj represent the corre-
sponding element in W and X, respectively.
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Similarly, the road feature matrix F can be factorized into two latent feature
matrices F ≈ W × Y = F̂ . Note that F and Vc shares the latent feature matrix
W , and the dimension of Y is k × h, where h is the number of road features.
Since F is a dense matrix, roads with similar features will generate similar latent
feature vectors, which will be propagated into the factorization of Vc, and thus
reduce the sparsity problem of factorizing Vc.

The loss function between F and F̂ is denoted as:

Jf =
∑

fij∈F

(fij −
k∑

s=1

wisysj)2 (2)

where wis and ysj represent the corresponding element in W and Y , respec-
tively. The inference process is to minimize the loss functions for both of the two
matrices. Thus, the objective function is denoted as:

O(Vc, F ) = αv × Jv + αf × Jf + R(Vc, F ) (3)

where αv is the weight of relative importance of Vc, αf is the weight of rela-
tive importance of F , and R(Vc, F ) is the L2 regularization term, denoted as
R(Vc, F ) = λ × ∑k

i=1 θ2i , where λ is the weight of the regularization term, and
θi is the ith value of latent factors.

We implement the Newton-Raphson method [9] to find W,X, Y that mini-
mize the objective function O(Vc, F ). After that, the missing values of Vc can be
predicted by calculating W × X.

3.3 Individual Driving Speed Estimation

The second fold of our model is constructed for predicting the driving speed of
individual taxis. Similar with the collective road speed estimation, for an indi-
vidual taxi with id tid, we extract the instant speeds from its map-matched
trajectories by constructing 2D matrices with the two dimensions standing for
road segments and time slots. Since the sparsity of the speed matrix extracted
from a single taxi trajectory is much lower than that of collective road speed
matrix, instead of predicting the driving speed, we use standard z-score to esti-
mate the deviation of driving speed v(tid) on ei during the jth time slot from
the distribution, denoted as:

z(tid, i, j) =
v(tid) − μij

σij
(4)

Moreover, since a single taxi tends to travel around limited area within a
city, we reduce the dimensionality of its speed matrix by pruning the road seg-
ments that has never been traveled along. Based on our observation, for a taxi
driver, the deviation of his driving speed from the distribution tends to be more
stable than the driving speed itself. Hence, even if the testing trajectory reaches
the pruned road segments, the error of predicting its speed deviation is accept-
able. Thus, given the trajectories of each taxi, we can construct a nv × μt



Detecting Taxi Speeding from Sparse and Low-Sampled Trajectory Data 219

matrix Z of its travel speed deviations, where nv is the number of road segments
traversed by the taxi. Suppose the dimensionality of latent feature vectors for
matrix factorization is k′, Z can be factorized into two latent feature matrices
Z ≈ W ′ × X ′ = Ẑ ′. Similar with the collective road speed estimation, we imple-
ment the Newton-Raphson method to find W ′,X ′ that minimize the objective
function. After predicting the missing values of the speed deviation matrix, we
can estimate the driving speed of taxi tid passing on road segment ei during the
jth time slot as follows:

v(tid, i, j) = z(tid, i, j) × σij + μij (5)

Finally, given the speed limit vmax of each road segment ei, it is straight
forward to predict the speeding behavior of a taxi, by utilizing its driving speed
matrix.

4 Evaluation

4.1 Experiment Setup

The experiments are conducted on a Linux server with a CPU of Intel Core
i5-4590 and 8 GB memory. The operating system is Ubuntu 14.04, and the code
is written in Python 2.7.6. We use a dataset collected from a large city in China.
The dataset contains 90 million taxi tracking records of 12,000 taxis for 30 days.
The road network consists of 74,184 intersections and 54,723 road segments.
There are five levels of road segments in our road network data, and the speed
limits of each level are 30 km/h, 50 km/h, 60 km/h, 80 km/h, 90 km/h, respec-
tively.

We use three metrics to evaluate the performance of our proposed model,
namely the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE),
and the normalized Root Mean Square Error (NRMSE) [1]. A smaller MAE,
RMSE and NRMSE indicates that the predicted values are closer to the ground
truth, which means a better performance.

In order to evaluate the performance of our individual speed estimation
model, we compare our framework with the following baselines: (1) the aver-
age value of the instant speeds of the two adjacent trajectory records (AAS);
(2) the average speed of the sub-path between each two consecutive trajectory
records (APS); (3) the collective road speed of the nearest road segment that
is available during the corresponding time slot (NRS); (4) the collective road
speed of the corresponding road segment and time slot predicted by our first-
fold CMF-based model (CRS); and (5) the driving speed predicted by a straight
forward implementation of our first-fold CMF-based model on the individual
taxi speed matrix (SCMF).

4.2 Experiment Results

In our experiments, we build the collective road speed matrix and the individ-
ual driving speed matrix using the instant speed information contained in the
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Table 1. Performance of speed estimation model

Method RMSE(km/h) NRMSE(%) MAE(km/h)

AAS 26.279 55.465 15.793
APS 18.474 34.940 10.951
NRS 12.677 18.718 7.248
CRS 8.469 10.080 5.185
SCMF 23.584 48.720 12.604
Two-fold CMF 5.988 6.301 4.068

0 5 10 15 20 25
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

Sp
ee

di
ng

 F
re

qu
en

cy
 (%

)

Time (hour)

(a) Time

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

50

100

150

200

250

300

350

N
um

be
r o

f T
ax

is

Speeding Frequency (%)

(b) Taxi

Fig. 2. Frequency of speeding occurrence among different time slots and taxis.

trajectory dataset. After building the matrices, we use 10-fold cross validation
to evaluate the performance of our model. The default values of each parameter
described in Sect. 3 are: k = 5, k′ = 15, αv = 0.5, αf = 0.8, αz = 0.8, αf ′ = 0.3,
λ = 0.5, λ

′
= 0.2.

We evaluate the overall performance of our model compared with the base-
line listed above. The results are shown in Table 1. The first three baselines
(AAS, APS and NRS) are calculated from the geographic information or statis-
tics extracted from the dataset without matrix completion, and the performances
of these methods are poor. If we directly use the collective road speed calculated
by the first-fold CMF-based model to predict the individual trajectory speed,
the performance is better but still not satisfactory. Meanwhile, since the indi-
vidual speed matrix is too sparse, the performance is even worse if we directly
implement the CMF-based model on it. Finally, it is observed that our proposed
two-fold CMF-based model achieves the best performance compared to all the
baselines, whose prediction error (in terms of normalized root mean square error)
is only 6.301%, which is satisfactory for individual trajectory speed estimation.

4.3 Empirical Study

We evaluate the occurrence of taxi speeding detected by our proposed model
among different time periods and taxis. Figure 2a demonstrates the frequency of



Detecting Taxi Speeding from Sparse and Low-Sampled Trajectory Data 221

taxi speeding occurrence on different time periods within a day. As we can see,
the frequency of taxi speeding occurrence is low before dawn (around 4–6 a.m.)
because most of the taxi drivers are off work, and also limited during rush hours
(around 8–10 a.m. and 5–8 p.m.) because the traffic is usually congested. On the
other hand, the frequency of taxi speeding occurrence is relatively high in the
morning before rush hours (around 7 a.m.), after lunchtime (around 1–2 p.m.),
and at midnight (from 23 p.m. to 2 a.m.). There are various possible reasons
for this phenomenon, such as less congested traffic conditions, requirements of
quick deliveries to the work places, or less effective monitoring (at midnight).
Last but not least, Fig. 2b shows the frequency of taxi speeding occurrence among
different taxi drivers. According to the statistics, most of the taxi drivers do not
often cross the speed limits (with the frequency below 15%). On the contrary,
we observe that a small amount of taxi drivers (around 5%) have high frequency
of speeding (over 20%). Therefore, our speeding prediction system is helpful in
finding out these drivers with bad habits of speeding, providing guidance to
authorities.

5 Conclusion

In this paper, we propose a prediction system to detect individual taxi speed-
ing behaviors by utilizing sparse and low-sampled trajectory data. Most of the
existing approaches are designed to predict the collective speed of roads or paths,
considering spatial and temporal dynamics and patterns. However, they cannot
estimate the driving speed of an individual vehicle from the trajectory datasets.
We implement a two-fold (CMF)-based model to predict the individual driving
speed, and use the completed speed matrix to predict taxi speeding. We con-
duct intensive experiments on real trajectory data. The results show that our
proposed system achieves a satisfactory performance.
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project 2014GKXM054 and the Guangdong Province Key Laboratory of Popular High
Performance Computers 2017B030314073.
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Abstract. Cloned vehicles brought tremendous harm to transportation
management and public safety, which necessitates an efficient detection
mechanism to discern the behaviors of cloned vehicles. The ubiquitous
inspection spots deployed in the city have been collecting moving infor-
mation of passing vehicles. Thus the positional sequences of inspection
spots that vehicles passed by could form into their travelling traces.
This provides us unprecedented opportunity to detect cloned vehicles.
In this paper, we first propose a framework to discern the behaviors of
cloned vehicles, called CVAF. It consists of three parts, including cloned
vehicle detection, trajectory differentiation using matching degree-based
clustering, and behavior pattern extraction. The experimental results on
the real-world data show that our CVAF framework can identify cloned
vehicle and discern their behavior patterns effectively. Our proposal can
assist traffic control and public security department to solve the crime
of cloned vehicle.

Keywords: Cloned vehicle · Object identification
Behavior pattern mining

1 Introduction

In recent years, more and more lawbreakers in many countries have stolen the
vehicle identification number(VIN ) of the legitimately-owned vehicle, then put
it on a theft or salvaged car to gain illicit benefits. Such case is called Car cloning,
which brought enormous harm to the society safety. This necessitates a high-
efficiency detection mechanism to discern the behaviors of cloned vehicles. With
the widespread use of the video surveillance technology, the inspection spots
equipped with camera deployed in city traffic crossroads have been gathering
the information of the passing vehicles. Accordingly, the positional sequences of
inspection spots that vehicles visited could form into vehicles’ trajectories. Ana-
lyzing the trajectories of vehicles can support the identification of cloned VIN.
c© Springer International Publishing AG, part of Springer Nature 2018
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Based upon ANPR data, [6] presented FP-Detector method to detect cloned VIN
using an unified speed threshold. In actual applications, the traffic conditions
behave differently across the regions and change over time, thus, FP-Detector
attains lower precision. In addition, the detection results are not enough to help
the authority to differentiate the trajectories of various objects with the same
VIN. Further investigation reveals that the cloned vehicle may manifest with dis-
tinct behavior patterns, in which the different crime motives are hidden. Hence,
it is vital to model the spatial-temporal behavior patterns of cloned vehicles.

To differentiate the distinct behaviors of cloned vehicles, the following chal-
lenges shall be addressed: (i) several vehicles with the same VIN may travel on
the roads at the same time, accordingly, the traces of them would mix together,
which increases the difficulty of vehicles’ trajectories identification; (ii) different
cloned vehicles have distinct spatial-temporal behavior patterns. It is hard to
extract different behavior patterns using traditional time-series pattern mining
algorithm with the unified parameters.

To tackle the above challenges, we first propose a Cloned Vehicle behavior
Analysis Framework, called CVAF. It consists of three parts: (i) detect the cloned
vehicle according to behavior modeling upon historical trajectory data; (ii) dif-
ferentiate the traces of various cars with the same VIN ; (iii) discern the spatial-
temporal behavior patterns of different cars with the same VIN. For trajectory
differentiation, [2] proposed TPA algorithm to judge the rationality of adjacency
between two points in cloned vehicle trajectory. TPA algorithm uses the unified
speed threshold and groups the points which satisfy the threshold into the same
class. However, as it does not take the real-time traffic condition into account,
TPA algorithm attains low precision in differentiating trajectory. To solve this
issue, combined the spatial-temporal feature with traffic conditions, we design
matching degree measurement to evaluate the rationality of adjacency between
two points. In addition, the existing works on frequent behavior patterns mining
[1,3,7] could obtain high effective results. Based on them, we design a mining
method to extract different behavior pattern of cloned vehicles. Specifically, we
make the following contributions: (1) we first bring forward a framework, called
CVAF, for differentiating the behavior patterns of cloned vehicles. (2) we present
matching degree measurement to assess the rationality of adjacency between two
points, and then propose a clustering method to discern the trajectories of vari-
ous objects. (3) we evaluate CVAF on the large scale real inspection spot data.
Experimental results manifest the effectiveness of our proposal.

2 Preliminary and Problem Definition

Definition 1 (Inspection Spot). The inspection spot I(ID, lon, lat) refers to
the place with the camera, which monitors the passing vehicles, here lon and lat
stand for the longitude and latitude of I respectively.

Definition 2 (Trajectory of Vehicle). The positional sequence of inspec-
tion spots that an vehicle vi traverses is viewed as its trajectory, denoted as
TRvi

= {p0, p1, . . . pn}, here pj is the location of inspection spot that vi visits at
timestamp tj, i.e., pj = (Ij , tj).
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It is observed that several vehicles with the same VIN may travel on the
road at the same period, and the traces of them would mix together. To discern
the trajectories of different objects, it is available to cluster the points into
classes which belongs to different objects. In addition, according to the historical
behavior of the vehicle, the possibility of the next inspection spot it would visit
can be calculated statistically.

Definition 3 (Transition Probability). Given a pair of inspection spots and
a time period T , a transition probability Pr

(T )
Ii,Ij

indicates the probability of the
vehicle passing through Ii to Ij in T .

Pr
(T )
Ii,Ij

= n
(T )
Ii,Ij

/
∑

k

n
(T )
Ii,Ik

where n
(T )
Ii,Ij

denotes the number of vehicle passing from Ii to Ij in T , and
∑

k n
(T )
Ii,Ik

denotes the number of vehicle passing through Ii in T .

For two consecutive points in a normal trajectory, they shall have the high
temporal closeness and spatial proximity. Hence, combining with the transition
probability between the inspection spots, the likelihood estimation that two
points are generated by the same object is defined as below.

Definition 4 (Matching Degree).

ϕpi,pj
= (λ × S(

1
ΔTpi,pj

) + (1 − λ) × S(
1

ΔDpi,pj

)) × PrT
Ii,Ij

where ΔTpi,pj
and ΔDpi,pj

denote the time gap and road network distance
between pi and pj respectively. λ(0 < λ < 1) is the user-specified weight for
time, S(x) represents the Sigmoid function.

In general, a higher matching degree means high possibility of two points are
adjacent and generated by the same vehicle. Thus the trajectories that mixed
together could be grouped into the clusters which belong to different objects
according to matching degree measurement.

Definition 5 (Behavior Pattern). A behavior pattern of the vehicle vi is
defined as a spatial-temporal pair, i.e., TPvi

= (S,A), where S =<I0, I1, . . . , Ik>
is a positional sequence of inspection spots that vi visits, and A =<α1, . . . , αk>
is a sequence of temporal annotations. Behavior pattern has the following form:

TPvi
= I0

α1−→ I1
α2−→ . . .

αk−−→ Ik

Problem Definition: Given the trajectories of vehicles, our task is to discern
the trajectories of different vehicles that used the same cloned VIN, and further
extract their distinct spatial-temporal behavior patterns.



226 M. Li et al.

3 Overview

In this section, we present a framework to discern the spatial-temporal behavior
patterns of various objects that use the same VIN, called Cloned Vehicle behavior
Analysis Framework (or CVAF, for short). CVAF is comprised of three parts: (i)
cloned vehicle detection, (ii) trajectory differentiation, and (iii) behavior pattern
extraction. In our previous work [5], we have illustrated the detection process
in detail. We leverage the historical trajectory data to establish the speed dis-
tribution among the inspection spot pair, and the shortest travel time between
the inspection spot pair can be calculated by that distribution. If the traveling
time of the vehicle between an inspection spot pair is less than its corresponding
shortest travel time during several periods, it is identified as a cloned vehicle.

Fig. 1. An example of discerning the behavior patterns of cloned vehicle (Color figure
online)

After cloned vehicle detection, it is imperative to identify the trajectories of
different objects that used the same VIN, and differentiate the distinct spatial-
temporal behavior patterns of them. Figure 1 shows an example of analyzing
the behaviors of cloned vehicles. The trajectory of a cloned vehicle is shown
in Fig. 1(a). Through shortest travel time rationality verification and matching
degree-based clustering, the trajectories of two objects are identified, as shown in
Fig. 1(b) (highlighted in blue and yellow respectively). Figure 1(c) illustrates ten
days of trajectories (in blue) of an object, and its behavior patterns in different
periods of a day can be extracted, as shown in Fig. 1(d). Next, we proceed to
describe the processes of trajectory identification and behavior pattern mining.

Trajectory Identification of Individual Object. When several cars with the
same VIN drive on the roads at same time, their respective position data would
mix together. To differentiate the trajectories of different objects, it is required
to group the mixed position data into classes which belong to various objects.
First of all, each position point pair needs to be verified the rationality according
to the shortest travel time. If the time gap between any two points is shorter than
the corresponding shortest travel time, they are viewed as unreachable in such
short time slot and cannot be generated by the same object. After shortest travel
time-based rationality verification, matching degree-based clustering method is
leveraged to discern the trajectories of different objects. The matching degree and
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the shortest travel time can help us to judge whether these points are generated
by the same vehicle.

Fig. 2. An example of identifying the objects’ trajectories

Algorithm 1 illustrates the detailed process of identifying the trajectory of
each object. We combine the example in Fig. 2 to explain our algorithm. Suppose
the first point p0 in the cloned vehicle trajectory TRcv is generated by the vehicle
v0, we put p0 into TRv0 (at lines 2–3). Then, we need to judge whether p1 is
generated by v0 or not, we attempt to compare the time gap between p0 and p1
with the corresponding shortest travel time. Suppose the time gap between them
is less than the shortest travel time, we cannot find the existing trajectory for p1
(at line 6), p1 is supposed to be generated by the other vehicle v1. Thus, we put p1
into TRv1 (at lines 6–9). So far, there are two trajectories which are generated by
v0 and v1, respectively. Then we need to judge the rationality, and calculate the
matching degree of (p0, p2) and (p1, p2), respectively (at line 5). If the rationality
of both point pairs are false, p2 is supposed to be generated by another vehicle v2.
Otherwise, p2 is absorbed into the existing vehicle’s trajectory with the highest
matching degree (at line 11). In the same way, the rest points in the cloned vehicle
trajectory are processed and two trajectories are derived, as shown in Fig. 2. We

Algorithm 1. Differentiating the trajectories of Cloned Vehicle
Input: Cloned Vehicle Trajectory TRcv;
Output: Trajectory set Traj set;

1 Traj set = ∅;
2 TRv0 = {p0};
3 Traj set = Traj set

⋃ {TRv0};
4 for pi = p1 to pTRcv.size()−1 do
5 TRmatch = find best match(pi, T raj set);
6 if TRmatch == NULL then
7 num = Traj set.size();
8 TRnum = {pi};
9 Traj set = Traj set

⋃ {TRnum};
10 else
11 append(TRmatch, pi);

12 return Traj set;
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can see that one trajectory is denoted as TRv0 = {p0, p2, p3, p7, p8, p10, p11} ,
and the other is represented as TRv1 = {p1, p4, p5, p6, p9, p12}.

Behavior Pattern Extraction. The behavior pattern of the cloned vehicle can
be depicted as the temporal sequence of inspection spots that an vehicle visits
frequently. Through observing the trajectories of cloned vehicles for a month, the
behavior patterns can be roughly divided into two categories. In the first case,
vehicles have a fixed place of residence but with the random position sequence of
daily activities. In the second case, vehicles visit the same places within the same
time period, and almost keep the same travel trace every day. For example, on
weekday, a white collar usually leaves home at 8:00 AM, arrives at the company
at 9:00 AM and departures from the company at 5:00 PM. The example of this
pattern can be represented as: TP = Ii

1 hour−−−−→ Ij
8 hour−−−−→ Ik

1 hour−−−−→ Il, where
Ii, Il denote the inspection spots near the home, and Ij , Ik denote the inspection
spots near the company. Algorithm 2 details the process of mining the behavior
pattern. Firstly, we attempt to identify the residence place of a driver. The start
point and the end point of one trajectory in a day may be viewed as inhabited or
adjacent to the area of residence. Therefore, we put the first k points and last k
points of each trajectory into the set FLP (at lines 2). The area extracted from
the points in FLP whose quantity satisfies the minimum support δp (at line 3) is
regarded as the residence place of vehicle. Secondly (at lines 4–8), the behavior
patterns of the object are mined. Vehicle may behave differently during various
periods, the behavior patterns in G periods shall be derived respectively. Initially,
each trajectory in Traj Set is partitioned into sub-trajectories according to the
period, and the sub-trajectory set contains all the sub-trajectories in the period
T (at line 5). We use trajectory pattern mining algorithm in [4] to extract the
behavior patterns H from each SubTraj SetT . Given minimum support δf , the
longest frequent sequence TP which satisfies the condition is regarded as the
typical behavior pattern of the vehicle in this period (at lines 6–8).

Algorithm 2. Mining the Behavior Pattern of the Individual Object
Input: A set of trajectories of continuous days Traj set, δp, δf , G;
Output: Residence places R, Frequent Pattern set F ;

1 R = ∅, F = ∅,FLP = ∅;
2 Initialize FLP ;
3 R = find residence place(FLP , δp);
4 for T = 1 to G do
5 SubTraj SetT : sub-trajectories in T ;

6 H = Dynamic I Pattern (SubTraj SetT , δf );
7 TP : the longest sequence in H;
8 F = F ⋃ {TP};
9 return the pattern R and F ;
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The daily behavior pattern and the residence place of the vehicles can be used
to predict the future movement trend of cloned vehicles, and further improve
the accuracy of hunting for suspect. For an vehicle vi with the regular behavior,
according to the pattern TPvi

= I0
α1−→ I1...

αk−−→ Ik, we can predict that vi may
appear in one or more inspection spots of the sequence. If vi is detected at the
inspection spot Ij , we can infer the next inspection spot where vi would most
likely visit in the sequence after Ij .

4 Experiments

In this section, we conduct extensive experiments to validate the effectiveness of
CVAF. Our framework is implemented in Java. All the experiments are run on
a computer with Intel Core i7-6700 CPU (3.40 GHz) and 8 GB memory.

Experimental Setup. We use a real-world ITS surveillance data set that
derived from 535 inspection spots between Sep.1 and Sep.30 in Nanjing. Each
record contains 16 properties, including VIN of the passing vehicle, lane number,
timestamp, direction, etc. Through integrating the data recorded by inspection
spots, we get more than 80 million trajectories of vehicles with 2.8 million VIN,
and we detect 101 cloned VIN from them using the detection method in our
previous work [5]. For effectiveness validation purpose, we choose 30 most fre-
quently recorded VIN, and let volunteers to verify them manually. The values
of parameters are set based on our multiple experimental tuning, the weight
of time in matching degree is set to 0.3, and the minimum support in pattern
extraction is set to 0.6.

Effectiveness. Partial results of trajectory identification and behavior pattern
extraction are visualized in Fig. 3. We can see that three days of VIN (No.
8867)’s trajectories (highlighted in red, black and blue respectively) in Fig. 3(a).
After trajectory identification phase, we discern the trajectories of two objects
(highlighted in solid and dotted lines respectively) using the same VIN, as illus-
trated in Fig. 3(b). We can observe that the car represented by the dotted lines
has the stable behavior pattern, i.e., it visits the same fixed places with the same

Fig. 3. Object identification and behavior pattern extraction (Color figure online)
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chronological order every day. Conversely, the car represented by the solid lines
does not visit the same fixed places. Noted that, it often starts from and returns
back within the same area every day, on the basis of which we infer that area
should be the living region of the car owner. The behavior pattern of each vehicle
is shown in Fig. 3(c), among of which a star represents the living region of the
vehicle without regular behavior, and black line sequence represents the pattern
of the vehicle with regular behavior.

In a bid to verify the effectiveness of our proposed trajectory identification
method, we conduct the contrast experiment with TPA algorithm. We first exam-
ine the impact of the number of vehicles (denoted as n) using the same VIN on
trajectory identification process, here the value of n is set to 2, 3, 4 respectively.
As shown in Fig. 4, we can see that our trajectory identification algorithm per-
forms better than TPA algorithm, it is due to that TPA algorithm dose not
take the effect of traffic condition into account. With the increment of value of
n, there is no significant change about the accuracy rate, indicating that our
trajectory identification algorithm is not sensitive to the number of vehicles.
Further, we use trajectories between Sep. 11 and Sep. 20 to mine the behavior
pattern of vehicles, and leverage trajectories between Sep. 20 to Sep. 25 to ver-
ify the mining result. The effect of the minimum support in different period on
pattern mining is illustrated in Fig. 5. We can see that, with the increase of the
minimum support, our pattern mining algorithm always achieves high accuracy.

Efficiency. Figure 6 shows the execution overhead of the trajectory identifi-
cation process with respect to the number of trajectories. We observe that the
execution time increases linearly with the number of trajectories, which validates
that the time complexity is proportional with the number of trajectories. The
execution time increases with the increment of the number of vehicles (denoted
as n), this is due to that it takes more time to compute the matching degree.
Figure 7 shows the execution time of the behavior pattern extraction process with
respect to the minimum support. We can see that the execution time decreases
with the increment of the minimum support. As the value of the minimum sup-
port decreases, it needs to consume more time to extract the behavior patterns.
The above experiments establish that our proposal can differentiate the behavior
pattern of cloned vehicle in a promising efficiency.

Fig. 4. Evaluation of
object identification

Fig. 5. Evaluation of
pattern extraction

Fig. 6. Time Cost in
object identification

Fig. 7. Time cost in
pattern extraction
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5 Conclusion

In this paper, we first propose a framework to differentiate the behaviors of
cloned vehicles, called CVAF. It consists of cloned vehicle detection, trajectory
identification and behavior patterns extraction. Especially, we design matching
degree measurement to evaluate the probability that two points are adjacent and
generated by the same vehicle. Comparison experiment on real data shows that
our proposed trajectory identification method based on matching degree mea-
surement could attain better validity. Moreover, experimental results demon-
strate that CVAF could discern different vehicles with the same cloned VIN,
which is valuable in assisting the management to solve cloned vehicle crime.
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Abstract. Predictive maintenance aims at enabling proactive scheduling of
maintenance, and thus prevent unexpected equipment failures. Most approaches
focus on predicting failures occurring within individual sensors. However, a
failure is not always isolated. It probably formed by propagation of trivial
anomalies, which are widely regarded as events, among sensors and devices. In
this paper, we propose an event correlation discovery algorithm to capture
correlations among anomalies/failures. Such correlations can show us lots of
clues to the propagation paths. We also extend our previous service hyperlink
model to encapsulate such correlations and propose a service-based predictive
maintenance approach. Moreover, we have made extensive experiments to
verify the effectiveness of our approach.

Keywords: Event correlation � Sensor data � Predictive maintenance
Proactive data service � Service hyperlink

1 Introduction

Stable and reliable operation is critical to industrial enterprises. Scheduled maintenance
is widely used to prevent unexpected breakdowns and downtimes. Such maintenance is
always performed separately for every component at fixed intervals. However, it is
extremely costly and inefficient beyond fixed schedule.

In contrast, predictive maintenance grasps the evolvement and development of
equipment running status. It aims at enabling proactive scheduling of maintenance, and
thus prevent unexpected equipment failures. Nowadays, predictive maintenance is well
performed when values deviate from normal behavior within individual sensors [1, 2].

However, a failure is not always isolated. Owing to the obscure physical interac-
tions, trivial anomalies will propagate among different sensors and devices, and
gradually deteriorate into a severe one in some device [3]. Mining such propagation
paths is an effective means of predictive maintenance.
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We will examine a scenario with the example of anomaly propagation in a coal
power plant. In a coal power plant, there are hundreds of machines running continu-
ously and thousands of sensors have been deployed. From individual sensors,
anomalies, i.e., values deviating from normal behaviors, can be regarded as events [4].
As Sect. 2 shows, such events correlate with each other in multiple ways across sensors
and devices. These event correlations uncover possible propagation paths of anomalies
among different devices. It is very helpful to explain the root cause of an observable
device anomaly/failure and perform predictive maintenance proactively.

Recently, event correlation discovery problem has received notable attentions [5–
10]. The techniques can be widely applied in process discovery [5, 6], anomaly
detection [7, 8], healthcare monitoring [9, 10], and so on. Motivated by our scenario, in
this paper, we put our focus on a new kind of relationship between two sets of event
types. It is that events of a type set are probably followed by events of another type set
within a predefined time period. Such correlations provide clues for us to find possible
anomaly propagation paths so as to perform predictive maintenance.

In our previous work [11, 12], we tried to map physical sensors into a
software-defined abstraction, called proactive data service. A proactive data service
takes values from physical sensors or events from other services as inputs and generates
new event streams based on user-defined operations. We also defined the invocation
relationships between two proactive data services as service hyperlinks. In [11], we
used Pearson coefficient to measure such relationship. In [12], we represented original
values as symbols and used a time-constrained frequent sequence to measure the
correlation. In this paper, we concentrate on event correlations between two sets of
event types. The main contributions include: (1) We propose an algorithm, called
EventCorrelator, to discover such event correlations among values from different
sensors. To reach this goal, we detect events from values and transform the correlation
discovery problem into a time-constrained frequent co-occurrence pattern mining
problem. A frequent co-occurrence pattern is a set of objects, which occurs frequently
in any order within a predefined time period. We refine the concept by introducing a
customized time constraint to fit our problem. (2) The discovered event correlations are
encapsulated into service hyperlinks to improve our previous work. In a real applica-
tion, we apply our service-based solution to make predictive maintenance in a coal
power plant with refined hyperlinks. (3) Furthermore, a lot of experiments are done to
show the effectiveness of our approach based on a real dataset from a coal power plant.

2 A Case Study

Figure 1 shows a real case about how trivial anomalies propagate into a severe failure.
This case involves five sensors on two devices: coal feeder D device (CF-D device) and
coal mill D device (CM-D device). As two maintenance record shows, a severe coal
blockage failure happens twice at the CM-D device (id: 933) from 2014-10-03 09:00:00
to 2014-10-03 12:00:00, and from 2014-10-04 15:00:00 to 2014-10-04 17:30:00
respectively. The failure description is “#1D over high inlet air pressure and differential
pressure of grinding bowl: coal blockage failure on coal mill D device.” As the two
maintenance records show, over high inlet air pressure and over high differential pressure
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of grinding bowl is the signs of the coal blockage failure. But they are not the root cause of
the coal blockage failure. Actually, it is caused by three trivial anomalies, including over
high coal feed, over high hot air valve degree and over low coal hopper level.

As Fig. 1 shows, the three causal anomalies occur in different orders in the two
failures. So do the signs. The two signs occur at the same time in the first failure. But in
another failure, over high differential pressure is 45 min delayed to the over high
differential pressure. However, the three causal anomalies are always followed by the
two signs within a short time period. It indicates that this type of failure can be
predicted when the three causal anomalies happen. In other words, when the three
causal anomalies occur in any order, we can perform predictive maintenance of CM-D
device for the coal blockage failure proactively.

This case illustrates how anomalies propagate among different devices and finally
evolve into a severe failure in a specific device. However, mining a complete propa-
gation path is a challenging problem as we cannot clarify and depict complicated
physical interactions among these devices. Fortunately, the correlations among
anomalies/failures show us lots of clues. If we can find such correlations, we have
chances to splice them to form a complete propagation path. With these paths, we can
make predictive maintenance of a specific device before trivial anomalies evolves into a
severe failure of that device. Furthermore, we can also explain an anomaly/failure and
find its root causes.

Fig. 1. Partial propagation path of trivial anomalies evolving into a server failure in a coal mill
device: a real case.
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3 Problem Definition

Definition 1 (Sensor Record). Asensorrecord is a 3-tuple: r = (timestamp, sensorid,
value), in which timestamp is the generation time of r; sensorid represents the sensor
generates r; value is the value of r.

Example (Sensor Record): A sensor record r = (2014-10-02 00:00:00, A6, 0.0156)
represents that the coal feed sensor (id: A6) generates a coal feed value of 0.0156 at
2014-10-02 00:00:00.

Definition 2 (Sensor Sequence). Given a sensor si, a sensor sequence is a
time-ordered list of sensor records Ri ¼ ri;1; ri;2; . . .; ri;n

� �
, where ri;k k ¼ 1; . . .; nð Þ is

generated from sensor si.
Example (Sensor Sequence): Fig. 1 shows five examples of sensor sequence, such

as a coal feed sequence, and a hot air valve degree sequence.
In the above case, we observe that values deviating from normal behaviors are more

valuable, because they may propagate and evolve into a severe failure. Such values are
regarded as trivial anomalies and are widely described by event [4].

Definition 3 (Event). An event, which also refers to an event instance or an instance,
is a 3-tuple: e = (timestamp, eventid, type), in which timestamp is the generation time
of e; eventid is the unique identifier of e; type is the type of e.

Example (Event): Fig. 1 shows several trivial anomalies. The circled trivial
anomaly can be expressed as an event e = (2014-10-04 05:18:00, 12986, H-CF). It
indicates that an over high coal feed event (id: 12986) occurs at 2014-10-04 05:18:00.

Definition 4 (Event Sequence). Given a sensor si, an event sequence is a time-ordered
list of events Ei ¼ ei;1; ei;2; . . .; ei;m

� �
, where ei;k k ¼ 1; . . .;mð Þ comes from si.

Example (Event Sequence): We can get an event sequence from the coal feed
sequence in Fig. 1 as follows: E = 〈 (2014-10-03 01:42:00, 12985, H-CF),
(2014-10-04 05:18:00, 12986, H-CF) 〉.

Definition 5 (Event Correlation). Let E ¼ E1; . . .;Ekf g be k event sequences from
k sensor sequences respectively, and and are two set of event types involved in
E1; . . .;Ek. The event correlation between and is measured by the possibility that
instances (in any order) of will occur in Dt (which is a user-defined time threshold)
in E given that instances (in any order) of have already occurred. We denote the

event correlation as, in which is the antecedent, is the consequent,
and p is the possibility.

Example (Event Correlation): Fig. 1 implies an event correlation ({H-CF, H-AVD,
L-CHL}, {H-OAP, H-DP}, 3 h, 1.0). Herein, H-AVD, H-OAP, and H-DP is over high
hot air valve degree, over high inlet air pressure and over high differential pressure
event type respectively. L-CHL represents over low coal hopper level event type, and
1.0 is the possibility.

In this paper, our main goal is to discover event correlations from a set of sensor
sequences.
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4 Event Detection

The primacy of discovering event correlations from a set of sensor sequences is to
detect events, i.e., values deviating from normal behaviors in each sensor sequence. It
is a mature area and many traditional techniques and algorithms can be borrowed. This
paper adopts three of them. Owing to the page limitation, innovations of these methods
are beyond the scope of this paper.

A range-based event detection algorithm customizes value bounders for individual
sensor on experiences. We learn these experiences from inspectors, sensor/device
instructions and maintenance records. The values beyond the customized bounders are
regarded as events. Note that such events are usually severe failures.

Outliers are widely known as the values which deviate sufficiently from most ones to
consider that they were generated by a different generative process [13]. Herein, we
mainly focus on the outliers in a sensor sequence, which is a one-dimension space. As
pointed out by literature [13], Gaussian Mixture Model (GMM) with one component can
perform well in low dimensional dataset. Thus, we select GMM to generate events from
each sensor sequence.We use an open source data mining software written in Java, which
is called ELKI1. It supports various of outlier detection algorithms, including GMM.

Adiscord is the subsequencewhich aremost dissimilar with others in a sequence [14].
This paper adopts a novel technique, namedMatrix Profile. It can discover top k discords
in a given sequence. The authors of this technique provided an open source code written
in Matlab2. Matlab Engine API for Java allows us to invoke their code from Java.

Any result of the above algorithms will be transformed into an event, no matter a
data point or a subsequence. Events from one sensor sequence is sorted by time to form
an event sequence.

5 Event Correlation Discovery

5.1 The Framework of Our Algorithm

The core of this paper is how to discover event correlations from a set of event
sequences generated by the above three algorithms. Our main idea is to transform event
correlation discovery into a constrained frequent co-occurrence pattern mining prob-
lem. Essentially, an event correlation requires instances of two event type sets fre-
quently occur closely in time, i.e., within Dt. In other words, an event correlation is a
relationship among the objects in a frequent co-occurrence pattern. It inspires us to
mine frequent co-occurrence patterns so as to discover event correlations.

The challenge is how to identify the time delay between two related event type sets.
It actually reflects how long that a set of events will be affected by its related events.
Unfortunately, traditional frequent co-occurrence pattern mining algorithms cannot
directly solve such problem. They only focused on the occurrence frequency of a group
of unordered objects [15, 16]. Hence, we try to design an algorithm to discover a

1 https://elki-project.github.io/.
2 http://www.cs.ucr.edu/*eamonn/MatrixProfile.html.
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constrained frequent co-occurrence pattern. Such pattern consists of two object groups,
where intra-group objects are unordered and inter-group objects are time-ordered, and
all objects span no more than Dt. We call such pattern as time-constrained frequent
co-occurrence pattern.

Figure 2 presents the framework of our approach. Historical sensor records coming
from individual sensors are saved in time order and form sensor sequences. Event
detection algorithms can detect event sequences from sensor sequences. The events
from different sequences are clustered by a predefined time threshold Δt. Events in each
cluster is sorted by timestamps to generate a new event sequence. We call this step as
event sequence transformation. Events in a new sequence forms a co-occurrence pat-
tern. Thus, we discover event correlations by mining time-constrained frequent
co-occurrence patterns among the new event sequences.

Fig. 2. A framework of our algorithm.

An Event Correlation Based Approach to Predictive Maintenance 237



5.2 Event Correlation Discovery

Time-constrained Frequent Co-occurrence Pattern Mining. In this section, we
explain what a time-constrained frequent co-occurrence pattern is, what the differences
between the novel pattern mining and traditional frequent co-occurrence pattern mining
are, and how to mine the novel patterns. Firstly, we remind the traditional concepts of
frequent co-occurrence pattern mining.

Frequent Co-occurrence Pattern Mining. We list some related concepts in this area.
A group of objects O ¼ o1; o2; . . .; omf g from a sequence si is a co-occurrence pattern,
if max T Oð Þf g �min T Oð Þf g�Dt, where T Oð Þ ¼ to1 ; to2 ; . . .; tomf g, toj is the occur-
rence time of oj j ¼ 1; 2; . . .;mð Þ in si, and Dt is a predefined time threshold. The
co-occurrence pattern O becomes a frequent co-occurrence pattern, if it occurs in no
less than k sequences.

Researchers tried to generate all co-occurrence patterns and count them to discover
frequent ones [15, 16]. Obviously, traditional algorithms cannot handle the time con-
straint we mentioned above.

Time-Constrained Frequent Co-occurrence Pattern. A group of objects O ¼
o1; o2; . . .; omf g is a time-constrained co-occurrence pattern, short for TCP, if it

satisfies the following conditions: (1) object oi is from sequence si i ¼ 1; 2; . . .;mð Þ;
(2) max T Oð Þf g �min T Oð Þf g�Dt, where T Oð Þ ¼ to1 ; to2 ; . . .; tomf g, and toi is the
occurrence time of oi; (3) O can be divided into two parts, which is denoted as a
division d : O ¼ Oant [Ocons, and objects in Ocons follow those in Oant. A TCP may
have many valid divisions. To tell the difference, a TCP O for a valid division d can be
denoted as TCP O; dð Þ. Following this concept, O becomes a time-constrained fre-
quent co-occurrence pattern, short for TFCP, if there is at least one division d and
TCP O; dð Þ occurs for no less than k times in the sequence set s1; s2; . . .; smf g. Simi-
larly, TFCP O for division d can be denoted as TFCP O; dð Þ. Herein, an object refers to
an event type. TFCP O; dð Þ implies that there are no less than k instance groups, each of
which corresponds to O. In each group, instances of Ocons follow instances of Oant.
From now on, the event correlation discovery is actually equal to mining all valid
divisions of TFCPs.

We list some examples of above concepts based on Fig. 1. Let k be 2. An event
type set {H-CF, H-AVD} has no valid divisions so that it is not a TFCP. On the other
hand, an event type set {H-CF, H-AVD, L-CHL} is a TFCP with the division of
{H-CF, H-AVD} [ {L-CHL}.

Differences Between Time-Constrained Frequent Co-occurrence Pattern Mining and
Traditional Frequent Co-occurrence Pattern Mining. Our TFCP mining task is sig-
nificantly different from the traditional one. The first difference is, each object in a TCP
comes from a unique sequence. But in the traditional co-occurrence pattern, all objects
have a unique source. The multi-source objects greatly improve the difficulty of the
mining task. In our task, to avoid missing results, two adjacent TCPs probably have a
large portion of repeated objects, as Fig. 2 shows. The overlapped portion may cause
repeated counting of a TFCP’s frequency. It urges us to carefully check the frequency
so as to guarantee the correctness of results.
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Another difference is a TCP is supposed to be divided into two groups, where
intra-group objects are unordered and inter-group objects are time-ordered. This time
constraint raises the complexity of our task. Assume that the frequency of a TFCP
O ¼ o1; o2; . . .; omf g is l. To find out all valid divisions by traditional ideas, we have to
count the frequency for any possible division of O. The number of possible divisions is
2 � C2

m þ . . .þCm=2
m

� �
, where m=2 will return the closest integer greater than or equal

to m=2, not to mention the number of object groups. Owing to this difference, our task
is unable to be simply solved by the well-known generation and counting strategy.

Time-Constrained Frequent Co-occurrence Pattern Mining. To find all valid divisions
of each TFCP from a sequence set, we have to generate all TCPs firstly. This can be
done by clustering objects by the time threshold Dt across different sequences. Objects
in a cluster is sorted by their timestamps so that they form a new sequence called a
transformed sequence. Based on the above analysis, two adjacent clusters may have a
large portion of repeated objects. If the later cluster is completely contained by the
previous one, the TCP in the later cluster will not cause any new TFCP. Thus, such
cluster should be removed from the further computation.

How to generate TFCPs and their valid divisions from all the TCPs above is the
best question we concentrate on. Before presenting our idea, we present some obser-
vations which inspire us during developing our algorithm.

Theorem 1. Given a transformed sequence set R, O is the complete object set of R.
Let an object group O0

(O be a TFCP for division d
0
: O0 ¼ O0

ant [O0
cons, where

O0 ¼ o
0
1; o

0
2; . . .; o

0
m

� �
. If Ô be a TFCP for division d̂ : Ôant [O0

cons, where Ôant ¼
of g[O0

ant and o 2 O �O0
, the frequency of TFCP Ô; d̂

� 	
is smaller or equal to that

of TFCP O0
; d

0
� 	

.

Proof. Denote the frequency of the TFCP O0
be fO0 . For the ith time O0

occurs in R
(repeated occurrences in adjacent transformed sequences are counted as one time),

Ti O0� 	
¼ ti;o01

; ti;o02
; . . .; ti;o0m

n o
is the ith timestamps of objects in O0

(1� i� fO0 ). If

fÔ [ fO0 , there must be TfO0 þ 1 Ô
� 	

¼ tfO0 þ 1;o; tfO0 þ 1;o01
; tfO0 þ 1;o02

; . . .; tfO0 þ 1;o0m

n o
,

which satisfies that Ti O0� 	
6¼ TfO0 þ 1 Ô

� 	
� tfO0 þ 1;o

n o
, where 1� i� fO0 .

TFCP Ô; d̂
� 	

is a TFCP for d̂ so that O0
is a TCP for d

0
with TfO0 þ 1 Ô

� 	
� tfO0 þ 1;o

n o
.

Consequently, the frequency of the TFCP O0
; d

0
� 	

must be larger than fO0 . Hence, the

theorem is proved.
For d̂ : O0

ant [ Ôcons, where Ôcons ¼ of g[O0
cons, the above theorem can also be

proved in the same manner. This theorem illustrates that we can generate valid divi-
sions by extending existing ones. Given an existing division d : O ¼ Oant [Ocons, we
can extend it by adding an object to Oant or Ocons. The former one is called as
antecedent extension, while the latter one is called as consequent extension.

After we make an antecedent/consequent extension to generate a new division, we
check its frequency to judge its validity. For each valid division d : O ¼ Oant [Ocons,
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we compute the possibility by the following formula: p OantjOconsð Þ ¼ fO
fOcons

, where fOant

is the frequency of Oant and fO is the frequency of O. The condition possibility is
responsible for measuring the relationship between Oant and Ocons as Definition 5
shows.

Based on the above idea, we propose an algorithm called EventCorrelator to
discover event correlations on top of TFCP mining.

The Implementation of EventCorrelator Algorithm. EventCorrelator algorithm
takes a set of event sequences detected from sensor sequences as inputs. The time
threshold Dt and frequency threshold k are another two input parameters of this
algorithm. EventCorrelator outputs event correlations in format of ,

where corresponds to a TFCP for division in a bijective
manner. The main steps of EventCorrelator is listed as follows.

1. Cluster events across the input event sequence set by Dt.
2. Sort events in each cluster into a transformed sequence so as to create a transformed

sequence set R.
3. Scan R to generate an object set O. Each object in O has an equal or higher

frequency than k.
4. Generate all possible divisions with two objects from O in form of

d : oi; oj
� � ¼ oif g [ oj

� �
. Note that oj

� � [ oif g is also a possible division.
5. Test the validity of each possible division by comparing its frequency with k.
6. For each valid division, calculate the condition possibility, and output this result.
7. Extend each valid division by adding an object and repeat steps 5, 6, and 7. The

recursion stops when there is no valid division.

There are some skills during the extensions to avoid generating repeated divisions.
We always make an antecedent extension firstly and then make a consequent extension
by adding an object. All objects are added in lexicographical order during
antecedent/consequent extensions. It indicates that we only add a larger object to Oant

or Ocons for a division d : O ¼ Oant [Ocons. Besides, once we get a new division by
extending a valid division d, we only check those transformed sequences contain d
instead of the whole set R.

6 The Service-Based Predictive Maintenance Workflow

6.1 Proactive Data Service and Service Hyperlink

Our previous works proposed a proactive data service model to encapsulate sensor
records into a service [11, 12]. It can serve as the fundamental unit to form an IoT
application. When building a service, a user customizes its functionality by cus-
tomizing the input sensor records as well as operations. Event handler invokes oper-
ations for different inputs. Event definition is responsible for defining output event type
and format. In this way, each service processes its inputs and generates high-level
events. A created service can be encapsulated into a Restful-like API so that other
services or applications can use it conveniently.
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Our service has an important component called service hyperlink. It is an
abstraction of event correlations and responsible for indicating target services for an
output event. Propagation of anomalies among sensors and devices, as Fig. 1 shows,
can be depicted as event routing among services in the software layer. A propagation
path probably involves many sensors from different devices. And event correlations
among sensors are dynamically interwoven. Rather than starting from scratch, service
hyperlink can keep valuable event correlations from the historical sensor sequence set,
and serve as a reusable knowledge segment. Event correlation reuse will certainly
improve the quality and efficiency of event routing among services. Via service
hyperlinks, our services can run proactively to correlate and collaborate with events to
serve IoT applications.

Definition 6 (Service Hyperlink): Let and be two set of event types, which

come from two set of proactive data services Si and Sj respectively, and
be their event correlation. Given a possibility threshold pmin, if p� pmin, there is a
service hyperlink L Si;Sj;Dt

� � ¼ Vertices;Edgesð Þ, where Vertices ¼ SrjSr 2 SifW
Sr 2 Sjg, and Edges ¼ f Srp; Srq

� �j Srp 2 Si ^ Srq 2 Vertices
� � _ Srp; Srq 2 Sj

� �g.
We call services in Si as the source services, services in Sj as the target services, and Dt
as the valid time.

6.2 A Service-Based Predictive Maintenance Approach

Learning Event Routing Paths Among Proactive Data Services. Aservice hyper-
link L Si;Sj;Dt

� �
encapsulates an event correlation between and . It indicates that

the instances of can be routed from the source services in Si to the target services in
Sj. Assume that we create five services for coal feed sensor, hot air valve degree sensor,
coal hopper level sensor, inlet air pressure sensor, and differential pressure of grinding
bowl sensor mentioned in Fig. 1 respectively. For simplification, we denote them as
CF-Sr, AVD-Sr, CHL-Sr, OAP-Sr and DP-Sr. We build a service hyperlink between
source services {CF-Sr, AVD-Sr, CHL-Sr} and target services {OAP-Sr, DP-Sr}. It
encapsulates an event correlation ({H-CF, H-AVD, L-CHL}, {H-OAP, H-DP}, 3 h,
1.0). As the first coal blockage failure shows, an H-AVD event, denoted as eH�AVD, is
firstly generated by AVD-Sr and will be routed to other four services. CF-Sr generates
an H-CF event (eH�CF) after it receives eH�AVD in the valid time. Thus, it routes eH�AVD

and eH�CF to other services. Similarly, CHL-Sr generates an L-CHL event (eL�CHL)
after receiving eH�AVD and eH�CF . Then, instances of the antecedent in the event
correlation will trigger predictive maintenance of coal mill D device, which the con-
sequent relates to.

As the above example shows, if we can learn how events are routed among
proactive data services, we can make predictive maintenance of a specific device.
Splicing service hyperlinks is an effective way to learn the routing paths.

A maintenance record is a 4-tuple, denoted as r = 〈rid, start_time, end_time,
failure_desc〉. Each maintenance record may correspond to an event type set included
by service set S0 according to the failure description. Denote SHLs ¼ L Si;S0;Dtð Þf g be
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the service hyperlinks related to . Each service hyperlink L Si;S0;Dtð Þ 2 SHLs
encapsulates an event correlation . Then discover all service hyperlinks
encapsulating an event correlation with consequent in the same manner. The process
is stopped if there are no corresponding service hyperlinks. Then, we splice the service
hyperlinks into a routing path. For maintenance records with same anomaly/failure type,
we get the maximum common sub path as the anomaly propagation path of this type of
anomaly/failure.

Service-based Predictive Maintenance. Once a proactive data service Sri holds
instances occurring in the valid time of , it matches with all event type sets in each
path learned above. If there is any event type set matches up with , the service Sri
will make a warning of predictive maintenance for the physical device corresponding to
consequent of and route these instances along with the corresponding service
hyperlink in the path. The target service repeats the process in the same way.

7 Experiments

7.1 Experiment Setup

Datasets: The following experiments use a real sensor sequence set from a coal power
plant. The set contains sensor sequences from 2015-07-26 23:58:30 to 2016-08-17
07:55:00. Totally 629 sensors deployed on 21 devices are involved and each sensor
generates one record per second. Firstly, we test the effects of EventCorrelator algo-
rithm on some one-day sets. We analyze that how parameters affect the service
hyperlink number. Secondly, we test the effectiveness of our predictive maintenance
approach. We divide the set into two parts. The training set is from 2015-07-26
23:58:30 to 2016-01-31 23:59:59. It is responsible for learning event routing paths. The
testing set is from 2016-02-01 00:00:00 to 2016-08-17 07:55:00. It is used for making
warnings to perform predictive maintenance. We use real maintenance records of the
plant power from 2015-07-26 23:58:30 to 2016-08-17 07:55:00 to verify our warnings.
Notably, in this paper, we only consider the records with failures occurring both in
training set and testing set.

Environments: The experiments are done on a PC with four Intel Core i5-2400 CPUs
3.10 GHz and 4.00 GB RAM. The operating system is Windows 7 Ultimate. All the
algorithms are implemented in Java with JDK 1.8.0.

7.2 Experiment Results

Effects of EventCorrelator Algorithm. In this experiment, we try to verify how key
parameters affect service hyperlink number generated by encapsulating discovered
event correlations. Hence, parameter pmin is a key parameter we concentrate on. Time
threshold Δt is another significant parameter.

We randomly select 40 days from the whole sequence set, which spans 387 days.
The selected sets are more than 10% of the whole set. For each one-day set, we get 629
sensor sequences. Each sensor sequence generates an event sequence. Then we invoke
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EventCorrelator algorithm under different values of pmin and Δt to compute service
hyperlinks from 629 event sequences. We record the number of results under different
parameters’ value. The average number for the 40 one-day event sequence sets are
drawn in Fig. 3.

As we expect, Fig. 3 shows that the average number of service hyperlinks
decreases with the rise of pmin and increases with the rise of Dt. Firstly, we study how
average service hyperlinks number decreases with the rise of pmin. A descending
number between two adjacent pmin values, such as 0.5 and 0.6, is gained by subtracting
service hyperlink number under pmin = 0.6 from that under pmin = 0.5. Generally,
under each value of Dt, there is a growing trend to the descending number between
adjacent pmin values. Exceptionally, the descending number reaches minimal value
between pmin = 0.6 and 0.7. The average descending number over different values of Dt
can prove the above conclusion. It is around 9296, 8163, 10268, 14805 between
pmin = 0.5 and 0.6, pmin = 0.6 and 0.7, pmin = 0.7 and 0.8, pmin = 0.8 and 0.9
respectively. Besides, for each two adjacent values of pmin, the descending number
increases slightly with the growth of Dt. For example, the descending number between
pmin = 0.5 and 0.6 is around 9045, 9072, 9097, 9138, 9180, 9203, 9285, 9360, 9466,
9504, 9569, 9628 under Dt = 5 min, 10 min, 15 min, …, 60 min respectively.

Secondly, we look into the figure to study how average service hyperlink
number increases with the rise of Dt. An ascending number between adjacent Dt
values, such as Dt = 5 min and 10 min, is gained by subtracting service hyperlink
number under Dt = 5 min from that under Dt = 10 min. The ascending number
between adjacent Dt values becomes smaller on the whole. The peak of ascending
number appears between Dt = 10 min and 15 min under each value of pmin. For
instance, under pmin = 0.5, the ascending number is around 419, 431(maximal value),
357, 356, 300, 357, 328, 319, 320, 290, 272(minimal value) between Dt = 5 min and
10 min, Dt = 10 min and 15 min, …, Dt = 55 min and 60 min respectively. However,
the minimal value does not always occur between Dt = 55 min and 60 min. It can also
appear between Dt = 50 min and 55 min or between Dt = 40 min and 45 min.

Effects of Our Solution in Predictive Maintenance. In this experiment, we create a
service for each sensor in the training set. Sensor sequences in the training set are input
into corresponding services respectively. We customize service operations as the three
event detection algorithms to generate events. For each maintenance record during the
time period of the training set, we compute its routing path as follows.

Each sensor sequence in the testing set is simulated as a stream and input into the
corresponding service. By a sliding window, each service detects events and judges
whether it should make a warning of predictive maintenance and route the events. After
all streams are processed, we count the warning results to analyze the effects. Details of
the process can be found in Sect. 5.3.

To measure the effects, we use the following indicators. Precision is the number of
correct results divided by the number of all results. Recall is the number of correct
results divided by the number of results that should have been returned.
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Common path size between routing paths in testing set and in training set will affect
the precision and recall of our solution. Final results are drawn in Fig. 4. As the figure
shows, our precision shows a growing trend towards the common path size. At
first, our solution discovers many event routing paths in testing set, each of which has a
common path with some path learned in training set. It leads to a large result set, which
causes a low precision at first. Obviously, paths in testing set leading to no
anomaly/failure probably have a common path with small size. Thus, when the com-
mon path size reaches 4, our solution does not make warnings of predictive mainte-
nance for them anymore, which causes the growth of precision. Looking into the results
and we find some interesting conclusions. Event routing paths in the testing set leading
to some anomaly/failure, even with same type, probably have different common path
sizes with the paths learned in the training set. Consequently, both of the result set and
the correct result set becomes smaller with the rise of common path size. But the
descending speed of the correct result set size is slower than that of result set size.
Therefore, we have an ascending precision curve.

Fig. 3. Average number of service hyperlinks under different values of pmin and Dt.

Fig. 4. The precision and recall of our solution.
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On the other hand, the recall curve seems smooth and steady at first and falls
slightly at the end. It is also caused by the slow descending of correct result set. Some
event routing paths in testing set, related to some anomaly/failure, do not have a large
enough common path with paths learned in training set. So they can no longer trigger
warnings of predictive maintenance under large common path size, e.g., 11, 12, 13, 14.
But actually, they have issued a warning before.

8 Related Works

Event correlation discovery is a hot topic [5–10]. It can be used in various areas like
process discovery [5, 6], anomaly detection [7, 8], healthcare monitoring [9, 10] and so
on. In the field of business process discovery, event correlation challenge is well known
as the difficulty to relate events that belong to the same case. Pourmirza and et al.
proposed a technique called correlation miner, to facilitates discovery of business
process models when events are not associated with a case identifier [5, 6]. Some
studies used event correlation to detect anomalies. Friedberg and et al. proposed a novel
anomaly detection approach. It keeps track of system events, their dependencies and
occurrences, and thus learns the normal system behavior over time and reports all
actions that differ from the created system model [7]. Fu and et al. focused on temporal
correlation and spatial correlation among failure events. They developed a model to
quantify the temporal correlation and characterize spatial correlation. Failure events are
clustered by correlations to predict their future occurrences [8]. Other works applied
event correlation in healthcare monitoring. Forkan and et al. concentrated on vital
signs, which are used to monitor a patient’s physiological functions of health. The
authors proposed a probabilistic model to make predictions of future clinical events of
an unknown patient in real-time using the learned temporal correlations of multiple
vital signs from many similar patients [9, 10].

Recently, some researchers focus on event dependencies. Song and et al. mined
activity dependencies (i.e., control dependency and data dependency) to discover
process instances when event logs cannot meet the completeness criteria [17]. In this
paper, the control dependency indicates the execution order and the data dependency
indicates the input/output dependency in service dependency. A dependency graph is
utilized to mine process instances. In fact, the authors do not consider the dependency
among events. Plantevit and et al. presented a new approach to mine temporal
dependencies between streams of interval-based events [18]. Two events have a tem-
poral dependency if the intervals of one are repeatedly followed by the appearance of
the intervals of the other, in a certain time delay.

9 Conclusion

In this paper, we propose an event correlation based approach on predictive mainte-
nance. We firstly focus on discovering the correlations between two event type sets,
where intra-group instances are unordered and inter-group instances are time-ordered,
and all instances occur closely in time. We transform the discovery problem into a
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time-constrained frequent co-occurrence mining problem and develop the EventCor-
relator algorithm. Our previous works proposed a proactive data service model with an
important component called service hyperlink. We encapsulate discovered correlations
into service hyperlink and learn anomaly propagation paths by splicing service
hyperlinks. Finally, we perform predictive maintenance based on these paths.

Acknowledgement. Funding: This work was supported by National Natural Science Founda-
tion of China (No. 61672042).
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Abstract. Recent years have witnessed the proliferation of large-scale
Knowledge Bases (KBs). However, many entities in KBs have incomplete
type information, and some are totally untyped. Even worse, fine-grained
types (e.g., BasketballPlayer) containing rich semantic meanings are
more likely to be incomplete, as they are more difficult to be obtained.
Existing machine-based algorithms use predicates (e.g., birthPlace) of
entities to infer their missing types, and they have limitations that the
predicates may be insufficient to infer fine-grained types. In this paper,
we utilize crowdsourcing to solve the problem, and address the chal-
lenge of controlling crowdsourcing cost. To this end, we propose a hybrid
machine-crowdsourcing approach for fine-grained entity type comple-
tion. It firstly determines the types of some “representative” entities
via crowdsourcing and then infers the types for remaining entities based
on the crowdsourcing results. To support this approach, we first pro-
pose an embedding-based influence for type inference which considers
not only the distance between entity embeddings but also the distances
between entity and type embeddings. Second, we propose a new difficulty
model for entity selection which can better capture the uncertainty of the
machine algorithm when identifying the entity types. We demonstrate
the effectiveness of our approach through experiments on real crowd-
sourcing platforms. The results show that our method outperforms the
state-of-the-art algorithms by improving the effectiveness of fine-grained
type completion at affordable crowdsourcing cost.

Keywords: Crowdsourcing · Entity type completion · Knowledge base

1 Introduction

The last decades have witnessed the booming of large-scale and open-accessible
Knowledge Bases (KBs) such as DBpedia [12], Freebase [2], and YAGO [21].
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These KBs contain thousands of millions of real-world entities that fall into
different types, e.g., Person, Place, Sport. Due to their large coverage and
high quality, the KBs have been successfully used to support many applica-
tions, such as web search, question answering and entity linking. However, many
entities in the KBs have incomplete type information, and some are even totally
untyped [18]. In DBPedia, for example, there are over 4 million entities assigned
with about 4 million types, which means that only one type per entity in aver-
age [10]. Even worse, many entities in DBPedia only have coarse-grained types
such as Thing, while fine-grained types such as GolfPlayer are missing since
they are difficult to be obtained when constructing the KBs. This incomplete-
ness of entity types affects the usefulness and usability of the KBs. For example,
entity Hedy Lamarr1 in DBpedia is assigned with only general types including
Thing, Agent and Person but none of the fine-grained ones: neither Actor nor
Inventor. Therefore, Hedy Lamarr is bound to be missed in the answer of fol-
lowing question: Who is not only a famous Actor , but also an Inventor?

To complete the type information in KBs, some machine-based approaches
have been proposed. For example, SDType, which is reported as the state-of-
the-art method [15,19], exploits the predicates, i.e., links between entities, to
infer missing types. Intuitively, if a predicate occurs in entities of one specific
type, it would be assigned with a large weight. In contrast, if it occurs in entities
of many different types, it will be assigned with a low weight. Obviously, high
weighted predicates are more likely to identify fine-grained types. For example,
in DBPedia, predicates teachingStaff and numberOfClassrooms have a high
weight to infer type School. SDType computes a confidence score for every
possible type of an entity based on predicate weights. Then, if the score of a
type is larger than some threshold, say 0.5, it completes the type for the entity.

However, since the KBs are often incomplete and noisy, it is difficult for
SDType to infer the correct fine-grained types if an entity misses the correct highly
weighted predicates or has some wrong predicates. For example, in DBPedia
with version 3.8, the BasketballPlayer entity Ron Harper has only 4 predicates,
college, draftTeam, birthPlace and nationality. Given the entity denoted
by x, SDType computes a score of “inference ability” for each p of these predi-
cates to infer type C, which is denoted as Prob(C(x)|p). For example, as shown in
Table 1, Prob(BasketballPlayer(x)|draftTeam) = 0.281 means 28.1% entities
having predicate draftTeam belong to type BasketballPlayer. We can see that
the scores of the four predicates of Ron Harper are quite small, which is insufficient
to infer type BasketballPlayer for the entity. A detailed analysis on computing
Prob(C(x)|p) and limitations of SDType is referred to Sect. 3.

To overcome the limitation of machine-based approaches, we propose to uti-
lize crowdsourcing that leverages intelligence of the crowd to solve the entity type
completion problem. The main motivation is that human is much better than
machine to identify entity types, even though predicates of entities may be miss-
ing. For example, Fig. 1 shows an example crowdsourcing task for Ron Harper.
We can see that it is not difficult for human to identify the correct type(s) for the

1 http://dbpedia.org/page/Hedy Lamarr.
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Table 1. Statistics of top 10 predicates
linked to BasketballPlayer

p Prob(C(x)|p) wp

1 draftTeam 0.281 0.078

2 highschool 0.241 0.337

3 college 0.224 0.422

4 nationality 0.035 0.005

5 ceo 0.023 0.002

6 coach 0.023 0.002

7 alumni 0.015 0.004

8 league 0.014 0.246

9 birthPlace 0.009 0.021

10 formerTeam 0.006 0.248

Fig. 1. An example of micro-task

given entities. This is also verified by our experiments that the crowdsourcing
result is much better than machine-based approaches.

Unfortunately, the challenge in utilizing crowdsourcing for entity type com-
pletion is the crowdsourcing cost, since we need to pay rewards to the crowd for
their answers. Especially, in a large-scale knowledge base, it would be extremely
expensive if all the entities with their possible types are crowdsourced. Therefore,
we devise a hybrid framework which combines the intelligence of crowdsourcing
workers with the algorithmic approaches. We firstly select some “representative”
entities. Next, we publish the selected entities for crowdsourcing. At last, we infer
and determine the entities’ types based on the crowdsourcing results.

To support the hybrid framework, we develop the following techniques. First,
we propose an embedding-based influence for type inference which considers not
only the distance between entities but also the distance between entities and
types when inferring entity types. Second, we propose a new difficulty model
for entity selection which can better describe the uncertainty of the machine
algorithm to determine the correct types of entities. We demonstrate the effec-
tiveness of the method through experiments on real datasets. The results show
that our hybrid method outperforms the baseline machine algorithm by recalling
more fine-grained entity types with small extra crowdsourcing cost.

The remainder of this paper is organized as follows: Sect. 2 presents an
overview of our approach. Sections 3, 4 and 5 introduce the techniques on gen-
erating candidate types, type inference and entity selection respectively. The
experimental results are reported in Sect. 6 and related works are reviewed in
Sect. 7. We finally conclude the paper in Sect. 8.

2 An Overview of Entity Type Completion

This section presents an overview of entity type completion in KBs. We first for-
mally define the problem and then introduce our crowdsourcing-based approach.
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Fig. 2. An overview of the hybrid method

2.1 Problem Formalization

We denote a knowledge base K = {E , T ,R,KR,KT }, where E is the set of entities
(e.g., Ron Harper), T is the set of entity types (e.g., BasketballPlayer) and
R is the set of predicates (e.g., birthPlace). KR = {p(e, o) | e, o ∈ E ∧ p ∈ R}
contains the known predicate instances (e.g., birthPlace(Ron Harper,Dayton)).
KT = {C(e) | e ∈ E ∧ C ∈ T } is a set of known type assertions indicating that
entity e is an instance of type C (e.g., Person(Ron Harper)). With the notations,
we formulate the entity type completion problem as follows:

Definition 1 (Entity Type Completion). Given a set of entities A ⊆ E and
a set of entity types T , it determines whether an entity-type pair (e, C) is true
or not, where e ∈ A, C ∈ T and C(e) /∈ KT . Then, if (e, C) is true, we can add
the new found type assertion C(e) to KT : KT ← KT ∪ {C(e)}.

2.2 Framework of Our Crowdsourcing-Based Approach

To address the problem, we propose a crowdsourcing-based approach that uti-
lizes the intelligence of crowdsourcing workers. Moreover, as the crowdsourcing
budget is limited, we devise a machine-crowdsourcing hybrid framework that is
illustrated in Fig. 2.

The approach takes as input a knowledge base K that contains all the known
predicate instances KR and type assertions KT . Given a set of entities missing
types, it first employs a machine-based algorithm to generate the candidate types
for them. Then, an Entity Selection Algorithm selects the most “representative”
entities under a given crowdsourcing budget. On the one hand, the selected
entities should be “uncertain” for the algorithm to identify the correct types.
On the other hand, the selected entities should be more useful to infer more type
assertions for unselected entities. Next, we generate micro-tasks for the selected
entities and publish them to crowdsourcing platform, e.g., Amazon Mechanical
Turk (AMTurk)2, where human workers could help to identify the right types.
Then, the answers collected from the crowds will be aggregated. Finally, the

2 https://www.mturk.com.
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Type Inference Algorithm infers the types for all target entities based on both
the crowdsourcing results and the inferred results.

We note that there are some existing studies [5–7,9,11] that devise machine-
crowdsourcing hybrid approaches in other applications, e.g., web table matching,
information extraction and academic knowledge acquisition(see Sect. 7). How-
ever, we are the first to devise the hybrid framework in entity type completion.
The variety of knowledge bases requires us to develop new techniques on the
following components. We discuss how to generate candidate types in Sect. 3,
introduce the inference algorithm in Sect. 4, and present how to select “repre-
sentative” entities in Sect. 5.

3 Generating Candidate Types

We use the state-of-the-art machine-based type completion method SDType [19]
to generate candidate types. The basic building blocks of SDType are condi-
tional probabilities, e.g., the probability of an entity being of type C if it has a
predicate p. Additionally, each predicate p is assigned a weight wp which reflects
the discriminating power of the predicate. Note that p is treated differently with
its reverse predicate p−1, i.e., they are assigned different weights respectively.
According to the probability distribution of all predicates associated with each
entity, SDType computes a confidence score for each entity-type pair.

wp =
∑

C∈T
(Prob(C) − Prob(C|p))2 (1)

score(ei, Cj) =

∑
p∈Pred(ei)

Prob(Cj(ei)|p) · wp∑
p∈Pred(ei)

wp
(2)

where Prob(Cj(ei)|p) indicates how likely an entity ei having predicate p is of
class Cj , and Prob(C|p) indicates the prior probability of type C, i.e, how many
entities that belongs to the type C with predicate p.

Limitations of SDType. We utilize the example in Table 1 to analyze limita-
tions of SDType. In DBPedia, the BasketballPlayer entity Ron Harper has only
4 predicates, college, draftTeam, birthPlace and nationality. All of them
appear in the top-10 predicates linked with type BasketballPlayer respect
to the conditional probability. As is shown in Table 1, Prob(C(x)|p) indicates
how likely an entity having predicate p is of class C, and wp is the weight
of predicate p. For example, Prob(BasketballPlayer(x)|draftTeam) = 0.281
means 28.1% entities having predicate draftTeam belong to BasketballPlayer.
Although the predicate college has the maximum weight as 0.422, it is hard
to determine the correct type BasketballPlayer because the conditional prob-
ability is just 0.224. As a result, the confidence value of the entity-type pair
<Ron Harper, BasketballPlayer> is just 0.233. In fact, if the confidence
threshold is set to 0.5, Table 1 indicates that none of the BasketballPlayer
entities could obtain the correct type via SDType because no predicate has a
conditional probability greater than 0.5.
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Fig. 3. A toy candidate types graph Fig. 4. Embedding based influence

Candidate Types Graph. The target entities and their candidate types are
represented in a Candidate Types Graph. A Candidate Types Graph is a bipartite
graph G = {A, T ∗,Π} , where A is the set of target entities, T ∗ is the set of
candidate types and Π = {<ei, Cj , si,j> | ei ∈ A ∧ Cj ∈ T ∗} is the set of all
possible entity-type pairs. And πi,j = <ei, Cj , si,j> indicates the probability
that the type assertion Cj(ei) holds is si,j , where 1 ≤ i ≤ |A| and 1 ≤ j ≤ |T ∗|.
We also represent all candidate types of entity e as C(e). For example, Fig. 3 is
a toy Candidate Types Graph that consists of 3 entities, 4 candidate types and
7 candidate entity type pairs.

4 Inferring Types Using Crowdsourcing Results

4.1 Type Inference Algorithm

We adopt the concept determination algorithm proposed in [7] as our type infer-
ence algorithm. As shown in Algorithm 1, it takes the Candidate Types Graph G
and the crowdsourcing validated entity-type pairs Sq as input. For each entity-
type pair, the algorithm updates its score based on two evidences. One is the
initial score from SDType whose prior probability is denoted as α. The other is
the influences from the approved entity-type pairs by crowdsourcing with prior
probabilities 1 − α. Finally, the algorithm outputs updated Candidate Types
Graph G′ with the revised confidence scores for each entity-type pairs. The major
difference is that we propose a new method to compute the influences Inf(π|Aq)
in line 6 of Algorithm 1.

4.2 Influence Between Entity-Type Pairs

In [7], the authors proposed a concept-based method to compute the inter-table
influence between two columns as the cosine similarity of their concept vectors.
The same idea can be adopted for entity type completion tasks, that is, similar
entities are more likely to belong to the same type.
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Algorithm 1. Type Inference Algorithm
Input

G = {A, T ∗, Π}: a initial Candidate Types Graph.
Sq = {<eq, C>}: the approved entity-type pairs for selected entities Aq.

Output
G′ = {A, T ∗, Π ′}: the updated Candidate Types Graph.

1: Initialize Π ′ = Φ
2: for each π = <e, C, s> ∈ Π do
3: if e ∈ Aq then
4: Update the score of π with crowdsourcing answer, i.e., s′ = 1.0
5: else
6: Update the score of π: s′ = α · s + (1 − α) · Inf(π|Aq)
7: end if
8: Π ′ ← Π ′ ∪ {<e, C, s′>}
9: end for

10: return G′ = {A, T ∗, Π ′}

Type Vector Based Influence: Specifically, we generate a type vector for each
entity e based on Candidate Types Graph, which is denoted as −→e . Each dimen-
sion in the vector represents a candidate type and the value is the confidence
score si,j of the edge <ei, Cj>. Therefore, the influence from an entity-type pair
<em, C> to <en, C> can be computed as the cosine similarity of two entities’
type vectors, i.e., −→em and −→en.

Inf(<en, C>|<em, C>) = CosineSimilarity(−→em,−→en) (3)

Embedding-based Influence: Unlike the type vectors which are constructed
based on the edges in Candidate Types Graph, embedding is a latent representa-
tion for knowledge bases. Embedding-based algorithms, such as TransE [3], embed
entities and relations into relatively low dimensional representations (i.e., embed-
dings) so that semantic related entities can be close to each other. For example,
entities of the same type are usually close to each other in the embeddings space.
Additionally, entity types can also be embedded into the same space, so that one
type embedding can be close to the entities from that type [10]. Therefore, we pro-
pose an embedding-based method to compute the influences between entity-type
pairs, e.g., from an entity-type pair <em, C> to <en, C>.

Inf(<en, C>|<em, C>) =

{
1

1+‖−→em,−→en‖2
if‖−→em,

−→
C ‖2 ≥ ‖−→en,

−→
C ‖2

0 if‖−→em,
−→
C ‖2 < ‖−→en,

−→
C ‖2

(4)

where −→em, −→en denote the embeddings of em and en respectively, and
−→
C is the

type embedding of C in the same embedding space. We use 2-norm to measure
the distance between entity and type embedding. Unlike type vector based influ-
ence which only considers the similarity between two entities, embedding based
influence not only considers the distance between embeddings of two entities but
also the distances from type embedding to each entity.
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Specifically, there are two meanings in Eq. 4. On the one hand, if the type
of an entity is already determined to be one type, we can infer the type of
entity closer to the same type. For example, in Fig. 4, if a belongs to type T ,
Inf(<b, T>|<a, T>) = 1/(1 + d3), which depends on the distance between a
and b. So that, Inf(<b, T>|<a, T>)>Inf(<x, T>|<a, T>) because b is closer
to a than x. On the other hand, we cannot infer the type of entity far away from
the type. For example, in Fig. 4, we cannot infer the type of a based on b, i.e.,
Inf(<a, T>|<b, T>) = 0.

4.3 Aggregating the Influences

We use the same method used in [7] to aggregate the influences from the selected
entities, where ξ(em) denotes all the candidate type assertions of entity em and
ξ(Aq) represents the approved entity-type pairs of selected entities Aq. Firstly,
we assume that the influences from those edges in ξ(em) to πn,j are independent
with each other. Therefore, the influence from an entity to an entity-type pair
is aggregated as:

Inf(πn,j |em) = 1 −
∏

πm,i∈ξ(em)

(1 − Inf(πn,j |πm,i)) (5)

which could be interpreted as the probability that πn,j is influenced by at least
one edge of ξ(em). Then we compute the influence from selected entities to an
entity-type pair as:

Inf(πn,j |Aq) = 1 −
∏

πm,i∈ξ(Aq)

(1 − Inf(πn,j |πm,i)) (6)

Similarly, the influence from an entity em to en indicates the probability that
at least one edge in ξ(en) is influenced by entity em.

Inf(en|em) = 1 −
∏

πn,j∈ξ(en)

(1 − Inf(πn,j |em)) (7)

Finally, we obtain the influence from selected entities Aq to an entity en as:

Inf(en|Aq) = 1 −
∏

πn,j∈ξ(en)

(1 − Inf(πn,j |Aq)) (8)

5 Selecting Entities for Crowdsourcing

The fundamental challenge in the hybrid approach is to determine which entities
should be selected for crowdsourcing. In [7], the authors proposed an expected
utility function which considers both task difficulty and influence. They devel-
oped a greedy-based algorithm based on the expected utilities. Similarly, for
entity type completion tasks, we define the expected utility of the selected enti-
ties Aq as:
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E[(Aq)] =
∑

e∈A
D(e) · Inf(e|Aq) (9)

We modify the greedy algorithm proposed in [7] and apply it to select entities
for entity type completion. The major difference is that we use our new difficulty
model and embedding based influence model when computing the utilities of the
selected entities. Thus, we mainly introduce our new difficulty model below.

5.1 Entity Difficulty Model

The entity difficulty model illustrates how certain the machine algorithm is when
identifying the types for one entity. For example, the entropy of types distribution
is a common measure of uncertainty which is already used in [7]. The intuition
is that, the more uncertain the machine algorithm is, the more likely it will be
to make mistakes. Therefore, we need crowdsourcing to complete the types of
those entities which are most uncertain for machine algorithm.

For SDType, we find it is more uncertain because: (1) the probabilities of an
entity’s candidate types are almost identical; (2) the weights of related predicates
are very low; (3) the maximum of scores is very low; (4) the entity has too many
candidate types. Based on the observations, we propose a new difficulty model
which takes all of the above factors into consideration.

Entropy. Similar to [7], we firstly consider the entropy which reflects the dis-
tribution of the probabilities of an entity’s candidate types. On the one hand,
if a type has clearly higher score than others, the entropy is low. On the other
hand, if it is close to a uniform distribution, the entropy is high.

D1(e) = −
∑

C∈C(e)

score(e, C)
S

· log
score(e, C)

S
(10)

where S =
∑

C∈C(e) score(e, C) is used for normalization.

Average Weight of Predicates. SDType uses all predicates linked with the
entity as indicators for its types. If each predicate in Pred(e) has a large weight
wp, i.e., each of them has a great discriminating power, then it is easy to identify
correct types for entity e. Otherwise, it is difficult.

D2(e) =
1

|Pred(e)| ·
∑

p∈Pred(e)

wp (11)

Max Score of Candidate Types. The intuition is that, if one type has sig-
nificant higher score than that of other types, it is easy to determine the answer,
otherwise, difficult.

D3(e) = 1 − max{score(e, C)|t ∈ C(e)} (12)
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Number of Candidate Types. Obviously, it is difficult to infer the correct
type if there are too many candidate types. Thus,

D4(e) = |C(e)| (13)

Finally, the difficulty of an entity e is defined as follows:

D(e) = D1(e) × D2(e) × D3(e) × D4(e) (14)

6 Experiments

We implement the algorithms using Scala 2.11 including SDType, the Entity
Selection Algorithm and Type Inference Algorithm. The codes run in a pseudo-
distributed spark-2.0.0 on a single PC with a 2.6 GHz Intel core i5 processor
and 16 GB RAM.

6.1 Datasets

We firstly extract 9, 970, 687 predicate instances of 629 predicates about
2, 283, 173 entities from DBPedia3.83. For types, we extract 7, 727, 665 type
assertions and transform the hierarchical structure in DBpedia Ontology4 into
a tree structure5 where the root type (Level = 0) is “Thing”. It should be
mentioned that, in this paper, we mainly focus on the fine-grained entity type
completion. In particular, we evaluate completion for types with Level = 4.

DBP-904: We randomly extract about 1000 type assertions, i.e., <e,C> pairs
from 7, 727, 665 types where the type C is from Level = 4 and has at least 100
instances. Then we filter out some entities according to the pruning strategy for
candidate types (see Sect. 6.2). At last, 904 entities with their fine-grained types
are retained.

DBP-4987: We first extract predicates having at least 1000 instances and their
subjects and objects must have types of Level = 4. For each extracted predicate,
we sample 50 instances, then we obtain 5324 entities. We also filter out those
entities whose ground truth does not appear in the candidate type list. Finally,
we obtain 4987 entities with their type assertions. There are 7054 predicate
instances of 107 predicates in total.

3 http://wiki.dbpedia.org/services-resources/datasets/previous-releases/dataset-38.
4 http://wiki.dbpedia.org/services-resources/ontology.
5 http://mappings.dbpedia.org/server/ontology/classes/.

http://wiki.dbpedia.org/services-resources/datasets/previous-releases/dataset-38
http://wiki.dbpedia.org/services-resources/ontology
http://mappings.dbpedia.org/server/ontology/classes/
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Embeddings of Entities and Types: We generate entity embeddings using
Fast-TransE6 which is an efficient implementation of TransE. We run the code
with the parameters: nepoches = 5000, nbatches = 100, dimension = 250, alpha
= 0.001, and threads = 8. The remaining parameters have the default values
as presented in the source code. Based on the entity embeddings, we use the
algorithm proposed in [10] to generate type embeddings in the same semantic
vector space.

6.2 Crowdsourcing on Amazon Mechanical Turk

Pruning Candidate Types: In SDType, the number of candidate types for
different entities is quite different. For example, some may have more than 100
candidate types since one predicate often provides many candidate types. Unfor-
tunately, this will affect the quality of crowdsourcing because human workers are
easy to be bored with such a long list.

To tackle this problem, we set a threshold η for Prob(C(e)|p) to prune the
entity-type pairs with low probabilities. For example, when η = 0, we get 92
candidate types for entity Hirooka Station. When η = 0.1, only 3 of them
are retained. Thus, it is easy for human workers to select the right types. In our
experiments, we empirically set η = 0.05 which can keep the number of candidate
types within an acceptable range. After being pruned, the average number of the
candidate types is 6 and the maximum is 15.

Micro-Tasks and Answer Aggregation: We generate micro-tasks for
selected entities and publish them on Amazon Mechanical Turk (AMTurk). In
order to reduce the crowdsourcing cost, a Human Intelligence Task (HIT) is
designed to contain 10 micro-tasks. In our experiments, each HIT is assigned to
5 workers and we spend $0.1 for each assignment. As is shown in Fig. 1, each
micro-task contains a short description of an entity and a list of candidate types,
human workers are asked to select correct types from the list. For crowdsourc-
ing answers aggregration, we employ the codes of Get-Another-Label algorithm7,
which is a variation of Expectation-Maximization (EM) [4].

6.3 Evaluation on Entity Difficulty Model

We evaluate our entity difficulty model on DBP-904. Firstly, all testing entities
are sorted according to their difficulty in ascending order and then equally sep-
arated into 10 buckets. Figure 5 shows that pure crowdsourcing method obtains
high and stable recall of entity-type pairs, while the SDType algorithm performs
worse on two datasets when the difficulty increases. This shows that the proposed
entity difficulty model can effectively capture the uncertainty of entities.

6 https://github.com/thunlp/Fast-TransX.
7 https://github.com/ipeirotis/Get-Another-Label/wiki.

https://github.com/thunlp/Fast-TransX
https://github.com/ipeirotis/Get-Another-Label/wiki
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Fig. 5. Evaluation on the
entity difficulty model.

Fig. 6. Determining the prior probability α.

Fig. 7. Comparison of different influence models.

6.4 The Prior Probability α

To set an appropriate prior probability α in Algorithm 1, we perform an exper-
iment on DBP-4987. We set the α from 0.0 to 1.0 with step 0.1 and examine
the F-Measure with different amount of randomly selected entities, because F-
Measure considers both the Recall and Precision of the algorithm. On one hand,
we hope to recall more positive entity type pairs. On the other hand, we want
the false positives to be as few as possible. As shown in Fig. 6, we find that
α = 0.8 is the best for type vector based inference while α = 0.7 for embedding
based method.

6.5 Comparison of Influence Models

To evaluate the embedding based influence, we first randomly select x% of
entities and publish them on AMTurk for crowdsourcing. Then, we infer the
types of all target entities using the following three methods respectively:
(1). No-Influence does not consider the influences, i.e., it directly merges the
crowdsourcing results for selected entities and that of SDType for unselected.
(2). TypeVector-Similarity : Inferring with the type vector based influence. (3).
Embedding-Distance: Inferring with the embeddings based influence.

As shown in Fig. 7, Embedding-Distance method outperforms the other two
methods in Accuracy. The increasement is significant on DBP-4987. Com-
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Fig. 8. Comparison of different inference methods.

pared with No-Influence, it is increased by 30% in average across various num-
ber of selected entities and about 8% compared with TypeVector-Similarity.
This improvement is mainly attributed to the embedding-based representation
learned, which can better capture global structural information in the KBs.

6.6 Comparison with the Existing Methods

In this section, we compare our hybrid method with three existing meth-
ods. Firstly, we briefly describe the methods to be compared as follows. (1)
SDType: the state-of-the-art pure machine algorithm [15,19]. (2) ICDE : the
hybrid method proposed in [7] for web table matching. We implement this algo-
rithm for entity type completion task. In comparison, we examine the perfor-
mance separately when 5% and 10% entities are selected. (3) EMBD : our hybrid
method for entity type completion based on embedding based influence. Simi-
larly, we examine the performance with two budgets 5% and 10%, separately.
(4) Crowdsourcing : the pure crowdsourcing method, i.e., all the target entities
are crowdsourced.

As shown in Fig. 8, the pure crowdsourcing method achieves the best perfor-
mance. For example, the values of Recall are greater than 0.9 on both DBP-904
and DBP-4987. However, it is too expensive to crowdsource all the entities. The
only special case is that on DBP-904, its Precision is lower than others. This is
mainly because we allow human workers to select multiple types for one entity.
As a result, some false positive entity-type pairs occur in the crowdsourcing
results.

On DBP-904, EMBD significantly outperforms SDType and ICDE. For exam-
ple, compared with SDType, EMBD (5%) increases about 40% (from 0.40 to 0.57)
on the Recall and about 21% (from 0.54 to 0.65) on F-Measure. Compared with
ICDE (5%), EMBD (5%) increases about 24% (from 0.46 to 0.57) on the Recall
and about 14% (from 0.57 to 0.65) on F-Measure.

On DBP-4987, although the advantage of EMBD is not so significant on
F-Measure, it still outperforms SDType on Accuracy and Recall. For example,
EMBD (5%) increases about 12% (from 0.69 to 0.77) on the Accuracy and about
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24% (from 0.56 to 0.70) on Recall. In a word, EMBD outperforms SDType and
ICDE on the whole by recalling more fine-grained entity type assertions with
affordable crowdsourcing cost.

7 Related Work

Entity Type Completion is an important subproblem of knowledge base com-
pletion. Paulheim [18] classified the related methods into two categories: internal
methods and external methods.

Internal methods only use the data in current knowledge base as input. A
straightforward internal method is classical ontology reasoning. However, RDFS
reasoning is prone to propagate errors since most knowledge bases are usually
incomplete and noisy [19]. Paulheim and Bizer proposed SDType [19,20]. which
performs like a weighted voting, where each predicate casts a vote on its object’s
type, using the statistical distributions to weight the votes.

External methods utilize external sources outside the KBs, e.g., text corpora
or links to other KBs. For example, Tipalo system [8] parses the abstracts of
entities which often follow similar patterns and map them to the WordNet and
DOLCE ontologies to find types. Palmero Aprosio et al. [1] exploit cross-language
links between different language versions of DBpedia as features for type com-
pletion. Sleeman and Finin [22] use SVM to predict entity types in DBpedia and
Freebase. Crowdsourcing can be viewed as an external method since it utilize
human knowledge which is a kind of external sources beyond the KBs.

Hybrid Machine-Crwodsourcing Methods have attracted many atten-
tions in recent years. For example, Lofi and Maarry [14] extensively investi-
gated the commonly reoccurring challenges and solutions for hybrid algorithmic-
crowdsourcing workflows and propose a set of design patterns. Kondreddi et al.
[11] proposed Higgins, a novel system architecture that effectively integrates com-
bines Human Computing (HC) inputs with machine based Information Extrac-
tion (IE). Mozafari et al. [16] advocated integrating machine learning into crowd-
sourced databases. Fan et al. [7] proposed a hybrid framework which assigns
the most “beneficial” column-to-concept matching tasks to human workers and
then infer the best matches for the remain columns utilizing the crowdsourcing
results. In this paper, we extend their algorithms with new features including an
embedding-based influence model and a new entity difficulty model and apply
them to entity type completion. Dong et al. proposed a platform for academic
knowledge discovery and acquisition called PANDA [5,6], which exploits a hybrid
algorithmic-crowdsourcing framework to identify and extract Knowledge Cells [9]
such as Figures, Tables, Definitions, Algorithms, etc., from academic literature.

Knowledge Graph Embedding, in recent years, has become an active area
of research for knowledge base construction and completion. One of the most
successful model is TransE [3], which learns the embeddings of entities and rela-
tions in a neural-based approach. Various methods such as TransR [13], HolE
[17] are also proposed. Since TransE is the most simple and popular method, it
is chosen to train the embeddings.
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8 Conclusion

In this paper, we have addressed the problem of fine-grained entity type com-
pletion in knowledge bases. We proposed a hybrid method integrating the intel-
ligence of crowdsourcing and the speed of machine algorithm. To discover more
type assertions with affordable crowdsourcing cost, we proposed a new entity dif-
ficulty model for crowdsourcing entity selection and an embedding-based influ-
ence for type inference, which considers not only the distances between entities
but also the distances between entities and types. The experimental results on
two real datasets illustrated the potential of our hybrid method. One promising
future work is to learn some useful rules to filter out the false positives, which
is expected to further improve the precision of type completion.
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Abstract. Clinical named entity recognition (NER) is a foundational
technology to acquire the knowledge within the electronic medical
records. Conventional clinical NER methods suffer from heavily fea-
ture engineering. Besides, these methods treat NER as a sentence-level
task and ignore the long-range contextual dependencies. In this paper,
we propose an attention-based neural network architecture to leverage
document-level global information to alleviate the problem. The global
information is obtained from document represented by pre-trained bidi-
rectional language model (Bi-LM) with neural attention. The parameters
of pre-trained Bi-LM which makes use of unlabeled data can be trans-
ferred to NER model to further improve the performance. We evaluate
our model on 2010 i2b2/VA datasets to verify the effectiveness of lever-
aging global information and transfer strategy. Our model outperforms
previous state-of-the-art method with less labeled data and no feature
engineering.

Keywords: Clinical named entity recognition · Neural attention
Language model

1 Introduction

The clinical text in electronic medical records has the potential to make a sig-
nificant impact in many aspects of healthcare research such as drug analysis,
disease inference, clinical decision support, and more. To analyze such clinical
free text, one sequence labeling application namely NER plays a crucial role to
identify medical entities at first step. Table 1 shows a clinical snippet containing
such medical entities.

NER is still a challenging task in the clinical domain due to the distinctive
characteristics of language. Dictionary-based methods fail to tag abbreviated
phrases and acronyms which are common in clinical text. Rule-based systems
are laborious to implement and trend to miss a number of misspellings that
have their specific meaning. To overcome these limitations, various machine
learning algorithms have been proposed to improve the performance. However,
traditional machine learning approaches rely heavily on hand-crafted features,
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Cai et al. (Eds.): APWeb-WAIM 2018, LNCS 10988, pp. 264–279, 2018.
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it is especially tough to design features in the clinical-specific domain where
specialized knowledge is needed. In the past few years, due to the simple but
effective pre-trained word embedding [3,20,23], neural network models with as
input distributed word representations achieve competitive performance against
traditional models. Thus, current sequence labeling models typically include a
RNN-based network that encodes each token into context vector and a CRF
layer that decodes the representation to make predictions [10,15,21].

Table 1. A snippet of clinical text containing medical concepts, such as disease entities
(in red), test entities (in blue) and treatment entities (in green).

Above-mentioned methods in practice treat NER as a sentence-level task
where sentences in the same document are viewed as independent. However,
clinical documents which are generated by physician to record the process of
patients’ treatments are centered on one or a few diseases. As shown in Table 1,
the medical entities are topic-related to describe the condition of patients, for
example, “Vasotec” (treatment entity) is used to control the “blood pressure”
(test entity) due to his “hypertension” (disease entity). Thus, the long-range
contextual dependencies are useful to improve the performance of sentence-level
NER methods. Besides, ignoring the long-range contextual dependencies will
lead to tagging non-consistency problem that the same mentions separated in
different sentences from a document are tagged with different labels.

In this paper, we propose an attention-based stacked bidirectional long short-
term memory with conditional random field (Att-BiLSTM-CRF) for clinical
named entity recognition. Our model leverages global information within docu-
ment and makes use of unlabeled data to achieve better performance. Inspired
by the work of Peters et al. [24], we first pre-train a word embedding model and
a bidirectional neural language model (Bi-LM) on unlabeled corpus in unsu-
pervised learning (Sect. 3.2). Thus, the pre-trained Bi-LM can represent the
sentences from document containing the global information. Then, we adopt
stacked BiLSTM to encode the input sentence which consists of word embed-
dings, and incorporate all the representation of sentences within the document
which the input sentence in with neural attention (Sect. 3.3). Finally, we use a
CRF layer [14] to decode the representations to make sequence decision. The
main contributions of this paper can be summarized as follows:
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– We propose an attention-based neural network architecture namely Att-
BiLSTM-CRF to incorporate global information to alleviate the problem of
ignoring long-range contextual dependencies for clinical NER task.

– We transfer the parameters of pre-trained Bi-LM which makes use of unla-
beled data to BiLSTM and show the advantages of transfer strategy than
random initialization.

– Combining the global neural attention and pre-trained Bi-LM, our model
outperforms previous state-of-the-art method on 2010 i2b2/VA datasets [25]
with less labeled data and no feature engineering.

The rest of this paper is organized as follows: Sect. 2 discusses related
research. Section 3 formulates the task and describes the architecture. Section 4
describes the datasets, training, experiments and results. Section 5 summarizes
the paper.

2 Related Work

Our method is based on two lines of research which are sequence labeling and how
to improve it with global information. Therefore, we mainly outline the recent
work on NER and previous efforts in clinical domain. Then we will review the
related work which aims to capture global information.

2.1 Named Entity Recognition

NER is a widely studied sequence labeling task, and many different approaches
have been proposed. Among them, neural network models have been rapidly
growing in popularity as they can be trained end-to-end with no feature engineer-
ing and task-specific resources. Taking inspiration from research of feed-forward
network presented by Collobert et al. [3], Huang et al. [10] use a BiLSTM over
a sequence of word embeddings and other hand-crafted spelling features with a
CRF layer on top. Chiu and Nichols [4] also propose a similar model, but instead
use CNN to learn character-level features. Lample et al. [15] also employ a similar
architecture, but utilize LSTM to learn character-level features instead. Similar
to Chiu and Nichols [4], Ma and Hovy [21] also use CNN to model character-level
information, but without using any data preprocessing and achieving better NER
performance. To relieve the limitation of relatively little labeled data, Peters
et al. [24] explore a general semi-supervised approach which uses pre-trained
neural bidirectional LM to augment context sensitive representation from large
unlabeled corpus to improve previous methods.

Our architecture is based on the success of BiLSTM-CRF model [10,15,21],
and is further modified to better incorporate global information with neural
attention. Our model employs stacked BiLSTM to effectively model the context
and excluding character-level information for simplicity. Furthermore, the Bi-
LM can make use of unlabeled data and a simple transfer strategy can further
improve the performance.
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In clinical domain, there are a number of traditional machine learning algo-
rithms based on hand-crafted features and domain-dependent knowledge or
resources. Uzuner et al. [25] overview performance of systems on 2010 i2b2/VA
challenge in detail. Among the all submitted systems in the evaluations, de Brui-
jin et al. [6] ranked first, and they trained a hidden semi-Markov model based
on unsupervised feature representations obtained by Brown clustering and other
text-oriented features. Subsequent work can be roughly divided into two direc-
tions. On the one hand, researchers focus attention on better feature representa-
tions. Jonnalagadda et al. [11] explore the use of distributed semantics derived
empirically from unannotated text to improve the performance of clinical NER.
Wu et al. [26] systematically compare two word neural embedding algorithms
and show that low-cost distributed feature representations can be better than
Brown clustering. On the other hand, researchers concentrate on appropriate
data-preprocessing. Fu and Ananiadou [8] show that truecasing and annotation
combination can best increase the NER system performance. Boag et al. [1]
develop a lightweight tool by cascading CRF and SVM classifiers for clinical
NER. Until recently, Chalapathy et al. [5] explore the effectiveness of BiLSTM-
CRF based on off-the-shelf word embedding without any hand-crafted features.
In contrast, the most advantage of our architecture is requiring no task-specific
knowledge or feature engineering, and meanwhile achieving better performance
with augmented global information.

2.2 Leveraging Global Information

Several studies have noticed the importance of global information to aid
sentence-level NER. Finkel et al. [7] take non-local information into account
while preserving tractable inference with Gibbs sampling. Krishnan and Man-
ning [13] propose a two-stage model for exploiting non-local dependency. They
use first CRF-based NER model using local features to make predictions and
then train second CRF based on the output of the first CRF to maintain label
consistency. Recently, Liu et al. [16] propose an extension to CRFs by integrating
external memory to capture long-range contextual dependencies. Luo et al. [18]
regard the whole document as input into BiLSTM-based NER model with self-
attention mechanism. However, the method is only effectively applied to short
text because RNN-based (including LSTM) models perform poorly as the length
of input sentence increases [2,17].

Inspired by these earlier work, we also leverage global information to improve
performance of clinical NER. In contrast, we propose a neural network archi-
tecture to combine the local and global information with neural attention.
The stacked BiLSTM has its advantage over encoding sequential inputs than
plain linear-chain CRF based on hand-crafted features. The performance of our
method is not suffer from the variant length of document.
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3 Neural Network Architecture

In this Section, we first provide the task definition and flow of our method for
the problem of clinical NER. Then we illustrate the approach to pre-train the
word embedding model and Bi-LM which is a key component in our architecture.
Finally, we describe attention-based neural network architecture from bottom to
up in detail.

3.1 Overview

Task Definition. We formally describe the Clinical NER task as follows: Given
a sentence, s = (w1, w2, ..., wn) where n is the length of the sentence, find the
medical entities o = (y1, y2, ..., yn) where y is the predefined label. The problem
is a typical sequence labeling task. We use the BIO format to tag the entities.
In particular, there are three medical entity categories: Disease (Dise for short),
Test (Test for short), Treatment (Trea for short). If the word is the first word in
medical entities, the word is labeled B-X (X is the entity category). The word is
labeled I-X if the word is inside but not the first position of the medical entities.
Otherwise, the word is labeled O.

For instance, which is shown in Fig. 1, the input sentence is (a, long, history,
of, hypertension), then the model can output the sequence tag (O, O, O, O,
B-Dise).

Fig. 1. An example for sequence labeling task.

In contrast to previous work, we additionally leverage the global information
from the document D = (s1, s2, ..., sm) where the input sentence s is located to
improve the performance. Thus, all of the representation of sentences in docu-
ment will be utilized to complement the single input sentence. In a nutshell, the
input to our model not only contains the single sentence, but also incorporates
all of the sentences from the same document.

Flow of the Method. As illustrated in Fig. 2, the main components in our
architecture are Pre-Training, Encoder, Neural Attention, Decoder respectively.
First of all, we use unlabeled corpus to pre-train word embedding model and Bi-
LM. Secondly, the first BiLSTM takes the word embeddings of single sentence
as input, and then the pre-trained Bi-LM represents all the sentences within the
same document which the input sentence in. Next, the second BiLSTM integrates
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Fig. 2. The flow of our method for clinical NER.

the outputs of first BiLSTM and representations from Bi-LM that includes the
global information from document with neural attention. Lastly, the CRF layer
plays a decoding role to make sequence decision over the encoding of input.

3.2 Pre-training

Word Embedding Model. Word embedding is ubiquitous in NLP tasks since
Mikolov et al. [20] propose an efficient method called Word2Vec for learning
distributed representation of words. It is commonly believed that the word
embedding captures useful semantic and syntactic information. Therefore, we
use skip-gram algorithm [20] to train word embedding as input instead of heav-
ily hand-crafted features.

Bi-LM. The Bi-LM is a vital component in our neural network architecture.
On the one hand, pre-trained Bi-LM encodes the representation of sentences to
enable the BiLSTM to look beyond the local context of sentence and extent to
the global context of document. On the other hand, Bi-LM can make use of
unlabeled data and its learned parameters can be transferred to first BiLSTM
in NER model to improve performance. Now we describe the Bi-LM in detail.

Language model is proposed to learn a probability distribution over sequences
of token pertaining to a language. Instead of count-based N-grams language
model, we choose neural language model which has been shown to better
retain long term dependencies. We use LSTM to model joint probabilities over
word sequences which represented by word embeddings. Give a word sequence
(w1, w2, ..., wn), LM computes the probability of the next word given all the pre-
vious words at each step. Here it can be called forward LM since we obtain the
next word depending on the forward words, and LSTM is called forward LSTM
as well. Thus, the overall probability can be written as:
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p(w1, w2, ..., wn) =
n∏

i=2

p(wi|w1, w2, ..., wi−1) (1)

At each step, forward LSTM encode the history (w1, w2, ..., wi−1) into a fixed
dimensional vector

−→
h LM

i−1 which is the hidden state of forward LSTM at position
i− 1 actually. Then, a softmax layer predicts the probability of next word wi in
the vocabulary. We train the forward LM model which maximizes the likelihood
of given sentences in corpus.

A backward LM can be implemented in an analogous way if we reverse the
word sequence. Thus, we obtain the similar overall probability:

p(wn, wn−1, ..., w1) =
1∏

i=n−1

p(wi|wn, wn−1, ..., wi+1) (2)

The backward LM predicts the previous word given the future sequence. Also,
we utilize a backward LSTM to build the backward LM.

The forward and backward LSTM share the same input layer (word embed-
ding layer) and output layer (softmax layer). After pre-training, the pre-trained
Bi-LM can be used to represent sentences of document in training corpus. We
concatenate the last cell state of forward and backward LSTM to represent the
input sentence, i.e., s = [−→c LM

n ;←−c LM
1 ].

Transfer Strategy. In NLP, pre-trained word embedding like Word2Vec [20]
and GloVe [23] has been common initialization for the input layer of neural
network models. The word vectors obtained from training on large amounts
of unlabeled corpus achieve better performance than random initialization on
a variety of NLP tasks. However, the form of transfer learning is not limited
to word vectors, but also includes weights from pre-trained recurrent neural
networks [22,27].

Inspired by above ideas, we propose a transfer strategy to further improve
the performance of NER model. We let Bi-LM and first BiLSTM in Encoder
component of NER model have the same architecture. Therefore, the parameters
of pre-trained Bi-LM can be shared to the first BiLSTM. The well-trained Bi-LM
from large, unlabeled corpus can help the NER model have a better initialization,
thus leads to better performance.

3.3 Att-BiLSTM-CRF Model

Encoder. As depicted in Fig. 3, this architecture is similar to the ones presented
by Huang et al. [10], Lample et al. [15] and Ma et al [21]. In contrast, we use
stacked BiLSTM to encode sequential input for incorporating global information
with neural attention.

For a given sentence s = (w1, w2, ..., wn) containing n words in a document
D = (s1, s2, ..., sm) including m sentences. At first, the sentence is represented
as a sequence of vectors X = (x1, ...,xt, ...,xn) through the embedding layer.
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Fig. 3. The architecture of our Att-BiLSTM-CRF model.

Next, a forward LSTM in first BiLSTM computes a representation
−→
h 1,t of the

left context of the sentence at each word t, and a backward LSTM computes a
representation

←−
h 1,t of the same sequence in reverse. Then, the representation of

each word t is obtained by concatenating its left and right context representa-
tions, h1,t = [

−→
h 1,t;

←−
h 1,t].

In most previous NER methods, the representation of each word will be fol-
lowed by a transformation layer and CRF layer to make prediction without con-
sidering the long-range contextual dependencies. While we introduce the Neural
Attention component to leverage all the sentences in the document D. We use
pre-trained Bi-LM to represent all the sentences which can be regard as global
context. Then we apply the neural attention to seek the related global context
based on the representation of each word which can be regard as local context.
The global context in the document can supply extra useful information to each
word. As a result, the extended representation of each word consists of the local
context in sentence and the global context in document.

Every sentence in document D can be represented by pre-trained Bi-LM,
thus we get a another sequence of vectors D = (s1, ..., sj, ..., sm) for sentences.
Firstly, we use an attention matrix A to calculate the similarity between the local
context in sentence and global context in the document. The attention weight
value at,j in attention matrix A is computed by comparing the local context h1,t

with each sentence embedding sj :

at,j =
exp(score(h1,t, sj))∑
k exp(score(h1,t, sk))

(3)
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Above score is referred as a bilinear function which is borrowed from Bahdanau
et al. [2] and Luong et al. [19]:

score(h1,t, sj) = hT
1,tWasj (4)

here the weight matrix Wa is a parameter of the model. Secondly, the global
context g1,t is computed as a weighted sum of each sentence embedding sj :

g1,t =
m∑

j=1

at,jsj (5)

Thirdly, we concatenate the global context and local context into a vector
[h1,t;g1,t] to represent each word. Next, the extended representation of each
word become a sequential of intermediate representation, which can be sent into
second BiLSTM.

Decoder. After process of encoding, it is simple to use a linear layer to predict
a score for each possible label independently based on the output of the second
BiLSTM. But there are strong dependencies across output labels, for example,
I-Dise cannot follow B-Test. Therefore, instead of modeling tagging decisions
independently, we add another CRF layer to decode the best label path in all
possible label paths. Followed by Lample et al. [15], we only consider the relations
between labels in neighborhoods and jointly decode the best chain of labels.

We consider P ∈ R
n×k to be the matrix scores output by the second BiLSTM,

where the n is length of input sentence and the k is the number of distinct labels.
The element Pi,j in the matrix is the score of jth label of the ith word in the
sentence. We introduce a label transition matrix T, where element Ti,j represents
a score of a transition from the label i to label j. After that, the whole input
sentence X gets a sequence of predictions y = (y1, y2, ..., yn) from model, we can
define its score to be

s(X,y) =
n∑

i=1

(Tyi−1,yi
+ Pi,yi

) (6)

where the transition matrix T ∈ R
(k+2)×(k+2) is the parameter of our model.

In above equation, y0 and yn are the start and end labels of a given sentence.
Therefore, the transition matrix T is a square matrix of size k + 2.

During training, we use the maximum conditional likelihood estimation.
First, as shown in Eq. (7), a softmax function is used to normalize the above
score over all possible label paths ỹ to form the conditional probability of the
path y. Then, the log-likelihood of the conditional probability of the correct tag
sequence is given in Eq. (8). We train the model to maximize the log-likelihood
of the probability of all the correct tag sequences in labeled data to obtain the
final parameters.

p(y|X) =
exp(s(X,y))∑
ỹ exp(s(X, ỹ))

(7)
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L = log(p(y|X)) (8)

During inference, as given in Eq. (9), the best label path y∗ is predicted
through computing the maximum score among all the possible label paths.
Because we only consider the interactions between two successive labels, dynamic
programming such as Viterbi algorithm can be applied to effectively computes
the scores.

y∗ = argmaxỹ s(X, ỹ) (9)

4 Experiments

4.1 Datasets

In this paper, we use datasets from 2010 i2b2/VA Natural Language Processing
Challenges for Clinical Records1 containing a concept extraction task focused
on identifying medical concepts from realistic clinical narratives. Because of the
restrictions introduced by Institutional Review Board (IRB), only part of original
datasets is available. The challenge requires the systems to predict the exact
boundary of medical concepts and classify them into specified category including
problem, test, treatment and other. Table 2 summarizes the statistics of labeled
datasets which we have used in our experiments. In addition, we get a number
of unlabeled clinical notes from MIMIC-III corpus2 [12] for pre-training word
embedding model and Bi-LM.

Table 2. A basic statistics of datasets.

Training data Test data Unlabeled data

# Documents 170 256 5000

# Sentences 16315 27626 1042534

# Mentions 16525 31161 -

4.2 Model Training

Preparation and Evaluation. We split the training data into two parts, 130
documents (about 80%) for training set and 40 documents (about 20%) for
development set. We tune the hyperparameters of our model on development set
and report the results on the test set. Note that, to compare to other existing
methods (Sect. 4.5), the final training is done on both the training and develop-
ment sets. We don’t do any feature engineering except using a special token for
numbers. For evaluation, we do exact matching of entity mentions to compute
micro-precision, micro-recall and micro-F1.

1 https://i2b2.org/NLP/DataSets/Main.php.
2 https://mimic.physionet.org.

https://i2b2.org/NLP/DataSets/Main.php
https://mimic.physionet.org
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Model Architecture Details. Dimensions of word embedding are set 300.
For language model, the hidden state of LSTM has 300 dimensions. For first
BiLSTM in NER model, the hidden state of LSTM also has 300 dimensions. In
consideration of the transfer strategy, the first BiLSTM and Bi-LM have iden-
tical parameter setting. For second BiLSTM in NER model, as it concatenates
the output of first BiLSTM and the representations of global information, the
dimensions of the hidden state of LSTM are 600.

Training Details. For word embedding model, we use skip-gram algorithm [20]
to obtain word vectors on unlabeled data. For Bi-LM, the input embedding layer
is initialized with the weights from word embedding model and other parameters
are initialized with Xavier initialization [9]. Once the pre-training is done, we use
pre-trained Bi-LM to represent the sentences in document and the parameters
of Bi-LM also can be transferred to first BiLSTM in NER model. For NER
model, the input embedding layer is also initialized with the weights from word
embedding model and other parameter are initialized with Xavier initialization
as well. We use SGD with momentum of 0.9 to train the NER model. We train our
networks using back-propagation algorithm updating parameter on a batch size
of 10. The initial learning rate is 0.01 and decay the learning rate by multiplying
it by 0.9 if the F1 score does not improve on development set for one epoch. We
use a gradient clipping of 5.0 to avoid gradient exploding problem. We train the
model for 30 epochs and use early stopping to avoid over-fitting.

4.3 Effectiveness of Leveraging Global Information

In this part, we verify the effectiveness of global neural attention augmented
BiLSTM (Att-BiLSTM) compared with plain BiLSTM. In previous work, most
methods treat NER as a sentence-level task. In Contrast, we incorporate the
global information in document to capture the long-range contextual dependen-
cies. As shown in Table 3, in irrespective of the impact of CRF, we perform the
contrast experiments based on only BiLSTM to evaluate the ability of presen-
tations for each input word. From the results, we see that the number of layers
affects the performance. In both of Att-BiLSTM and BiLSTM, the stacked BiL-
STM outperforms the BiLSTM with single layer. Also, the global neural atten-
tion gives an improvement over the plain BiLSTM due to the leveraging of global
information. We observe that the F1 of stacked Att-BiLSTM is 81.62%, which
is an absolute improvement of 1.01% over the plain stacked BiLSTM with no
global neural attention.

To be honest, global neural attention don’t show obvious effects when the
Att-BiLSTM only has one layer. It is because the final tagging predictions mainly
depend on local context for each word, while global context only supplements
extra information. Therefore, our model need another layer to encode the sequen-
tial intermediate vectors containing global context and local context. In other
words, the architecture needs second BiLSTM to learn the differences between
the two contexts.
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Table 3. Performance of leveraging global information.

Model Layers Precision (%) Recall (%) F1(%)

BiLSTM 1 77.53 81.63 79.53

2 80.50 80.71 80.61

Att-BiLSTM 1 78.25 81.17 79.68

2 80.62 82.65 81.62

4.4 Effectiveness of Transfer Strategy

In this part, we verify the effectiveness of transfer strategy. The baselines are
stacked BiLSTM and stacked Att-BiLSTM obtained from above experiments.
In baseline methods, we initialize the parameters of their stacked BiLSTM with
Xavier initialization [9] which has been regarded as an effective initialization
strategy. In comparison to Xavier initialization, we initialize the parameters of
first BiLSTM from the parameters of pre-trained Bi-LM. The results is showed
in Table 4, the simple transfer strategy gives an additional improvement over
baselines. For stacked BiLSTM, the F1 gets an absolute improvement of 0.53%.
Also for stacked Att-BiLSTM, the absolute improvement is 0.71% in F1 score.

Table 4. Performance of transfer strategy.

Model Transfer Precision (%) Recall (%) F1(%)

BiLSTM No 80.50 80.71 80.61

Yes 80.16 82.15 81.14

Att-BiLSTM No 80.62 82.65 81.62

Yes 81.58 83.08 82.33

Fig. 4. Comparison between plain stacked BiLSTM and stacked BiLSTM with transfer
strategy.
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To further verify the effectiveness of transfer strategy, we train the model
with different random seeds. At first, we respectively train the stacked BiLSTM
and stacked BiLSTM with transfer strategy for ten times in different random
seeds. From the results in Fig. 4(a), it shows that the transfer strategy always
increases the performance of plain stacked BiLSTM more or less. We compute
the mean F1 score of stacked BiLSTM with transfer strategy is 81.22%, and
its variance is 0.15%. In contrast, the mean F1 score of plain BiLSTM is only
80.52%, and its variance is 0.08%. Then we randomly select one example to draw
the convergence of the two models. As depicted in Fig. 4(b), transfer strategy
accelerates the model training especially at the first several epochs. Also the
transfer strategy helps the model achieve the better performance at last. Above
comparisons prove the effectiveness of transfer strategy, we believe that it can
promote other similar models which contain LSTM.

4.5 Comparison to Other Methods

In this part, we compare the performance of our model with other existing
methods on the 2010 i2b2/VA datasets. The results are shown in Table 5, the
name of other methods followed by Chalapathy et al. [5]. We have implied the
main ideas of other methods in related work (Sect. 2.1). Form the results, our
model obtains the state-of-the-art performance than others. Although we only
get nearly 0.5% F1 score higher than the previous state-of-the-art method which
is the best submission from the 2010 i2b2/VA challenge, their model is based on
original dataset which has more than twice labeled data than ours.

To understand the importance of leveraging global information and trans-
fer strategy, we implement the common BiLSTM-CRF model as baseline. The
results confirm that leveraging global information increases F1 score by 0.53%
(from 84.66% to 85.19%) and increases F1 score by 1.05% (from 84.66% to
85.71%) with additional transfer strategy. We conclude that our model relieves

Table 5. Performance comparison with other existing methods on the 2010 i2b2/VA
datasets. * indicates models trained with the use of original larger labeled data.

Model Precision (%) Recall (%) F1(%)

Distributional semantics CRF * [11] 85.60 82.00 83.70

Hidden semi-markov model * [6] 86.88 83.64 85.23

Truecasing CRFSuite [8] 80.83 71.47 75.86

CliNER [1] 79.50 81.20 80.00

Binarized neural embeding CRF [26] 85.10 80.60 82.80

Glove-BiLSTM-CRF [5] 84.36 83.41 83.88

BiLSTM-CRF 86.21 83.17 84.66

Att-BiLSTM-CRF 85.51 84.87 85.19

Att-BiLSTM-CRF + Transfer 86.27 85.15 85.71
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the problem of ignoring the long-range contextual dependencies and the pre-
trained Bi-LM makes use of unlabeled data to further improve the performance.

5 Conclusion

In this paper, we propose an attention-based neural network architecture to
leverage document-level global information to alleviate the problem of ignor-
ing long-range contextual dependencies for clinical NER task. In addition, we
explore a transfer strategy to further make use of unlabeled data using pre-
trained Bi-LM. Our results of experiments show that the transfer strategy consis-
tently improve the performance. Owing to the above two advantages, our model
achieves the state-of-the-art performance on public 2010 i2b2/VA datasets.

Although we use clinical data to verify the effectiveness of our method, the
Att-BiLSTM-CRF model can be adapted to other domain where global con-
text is useful. Moreover, the transfer strategy using Bi-LM has generalization
performance.
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Abstract. The emergence of Location-based Social Network (LBSN)
services allows users to share their check-ins, providing an excellent
opportunity to build personalized Point-of-Interest (POI) recommender
systems. Social network data which contains important context infor-
mation has been demonstrated to have a significant effect on improv-
ing recommendation performances. However, explicit social relationships
are usually partially available or even unavailable. The gap between the
importance of social relationships and their partial availability or unavail-
ability motivates us to study POI recommendation with implicit social
relationships, which can well characterize users’ preferences for POIs on
both space and content. In this paper, we first extract implicit social rela-
tionships and estimate connection strengths by analyzing co-occurrences
in both space and time with people’s history check-in data. Then, we
propose a new model named Implicit Social Relationship Enhanced
POI Recommendation (ImSoRec) to incorporate implicit and explicit
social relationships for POI recommendation. We conducted extensive
experiments on two large-scale real-world location-based social networks
datasets, and our experimental results show that our proposed ImSoRec
model outperforms the state-of-the-art methods.

Keywords: Recommendation · POI recommendation
Implicit social relationship

1 Introduction

Recommender systems play a crucial role in mitigating information overload
problem by suggesting relevant information to users. The pervasiveness of GPS-
enabled mobile devices and the popularity of location-based social networks
(LBSNs) contribute massive data that present the movements of people in the
real world at a high resolution, a.k.a. spatio-temporal data. For example, both
Twitter and Foursquare reported that they received millions of spatio-temporal
records per day as geo-tagged tweets or check-ins. Users can build connections
with each other and share their experience and check-in information associated
c© Springer International Publishing AG, part of Springer Nature 2018
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with a Point-of-Interest (POI) in LBSNs. This newly available spatio-temporal
data is useful for developing personalized POI recommender systems.

Social relationship data contains important context information for recom-
mender systems. Specifically, social links between users can be employed to derive
user similarities as the input of collaborative filtering model. For example, a user
may like books that his or her friend has read and given a high rating. Simi-
larly, friends often go to places like restaurants together, or users may visit
POIs recommended by friends based on the fact that friends are more likely to
share common interests. Therefore, recently, there are POI recommender sys-
tems exploiting social relationships as complement data to improve the recom-
mendation performance [8,17]. Ye et al. [17] propose a linear model to predict
users’ preferences to a location, which combines users’ interests, social friends’
interests, and geographical influence together. Li et al. [8] develope a POI rec-
ommendation framework, which takes social relationships, users’ preferences for
POI categories, and distance between users into consideration at the same time.
Researchers have shown that social relationship has significant effects on improv-
ing the accuracy of POI recommendation. However, explicit social relationship
data are usually partially available or even unavailable. Taking Yelp as an exam-
ple, users followed each other on Facebook rarely have following relationship on
Yelp. Or, even if they have social relationship on social networks, they may not
have similar choice for POIs because of different regions and long distance.

Fig. 1. A typical LBSN contains social network and check-ins from users.

The gap between the importance of social relationships and their partial
availability or unavailability motivates us to study implicit social relationships
of users for POI recommendation. Figure 1 shows a typical example of a location-
based social network. User u1 has an explicit social connection with u2. They
checked at POI l1 two times respectively, once at the same time t3. Therefore,
to a certain degree, we can infer that u1 and u2 have similar interests on POIs
which can be used to improve the recommendation quality. On the other hand,
u1 and u3 visited l2 at the same time t2, and u2 and u3 visited POIs l3 and l4
simultaneously twice. Intuitively, these users share similar content and spatial
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preferences for POIs and social relationships may exist between them. However,
there is no explicit relationship between them. That is, u1 and u3, u2 and u3

may have implicit social relationships. The implicit social relationships can be
considered as a supplement to the explicit social relationships. In addition, in
POI recommender systems, the implicit social relationships can be more helpful
than the explicit social relationships. Since people with explicit social relation-
ships may have similar content preferences, but they may not have similar spatial
preferences because of the different activity centers issue.

In this paper, we investigate the following three challenges: (1) How to cap-
ture implicit social relations between users? (2) How to represent the strength
of implicit social relations? And (3) how to integrate the implicit social con-
nections into the POI recommendation model. To tackle these three challenges,
we propose a new Implicit Social Relationship Enhanced POI Recommenda-
tion (ImSoRec) model. Specifically, we first extract implicit social relationships
between users. And then location popularity and co-occurrences diversity are uti-
lized to estimate connection strength. Moreover, based on probabilistic matrix
factorization (PMF), we incorporate both explicit social trust propagation and
implicit social relations that indicate similar visiting behavior patterns into
PMF. Our model takes both implicit social relationships and explicit social net-
works into consideration to improve recommendation performance simultane-
ously.

Overall, the major contributions of this paper can be summarized as follows.

– We discover that the implicit social relationships are valuable for POI recom-
mendation, which can indeed assist to improve the effectiveness of a recom-
mender system.

– We develop an implicit social relationship extraction method which analyzes
the co-occurrences of check-in history data.

– We propose a novel POI recommendation model ImSoRec to integrate the
influence of both explicit and implicit social relationships.

2 Problem Statement and System Framework

In this section, we first introduce some basic concepts of the implicit social net-
work. And then we provide the statement of the POI recommendation problem
and an overview of our POI recommendation system framework.

2.1 Basic Concepts

Co-occurrence. If two users checked in at the same location within a time-
interval, then we say that they have a co-occurrence. That means they are likely
to have similar interests. We call that they have an implicit social relationship
even though they may not know each other. The time-interval is an application
dependent parameter and can be set specifically for each application. Let rl,t

i,j =
<i, j, l, t> be a co-occurrence of user i and user j in location l at time t. Let
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Rl
ij =

⋃
t rl,t

i,j be the set of co-occurrences of user i and user j, which occurs in
location l. Let Rij be the set of all co-occurrences of user i and user j in all
locations. That is, Rij =

⋃
l Rl

i,j =
⋃

l,t rl,t
i,j .

Co-occurrence Vector. Correspondingly, a co-occurrence vector Cij between
user i and user j presents all the co-occurrences of users i and j at different
locations. For example, Cij = (cij,1, cij,2, . . . , cij,l, . . . , cij,M ), where cij,l is the
number of co-occurrences between users i and j at location l, which is referred
to local frequency, and M is the number of locations.

2.2 Problem Statement

Given a set of users U = (u1, u2, . . . , uN ), a set of locations L = (l1, l2, . . . , lM )
and a set of check-ins in the forms of user-location-time triplets (u, l, t), we infer
implicit social relationship and their strength for each pair of users. Then, given
all users’ check-ins, implicit social relationships and corresponding strengths and
explicit social relationships between them, our goal is to predict the preference
score R̂u,l of user u regarding a POI l where he/she did not visit before and then
return the top-k POIs with the highest scores.

2.3 System Framework Overview

As shown in Fig. 2, the system framework has two major parts: extracting
implicit social relationships and POI recommendations. The relation extraction
part generates the strength of implicit social relationships from spatio-temporal
data for POI recommendation part. This part includes three steps: (a) measur-
ing the diversity of the co-occurrences between two users regarding how many
effective locations they present at the same time, (b) measuring the impact
weight of each co-occurrence individually (a.k.a. weighted frequency) depending
on the popularity of the corresponding location, and (c) computing implicit social
strengths based on diversity and weighted frequency of users’ co-occurrences. The

Fig. 2. The overview of the system framework
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POI recommendation part incorporates implicit and explicit social strengths by
using model-based collaborative filtering techniques, e.g., probabilistic matrix
factorization, to estimate scores of users regarding POIs. This POI recommen-
dation part also includes three parts: (a) using PMF model to integrate explicit
social relationships to estimate the prediction of users for new POIs, (b) integrat-
ing implicit social relationship influence into PMF for POI recommendation, (c)
integrating both explicit and implicit social relationship influence into a united
model to make more accurate recommendation.

3 Extracting Implicit Social Relationship

What kind of attributes of spatio-temporal data should be measured to infer
implicit social relationships and how to quantify their implicit social strengths
are challenging. Inspired by Entropy-Based Model (EBM) [12], we infer implicit
social relationships and strengths through two independent approaches, i.e.,
diversity and weighted frequency of co-occurrences. Specifically, diversity mea-
sures how diverse the co-occurrences between two users regarding check-in loca-
tions, while weighted frequency, the number of co-occurrences of two users, mea-
sures the impact of each co-occurrence individually taking the popularity of the
location of the co-occurrence into consideration.

3.1 Diversity of Co-occurrences

Let us consider the following co-occurrence vectors for three different pairs of
users.

C12 = (4, 2, 0, 3, 0)

C23 = (2, 1, 1, 3, 2)

C13 = (4, 0, 0, 0, 5)

C12, C23 and C13 are co-occurrence vectors of user u1 and u2, u2 and u3,
and u1 and u3, respectively. The element in vectors cijl is the number of co-
occurrences between users i and j at location l. From the three co-occurrences,
we can see that user u1 and u2 have 9 co-occurrences, and u2 and u3 also have 9
co-occurrences. However, in the latter case the co-occurrences are spread over 5
different locations, while in the former case the co-occurrences happened in just 3
different locations. Similarly, u1 and u3 co-occurred only in 2 different locations.
Hence, C23 is more diverse than C12, and C12 is more diverse than C13. People
tend to visit various places together when they are socially connected [1–3]. This
intuition is that the diversity of co-occurrences is useful to infer implicit social
relationship of users.

Entropy is common to describe diversity in many research [6]. Following
[12], we use Renyi entropy to estimate diversity of the co-occurrences between
users, which quantifies the uncertainty of random variables. Therefore, diversity
estimation of the co-occurrences of user i and user j based on Renyi entropy is:
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Dij = exp(HR
ij ) = exp

[(

−log
∑

l

(
cij,l

fij
)q

)

/(q − 1)

]

=

[

exp

(

−log
∑

l

(
cij,l

fij
)q

)] 1
(1−q)

=

⎛

⎝
∑

l,cij,l �=0

(
cij,l

fij
)q

⎞

⎠

1
(1−q)

.

(1)

where cij,l is the number of co-occurrences between users i and j at location l,
termed local frequency; fij =

∑
l cij,l is the total number of co-occurrences of

user i and user j, termed frequency. That is, frequency of two users is the sum
of all their local frequencies across all locations. And q is the order of diversity
controlling the impact of coincidences on diversity.

3.2 Weighted Frequency

While diversity measures the breadth of co-occurrences across locations,
weighted frequency, on the other hand, measures the depth of co-occurrences. It
weighs each co-occurrence individually depending on the popularity of the loca-
tion. Co-occurrences in small uncrowded places, such as private houses, often
result in more social interaction, as compared to those in crowded places. There-
fore, the probability of implicit social relationships strongly depends on the loca-
tions of co-occurrences.

Cranshaw et al. [2] first introduces location entropy to describe the popularity
of a location. It measures the popularity of a location by taking into account
both the number of unique visitors to the location, and the relative proportions
of their visits. Specifically, let l be a location, let Vu,l =

{
<u, l, t> : ∀t

}
be

the set of visits (a.k.a. check-ins or spatio-temporal records) in location l by
user u, let Vl =

{
<u, l, t> : ∀t,∀u

}
be the set of all visits in location l by all

users. The probability that a randomly picked check-in from Vl belongs to user
u is Pu,l = |Vu,l|/|Vl|. Define the probability as a random variable, then its
uncertainty is given by the Shannon entropy as follows:

Hl = −
∑

u,Pu,l �=0

Pu,llogPu,l (2)

A high value of the location entropy indicates a popular place with many visitors,
but it proves that this place is not special to anyone. Weighed frequency utilizes
location entropy to weight co-occurrence cij,l between user i and j at location l
individually depending on the popularity of the location. The formula of weighted
frequency is given as follows:

Fij =
∑

l

cij,l × exp(−Hl) (3)

Weighted frequency describes how important the co-occurrences at non-crowded
places are to implicit social connections. Crowed locations have high location
entropy Hl, resulting in a low value of exp(−Hl), and consequently the impact
of cij,l on Fij is decreased. On the other hand, for non-crowded locations, the
value of exp(−Hl) is high and consequently increases the impact of cij,l.
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3.3 Implicit Social Strength

Diversity and weighted frequency describe the features of the co-occurrences.
Diversity decreases the impact of frequent coincidences while weighted frequency
increases the impact of co-occurrences at less crowded places. The less crowded
a place, the more impact weighted frequency has. Thus, we measure implicit
social strength between users by integrating diversity with weighted frequency
of their co-occurrences. Let Sij be the implicit social strength that captures both
diversity and weighted frequency, defined as follows.

Sij = Dij × Fij (4)

where Dij and Fij are diversity and weighted frequency of co-occurrences
between two users, defined in Eqs. 1 and 3, respectively. As a good practice,
social strength Sij is generally normalized to [0, 1].

4 Proposed ImSoRec Model

After having extracted implicit social relationships in Sect. 3, each pair of users
with implicit relationships is associated with a social strength. In this section,
based on Probabilistic Matrix Factorization (PMF) [11] which can better inte-
grate context information like social relationship, we propose a new POI recom-
mendation model to integrate the implicit and explicit social relationships.

Fig. 3. A graphical model of ImSoRec

4.1 Explicit Social Network Ensemble

As shown in Fig. 3, the left part of the graph model incorporates the explicit
social network. Inspiration by the Social Matrix Factorization (SMF) [9], we



Exploiting Implicit Social Relationship for POI Recommendation 287

incorporate social trust propagation into probabilistic matrix factorization,
assuming that the user preference of user u will be affected by his or her explicit
social relations Eu through social influence. The main idea is that the latent fea-
ture vectors of users should be similar to their explicit social relations as shown
in Eq. 5, which is in line with the sociological theory.

Uu =

∑
e∈Eu

SueUe

|Eu| (5)

where Uu is the latent feature vector of user u. Sue is the social influence of
Uu and his or her explicit social relations Ue. We use Jaccard’s coefficient to
measure the strength that users i social connected with user j, which is formally
defined as

Sue =
Γ (i) ∩ Γ (j)
Γ (i) ∪ Γ (j)

(6)

where Γ (i) and Γ (j) are the sets of users having explicit social relationships with
user i and j, respectively. Therefore, the posterior probability can be obtained
as follows, where g(·) is the sigmoid function, which bounds the range of UT

u Vi

within [0, 1].

p(U, V |R,S, σ2
R, σ2

S , σ2
U , σ2

V ) ∝ p(R|U, V, σ2
R)p(U |S, σ2

S , σ2
U )p(V |σ2

V )

=
N∏

u=1

M∏

i=1

[N (Rui|g(UT
u Vi), σ2

R)]I
R
ui ×

N∏

u=1

N (Uu|
∑

e∈Eu

SueUe, σ
2
SI)

×
N∏

u=1

N (Uu|0, σ2
UI) ×

M∏

i=1

N (Vi|0, σ2
V I)

(7)

4.2 Implicit Social Relation Ensemble

As shown in Fig. 3, the right part of the graph model incorporates the implicit
social relationships. Compared to explicit social relationships in online social
networks, in which user preference will be affected by his or her social rela-
tionships, implicit social relationships are extracted from check-in data, finding
people with similar behavior patterns, may be more helpful to POI recommen-
dations. Therefore, we predict scores of users for POIs by check-ins of his or her
implicit social relationships on these POIs. The model is defined as follows.

Rui =

∑
k∈Iu

RkiSuk

|Iu| (8)

where Iu is the set of users who have implicit social relationships with user u;
the physical meaning of Suk can be interpreted as how much user u has similar
content and spatial preferences with user k in the implicit social network.
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Similarly, the posterior probability can be calculated as follows.

p(U, V |R, S, σ2
R, σ2

U , σ2
V ) ∝ p(R|U, V, S, σ2

R)p(U |0, σ2
U )p(V |σ2

V )

=
N∏

u=1

M∏

i=1

[N (Rui|g(
∑

k∈Iu

SukUT
k Vi), σ

2
R)]I

R
ui ×

N∏

u=1

N (Uu|0, σ2
UI) ×

M∏

i=1

N (Vi|0, σ2
V I)

(9)

4.3 ImSoRec Model

We consider two kinds of relationships between users, i.e., explicit social rela-
tionships and implicit social relationships. For an individual user, explicit social
relationships tend to more similar to user preference. On the other hand, implicit
social relationship may provide more information for POI recommendations by
considering distance and content. Based on this assumption, we propose the
ImSoRec model to integrate two different relationships when making POI rec-
ommendations. Besides, ImSoRec is capable of learning user-specific preferences
between explicit and implicit social relationships by introducing parameters Bu.
Referring to Eqs. 7 and 9 for explicit and implicit social relationships, the con-
ditional probability of latent feature vector U can be defined as follows.

p(U |SE , σ2
U , σ2

E) ∝ p(U |σ2
U ) × p(UE |SE , σ2

E)

=
N∏

u=1

N (Uu|0, σ2
UI) ×

N∏

u=1

N (UE
u |

∑

e∈Eu

SE
ue, σ

2
EI)

(10)

where SE
ue and SI

uk denote explicit and implicit social strengths of user u; UE
u is

the user preference matrix of user u influenced by explicit social relationships.
The dot product of Uu and item latent feature vector Vl determines u’s

explicit-social generated probability on POI l, denoted as RE
ul. An implicit-social

generated probability RI
ul is determined by the preferences of all his or her

implicit social relations on POI l. Through introducing Bu as the weight of
preference for explicit social relationships, 1 − Bu is the probability that user
u prefers implicit social relationships. Thus, the conditional probability of the
observed ratings can be expressed as follows.

p(R|UE , U, V, SE , SI , B, σ2
R)

=
N∏

u=1

M∏

i=1

[N (Rui|g(BuUE
u

T
Vi + (1 − Bu)

∑

k∈Iu

SI
ukUT

k Vi), σ2
R)]I

R
ui

(11)

We assume that B follows a Beta distribution, and both U and V follow the
same zero mean normal distribution. Through a Bayesian inference, given the
observed ratings and two types of social relationships as well as the hyperpa-
rameters, the posterior probability of all model parameters can be obtained as
follows.
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(12)

We learn the parameters of ImSoRec by maximizing a posterior (MAP) inference.
Taking the ln on both sides of Eq. 12, fixing the Gaussian noise variance and beta
shape parameters, maximizing the log-posterior over UE , U, V,B is equivalent to
minimizing the following objective function:

L(R,UE , U, V,B, SE , SI)

=
1
2

N∑

u=1

M∑

i=1

IR
ui(Rui − g(R∗

ui))
2 +
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((αB − 1) ln Bu + (βB − 1) ln(1 − Bu))

(13)

where λU = σ2
R

σ2
U

, λV = σ2
R

σ2
V

, λE = σ2
R

σ2
E

; λB = σ2
R; R∗

ui = BuUE
u

T
Vi + (1 −

Bu)
∑

k∈Iu
SI

ukUT
k Vi and B(·, ·) is a beta function:

B(a, b) =
∫ 1

0

qa−1(1 − q)b−1dq. (14)

A local minimum of the above objective function can be found by taking the
derivative and performing gradient descent on parameters UE , U, V,B separately.

4.4 Incorporation of Geographical Information

For POI recommendation, geographical information is an influential factor to
the behaviors of a user. For example, users are usually willing to visit nearby
locations, and the willingness to visit a POI decreases as the distance to the
POI’s location increases. Following [18], we use a power law distribution over the
willingness of a user moving from one place to another as the distance function.
More specifically, the willingness of a user to visit a POI (dis km away) is defined
as w(dis) = a · disκ, where a and κ are parameters.
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Given a user u and the set of his/her historical POIs Iu, we can calculate the
distance score p(i |Iu ) for each candidate POI i, and use this value to enhanced
POI predictions. That is

Rui ∝ Rui × p(i |Iu ) ∝ Rui × p(i)
∏

i∗∈Iu

p(i∗ |i ) (15)

where p(i∗ |i ) is the user’s willingness to check in a POI with distance propor-
tional to the w(dis).

5 Experiment

In this section, we conduct experiments on real-world datasets to evaluate the
effectiveness of our proposed recommender model ImSoRec. Specifically, we aim
to answer the following three questions:

RQ1 Does ImSoRec incorporating with explicit and implicit social relationships
outperform the state-of-the-art POI recommendation methods with social
influence?

RQ2 Can implicit social relationships improve the performance of POI recom-
mendation when explicit social networks do not exist?

RQ3 Can implicit social relationships still improve the performance of POI
recommendation even when explicit social networks exist?

5.1 Experimental Settings

Datasets. The data used in the experiments was collected by Foursquare [15]
and Gowalla [8], two well-known location-based social networks, where users
shared their locations through check-ins. The Foursquare and Gowalla datasets
were collected from December 2009 to July 2013 and January 2009 to August
2010, respectively. Each dataset has both the spatio-temporal check-in informa-
tion and an explicit social network. Since the spatial data is heavily concentrated
in the United States, we used only the spatio-temporal data within the United
States for the experiments.

Since the focus of this article in the first step is on inferring implicit social
relationships only from spatio-temporal data, so we remove those users who have
less than two co-occurrences with others in two datasets. Then the details of the
two datasets are shown in Table 1.

Table 1. Statistics of datasets

Dataset User Location Check-in Friendship Sparsity

Foursquare 2443 96874 223110 12782 0.0943%

Gowalla 14650 105905 1612709 119246 0.1040%
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We randomly select 70% of check-in data for each individual user for training.
We run the experiment five times to get an average result.

Parameter Settings. The best experimental parameters were selected through
multiple cross validation. When extracting implicit social relationships from
spatio-temporal data, the time-interval is set to one hour, the order of diver-
sity q is set to 0.1. We normalize the explicit and implicit social relationships
of each user u respectively so that

∑
e∈Eu

SE
ue = 1 and

∑
k∈Iu

SI
uk = 1. We set

the dimension of the latent factors K as 10 and 20 on Foursquare and Gowalla,
respectively. We set a small value for regularization coefficient λU = λV = λE

= λB = 0.01.

Baselines. To evaluate the effectiveness of the proposed recommendation model,
we compare it with the following five models.

– PMF [11], the basic model of our proposed ImSoRec, which minimized the
square error loss only using the observed check-ins based on matrix factor-
ization.

– RegPMF [10], which modeled the influence of social network by placing
a social regularization constraint on learning user-specific feature vectors
between friends.

– USG [17], which combined geographical influence, social network and user
interest with collaborative filtering.

– SoDimRec [14], which exploited a community detection algorithm to exploit
heterogeneity of social relations and weak dependency between users, and
combined them with matrix factorization as weight.

– ASMF-LA [8], which defined three kinds of relationships to learn potential
POIs for users and integrated them to matrix factorization as augmented
square error based matrix factorization.

Evaluation Metrics. As a POI recommender system only recommends limited
locations to users, we evaluate our models versus other models in terms of ranking
performance, i.e., Precision@k and Recall@k metrics (denoted as Pre@k and
Rec@k). They are formally defined as follows.

Pre@k =
1
N

N∑

i=1

Si(k) ∩ Ti

k
Rec@k =

1
N

N∑

i=1

Si(k) ∩ Ti

Ti

where Si(k) is a set of top-k unvisited locations recommended to user i excluding
those locations in the training data, and Ti is a set of locations that are visited
by user i in the testing data.

5.2 Experiment Results

Performance Comparison (RQ1). Here we compare the performance of
our proposed model ImSoRec with the state-of-the-art POI recommendation
methods.
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Table 2. Evaluation of Top-K POI recommendation on the two datasets

Datasets Metrics Algorithms

PMF RegPMF USG SoDimRec ASMF ImSoRec

Foursquare Pre@1 0.1603 0.1608 0.1674 0.1620 0.1706 0.1715

Rec@1 0.0076 0.0097 0.0094 0.0098 0.0094 0.0102

Pre@5 0.0578 0.0907 0.0992 0.0965 0.1036 0.1103

Rec@5 0.0142 0.0203 0.0213 0.0210 0.0227 0.0239

Pre@10 0.0357 0.0688 0.0886 0.0781 0.0916 0.0930

Rec@10 0.0177 0.0255 0.0304 0.0282 0.0316 0.0322

Gowalla Pre@1 0.3352 0.3638 0.4040 0.3796 0.4036 0.4160

Rec@1 0.0152 0.0168 0.0180 0.0168 0.0179 0.0184

Pre@5 0.1564 0.1703 0.1831 0.1841 0.1930 0.1998

Rec@5 0.0347 0.0380 0.0390 0.0390 0.0408 0.0416

Pre@10 0.1061 0.1163 0.1306 0.1287 0.1369 0.1414

Rec@10 0.0463 0.0509 0.0542 0.0533 0.0567 0.0572

As shown in Table 2, both RegPMF and SoDimRec are slightly superior to
PMF. One possible explanation is that social network assists to make more
accurate recommendation. USG outperforms previous methods due to taking
geography information into account, which is a significant factor in POI recom-
mendation. SoDimRec [14] and ASMF-LA [8] are closely related to our work
because both of them take supplement of social relationships into consideration.
ImSoRec performs better than both of them.

SoDimRec exploits community detection algorithms tending to produce many
different clusterings, and it is unclear to decide which one to use. Moreover,
SoDimRec ignores different individual preference for heterogeneous social net-
work and weak dependency. In addition, SoDimRec is a traditional recommender
system without considering spatial constraints. That is why it shows worse pre-
cision and recall than ASMF-LA and ImSoRec do.

ASMF-LA changes the ground truth of check-in matrix. It not only narrows
the range of target POIs, but also blurs the target. In addition, ASMF-LA also
takes the category of POIs into consideration as one of the selection criteria.
Therefore, ASMF-LA performs better than SoDimRec and USG. But ASMF-
LA does not consider the time influence. Compared to ASMF-LA, ImSoRec
also considers the time factor, i.e., have similar activities at a similar time, can
more detailed depict users’ preference. In addition, ImSoRec uses a user-specific
value Bu to learn individual user’s preference for explicit and implicit social
relationships, which can make better use of consistency and difference in social
connections and implicit social relationships.

Here we give some significant findings during our experiments. In general, the
precision and the recall of all models on the Gowalla dataset are higher than those
on the Foursquare dataset because the density of the former dataset is a little
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larger than that of the latter dataset, as shown in Table 1. But on the Foursquare
dataset, ImSoRec performs a little better than other models compared to those
on the Gowalla dataset with less existing social relationships, which proves that
implicit social relationships extracted from check-in data finding people with
similar behavior patterns are useful to POI recommendation.

Fig. 4. Effects of explicit and implicit social relationships on ImSoRec

Impact of Explicit and Implicit Social relationships (RQ2 and RQ3).
In this subsection, we investigate the effects of explicit and implicit social rela-
tionships on the proposed model ImSoRec and its variants to answer question
RQ2 and RQ3.

– ImSoRec-E: ImSoRec-E is a variant of the proposed method ImSoRec,
which only considers the explicit social relationships.

– ImSoRec-I: ImSoRec-I is a variant of the proposed method ImSoRec, which
only considers the implicit social relationships extracted from check-in data.

– ImSoRec: ImSoRec is our proposed model taking advantage of both social
relationships and implicit social relationships.

ImSoRec-E and ImSoRec-I are variants of the proposed model ImSoRec,
which only considers the explicit or implicit social relationships, respectively. As
shown in Fig. 4, ImSoRec-I improves POI recommendation performance greatly
comparing to ImSoRec-E both on Foursquare and Gowalla duo to implicit
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social relationships. The gap between ImSoRec-I and ImSoRec-E is larger on
Foursquare. Because users on Foursquare have less explicit social relationships,
then implicit social relationships play a better role in POI recommendation, mak-
ing up for the lack of explicit social relationships. When explicit social networks
exists, ImSoRec can take advantage of both explicit and implicit social relation-
ships. As shown in Fig. 4, ImSoRec improves POI recommendation performance
greatly comparing to ImSoRec-E and slightly outperforms to ImSoRec-I. That
means implicit social relationships can not only be a supplement to explicit
social relationships but also correct explicit social influence on recommenda-
tions (Users with explicit social relationships may not have similar preference
or will not visit POIs due to long distance). But in some situation, ImSoRec is
worse than ImSoRec-I. That means explicit social connected users may not have
similar spatial preferences because of the different activity centers issue.

Fig. 5. The influence of Bu on Foursquare dataset.

Parameter Sensitivity. We chose Bu to analyze the influence of experimental
parameters on the results due to limited space. The ImSoRec model treats Bu

as the user-specific preference for explicit social relationships and implicit social
relationships. Figure 3 suggests that the both relationships affect users’ access
to the POI decision-making process. A small value of Bu indicates that implicit
social relationship of user u has a greater impact on the decision-making process
than the explicit social relationship. We vary Bu from 0 to 1 by 0.1 on the
Foursquare dataset to study users’ preference for implicit and explicit social
relationships.

Based on the results shown in Fig. 5, we can observe that ImSoRec achieves
the best performance when Bu is set as 0.2. The performance then drops dramat-
ically when Bu increases. Small Bu is equivalent to only consider implicit social
relationships, which means implicit social relationships have a greater impact
on the users compared to explicit social relationships. It occurs possibly due to
that users might be in fact not interested in some locations that users having
explicit social relationships with them have checked-in, or the place is too far
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away from her/his home. In addition, the curve is not a smooth drop, indicating
that some users may prefer explicit social relationships. Thus a user-specific Bu

is necessary.

6 Related Work

This paper makes a forward step for POI recommendation with implicit and
explicit social connections. POI recommendation is to recommend a list of top-k
most relevant POIs to a user, based on user implicit feedback, such as check-in
frequency [19,20]. Collaborative filtering (CF) is widely used in POI recommen-
dation. The state-of-the-art CF is based on matrix factorization and its variants
[5,7,11]. Salakhutdinov and Mnih [11] proposed a PMF model in a Bayesian
probabilistic framework to include Gaussian noise in observations. Under the
Gaussian assumption, maximizing the posterior probability over latent features
is equivalent to minimizing the square error.

One main category of POI recommendation sheds light on elaborating social
network information. For example, Ye et al. [16,17] proposed user-based collab-
orative filtering to estimate the unobserved rating by directly using the check-in
information of friends. Ma et al. [10] assumed that friends would share similar
interests and then placed a social regularization term to constrain the objective
functions for learning accurate user feature vectors. Gao et al. [4] proposed to
model four types of social correlations (i.e., local friends, distant friends, local
non-friends and distant non-friends) by using a geo-social correlation model with
users’ check-in activities, where the check-in probability was measured as a linear
combination of these four geo-social correlations, and the corresponding coeffi-
cients were learned by a group of features in a logistic regression like fashion.
Tang et al. [13] modeled local and global social relationships for all users. Specifi-
cally, in a local context, it models the correlation between users and their friends,
while in a global context, it uses the reputation of a user in the whole social net-
work as weight to fit observed ratings.

SoDimRec [14] and ASMF-LA [8] are closely related to our work. Both of
them take social relationships into consideration for traditional and POI rec-
ommendation. SoDimRec modeled social dimensions for heterogeneity and weak
dependency relationships by community detection. It is a supplement to online
social relationships by social trust propagation, no essential difference to online
social relationships. ASMF-LA defined three kinds of friends to model social rela-
tionships, similar history check-ins and neighboring users. It limited the number
of potential POIs, and therefore efficiency increased. But it also limited the
scope of the target POIs, and did not consider the time influence. However, our
work is different from these existing works. Specifically, we learn users’ implicit
social relationships and strength only from spatio-temporal check-ins for POI
recommendation, indicating similar visiting behavior patterns.
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7 Conclusion

In this paper, we study how to extract and exploit implicit social relationships
and propose an implicit social relationship enhanced matrix factorization model
for POI recommendation. Specifically, we first use co-occurrences between users’
check-in data with diversity and weighted frequency to describe implicit social
relationships and its strengths, a supplement of explicit social relationship, which
can capture users’ behaviour patterns and preference more accurate. And then
we incorporate implicit social strengths and explicit social relationships into our
proposed model ImSoRec, which is based on PMF, to learn user-specific prefer-
ence for explicit or implicit social relationship on POI recommendation. Finally,
the experimental results on two real-world datasets show the effectiveness of our
model over baseline methods in terms of top-k recommendation accuracy.

Acknowledgements. This research is partially supported by National Natural Sci-
ence Foundation of China (Grant No. 61572335) and Natural Science Foundation of
Jiangsu Province of China (No. BK20151223).
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Abstract. Spatial co-location patterns are the subsets of spatial features whose
instances are frequently located together in geographic space. Traditional
co-location pattern mining framework usually determines the proximity rela-
tionship of spatial instances by a user-specific distance threshold. However, in
real life, the proximity relationship is a fuzzy concept and difficult to measure
only by an absolute distance threshold. Furthermore, the spatial clique generating
process consumes huge computational and spatial costs. In this paper, we pro-
pose a new framework for mining co-location patterns based on density peaks
clustering and fuzzy theory. The experiments show that our method performs
more efficient than the traditional Join-less method and the mining results on two
real-world data sets indicate our method is significant and practical.

Keywords: Spatial co-location pattern � Proximity relationship
Fuzzy theory � Density peaks clustering

1 Introduction

Spatial co-location pattern mining aims to find the subsets of spatial features located
together frequently in spatial proximity. For example, a co-location pattern {Matsu-
takes, Abies geogei Orrs} means Matsutakes usually grow under the Abies geogei Orrs.
As an important branch of spatial data mining, co-location mining is used in extensive
domains [1, 7, 8]. Co-location was originally proposed by Shekhar and Huang [1], this
approach designs prevalence metric, namely participation index, to measure the
interestingness of co-locations and proposed an Apriori-like method, namely
Join-Based algorithm to mine co-location patterns. After that, Partial-Join approach [2]
and Join-less approach [3] were successively proposed for improving the co-location
mining efficiency.

Most of existed works require a distance threshold to determine proximity rela-
tionship between spatial instances, however, this traditional distance measure still
exists shortcomings. On the one hand, Inappropriate thresholds will cause such
problems: (1) Higher distance threshold may generate proximity relationships not
adjacent in the real world, which may increase the computational cost and even leads
incorrect results, (2) Lower distance threshold may lost many real proximity rela-
tionships. The discussions above show that “proximity” is a relative and fuzzy concept.
Even in the same spatial data set, different spatial area may require different proximity
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distance thresholds. Therefore, it is unreasonable to use an absolute distance threshold
to determine the proximity relationships. Thus, how to measure “proximity” is a tough
challenge. On the other hand, the proximity relationship identification approach based
on the distance threshold will consume huge computational and spatial costs on
checking clique relationship of spatial instances. How to improve the efficiency of the
co-location pattern mining by avoiding generating spatial clique instances is another
challenge in this article.

Motivated by above issues, we propose a new co-location pattern mining
frame-work based on density peaks clustering [4] and fuzzy theory. Our contributions
are described as follows: (1) we replace the absolute distance threshold by the density
peaks clustering to divide the spatial data. (2) Based on fuzzy theory, we define the
FPR (fuzzy participation ratio) and the FPI (fuzzy participation index) concepts to
measure the prevalence of co-location patterns. (3) A new co-location mining frame
work which avoids generating and testing cliques is developed to mine the spatial
co-location patterns efficiently. The experimental results show that our method can
discover interesting co-location patterns and is more efficient than the traditional
co-location mining algorithms (such as Join-less).

This article is organized as follows: the preliminary concepts and definitions are
introduced in Sect. 2. The results and contrast experiments are presented in Sect. 3.
Section 4 makes a summary and the prospect of the article.

2 Definitions and Mining Framework

2.1 Definitions

Considering the instances in a clique supporting the prevalence of a co-location pattern
are overlapped, we firstly introduce the density peak clustering technique to cluster
spatial instances, and then calculate the membership of each instance belonging to
clusters, so as to achieve a fuzzy partition for each instance in the data set. Firstly, we
introduce a fuzzy threshold k to obtain a k-cluster (i.e. k cut set).

Definition 1 (membership). Given a data set S ¼ fs1; s2; . . .; sng as a sample set,
C ¼ fc1; c2; . . .; ckg is a set of k clusters, assume O ¼ fo1; o2; . . .; okg is a set of
k cluster centers, then the membership of instance sj(sj 2 S) to the cluster ci(ci 2 C) is
defined as:

ciðsjÞ ¼ jsj � oij�
2

b�1

Pk

t¼1
jsj � otj�

2
b�1

ð1Þ

where jsj � oij represents the distance of instance sj to the cluster center oi; b is a
weighting coefficient, also called smoothing factor, we use b = 2 in this paper [5].
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Definition 2 (k-cluster). If an instance sj 2 S belongs to a cluster of ci, its membership
must be greater than a given threshold k 2 ½0; 1�, which is the concept of cut set. The
set of these instances is called k-cluster ci, expressed as cki .

Given a set of spatial instances S ¼ fs1; s2; . . .; sng and k 2 ½0; 1�, the k cut set of
cluster ci is:

cki ¼ fsj 2 SjciðsjÞ� kg ð2Þ

As we mentioned in Sect. 1, it is difficult to measure the proximity relationship in
real life with a single absolute threshold especially in the datasets with relatively large
density differences (such as in urban data mining). For solving this problem, we pro-
pose the definition of k- proximity to replace the absolute threshold to obtain the fuzzy
proximity relationship, after that we can use k-proximity relationship to mine the
interesting patterns.

Definition 3 (k-proximity). Let the set of spatial instance be S ¼ fs1; s2; . . .; sng,
k-cluster ci be cki ¼ fs1; s2; . . .; shg. For si 2 S, sj 2 S, if si 2 cki and sj 2 cki , we called
the si and sj satisfy the k proximity expressed as kðsi; sjÞ.

Note that all instances in same k-cluster satisfy the k-proximity relationship with
each other.

Definition 4 (Fuzzy Clique). Given a spatial instances set I ¼ fi1; i2; . . .; img, if there
are f kðij; ikÞj1� j�m; 1� k�mg , then I is a Fuzzy clique.

Note that all instances in the k-cluster satisfy the k-proximity with each other, thus
these instances form a clique naturally. If features of instances of a clique I’ contains all
the features of a co-location pattern cp, and no subset of I’ where features of instances
can contain all the features in cp, I’ is called a row instance of cp, the set of all row
instances of cp is called table instance of cp. In the following formula, we use TðcpÞ to
represent the table instance of cp.

Compared with the traditional co-location mining algorithm (such as Join-less), in
the generation of higher-size candidate patterns, the traditional methods must regen-
erate the row-instances and store them which cost huge calculation consumption and
storage space. In our method, the row-instance and table-instance of the candidate
patterns can be obtained from each k-cluster directly, so we do not need to recalculate
the clique relationship and store row-instances and table-instances.

Definition 5 (fuzzy participation ratio). Given a set of all instance S ¼ fs1; s2; . . .sng,
C ¼ fc1; c2; . . .; ckg is a set of k clusters, for an h-size co-location cp ¼ ff1; f2; . . .; fhg
and a feature flðfl 2 cpÞ in cp, the fuzzy participation ratio of fl in cp is defined as:

FPRðcp; flÞ ¼

Pk

i¼1
ciðsjÞ

sj2ðTðcpÞ \ cki Þ
jTðfflgÞj ð3Þ
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where fl represents the lth feature in cp, ci represents the ith cluster, ciðsjÞ represents the
membership of sj belonging to ci, TðfflgÞ is the table instance of 1-size {fl}, which
means all instances of fl in space; sj 2 ðTðcpÞ \ cki Þ means sj is in the table instance of
cp, and sj is also in the k-cluster ci.

Definition 6 (fuzzy participation index). Given a co-location pattern cp ¼ ff1; f2;
. . .. . .; fhg, the FPI (fuzzy participation index) of cp is the minimum FPRs of features in
cp expressed as:

FPIðcpÞ ¼ min
fl2cp

ðFPRðcp; flÞÞ ð4Þ

Given a minimum prevalent threshold min_fprev, if FPIðcpÞ�min fprev, cp is
called a prevalent co-location pattern.

Although the paper [6] had proposed the definitions of FPR and FPI, the definitions
are aimed to mine prevalent co-location patterns in a fuzzy data set. Our definitions in
this paper are different from that in paper [6], it is to mine the prevalent co-location
patterns in traditional data set based on fuzzy method.

Lemma 1 (anti-monotone)
FPR (fuzzy participation ratio) and FPI (fuzzy participation index) decrease mono-
tonously with the size of the co-location patterns.

Proof. If an instance of a feature in cp occurs in the row-instances of cp, and cp’ �
cp, this instance must be in the row-instances of cp’. So the FPR of a feature is
monotonous decreasing.

Also assume cp ¼ ff1; . . .; fkg,

FPIðcp[ fkþ 1Þ ¼ min
kþ 1

i¼1
fFPRðcp[ fkþ 1; fiÞg� min

k

i¼1
fFPRðcp[ fkþ 1; fiÞg

� min
k

i¼1
fFPRðcp; fiÞg ¼ FPIðcpÞ

So the FPI of a co-location pattern is also monotonous decreasing.

2.2 Mining Framework

Figure 1 is the framework of mining all prevalent co-location patterns based on the
defined FPR and FPI (we call DPC-MCP), firstly we use DPC algorithm to cluster the
instances, then calculate the membership of each instance to all clusters and obtain the
k-clusters under the threshold of k, and then because of the anti-monotone of FPR and
FPI (Lemma 1), we can generate the k + 1-size candidate co-location patterns from k-
size prevalent co-location patterns and calculate the FPRs of all features in candidate
co-location patterns, finally we can obtain the FPI of each candidate co-location pattern
and compare it with threshold min_fprev, if the FPI value is no less than min_fprev, the
candidate pattern is a prevalent co-location pattern, repeat these steps we can obtain all
prevalent co-location patterns.
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3 Experiments on Real-Life Data Sets

This section evaluates the performance of the proposed algorithm on two real-life data
sets. The data set real-1 concerns the rare plant data of the three Parallel Rivers of
Reserved Areas in Yunnan Province, China. There are 31 features and only 355
instances in a 130000 m � 80000 m area, and real-2 is a POI data set, where there are
fewer features than real-1 set, but 23025 instances in a 22000 m � 14000 m area. In
the Table 1, we give the parameters and results of both Join-less and DPC-MCP on
real-1 set and real-2 data set. We have optimized implementation of Join-less and,
compared with other algorithms for mining traditional co-location patterns, it seems
Join-less can deal with more data for the same run-time.

Table 1 shows the different parameters and mining results of Join-less and
DCP-MCP on two real data sets. The sign “ ” means null value.

Figure 2 shows two data set clustering results on different cut off distance, Fig. 2(a)
and (b) show clustering results on dc equals 4,000 m and 3,000 m respectively in real-1
data set; Fig. 2(c) and (d) give clustering results on dc equals 50 m and 60 m

Fig. 1. The framework of DPC-MCP

Table 1. The parameters and results of Join-less and DPC-MCP on two data sets
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respectively in real-2 data set. Figure 2 shows that the clustering results vary little with
different cut off distance dc, it can be seen that the DPC-MCP is insensitive to cut off
distance. That’s one of the reasons why we choose DPC as our clustering algorithm.

We give some examples of the mining results of the two algorithms at different
thresholds on the real-1 data set in Table 1. The pattern {B, C, W} can be discovered
by both algorithms. The pattern {H, W, Y} cannot be mined by Join-less. However, in
real world, the plant H, W and Y need the similar growth environments, and they most
probably grow in the proximity area. The reason why Join-less cannot obtain the
pattern such as {H, W, Y} is that the distance threshold d is too small to mine these
patterns. Unfortunately, we cannot easily increase the distance threshold, if do that,
some unwanted co-location patterns would be discovered.

Also, in our DPC-MCP framework, if the number of instances of a feature is too
few, it is thought not to be representative and not taken into account in mining process.
Our algorithm cannot obtain the pattern {a, c, e} which discovered by Join-less, since
the instances’ amount of these features (such as a, c, e and R) are too few, the instances
of feature “e” are only 3 in the real-1 data set. More and then, these instances of the
features are far away from the centers of the clusters, so its membership to every cluster
is too small, and the k cut set prune these instances of the features.

We also give some examples of mining results on the real-2 data set in Table 1. The
feature A, D, and K represent Chinese restaurant, hotel, and train station respectively in
POI real-2 data set. In real life, the prevalent appearance of pattern {A, D, K} is
acceptable. The reason why the feature K is absence in the pattern mined by Join-less is
that the proximity distance threshold d is too small to mine the feature K.

Figure 3 shows the mining results and time consuming by DPC-MCP and Join-less
respectively on the real-1 data set. Figure 3(a) and (b) show the numbers of patterns
mined by DPC-MCP and Join-less respectively, the x-axis represents different

50m 60m

Fig. 2. (a) and (b) are the clustering results of the real-1 data set at different cut off distance, and
(c) and (d) are the results of the real-2 by DPC
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min_prev (or min_fprev), and the y-axis represents the number of patterns; the different
colors of bar represents different k threshold in Fig. 3(a) and (b), different colors of the
bar represent different proximity threshold d. Figure 3(c) and (d) are running time of
the DPC-MCP and Join-less on different thresholds respectively.

On the real-1 data set in Fig. 3, at different thresholds, DPC-MCP can obtain more
prevalent patterns and the time consuming is much less than Join-less (the highest size
of the pattern by DPC-MCP is higher than that of Join-less).

(a) DPC-MCP (b) Join-less

(c) DPC-MCP (d) Join-less

Fig. 3. The compared experiments of DPC-MCP and Join-less on the real-1 data set. (Color
figure online)

(a)DPC-MCP (b)Join-less

(c)DPC-MCP (d)Join-less

Fig. 4. The compared experiments of DPC-MCP and Join-less on the real-2 data set
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The experiments in Fig. 4 on the real-2 data set also show that DPC-MCP can
obtain more prevalent patterns which cannot be mined by Join-less (because of the
distance threshold is too small to obtain the proximity relationship) and the time
consuming is much less than Join-less (the highest size of the pattern by DPC-MCP is
higher than that of Join-less) in most of cases.

4 Conclusion and Future Work

In this paper, we propose a new framework for efficiently mining prevalent co-location
pattern. In this framework, we redefine proximity relationship, row-instance,
table-instance, participation ratio and participation index, and our proposed DPC-MCP
algorithm can efficiently mine interesting co-location patterns. Our method not only
produces interesting co-location patterns without a strict distance threshold, but also
need much less calculating consumption than traditional mining framework (such as
Join-less). The experiments on real data sets show the proposed DPC-MCP method is
more efficient than Join-less and the mining results of DPC-MCP are significant and
practical. We also find DPC-MCP is much sensitive to the thresholds (such as k and
min_fprev). In the future work we plan to explore how to select the appropriate k and
min_fprev values in different data sets.
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Abstract. In recent years, geosensor data forecasting has received considerable
attention. However, the presence of correlation (i.e. spatial correlation across
several sites and time correlation within each site) poses difficulties to accurate
forecasting. In this paper, a tensor-based method for geosensor data forecasting
is proposed. Specifically, a tensor pattern is first introduced into modelling the
geosensor data, which can take advantage of geosensor spatial-temporal infor-
mation and preserve the multi-way nature of geosensor data, and then a tensor
decomposition based algorithm is developed to forecast future values of time
series. The proposed approach not only combines and utilizes the multi-mode
correlations, but also well extracts the underlying factors in each mode of tensor
and mines the multi-dimensional structures of geosensor data. Experimental
evaluations on real world geosensor data validate the effectiveness of the pro-
posed methods.

Keywords: Geosensor data forecasting � Tensor decomposition
CP-WOPT model

1 Introduction

With the rapid growth of digital sources of information, enormous amounts of geo-
physical time series are being continually generated and collected. Accurate forecasts
of geosensor data can be useful for decision-makers, and thus it is receiving increasing
attention from researchers in recent years [1, 2, 3].

Some forecasting approaches, such as sARIMA, cARIMA and cVAR model pro-
posed by Pravilovic et al. [4, 5, 6], have considered temporal and spatial correlations
simultaneously in the process of forecasting geosensor data and achieved promising
results. However, the spatial information and temporal information contained in
geosensor data have not been fully utilized, for example, spatio-temporal dissimilarity
including both time series dissimilarity and spatial distance as separate contributions in
the cVAR does not incorporate the inner-correlations of geosensor data. These
inner-correlations of geosensor data may have an impact on the predicted performance.

To combine and utilize the multi-mode correlations, a series of studies have been
carried out in multi-dimension data [7, 8, 9]. Tensor-based methods have been proved
to be a good analytical tool for dealing with the multidimensional data, because tensor
decomposition can capture the global structure of the data. Therefore, we propose a
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tensor-based method for geosensor data forecasting. Specifically, we first formulate
geosensor data as multi-way array, i.e., tensor pattern, keeping the multi-dimension
characteristics and covering enough spatial and temporal information, and then we use
tensor decomposition to forecast future values of time series. The proposed approach
not only combines and utilizes the multi-mode correlations through preserving the
multi-way nature of the geosensor data, but also well extracts the underlying factors in
each mode of tensor and mines the multi-dimensional structures of geosensor data, by
CP decomposition with weighted optimization (CP-WOPT) that has been testified to
provide a good imputation performance for dealing with missing value [7].

In summary, the specific contributions of this paper are highlighted as follows:

(1) A tensor pattern is introduced to model geosensor data that can preserve the
multi-way nature of geosensor data, and thus the inner-correlations of geosensor
data can be incorporated into the process of forecasting.

(2) A CP-WOPT decomposition based forecasting method (GDF-TD) is proposed to
forecast the future values of time series. The proposed method well extracts the
underlying factors in each mode of tensor and mines the multi-dimensional
structures of geosensor data.

(3) Extensive numerical study on twelve real geosensor data sets has been conducted
to validate the performance of our proposed approach.

The remaining sections of this paper are organized as follows: a brief overview of
related work about geosensor data forecasting and tensor decomposition is given in
Sect. 2. Section 3 presents the notation used in this paper and introduces our proposed
method. Experiments on real geosensor data and results are presented in Sect. 4.
Finally, we conclude the paper in Sect. 5.

2 Related Works

Egrioglu et al. [10] determined a time series model by accounting for temporal
information, estimated the model parameters and provided accurate point estimates of
future values of time series, but they disregarded the spatial dimension of data.
Pokrajac and Obradovic [11] used a generalization of the standard spatial auto-
regression and included a disturbance term modelled as a temporal auto-regression to
produce spatio-temporal forecasts. Kamarianakis and Prastacos [12] modeled a
geosensor time series as a linear combination of past observations and disturbances at
neighboring sites and considered space-time auto-regressive integrated moving average
models. Ohashi and Torgo [13] computed technical indicators for each time stamp as
summaries of certain properties of the time series in a neighbourhood, and then used
these computed technical indicators and the past values of the series up to a certain time
window of fixed length to determine forecasts of each series. Pravilovic et al. [4, 5]
integrated cluster analysis to the ARIMA model [14]. The proposed sARIMA and
cARIMA model determine the number of ARIMA coefficients for a specific time series
automatically, without any human intervention. Saengseedam and Kantananth [15]
proposed linear mixed models (LMMs) with spatial random effects in a Bayesian
framework, where the spatial correlation is taken into account with a conditional auto
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regressive (CAR) prior distribution for spatial effects. Pravilovic et al. [6] proposed a
spatio-temporal cluster-based vector auto regressive model (cVAR) including a clus-
tering phase and a forecasting phase. The clustering phase divides time series into
clusters based on the spatial location of the time series, as well as by the time-stamped
values of the time series. The forecasting phase constructs spatially-coupled variables
from the clustered time series.

Tensor decomposition is a method for decomposing a Pth-order tensor into another
Pth-order tensor of smaller size, termed as the “core tensor,” and P factor matrices.
Tucker decomposition [16] and CP decomposition [17] are two particular tensor
decompositions that can be considered to be higher-order generalization of the matrix
singular value decomposition (SVD) and principal component analysis (PCA) [8].The
CP decomposition factorizes a tensor into a sum of component rank-one tensors,

X¼PR
r¼1

að1Þr �að2Þr � � � � � aðPÞr , where R is a positive integer and X 2 <I1�����IP ; aðiÞr 2 <Ii

for i ¼ 1; . . .;P; r ¼ 1; . . .;R, the symbol “�” represents the vector outer product. It
captures multi-linear structure. Acar et al. [7] formulated CP as a weighted least squares
problem modelling only the known data entries, and then developed the CP-WOPT
(CP Weighted OPTimization) algorithm using gradient-based optimization to solve the
weighted least squares formulation of the CP problem. The Tucker decomposition
factorizes a tensor into a core tensor multiplied (or transformed) by a matrix along each
mode, X � S �1 Uð1Þ �2 Uð2Þ � . . .�P UðPÞ, where X 2 <I1�����IP , S 2 <J1�����JP ,
UðiÞ 2 <Ii�Ji for i ¼ 1; . . .;P, the symbol “�n” represents the n-mode product of a
tensor. The tensor S is the core tensor and its entries show the level of interaction
between the different components, and UðiÞ; i ¼ 1; . . .;P are the factor matrices that can
be thought of as the principal components in each mode.

3 Proposed Method

Let K be a set of geo-locations over a given spatial domain, Y be a numeric geophysical
variable, and the time axis be discretized in equally-spaced time points denoted as
t ¼ 1; 2; . . .; T ; yðk; tÞ denote the sequence of geo-referenced measures of Y collected
at a certain projected geolocation k 2 K for each time point t ¼ 1; 2; . . .; T and
DðK,Y , T) be a geophysical time series dataset. Given DðK,Y ,T), the problem of
geosensor data forecasting is to learn a model from DðK, Y ,T) and then use the model
to forecast new data points ŷðk; T þ 1Þ; . . .; ŷðk; T þNÞ; 8k 2 K for a suitable fore-
casting horizon N.

In this section, we present a tensor decomposition based geosensor data forecasting
methodology, called GDF-TD, which inputs dataset DðK, Y ,T) and consists of a
pipeline of four algorithmic steps:

(1) Setting a time window and selecting time series data within the time window;
(2) Using the selected time series data to construct a tensor;
(3) Factorizing the constructed tensor;
(4) Using the factorized tensor to forecast future data points.

308 L. Zhou et al.



3.1 Setting a Time Window

A time window W(t,W) means a time interval ending at time t with size W , then the
observed values of yðk; tÞ within W(t,W) form a sub-sequence yW(k, t), which is
defined as:

8k 2 K; yW(k, t) =
fyðk; t �W þ 1Þ; . . .; yðk; TÞg; t� T
fyðk; t �W þ 1Þ; . . .; yðk; TÞ; 0; . . .; 0|fflfflffl{zfflfflffl}

W�tþ T

g; t[ T & W [ t � T

8<
: ð1Þ

W � tþ T zeros are added into yW(k, t) when t[ T because there are not observed
values for variable Y at time point T þ 1; . . .; t. The geophysical time series dataset
within the time window W(t,W) is denoted as DW(K, Y).

3.2 Constructing a Tensor

A tensor is a multidimensional array, and the number of dimensions is the order of the
tensor, also known as ways or modes (Kolda and Bader [8]). Tensors of order P� 3 are
denoted by Euler script letter (X , Y), matrices are denoted by boldface capital letters
(A; B), vectors are denoted by boldface lowercase letters (a; b), and scalars are denoted
by capital or lowercase letters (A; B, a; b). Columns of a matrix are denoted by
boldface lower letters with a subscript (a1; a2 are first two columns of A). Entries of a
matrix or a tensor are denoted by lowercase letters with subscripts, i.e., the
(i1; i2; . . .; iP) entry of an P-way tensor X 2 <I1�I2�:����IP is denoted by xi1;i2;...;iP , where
1� ik � Ik; 1� k�P.

To forecast new data points ŷðk; T þ 1Þ; . . .; ŷðk; T þNÞ; 8k 2 K for a suitable
forecasting horizon N, the time window W(T þN,W) can be selected, and the data in
DW(K,Y) are formulated as a four-way tensor Z 2 <I1�I2�I3�I4 , where I4 ¼ jKj,
I2 ¼ N, I1 � I3 ¼ W=I2, each three-way tensor Zi 2 <I2�I3�I4 ; i ¼ 1; . . .; I1 is called as
a sub-tensor of Z 2 <I1�I2�I3�I4 . All entries in Zi are observation, thus Zi 2
<I2�I3�I4 ; i ¼ 1; . . .; I1 � 1 is complete. But the sub-tensor ZI1 2 <I2�I3�I4 is incom-
plete, because it contains entries needed to be forecasted (the last column of each
frontal slice in ZI1 ).

3.3 Factorizing a Tensor

To decompose tensor Z 2 <I1�I2�I3�I4 , the nonnegative weight tensor W of the same
size as Z is defined as:

wi1;i2;i3;i4 ¼
1 i1 ¼ 1; . . .; I1 � 1; i2 ¼ 1; . . .; I2; i3 ¼ 1; . . .; I3; i4 ¼ 1; . . .; I4
1 i1 ¼ I1; i2 ¼ 1; . . .; I2; i3 ¼ 1; . . .; I3 � 1; i4 ¼ 1; . . .; I4
0 i1 ¼ I1; i2 ¼ 1; . . .; I2; i3 ¼ I3; i4 ¼ 1; . . .; I4

8<
: ð2Þ
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The four-way objective function is defined by:

fWCPðAð1Þ; . . .;Að4ÞÞ ¼ 1
2

Z � ½½Að1Þ;Að2Þ; . . .;Að4Þ		�� ��2
W ð3Þ

In Eq. (3), the notation Að1Þ; Að2Þ;Að3Þ;Að4Þ
h ih i

defines a four-way tensor of size

I1 � I2 � I3 � I4 whose elements are given by Að1Þ; Að2Þ;Að3Þ;Að4Þ
h ih i� �

i1i2i3i4
¼

PR
r¼1

Q4
n¼1

aðnÞinr for all in 2 f1; . . .; Ing and n 2 f1; . . .; 4g (Kolda and Bader [8]).

The goal of CP-WOPT decomposition is to find matrices AðnÞ 2 <In�R for n 2
f1; 2; 3; 4g that minimize the weighted objective function in (3). This optimization
problem can be solved by using gradient-based optimization method. The updating
rules for AðnÞ(n 2 f1; 2; 3; 4g) are shown in Theorem 1.

Theorem 1. Let X be a Pth-order tensor with size I1 � I2 � . . .� IP and rank R
(components). If fixed AðkÞ; k ¼ f1; . . .;Pg; k 6¼ n, the objective function
fWðAð1Þ; . . .;AðPÞÞ is nonincreasing under the updating rule:

aðnÞinr ¼ aðnÞinr

PP
k¼1
k 6¼n

PIk
ik¼1

w2
i1;...;iPxi1;...;iP

QP
m¼1
m 6¼n

aðmÞimr

PP
k¼1
k 6¼n

PIk
ik¼1

w2
i1;...;iP

PR
l¼1

QP
m¼1

aðmÞiml

� � QP
m¼1
m 6¼n

aðmÞimr

ð4Þ

The Proof is omitted due to the limitation of spaces. Fixed
Að1Þ; . . .;Aðk�1Þ;Aðkþ 1Þ; . . .;AðPÞ, AðkÞ can be updated with Eq. (4).

3.4 Forecasting

After tensor Z 2 <I1�I2�I3�I4 is factorized as AðnÞ 2 <In�R for n 2 f1; 2; 3; 4g, a

approximate tensor Ẑ 2 <I1�I2�I3�I4 of Z can be computed. Let aðnÞi ; i ¼ 1; . . .; r be the

ith column of AðnÞ, then Ẑ¼PR
r¼1

að1Þr �að2Þr � að3Þr � að4Þr . The entries in the last column of

each frontal slice in the sub-tensor ẐI1 of Ẑ are regarded as forecasted values, i.e.
~̂yðk; T þ jÞ ¼ zI1jI3k; j ¼ 1; . . .;N; k ¼ 1; . . .;K.

4 Experimental Evaluations

In this paper, we conduct experiments on twelve geosensor data sets used by Pravilovic
et al. [6]. For each data set, the time series are split into training and testing data sets.
The training data set is used to construct and factorize tensor, while the testing data set

310 L. Zhou et al.



is used to evaluate the performance of algorithms. In this paper, we use root mean
square error (RMSE) between the forecasted values ŷðk; tÞ and the real values yðk; tÞ
as the performance metric. We evaluate the performances of the GDF-TD algorithm by
comparing to other techniques. Pravilovic et al. [6] reported forecasting results of their
cVAR model and auto.ARIMA [18], sARIMA [4] and cARIMA [5] model under
different parameter a on twelve geosensor data sets. auto.ARIMA model neglects
spatial autocorrelation, sARIMA and cARIMA model account for spatial correlation in
a univariate time series setting, cVAR model summarize the dynamic structure of
spatial correlation over time. We denote the lowest errors of these models as LowE for
simplicity in this paper. In the experiments, we initialize factor matrices randomly with
fixed seeds. We compare our results obtained by tensor decomposition with LowE. The
results are shown in Table 1, where the lowest errors are in bold.

In brackets of the column “Tensor” of Table 1, I1 
 I2 
 I3 
 I4 represents the
dimension sizes with respect to orders of a tensor, and R ¼ x means the rank of the
tensor is x. From Table 1, we can observe that our tensor decomposition-based
approach yields the lower RMSEs than LessE over all twelve geosensor data sets. The
average improvement in accuracy is 33%. In particular, the greatest accuracy gain is
achieved on the series of TCEQ_Ozone (64%). It indicates that our proposed method is
effective for geosensor data forecasting.

Table 1. The RMSE averaged per geosensor on twelve data sets (LowE denotes the lowest
errors of cVAR, auto.ARIMA, sARIMA and cARIMA). The lowest errors in LowE and Tensor
are in bold, the numbers in brackets represent the dimension size of the tensor and the tensor rank
specified in the process of decomposition.

Data title Phenomenon Average RMSE
LowE Tensor

TCEQ Wind speed 0.31 0.14 (3*24*5*26, R = 2)
Air temperature 0.21 0.16 (3*24*5*26, R = 1)
Ozone concentration 0.53 0.19 (3*24*5*26, R = 6)

MESA NOx concentration 0.18 0.11 (4*12*5*20, R = 5)
NREL Wind speed 0.39 0.34 (3*12*4*1326, R = 1)
SAC Air temperature 0.15 0.08 (3*12*4*900, R = 1)
NREL/NSRDB Global solar radiation 0.17 0.15 (2*7*4*1071, R = 2)

Direct solar radiation 0.45 0.32 (2*7*4*1071, R = 1)
Diffuse solar radiation 0.30 0.27 (2*7*4*1071, R = 1)

NCDC Air temperature 0.12 0.07 (2*12*4*72, R = 1)
Precipation 0.26 0.20 (2*12*4*72, R = 1)
Solar energy 0.13 0.08 (2*12*4*72, R = 1)
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5 Conclusion

In this paper, tensor concept is introduced into forecasting geosensor data.
A CP-WOPT decomposition based forecasting method has been proposed. It formu-
lates the geosensor data into a multi-way data set and forecasts future values of time
series by factorizing tensors. The multi-way data set covers geosensor spatial-temporal
information and gives full play on the multi-mode correlations. The decomposition of
tensors extracts the underlying factors in each mode of tensor and mines the
multi-dimensional structures of geosensor data.
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Abstract. Aggregate k nearest neighbor (AkNN) queries are useful in
many areas, such as multimedia retrieval and resource allocation, to name
but a few. Most of existing works on AkNN query only focus on Euclidean
space or specific metric space, which employ properties of particular data
to accelerate the query. However, due to the complex data types involved
and the needs for flexible similarity criteria seen in real applications,
properties of particular data cannot be used for general case. Hence, in
this paper, we investigate AkNN search in metric spaces, termed as met-
ric AkNN (MAkNN) search, as metric spaces can support any type of
data and flexible similarity criteria as long as satisfying triangle inequal-
ity. To efficiently answer MAkNN queries, we develop several pruning
techniques and corresponding algorithms based on SPB-tree. Extensive
experiments using three real data sets verify the efficiency of our MAkNN
algorithms.

Keywords: Metric space · Aggregate k nearest neighbor query
Algorithm

1 Introduction

Aggregate k nearest neighbor (AkNN) retrieval is an interesting type of spatial
queries, which finds k objects similar to all the specified query objects using
an aggregate similarity criterion. It is useful in a variety of applications, such
as resource allocation, recommender systems, etc. Here, we give two examples
below.

Resource Allocation. Consider the carpooling, i.e., carpoolers want to take
the same taxi to save money. An AkNN query can be utilized to help find
candidate taxis for the carpoolers with smallest aggregate distances. Here, with
the objective to save time, the aggregate distance summarizes all the distances
from the taxi to each carpooler.
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Table 1. Symbols and description

Notation Description

q A query object

Q or O The set of objects in metric spaces

P The set/table of pivots

o or p An object in O, a pivot in P

|Q|, |O|, |P | The cardinality of Q, O or P

d() The distance function for the generic metric space

D() The L∞-norm metric for the mapped vector space

dagg(Q, o) The aggregate distance between Q and o in generic metric space

φ(o) The data point for o in the mapped vector space

SFC(o) The space-filling curve value of an object o

MAkNN (Q, O, k) The result set of an MAkNN query w.r.t. the query set Q and the object set O

curANDk The current k-th nearest neighbor distance

Recommender Systems. An image recommender system can generate per-
sonalized recommendations (i.e., the images that the user may be interested in)
based on the images the user already reviewed. Here, the aggregate distance
could be the minimum distance between the image to be recommended and the
images reviewed.

Considering the wide range of data types in the above application scenarios,
e.g., taxis and images, a generic model is desirable that is capable of accommo-
dating not just a single type, but a wide spectrum. In addition, the distance
metrics for comparing the similarity of objects, such as road network distance
used for taxis and Lp-norm used for images, are not restricted to the Euclidean
distance (i.e., L2-norm). To accommodate a wide range of similarity notions, we
investigate AkNN retrieval in metric spaces, termed as metric AkNN (MAkNN)
search, where no detailed representations of objects are required and where any
similarity notion that satisfies the triangle inequality can be accommodated.

Most of existing works on AkNN search focus on Euclidean space or particular
metric space (e.g., road network, graph), where properties of particular data
(e.g., geometric property for Euclidean space) are used to improve the query
efficiency. However, these properties cannot be used for the general case, i.e.,
these approaches cannot answer MAkNN search efficiently. Motivated by this,
we develop several pruning lemmas based on the triangle inequality property
of metric spaces, and present corresponding algorithms. To sum up, the key
contributions of this paper are as follows:

– We develop several pruning lemmas based on SPB-tree for sum, min, and
max aggregate functions to accelerate the search.

– We present an efficient algorithm designed for MAkNN search by integrating
the designed pruning lemmas.

– We conduct extensive experiments using three real data sets to verify the
efficiency of our proposed algorithms, compared with a baseline algorithm
extended from the state-of-the art MAkNN framework.
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The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 describes the SPB-tree. Section 4 defines MAkNN search and presents
corresponding algorithms. Considerable experimental results and findings are
reported in Sect. 5. Finally, Sect. 6 concludes the paper with some directions for
future work.

2 Related Work

In this section, we survey existing work on metric access methods, and AkNN
search algorithms. Table 1 summarizes the notations frequently used throughout
this paper.

2.1 Metric Access Methods

Two broad categories of metric access methods (MAMs) exist, namely, compact
partitioning methods and pivot-based approaches, to accelerate query processing
in metric spaces. Compact partitioning methods partition the space as compact
as possible, and try to prune unqualified regions during search. Many indexes,
e.g., BST [1], GHT [2], GANT [3], SAT [4], M-tree [5] family, D-Index [6], LC
[7], BP [8] exist. Pivot-based methods store pre-computed distances from every
object in the database to a set of pivots, and then utilize these distances and the
triangle inequality to prune objects during search. Many indexes, e.g., LAESA
[9], EP [10], BKT [11], FQT [12], MVPT [13], the Omni-family [14] exist.

Although pivot-based methods clearly outperform compact partitioning
approaches in terms of the number of distance computations (i.e., CPU cost)
[14–17], they generally have high I/O cost because objects are not well clus-
tered on disk. Recently, hybrid methods that combine compact partitioning with
the use of pivots have appeared in the literature. PM-tree [18] uses cut-regions
defined by pivots to accelerate query processing on the M-tree. M-Index [19] gen-
eralizes the iDistance technique for metric spaces, which compacts the objects
by using pre-computed distances to their closest pivots. SPB-tree [20] utilizes
the two mapping phase to further improve the efficiency. Hence, in this paper,
we use SPB-tree as the underlying index.

2.2 AkNN Search Algorithm

Aggregate k nearest neighbor (AkNN) retrieval generalizes kNN search, which
considers multiple query objects. Consequently, the distances from each query
object to an object must be aggregated (min, max or sum) according to an
optimization goal, in order to offer the similarity measure employed to rank
answered objects. Many works [21,22] only focus on AkNN in Euclidean space,
where geometric properties are used to accelerate the search. In addition, AkNN
in particular metric space (e.g., road network [23], graphs [24], trajectories [25])
are also investigated. However, all these approaches cannot solve our MAkNN
search problem, due to the general case we focus on.
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Razente et al. [26] study circumscription-constrained aggregate similarity
(CCAS) queries in metric spaces, where the region circumscribed by the query
objects limits the search space. However, algorithms developed for CCAS queries
can not be efficiently extended to solve MAkNN search. This is because, they
utilize the circumscription-constrained region to significantly prune search space.
Without the circumscription constraint, they have to scan the whole object set
to obtain the final query result, which is costly. In addition, Ranzente et al. [27]
also develop a framework for MAkNN search that can be adaptive to all kinds
of MAMs. Flowing the framework of [27], we develop a baseline algorithm (BL)
based on the-state-of-the art MAM SPB-tree.

3 The SPB-tree

In this section, we describe the SPB-tree used as the underlying index.

Fig. 1. Pivot mapping and space-filling curve mapping

3.1 Construction Framework

The construction framework of a SPB-tree is based on a two-stage mapping.
The first stage maps the objects in a metric space to data points in a vector
space using well-chosen pivots. The vector space offers more freedom than the
metric space when designing search approaches, since it is possible to utilize the
geometric information that is unavailable in the metric space. The second stage
uses the space-filling curve (SFC) to map the data points in the vector space into
integers in an one-dimensional space. Finally, a B+-tree with MBB information
is employed to index the resulting integers.

Pivot Mapping. Given a pivot set P = {p1, p2, . . ., pn}, a metric space (M ,
d) can be mapped to a vector space (Rn, L∞). Specifically, an object o in the
metric space is represented as a point φ(o) = 〈d(o, p1), d(o, p2), . . ., d(o, pn)〉
in the vector space. For instance, consider the example in Fig. 1, where O = {o1,
o2, . . ., o9} and L2-norm is used. If P = {o1, o6}, O can be mapped to a two-
dimensional vector space, in which the x-axis denotes d(oi, o1) and the y-axis
represents d(oi, o6), 1 ≤ i ≤ 9.
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Given objects oi, oj , and p in a metric space, d(oi, oj) ≥ |d(oi, p) – d(oj ,
p)| according to the triangle inequality. Hence, for a pivot set P , d(oi, oj) ≥
max{|d(oi, pi) – d(oj , pi)| | pi ∈ P}=D(φ(oi), φ(oj)), in which D( ) is the L∞-
norm. Consequently, we can conclude that the distance in the mapped vector
space is a lower bound on that in the metric space. For example, in Fig. 1, d(o2,
o3) > D(φ(o2), φ(o3)) = 2.

Space-Filling Curve Mapping. Given a vector φ(o) after pivot mapping and
assume that the range of d( ) in the metric space is discrete integers (e.g., edit
distance), SFC can directly map φ(o) to an integer SFC (φ(o)). Consider the SFC
mapping examples in Fig. 1, where SFC value SFC (φ(o2)) = 18 for the Hilbert
curve. As a default, we use the Hilbert curve for SPB-tree. If the range of d( ) in
the metric space is continuous real numbers, we can partition the range of d( )
into discrete integers.

3.2 Indexing Structure

An SPB-tree used to index an object set in a generic metric space contains
three parts, i.e., the pivot table, the B+-tree, and the random access file (RAF).
Figure 2 shows an SPB-tree example to index the object set O = {o1, . . . , o9}
in Fig. 1. A pivot table stores selected objects (e.g., o1 and o6) to map a metric
space into a vector space.

A B+-tree is employed to index the SFC values of objects after a pivot
mapping. Each leaf entry in the leaf node (e.g., N3, N4, N5, and N6) of the
B+-tree records (1) the SFC value key, and (2) the pointer ptr to a real object,
which is the address of the actual object kept in the RAF. For example, in Fig. 2,
the leaf entry E7 associated with the object o2 records the Hilbert value 18 and
the storage address 0 of o2. Each non-leaf entry in the root or intermediate node
(e.g., N0, N1, and N2) of the B+-tree records (1) the minimum SFC value key in
its subtree, (2) the pointer ptr to the root node of its subtree, and (3) the SFC
values min and max for 〈L1, L2,. . . , L|P |〉 and 〈U1, U2,. . . , U|P |〉, to represent the
MBB M(= {[Li, Ui]|i ∈ [1, |P |]}) of the root node N of its subtree. Specifically,
an MBB M denotes the axis aligned minimum bounding box to contain all φ(o)
with SFC(φ(o)) ∈ N , and thus, Li and Ui represent the minimum and maximum

Fig. 2. Example of an SPB-tree
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values of φ(o) on dimension i. For instance, the non-leaf entry E3 uses min (=
SFC(〈0, 5〉) = 19) and max (= SFC(〈1, 6〉) = 23) to represent the M3 (= {[0, 1],
[5, 6]}) of N3.

RAF is sorted to store the objects in ascending order of SFC values as they
appear in the B+-tree. Each RAF entry records (1) an object identifier id, (2)
the length len of the object, and (3) the real object obj. In Fig. 2, the RAF entry
associated with an object o2 records the object identifier 2, the object length 8,
and the real object o2.

4 Metric Aggregate k Nearest Neighbor Search

In this section, we first formalize AkNN retrieval in metric spaces, and then
propose an efficient algorithm for processing metric AkNN queries based on the
SPB-tree.

4.1 Problem Definition

A metric space is a tuple (M,d), in which M is the domain of objects and d is
a distance function which defines the similarity between the objects in M . In
particular, the distance function d has four properties: (1) symmetry : d(q, o) =
d(o, q), (2) non-negativity : d(q, o) ≥ 0, (3) identity : d(q, o) = 0 iff q = o, and
(4) triangle inequality : d(q, o) ≤ d(q, p) + d(p, o). Based on the properties of the
metric space, AkNN queries in metric spaces have been investigated.

Definition 1. (MAkNN Query). Given a query object set Q, an object set
O, and an integer k , an MAkNN query finds k objects in O with the smallest
aggregate distances dagg(Q, o), i.e., MAkNN(Q, O, k)= {oi|oi ∈ O ∧ 1 ≤ i ≤
k ∧ ∀oj(	= oi) ∈ O, dagg(Q, oj) ≥ dagg(Q, oi)}. In particular, dagg(Q, o) can be
computed as f(d(q1, o), d(q2, o), . . . , d(q|Q|, o)), in which the aggregate function
f might be sum, min, or max.

Consider two English word sets Q = {“defoliate”, “defoliates”} and
O = {“citrate”, “defoliation”, “defoliating”, “defoliated”}, for which the edit dis-
tance is the similarity measurement. Suppose k = 2, an MAkNN query MAkNN
(Q, O, 2) finds the two words in O having the smallest aggregate distances from
Q. If f is sum function, the query result is {“defoliated”, “defoliation”}; if f is
min function, the query result is {“defoliated”, “defoliation”}; and if f is max
function, the query result is {“defoliated”, “defoliating”}. It is worth noting that
MAkNN (Q, O, k) may be not unique due to the distance tie. Nonetheless, the
target of our presented algorithms is to find one possible instance.

4.2 MAkNN Query Processing

MAkNN search generalizes the form of MkNN queries, in which there are mul-
tiple (instead of one) query objects. Consider a running example of MAkNN
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Fig. 3. Illustration of MAkNN (Q, O, k)

retrieval depicted in Fig. 3, where Q = {qi|1 ≤ i ≤ 3} and O = {oj |1 ≤ j ≤ 9}.
Assume that k = 2 and L2-norm is utilized, the result of MAkNN (Q, O, 2) is
{o4, o3} if sum function is used to compute the aggregate distance; the query
result is {o4, o7} if min function is used; and the query result is {o4, o3} if max
function is used. To solve MAkNN search, a simple method BL is to use SPB-
tree and follow the framework [27] developed for MAkNN retrieval. In particular,
BL traverses the B+-tree entries in ascending order of their minimum aggregate
distances to Q in the mapped vector space. As discussed in Sect. 3, the distance
in the mapped vector space is the lower bound distance of the original met-
ric space, we develop Lemma 1 below for MAkNN search, to avoid unnecessary
verifications of B+-tree entries.

Lemma 1. Given a query set Q and a B+-tree entry E, E can be safely pruned
if MINDagg(Q,E) ≥ curANDk, where MINDagg(Q,E) denotes the minimum
aggregate distance between E and Q in the mapped vector space, and curANDk

represents the current k-th aggregate NN distance from Q.

Proof. Since the aggregate function is monotonically increasing, the aggregate
distance in the mapped vector space is still the lower bound distance of that in
the original metric space. Then, we can get that mindagg(E, Q) ≥ MINDagg(E,
Q), with mindagg(E, Q) denoting the minimum aggregate distance between E
and Q in the original metric space. If MINDagg(E, Q) ≥ curANDk, then for
each o (∈ E), dagg(o, Q) ≥ mindagg(E, Q) ≥ curANDk. Consequently, E can
be discarded safely. �

Note that, curANDk used in Lemma 1 is obtained and updated during
MAkNN search. In particular, after computing the aggregate distance of an
object, we can update immediately the result set and curANDk if necessary.
Consider the example depicted in Fig. 3 with the corresponding SPB-tree in
Fig. 2. Assume that curANDk = 1 and min function is used, E3 and E6 can be
safely pruned as MINDagg(E3,MQ) = MINDagg(E6,MQ) = curANDk.

Since MINDagg(E,Q) is computed as f(MIND(E, q1), MIND(E, q2), . . .,
MIND(E, q|Q|)), it is costly (because it needs |Q| computations of MIND).
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Motivated by this, we build MBB MQ (= {[LQi, UQi] | 1 ≤ i ≤ |P |}) for Q in
the mapped vector space, to reduce MINDagg(E, Q) computation cost. Back to
the running example illustrated in Fig. 3, the thick black rectangle in Fig. 3(b)
represents MBB MQ (= {[2, 4], [2, 5]}) for Q in the mapped vector space using
P = {o1, o6}. Let MIND i(E, qt) be the minimum distance between E and qt (∈
Q) on dimension i (1 ≤ i ≤ |P |), and MIND i(E, Q) be the minimum aggregate
distance between E and Q on dimension i.

MINDagg(E,Q)
= f(MIND(E, q1), . . . ,MIND(E, q|Q|))
= f(max{MINDi(E, q1)|1 ≤ i ≤ |P |},

. . . ,max{MINDi(E, q|Q|)|1 ≤ i ≤ |P |})
≥ max{f(MINDi(E, q1), . . . ,

MINDi(E, q|Q|))|1 ≤ i ≤ |P |}
= max{MINDi(E,Q)|1 ≤ i ≤ |P |}

(1)

According to Eq. (1), the lower bound distance of MINDagg(E, Q), termed
as EMINDagg(E, Q), can be computed as max{MINDi(E,Q)|1 ≤ i ≤ |P |}.
To obtain EMINDagg(E, Q), we only need to compute MIND i(E, Q) on each
dimension i, with the detailed computations stated below for sum, min, or max
function, respectively.

Sum function. If LEi ≥ UQi (as shown in Fig. 4(a)), MIND i(E, Q) =
∑

1≤t≤|Q|
MIND i(E, qt) =

∑
1≤t≤|Q| (LEi − d(qt, pi)) = |Q| × LEi − ∑

1≤t≤|Q|d(qt, pi). If
UEi ≤ LQi (as depicted in Fig. 4(b)), then MIND i(E, Q) =

∑
1≤t≤|Q|MIND i(E,

qt) =
∑

1≤t≤|Q| (d(qt, pi) − UEi) =
∑

1≤t≤|Q|d(qt, pi) − |Q| × UEi. Otherwise,
i.e., MQ and ME are intersected on dimension i, MIND i(E, Q) is estimated as 0.

Note that,
∑

1≤t≤|Q| d(qt, pi) used in MIND i(E, Q) computation for sum
function can be obtained and stored for reuse when building MQ. Hence, for
sum function, the computational cost of EMINDagg(E, Q) is O(1), which is
much smaller than O(|Q|) of MINDagg(E, Q) computation. For example, in
Fig. 3, and assume that sum function is used on dimension x, as UE3x < LQx,
MINDx (E3, Q) = d(q1, o1) + d(q2, o1) + d(q3, o1) − 3 × UE3x = 6. Thus, we
can get that EMINDagg(E3, Q) = max{MINDx (E3, Q), MINDy(E3, Q)} = 6,
which is a tight lower bound of MIND(E3, Q) (= 6).

Min function. If LEi ≥ UQi (as shown in Fig. 4(a)), then MIND i(E, Q) =
min1≤t≤|Q|MIND i(E, qt) =LEi − UQi. If UEi ≤ LQi (as depicted in Fig. 4(b)),
then MIND i(E, Q) = min1≤t≤|Q|MIND i(E, qt) =LQi − UEi. Otherwise, i.e., MQ

and ME are crossed on dimension i, MIND i(E, Q) is estimated as 0.
Similarity, the EMINDagg(E, Q) computational cost is also reduced to O(1)

for min function. Back to the example shown in Fig. 3 and suppose that min
function is used, since UE3x < LQx on dimension x, MINDx(E3, Q) =LQx −
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Fig. 4. MIND i(Q,E) computation

UE3x = 1. Hence, we can get that EMINDagg(E3, Q) = max{MINDx(E3, Q),
MINDy(E3, Q)} = 1, which is a tight lower bound of MIND(E3, Q) (= 1).

Max function. If LEi ≥ UQi (as shown in Fig. 4(a)), then MIND i(E, Q) =
max1≤t≤|Q|MIND i(E, qt) = LEi − LQi. If UEi ≤ LQi (as depicted in Fig. 4(b)),
then MIND i(E, Q) = max1≤t≤|Q|MIND i(E, qt) =UQi − UEi. Otherwise, i.e.,
MQ and ME are intersected on dimension i, MIND i(E, Q) is estimated as 0.
Note that, for the case when ME is intersected with MQ, if E is a leaf entry (as
illustrated in Fig. 4(c)), then MIND i(E, Q) = max{d(E, pi) − LQi, UQi − d(E,
pi)}.

For max function, the EMINDagg(E, Q) computational cost is also reduced
to O(1). Back to the example depicted in Fig. 3 and assume that max function
is used, on dimension x, as UE3x < LQx, MINDx(E3, Q) =UQx − UE3x = 3;
on dimension y, MINDy(E3, Q) = d(E10, o6) − LQy = 2. Thus, we can get that
EMINDagg(E3, Q) = max{MINDx(E3, Q), MINDy(E3, Q)} = 3, which is a tight
lower bound of MIND(E3, Q) (= 3). For object o3, on dimension y, since LQy <
d(o3, o6) < UQy, MINDy(o3, Q) = max{d(o3, o6) − LQi, UQi − d(o3, o6)} = 2.
therefore, we can get that EMINDagg(o3, Q) = max{MINDx(o3, Q)), MINDy(o3,
Q)} = 2, which is also a tight lower bound of MIND(o3, Q) (= 2).

Based on EMINDagg(E, Q) derived, we develop a lemma to avoid unneces-
sary MINDagg(Q, E) computations.

Lemma 2. Given a query set Q and a B+-tree entry E, E can be safely pruned
if EMINDagg(Q, E) ≥ curANDk.

Proof. Since EMINDagg(Q,E) ≤ MINDagg(Q,E), if EMINDagg(Q,E) ≥
curANDk, then MINDagg(Q,E) ≥ curANDk. Hence, E can be safely pruned
due to Lemma 1, which completes the proof. �



326 X. Ding et al.

Consider the example depicted in Fig. 3 with the corresponding SPB-tree in
Fig. 2. Assume that sum function is used and curANDk = 5, E3 can be safely
discarded due to EMINDagg(E3,MQ) > curANDk.

Lemma 2 utilizes MBB to reduce the computational cost in the mapped vec-
tor space. In order to further reduce the computational cost of the aggregate
distance dagg(Q, o) between the object o and the query set Q, we can also build
a minimum bounding circle (MBC) for Q in original metric space. The MBC
CQ is centered at CQ.o with the radius CQ.r equaling to the maximum distance
d(q, CQ.o) (q ∈ Q). Consider the example illustrated in Fig. 3(a), the thick black
circle, centered at object o4 with the radius CQ.r = d(o4, q3), denotes the MBC
for Q. With the assistant of MBC, we can get the lower bound edagg(Q, o) of
dagg(Q, o), with the detailed derivation stated as follows for sum, min, and max
function, respectively.

Sum function. According to the triangle inequality,

dagg(Q, o) =
∑

1≤t≤|Q|
d(o, qt)

≥
∑

1≤t≤|Q|
|d(o, CQ.o) − d(CQ.o, qt)|

≥ |
∑

1≤t≤|Q|
(d(o, CQ.o) − d(CQ.o, qt))|

= |d(o, CQ.o) × |Q| −
∑

1≤t≤|Q|
d(CQ.o, qt)|

(2)

Hence, edagg(Q, o) can be computed as |d(o, CQ.o) × |Q| − ∑
1≤t≤|Q| d(CQ.o,

qt)| for sum function. Note that,
∑

1≤t≤|Q| d(CQ.o, qt) can be computed and
stored for reuse when building MBC CQ. For example, in Fig. 3(a), suppose
that sum function is used, edagg(Q, o6) = 3 × d(o6, o4) − ∑

1≤t≤3 d(o4, qt) =
9−d(o4, q1) = 7.2, which is a lower bound value of dagg(Q, o6) (= 5 + d(q1, o6) =
10).

Min function. Based on the triangle inequality,

dagg(Q, o) = min
1≤t≤|Q|

d(o, qt)

≥ min
1≤t≤|Q|

|d(o, CQ.o) − d(CQ.o, qt)|

≥ min
1≤t≤|Q|

(d(o, CQ.o) − d(CQ.o, qt))

= d(o, CQ.o) − max
1≤t≤|Q|

d(CQ.o, qt)

= d(o, CQ.o) − CQ.r

(3)
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Thus, edagg(Q, o) can be computed as d(o, CQ.o) − CQ.r for max function.
Back to the example shown in Fig. 3(a), and assume that min function is used,
edagg(Q, o6) = d(o6, o4) − CQ.r = 2, which is a tight lower bound of dagg(Q, o6)
(= 2).

Max function. According to the triangle inequality,

dagg(Q, o) = max
1≤t≤|Q|

d(o, qt)

≥ max
1≤t≤|Q|

|d(o, CQ.o) − d(CQ.o, qt)|

= max{ max
1≤t≤|Q|

d(CQ.o, qt) − d(o, CQ.o),

d(o, CQ.o) − min
1≤t≤|Q|

d(CQ.o, qt)}

= max{CQ.r − d(o, CQ.o), d(o, CQ.o)−
min{d(CQ.o, qt)|1 ≤ t ≤ |Q|}}

(4)

Therefore, edagg(Q, o) can be computed as max{d(o, CQ.o) − CQ.r,
d(o, CQ.o) − min{d(CQ.o, qt)|1 ≤ t ≤ |Q|}} for min function. Note that,
min{d(CQ.o, qt)|1 ≤ t ≤ |Q|} can be computed and stored for reuse when build-
ing CQ. Back to the example depicted in Fig. 3(a), and suppose that max func-
tion is used, edagg(Q, o6) = d(o6, o4) − d(o4, q2) = 3, which is a lower bound
value of dagg(Q, o6)(= d(q1, o6) = 5).

According to Eqs. 2–(4), it only needs one distance computation for
edagg(Q, o) calculation, instead of |Q| distance computations for dagg(Q, o) cal-
culation, which reduces significantly the computational cost. Thus, we develop
a new lemma based on edagg(Q, o) derived, to avoid unnecessary computations
of dagg(Q, o).

Lemma 3. Given a query set Q and an object o, o can be safely pruned if
edagg(Q, o) ≥ curANDk.

Proof. As edagg(Q, o) ≤ dagg(Q, o), dagg(Q, o) ≥ curANDk if edagg(Q, o) ≥
curANDk. Hence, o can be safely pruned due to the definition of the aggregate
kNN query, which completes the proof. �

Consider the example shown in Fig. 3 with the corresponding SPB-tree in
Fig. 2. Assume that max function is used and curANDk = 5, object o6 can be
safely discarded due to EMINDagg(o6,MQ) > curANDk, without any further
verification.
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To achieve the strongest pruning power of Lemma 3, i.e., the lower bound
edagg(Q, o) must approach to dagg(Q, o) as much as possible, we need to tight
the MBC. In other words, we need to choose an MBC center to obtain the
minimal MBC radius. A simple way to obtain the optimal center is to perform
an MAkNN (Q, O, 1) query using max function. However, it is costly to perform
an additional aggregate NN query. Therefore, we can update the center of MBC
using the object o (∈ O) during MAkNN search when verifying whether o is
contained in the final result.

Based on Lemmas 1 to 3, we present an efficient Aggregate kNN Algo-
rithm (AkNNA), with the pseudo-code depicted in Algorithm 1. To begin with,
AkNNA sets curANDk to infinity, and initializes the MBC CQ and min-heap H
to empty. Then, it computes φ(q) for each q ∈ Q using P , and obtains the MBB
MQ in the mapped vector space. Next, the algorithm pushes the root entries
of a B+-tree into H. In the sequel, a while-loop is performed until H is empty
(lines 4–17). In every while-loop, AkNNA de-heaps the top entry E from H, and
stops searching if MINDagg(Q, E) is no smaller than curANDk by Lemma 1. If
E is a non-leaf entry, the algorithm pushes all the qualified sub entries of E into
H according to Lemmas 1 and 2 (lines 8–11). Otherwise (i.e., E is a leaf entry),
if CQ exists, AkNNA computes edagg(Q, e.ptr) and prunes object e.ptr with-
out any further verification using Lemma3 (lines 13–14). Thereafter, if dagg(Q,
e.ptr) is smaller than curANDk, the algorithm inserts e.ptr into the result set
MAkNN (Q, O, k) (line 16), and updates curANDk and CQ if necessary (line
17). In the end, the final query result set MAkNN (Q, O, k) is returned.

Example 1. We illustrate AkNNA using the example depicted in Fig. 3 with the
corresponding SPB-trees shown in Fig. 2. Assume that k = 2 and sum function
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is utilized. First of all, curANDk is initialized to infinity, and CQ and the min-
heap H are set to empty. Then, AkNNA computes φ(q1) = 〈2, 5〉, φ(q2) = 〈3, 3〉,
and φ(q3) = 〈4, 2〉 using P , obtains MBB MQ = {[2, 4], [2, 5]}, and pushes the
root entries into H (= {E1, E2}). Next, it performs a while-loop. In the first
loop, AkNNA pops the top entry E1 from H. Since E1 is a non-leaf entry, the
algorithm pushes its qualified sub entries E3 and E4 into H (= {E4, E2, E3}), due
to EMINDagg and MINDagg of E3 and E4 from Q are smaller than curANDk.
Similarly, in the second loop, AkNNA pops E4 and pushes the qualified sub
leaf entries into H(={E9, E10, E2, E3}). Then, AkNNA pops the leaf entry E9

and inserts o4 into MAkNN (Q, O, 2) as dagg(o4, Q) < curANDk. After that,
CQ.o and CQ.r are set as o4 and 2, respectively. In the sequel, it pops and
evaluates entries in H similarly until MINDagg(E3, Q) > curANDk, after which
MAkNN (Q, O, 2) = {o4, o3}. Finally, AkNNA stops and returns MAkNN (Q, O,
2) as the final result set. �

5 Performance Study

In this section, we experimentally evaluate the performance of MAkNN retrieval
algorithms based on the SPB-tree. We implemented the algorithms in C++. All
experiments were conducted on an Intel Core 2 Duo 2.93 GHz PC with 3 GB
RAM.

5.1 Experimental Setup

We employ three real datasets, namely, Words, Color, and DNA, as depicted in
Table 2. Words1 contains proper nouns, acronyms, and compound words taken
from the Moby Project, and the edit distance is used to compute the distance
between two words. Color2 denotes the color histograms extracted from an image
database, and L5-norm is utilized to compare the color image features. DNA3

consists of 1 million DNA data, and the cosine similarity is used to measure its
similarity under the tri-gram counting space.

We investigate the efficiency of MAkNN retrieval algorithms under various
parameters, which are listed in Table 3. Note that, in every experiment, only
one factor varies, whereas the others are fixed to their default values. The main

Table 2. Statistics of the datasets used

Dataset Cardinality Dim. Ins. Dim. Measurement

Words 611,756 1–34 4.9 Edit distance

Color 112,682 16 2.9 L5-norm

DNA 1,000,000 108 6.9 Cosine similarity under tri-gram counting space

1 Words is available at http://icon.shef.ac.uk/Moby/.
2 Color is available at http://www.sisap.org/Metric Space Library.html.
3 DNA is available at http://www.ncbi.nlm.nih.gov/genome.

http://icon.shef.ac.uk/Moby/
http://www.sisap.org/Metric_Space_Library.html
http://www.ncbi.nlm.nih.gov/genome
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Table 3. Parameter ranges and default values

Parameter Setting Default

k 1, 2, 4, 8, 16, 32 8

query set cardinality |Q| 4, 16, 64, 256, 1024 64

query set area AQ of the whole space 2%, 4%, 8%, 16%, 32% 8%

performance metrics include the number of page accesses (PA), the number of
distance computations (compdists), and the CPU time. Each measurement we
report is the average of 500 queries.

Fig. 5. AkNN query performance vs. k

5.2 Results on AkNN Queries

We verify the performance of our proposed algorithms (i.e., BL and AkNNA) in
answering MAkNN queries in metric spaces. BL is a baseline method directly
extended from MkNN framework [27] using SPB-tree. We inspect the influence of
various parameters, containing (1) the area of query set AQ, (2) the cardinality of
query set |Q|, and (3) the value of k, i.e., the number of aggregate NNs required.

Figures 5, 6, and 7 show the experimental results w.r.t. k, AQ, and |Q|, respec-
tively. The first observation is that, AkNNA achieves better performance in
terms of the number of distance computations and the CPU time, but has simi-
lar number of page accesses as BL. This is because, AkNNA employs Lemmas 2
and 3 to save the distance computational cost and avoid unnecessary distance
computations, while BL only uses Lemma 1. However, the I/O cost of MAkNN
search is related with the search region. In other words, the I/O cost is mostly
related with the distribution of the query set and the dataset, which can hardly
be reduced by Lemmas 2 and 3. Thus, BL and AkNNA have similar I/O cost.
The second observation is that, the query cost increases with AQ and k, due to
the growth of search space. Note that, the query cost of AkNNA, including the
number of distance computations and the CPU time, approaches to that of BL
as AQ grows. The reason is that, with the growth of AQ, the minimum bounding
box and minimum bounding circle for the query set becomes larger, and thus,
the pruning power of Lemmas 2 and 3 decreases. In addition, the number of dis-
tance computations and the CPU time increase with |Q|. This is because, the
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Fig. 6. AkNN query performance vs. query set area AQ

Fig. 7. AkNN query performance vs. query set cardinality |Q|

aggregate distance computation needs more distance computations and becomes
more costly as the number of query objects |Q| ascends. Nevertheless, the I/O
cost drops as |Q| grows, since the search region decreases due to the dropping
k-the aggregate NN distance (ANDk) value for min and max functions, and
ANDk/|Q| value for sum function.

6 Conclusions

Metric aggregation k nearest neighbor (MAkNN) search is useful in many areas
of computer science, such as multimedia retrieval, resource allocation, and so
forth, because it can support various data types and flexible similarity measure-
ments as long as the measurements satisfy the triangle inequality. To answer
MAkNN efficiently, we develop several pruning lemmas that utilizes the triangle
inequality and present efficient algorithms based on SPB-tree. Extensive experi-
ments show that, our MAkNN search algorithm is more efficient than the baseline
algorithm extended from the state-of-the art MAkNN search framework. In the
future, we plan to extend the MAkNN search algorithms to various distributed
environments.
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Abstract. K nearest neighbor (kNN) search is an important problem
and has been well studied on static road networks. However, in real
world, road networks are often time-dependent, i.e., the time for trav-
eling through a road always changes over time. Most existing methods
for kNN query build various indexes maintaining the shortest distances
for some pairs of vertices on static road networks. Unfortunately, these
methods cannot be used for the time-dependent road networks because
the shortest distances always change over time. To address the prob-
lem of kNN query on time-dependent road networks, we propose a novel
voronoi-based index in this paper. Moreover, we propose an algorithm
for pre-processing time-dependent road networks such that the waiting
time is not necessary to be considered. We confirm the efficiency of our
method through experiments on real-life datasets.

1 Introduction

With the rapid development of mobile devices, k nearest neighbor (kNN) search
on road networks has become more and more important in location-based ser-
vices. Given a query location and a set of objects (e.g., restaurants) on a road
network, it is to find k nearest objects to the query location. kNN search prob-
lem has been well studied on static road networks. However, road networks are
essentially time-dependent but not static in real world. For example, the Vehicle
Information and Communication System (VICS) and the European Traffic Mes-
sage Channel (TMC) are two transportation systems, which provide real-time
traffic information to users. Such road networks are time-dependent, i.e., travel
time for a road varies with taking “rush hour” into account.

The existing works propose various index techniques for answering k nearest
object query on road networks. The main idea behind these indexes is to partition
the vertices into several clusters, and then the clusters are organized as a voronoi
diagram or a tree (e.g., R-tree, G-tree, etc.). All these methods pre-compute and
maintain the shortest distances for some pairs of vertices to facilitate kNN query.
Unfortunately, these indexes cannot be used for time-dependent road networks.

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Cai et al. (Eds.): APWeb-WAIM 2018, LNCS 10988, pp. 334–349, 2018.
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The reason is that the minimum travel time between two vertices often varies
with time. For example, u and v are in the same cluster for one time period
but they may be in two distinct clusters for another time period because of the
minimum travel time varying with time. Therefore, the existing index techniques
based on the static shortest distance cannot handle the case that the minimum
travel time is time-dependent. Moreover, the waiting time is allowed on time-
dependent road networks, i.e., someone can wait a time period to find another
faster path. When the waiting time is considered, it is more difficult to build an
index for kNN query by existing methods because it is difficult to estimate an
appropriate waiting time for pre-computing the minimum travel time between
two vertices.

Recently, there are some works about kNN query on time-dependent graphs
[4–6,13]. Most of these works utilize A* algorithm to expand the road networks
by estimating an upper or lower bound of travel time. There are two main
drawbacks of these methods. First, in these works, the FIFO (first in first out)
property is required for the networks and the waiting time is not allowed. Second,
the indexes proposed by these works are based on the estimated value of travel
time. However, these indexes cannot facilitate query effectively for large networks
because the deviation are always too large between the estimated and actual
travel time.

In this paper, we study k nearest object query on time dependent road net-
works. A time-dependent road network is modeled as a graph with time infor-
mation. The weight of every edge is a time function wi,j(t) which specifies how
much time it takes to travel through the edge (vi, vj) if departing at time point
t. The main idea of our method is to pre-compute minimum travel time func-
tions (or mtt-function for short) instead of concrete values for some pairs of
vertices and then design a “dynamic” voronoi-based index based on such func-
tions. Here “dynamic” means that in a time-dependent network it can be easily
decided which cluster a vertex should be in for any given time point t. Different
to previous works, our index can facilitate query effectively for large networks.
Moreover, our method does not require the FIFO property for networks and we
allow waiting time on every vertex.

The main contributions of this paper are summarized as below. First, we pro-
pose an algorithm to process wi,j(t) for every edge such that the waiting time
is not necessary to be considered. Let GT and G∗

T be the original graph and the
graph after processing wi,j(t). We can prove that a shortest path with considera-
tion of waiting time on GT is one-one mapped to a shortest path without waiting
time on G∗

T . Furthermore, we show how to compute the mtt-function for two ver-
tices. Second, we propose a novel voronoi-based index for time-dependent road
networks and an algorithm to answer kNN query using our index. Finally, we
confirm the efficiency of our method through extensive experiments on real-life
datasets.

The rest of this paper is organized as follows. Section 2 gives the prob-
lem statement. Section 3 describes how to process wi,j(t) and compute the
mtt-function. Section 4 explains how to build the voronoi-based index for



336 M. Leng et al.

time-dependent networks and Sect. 5 proposes the kNN query algorithm. The
experimental results are presented in Sect. 6. The related work is in Sect. 7.
Finally, we conclude this paper in Sect. 8.

2 Problem Statement

Definition 1 (Time-Dependent Road Network): A time-dependent road
network is a simple directed graph, denoted as GT (V,E,W ) (or GT for short),
where V is the set of vertices; E ⊆ V × V is the set of edges; and W is a
set of non-negative value functions. For every edge (vi, vj) ∈ E, there is a time-
function wi,j(t) ∈ W , where t is a time variable. A time function wi,j(t) specifies
how much time it takes to travel from vi to vj, if one departs from vi at time
point t.

In this paper, we assume that wi,j(t) ≥ 0. The assumption is reasonable,
because the travel time cannot be less than zero in real applications. Our work
can be easily extended to handle undirected graphs. An undirected edge (vi, vj)
is equivalent to two directed edges (vi, vj) and (vj , vi), where wi,j(t) = wj,i(t).

The are several works that study how to construct time function wi,j(t),
which is always modeled as a piecewise linear function [7,8,11] and it can be
formalized as follows:

wi,j(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1t + b1, t0 ≤ t < t1

a2t + b2, t1 ≤ t < t2

· · ·
apt + bp, tp−1 ≤ t ≤ tp

Given a path p, the travel time of p is time-dependent. In order to minimize
the travel time, some waiting time ωi is allowed at every vertex vi in p. That is,
when arriving at vi, one can wait a time period ωi if the travel time of p can be
minimized. We use arrive(vi) and depart(vi) to denote the arrival time at vi and
departure time from vi, respectively. For each vi in p, we have

depart(vi) = arrive(vi) + ωi

Let p = v1 → v2 → · · · → vh be a given path with the departure time t and the
waiting time ωi for each vertex vi, then we have

arrive(v1) = t

arrive(v2) = depart(v1) + w1,2(depart(v1))
· · ·

arrive(vh) = depart(vh−1) + wh−1,h(depart(vh−1))

Thus the travel time of path p is w(p) = arrive(vh) − t. Given two vertices
vi and vj in GT , the minimum travel time from vi to vj with departure time t
is defined as mi,j(t) = min{w(p)|p ∈ Pi,j}, where Pi,j is the set of all the paths
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from vi to vj in GT . Obviously, mi,j(t) is also a function related to the departure
time t. We call mi,j(t) the minimum travel time function (or mtt-function
shortly) from vi to vj . Let |V | be n, in the following, we use mi,n+j(t) to represent
mtt-function from a vertex vi to an object oj , in order to distinguish from mi,j(t)
from vi to a vertex vj . Note that an object oi is also a vertex regarded as vn+i

in the network.
Next, we give the definition of kNN query over time-dependent road networks.

Definition 2 (k Nearest Objects on Time-Dependent Road Networks):
Given a time-dependent road network GT (V,E,W ), a set of the objects O =
{o1, o2, · · · }, a query point vq ∈ V and a departure time td, k nearest objects
query of vq is to find a k-size subset O(vq) ⊆ O, such that mq,n+j(td) ≥
max{mq,n+i(td)|oi ∈ O(vq)} for every object oj ∈ O \ O(vq).

3 Minimum Travel Time Function

We pre-compute mtt-functions for some pairs of vertices and then build the index
to facilitate kNN query over time-dependent road networks. In this section, we
first describe how to process the time function wi,j(t) for every edge in GT such
that the waiting time is not necessary to be considered when computing mtt-
function and then explain how to compute mtt-function without waiting time.

3.1 Pre-processing Time Function for Every Edge

Given a path p, the waiting time ωi is allowed for any vertex vi ∈ p. However,
it is not easy to find an appropriate value of ωi for every vi ∈ p to minimize
the travel time of p. In this section, we propose an algorithm to convert time
function wi,j(t) to a new function w∗

i,j(t) for every edge (vi, vj) ∈ E. We call
w∗

i,j(t) the “no waiting time function” of edge (vi, vj) (or nwt-function for short).
The waiting time can be considered as zero when nwt-function is used to compute
the minimum travel time of path p. The nwt-function w∗

i,j(t) is defined by the
following equation.

w∗
i,j(t) = min

ωi

(ωi + wi,j(t + ωi)) (1)

The following theorem guarantees the nwt-function w∗
i,j(t) can be used to

compute the minimum travel time for any path p in GT without waiting time.

Theorem 1. Given two time-dependent graphs GT (V,E,W ) and G∗
T (V,E,

W ∗), where W ∗ is the set of nwt-functions of all edges in E, for any path p
in GT , the minimum travel time of p in GT with consideration of waiting
time equals to the minimum travel time of p in G∗

T without waiting time.

Proof: Let p = v1 → v2 → · · · → vh be a given path with the depar-
ture time t. ω∗

i is the waiting time on vi (1 ≤ i ≤ h) minimizing the travel
time of p in GT . We have depart(vi) = arrive(vi) + ω∗

i and arrive(vi+1) =
depart(vi) + wi,i+1(depart(vi)). Similarly, we have depart∗(vi) = arrive∗(vi) and
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Algorithm 1. Nwt-Function (GT (V,E,W ))
Input: GT (V, E, W ).
Output: W ∗.

1: W ∗ ← ∅;
2: for every wi,j(t) ∈ W do
3: φ ← wi,j(tp), w∗

i,j(tp) ← wi,j(tp);
4: for k = p to 1 do
5: a∗ ← −1, b∗ ← tk + φ;
6: w∗

i,j(t) ← a∗t + b∗ for t ∈ [tk−1, tk);
7: w∗

i,j(t) ← min{w∗
i,j(t), wi,j(t)|t ∈ [tk−1, tk)};

8: φ ← min{w∗
i,j(tk−1), w

−
i,j(tk−1)};

9: W ∗ ← W ∗ ∪ {w∗
i,j(t)};

10: return W ∗

arrive∗(vi+1) = depart∗(vi) + w∗
i,i+1(depart

∗(vi)) for G∗
T . We only need to prove

arrive(vh) = arrive∗(vh). It can be easily proved by induction on vi. We omit it
due to the space limitation. ��

The algorithm to compute nwt-function is shown in Algorithm1. For every
wi,j(t) ∈ W , Algorithm 1 computes w∗

i,j(t) backward from [tp−1, tp] to [t0, t1]
iteratively. In each iteration, w∗

i,j(t) for t ∈ [tk−1, tk) is computed. Algorithm 1
first sets w∗

i,j(t) as a∗t + b∗, where a∗ = −1 and b∗ = tk + φ. φ is the minimum
value between w∗

i,j(tk) and w−
i,j(tk). w−

i,j(tk) is the left limit value of wi,j(t) on
tk. Note that w∗

i,j(tk) and φ have been computed in the last iteration, i.e., the
iteration for computing w∗

i,j(t) on [tk, tk+1). φ is initialized as wi,j(tp). Next,
Algorithm 1 updates w∗

i,j(t) as min{w∗
i,j(t), wi,j(t)} for t ∈ [tk−1, tk) and then φ

is updated as min{w∗
i,j(tk−1), w−

i,j(tk−1)}. The algorithm terminates when w∗
i,j(t)

has been computed for t ∈ [t0, t1).
The time and space complexities analysis for Algorithm 1 are given below.

Let n and m be the number of the vertices and edges in GT respectively. For
every edge (vi, vj), Algorithm 1 needs to compute w∗

i,j(t) on [tk−1, tk) iteratively
from k = p to 1. For every time interval [tk−1, tk), w∗

i,j(t) can be computed in
constant time. Therefore, the time complexity of Algorithm 1 is O(mp). More-
over, Algorithm 1 needs to maintain w∗

i,j(t) and then the space complexity is also
O(mp).

Example 1. We illustrate how to compute w∗
i,j(t) by an example in Fig. 1. As

the solid black line in Fig. 1(a), wi,j(t) is a piecewise linear function:

wi,j(t) =

⎧
⎪⎨

⎪⎩

t + 5, 0 ≤ t < 10
15, 10 ≤ t < 20
−2t + 55, 20 ≤ t ≤ 25

In the first iteration, φ is initialized as wi,j(25) = 5 and then b∗ = 25 + φ = 30.
As the dashed red line in the right-side of Fig. 1(a), we find a∗t+ b∗ = −t+30 is
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Fig. 1. Computing w∗
i,j(t) (Color figure online)

always less than wi,j(t) on [20, 25], then w∗
i,j(t) = −t+30 for t ∈ [20, 25] and φ is

updated as 10. Similarly, in the second iteration, w∗
i,j(t) on [10, 20) is computed

as min{15,−t + 30}, i.e., w∗
i,j(t) = 15 for t ∈ [10, 15) and w∗

i,j(t) = −t + 30
for t ∈ [15, 20). Then φ is updated as min{w∗

i,j(10), w−
i,j(10)} = 15. In the final

iteration, as the dashed red line in the left-side of Fig. 1(a), a∗t + b∗ = −t + 25
is always larger than t+5 on [0, 10), we have w∗

i,j(t) = t+5 for t ∈ [0, 10). Then
w∗

i,j(t) is given below and depicted in Fig. 1(b)).

w∗
i,j(t) =

⎧
⎪⎨

⎪⎩

t + 5, 0 ≤ t < 10
15, 10 ≤ t < 15
−t + 30, 15 ≤ t ≤ 25

The following theorem guarantees the correctness of Algorithm 1.

Theorem 2. The w∗
i,j(t) computed by Algorithm1 is exactly the nwt-function

w∗
i,j(t) given by Eq. (1).

Proof: We proved it by induction on p.

Basis. We need to prove that w∗
i,j(t) on time interval [tp−1, tp] can be correctly

computed by Algorithm 1. First, ωi can only be zero when t = tp, then we have
wi,j(tp) = w∗

i,j(tp) and φp = wi,j(tp). Next, we consider the case of t ∈ [tp−1, tp).
By the definition of w∗

i,j(t), we have

w∗
i,j(t) = min

ωi

(ωi + wi,j(t + ωi))

= min
ωi

(ωi + ap(t + ωi) + bp)

= min
ωi

((ap + 1)ωi + apt + bp)

= min
ωi

((ap + 1)ωi + wi,j(t))

For t ∈ [tp−1, tp), if ap ≥ −1, w∗
i,j(t) cannot decrease with ωi increasing. It

means (ap + 1)ωi + wi,j(t) is minimum when ωi = 0 and then w∗
i,j(t) = wi,j(t).

If ap < −1, w∗
i,j(t) will decrease with ωi increasing and thus (ap + 1)ωi + wi,j(t)
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is minimum when ωi = tp − t, which is the longest waiting time on vi for t ∈
[tp−1, tp). Then we have

w∗
i,j(t) = (ap + 1)(tp − t) + apt + bp = −t + tp + φp

Obviously, wi,j(t) ≤ −t+ tp +φp when ap ≥ −1 and wi,j(t) ≥ −t+ tp +φp when
ap < −1. Then we have w∗

i,j(t) = min{wi,j(t),−t + tp + φp} for t ∈ [tp−1, tp].

Induction. Assume the correct w∗
i,j(t) can be computed by Algorithm 1 for t ∈

[tk, tp], then we need to prove it also can be correctly computed for t ∈ [tk−1, tk).
We consider the following two cases: (1) ωi ≥ tk − t; and (2) ωi < tk − t.

For case (1), the departure time t + ωi ∈ [tk, tp] because ωi ≥ tk − t. By
the assumption, nwt-function w∗

i,j(t) has been correctly computed for t ∈ [tk, tp],
then w∗

i,j(tk) is the minimum travel time for edge (vi, vj) with departure time tk.
Therefore, w∗

i,j(t) for t ∈ [tk−1, tk) can be computed by the following equation:

w∗
i,j(t) = tk − t + w∗

i,j(tk)

For case (2), because ωi < tk − t, then t+ωi ∈ [tk−1, tk). Similar to the proof
of basis, we have

w∗
i,j(t) = min{wi,j(t),−t + tk + w−

i,j(tk)}
Note that, when ak < −1, w∗

i,j(t) = −t + tk + w−
i,j(tk) because wi,j(t) may be

noncontinuous at tk. Therefore, we have

w∗
i,j(t) = min{wi,j(t),−t + tk + w−

i,j(tk),−t + tk + w∗
i,j(tk)}

The proof is completed. ��

3.2 Computing Minimum Travel Time Function

We adopt a Dijkstra-based algorithm proposed in [7] to compute mtt-function
for two vertices vi and vj in GT . This algorithm is only used for the case that the
waiting time is not allowed. After converting wi,j(t) to nwt-function w∗

i,j(t) for
every edge in GT by Algorithm 1, this algorithm can be used for time-dependent
graphs with waiting time.

The main idea of this Dijkstra-based algorithm is to refine a function gi,j(t)
iteratively for every vj ∈ V , where gi,j(t) represents the earliest arrival time on
vj if departing from vi at time point t. In every iteration, algorithm selects a
vertex vx ∈ V and then refine gi,x(t) by extending a time domain Ix to a larger
I ′
x, where Ix = [t0, τx] is a subinterval of the whole time domain T . gi,x(t) is

regarded as well-refined in Ix if it specifies the earliest arrival time at vx from
vi for any departure time t ∈ Ix. The algorithm repeats time-refinement process
till gi,j(t) of destination vj has been well-refined in the whole time domain T
and then mtt-function mi,j(t) can be computed as mi,j(t) = gi,j(t) − t. The
more details about this Dijkstra-based algorithm is given in [7]. As shown in [7],
the time and space complexities are O((n log n + m)α(T )) and O((n + m)α(T ))
respectively, where α(T ) is the cost required for each function (defined in interval
T ) operation.
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4 The Novel Voronoi-Based Index

We propose a novel voronoi-based index for kNN query over time-dependent
road networks. In static road networks, the voronoi diagram divides the network
(or space) into a group of disjoint subgraphs (or sub-spaces) where the nearest
object of any vertex inside a subgraph is the object generating this subgraph.
However, in time-dependent road networks, the nearest object of a vertex may be
dynamic. The nearest object of a vertex v may be oi for departure time t ∈ [t1, t2]
but it may be oj for t ∈ [t3, t4]. The main idea of our novel voronoi-based index
is also to divide the vertex set V into some vertex subsets Vi and every subset
Vi is associated with one object oi ∈ O. Different to static road networks, our
voronoi-based index are time-dependent, that is, every vertex v inside a subset
is with a time interval indicating when the object oi is nearest to v. Next, we
describe what is the novel voronoi-based index and how to construct it.

4.1 What Is the Voronoi-Based Index?

Given a vertex v and an object oi, Ii(v) is called v’s maximum time interval
about oi if it satisfies the following two conditions: (1) oi is the nearest object
of v for any departure time t ∈ Ii(v); and (2) there does not exist another
I ′
i(v) ⊃ Ii(v) satisfying the condition (1). Note that Ii(v) may not be a con-

tinuous time interval, that is, if oi is nearest to v for two disjoint departure
time intervals [t1, t2] and [t3, t4], then [t1, t2]∪ [t3, t4] ⊆ Ii(v). The voronoi-based
index maintains a set Ci for every object oi ∈ O, where Ci is a set of the tuples
(v, Ii(v)) for all the vertices v with non-empty Ii(v), i.e.,

Ci = {(v, Ii(v))|v ∈ V ∧ Ii(v) �= ∅}
We call Ci the closest vertex-time pair set of oi. For simplicity, we say v is a
vertex in Ci if (v, Ii(v)) ∈ Ci. Next, we give the definition of the border vertex.

Definition 3 (Border Vertex): A vertex vx in Ci is called a border vertex of
Ci if there exist vy ∈ N+(vx) such that (vy, Iy) /∈ Ci for any Iy ⊇ fx,y(Ii(vx)),
where N+(vx) is the outgoing neighbor set of vx and fx,y(Ii(vx)) is the time
interval mapped from Ii(vx) by the function fx,y(t) = t + w∗

x,y(t).

The border vertex vx of Ci indicates there exist a time point t ∈ fx,y(Ii(vx))
such that oi is not the nearest object of vy if one departs at time point t.

We use Bi to denote the set of all the border vertices of Ci. For every Ci, Di

is the set of mtt-functions mx,n+i(t) for all vertices vx in Ci, that is,

Di = {mx,n+i(t)|vx is a vertex in Ci}
and Mi is a matrix of size |Ci| × |Bi| to maintain mtt-function mx,y(t) for all
pairs of vertex vx and border vertex vy in Ci, i.e.,

Mi = {mx,y(t)|vx ∈ Ci ∧ vy ∈ Bi}
The voronoi-based index is {C,B,D,M}, where C, B, D and M are the collections
of all Ci, Bi, Di and Mi respectively.
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4.2 How to Construct the Voronoi-Based Index?

We have explained how to compute mtt-function in Sect. 3. Next, we describe
how to compute Ci and Bi for every oi ∈ O.

For every vertex vx ∈ V , Ii(vx) is initialized as the whole time domain T .
We refine Ii(vx) iteratively by removing the sub-intervals on which mx,n+i(t) is
larger than mx,n+j(t) for another object oj . It means oi is not the nearest object
of vx when departure time is in these sub-intervals. For every oj ∈ O (oj �= oi),
let Tj(vx) denote the maximum time interval on which mx,n+j(t) < mx,n+i(t),
Ii(vx) is updated as Ii(vx)−Tj(vx). After removing Tj(vx) for every other object
oj , if Ii(vx) is not empty, then the pair (vx, Ii(vx)) is inserted into Ci.

For every vertex vx in Ci, if there exists an outgoing neighbor vy of vx, such
that vy is not in Ci or fx,y(Ii(vx)) � Ii(vy), then vx must be a border vertex of
Ci and it is inserted into Bi.

Algorithm 2. kNN-Query (G∗
T , vq, td, k)

Input: time-dependent graph G∗
T , query vertex vq, departure time td and k

Output: the k nearest neighbor set O(vq)

1: O(vq) ← ∅, Q ← {Cq}; Eq ← {vq}
2: while |O(vq)| < k do
3: Ci ← Dequeue (Q), O(vq) ← O(vq) ∪ {oi};
4: for each vy ∈ Bi do
5: for each vx ∈ Ei do
6: mq,y ← min{mq,y, mq,x + mx,y(td + mq,x)};
7: for each vz ∈ N+(vy) do
8: if mq,z > mq,y + w∗

y,z(td + mq,y) then
9: mq,z ← mq,y + w∗

y,z(td + mq,y);
10: Let Cj be the set including vz when t = td + mq,z;
11: if Cj /∈ O(vq) then
12: Ej ← Ej ∪ {vz};
13: if mq,n+j > mq,z + mz,n+j(td + mq,z) then
14: mq,n+j ← mq,z + mz,n+j(td + mq,z);
15: if Cj /∈ Q then
16: Enqueue(Q, Cj);
17: else
18: Update(Q, Cj);
19: return O(vq)

5 Query Processing

Algorithm 2 describes how to find the k nearest objects for a query vertex vq

with departure time td. In Algorithm 2, O(vq) is a set to maintain the objects
that have been found so far and Q is a priority queue to maintain a candidate
set of Ci whose oi is possible to be an object in kNN set. All Ci ∈ Q are sorted
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in an ascending order by the minimum travel time mq,n+i from vq to oi. The top
Ci in Q is with the minimum mq,n+i and it can be easily done using Fibonacci
Heap. O(vq) and Q are initialized as ∅ and {Cq} respectively, where Cq contains
vq for the departure time td, i.e., (vq, Iq(vq)) ∈ Cq and td ∈ Iq(vq). O(vq) is
expanded iteratively by inserting objects one by one from Q until |O(vq)| = k.
In each iteration, if |O(vq)| < k, Algorithm 2 first dequeues the top Ci from
Q with the minimum mq,n+i. The object oi of Ci must be one of k nearest
objects of vq. It can be guaranteed by Theorem 3. Then oi will be inserted
into O(vq). For every border vertex vy in Ci, Algorithm 2 computes mq,y as
min{mq,x + mx,y(td + mq,x)|vx ∈ Ei}, where Ei is the entry set of Ci. The
“entry” means any path entering into Ci must go through a vertex in Ei. Ei

will be updated when Algorithm2 runs. For every vz ∈ N+(vy), if mq,z >
mq,y + w∗

y,z(td + mq,y), then mq,z will be updated as mq,y + w∗
y,z(td + mq,y).

Next, if vz is in Cj (Cj �= Ci and Cj /∈ O(vq)) at the time point td + mq,z, then
vz will be inserted into Ej as an entry of Cj . For the object oj of Cj , mq,n+j will
be updated as mq,z +mz,n+j(td+mq,z) when mq,n+j > mq,z +mz,n+j(td+mq,z).
If Cj is not in Q, then Cj will be enqueued into Q. Otherwise, Cj has been in
Q and Q will be updated by Cj with new mq,n+j . Algorithm 2 terminates when
the size of O(vq) is k.

Fig. 2. Query processing

Example 2. We use the example in Fig. 2 to illustrate the kNN querying process
for k = 3. In this example, vq is the query vertex and it is in C1 for the departure
time td. Q and O(vq) are initialized as {C1} and ∅ respectively. In the first
iteration, C1 is dequeued from Q and then o1 is inserted into O(vq). Because
v1 is a border vertex of C1 and v3 is an outgoing neighbor of v1, Algorithm 2
computes mq,1(td) and mq,3(td) = mq,1(td) + w∗

1,3(td + mq,1(td)). Note that v3
is in C2 when t = td + mq,3(td) and then it is an entry of C2. Therefore, C2

is enqueued into Q. Similarly, C3 is also enqueued into Q and Q = {C2, C3}.
Assume that o2 is nearer to vq than o3, in the second iteration, C2 is dequeued
and O(vq) is updated as {o1, o2}. In the same way, C4 will be enqueued into Q
in this iteration. In the final iteration, C3 will be dequeued due to o3 is nearer to
vq and then O(vq) = {o1, o2, o3}. Because |O(vq)| = 3, Algorithm 2 terminates
and returns O(vq).
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The next theorem guarantees the correctness of Algorithm 2.

Theorem 3. In Algorithm2, the object oi of Ci dequeued from Q in the k-th
iteration must be the k-th nearest object of query vertex vq for the departure time
td.

Proof: We prove it by induction on k.

Basis. Obviously, Cq is dequeued from Q in the first iteration. By the definition
of Cq, oq is the nearest object of vq when the departure time is td.

Induction. Assume that the i-th nearest neighbor of vq is dequeued from Q in
the i-th iteration for i < k. We need to prove it also hold for i = k. We prove
it by contradiction. Let Ck be the closest vertex-time pair set dequeued from Q
in the k-th iteration and ok is the object of Ck. Suppose that the k-th nearest
object of vq is ok′ and ok′ �= ok. Let p be the shortest path from vq to ok′ with
the departure time td. Because k > 1, then Ck′ is not Cq and there must exist
an entry ve of Ck′ in p. Let vb be the predecessor of ve in p, then vb must be a
border vertex of Cb at time point td + mq,b and Cb �= Ck′ . There are two cases
for the object ob of Cb: (1) ob is not in the k nearest object set of vq; and (2) ob

is in the k nearest object set of vq.
For case (1), by the definition of Cb, ob is the nearest neighbor of vb at time

point td + mq,b, then we have

mq,b + mb,n+b(td + mq,b) < mq,b + mb,n+k′(td + mq,b)

Thus ob is nearer to vq than ok′ when the departure time is td. It means ob must
be in the k nearest object set of vq, which is a contradiction.

For case (2), Let ob be the i-th (i < k) nearest object of vq, by the inductive
assumption, Cb is dequeued from Q in i-th iteration. According to the Algo-
rithm2, Ck′ is enqueued into Q in this iteration. Therefore, Ck′ will be dequeued
from Q in k-th iteration instead of Ck, which is a contradiction. The proof is
completed ��

The time and space complexities of Algorithm 2 are given below. Let b and
e be the average size of Bi and Ei respectively. In every iteration, Algorithm 2
upadates mq,y as min{mq,y,mq,x + mx,y(td + mq,x)} for every border vertex vy

in Ci. It will cost O(be) time. For every outgoing neighbor vz of border vertex
vy, Algorithm 2 needs to compute mq,z and then it will cost O(bd) time, where
d is the average out-degree of the vertices in GT . Therefore, the time complexity
of Algorithm 2 is O(kb(d + e)). On the other hand, because Algorithm2 needs
to maintain mq,y and mq,z, then the space complexity is O(k(b + e)).

6 Experiements

We compare our voronoi-based index method (marked as VI) with FTTI (Fast-
Travel-Time Index) method [13] and TLNI (Tight-and-Loose-Network Index)
method [6] on the real-life datasets. FTTI and TLNI are the state of the art
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index-based methods for kNN query over time-dependent road networks. Note
that FTTI and TLNI are used on G∗

T in which every edge is an nwt-function
w∗

i,j(t) because FTTI and TLNI do not allow the waiting time. Although some
algorithms are proposed in recent works [1,4], they are only to find the nearest
object (i.e., k = 1) and they cannot be used for general kNN query on time-
dependent graphs. All the experiments are conducted on a 2.6 GHz Intel Core
i7 CPU PC with the 16 GB main memory, running on Windows 7.

6.1 DataSets and Experiment Setup

We tested the voronoi-based index method on California road network (CARN)
with 196,5206 vertices and 553,3214 edges. We extracted five time-dependent
graphs with different size using the CARN dataset. The number of vertices
ranges from 100k to 500k. The time domain is set as T = [0, 2000], i.e., the
departure time t can be selected from [0, 2000] for any vertex. Here, 2000 means
2000 time units. For every wi,j(t), we split the time domain T to p subintervals
and assign a linear function randomly for every sub-interval and then wi,j(t) is
a piecewise linear function.

6.2 Experimental Results

Exp-1. Impact of Network Size: In this group of experiments, we study the
impact of time-dependent network size. The number of the vertices increases
from 100k to 500k and the number of objects is fixed at 10k. We investigate the
querying time for k = 7. The number of piecewise intervals of wi,j(t) is set as
4. As shown in Fig. 3(a) and (b), the querying time of our method is always less
than FTTI and TLNI. Specifically, the querying time of TLNI is always much
more than our method even though TLNI has the smallest index size. The reason
is TLNI index only maintain the vertices for an object oi that the upper bound
of travel time to oi are less than the lower bound to the other objects. It cannot
facilitate query effectively in large networks.

Fig. 3. Impact of the network size
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Fig. 4. Impact of the object set size

Exp-2. Impact of Object Set Size: In this group of experiments, the number
of the vertices is fixed at 100k and the number of objects ranges from 10k to
50k. As shown in Fig. 4(a) and (b), the querying time of our method are always
less than FTTI and TLNI. Moreover, the querying time and index size decrease
with the increasing of the object set size. There are two reasons as follows: (1)
the average size of Ci and Bi decrease if the object set size increases; (2) the
increasing of object size results in that the objects become nearer to vq and then
querying time decreases.

Exp-3. Impact of the Time Domain: In Fig. 5, we study the impact of time
domain. In this group of experiments, the number of vertices and objects are
fixed at 100k and 10k respectively. The time domain ranges from [0, 1000] to
[0, 3000]. We investigate the querying time for k = 7. As shown in Fig. 5(a) and
(b), the querying time and index size of our method are not affected by the
expanding of time domain. However, for FTTI and TLNI, the querying time
increases with the the expanding of time domain. It is because they need to
maintain the estimated value about travel time in index to facilitate kNN query.
If the time domain becomes larger, the deviation between the estimation and
actual travel time will become larger too. It cannot facilitate query effectively.

Fig. 5. Impact of the length of time interval
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Fig. 6. Impact of the number of piecewise interval of time function

Exp-4. Impact of the Number of Piecewise Intervals: In Fig. 6, we inves-
tigate the impact of the number of piecewise intervals of wi,j(t). In this group
of experiments, the number of piecewise intervals of wi,j(t) increases from 2 to
10. The number of the vertices and objects are fixed at 100k and 10k, respec-
tively. As shown in Fig. 6(a) and (b), the querying time and index size always
increase with the increasing of the number of piecewise intervals. The reason is
that the more piecewise intervals of wi,j(t) results in more piecewise intervals of
mtt-function and then the more border vertices will be maintained in the index.

Exp-5. Impact of k: In Fig. 7, we study the querying time by varying k from 1
to 10 on two different networks with 10k vertices and 50k vertices respectively.
In this group of experiments, the number of objects are fixed at 10k and 50k for
two different networks respectively. As shown in Fig. 7(a) and (b), the querying
time always increases marginally with the increasing of k for our index method.

7 Related Work

kNN query has been well-studied on static road networks. Most of the existing
works propose various index techniques. The main ideas of these methods are to
partition the vertices into several clusters, and then the clusters are organized as
a voronoi diagram or a tree (e.g., R-tree) [9,10,12,14–16,18–20]. These methods
pre-compute and maintain the shortest distances for some pairs of vertices to
facilitate kNN query. Unfortunately, these index techniques cannot be used for
the time-dependent road networks because the minimum travel time between
two vertices always varies with time.

kNN query has also been studied on time-dependent road networks [1,3–
6,13]. Most of these works are based on A* algorithm. The authors in [1,4] study
the problem to find nearest (i.e., k = 1) object on time-dependent networks.
In [4], A virtual node v is inserted into the graph G with the zero-cost edges
connecting to all the objects. The nearest object can be found on the shortest
path from the query vertex to v. The authors in [2] study problem of finding
k POIs that minimize the aggregated travel time from a set of query points.
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Fig. 7. Impact of k

The index-based methods are proposed in [6,13]. In [6], A* algorithm is utilized
to expand the road networks by estimating an upper or lower bound of travel
time. An index is built to facilitate kNN query using these estimated bounds.
In [13], time domain is divided to several sub-intervals. For every sub-interval,
C nearest objects of every vertex are found by an estimation of minimum travel
time. There are two main drawbacks of these methods. First, in these works, the
FIFO (first in first out) property is required for networks and waiting time is not
allowed. Second, the indexes proposed by these works are based on the estimated
value of travel time. However, these indexes cannot facilitate query effectively
for the large networks because the deviations are always too large between the
estimated and actual travel time.

Recently, there are some works about the shortest path query between two
given vertices over time-dependent graphs [7,17]. However, these works does not
study any index that can be used in kNN query over time-dependent road net-
works. The method in [7] is used to compute mtt-function between two vertices
in our paper.

8 Conclusion

In this paper, we study the problem of k nearest objects query on time-dependent
road networks. We first give an algorithm for processing time-dependent road
networks such that the waiting time is not necessary to be considered and then
propose a novel voronoi-based index to facilitate kNN query. We explain how
to construct the index and complete the querying process using our index. We
confirm the efficiency of our method through extensive experiments on real-life
datasets.
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Abstract. As a reverse rank-aware query, reverse top-k query returns
the user preferences which make the given object belong to the top-
k result set. This paper studies the reverse top-k query on uncertain
preferences for the first time. A user’s uncertain preference consists of
several probable preference instances, which reflects the user’s potential
consumption tendency. In this paper, we design an optimization algo-
rithm BBUPR based on the proposed RUI-tree index. Our experiment
results show that BBUPR outperforms the other algorithms.
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1 Introduction

Given a user set, a data set and a query object, reverse top-k query returns a
set of user preferences for which the query object is in top-k query result set.
Reverse top-k query is put forward by Vlachou [3] for market analysis and prod-
uct placement. Recently, uncertainty as an inherent attribute in some fields, such
as market analysis, drug trial, has attracted a lot of research attention. There-
fore, how to execute a query on uncertain data set has been becoming research
hotspot [1,2,6]. However, these existing studies just consider the uncertainty of
the queried data, but ignore the uncertainty of users’ preferences.

Different from traditional single weight representation, we use a weight list to
denote a user’s uncertain preference. Each user’s preference consists of several
preference instances and each preference instance represents a user’s possible
preference weight. Table 1 shows two users’ uncertain preferences on the restau-
rants and each preference instance reflects the importance of the features in the
user’s view. For example, Jason has two independent preference instances. Com-
pared to the first instance, the rating is more important in the second instance.
Each preference instance is assigned a value to describe the probability that the
corresponding instance takes effect.
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Cai et al. (Eds.): APWeb-WAIM 2018, LNCS 10988, pp. 350–358, 2018.
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Table 1. Example of user uncertain preference

User Price Ratings Probability

Jason 0.7 0.3 0.8

Jason 0.5 0.5 0.2

Tom 0.6 0.4 0.3

Tom 0.5 0.5 0.4

Tom 0.3 0.5 0.3

In this paper, we first discuss the revere top-k query on user uncertain pref-
erences and propose a novel query named uncertain preference reverse top-k
query(UPRTop-k). The main contributions are summerised as follows:

– We define the problem of UPRTop-k and design a UPBBR algorithm to
efficiently handle the UPRTop-k query.

– We propose a novel RUI-tree to index users’ uncertain preferences, and intro-
duce its advantage over the existing index structures in detail.

– A series of experiments are conducted to evaluate our algorithms, then we
give the experimental results analysis and future work direction.

2 Related Work

Uncertain preference reverse top-k query is an extension of reverse top-k query.
Vlachou et al. [3] formally define reverse top-k query and introduce two ver-
sions of query types, respectively monochromatic and bichromatic reverse top-
k queries. Considering the enormous time cost, branch and bound algorithm
(BBR) is raised [4], which handles the reverse top-k queries efficiently based
on the R-tree [5]. To further solve queries on uncertain data some probabilistic
algorithms are proposed [5,6]. Wang and Yan [1] first discusses the reverse top-k
query on uncertain data and proposes GM algorithm. Then, a novel approach
ALS [2] is proposed to handle the same question. However, all the previous
studies on probabilistic reverse top-k query neglect the uncertainty of user’s
preference.

3 Problem Definitions

Let S denote a D-dimensional data set with cardinality |S| and U denote a user
set with cardinality |U|. W is a preference weight set and we use Wu = {wi}|u| to
denote the D-dimensional uncertain preference of user u, where wi ∈ W and |u|
is the instance number. The aggregated score fwi

(q) for data point q under wi is
defined as a weighted sum of the individual scores: fwi

(q) =
∑n

d=1 wi[d] × q[d],
where wi[d] and q[d] are values on d-th dimension(1 ≤ d ≤ D). Next, we first
give the necessary definitions to formalize the problem statement. RTop-k(q) is
the reverse top-k query on point q which is defined in Vlachou’s work [3].
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Definition 1 Uncertain Preference Reverse Top-kQuery. Given a query
point q, an integer k, and a threshold τ . UPRT -k(q) returns the users, each of
which meets the condition that PRT -k(u, q) ≥ τ where PRT -k(u, q) is defined
below:

PRT -k(u, q) =
∑

wi∈Wu
Pr(wi ∈ RTop-k(q))

Definition 2 Inclusion. Given two users u and v, u includes v, denoted by
uIncv, if the rectangle bound of u covers that of v, i.e., ∀d, u.l[d] < v.l[d] and
u.u[d] > v.u[d] (u.l[d] and u.u[d] denote the lower boundary and upper boundary
of u’s preference on d-th dimension respectively, 1 ≤ d ≤ D).

4 Algorithms for UPRTop-k

4.1 NA and NA* Algorithms

Algorithm 1 illustrates the steps of naive scan algorithm (NA). For a user u,
a variable Pr(u) records the cumulative probability of the preference instances
in the query result during the calculation. The NA algorithm executes reverse
top-k query for all the preference instances of u. L is a list to store the weights
in the result of RTop-k(q) which are used to avoid the repeated computation.
In lines 11–12, the algorithm breaks the inner loop and adds the current user u
into the result set R when Pr(u) ≥ τ .

Algorithm 1. NA
Input: q, k, τ
Output: R

1 R = ∅ L = ∅
2 for each u ∈ U do
3 for each wi ∈ Wu do
4 if wi /∈ L then
5 if q ∈ Top-k(wi) then
6 add wi to the L; Pr(u)+ = Pr(wi);
7 else
8 continue;

9 else
10 Pr(u)+ = Pr(wi);

11 if Pr(u) ≥ τ then
12 add u to the R; break;

13 return R;

As depicted in Algorithm 1, a user will be added to the result set R iff Pr(u)
goes beyond τ . Apparently, an improvement strategy is to ascertain the rela-
tionship between Pr(u) and τ as soon as possible. Note that the value of Pr(u)
increases continuously during the calculation, but there exists a maximum value
PF (u), i.e., the final value after calculating all the weights in Wu. So we try to
define an upper limit of Pr(u), denoted by PU(u) as follows,
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Algorithm 2. Creating RUI
Input: data units
Output: RUI-tree

1 B ← Root C = ∅;
2 while B in not empty() do
3 for all bi ∈ B do
4 if bi is not a duplicate then
5 C.add(extend(bi));

6 for all ci ∈ C do
7 E ← findIncNode(B, ci);
8 if E.size == 1 and b1 ∈ E then
9 insert ci as a child of b1;

10 else
11 j = findInsertPosition(E);
12 if bj .ChNum > N then
13 partition the children of bj and creatIndexUnit for each group;
14 else
15 insert ci as a child of bj ;
16 for all bk ∈ E and k �= j do
17 insert ∗ci as a child of bj ;

18 B ← C and C = ∅;

Fig. 1. Example of an RUI-tree

Pr(u) ≤ PF (u) ≤ PU(u)
PU(u) = 1 − ∑

Pr(wj) ∀wi, q /∈ TopK(wi)

Compared with Algorithm 1, we add an extra conditional statement PU(u) ≤
τ to reduce the loop times. The NA* algorithm breaks the loop and tests the
next user when the inequality becomes true. Moreover, a list Ldis is used to
store those weights which are discard. When the current weight wi ∈ Ldis, the
algorithm skips the subsequent processing and tests the next weight. To further
improve the efficiency, we introduce a novel index structure to organize the data.

4.2 RUI-tree

To efficiently solve the queries on uncertain preferences, we first propose RUI-
tree (Rectangle Unit Inclusion-tree). As well as R-tree [5], RUI-tree also uses
rectangle to index the data and there are three characteristics for an N -branches
RUI-tree:
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(1) The branch node is a data node or a normal node, where a data node has
an extra pointer to the data list except the pointers to its children.

(2) A node may have several duplicates and all the duplicate nodes must be
leaf nodes which can’t be extended any more.

(3) Each node of RUI-tree has N children nodes at most.

In Fig. 1a, U1 and U2 represent the preferences of Jason and Tom in Table 1
respectively. U1 and U2 have a common preference instance w2 and they are both
covered by the rectangle R1. Figure 1b shows a binary RUI-tree which indexes
four users. U3 is a data node which has two children U4 and U5. Different from
the normal node R1, it has an extra pointer to the preference weights of u3.

The Construction of RUI-tree. The Algorithm 2 chooses the unit which has
the smallest ChNum as the best insert position. In line 12, if the ChNum of a
node goes beyond N , all its children will be divided into two groups. For each
group, a normal node is created to index the nodes in the group. Figure 2 gives
an example of building a binary RUI-tree.

As depicted in Algorithm 2, the creating algorithm first adds Root into list
B. The extension for a data unit is to find the units which are included by it and
not included by other extended units. If there is only one unit b1 which includes
the ci, then insert the ci as a child of e1. Otherwise, the algorithm chooses a
appropriate position to insert ci, and inserts its duplicates into other positions.

Fig. 2. Example of an RUI-tree Fig. 3. An RUI-tree after pruning

The Pruning of RUI-tree. To implement our model, we build an RUI-tree over
user’s uncertain preferences and an R-tree over queried data. Then, we directly
use the INTOPk in [4] to prune the RUI-tree. There are three parameters as
input for INTOPk, an MBR m, a integer k and a query point q. The INTOPk
returns 1/−1 for the weights in m are all accepted/discarded. If the INTOPk
can’t give a definite conclusion, it will return 0. Each node of RUI-tree is assigned
with a sign which is initialized as 0. If the given node s is accepted/discarded,
all its descendants are also accepted/discarded. When the INTOPk can’t give a
definite judgment, the pruning algorithm extends the node and continues to test
the extended nodes. Figure 3 gives an example of RUI-tree after pruning.
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Algorithm 3. BBUPR
Input: q, k, τ
Output: R

1 t = Root Q.enqueue(t);
2 while Q is not empty do
3 Q.enqueue(t.extend());
4 S.push(t.extend());
5 t = Q.dequeue();

6 while S is not empty do
7 s = S.pop();
8 if s is not a leaf node then
9 for each ch ∈ s.chileren do

10 if ch.sign == 0 then
11 s.AccW ← ch.AccW ; s.DisW ← ch.DisW ;

12 else if ch.sign == 1 then
13 s.AccR ← ch.AccR;

14 else
15 s.DisR ← ch.DisR;

16 if s is a unit node then
17 Pr(s) = 0 PU(s) = 1;
18 for each wi ∈ Ws do
19 if wi ∈ s.AccR or wi ∈ s.AccW then
20 Pr(s)+ = Pr(wi);

21 else if wi ∈ s.DisR or wi ∈ s.DisW then
22 PU(s)− = Pr(wi);

23 else
24 if q ∈ Top-k(wi) then
25 Pr(s)+ = Pr(wi); add wi to the AccW ;
26 else
27 PU(s)− = Pr(wi); add wi to the s.DisW ;

28 if PU(s) < τ then
29 break;

30 if Pr(s) ≥ τ then
31 add s to the R; break;

4.3 UPBBR

BBUPR runs from down to up as depicted in Algorithm3. In lines 2–5, the
algorithm pushes the nodes of RUI-tree into the stack S from the leaves to
the Root. s returns the top element of stack and Ws denotes the preference
weights in node s. For each branch node, four lists are arranged to save these
useful information. AccW and DisW are two lists to store the discrete weights
accepted and discarded respectively. AccR and DisR record the rectangle regions
in which all the weights are accepted and discarded respectively. These valuable
information in the lists are delivered from the children nodes to the parent s and
the algorithm gives the final judgment for s by leveraging these information. For
those weights which are not in the lists, it executes RTop-k queries.
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5 Experiments

5.1 Experimental Setup

Our platform is a computer with Intel core i5-4590 CPU@3.30 GHz and 8 GB
RAM. All the simulation programs are developed in C++. Two kinds of data
sources are examined, synthetic data and real data.

Synthetic Data: We first generate the weight data with two different distribu-
tions, namely uniform (UN) and clustered (CL). The user preference instances
are sampled uniformly from the weight data and the instance number is a random
integer randomly between 1 and 15. Three kinds of queried data are generated
respectively uniform (UN), correlated (CO), anti-correlated (ACO).

Real Data: The real data comes from Yelp1, which consists of 22,870 users’
check-in data on 22,014 locations in Las Vegas. A user’s preference instance
represents his preference on the locations in one category such as restaurant,
bar etc. and the corresponding visit frequency is regarded as the probability. By
means of sentiment analysis methods in [7], we extract the user preferences and
location scores on 4 features, environment, traffic, food and service.

5.2 Experimental Result

We conduct experiments by varying the different parameters. The default
setup is: D = 3, |S| = 10K, |W | = 10K, k = 50, τ = 0.6, S and U
follow UN distribution.

Cardinality Test. Figurre 4a shows that NA and NA* perform much worse
than UPBBR and BBR with increasing |S|. Notice that UPBBR maintains its
advantage over the other algorithms as |S| increases and shows its superiority
obviously when |S| ≥ 10000. Moreover, the performance of UPBBR is influenced
by the cardinality of S only slightly, which shows its good scalablity. Compared
to |S|, all the algorithms are more sensitive to the increase of |U|. Because it is
more difficult to build an index on the user data than the queried data.

Fig. 4. Comparative performance for parameter varing

1 https://www.yelp.com.

https://www.yelp.com
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Dimension Test. Figure 4c presents the comparative performance of all the
algorithms for varying dimension D. The time cost of the algorithms have dif-
ferent proportional increases with the increasing dimension D. Except for the
calculation for the ranking scores, BBR and UPBBR have extra time cost on the
index construction. The growth rate of time cost for UPBBR is slightly below
NA and NA*, and higher than the BBR. But the total time cost of UPBBR is
far below the other algorithms.

Parameter k Test. In Fig. 4d, we test our algorithms by varying the parameter
k. We can see that there exists a positive correlation between the cost time and
the value of k for all the algorithms. And the cost time increase much slower
than the value of k.

Data Distribution Test. Figure 5 depicts the performance of the algorithms
on UN, CO and AC data, when the user set U follows the UN and CL distri-
bution respectively. BBR and UPBBR get the best results on CO queried data
and perform worst on AC data. The reason is that there are more domination
relationships between the data in CO dataset.

Fig. 5. Comparative performance for different datasets

Real Data Test. Figure 5c shows that BBR and UPBBR are more efficient than
NA and NA* on Yelp dataset clearly. Specifically, the performance advantage of
UPBBR enhances with the increase of k. The results on Yelp keep in accordance
with the experiments on the synthetic data. Therefore, we conclude that the
UPBBR consistently improves the efficiency of UPRTop-k query.

6 Conclusion

In this paper, we first study the reverse top-k query on uncertain preferences.
To address the problem, we propose an novel index structure named RUI-tree
to support the efficient query. Experimental results show that the improved
UPBBR algorithm outperform the other methods when the data set tends to be
large scale. In the future, we will do some work on algorithm optimization and
user’s uncertain preference mining.
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Abstract. Extracting keyphrases from documents helps to reduce the
document information and further assist in information retrieval. In this
paper, we construct a multi-relational graph by considering heteroge-
neous latent word relations (the co-occurrence and the semantic) in a
document. Then we optimize the random walks on the multi-relational
graph to determine the importance of each node to further generate
keyphrases. Experimental results show that our method outperforms the
previous methods.
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1 Introduction

Keyphrases are the thematic and representative words and phrases in documents.
Extracting keyphrases from lengthy documents will help readers understand and
grasp their main topics quickly. Meanwhile, such keyphrase extraction could
assist tasks in natural language processing and information retrieval such as
text categorization [13], text clustering [2], etc.

In the literature, keyphrase extraction could be categorized into either super-
vised methods or unsupervised methods. The former one models keyphrase
extraction as a binary classification task to divide the candidate phrases into
keyphrases or non-keyphrases [3,11]. These methods construct a classifier by
using the training data in which phrases are manually labeled as keyphrase or
non-keyphrase by domain experts. However, in these methods the training data
and the test data must lie in the same domain. Once the domain changes, the
classifier needs to be retrained, which is time-consuming.

On the other hand, unsupervised methods can perform without prior knowl-
edge. These methods mostly consider keyphrase extraction as a ranking problem,
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Cai et al. (Eds.): APWeb-WAIM 2018, LNCS 10988, pp. 359–367, 2018.
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most of which are based on graphs [4,10]. In these methods, documents are mod-
eled as graphs where nodes represent words and edges indicate the relationship
between words, e.g., the lexical or semantic relations. While most existing graph-
based methods focus on a single type of relation between words, which is not
sufficient to cover all the document information.

In this paper, we propose a graph-based approach for keyphrase extraction.
We construct multi-relational graphs based on heterogeneous word relations and
rank the words using the random walking model on tensors. We design an opti-
mized random walk model to bias random surfers to visit essential words and
relations more often. Finally, the keyphrases are extracted based on the scores
of the candidate phrase by adding the importance score of words. Experiments
demonstrate the effectiveness of our proposed method.

The remainder of this paper is organized as follows. Section 2 describes the
multi-relational graph construction. And Sect. 3 explains our proposed optimized
random walks. Section 4 explains the strategy of keyphrase selection. And we
present our experimental evaluation in Sect. 5. Section 6 introduces the related
work and finally Sect. 7 concludes the paper.

2 The Construction of Multi-relational Graphs

In the multi-relational graph construction for documents we consider two dif-
ferent word relations, i.e., the co-occurrence relationship and the semantic rela-
tionship for simplicity. It is worth noting that our proposed method could be
extended to more than two word relations straightforwardly.

We apply the method used in [8] to construct the co-occurrence graph and
semantic graph, respectively. Due to space constraints, we only present the adja-
cency matrix Ac for co-occurrence graph and As for semantic graph respectively.

Ac
uv = wuv = count(u, v), As

uv = wuv = cos(u, v). (1)

We then unite these two graphs into one multi-relational graph G = (V,E).
The united graph G could be represented by a tensor A = (aijk), where i =
1, . . . , m, j = 1, . . . , m and k = 1, . . . , n. m is the number of nodes and n is
number of possible relations, in this paper, n = 2. A is non-negative due to
aijk ≥ 0.

aijk =

{
Ac

ij , k = 1;

As
ij , k = 2.

(2)

3 The Computation of the Word Importance by
Optimized Random Walks

3.1 A Random Walk Model on Multi-relational Graphs

Let us first explain the random walk model on the multi-relational graph G.
Suppose a random surfer is visiting node vj at time t−1, since there are multiple
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relations in the graph, the random surfer will randomly visit any neighbors of
vj using rk, where rk is one of the relations. So the transition probability of the
random surfer is p(vi|vj , rk), which we call it intra-relation transition probability,
then the stationary probability of visiting a node vi is

p(vi) =
m∑

j=1

n∑
k=1

p(vi|vj , rk) × p(vj , rk). (3)

Same as the transition probability in PageRank, we could define the intra-
relation transition probability on tensor A as

p(vi|vj , rk) =
aijk∑m
i=1 aijk

. (4)

It should be noted that if aijk is equal to 0 for all 1 ≤ i ≤ m, this is called a
dangling node [7], and the value of p(vi|vj , rk) is set to 1/m.

In general, it may be difficult to obtain the joint probability p(vj , rk). Assume
that the word distribution is independent from the relations, we have p(vj , rk) =
p(vj) × p(rk). So the stationary probability p(vi) can be expressed as follows.

p(vi) =
m∑

j=1

n∑
k=1

p(vi|vj , rk) × p(vj) × p(rk). (5)

And we could obtain p(rk) as the same way,

p(rk) =
m∑

i=1

m∑
j=1

p(rk|vj , vi) × p(vi, vj) =
m∑

i=1

m∑
j=1

p(rk|vj , vi) × p(vi) × p(vj), (6)

Similar to the aforementioned intra-relation transition probability, we call
p(rk|vj , vi) the inter-relation transition probability. In MultiRank [5], the inter-
relation transition probability tensor is defined as

p(rk|vj , vi) =
aijk∑n

k=1 aijk
. (7)

Now let Oijk denote p(vi|vj , rk) and Rijk denote p(rk|vj , vi), based on Eqs. 5
and 6, the tensor form of the stationary landing probability is

p = Opr, r = Rp2, (8)

where p = (p1, . . . , pm) and r = (r1, . . . , rn) are vectors of the corresponding
stationary probabilities, which we consider as the importance scores of words
and relations, respectively.

3.2 Optimized Random Walks on Multi-relational Graphs

The intra-relation transition probability defined above is the same as one in
Pagerank while using the same strategy for inter-relation transition probability
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is not appropriate since edge weights in multi-relational graphs have various
meanings in different domains with different distributions.

In this paper, we propose to model both intra-relation transition probability
and inter-relation transition probability as an optimization problem. We aim to
bias random surfers to visit essential words and relations more often by optimiz-
ing the random walk based on trained transition probabilities.

Assume each node vi in the multi-relation graph has a feature vector ϕik,
where k indicates that the features in ϕik is related to relation rk. In computing
the intra-relation transition probability, we define the edge strength for intra-
relation as fw1(ϕik, ϕjk) parameterized by w1. Let Nk(i) denote the neighbors
of node vi in relation rk, the intra-relation probability p(vi|vj , rk) is

Oijk = p(vi|vj , rk) =
fw1(ϕik, ϕjk)∑

vl∈Nk(i)
fw1(ϕik, ϕlk)

. (9)

Similarly, we denote the edge strength for inter-relation as fw2(ϕik, ϕjk)
parameterized by w2. Let K denote the total number of relations, then the
inter-relation transition probability p(rk|vj , vi) is defined as follows.

Rijk = p(rk|vj , vi) =
fw2(ϕik, ϕjk)∑K
l=1 fw2(ϕil, ϕjl)

. (10)

It is obvious that words in keyphrases should be more important than words
not in them. So let I denote the set of important words and O denote the
other words. Now our task is to optimize the parameters w1 and w2 so that the
importance of words in I is larger than one in O. Formally, the optimization
problem is

min
w1,w2

‖w1‖2 + ‖w2‖2

s.t.∀i ∈ I,∀j ∈ O : pi > pj ,
(11)

where pi and pj are the corresponding stationary probabilities of vi and vj in p,
respectively. It is possible that there is no solution that satisfies all the constrains
in Eq. 11, so we introduce a loss function h(·) to penalize violated constraints.
Then the new optimization problem is as follows.

min
w1,w2

‖w1‖2 + ‖w2‖2 + λ
∑

i∈I,j∈O

h(pj − pi), (12)

where λ is the regularization parameter which controls the degree of constraint
violation. h(·) is the loss function that assigns a non-negative penalty. If the
constrain is not violated, then pj−pi � 0, h(pj−pi) = 0. Otherwise h(pj−pi) > 0.

Let F denote the objective function in Eq. 12. To minimize the value of F ,
we solve the optimization problem using the gradient-based method. We need
to compute the value of the derivative ∂h(δ)

∂w1
, ∂p

∂w1
, ∂h(δ)

∂w2
and ∂p

∂w2
, where ∂h(δ)

∂w1

and ∂h(δ)
∂w2

could be computed based on the derivative of the loss function h(·).
And ∂p

∂w1
and ∂p

∂w2
could be computed by solving the derivatives of Eq. 8, which

would derive a series of chain derivatives formulas.
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By recursively applying the chain rule, we can use a power-method to com-
pute ∂p

∂w1
and ∂p

∂w2
since p, ∂p

∂w1
and ∂p

∂w2
are recursively entangled. The compu-

tation of ∂r
∂w1

and ∂r
∂w2

is similar. Then we could apply a gradient-based method
to minimize F to find the optimal parameters w1 and w2, with which we could
calculate the final intra-relation transition probability and inter-relation transi-
tion probability. Then the final stationary probability distribution p and r could
be obtained to represent the word importance scores.

4 Candidate Phrase Generation and Keyphrase Selection

We employ the same strategy like most previous research [8], which uses the
syntactic pattern based on the part-of-speech of words to generate candidate
phrases.

Now we explain how to calculate the ranking scores for candidate phrases,
and the candidate phrases with the top-k largest phrase scores are selected as the
keyphrases. The initial score of the candidate phrase C is computed as follow.

InitialScore(C) =
∑
vi∈C

p(vi). (13)

Combine with the phrase frequency freq(C) and the first occurrence position
pos(C) in the document, the final phrase score Score(C) for ranking is as follow.

Score(C) =

√
freq(C)
pos(C)

× InitialScore(C). (14)

5 Experiments

We demonstrate our experimental results on the DUC2001 dataset [6]. The
DUC2001 dataset contains a total number of 308 news articles collected from
TREC-9, which are categorized into 30 topics, and each article has been man-
ually assigned to around 10 keyphrases. We split the dataset into two parts for
training and testing separately and conduct the cross validation.

5.1 Parameters Selection

– The feature vectors ϕik. In the experiment, we use the following features
to generate a feature vector ϕik: the number of neighbors of vi in relation rk,
The max, min and average weights of edges connected to vi in relation rk.

– The Strength function fwi
(·). We apply a logistic function in the process

of modelling both the intra-relation transition probability and inter-relation
transition probability, which is defined as follows.

fwi
(ϕik, ϕjk) =

1
(1 + exp(−(ϕik, ϕjk) · wi))

. (15)
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We first concatenate these two vectors ϕik and ϕjk into a united vector which
could reflect the property of corresponding edge in relation rk. (ϕik, ϕjk) · wi

is the inner product of vector wi and vector (ϕik, ϕjk).
– The loss function h(·). We adopt the Wilcoxon-Mann-Whitney (WMW)

loss function with width b [12] where b is set as 1 in our experiment.
– The regularization parameter λ. Since there is no over-fitting issue found

in our experiments, we set λ = 1 for simplicity.
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Fig. 2. Comparison with other algorithms.

5.2 Experimental Results

Three metrics precision (P), recall (R) and F-measure (F) are used to evaluate
the performance of different methods.

Firstly, we compare our approach with the method using MultiRank for word
ranking. The results are presented in Fig. 1(a), (b) and (c). These two approach
settings are the same except that we calculate the transitional probabilities by
optimization. It shows that the optimized random walk outperforms the settings
in MultiRank for keyphrase extraction, which proves that the optimized method
we designed is reasonable and effective.

We then compare our method, denote as TRWRank, with three other unsu-
pervised keyphrase extraction methods, which are HGRank [8], SimilarRank [8]
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and SingleRank [10], and one supervised method KEA [11]. Figure 2(a), (b) and
(c) shows the precision, recall and F-measure. For HGRank, we set window size
as W = 20 and similarity threshold θ = 0.4. For SingleRank, we set W = 20,
and θ = 0.4 in SimilarRank. For TRWRank, we set W = 20 and θ = 0.4. As the
curves show, our proposed method performs the best among these methods.

Further experiments on different parameter values W and θ are conducted to
show the influence of the parameters and to help selecting the best parameters.
Figure 3(a) and (b) shows the influence of performance when θ ranges from 0.1
to 0.6. And Fig. 3(c) and (d) shows the influence of W varies between 2 to 20.
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Fig. 3. Effect of cosine threshold θ and window size W .

6 Related Work

Existing graph-based keyphrase extraction methods construct graphs based on
the explicit word relations. The word importance score is then calculated to
further determine the importance of each phrase. In such methods, the results
heavily depend on the word relation used and the ranking method.

The classic work on graph-based method is TextRank [4], which constructs
the co-occurrence graph by assigning the initial node weight as 1/n where n is
the total number of nodes. The initial edge weight is set from 0 to 10 according
to the uniform distribution. By ranking the words in the graph using PageRank
[7], keyphrases are extracted if the words of the phrase are in the top-k word
list. SingleRank [10] also creates the co-occurrence graph for a document and
assigns the initial node weight just like TextRank. However, SingleRank employs
the number of times that two corresponding nodes appear together in a given
window size W as the initial edge weight. Different from the above methods,
BetweennessRank [1] employs betweenness to rank words in the constructed
co-occurrence graph. In addition, SemantiRank [9] extracts keyphrases based
on the semantic graphs constructed using word relationships in WordNet and
Wikipedia’s page links.

Rather than considering only one single relation, HGRank [8] takes the co-
occurrence graph and the semantic graph into account simultaneously to con-
struct a united graph. This method designs a random surfer model on this united
graph like PageRank but estimates the intra-relation transition probability and
inter-transition probability, and further ranks the nodes in this graph.
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7 Conclusion

In this paper, we construct a multi-relational graph based on co-occurrence rela-
tions and semantic relations between words to extract keyphrases. We design an
optimized random walk to rank the nodes, making the random surfer more often
to visit the important nodes through crucial edges. The combination of phrase
features further improve the performance. It should be noted that the method
we proposed to bias the random walk process may depend on the features and
different parameters. Moreover, the initial parameter may also have impact on
the result.
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Abstract. Given a point q, a reverse k nearest neighbor (RkNN) query
retrieves all the data points that have q as one of their k nearest neigh-
bors. Despite significant progress on this problem, there is a research gap
in finding RkNNs not just for an object, but for a given range, which is
a natural extension of the problem. Motivated by this, we develop algo-
rithms for exact processing of range-based RkNN with arbitrary values
of k on dynamic datasets, which retrieve all the data points that have any
position in the given query range R as one of their k nearest neighbors.
The experimental results demonstrate the efficiency and the accuracy of
our proposed optimizations and algorithms.

Keywords: Range-based RkNN queries · Location-based services

1 Introduction

Given a dataset D and a point q, a reverse nearest neighbor (RNN) query
retrieves all the points p ∈ D that have q as their nearest neighbor. Although the
RNN problem was first proposed in [3], it still has received considerable attention
due to its importance in several applications involving decision support, resource
allocation, profile-based marketing, etc.

Despite significant progress on this problem, there is a research gap in finding
RNNs not just for an object, but for a given range, which is a natural extension of
the problem. In this paper, we proposed a range-based reverse nearest neighbor
(RRNN) query, it retrieves all the points p ∈ D that have any position in the
query range R as their nearest neighbor. We assume that the shape of range R
is rectangle.

Figure 1 shows a range R and nine 2D points, where each point p is associated
with a circle covering its nearest neighbor. For example, the NN of p4 (eg. p5) is
in the circle centered at p4. Some of these circles (such as circle of p1) intersect
with the range R. Accordingly, p1 ∈ RNN(R) (see Definition 2 in Sect. 3). In
this case, we can easily get the RNN(R)=(p1, p2, p3, p4, p5).
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Cai et al. (Eds.): APWeb-WAIM 2018, LNCS 10988, pp. 368–376, 2018.
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Fig. 1. Range-based RNN examples

As discussed in Sect. 2, all the previous methods for RNN search can not
handle a range-based RNN query. Motivated by this, focusing on monochromatic
reverse nearest neighbor problems, we develop algorithms to handle range-based
reverse k nearest neighbor (RRkNN) queries, which retrieve all the points p
∈ D that have any position in the query range R as one of their k nearest
neighbors. Specifically, we follow the filter-refinement framework, in which the
filter step retrieves a set of candidate results that is guaranteed to include all
the actual reverse nearest neighbors and the refinement step eliminates the false
hits. None of the existing techniques can effectively answer range-based RkNN
query accurately. In fact, answering range-based RkNN query is very useful since
RkNN query is very common in our daily life.

The rest of the paper is organized as follows. Section 2 surveys related works
on RNN search. In Sect. 3, we give preliminaries of range-based RkNN query and
illustrate that it is computationally expensive for existing algorithms. In Sect. 4,
we present some interesting problem characteristics, and propose a new algo-
rithm with demonstrations to solve the range-based RkNN problem efficiently.
In Sect. 5, we report experimental results and we conclude the paper in Sect. 6.

2 Related Work

There exist various versions of RNN problem include (1) continuous RNN [5], in
which the database contains linearly moving objects with fixed velocities, and
the goal is to retrieve all RNNs of q for a future interval; (2) bichromatic RNN
[6], given a set Q of queries, the goal is to find the objects p ∈ D that are closer to
some q ∈ Q than any other point of Q; (3) stream RNN [4], where data arrives in
the form of streams, and the goal is to report aggregated results over the RNNs
of a set of query points.

Algorithms for RNN processing can be classified into two categories depend-
ing on whether they require preprocessing, or not. The original RNN method
[3] pre-computes for each data point p its nearest neighbor NN(p). Then using
the RNN-tree, the reverse nearest neighbors of q can be efficiently retrieved by a
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point location query, which returns all circles that contain q. Similarly, Yang and
Lin [7] combine the R-tree and RNN-tree in the RdNN-tree. Another solution
based on pre-computation is proposed in [13]. All techniques that rely on pre-
processing cannot deal efficiently with updates because each insertion or deletion
may affect the vicinity circles of several points. Stanoi et al. [10] solve the prob-
lem by utilizing some interesting properties of RNN retrieval, adopts a two-step
processing method(filter-refinement framework). Singh et al. [11] finds the kNNs
of the query q, eliminates the candidates that are closer to some other candidate
than q and then applies boolean range queries on the remaining candidates to
determine the actual RNNs. [2] develop algorithms for exact processing of RkNN
with arbitrary values of k on dynamic multi-dimensional datasets. In addition,
some other techniques like [8,9,12] are helpful for our query, their methods uti-
lize a conventional data-partitioning index on the dataset and do not require
any pre-computation. However, all these previous methods for RNN search can
not handle a range-based RkNN query.

3 Problem Statement

In this section, we first give preliminaries of range-based RkNN query. After-
wards, we introduce some concepts used for solving this problem.

Given a spatial dataset D of n objects, each object p with 2 attribute values
can be represented as a point p = (p[1], p[2]) in a 2-dimensional data space. For
simplicity, we assume that all attribute values are numeric. A range-based RkNN
query is composed of a query range R and an arguments k, retrieves all the points
p ∈ D that have any position in the query range R as one of their kNNs. In this
paper, we consider the Euclidean distance as the metric. The query results would
then be a set of objects whose kNN vicinity circle [3] overlaps query range R.

Definition 1 (Reverse k Nearest Neighbor Query (RkNNQ)). Given a
dataset D and a query point q(k), the query returns all the points p ∈ D that
have q as one of their k nearest neighbors, denote as RkNN(q).

Definition 2 (Range-Based Reverse k Nearest Neighbor Query
(RRkNNQ)). Given a dataset D and a query range R, the query returns an
answer set denote as RkNN(R), ∀ o ∈ D, ∀ p ∈ R, if o ∈ RkNN(p), then o ∈
RkNN(R). That is, RkNN(p) ⊆ RkNN(R).

Compare to existing point-based RkNN query, a range-based RkNN query
needs great amount of calculation. One of the straightforward methods is to
precompute the kNNs for all the data points, however, it’s unreasonable since it
is costly to extends to arbitrary values of k.

4 Range-Based RkNN Query

In this section, we present our method to solve range-based RkNN queries.
Section 4.1 illustrates some problem characteristics that permit the development



Answering Range-Based Reverse kNN Queries 371

of efficient algorithms presented in Sect. 4.2. Section 4.3 presents properties that
permit pruning of the search space for arbitrary values of k, then extends our
methods for range-based RkNN queries. We assume that dataset D is indexed
by R-tree.

4.1 Problem Characteristics

Consider single range-based RNN processing first. As shown in Fig. 2a, divide
the space into nine subspaces according to the edge of the query range R, we
can obtain the candidate results of RNNs in every subspace separately.

Fig. 2. Half-plane pruning strategy for subspaces like S1

Consider the perpendicular bisector ⊥ (a, p1) between the vertex of range
a and a data point p1 as shown in Fig. 2a. The bisector divides S1 into two
half-planes: PLa(a, p1) that contains a, and PLp1(a, p1) that contains p1. Any
point (e.g., p2) in the PLp1(a, p1) cannot be a RNN of R because it is closer to
p1 than a. Similarly, a node MBR (e.g., N) that falls completely in PLp1(a, p1)
cannot contain any candidate. In some cases, the pruning of an MBR requires
multiple half-planes. For example, in Fig. 2b, although N does not fall completely
in PLp1(a, p1) or PLp2(a, p2), it can still be pruned since it lies entirely in the
union of the two half-planes. In general, if p1, p2, ...pn are n data points, then
any node whose MBR falls inside

⋃
i=1∼n PLpi

(a, pi) cannot contain any RNN
result.

Similarly, as shown in Fig. 3, in the subspaces like S2, consider the parabola
Par(L, p1) having L as its directrix and p1 as its focus. The parabola divides S2

into two half-planes: ParL(L, p1) that contains L, and Parp1(L, p1) that contains
p1. Any point (e.g., p2) in Parp1(L, p1) cannot be a RNN of R because it is closer
to p1 than L. And a node MBR (e.g., N) that completely falls in Parp1(L, p1)
cannot contain any candidate.

While for the data points in query range R, they are born to be RNNs.
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Fig. 3. Half-plane pruning strategy for subspaces like S2 (pruning with one point)

4.2 The TPR Algorithm

Based on the above discussions, we adopt a two-step framework that retrieves a
set of candidate RNNs (filtering step) and then removes the false hits (refinement
step). Different from [10,11], our algorithm (hereafter, called TPR) traverses the
R-tree in a best-first manner, retrieving potential candidates in ascending order
of their distance to the query range R in each subspace respectively, because
RNNs are likely to be near R. The concept of half-plane is used to prune node
MBRs (data points) that cannot contain (be) candidates. In the refinement step,
we applies boolean range queries on the remaining candidates to determine the
actual RNNs. Algorithm 1 shows the details of TPR algorithm.

4.3 Range-Based RkNN Processing

This section presents properties that help pruning of the search space for arbi-
trary values of k and extends our TPR algorithm for range-based RkNN query.

Figure 4 shows an example with k = 2. In Fig. 4a, p3 is not a R2NN of R,
since p3 is in the intersection of PLp1(a, p1) and PLp2(a, p2). In Fig. 4b, p3 is not
a R2NN of R, since p3 is in the intersection of Parp1(L, p1) and Parp2(L, p2).

Fig. 4. Examples of R2NN queries
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Algorithm 1. TPR algorithm
INPUT: dataset D indexed in R-Tree T , query range R
OUTPUT: Srnn

1: Initialize sets Scnd //RNN candidates
2: Divide the space into nine parts around query range R
3: In the subspaces that adjacent to a vertex (edge) of query range like S1(S2) do
4: Initialize a min-heap H accepting entries of the form (e, key)
5: Insert (T , 0) to H
6: while H is not empty
7: (e, key)=de-heap H
8: if e can be pruned then goto 6
9: else //entry may be or contain a candidate

10: if e is data point p then Scnd=Scnd ∪ p
11: else if e points to a leaf node N
12: for each point p in N (sorted on dist(p,R))
13: if p cannot be pruned then insert (p, dist(p,R)) in H
14: else //e points to an intermediate node N
15: for each entry Ni in N
16: if Ni cannot be pruned then insert (Ni,mindist(Ni, R)) in H
17: for each point p in Scnd apply a boolean range query to determine the Srnn

18: insert all the points p in query range R into Srnn

19: return Srnn

Both p1 and p2 are closer to p3 than R. Similarly, a node MBR N can not contain
any candidates (i.e., N can be pruned at the filter step). In some cases, several
half-planes’ intersections are needed to prune a node.

5 Performance Evaluation

5.1 Experimental Setup

Implemented Algorithm. For comparison, we implement the TPL algorithm
proposed in [2], using average sampling approach to approximate handle the
range-based RkNN queries. The more sampling numbers there are, the more
accurate the result, and comes with more cost at the same time. For fairness,
we implement all the algorithms in each experiment to demonstrate the effects
of our proposed optimizations.

Datasets. The experiments are conducted on four datasets: CaliforniaDB (CD),
a spatial data in California (www.usgs.gov); NA dataset contains spatial data
corresponding to geometric locations in the North America; two synthesized
datasets, a normal distribution dataset and a uniform distribution dataset. The
CD dataset and the two synthesized datasets have about 200K objects in total
and the NA dataset has 569k objects. Each dataset is indexed by an R-tree [1].

http://www.usgs.gov/
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Fig. 5. Varying data distribution, size of R and k (for RkNN)

System Setup and Metrics. We execute our experiments on a PC (Inter(R)
Core(TM)2 E7500, 2.93 GHz CPU) running Windows 7 operating system. The
simulation codes are written in Java (JDK 1.6).

The query locations are randomly selected in the space. Each experimental
result is the average result over 200 queries. For performance metrics, we measure
the CPU time and the accuracy (actual RkNN numbers) in the experiment.

5.2 Experiments for Range-Based RkNN Queries

Effect of Data Distribution and Size of R. In the first experiment, we
evaluate the effect of varying the data distribution and the size of query range
R. As shown in Fig. 5, the difference of CPU time in all datasets with various size
of query range R is not that big. That’s because our TPR algorithm returns the
RkNNs of R within one-time traverse of the R-tree. This observation is confirmed
by all experiments (including the real data) despite the different settings.

Effect of k (for RkNN). As expected, the overhead of TPR algorithm grows
with k, see Fig. 5, due to the significant increase in CPU time. This is because a
larger k degrade the pruning effect of the points or R-tree nodes. Note that the
average number of candidates retrieved increases almost linearly with k in the
filter step and thus need more computations in the refinement step.

Fig. 6. TPR vs. TPL sampling: CPU time(s)
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TPR vs. TPL Sampling. TPL algorithm is intended to solve the point-based
RkNN query, we implement the TPL algorithm using average sampling approach
for comparison. Figure 6 shows the total cost of TPR and TPL Sampling as a
function of the sampling number. In this case, the CPU time of TPL Sampling
algorithm increase linearly to the sampling number and the TPR algorithm
doesn’t need any sampling. When the sampling number come up to about 16,
the CPU time of TPR and TPL Sampling are almost the same, but the TPL
Sampling can not ensure a correct result. Figure 7 illustrates the accuracy of
TPR and TPL Sampling. Our TPR returns the exact RkNNs for the query range
and the TPL Sampling needs as many of sampling as possible. As expected, in
this experiment the sampling number come up to about 64 can TPL Sampling
returns the correct result. Therefore, the TPR algorithm performs better with
respect to the accuracy.

Fig. 7. TPR vs. TPL sampling: accuracy (CD, k= 4, size of R: 400m2)

6 Conclusions and Future Work

In this paper we have discussed the problem of range-based RkNN queries.
We have proposed algorithms for exact processing of range-based RkNN with
arbitrary values of k on dynamic datasets. In particular, we extensively con-
duct experiments and our experimental results demonstrate that our proposed
methods outperform the straightforward method in all aspects, and are superior
to existing methods in terms of the efficiency and the accuracy. In the future,
we intend to extend this work to the range-based RkNN query with irregular
range, which retrieves all the points that have any position in the given irregular
range as one of their k nearest neighbors.
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Abstract. Memory caching plays a crucial role in satisfying the require-
ments for (quasi-)real-time processing of exploding data on big-data
clusters. As big data clusters are usually shared by multiple computing
frameworks, applications or end users, there exists intense competition
for memory cache resources, especially on small clusters that are sup-
posed to process comparably big datasets as large clusters do, yet with
tightly limited resource budgets. Applying existing on-demand caching
strategies on such shared clusters inevitably results in frequent cache
thrashing when the conflicts of simultaneous cache resource demands
are not mediated, which will deteriorate the overall cluster efficiency.

In this paper, we propose a novel self-adaptive incremental big data
caching mechanism, called EarnCache, to improve the cache efficiency for
shared big data clusters, especially for small clusters where cache thrash-
ing may occur frequently. EarnCache self-adaptively adjusts resource
allocation strategy according to the condition of cache resource com-
petition: turning to incremental caching to depress competition when
resource is in deficit, and returning to traditional on-demand caching to
expedite data caching-in when resource is in surplus. Extensive experi-
mental evaluation shows that the elasticity of EarnCache enhances the
cache efficiency on shared big data clusters, and thus improves resource
utilization.

Keywords: Big data · Cache management
Self-adaptive and Incremental caching

1 Introduction

As big data techniques and infrastructures are being applied to facilitate and
accelerate the processing of big data with formidable size, people are putting
forward eager requests on (quasi-)real-time processing of big datasets yet with
exploding volumes, while meeting the (quasi-)real-time processing requests of
big datasets is usually held back by the disk-based storage subsystem, because
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of the expanding tremendous performance gap lying between magnetic disks
and processing units. Thus memory caching plays a crucial role in bridging
the performance gap between storage subsystems and computing frameworks,
and gradually becomes the determinant factor of whether the processing units
of big data platforms could work at their wire speed to satisfy the vast and
fast data processing requirements. As more and more time-critical applications
commence employing memory to cache their big datasets, big data clusters are
usually concurrently shared by multiple computing frameworks, applications or
end users, just as Fig. 1 shows.

Fig. 1. Big data application hierarchies.

In Web or traditional OLTP database applications, ranges or blocks of the
same datasets (or files) usually show vast variance in “hotness” regarding access
recency and frequency. While big data applications usually scan their input files
as a whole for data processing, and thus all blocks of the same file reveal almost
equal hotness. On the other hand, traditional system-level or database-level data
caching is executed on small data units (i.e. 8 KB-sized pages), while big data
caching is executed on much larger units (i.e. 256 MB-sized blocks). So the cost
of caching in/out a data unit in big data scenarios far exceeds that of traditional
data caching. Accordingly, traditional caching may have millions of caching slots,
which makes hotter data pages less likely to be cached out by colder data pages;
while big data caching may only have thousands of slots, which makes compar-
atively hotter data blocks vulnerable to be cached out by colder data blocks.
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Thus there exists intense competition for memory cache resources, especially on
small clusters which are supposed to process comparably big datasets as large
clusters do, yet with much tightly limited resource budgets.

Intense competition for computational resources would not do much harm
to the clusters’ running efficiency, while intense competitions for memory cache
resources would engender tremendous harm, where frequent cache thrashings
would be incurred if cache resource demands are not coordinated, and CPUs
may constantly run idle. Applying existing on-demand caching strategies, which
cache in data blocks once they are accessed, on small shared clusters inevitably
results in frequent cache thrashings, and thus leads to deteriorated overall clus-
ter efficiency. The principal reason behind is that aggressively caching massive
numbers of data blocks of big datasets on demand causes constant block replace-
ment in cache, and consequently exacerbates the competition of cache resources
when these resources are in strong need. Consequently implementing effective
and adaptive management on memory cache resources becomes increasingly
important for the efficiency of big data clusters, especially for small/medium
enterprises who could only afford non-big (or small) clusters.

Targeting the caching problem existing on non-big clusters, we propose an
adaptive cache mechanism, which is named as EarnCache (from sElf-adaptive
incremental Cache), to coordinate concurrent cache resource demands to pre-
vent exacerbation of cache efficiency, when intense competitions for memory
cache resources occur. As big data applications usually access their input data
in the Write-Once-Read-Many (WORM) fashion, we only consider read caching
in this paper. Major contributions of this paper include: (1) proposing an incre-
mental caching mechanism which could self-adaptively adjust cache allocation
strategies according to the competition condition of cache resources; (2) for-
mulating and solving the cache resource allocation and replacement problem as
an optimization problem; (3) implementing a prototype of the proposed mecha-
nism, and performing extensive experiments to evaluate the effectiveness of the
proposed mechanism.

With EarnCache, applications or end users do not get their datasets cached
once they are accessed, but have to incrementally earn cache resources from
other applications or end users by accessing their datasets. A dataset is cached
gradually as the upper-level application or end user accesses the dataset, and
more blocks of the dataset get cached each time it is accessed. In the rest of
this paper, we illustrate the system design and the implementation details of
EarnCache in Sect. 2. We provide empirical evaluation results in Sect. 3, and
present related work in Sect. 4. We finally conclude the paper in Sect. 5.

2 Framework and Techniques

We illustrate how EarnCache works in this section. Firstly we present the
overview about the caching mechanism of EarnCache, and then discuss its archi-
tecture design, and finally explain the incremental cache-earning policy and its
implementation.
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2.1 Overview

On a shared non-big cluster with relatively limited cache capacity, cache resource
conflicts would be normal. If the cluster is concurrently used by a moderate
number of users and the competition for cache resources is mild, hot blocks is
less likely to be cached out by cold blocks, and then applying on-demand caching
could expedite hot blocks taking over cache resources from cold blocks. If more
and more users need to use the cluster concurrently and competition for cache
resources gets wild, applying on-demand caching would leave concurrent cache
resource demands unmediated, and making hot blocks more vulnerable to being
cached out by cold blocks. Then files which are frequently accessed recently could
be totally cached out by files which would rarely be accessed for a second time
in the near future, and the flushed-out hot files would require to be cached in
soon as their next access should occur in the upcoming future. We consequently
need to revisit existing on-demand caching mechanisms for big data caching on
small clusters, and propose more effective measures to improve the efficiency of
data caching on such clusters.

We believe that a good caching strategy for non-big clusters should be self-
adaptive to resource competition conditions, depressing competitions and pre-
venting cache thrashings when cache resources are in desperate deficit. Obvi-
ously caching big data files on demand as a whole could not provide such self-
adaptivity. Not caching-in files entirely on-demand could provide the elasticity
of tuning the amount of cache resources allocated for different files, based on
their access recency and frequency.

Ideally, more recently frequently accessed files should be assigned with more
cache resources, and less recently frequently accessed ones should be assigned
with less cache resources. However, it’s not possible to know in advance what files
would be frequently accessed in the upcoming future, and we could only make
predictions based on historical file access patterns, especially the most recent
information. Based on files’ historical access information, EarnCache implements
an incremental caching strategy, where a user should earn cache resources for
its files from other concurrent users via accessing these files. Cache resources are
incrementally allocated to a file that becomes more frequently accessed, which
gradually takes over cache resources, until all blocks of the file have been cached
in. The more a file is accessed, the more cache resources it takes over. The
incremental caching strategy ensures that files occupying cache resources are
recently frequently accessed, and will not be flushed out by files that are only
accessed occasionally or randomly.

2.2 Architecture

Files originally reside in the under distributed file system (e.g. Hadoop File Sys-
tem), and EarnCache coordinately caches files across the whole cluster. Earn-
Cache consists of a central master and a set of workers residing on storage nodes
as shown in Fig. 2. The master is responsible for:
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1. determining the cache resource allocation plan for a file, concerning how many
cache resources should be allocated to the file based on its recent access
information;

2. informing workers of cache resource allocation plans via heartbeats;
3. keeping track of metadata of which storage node a cached block resides on;
4. answering clients’ queries on cache metadata.

And a worker is responsible for:

1. receiving the resource allocation plan from the master;
2. calculating resource composition plans to determine how many cache

resources a cached file should contribute to compose the allocated resources
depicted in the cache plan;

3. caching in/out blocks according to the calculated resource composition plans;
4. informing the master of cached blocks via heartbeats;
5. serving clients with cached blocks;
6. transferring in-memory blocks to other workers for remote caching.

As illustrated in Fig. 2, a client accesses a block in the following procedures:

1. the client queries the master where the block is cached;
2. the master tells the client which worker the requested block resides on;
3. the client contacts the worker to access the cached block;
4. the worker serves the client with the block data from cache.

One thing worth noting here is that: the client will not contact any worker
to access a block if the block is not cached in any worker node, as the master
only keeps track of cached blocks. In this situation, the client has to fetch data
directly from the under file system.

2.3 Incremental Caching

As we prefer recently frequently accessed files incrementally taking over resources
from less recently frequently accessed files, “recently” should be defined quan-
titatively before we could design the incremental caching strategy, and other
related elements should also be clarified. Table 1 presents the definitions of all
notations involved in our incremental caching strategy.

We define a function hi(xi) to denote the cache profit gain of the ith file to
instruct how cache resources should be allocated across all files falling within
the observation window. Then we attempt to maximize the total profit gain of
all files falling in the observation window with the profit gain function, just as
Eq. 1 shows.

N∑

i=1

fi · hi(xi) (1)

According to definitions in Table 1, we can assume that the time it takes to
scan the ith file is:

time(xi) = [a · xi + b · (1 − xi)] · di (2)
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Fig. 2. EarnCache’s architecture.

Table 1. Notation definitions

Notation Definition

W Predefined window size of the most recently accessed data for observing
files falling within

a, b Scan time per unit data from memory(a) and hdd(b)

N Total number of files falling in the observation window

di Data size of the ith file

D Total data size of N files

M Cache capacity of the whole cluster

fi Access frequency of the ith file

F Total access frequency of N files

xi Percentage of data cached for the ith file

hi(xi) The ith file’s profit gain with xi data cached

As mentioned above, we use hi to indicate the ith file’s cache profit gain
with xi data cached. For simplicity, we take the file’s saved scan time as its
cache profit gain, then we can define hi’s deviation at xi as its gain change over
Δxi, which could be further defined as the percentage of increased saving of the
file’s scan time with increased cache share at xi over the total saved scan time
at xi, compared to zero cache share, just formulized as:
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δhi

δxi
=

time(xi) − time(xi + δxi)
time(0) − time(xi)

=
δxi

xi
(3)

Thus we can derive that hi(xi) = lnxi, and now our optimization goal becomes:

N∑

i=1

fi · ln xi (4)

subjected to:
N∑

i=1

xi · di ≤ M (5)

Note that at any given time, xi is the only variant contained in the optimiza-
tion goal, and fi · ln xi is a convex function. After applying Lagrange multiplier
method, our optimization goal turns to:

L =
N∑

i=1

fi · ln xi − λ(
N∑

i=1

xi · di − M) (6)

Let δL
δxi

be 0, then we get

xi · di =
fi

F
· M (7)

The above result shows that the amount of memory resources allocated to a file
is linear to fi at a given moment, as all files’ access frequencies are determined at
that moment, which exactly corresponds to our original intention of incremental
caching. One more thing worth noting is that: if the overall size of files falling
within the whole observation window is smaller than the cache capacity, and
there are cache resources being occupied by files that fall out of the observa-
tion window, EarnCache will collect resources from those obsolete files by LRU
when there is a caching request, and the requesting file could cache in its blocks
once and for all, rather than gradually taking over resources from files falling
within the observation window. EarnCache thereby could adaptively devolve to
traditional on-demand caching so as to expedite the process of collecting cache
resources for actively accessed files when contention for cache resources is light,
and evolve to incremental caching to depress competition when resources are in
deficit.

2.4 Implementation Details

We implemented EarnCache by implanting our incremental caching mechanism
into the modified Tachyon [4]. In EarnCache, we first evenly re-distribute a file’s
cached data blocks across the whole cluster, so that almost the same amount of
blocks are hosted in cache on each cluster node, and all workers can manage their
cache resources independently yet still in concert. As uneven data distribution
will drag down completion of the whole job, evenly distributing cached data
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blocks guarantee that tasks running on each node could ideally finish almost
simultaneously.

When the ith file needs caching, EarnCache pre-allocates fi/F fraction of
cache resources on each node to the file based on Eq. 7. If resources pre-allocated
to the file are more than its aggregated demands, EarnCache has other files in
need of cache resources fairly share the spare cache. Each worker checks its avail-
able cache resources, and allocates as many as possible to them directly, which
could make full use of cache resources. When there are not enough resources
available, the worker calls BlocksToEvict(), which implements the eviction algo-
rithm with incremental caching, to determine which blocks should be cached out.
As all blocks are cached in from the under file system, cached-out blocks need
no more backup and thus workers could discard them directly from cache. When
block eviction process is done, the worker will inform the master to update the
metadata.

Algorithm 1 describes the process of evicting blocks. EarnCache first checks
whether the file requesting cache resources has used up its pre-allocated share
in Lines 1–3. In the while loop, files who have overcommitted the most cache
resources are selected in Lines 7–14. If no such file exists, EarnCache will reject
the cache request (Lines 15–17). Otherwise, blocks of these selected files are
added to the candidate block set until enough cache resources have been col-
lected (Lines 18–24). As recency and frequency of all blocks within the same file
are identical, workers do not differentiate between blocks of the same file when
selecting blocks to cache out.

3 Empirical Evaluation

We deploy an HDFS cluster on Amazon EC2 as the under distributed file sys-
tem to evaluate EarnCache’s performance, on which Spark and EarnCache are
deployed as the upper-level application tier and the middle-level caching tier
respectively. The cluster consists of five Amazon EC2 m4.2xlarge nodes, one
of which serves as the master and the other four serve as slaves. Each cluster
node has 32 GB of memory, 12 GB memory is reserved as working memory and
the remaining 20 GB of memory is employed as cache resources, summing up to
80 GB of overall cache in total.

We mainly evaluate EarnCache’s performance by issuing jobs from Spark
to scan files in parallel without any further processing, and compare the per-
formance of EarnCache incremental caching, with LRU and LFU on-demand
caching, and MAX-MIN fair caching. We set the size of FILE-1, FILE-2 and
FILE-3 equally to 40 GB and unequally to 70 GB, 40 GB and 10 GB respectively,
and then evaluate EarnCache with different caching strategies and frequency pat-
terns. We set the observation window size of EarnCache to 1000 GB by default.
For each experiment, we issue file scanning jobs on three input files, denoted as
FILE-1, FILE-2 and FILE-3, with the following three various frequency patterns,
denoted as ROUND, ONE and TWO respectively.
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Algorithm 1. Eviction Algorithm: BlocksToEvict()
Input: s, requested cache resources; r, the requesting file id; A={a1, a2...aN}, a list

of files’ pre-allocated memory bytes; C={c1, c2...cN}, a list of current consumed
memory bytes in local node; M, memory capacity of local node

Output: a list of candidate blocks to evict
1: if cr ≥ ar then
2: algorithm ends as file r has already consumed all its allocated memory
3: end if
4: candidate ← {} � candidate cached out blocks
5: mem ← 0 � free resources obtained from evicting candidates
6: while mem < s do
7: j ← −1
8: overj ← 0
9: for ai in A and i �= r do

10: if ci − ai > overj then
11: j ← i
12: overj ← ci − ai

13: end if
14: end for
15: if j = −1 then
16: return as request failure
17: end if
18: find bj as a block of file j and not in candidate
19: candidate ← candidate + bj
20: mem ← mem + sizeof(bj)
21: cj ← cj − sizeof(bj)
22: if mem ≥ s then
23: return candidate
24: end if
25: end while

– ROUND Three files are accessed in pattern: FILE-1, FILE-2, FILE-3, . . . ,
where three files are accessed with equal frequency.

– ONE Three files are accessed in pattern: FILE-1, FILE-2, FILE-1, FILE-3,
. . . , where one file is accessed more frequently than other two files.

– TWO Three files are accessed in pattern: FILE-1, FILE-2, FILE-1, FILE-2,
FILE-3, . . . , where two files are accessed more frequently than the other file.

Figure 3(a) and (b) show the averaged overall running time of file scanning
jobs. Each group of columns involves the scanning of files contained within the
whole period of a frequency pattern, namely 3, 4, and 5 files respectively. We
can see that EarnCache yields the best performance, which exceeds that of the
LRU and LFU on-demand caching by a large margin, and leads the MAX-MIN
fair caching by a smaller margin. The reason of EarnCache achieving the best
performance is straight-forward, as it prevents cache thrashings and thus more
blocks are accessed from memory. We can see that the performance of EarnCache
is only slightly better than the MAX-MIN caching strategy, and sometimes they
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achieve similar performance. This is because files receive similar amounts of cache
resources from these two caching strategies, as far as our experimental settings
are concerned.
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Fig. 3. Running time of file scanning jobs.

In the meanwhile, we also observe that the performance of EarnCache is not
as mighty as we have expected, especially compared with the LRU and LFU
on-demand caching. The reasons are twofold: (1) EarnCache could not hold all
blocks in cache, and thus file scanning jobs are sped up partially; (2) cache-
locality is not guaranteed, and a prohibitive number of blocks are accessed from
remote cache, rather than local cache. We analyze the distribution of blocks
accessed from local cache, remote cache, and the under file system respectively
in detail, and the results are shown in Fig. 4. We can see that EarnCache has
the largest number of blocks accessed from cache, whether locally or remotely,
which means that it yields the highest memory efficiency than other caching
strategies. However, we observe that EarnCache has the largest number of blocks
accessed from remote cache among the four evaluated strategies. This means
EarnCache has the largest potential of performance improvement. If cache-aware
task scheduling can be integrated into the upper-level task scheduler, more blocks
will be accessed from local cache and EarnCache could obtain much better overall
performance.

We showcase the change of cache shares of different files during the process
of executing file scanning jobs iteratively, and the results are shown in Fig. 5.
We can see that the cache shares of different files with EarnCache remain stable
across the whole experimental process, while the LRU and LFU on-demand
caching strategies witness cache thrashings with huge variance of cache shares.
The MAX-MIN caching statically allocates cache resources based on present
files, rather than caching blocks on demand, and thus also witnesses no variance
of cache shares and avoid cache thrashings. However, we can also see that the
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Fig. 4. Distribution of blocks accessed in local cache, remote cache and under file
system.

MAX-MIN caching is unable to dynamically re-allocate resources properly when
there exist files not receiving any further accesses. To illustrate this, we present
the process of resource re-allocation of EarnCache and the MAX-MIN caching
in Fig. 6(a) and (b), where two out of the three equal-sized files stop receiving
further accesses. We can see that the file remaining accessed gradually takes
over cache resources from those obsolete files as time passes, while with MAX-
MIN fair caching, the amount of cache resources held by each file does not
change. Correspondingly, the running time of each job gradually decreases with
EarnCache, yet remains stable with MAX-MIN.

Finally, we experimentally analyze the impact of the predefined observation
window size, and the results are presented in Fig. 7. When observation window is
set with small sizes, the competition for cache resources could not be coordinated
properly, and thus the overall cache efficiency and performance degrades greatly.
When the observation window size exceeds 200 GB, which is larger enough com-
pared with the file sizes, EarnCache effectively coordinates cache resources and
the performance improves correspondingly.

4 Related Work

There has been extensive work on memory storage and caching, as more and
more time-critical applications [19,22] require to store or cache data in mem-
ory to gain improved data access performance, such as Ousterhout et al. pro-
posed RAMCloud [2] to keep data entirely stored in memory for large-scale Web
applications, and Spark [9,21] enables in-memory MapReduce [3]-style parallel
computing by leveraging memory to store and cache distributed (intermediate)
datasets. While caching on distributed parallel systems is tremendously differ-
ent from traditional centralized page-based file system or database caching, and
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Fig. 5. Change of cache shares as files being accessed.

directly applying centralized caching usually does not help much to improve and
sometimes even hurts cache efficiency and performance.

Some previous work focuses on implementing an additional layer on existing
distributed file system, which enables applications to cache distributed datasets
from the underlying distributed file system. Zhang et al. [1] and Luo et al. [11]
respectively proposed the HDCache and RCSS distributed cache system based
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Fig. 7. Impact of the observation window size.

on HDFS [6,20], which manages cached data just as HDFS manages disk data.
Li et al. [4] further implemented a distributed memory file system for data
caching by checkpointing data to the underlying file system. Luo et al. [16]
proposed a just-in-time data prefetching mechanism for Spark applications so as
to depress the resource demands for caching memory. EARNCache imbeds the
incremental caching into Tachyon [4] to coordinate resource competitions and
avoid cache thrashings, and improves cache efficiency and resource fairness to a
certain degree.

Some work focuses on optimizing data caching for specific frameworks or
goals. Zhang et al. [10] proposed to cache MapReduce intermediate data to speed
up MapReduce applications. Luo et al. [14,15] optimized cache resource alloca-
tions in cloud environments to improve database workload processing efficiency.
Ananthanarayanan et al. [7] found the important All-or-Nothing property, which
implies that all or none input data blocks of tasks within the same wave should
be cached, and then proposed PACMan to coordinate memory caching for paral-
lel jobs. Li et al. [5], Tang et al. [17] and Ghodsi et al. [18] respectively proposed
dynamic resource partition strategies to improve fairness, and maximize the
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overall performance in the meanwhile. Pu et al. [8] extended the MAX-MIN fair-
ness [12,13] with probabilistic blocking, and proposed FairRide to avoid cheating
and improve fairness for shared cache resources.

5 Conclusion

In this paper, we propose the EarnCache incremental big data caching mecha-
nism, which adaptively adjusts resource allocation strategy according to resource
competition condition. Concretely, when the resources are in deficit, it adopts
incremental caching to depress competition, and turns to traditional on-demand-
caching to expedite data caching-in when resources are in surplus. On-demand
big data cache usually leads to cache thrashings. With EarnCache, files are not
cached on demand. Instead, applications or end users incrementally take over
cache resources from others by accessing their datasets. EarnCache manages to
achieve improved resource utilization and performance with such an incremen-
tal caching strategy. Experimental results show that EarnCache can elastically
manage cache resources and yields better performance against the LRU, LFU
and MAX-MIN cache replacement policies.
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tion Action Program of Science and Technology Commission of Shanghai Municipality
(STCSM) (No. 17511105204).

References

1. Zhang, J., Wu, G., Hu, X., et al.: A distributed cache for Hadoop distributed file
system in real-time cloud services. In: Proceedings of GRID, pp. 12–21 (2012)

2. Ousterhout, J., Agrawal, P., Erickson, D., et al.: The case for RAMCloud. Com-
mun. ACM 54(7), 121–130 (2011)

3. Dean, J., Ghemawat, S., et al.: MapReduce: simplified data processing on large
cluster. In: Proceedings of OSDI, pp. 137–150 (2004)

4. Li, H., Ghodsi, A., Zaharia, M., et al.: Tachyon: reliable, memory speed storage
for cluster computing frameworks. In: Proceedings of SOCC, pp. 6:1–6:15 (2014)

5. Li, Y., Feng, D., Shi, Z.: Enhancing both fairness and performance using rate-aware
dynamic storage cache partitioning. In: Proceedings of DISCS, pp. 31–36 (2013)

6. Shvachko, K., Kuang, H., Radia, S., et al.: The Hadoop distributed file system. In:
Proceedings of MSST, pp. 121–134 (2010)

7. Ananthanarayanan, G., Ghodsi, A., Warfield, A., et al.: PACMan: coordinated
memory caching for parallel jobs. In: Proceedings of NSDI, pp. 267–280 (2012)

8. Pu, Q., Li, H., Zaharia, M., et al.: FairRide: near-optimal, fair cache sharing. In:
Proceedings of NSDI, pp. 393–406 (2016)

9. Zaharia, M., Chowdhury, M., Das, T., et al.: Resilient distributed datasets: a fault-
tolerant abstraction for in-memory cluster computing. In: Proceedings of NSDI, pp.
15–28 (2012)

10. Zhang, S., Han, J., Liu, Z., et al.: Accelerating MapReduce with distributed mem-
ory cache. In: Proceedings of ICPADS, pp. 472–478 (2009)



EarnCache: Self-adaptive Incremental Caching for Big Data Applications 393

11. Luo, Y., Luo, S., Guan, J., et al.: A RAMCloud storage system based on HDFS:
architecture, implementation and evaluation. J. Syst. Softw. 86(3), 744–750 (2013)

12. Ma, Q., Steenkiste, P., Zhang, H.: Routing high-bandwidth traffic in max-min fair
share networks. In: Proceedings of SIGCOMM, pp. 206–217 (1996)

13. Cao, Z., Zegura, W.: Utility max-min: an application-oriented bandwidth allocation
scheme. In: Proceedings of INFOCOM, pp. 793–801 (1999)

14. Luo, Y., Guo, J., Zhu, J., Guan, J., Zhou, S.: Towards efficiently supporting
database as a service with QoS guarantees. J. Syst. Softw. 139, 51–63 (2018)

15. Luo, Y., Guo, J., Zhu, J., Guan, J., Zhou, S.: Supporting cost-efficient multi-tenant
database services with service level objectives (SLOs). In: Candan, S., Chen, L.,
Pedersen, T.B., Chang, L., Hua, W. (eds.) DASFAA 2017. LNCS, vol. 10177, pp.
592–606. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55753-3 37

16. Luo, Y., Shi, J., Zhou, S.: JeCache: just-enough data caching with just-in-time
prefetching for big data applications. In: Proceedings of ICDCS, pp. 2405–2410
(2017)

17. Tang, S., Lee, B., He, B., et al.: Long-term resource fairness: towards economic
fairness on pay-as-you-use computing systems. In: Proceedings of ICS, pp. 251–
260 (2014)

18. Ghodsi, A., Zaharia, M., Hindman, B., et al.: Dominant resource fairness: fair
allocation of multiple resource types. In: Proceedings of NSDI, pp. 323–336 (2011)

19. Redis. http://redis.io
20. HDFS. http://hadoop.apache.org/hdfs
21. Spark. http://spark.apache.org
22. Memcached. http://danga.com/memcached

https://doi.org/10.1007/978-3-319-55753-3_37
http://redis.io
http://hadoop.apache.org/hdfs
http://spark.apache.org
http://danga.com/memcached


Storage and Recreation Trade-Off
for Multi-version Data Management

Yin Zhang1, Huiping Liu1, Cheqing Jin1(B), and Ye Guo2

1 School of Data Science and Engineering, East China Normal University,
Shanghai, China

{51164500131,hpliu}@stu.ecnu.edu.cn, cqjin@sei.ecnu.edu.cn
2 Tongji University, Shanghai, China

guoye@ouyeel.com

Abstract. With the tremendous development of data acquisition tech-
nology, massive observation data have been accumulated in scientific
disciplines. As the difference between the successive observations only
changes slightly, it is critical to utilize multi-version data management
technology to compress data to minimize both storage and recreation.
However, the existing work on this field only optimizes the total storage
and recreation costs, but ignores the recreation cost of some special ver-
sions. Consequently, in this paper, we investigate the trade-off among all
of three metrics, including total storage cost, total recreation cost, and
the maximum recreation cost for each version. We formulate two prob-
lems, including (1) discover a storage plan to lower the total recreation
and the individual recreation if the total storage is limited; (2) find a
storage plan to minimize the total storage with restricted total recre-
ation and individual recreation. To solve above problems, we model all
versions with a directed graph and then devise two efficient algorithms
based on spanning tree. A series of experiments indicate that our pro-
posals are effective and efficient in dealing with the problems.

Keywords: Multi-version data management
Storage and recreation trade-off · Scientific data management

1 Introduction

With the tremendous development of data acquisition devices and computing
ability, massive scientific data are continuously generated and accumulated at
higher frequency. For instance, Large Synoptic Survey Telescope (LSST) [2],
one of next generation of telescopic sky surveys, can produce the observation
of the whole sky every three days, whereas the difference between successive
observations at the same area only changes slightly. In order to save the space
consumption, multi-version technology can be used to manage such large-scale
data.
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Fig. 1. An instance of three storage plans

Figure 1 shows an example of multi-version data management. The succes-
sive observations of the same area are represented as V1 to V4. Each version is
associated with a pair (a, b), in which a and b denote storage and recreation cost
of this version respectively. The total storage cost is the sum of storage cost of
all versions. The total recreation cost is the sum of recreation cost of all versions.
The maximum recreation cost is the biggest recreation cost of individual version
among all versions. Three storage plans for them are depicted in Fig. 1. In plan
1, all versions are materialized, namely all stored completely. The storage cost of
plan 1 is 9+9+9+9 = 36. The whole recreation cost is 0 because all versions can
be accessed directly with no recreation cost. In plan 2, only V1 is materialized
and the others are delta against their previous version respectively. For example,
V2 is stored as delta against V1. V2 can be recreated by V1 + Δ1,2 = 0 + 4 = 4.
The storage cost of plan 2 is 9 + 4 + 5 + 3 = 21. The whole recreation cost is
0 + (0 + 4) + (0 + 4 + 5) + (0 + 4 + 5 + 3) = 25. Compared with plan 1, total
storage is significantly reduced whereas the total recreation cost is increased. V4

is the version with the maximum recreation cost 0 + 4 + 5 + 3 = 12. As for plan
3, only V1 and V3 are materialized. V2 and V4 are delta against V1 respectively.
The storage cost of plan 3 is 9 + 4 + 9 + 9 = 31. The whole recreation cost is
0 + (0 + 4) + 0 + (0 + 9) = 13. V4 is the version with the maximum recreation
cost 0 + 9 = 9. The storage and recreation costs are between plan 1 and 2. The
maximum recreation cost is still high.
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Storage and recreation are two oppositions in multi-version data manage-
ment. More storage may lead to less recreation to cost rebuild versions and vice
versa. Hence, the trade-off between storage and recreation is the fundamental.
Two problems were studied in [4]: (i) given restricted storage cost, how to min-
imize the recreation and (ii) given limited recreation cost, how to minimize the
storage cost. However, neither of them takes the maximum recreation cost into
consideration at the same time, namely the recreation cost of reconstructing
some version may be very high. In some cases, only total storage and total recre-
ation are not enough and the other metrics, the maximum recreation cost, should
also be considered into the storage-recreation trade-off. For example, In Fig. 1,
compared with plan 1, in plan 2, the total storage is reduced whereas the recre-
ation cost of V4 is increased from 0 to 12, becoming the maximum recreation
cost. In plan 3, although the total storage cost and the whole recreation cost
are between those of plan 1 and plan 2 respectively, the maximum recreation
cost is still high. The recreation or retrieve efficiency of such version is rela-
tively low. Hence, it is relatively necessary to investigate the trade-off that takes
storage, recreation and the maximum recreation costs into consideration at the
same time. Consequently, we study the trade-off aforementioned and designed
two algorithms.

We first model all versions and their derivation relationship by a directed
graph and then design two algorithms on the basis of the minimum spanning
tree and the shortest path tree. The former is for the minimum storage and the
latter is for the minimum recreation.

In particular, we make the following main contributions:

– To the best of our knowledge, we are the first to investigate the trade-off
among storage, recreation and the maximum recreation at the same time and
formulate two problems.

– We design two efficient algorithms based on the minimum spanning tree and
the shortest path tree to deal with aforementioned issues.

– We implement our solutions and conduct comprehensive experiments on both
synthetic datasets and real datasets to demonstrate the efficiency and effec-
tiveness of our proposal.

The remainder of this paper is structured as follows. Section 2 reviews the
related work of multi-version data management. The problem and relevant con-
ceptions are formulated in Sect. 3. Subsequently, we outline our algorithms and
describe them in detail in Sect. 4. In Sect. 5, we evaluate the performance through
conducting a series of experiments. We conclude our paper briefly in the last
section.

2 Background and Related Work

Array Data: Array data are widely used in scientific data management. More
and more scientific observation data are modeled as array data. The opera-
tions of array data are built on array algebra and there are specific query lan-
guages designed for array data, such as AQL and AFL. The storage of array
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data can be classified into chunking and arbitrarily tiling. We refer the reader
to a survey [12] to a more comprehensive work of array data. Based on prior
work, [16] designed ArrayStore, a new storage manager to support parallel iter-
ative processing for array data. Currently, mainstream array databases include
SciDB [8], RasDaMan [3] and so on. Iterative processing [15] and various queries
such as [5,10] are also supported in SciDB.

After modeling scientific data as array, multi-version data management tech-
nology can be also used in scientific data management.

Multi-version Data Management: Data are be organized as a linear chain of
versions or an arbitrarily graph in multi-version data management. The version
chain [6] has been studied extensively in temporal databases [9,17], such as [13].
Snapshot queries are embedded into array database in [14] by two kinds of time
travel operations, retrieving some version given a time point or version ID and
exploring a sequence of history array versions. Our work can apply to both linear
version chain and graph of version. There are some data version management
systems available [18] etc.

Storage and recreation are two critical aspects for this topic. Some previous
studies have elaborated on minimizing the total storage cost. With regard to
array data, given a long sequence of versions, Seering et al. [13] put forward an
algorithm to determine the delta versions and the materialized ones, reducing
the total storage cost and maintaining high access efficiency. Relatively few prior
work exist on reducing the total recreation cost. [13] optimized the access time
of a sequence of multi-versions with regard to array data.

To the best of our knowledge, only [4] conducts research on the trade-off of
storage and recreation. However, they do not consider the trade-off that take
total storage, total recreation and the maximum recreation into consideration
at the same time. In some special cases, the recreation for some single version
is relatively high which leads to low efficiency to rebuild or retrieve that version
and also decreasing the overall performance. In order to deal with this problem,
we formulate two problems to consider them at the same time with the goal of
(i) lower the total recreation and the individual recreation given threshold for
total storage and (ii) minimize the total storage with restricted total recreation
and individual recreation.

3 Preliminary and Problem Definition

In this section, we introduce preliminary concepts and define the problems for-
mally.

We have introduced in Sect. 1 that either making all versions materialized
or only making one version materialized is infeasible due to the existence of
multiple metrics. Hence, it is necessary to find new solutions. At first, we define
two matrices for storage and recreation costs.
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Fig. 2. Cost matrix

Definition 1 (Storage Matrix). Given a version sequence V =V1,V2, . . . ,
Vn, the storage matrix S represents storage cost of all versions, in which S[i, i]
denotes the storage cost for version Vi and S[i, j] is delta storage cost from
version Vi to Vj where i �= j.

Definition 2 (Recreation Matrix). Given a version sequence V =V1,V2, . . . ,
Vn, the recreation matrix R represents recreation cost of all versions in which
R[i, i] denotes the recreation cost for materialized version Vi and R[i, j] is delta
recreation cost from version Vi to Vj where i �= j.

Definition 3 (Version Graph). The version graph G(V,E,W ) models the
versions and their derivation relationship where each vertex denotes one sin-
gle version and each edge (Vi, Vj) indicates derivation relationship from version
Vi to Vj with a weight pair (S[i, j], R[i, j]) ∈ W . In order to indicate the storage
and recreation cost of materialized versions, a dummy node V0 is set in G and
edge (V0, Vi) means the version Vi is materialized with cost pair (S[0, i], R[0, i]).

An instance of cost matrix is represented in Fig. 2. Only available cost values
are represented in the cost matrix. Version graphs are depicted in Fig. 3. For
example, G1 represents the version set V1 to V4 and the derivation relationship
between them. V1 is materialized with cost pair (1000, 1000) and V2 is derived
from V1 with the delta cost (20, 20). The numbers of G1 in Fig. 3 are fictitious,
not built on matrices in Fig. 2. The G2 is used in 4.

Definition 4 (Storage Plan). Given a version sequence V =V1,V2, . . . , Vn,
a storage plan P = {p(v1,v′

1)
, p(v2,v′

2)
, . . . , p(vn,v′

n)
} describes how to store all ver-

sions where Vi (i) is materialized if vi = v′
i or (ii) stored as a delta v′

i against vi.

Total storage cost measures the overall storage cost of P , denoted as TSC =∑n
i=1 S[vi, v′

i]. For version Vi, RStr = {Vi1 , Vi2 , . . . , Viq} represents the recre-
ation path for Vi with the minimum recreation cost. The recreation cost for
Vi is the sum of recreation cost in recreation path of Vi, which is denoted as
RCi = R[i1, i1] +

∑q−1
m=1 R[im, im+1]. Total recreation cost measures the overall

recreation cost of P , denoted as TRC =
∑n

i=1 RCi. The maximum recreation
cost is denoted as MRC.

However, since it is infeasible to desire a plan that achieves the best result
for the above metrics, we propose some new definitions below.

Definition 5 (Edmond-Dijkstra Tree (EDT) Query). Given a sequence
of V =V1, V2, . . . , Vn, and a threshold β, discover a storage plan with the aim
of α × min{∑n

i=1 RCi} + (1 − α)× min{max{RCi|1 ≤ i ≤ n}} under the con-
dition TSC ≤ β. The importance of TRC and MRC can be adjusted by the
parameter α.
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Fig. 3. Examples of version graphs

Table 1. Results for EDT and RPT query.

Version graph Query V1 V2 V3 V4 V5 TSC TRC MRC

G1 EDT V1 Δ1,2 V3 Δ2,4 V5 3050 2080 2080

G2 RPT V1 Δ3,2 V3 90 200 70

Definition 6 (Restricted Prim Tree (RPT) Query). Given a sequence of
V =V1,V2, . . . , Vn, threshold θ and δ, discover a storage plan with the goal of
min{TSC} under the condition max{RCi|1 ≤ i ≤ n} ≤ θ and

∑n
i=1 RCi ≤ δ.

Table 1 illustrates a small example of these two queries.

4 Algorithms

In this section, we describe our algorithms for the two problems.

4.1 EDT

We describe the EDT algorithm at high level. Before performing EDT, the
threshold of total storage cost is given the version graph G is constructed accord-
ing to the storage matrix and the recreation one. EDT works on the basis of the
minimum spanning tree T1 and the shortest path tree T2 of G and the root of T1

and T2 is V0. T1 is built from storage matrix and T2 is constructed according to
recreation matrix. EDT consists of three phases. Firstly, obtain the edge set D
which contains the edges in T2 but not in T1. During the second phase, calculate
ρ (we explain the meaning of ρ below) for each single edge in D. During the
latter phase, pick the edge from D in a greedy manner with maximum ρ and
replace corresponding edge in T1. Note that the two edges have the same end
point. Repeat the iteration until the total storage cost reaches the predefined
threshold of total storage cost. The resulting spanning tree T demonstrates the
storage plan of the sequence of multi-versions. We then explain ρ below.

ρ = αρ1 + (1 − α)ρ2 (1)
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Algorithm 1. EDT
Input: minimum spanning tree T1, shortest path tree T2, storage upper

bound β, root V0

Output: a new spanning tree T
1 T ← T1, D ← ∅, C ← 0; // initialization (C is the total storage cost of

current spanning tree.initialization)
2 D ← Getset(T1, T2); // get the edge set
3 C ← Stocost(T1); // obtain the storage cost of current T
4 while D is not empty and C < β do
5 ρmax ← 0;
6 foreach edge (a, b) in D do
7 //find the edge (a,b) from D with the maximum ρ
8 compute ρ by Eq.1;
9 if ρ > ρmax then

10 ρmax ← ρ;

11 find the edge(a′, b) in T1 ;//find the edge in T2 with the same end point b
12 T.remove(a′, b), T.add(a, b); //update T
13 C ← C + S[a, b] − S[a′, b];//update sotrage cost C
14 D.remove(a, b);

15 return T ;

Algorithm 2. Getset
Input: T1, T2

Output: the edge set (in T2 not in T1)
1 return E(T2)\E(T1);

ρ1 =
reduction in the recreation cost

increase in the storage cost
(2)

ρ2 =
reduction in the maximum recreation cost

increase in the storage cost
(3)

The ρ is explained as Eq. 1. ρ1 and ρ2 are in Eqs. 2 and 3 respectively. Suppose
there are two edges ea and eb. ρ1 of ea is greater than ρ1 of eb indicates we can
reduce more recreation cost with the same increase of storage cost. Similarly, the
meaning of the situation where ρ2 of ea is bigger than ρ2 of eb can be inferred.
The importance of ρ1 and ρ2 can be adjusted by the parameter α.

The EDT algorithm proceeds as follows. It takes the spanning tree T1 and
the shortest tree T2 of version graph G as input.

After initialization (line 1), EDT invokes Getset in Algorithm 2 to obtain
edge set D (line 2). The result set D includes the edges contained in T2 but
not in T1. Each edge in D represents one possible choice of recreation path but
not contained in storage plan. stocost() in Algorithm 3 are utilized to get the
current total storage cost of T1 via storage matrix S (line 3). Subsequently, we
calculate ρ for each edge from D. Notice that the direct or indirect successors
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Algorithm 3. Stocost
Input: T1,root V0

Output: storage cost of T1

1 return
∑

e(a,b)∈T1
S[a, b];

of the end point also experience the same increment in reduction of recreation
cost, corresponding to the numerator of ρ1. Select the edge (a, b) in D with the
maximum ρ in a greedy manner (line 4–10). Next, replace the edge whose end
point is b and start point is not a in T1 with edge (a, b) in D (line 12) and update
C (line 13). Repeat the iteration until C exceeds the predefined threshold. Edge
(a, b) was deleted from D (line 14). From the overall view, the time complexity
is O(|E|2).

In order to facilitate understanding, we demonstrate an instance on EDT
below.

Fig. 4. An example of EDT

Example 1. We illustrate EDT on version graph G1 in Fig. 4. Let the storage
threshold β be 3000 and parameter α be 0.5. Invoke the Edmonds’ algorithm
and Dijkstra’s algorithm to obtain the minimum spanning tree T1 (as depicted
in Fig. 4(a)) and the shortest path tree T2 respectively. Then we can get the
edge set D = {(0, 2), (0, 3), (0, 4), (0, 5)}. Next, we calculate ρ of (0, 2), replacing
(1, 2) in T1 with (0, 2) of D shown in Fig. 4(b). ρ(0,2) = 3×(1000+20−1010)

1010−20 +
0.5 × 1300−1300

1010−20 = 1
33 . In denominator of ρ1, “3×” because for V2, the direct

successor V4, indirect successor V5 and V2 itself will experience the same change
in recreation cost. We can get ρ of other edges in similar way. After we replace
(4, 5) in T1 with (0, 5) of D, the storage cost of T is 3050, exceeding the β and
we get the final T in Fig. 4(c).
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Algorithm 4. RPT
Input: version graph G, upper bound for recreation cost δ, threshold for the

maximum recreation θ
Output: node set of spanning tree T

1 REC ← 0; V set ← ∅; PQ.enqueue(V0); //REC is the total recreation cost
of current spanning tree T . The current nodes are contained in V set. PQ is a
priority queue.

2 while PQ is not empty do
3 Vi ← PQ.top(); //out-queue process V set.add (Vi)
4 REC ← REC + Vi.rec; PQ.dequeue();
5 Nset ← Neighbors(Vi);
6 foreach Vj in Nset do
7 //cost-updating process
8 if Vj in V set then
9 // Vj is already in current spanning tree

10 if rj ≥ R[i, j] + ri and S[i, j] ≤ cj then
11 V set.Remove(Vj);
12 cj ← S[i,j]; rj ← R[i,j]+ri;
13 V set.add(Vj);

14 else
15 //Vj is not in current spanning tree
16 if θ ≥ R[i,j]+ri and REC ≤ δ and S[i, j] ≤ cj and

R[i, j] + ri ≤ rj then
17 cj ← S[i,j]; rj ← R[i,j]+ri;
18 PQ.enqueue(Vj);

19 return V set;

4.2 RPT

This algorithm works in a greedy manner. At each iteration, pick the node
with the minimum storage cost from priority queue PQ and update the recre-
ation cost, storage cost and parent if the two cost can become smaller than
before. Then the spanning tree will be built through iterations. RPT is simi-
lar to Prim [11] but significant difference exists, namely that the already con-
structed spanning tree may be modified in later iterations in RPT but Prim
not. The RPT algorithm is suitable for directed cases. We define the node in
this algorithm with the structure (id, parent, sto, rec). To be specific, (1) id is
the version id; (2) parent refers to some version from which the current version
derives from and each single version only has one parent version in our proposal;
(3) sto means the storage cost from parent to the current version; (4) rec refers
to the recreation overhead between root version to the current one.

The RPT algorithm proceeds as follows. First, version V0 is pushed into
the priority queue PQ (line 1). In PQ, versions are sorted according to sto
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Algorithm 5. Neighbors
Input: node V in V set, V set
Output: the neighbors of V in V set

1 Nset ← ∅;
2 foreach edge V ′ in V set do
3 if S[V, V ′] exists and R[V, V ′] exists then
4 Nset.add(V ′);

5 return Nset;

in ascending order. Then, the algorithm is composed of two phases: out-queue
processing phase and cost-updating phase.

In out-queue process (line 2–6), pick the top element, denoted as Vi, from
PQ who has the minimum sto and insert Vi into the V set which contains nodes
of current spanning tree. Update the total recreation cost. Then identify the
neighbor nodes of Vi via the neighbors function in Algorithm5.

Back to RPT algorithm, then we elaborate on the cost-updating phase (line
7–18). The purpose of this phase is to update all of the neighbor nodes of node
Vi. Suppose Vj is one of the neighbor nodes of Vi, if Vj is not contained in
current spanning tree, we should judge whether the recreation cost of Vj and total
recreation cost of the current spanning tree are within the predefined constraint
or not first. If the thresholds are met, then we can insert Vj into current spanning
tree. In contrast to the circumstances mentioned above, if the neighbor node Vj

is already in current spanning tree, we need merely to determine whether the
storage and recreation cost of Vj can become smaller than before. If they can, we
need to update Vj . Obviously, this is the significant difference mentioned above
between RPT and original Prim algorithm. Iterations will not be terminated
until all the nodes addressed.

Fig. 5. An example of RPT

We take RPT algorithm on Fig. 5 for instance to facilitate comprehension.

Example 2. Figure 5 illustrates an example of RPT on version graph G2.
Here, the recreation cost δ is set 200 and the threshold of the maximum

recreation cost θ is 70. First, add V0 to priority queue PQ and dequeue V0.
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Update the neighbors of V0, namely V1, V2 and V3 and enqueue them (resulting
in Fig. 5(a)). Since PQ is sorted according to storage cost in ascending order, we
dequeue V1 and update V2, the only neighbor of V1. For V2, rec : 30 + 40 = 70
and sto : 30 < 40. Thus, we can also update the parent of V2 as V1, as illustrated
in Fig. 5(b). Next, dequeue V2 and update its only neighbor V3. For V3, rec :
70+20 > 70, exceeding the θ. Therefore, we can not update V3. Now, only V3 is
still in PQ. Dequeue PQ and update its neighbor V2. For V2, rec : 50 + 20 = 70
and sto : 10 < 30. Consequently, update the parent of V2 as V3, as shown in
Fig. 5(c). Until this step, the total recreation cost is 150, still within the δ.

(Complexity Analysis). Only the root node, not all nodes is put into the
priority queue PQ at first. Then the neighbors of the dequeued node are updates
and updated nodes are enqueued. The complexity of each “push” operation is
O(log |V |) and scan every single edge once. Thus, the overall time complexity is
O(|E| log |V |).

5 Experiments

5.1 Experimental Setup

In this section, we conduct an extensive series of experiments on real-life and
synthetic data sets to evaluate the efficiency and effectiveness of our proposal.
All codes written in C++, were conducted on a PC with 16 GB RAM, Intel Core
CPU 3.2 GHz i7 processor and the operating system is Windows 10.

Datasets:

– NOAA dataset: (D1) This is a dense collection composed with 1 MB weather
satellite images, comprising approximately 14G and from the NOAA of US.
We regard observation data of one single time interval (10 min) as one version
and about 12,000 versions in total.

– OMCSC dataset: (D2) The Open Mind Common Sence ConceptNet network
dataset, a sparse one and is filled with degrees of relationships among many
kinds of “concepts”. We choose snapshots data from 2015, each version com-
posing of approximately 430,000 data points and 12,000 versions totally.

– Synthetic dataset: (D3) We generate a data set by using R-MAT graph gen-
erator in GTgraph [1] with the number of nodes (versions) n = 10,000 and
the number of edges m = 800. Then, we randomly select one node as the start
point to run the Breadth-First-Search algorithm until n versions arrive.

Baseline Approaches: We evaluate the performance of EDT by varying the
parameter α. For each dataset, we set α = 0, 0.5 and 1 respectively. When
α = 0, EDT optimizes the maximum recreation cost. When α = 1, EDT is
aimed at optimizing the total recreation cost given restriction on the storage
cost. This correspond to the LMG in [4]. When α is set to 0.5, EDT optimizes the
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Fig. 6. Total storage and recreation cost of EDT

Fig. 7. Total storage and the maximum recreation cost of EDT

total recreation cost and the maximum recreation cost at the same importance.
Besides, we compare the trade-off of RPT by varying the number of versions
with MP in [4], which does not take the maximum recreation cost into storage-
recreation trade-off at the same time. The restriction for the maximum recreation
cost is set to 0.005, 0.006, 0.007 and 0.008 respectively. The limitation of the
whole recreation cost for RPT is 3.25, 3.48, 4.3 and 4.5 respectively.

Criterion: The total storage and the whole recreation cost are the two criterion
in the storage-recreation trade-off. We take another criterion, the maximum
recreation cost into trade-off at the same time.

5.2 Experimental Results

Effectiveness of EDT. Figures 6 and 7 illustrate the trade-off of EDT among
the total storage, total recreation and the maximum recreation cost upon D1,
D2 and D3.

From Fig. 6, when the total storage exceeds the minimum storage (the mini-
mum storage is the storage cost of minimum spanning tree depicted with horizon-
tal pink line parallel to the horizontal axis), the whole recreation cost decreases
quickly and afterwards, declines more and more slowly. Meanwhile, for these
datasets, EDT with α = 1 obtains the smallest recreation cost given the same
storage threshold whereas the solutions with α = 0 have the largest recreation
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Fig. 8. Effectiveness evaluation of RPT

cost. This is due to the optimization goal for solution with α = 1 is to get the
minimum recreation under restricted storage cost. The solutions with α = 0.5
have the middle recreation cost between the other two, more approaching to the
solutions with α = 1.

Next, Fig. 7 illustrates the total storage and the maximum recreation cost
of EDT. The solutions with α = 0 get the smallest maximum recreation cost
given the same threshold of storage cost, because in each iteration, the edge that
can reduce the most maximum recreation cost with the same increase in storage
cost be picked to replace the corresponding edge in the minimum spanning tree.
Besides, some plateaus exist in the plot, because after replacing corresponding
edge in the minimum spanning tree, the recreation path for the version with
the maximum recreation cost is still the same, not influenced or the influenced
versions get the new recreation cost that is still less than the maximum recreation
cost. Hence, by combining Figs. 6 and 7, the EDT can achieve the good balance
in the storage and recreation trade-off that considers the maximum recreation
cost at the same time.

Effectiveness of RPT. Figure 8 investigates the trade-off by RPT among three
costs upon D1, D2 and D3.

Figure 8(a) reports the total recreation and storage cost of RPT. From
Fig. 8(b), for D1, D2 and D3, we observe that when the recreation cost is a
little more than the minimum recreation cost (the minimum total recreation
cost is the recreation cost of the shortest path tree by horizontal pink line paral-
lel to the horizontal axis), total storage cost decrease largely and then incline at
a slower rate with the increment of the restriction on the total recreation cost.

Figure 8(b) illustrates the maximum recreation and the total storage cost of
RPT. In Fig. 8(b), we discover that as the increase of the maximum recreation
cost, there exist plateaus for total storage cost. This is due to that the total
recreation cost exceeds the predefined thresholds. Hence, the RPT can achieve
balance among the three costs mentioned above.
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Fig. 9. MP vs RPT under varying number of versions

Fig. 10. Efficiency evaluation

Figure 9 compares the trade-off result between MP and RPT by varying the
number of versions. MP does not require restriction on the total recreation cost
since it aims at optimizing the storage cost given a bound on the maximum recre-
ation cost. We can observe that when the number of versions is 2000, restriction
on the total recreation cost leads to more storage cost of RPT than that of MP.
For 4000 versions, the situation is similar. In the occasion of 6000 versions, MP
and RPT have the same total recreation cost and the same maximum recre-
ation overhead, but the recreation cost threshold of RPT slightly rises, because
RPT reaches the final balance before the recreation cost reaches the threshold
and the balance of MP is the same as the one of RPT. In the last case, for
RPT, balance happens when the total recreation cost reaches the predefined the
threshold. Both MP and RPT can achieve good trade-off between storage and
recreation. Whereas, RPT takes the maximum recreation cost into consideration
at the same. Besides minimizing the storage with restricted maximum recreation
cost for single version, the total recreation cost for all versions is also limited in
some range.

Efficiency. Figure 10 reports the average execution time of EDT and RPT upon
D1, D2 and D3 respectively. EDT takes the minimum spanning tree through
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Edmonds’ Algorithm [7] and the shortest path tree by Dijkstra’s Algorithm as
input and the construction time of the graph. The α is set to 0.5. For both
algorithms, under the same number of versions, the dense dataset D1 requires
more time than the sparse one D2 because the dense dataset has more delta
than the sparse one, which means more iterations. In addition, we see that the
time consumption increases linearly for EDT and logarithmically for RPT in
Fig. 10(a) and (b) by varying number of versions.

6 Conclusion

In this paper, we investigate the trade-off in multi-version data management
which takes the total storage, recreation and the maximum recreation cost into
account simultaneously. We firstly formulate two new problems with different
objectives and conditions. Then we devise two efficient algorithms to achieve the
goals. Finally, we evaluate our proposals with extensive experiments to illustrate
our methods are both effective and efficient. For future work, we plan to further
study multi-version data management with regard to the versions which are
derived from multiple parent versions.
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Abstract. Outsourced data, as an significant component of cloud ser-
vice, has been widely used due to its convince, low overhead and high
flexibility. To guarantee the integrity of outsourced data and reduce the
computational overhead, data owner (DO) usually adopts a third party
auditor (TPA) to execute verification scheme. However, handing over
the verification of data to TPA may lead to security vulnerabilities since
the TPA is not fully trusted. In this paper, we propose a novel solu-
tion for data integrity verification in untrusted outsourced environment.
Firstly, we design a decentralized model based on blockchain, consist-
ing by some collaborative verification peers (VPs). Based on our pur-
posed model, we present an advanced data integrity verification algo-
rithm, allowing DO stores and checks verification results by writing and
retrieving the blockchain. Moreover, each VP maintains a replication of
the entire blockchain to avoid maliciously tampering with. We evaluate
our proposed approach on real outsourced data service scenario. Exper-
imental results demonstrate that our proposed approach is efficient and
effective.

Keywords: Decentralized · Collaborative · Blockchain
Data integrity · Untrusted environment

1 Introduction

Outsourced data, as an significant component of cloud service, has been widely
used due to its convince, low overhead and high flexibility. Nowadays, more and
more cloud service providers (CSPs) present outsourced data applications, such
as Google App Engine [4], Microsoft Azure Platform [5], Amazon S3 [1] and
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Baidu Yun [3]. The success of outsourced data services are driven by that it can
operate lots of data centers and offer distributed storage for data owner (DO)
to relief their burthen of massive data management.

As a matter of fact, DO will lose physical control over their data and how
data is processed or stored. To remedy that, DO usually adopts some strate-
gies to guarantee the integrity and availability of outsourced data. The existing
approaches including Proofs of Retrievability (POR) [18,29] which provides DO
with the confidence that their data is still retrieved and downloaded if necces-
sary, and Proofs of Data Possession (PDP) [9] which enables DO to verify that
their outsourced data has not undergone any malicious modifications. Both two
protocols enable CSP to prove that DO can verify files without downloading
entire data. To conduct verification process, as shown is Fig. 1(a), DO can tol-
erate the computational overhead. A native way to improve the efficiency is to
outsource the verification procedure to a third party auditor (TPA) [8]. As shown
in Fig. 1(b), when finishing the outsourced data process, the TPA executes veri-
fication protocols with CSP on behalf of DO. Additionally, at any point in time,
DO can check TPA’s work. In such model, DO is not necessary to establish com-
munications with CSP so that reducing the computation overload. However, the
TPA is not fully trusted, and handing over verification tasks of data integrity
to a untrusted TPA inevitably raises new threat to data security. For example,
the untrusted TPA may cheat DO by returning fake verification results. More
seriously, TPA and CSP can collude to tamper with the verification records. The
reason for these cases is the overdependence of DO for the centralized untrusted
auditor party.

High Computation Overhead

Challenge

Response

CSP
DO

(a)

Outsourced data
Low Reliability

Verify

CSPDO

TPA

Outsourced
data

(b)

Fig. 1. Two examples of outsourced data environment. (a) Traditional outsourced data
model; (b) outsourced data model by utilizing TPA

In order to solve above problem, we need a decentralized solution for data
integrity verification in untrusted environment. Whereas proposing such a solu-
tion is not straightforward and will require addressing the following critical chal-
lenges. Firstly, since there is no central node, we need an effective storage strat-
egy to store the verification records for data integrity in decentralized scenario.
Moreover, in order to ensure the verification records are not maliciously tam-
pered with, the storage strategy needs an effective mechanism to improve the
security of records. Finally, in order to avoid overly relying on a central auditor,
we should utilize a distributed verification approach for data integrity.
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The blockchain is first introduced by the bitcoin [24], which is considered
to be the new innovation of computer technology. In addition, it is viewed as
the basis of the next generation of cloud computing. Blockchain is expected to
transform the traditional Internet from information-based model to trust-based
model [32]. The core idea of the blockchain is the storage and verification of
data in an untrusted environment. More significantly, the features of blockchain
include decentralization, redundancy storage, collective maintenance and tamper
resistant. These features motivate us to bring the blockchain into data integrity
verifications in untrusted environment.

In this paper, we design a novel decentralized model in untrusted environment
based on blockchain, namely DCOM (Decentralized COllaborative verification
Model). Based on our proposed model, we present DIV (Decentralized Integrity
Verification) algorithm which including two phases, i.e., WriteBlock and Check-
Block. To the best of our knowledge, DCOM is the first formally to build a
decentralized model based on blockchain technology for verifying data integrity
in untrusted environment. The contributions of this paper outline as follows.

– We present a decentralized model based on blockchain. The model includes
a collaborative network consisting of some verification peers, and each peer
maintains verification records by a blockchain form.

– We propose a verification algorithm for data integrity which divides into
two phases. In WriteBlock phase, DO can task verification peers to store
entired verification records formed by a blockchain. Additionally, in Check-
Block phase, DO can request collaborative network to obtain the verification
results by retrieving the local blockchain.

– We evaluate our proposed approach on a real outsourced data service scenario.
Experimental results demonstrate that our proposed approach is efficient and
effective.

The rest of this paper is organized as follows. In Sect. 2, we give preliminaries and
define the problem. Section 3 describes decentralized collaborative model based
on blockchain. In Sect. 4, we discuss the decentralized data integrity verification
algorithm. We show the experimental evaluations in Sect. 5. We overview related
works in Sect. 6, and conclude the paper in Sect. 7.

2 Preliminaries and Problem Statement

2.1 Preliminaries

Proofs of Retrievability. POR is a Challenge/Response protocol which
enables the CSP proves that the raw file can be retrieved without download-
ing the entire data. Note that, POR only guarantees that a fraction p of the
file can be retrieved. For that reason, POR is usually performed on a file which
has been erasure-coded. In such a way, the file can be recovered by any fraction
p of stored data. More precisely, POR assumes a model consisting of a user,
and a service provider that stores a file uploaded by the users. A POR protocol
includes four key steps [29] which are Setup, Store, Challenge, and Response.
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– Setup. This algorithm generates public keys pubk and private keys prik. Each
user distributes pubk to all parties, and keeps prik secretively.

– Store. This algorithm takes prik as input keys of the DO and a raw file.
The file F gets processed and outputs the produced F∗ which will be stored
on the CSP. Additionally, a file tag τ generated which contains additional
information about F, such as metadata and secret information.

– Challenge, Response. The challenge and response algorithms define a proce-
dure for proving the retrievability of outsourced data. At any point of time,
DO can Challenge service providers for proving the retrievability of F. The
Response algorithm executed by service providers returns TRUE if the verifi-
cation succeeds, meaning that the file can be retrieved, and FALSE otherwise.

Blockchain. Blockchain, also named distributed ledger, is an append-only data
model maintained by a set of peers who do not fully trust each other. The
features of blockchain include decentralization, redundancy storage, collective
maintenance and tamper resistant. Firstly, blockchain is a decentralized model.
The procedures of storing, transmitting and verifying data in blockchain are
entirely based on a decentralized model. In such a model, there is no central
node, which means that all nodes in the blockchain have identical obligation.
Secondly, blockchain can be viewed as a reliable database. Blockchain stores data
redundantly, i.e., each node has a complete replication of blockchain. Hence,
in order to modify the data, malicious nodes must control more than half of
computation power of the entire blockchain network, which is great difficult to
achieve. Finally, data stored by blockchain are safe and trustworthy. Blockchain
use asymmetric cryptography methods to preserve privacy of data. Additionally,
blockchain adopts hash algorithms to ensure data cannot be tampered with,
and deploys consensus algorithms to guarantee consistency of all blockchain
replications. Figure 2 shows an example of blockchain.

Blocki-1 Blocki Blocki+1 Blocki+2 Blocki+3

PreHash Nonce

Merkle Root

PreHash Nonce

Merkle Root

Data Data

Fig. 2. The data structure of blockchain. Data are packed into blocks which are linked
to previous blocks.

2.2 Problem Statement

System Model. We build on the definition from [8]. More precisely, we
assume that, in order to reduce the computational workload, the DO outsources
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verification work of data integrity to the TPA. However, the DO usually can not
determine the confidence of TPA before outsourcing the verification work, that
is, DO outsources data integrity verification to untrusted TPA. It is worth not-
ing that we assume the CSP safely stores DO’s data. Unless otherwise specified,
in the following of this paper, we suppose the CSP is trustworthy and the TPA
is untrusted. Our model includes four components including data owner, cloud
service provider, collaborative network and blockchain. In the following section,
we give details of each component of proposed model.

Threat Model. To analyze data integrity of outsourced in untrusted environ-
ment, we need to define the threat model. More specifically, in this paper, we
assume the TPA is untrusted. The risks of using untrusted TPA to verify the
integrity of outsourced data is due to the following reasons. First, since DO
loses the supervision of verifying process and record, the untrusted TPA maybe
arbitrarily modify the verification records and return the incorrect results to
DO. In this case, in order to verify the data integrity, DO can only download
the entire data. Second, in the public auditing of outsourced data, the DO fully
relies on a centralized TPA for verification. However it is possible that the TPA
is inquisitive about the cloud data. The existing technology usually outsources
the verification records of outsourced data and the signature of DO to the TPA
simultaneously. This case makes the untrusted TPA can use DO’s signature to
query the data stored in the CSP, resulting in reduced data security. More seri-
ously, the untrusted TPA can delete the data and forge the verification records.

Design Goals. The reason for the above threat model is that DO, in order
to reduce the computational workload, hands over the integrity verification to
an untrusted centralized TPA. The main motivation of this work is to develop a
decentralized model for verifying data integrity in untrusted environment. Unlike
traditional approaches, this work proposes to achieve the following goals. Firstly,
to avoid above security issues, our verifying model is decentralized, that is, there
is no centralized party for controlling the whole processing for data integrity
verification. And then, in our context, the security of data should be guarantee
by decentralized ways. Moreover, the efficiency of verification process should
efficient as traditional approaches, such as POR and OPOR.

3 Decentralized Collaborative Model

3.1 Architecture Overview

As shown in Fig. 3, DCOMB consists of four key components which including
data owner, cloud service provider, collaborative network, and blockchain. In the
following, we introduce the details of each component. Data Owner (DO). DO
outsources data in order to reduce local storage overhead for massive data by
utilizing “infinite” storage capacity, and adopt computation resources provided
by the service providers. Cloud Service Providers (CSP). CSP controls a
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cluster consisted of numerous quantity hardware and software resources to pro-
vide outsourced data services. We argue that CSP has its own distributed storage
system, such as HDFS [2] and Ceph [30], to manage massive data and metadata
for replications. Collaborative Network (CN). CN consists of a number of
verification peers (VPs) which keep communications with each other to form a
P2P network. Each VP can join or leave the network at any time. When DO
outsources data to CSP, all VP challenge the CSP to obtain POR records for
each file, which reducing computation workload of POR. Blockchain (BC).
BC stores the POR records of each outsourced file in a blockchain. In order to
avoid reliable issues by utilizing TPA, each VP maintains a entire replication of
blockchain locally.

DO
CSP

Outsourced data

Check

Write

Block

Block

Block

Block

BlockchainCollaborative Network

:Peer

Sync

Challenge Response

Fig. 3. Architecture of DCOMB model.

3.2 Data Model

As already elaborated, in traditional blockchain, each block includes two key
parts including block header and block body. The block header maintains the
digest calculated by the previous block, and the block body stores data such as
financial transactions [24] and smart contracts [13]. This combination manner
makes that each block in the blockchain only depends on its previous block.
Specifically, in DCOMB model, each block body stores POR records formed by
a Merkle Tree [21].

As shown in Fig. 4, the leaf node of the POR Merkle Tree consists of a two-
tuple, where ρi represents the POR records of user i, and SigS() is a signature
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function. According to the definition of Merkle Tree, the POR records can be ver-
ified by given intermediate hash values, i.e., verification path [11]. For example,
the gray entities of Fig. 4 consist a verification path for verifying (ρ2, SigS(ρ2))

Merkle Tree Root

Hash(1,2)Hash(1,2) Hash(3,4)

Hash(1) Hash(2) Hash(3) Hash(4)

( 1, SigS( 1)) ( 2, SigS( 2)) ( 3, SigS( 3)) ( 4, SigS( 4))POR Records

Intermediate
Hash Values

Fig. 4. Sketch of POR Merkle Tree.

4 Decentralized Integrity Verification Algorithm

In this section, we propose DIV algorithm based on DCOMB model. The algo-
rithm includes three key steps, that is Setup, WriteBlock, and CheckBlock.
In the following, we introduce the specification of each step.

4.1 Setup

We first define some functions for setting up the DIV algorithm. These functions
are the prerequisites for the DIV algorithm, including KeyGen(), Split(), and
PORGen().

– (pubk, prik) ← KeyGen(). Similar to traditional POR protocols, each DO
needs to execute the key generation function for receiving public key pubk and
private key prik. All DO distribute their pubk to the collaborative network
and keep the prik secretively.

– F ∗ ← Split(F ). Given the file F, the function split the F by coding method,
such as erasure code, which contains n blocks, each s sectors long (i.e. n and
s are reconstruction thresholds).

– ρi ← PORGen(prik, F ∗). The function gets POR records ρi for F ∗ by using
the method in [29].

After generating the required parameters, DO signs ρi using his prik which
denoted by ρ∗

i , and transmits the ρ∗
i to the collaboration network CN. For the

sake of simplicity, in the following of this paper, we use ρi to denote ρ∗
i .
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Algorithm 1. WriteBlock Algorithm
Input: DO set SDO ={DO1, DO2, · · · , DOm}, outsourced data set SF={F1,

F2, · · · , Fm}, verification peers set SV P={VP1, VP2, · · · , VPn}
1 Outsourced all data in SF to CSP ;
2 for each DO in SDO do
3 (pubk, prik) ← KeyGen();
4 F ∗ = Split(F );
5 gets and signs POR records ρ computed by CSP using PORGen(prik, F ∗);

6 SP={(ρ1, sig1), (ρ2, sig2), · · · ,(ρm, sigm)};
7 Transmit SP to all VPs SV P ;
8 for each VP in SV P do
9 if not receives messagesucc then

10 result = VerifySig(SP );
11 if result then
12 Generates a POR Merkle Tree for SP and builds a block ;

13 Broadcasts messagesucc to other VPs and gets write permission to
blockchain;

14 Writes block into local blockchain;
15 Broadcasts messagesync to other vps;
16 else
17 if receives messagesync then
18 Synchronizes the state of local blockchain;

4.2 WriteBlock Algorithm

In this subsection, we give the details of WriteBlock algorithm for storing the
POR records based on DCOM model. When receiving the POR records, all
VPs validate whether the signatures are valid by utilizing the corresponding
pubk. If the process passed, all VPs cache the POR records in their memory,
otherwise discard it. Then, the VPs construct a POR Merkle Tree and adopt
the POW [24] consensus mechanism to contest for writing the blockchain BC.
Finally, synchronizing the local blockchain state of all VP. Consider a DO set
SDO = {DO1,DO2, · · · ,DOm}, SF = {F1, F2, · · · , Fm} represents the data of
each DO respectively, and SV P = {V P1, V P2, · · · , V Pn} are verification peers
consisting a collaborative network. The procedure of WriteBlock is shown as
follow.

– Each DO in SDO gets the cryptographic keys and encode the file according
to Sect. 4.1. Then, sending the processed file to the CSP;

– The CSP compute the POR records set Sρ = {ρ1, ρ2, · · · , ρm} for each Fi,
where 0 < i ≤ m. All VPs in SV P validate each ρ in Sρ, and construct the
POR Merkle Tree using the valid POR records. Moreover, each VP calculates
a random value for a given difficulty simultaneously. VP∗ denotes the peers
who first finishing all above calculations, and send messagesucc to other peers.
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– VP∗ gets the write permission for linking the constructed block to the global
blockchain, and broadcasts message messagesync to other VPs for synchro-
nizing their local blockchain.

– When received messagesync, VPs synchronize the local state of blockchain to
match the global blockchain state.

4.3 CheckBlock Algorithm

In this subsection, we discuss CheckBlock algorithm for verifying the POR
records stored in blockchain. Based on the tamper-resistant feature of blockchain,
the data stored in the blockchain cannot be modified maliciously. Firstly, DO
sends request to the collaborative network. Then, each VP checks whether the
state of local blockchain is consistent with global state. The VPs who have incon-
sistent state need to synchronize the local block by reading global blockchain.
Finally, returning the corresponding POR records by retrieving local blockchain.

Consider a DO sends request r to CN to check the POR records. SV P =
{V P1, V P2, · · · , V Pn} denotes a verification peer set, and sig represents corre-
sponding signature for DO. The procedure of CheckBlock algorithm is shown as
follow.

– DO Sends {r, sig} to VPi in SV P , where 0 < i ≤ n.
– Each VP checks whether the state of local metadata blockchain, which repre-

sents by V Pi. BCL, matches the global blockchain BCG. If inconsistent, the
VPi must synchronize the local state first.

– Moreover, all VP with consistent state retrieve the local blockchain to obtain
the corresponding POR records ρ by utilizing sig. The verification peer who
finishing the retrieve processing, denoted by VP∗, broadcast the messagesucc

to other VPs.
– VPs stop current retrieving process, only if receiving quorum amount (more

than half of SV P , for simplicity) of messagessucc, and VP∗ returns the result.

4.4 Security Analysis

In this subsection, we analyze how our purposed algorithm avoids the threats
proposed in Sect. 2.2.

In writeBlock phase, all VP validate the signatures for each DO. The invalid
POR records cannot be stored in the blockchain. Moreover, if the signature of DO
changed such as replacing the signature algorithm or cryptographic device, the
new POR records must be re-signed by the new signature. In addition, only the
newer timestamps block can be retrieved. According to the Sect. 3.2, the data in
DCOM model constructed a Merkle Tree which consisting of {ρi, sigi}, where ρi

and sigi represent the POR records and signature of DO respectively. Moreover,
according to the definition of Merkle Tree, the Root changes along with ρi or
sigi which ensures the integrity of the POR records. Additionally, according
to Algorithm 1, only one VP in the collaborative network can write new block
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Algorithm 2. CheckBlock Algorithm
Input: DO, corresponding signature sig, and verification peers set SV P={VP1,

VP2, · · · , VPn}
Output: verification result set result

1 DO sends verification request and signature to all VP in SV P ;
2 for each VP in SV P do
3 while not receives exceed quorum of messagesucc do
4 checks the state of local blockchain MBCL;
5 if the state of local MBCL is inconsistent then
6 synchronizes the state of local blockchain;

7 else
8 result = retrievePORrecords(sig);

9 if result then
10 Broadcasts messagesucc to other VPs;

11 Return result;

to the blockchain. Furthermore, all VP periodically synchronize the local state
in order to maintain consistency of blockchain. The blockchain synchronization
ensures that the data stored in each VP are consistent. Therefore, in any point
of time, the POR records returned by VP in collaborative network are accurate
for any given signature of DO. In the DIV algorithm, DO outsources the data to
the CSP who responsible for computing the POR records. The POR records are
then sent to the collaboration network where all verification peers store the POR
records for all DOs in a form of blockchain. Further, we can get POR records as
long as a certain number of verification peers.

5 Experiments

5.1 Experimental Setting

We performed our experiments on a machine with Intel (R) Xeon E5-2620 CPU
@ 2.0 GHz, 32 GB RAM, and Ubuntu Linux OS. All proposed model and algo-
rithm were implemented in Golang. In addition, we simulate some VP to con-
stitute a collaborative network. The datasets are raw data and the experimental
parameters are shown as Table 1.

Table 1. Experimental parameters

Parameters Default value Variation range

Data size (MB) 100 50 (D1), 100 (D2), 168 (D3)

Quantity of VP 10 5, 10, 20

Quantity of DO 20 10, 20, 30, 50



420 K. Hao et al.

5.2 Performance Evaluations

In this subsection, we show experimental results of our proposed approach.
Firstly, we evaluate the concurrent performance of DIV algorithm. Then, we com-
pare DIV algorithm to state-of-art algorithms including POR [29] and OPOR [8],
which are widely used in outsourced data services.

In Fig. 5 (where DIV-X, X represents the quantity of VP), we evaluate the
time required by the DO to perform DIV algorithm, when compared to POR and
OPOR schemes. For this purpose, we vary in the x-axis the fraction of challenged
blocks of the total number of blocks of the file. Figure 5(a), (b) and (c) show the
comparison results of the algorithm when using the three datasets. It can be
seen that the DIV algorithm needs more time to store the POR records than the
two algorithms. This is because that the DIV algorithm needs to synchronize
and write valid POR records into the blockchain, resulting in a waste of time.
Furthermore, the storage efficiency of the DIV algorithm is proportional to the
quantity of VP. The reason for this is that the more VP we use, the more
messages need to be broadcasted. We can argue that the storage efficiency of
the DIV algorithm is similar to the traditional algorithms, and the additional
overheads are acceptable.

In Fig. 6, we evaluate the verification by varying in the x-axis the fraction of
verification blocks of the total number of blocks of entire file. From the results
we can argue that, as the amount of data increases, the time for verifying the
entire data grows. The verification efficiency of DIV algorithm is similar to two
traditional algorithms. At the same time, it can be seen that the verification
time increases along with the quantity of VPs. The reason for this is that VP
first check state of local blockchain and synchronize the inconsistent blocks.
This makes the verification time is proportional to the quantity of VPs, but
the growth trend is slow. We compared the concurrent performance to the two
traditional algorithms. First, we simulate some DOs to send storage requests
simultaneously. More precisely, we assume that these DOs store the same quan-
tity of data. Figure 7(a), (b) and (c) show the store latency for each algorithm at
three datasets. From the experimental results we can see that the store latency
of DIV algorithm is proportional to the quantity of data, and the efficiency of
our proposed algorithm is similar to the traditional ones.

0

100

200

300

400

10 25 50 75 100

E
xe

cu
tio

n 
tim

e(
se

c)
 

Fraction of challenged blocks (%) 

POR OPOR DIV-5 DIV-10 DIV-20

(a) D1

0

200

400

600

800

1000

10 25 50 75 100

E
xe

cu
tio

n 
tim

e(
se

c)
 

Fraction of challenged blocks (%) 

POR OPOR DIV-5 DIV-10 DIV-20

(b) D2

0

400

800

1200

1600

10 25 50 75 100

E
xe

cu
tio

n 
tim

e(
se

c)
 

Fraction of challenged blocks (%) 

POR OPOR DIV-5 DIV-10 DIV-20

(c) D3

Fig. 5. Store performance with three datasets.
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Fig. 6. Verification performance with three datasets.

In addition, we conduct experiments for evaluating the concurrent verification
performance. We also simulate several DOs to send verification requests simul-
taneously. Figure 8(a), (b) and (c) show that the traditional algorithms have
low concurrent capability for verifying three datasets, and the POR algorithm
is slightly worst than the OPOR algorithm which introduces TPA to improve
the verification efficiency. Additionally, the concurrent verification capability of
DIV algorithm is inversely proportional to the quantity of VPs. The reason for
the results is that all VPs retrieve the local block at the same time, meaning
that more VPs can reduce the response delay.
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Fig. 7. Concurrent store performance.
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Fig. 8. Concurrent verification performance.

6 Related Work

Integrity Verification Scheme. Juels [18] introduce a POR scheme, and
present a sentinels-based algorithm for user to challenge the server to guarantee
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that the file blocks can be retrieved. Additionally, Shacham and Waters [26]
purpose specific POR algorithms including MAC-based and RSA-based signa-
tures, and give detailed security analysis for the algorithms. Ateniese et al. [9]
propose a variant of POR scheme called proofs of data possession (PDP), which
supports an unbounded number of challenges and enables public verifiability of
the scheme. All above schemes required the users to challenge the server, which
increasing the computational overload. To remedy that, Armknecht et al. [8]
purpose a outsourced POR scheme, which enables an external party to execute
a POR protocol with the server.

Untrusted Data Management. Feldman et al. [16] introduce a generic frame-
work for building a wide variety of collaborative applications with untrusted
servers. Shraer et al. [27] present a service for securing user interaction with
untrusted cloud storage, which guaranteeing integrity and consistency of out-
sourced data. Brenner et al. [12] add a transparent encryption layer to ZooKeeper
by means of a privacy proxy, which establishing confidential coordination for dis-
tributed applications. To process queries on the untrusted environment, Chen et
al. [14] present novel schemes for verifiable skyline queries via untrusted CSPs.
TrustedDB [10] is an outsourced database builded and run on actual hardware,
which allows users to execute SQL queries with privacy without having to trust
the CSP.

Blockchain. The blockchain technology recently gains increasingly considera-
tion due to its success for trusted and secure mechanism. Blockstack [7] adds
features of blockchain into traditional DNS service, and proposes a secure global
naming and storage system to query and modify the data through Virtual
Chain [7,17,23]. In order to solve the data integrity problem, [6] proposes a
decentralized data security sharing network system, which effectively improves
the efficiency and security of data. In [25], the authors propose a decentralized
data storage model based on POR, which improving the data reliability. In [20],
the authors propose a decentralized metadata storage model, which improves
the security of cloud storage services. To ensure the data integrity, the authors
in [31] provide a block-based storage network by encrypting and signing the
raw data, and save blocks into P2P file system. The authors in [33] present
a decentralized preserve privacy system by using blockchain. BigchainDB [22]
combines traditional distributed database with blockchain, and it improves the
security of data and solve the capacity of blockchains simultaneously. In [15],
the authors present a framework, namely BLOCKBENCH, to analysis the pri-
vate blockchain which includes consistency algorithms, data models, execution
engines, and applications on the chain. EtherQL [19] proposed an flexible effi-
cient approach for retrieving blockchain, which including range queries and top-k
queries. In Beihang chain [28], the authors summarize the application develop-
ment method based on blockchain, and give the key problems to resolve for
developing blockchain applications.
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7 Conclusion

In this paper, we introduced a decentralized model based on blockchain, namely
DCOM, to avoid the security issues causing by utilizing TPA to run POR proto-
cols. Moreover, we proposed an efficient algorithm named DIV for data integrity
verification based on DCOM model. Our experimental results show that our pro-
posal is efficient and effective. We argue that the proposed solution brings the
features of blockchain into outsourced data management in untrusted environ-
ment. In terms of future work, we plan to explore more efficient mechanisms to
optimize the verification procedures, to design an extended scheme which sup-
ports dynamic verification, and to improve existing blockchain systems based on
the proposed models and algorithms to support data verification in untrusted
environment.
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Abstract. Blockchain-based platforms, such as Ethereum, allow trans-
actions in blocks to call user-defined scripts named smart contracts. In
the blockchain network, after being generated by a miner, a block will
be validated many times by the peers who accept it. Hence by enabling
concurrency on smart contracts, especially validation, we can improve
the efficiency and the throughput of those platforms.

By introducing multiversion transaction ordering, this paper presents
a concurrent scheme called MVTO to run smart contracts concurrently.
First, the miners are able to use any concurrency control technique to
discover a conflict-serializable schedule. Then, validators use MVTO to
verify the block by replaying this schedule concurrently and deterministi-
cally. The evaluation shows that this mechanism achieves approximately
2.5x speedup in the block validation using a thread pool with 3 threads.

Keywords: Blockchain · Smart contract · Concurrency
Multiversion transaction ordering

1 Introduction

Platforms like Ethereum are essentially instances of distributed Byzantine-fault-
tolerant database. They are built on a decentralized, peer-to-peer network where
peers do not fully trust each other. Generally, there are two kinds of peer nodes
in the network: miner and validator. We briefly describe their work as follows:
Miners repeatedly collect transactions in the network and package them into new
blocks. When creating a new block, the miner incorporates the cryptographic
hash of the preceding block of the new block, i.e., the most recent block in its
local storage, into the header of the newly generated block. The cryptographic
hash in each block’s header acts as the pointer to its preceding block and thus
form a chain of blocks, called blockchain. The newly generated block is then
published to other validators. Validators follow a consensus protocol to decide
whether to accept a newly received block or not and how to synchronize with
other peers to reach consensus of blockchain states across the network. In a
word, the blockchain is a shared immutable database for recording the history
of transactions.
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Ethereum introduces smart contract into blockchain. A smart contract is a
collection of code (its functions) and data (its states) which are stored on the
blockchain with a unique account and address [1]. A contract will execute when
it is triggered by a transaction sent to its address. The functions called can be
written in several Turing-complete languages such as Solidity [2]. Thus miner
will charge fees from target contract’s account for every computational step to
ensure that the execution will finish. This fee refers to the gas in Ethereum.

Smart Contracts execute on blockchain in two scenarios.

1. Mining: When a miner proposes a new block, it starts to execute contracts
according to the order of the transactions in the block. The merkle root of
final states is then stored in the block.

2. Validating: When a validator receives a new block, it re-executes smart con-
tract with the exact same order adopted by the miner when this block was
generated. Then the validator checks the consistency of the resulting states
by using merkling techniques.

Despite having the advantages such as tamper-proof and Byzantine-fault-
tolerant provided by blockchain, smart contract platforms suffer from the limita-
tion of throughput. This limitation is partly prompted by the lack of concurrent
mechanisms in existing smart contracts designs. When miners and validators
deal with a block, they execute smart contracts serially to produce a determin-
istic result. Furthermore, Ethereum is planning to change its consensus protocol
from proof of work (POW) to an energy saving protocol called proof of stake
(POS). After switching to POS, Ethereum can significantly save time originally
needed in the POW phase. In this trend, Ethereum can execute smart contracts
that are more complicated and time-consuming. However, one needs to apply
concurrency to fully exploit those saved computational powers.

There are three reasons why smart contracts can not employ naive concur-
rent solution. First, a smart contract can be called several times by different
transactions during a block’s execution and therefore race conditions may occur
when those calls of the same contract execute in parallel. Second, smart contracts
need to execute transactionally. In other words, if Ethereum executes multiple
transactions concurrently, it must produce a conflict-serializable schedule where
the final states can be produced by a serial schedule1. Third, validating a block
requires deterministic execution which can not be provided by naive concurrency
approach.

In the mentioned two scenarios where smart contracts are executed, the com-
putational power spent on these scenarios is unbalanced. A block only gets exe-
cuted one time when created by miners. If this block is accepted, every node
in the network will validate this block. Thus, improving the efficiency of block
validation is more important than block generation in mining phase.

We propose a concurrent scheme for smart contracts. In this scheme, when a
miner proposes a new block, it can employ any concurrent control technique, such

1 A serial schedule is a schedule where transaction are executed serially and do not
interleave each other.
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as 2PL or timestamp, as long as it can produce a conflict-serializable schedule.
During the execution, the miner needs to record the write set of every transac-
tion in the block, i.e., the set which contains the data items that the transaction
tries to write. After the miner finishes the block’s execution, it stores the write
sets into the block. Then, the miner adjusts the transaction order of the block
to match the serial order of the resulting schedule and publish the new block.
Before the validator executes the newly received block, it constructs a “write
chain” on the conflicting data items using the write sets and the transaction
order in the block. The “write chain” pre-determines the contention relation-
ships among block’s transactions and the priority of these transactions. The
proposed mechanism, called multiversion transaction ordering (MVTO), uses
“write chain” to resolve conflicts at runtime and then produces deterministic
results. Meanwhile, by using the multiversion technique in the “write chain”,
MVTO further reduces the conflict at runtime.

This paper makes following contributions:

1. a scheme to run smart contracts called by transactions in a block concur-
rently where miner can employ any concurrent control technique as long as
it produces conflict-serializable schedule.

2. a multiversion concurrency control mechanism to validate a block concur-
rently and deterministically. The evaluation shows that this mechanism
achieves approximately 2.5x speedup in the block validation using a thread
pool with 3 threads.

The rest of the paper is organized as follows. Section 2 introduces a simplified
smart contract model and the notions used in this paper. Section 3 presents the
details of the proposed mechanism called MVTO. Section 4 proves the correctness
of MVTO. Section 5 illustrates the experiments and summarizes the results.
Section 6 reviews the related work. Section 7 concludes the paper.

2 Background

This paper uses a simplified smart contract model to illustrate the proposed
mechanism. This section will introduce the notions that related to this paper.

2.1 Smart Contract

Smart contracts can be seen as a collection of self-defined states maintained in
blockchain and functions that manipulate these states.

A simplified proxy ballot contract is shown in Fig. 1. The contract defines
two persistent states: voters (line 6) and proposals (line 7). “Proposals” is an
array of “Proposal”. Each “proposal” contains the number of votes it owns (line
3). The “voters” maps a unique memberID to the data structure “Voter” (line
2). Voters can vote to a specific proposal and they can only vote once.

Client firstly collects votes to the same proposal. Then it calls the function
“proxyVote” (line 10–16) to cast these votes by sending a transaction to this
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Fig. 1. Simplified ballot smart contract

ballot contract’s address. Voters cast their votes by adding their weight to target
candidate’s “voteCount”. Most of those state changes are vulnerable to race
conditions and may result in inconsistent states. Furthermore, functions can
use throw statement to handle exceptions such as double voting (line 13). The
throw statement can abort the contract, discarding the transient variables and
undoing any state changes.

2.2 Data Action

A data action is a primitive operation (read or write) on a state’s data item [3].
For example, in Fig. 1, voters cast their votes by performing an update action2

on the target proposal in the state variable “proposals” (line 15). We refer to ti
as the i-th transaction in block. Notation ri(x) and wi(x) are the read and write
action on data item x executed by ti respectively.

2.3 Conflict

Two data actions conflict with each other if executing them in either order yields
different results. For example, there are two situations where two actions conflict
in the single-version concurrency control scenario:

1. Two actions of the same transaction, e.g., ri(x) conflict with ri(y).
2. Two actions of different transactions and one of them is a write action, e.g.,

wi(x) conflict with rj(x)(i �= j) and wi(x) conflict with wj(x)(i �= j).

2.4 Schedule

A schedule is the sequence of data actions that transactions actually performed.
A serial schedule is a schedule that meets the following conditions: (i) the actions
that belong to the same transaction preserve the order in transaction; (ii) the

2 The update action can be divided into a read and a write action.
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actions that belong to different transactions don’t interleave with each other.
For example, a serial schedule is shown in Example 1.

Example 1 (serial schedule).

r1(x);w1(x); r1(y);w2(x);w2(y); r3(x).

Conflict-Serializable Schedule. Two schedules are conflict-equivalent if they
can turn into each other by swapping adjacent non-conflicting data actions. A
schedule is conflict-serializable if it is conflict-equivalent to a serial schedule.
The serial order of a conflict-serializable schedule is the transaction order of the
serial schedule which it conflict-equivalent with.

Non-conflicting actions can be fully parallelized because the results won’t
change. However, swapping the execution order of conflict actions might change
results and violate the correctness of transactional execution. In Example 2, we
can observe that conflict-serializable schedules with the same serial order will
produce the same results for each action that belongs to them.

Example 2 (conflict-equivalent). Following schedules are conflict-equivalent with
the serial schedule in Example 1 and therefore have the same serial order t1 <
t2 < t3.

– r1(x);w1(x);w2(x); r1(y);w2(y); r3(x);
– r1(x);w1(x);w2(x); r1(y); r3(x);w2(y);

Hence, in order to ensure the correctness, smart contracts need concurrency
control mechanism to produce conflict-serializable schedule.

Recoverable Schedule. When a transaction writes a data item, the write
action is tentative and may be reverted if the transaction aborts. For the schedule
“w2(x); r3(x)”, r3(x) reads the value of x which is previously written by w2(x).
The effect of r3(x) will not be recoverable and become a dirty data if t2 aborts
after t3 commits. We refer to t2 as a read-from transaction of t3.

A schedule needs to be recoverable to prevent this dirty data issue. A recov-
erable schedule is a schedule where each transaction commits only after all its
read-from transactions have committed. In this way, the changes made by the
transaction that read dirty data are still revertable because the transaction must
wait for its read-from transactions to commit.

2.5 Multiversion Concurrency Control

When using single-version concurrency control methods, transactions may have
to abort because of non-serializable action. This paper employs multiversion con-
currency control (MVCC) to reduce conflict. Instead of overwriting the data item
when performing write action, MVCC preserves each version of write actions to
avoid aborting transactions due to reasons like read too late. Since result of each
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write action is recorded along with its timestamp, a read action can know which
version it should read. We refer to the version of the data item x written by
transaction ti as notation xi.

In MVTO, multiversion reduces the conflict among the data actions. Write
actions on the same data item don’t conflict because they write to different
versions. The conflict happens between the read action and write action on the
same version of the data item where the read action must wait for the write
action finishes.

3 Proposed Mechanism

3.1 Basic Idea

Mining Phase. In mining phase, since correctness of smart contracts’ exe-
cution requires conflict-serializability, any concurrency control mechanism used
in DBMS can be applied to produce a conflict-serializable schedule. The block
generating process can be divided into two steps: (i) contracts’ execution and
(ii) consensus protocol. After block’s execution (step 1), the miner can acquire
the serial order of transactions according to the produced schedule. Then, the
miner adjusts the transaction order of the block to match the serial order. At
this point, the miner can compute the hash of the reorganized block and step
into consensus protocol (step 2). Figure 2 illustrates this block’s reorganization
process. In this example, the original order, which is decided by the miner, is
t1 < t2 < t3 (as shown in the left-hand figure). After the execution, the resulting
schedule shows that the serial order is t1 < t3 < t2 and therefore the miner
reorganizes the block according to the serial order (as shown in the right-hand
figure).

Fig. 2. When mining: reorganize transactions according to schedule

Validation Phase. In the concurrent scenario, verifying the transactions that
call smart contracts need three conditions to ensure the correctness:

1. Conflict-serializability: the resulting schedule of validation must be conflict-
serializable.

2. Schedule replayability: the resulting schedule must be conflict-equivalent with
the schedule produced by the miner of this block.
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3. Execution recoverability: the resulting schedule must be recoverable because
the transactions can abort at any time.

We refer to the proposed mechanism as multiversion transaction ordering
(MVTO). MVTO is similar to timestamp concurrency control because they both
decide the presumptive transactions’ serial order. Timestamp concurrency con-
trol presume the serial order using timestamp and abort those transactions which
violate the presumptive order. Timestamps are assigned at runtime, which means
the presumptive serial order is determined at runtime and the final order may
change due to the abortion of transactions. On the contrary, MVTO presumes
the serial order to be the transaction order3 of the block before the execution
so that it can validate deterministically. Therefore the validator can know the
priority of transactions before the smart contracts’ execution. Hence, MVTO
can make sure that the data actions never violate the presumptive order.

In order to achieve such functionalities, MVTO needs transactions to provide
their write set to the validation. Transaction’s write set is the set which contains
the data items that this transaction will write. Since smart contracts are written
in Turing-compete languages, it is impossible in general to statically determine
which data actions a smart contract will perform. However, every smart contract
called in the block has already been executed when the block is created by the
miner. Since mining phase and validation phase share the same initial states from
the common blockchain history, these two phases also share the same write set of
each transaction as long as their final serial order are identical. Therefore, mining
phase can provide the write set of transactions to validation phase by recording
all the write actions it has performed. By using these write sets, the validator can
pre-determine all the versions that a data item will have and resolve the conflicts
at runtime by letting the transaction with smaller index in the presumptive serial
order execute first. Hence, the conflict-serializability and replayability of schedule
can hold.

When the transaction ti reads the data item’s value which is previously writ-
ten by another transaction tj in this block, ti will record the handler of tj as
its read-from transaction. In order to produce recoverable schedules, ti cannot
commit until all its read-from transactions has committed.

3.2 Data Structure

Transaction. The transaction in the block has four possible status: “Init”,
“Active”, “Aborted” and “Committed”. “Init” is the initial status of transaction.
“Active” means there is a thread executing the transaction. A transaction are
“Committed” when it completes all its tasks. A transaction will be “Aborted”
when it uses up the gas of the contract or throw other exceptions. We refer to
status(ti) as the status of ti.

3 This transaction order is also the serial order in the mining phase.
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Read Set and Write Set. Transactions use read set, i.e., the set of their
read-from transactions, to ensure their recoverability. Read set is constructed at
runtime and will be initialized into an empty set if the transaction restarts. After
read action ri(x) reads the value written by another transaction tj in the block,
a tuple like 〈tj , xi

j〉 is inserted into read set of ti. In this tuple, tj is the read-from
transaction of ti and xi

j is the value which ti read from tj . Note that we use xi
j

to indicate xi
j may be inconsistent with xj at the time ti tries to commit, this

will be discussed later. We refer to rs(ti) as the read set of ti.
Every transaction has a write set that contains all the write actions it will

perform. The write set of a transaction is generated during the first execution
when the block is created by the miner. We refer to ws(ti) as the write set of
transaction ti. The elements in write set are data locators for the data items.
With the write set, Validator can determine the conflict relation among trans-
actions on the specific data items and construct the “write chain” for these data
items accordingly.

Write Chain on Data Item. By using the write set, validator can construct
write chain on every data item that will be accessed by the transactions in the
block.

Figure 3 shows this write chain under an example. There are 5 data items (a,
b, c, d, e). A validator receives a new block containing 4 transactions (Fig. 3a).
According to the data actions of these 4 transactions, their write sets is shown
in Fig. 3b.

(a) Transactions (b) Write set

(c) Write chain

Fig. 3. Extended data structure on data item
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Before the validator replays those transactions, it uses the write sets to con-
struct the write chain. As shown in Fig. 3c, the write chain contains all the
versions the data item will have during the block’s execution. Elements in the
write chain of a data item are 3-tuples: 〈handle, value, write bit〉, each of them
represents a version of this data item. These elements are ordered by the index
of their writer transaction, i.e., the presumptive serial order. The “handle” is the
reference to the transaction which is going to write the value into this element.
Read actions will use this handle to access the index and the status of the writer
transaction. When the transaction writes its version, it writes into the “value”
of the element and set the “write bit” to true. For the read actions that want to
read this version, the “value” is readable only when “write bit” is true. Other-
wise, they have to wait for the writer transaction to write this version. We refer
to 〈ti, xi, wb(xi)〉 as the target element of action wi(x).

When a read action ri(x) tries to read x, it must decide which version of x
to read. Starting from x0 which is the original value of x, the ri(x) will find the
version as follows:

Step 1. Find xj that j < i, and there is no other version xk where j < k < i.
Step 2. Determine whether status(tj) = aborted.

(a) If status(tj) �= aborted, then xj is the proper version to read.
(b) If status(tj) = aborted, then trace back through the chain to find

the nearest preceding version xm where status(tm) �= aborted.

3.3 Concurrency Control Mechanism for Validation

Rules for Scheduling. The scheduler deals with the requests of data actions
in MVTO. After the validator constructs all the write chains for data items,
scheduler must follow certain rules to make sure the resulting schedule is conflict-
serializable and the serial order is identical to the presumptive serial order. The
rules are described as follows:

Rule 1. Suppose scheduler receives a request of wi(x).
(a) If wi(x) is legal, i.e., scheduler can find the element of ti on write

chain of x, then scheduler grants the request. Let ti write xi into the
target element and then set wb(xi) = true.

(b) If wi(x) is illegal, then abort ti, the newly received block fails the
validation.

Rule 2. Suppose scheduler receives a request of ri(x). The scheduler will find out
the right version xj for ri(x).

(a) If j = 0, grant the request and return the original value of x.
(b) If j �= 0, then check the status of the read-from transaction tj .

i. If status(tj) = Aborted, then find the proper version again and
restart from rule 2.

ii. If status(tj) = Committed then grant the request, return the
value of xj and add 〈tj , xi

j〉 to rs(ti).
iii. If status(tj) = Active

A. If wb(xj) = true, grant ri(x) as in 2(b)ii.
B. If wb(xj) = false, delay ti until wb(xj) is set to ture, then

grant ri(x) as in 2(b)ii.



434 A. Zhang and K. Zhang

Rules of Commit. After transaction ti finishes all its tasks, ti will try to
commit. The rules for committing transaction, which is shown in Algorithm1,
will maintain the recoverability of schedule.

Algorithm 1. Commit ti

1 foreach 〈tj , val〉 ∈ rs(ti) do
2 while status(tj) �= Committed do
3 if status(tj) = Aborted then
4 go to: RestartPoint
5 end
6 sleep()
7 end
8 if checkConsistency(〈tj , val〉) = false then
9 go to: RestartPoint

10 end
11 end
12 status(ti) = Committed

As discussed earlier, ti can’t commit until all its read-from transactions (line
1) have committed (line 2) and some of its read-from transactions that are active
may abort at any time. Aborting a transaction will discard all its changes to the
states and therefore causing the transactions which have read from this aborted
transaction have to restart (line 3). When a transaction tj restarts, rs(tj) will
be cleared and for ∀x ∈ ws(tj), wb(xj) in x’s write chain must be set to false.
The results of the restarted transaction’s data actions might change because
the read set of transaction will change when its read-from transaction aborts.
Thus, when a transaction ti tries to commit, the original value xi

j in rs(ti) may
be inconsistent with the newest version xj because tj may have restarted and
overwritten the original value with new value x∗

j . So ti must check the consistency
between ∀xi

j ∈ rs(ti) and the newest xj , and ti must restart when finding the
inconsistency (line 8–10). The effect of restart can spread through the write chain
after the element of the aborted transaction, making more active transactions
restart due to the inconsistency.

Note that the consistency between the committing transaction and its com-
mitted read-from transactions will hold because the committed transactions
won’t restart and change the versions they have written.

4 Correctness

Observation 1. For conflicting actions ri(x) and wj(x)(i �= j), if ri(x) read the
version xj which is written by wj(x), MVTO will ensure j <= i and scheduling
rules grant ri(x) only after wj(x) finishes.

Lemma 1. MVTO will produce conflict-serializable schedule.

Proof. According to the conflict relation among data actions in final schedule,
we can build a precedence-graph [3] which shows the dependency among the
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transactions in the block. The conflict notion in MVTO which is presented in
Sect. 2.5 shows that the conflict happens between read actions and write action
on the same version of the data item. With Observation 1, we can conclude that
the precedence-graph is acyclic. As proved elsewhere [3], the schedule with an
acyclic precedence graph is conflict-serializable.

Lemma 2. Final schedule produced by MVTO is conflict-equivalent to serial
schedule that matches the transaction order in the block.

Proof. The precedence-graph of the final schedule produced by MVTO is a
directed acyclic graph (Lemma 1). We can observe that the result of the topo-
logical sort of this precedence-graph is the serial order of the final schedule. In
this graph, for all edges that are pointing from ti to tj , MVTO makes sure that
i < j (Observation 1), where i and j are also the index of transactions in the
block. Therefore, the serial order of schedule produced by MVTO is equivalent
to transaction order in the block. Thus we can conclude that the final schedule
is conflict-equivalent to serial schedule that matches the transaction order in the
block.

Lemma 3. Validation will succeed if the block is legal.

Proof. Concurrent schedules of a block’s validation in MVTO will produce the
same results for each data action as long as the (i) initial states are identical and
(ii) these schedules are conflict-equivalent.

Blockchain makes sure the honest miners and validators share the same his-
tory of blocks when creating or validating the new block. Therefore, the initial
states of the new block in validation phase are identical to those initial states in
mining phase.

The final schedule of the validation is conflict-equivalent to serial schedule
that matches the transaction order in the block (Lemma 2). Meanwhile, since
the miner adjusts the transaction order in the block to match the serial order
of the produced concurrent schedule, the final schedule of the validation and
the concurrent schedule produced by miner are both conflict-equivalent to the
same serial schedule. Therefore these two schedules are conflict-equivalent to
each other.

Hence, we can conclude that mining and validation can produce the same
result as long as the block is legal.

5 Evaluation

MVTO aims to improve the throughput for blocks validation by executing smart
contracts in parallel. We use a benchmark for MVTO that vary the workload of
a transaction, the percentage of abortion, the percentage of conflict and the size
of the thread pool to evaluate this approach.
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5.1 Benchmark

The benchmark is the block that only contains the “ProxyBallot” contract which
is shown in Fig. 1. Each block contains 200 transactions. In a transaction that
calls “ProxyBallot” contract, the workload is the number of the voters which
are collected by this transaction. The conflict percentage is defined to be the
percentage of transactions that vote to “proposals[0]”. Other non-conflicting
transactions will vote to different proposals. To control the abort rate of a block,
some transactions are set to abort after they finish.

We set up four experiments where we vary the workload, percentage of abor-
tion, percentage of conflict and size of thread pool respectively. (1) Experiment
1 varies the workload for each transaction from 2000 to 20000 voters with 15%
data conflict and 10% abort. (2) Experiment 2 varies the percentage of data
conflict in the block from 0% to 100% with 20000 workload and 10% abort. (3)
Experiment 3 varies the percentage of abortion in the block from 0% to 100%
with 20000 workload and 15% data conflict. All the above three experiments
use a thread pool with 3 worker threads. (4) Experiment 4 varies the size of the
thread pool from 3 to 15 and the conflict percentage from 5% to 15% with 20000
workload and 10% abort.

5.2 Results

We use C++ implementation to run the evaluation on a machine with 4-core
4.00 GHz CPU. All the results are the mean of 100 times executions. Results are
shown in Fig. 4, each contains the results of serial and concurrent validation on
the same block. Results of serial validation serve as the baseline when showing
MVTO’s speedup.

Figure 4a shows the speedup of MVTO over serial validation when varying
the workload per transaction with 15% conflict and 10% abort. Because of the
overhead of multithreading, MVTO is slower than serial validation when work-
load is lower than 4000. MVTO achieves speedup when workload is higher than
4000 and achieves 2.5x speedup when workload is 20000.

Figure 4b shows the result when varying the conflict percentage of the block
with 20000 workload per transaction and 10% abort. As the conflict percentage
raise, the speedup of MVTO keeps dropping from 2.5x to nearly 0.5x. When
conflict percentage reaches 60%, MVTO becomes slower than serial validation.

Figure 4c shows the speedup of MVTO when varying the abort percentage of
the block with 20000 workload per transaction and 15% conflict. We can observe
that serial execution is significantly slower when there are more transactions
abort during validation. The reason is the difference between single-version and
multiversion when dealing with transaction’s abortion. To abort transactions in
single-version, the undo logs are commonly needed to roll back every tentative
change that made on state variables. While MVTO can just discard the version
which is written by the aborted transaction. Hence MVTO shows lower cost of
restarting transactions compared to single-version technique.
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(a) speedup against workload per trans-
action

(b) speedup against conflict percentage

(c) speedup against abort percentage (d) speedup against size of thread pool

Fig. 4. Evaluation results

Figure 4d shows that how the size of thread pool affect the speedup of MVTO
under blocks with or without conflict. When the block admit no conflict, the
speedup is generally higher with lager thread pool and MVTO cannot achieve
more than 4x speedup due to the limitation of 4-core CPU. However, when the
block contains 15% conflict, the effect of speedup begins to drop when using
thread pool larger than 5 threads. This is because more active threads can lead
to more possibility to have synchronization on the conflicting data item between
active transactions at runtime.

5.3 Discussion

As we mentioned in Sect. 1, Ethereum can deal with more complicated and time-
consuming contracts when it switch to POS. Hence, despite MVTO can only
achieve desirable speedup when executing smart contracts with enough work-
load due to the overhead of multithreading (Fig. 4a), it can bring speedup to
Ethereum and any other platforms which will deal with complicated smart con-
tracts.

The results in Fig. 4c shows the advantage of multiversion technique used in
MVTO compared to single-version implementation when dealing with data roll
back which caused by aborting and restarting transactions. Results in Fig. 4d
shows that MVTO may slow down when using a thread pool with too much
worker threads because of the overhead of the synchronization between conflict-
ing data action. In this evaluation, the transactions in benchmark only calls the
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same smart contract so that the conflict percentage can be very high (as shown
in Fig. 4b). In practice, miner will receive many transactions that trigger unre-
lated smart contracts, thus the blocks in reality might face less data conflict than
the blocks used in this evaluation.

6 Related Work

Dickerson et al. [4] treat every smart contract invocation as a speculative atomic
action. Therefore the miner can discover a serializable schedule when creating the
new block by using locks in a 2PL manner. When executing, the miner records
the schedule by storing the trace of the lock on every data item into the block, so
that validator can retrieve and replay that same schedule deterministically. Serge
and Hobor [5] present the similarities between multi-transactional behaviors of
smart contract and problems of shared-memory concurrency. Bocchino et al. [6]
survey many techniques for replaying a concurrent schedule deterministically.

Ethereum [1] may be the most popular platform among all the smart contract
platforms on public blockchain. Its recent project Plasma [7] tries to remission
the low throughput by employing the sharding techniques. Plasma split the state
space into multiple partitions where each runs on a different child blockchain,
forming a multiple blockchains ecosystem with tree hierarchy. Other ongoing
platforms such as Polkadot [8], EOS [9] and Aelf [10] also adopt similar tech-
niques to parallelize contracts that working on different state space.

Garcia-Molina et al. [3] introduces concurrency control mechanism that
employ multiversion techniques. Many software transactional memory (STM)
techniques [11,12] fit well with smart contract because smart contracts must be
executed transactionally. Ghosh et al. [13] uses “update chain” that similar to the
write chain in MVTO to implement a concurrency control mechanism using mul-
tiversion timestamp under STM. This mechanism aims to reduce aborts when
facing conflicting update transactions. The “update chain” is constructed at
runtime while MVTO constructs write chain before the execution.

7 Conclusion

We have proposed a concurrent scheme called MVTO to increase the through-
put of blockchain-based smart contract platform. In this scheme, the miner can
use any concurrency control technique to discover a conflict-serializable sched-
ule. The write set of each transaction is recorded into the newly generated block
along with the final states. The order of transactions in block is adjusted by
the miner to match the serial order of the resulting schedule thereby validators
can know which serial order they should replay. Before the validation, validators
use those write sets and the transaction order to construct “write chain” on
conflicting data items, therefore they can pre-determine the dependency among
transactions in the block. In summary, validators can validate a block in a concur-
rent and deterministic manner. The Evaluation shows that MVTO can achieve
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approximately 2.5x speedup when validating a block with conflicting input data
using a thread pool with 3 worker threads.

Furthermore, MVTO can be integrated into existing systems without com-
promising their original architecture. Developers just need to implement the con-
currency control and multiversion on the underlying basic data items. Existing
platforms mostly plan to increase throughput by employing sharding. MVTO
is compatible with the sharding techniques where sharding scale through the
multi-chains architecture and MVTO enable concurrency within each child chain.
Hence, MVTO can achieve significant scalability by using sharding techniques
to divide the states into different partitions.

In conclusion, MVTO can speed up the block validation and increase the
throughput of smart contract platforms.
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Abstract. Blockchains are secure by design and they have been widely
used in digital asses, trade finance, information security and many other
fields. However, the current blockchain protocol requires that each full
node must contain the complete chain. When the storage capacity of a
full node is less than that of the complete chain, this node cannot be
a member of blockchain system. With the input data increasing, the
number of full nodes in blockchains would decrease. The security of
blockchains would significantly reduce. Therefore, we provide the Elas-
ticChain, which can improve storage scalability under the premise of
ensuring blockchain data safety. The full nodes in ElasticChain store
the part of the complete chain based on the duplicate ratio regulation
algorithm. Meanwhile, the node reliability verification method was used
for increasing the stability of full nodes and reducing the risk of data
imperfect recovering caused by the reduction of duplicate number. The
experimental results on real datasets show that ElasticChain has the
same stability, fault tolerance and security with the current blockchain
system and it improves the storage scalability extremely.

1 Introduction

With the increasing popularity of digital encryption currency such as Bitcoin,
blockchain technology is gaining more and more attention. The blockchain is a
kind of new decentralized protocol that can safely store digital currency and dig-
ital assets. Blockchains can effectively solve the consensus problem in Byzantine
agreement [1] by using digital encryption [2], timestamp, distributed consensus
[3] and economic incentive. It realizes decentralized point to point transaction
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when nodes do not need to believe each other in a distributed system. Hence,
blockchains can effectively reduce the trust cost in the real economy and redefine
the property rights in the internet age.

Although blockchain technology can improve the data security and reliabil-
ity significantly, a lot of bottlenecks still exist. It is worthwhile to research on
improving throughput and reducing mining cost, while the shortage of storage
scalability is one of the most serious problems as well. Taking Bitcoin as an
example, there are two kinds of nodes in the network, the full nodes and the
lightweight nodes. Running a full node is the only way you can use Bitcoin in
a trustless way. They do not suffer from many attacks that affect lightweight
wallets. By September 28, 2017, the number of certified addresses in Bitcoin
system is 9892723 [4] and the Bitcoin system contains 484,490 blocks with the
storage capacity of 124.47 GB. The blockchain protocol requirements that each
full node retains the complete blockchain, and each node is in the same import.
If a node wants to ensure its bitcoins safety in utmost, this node should be a full
node. In that way, there will be nearly 10 million nodes contributing more than
100 GB of disk space to store the blockchain data. In other words, the Bitcoin
system only saves about 100 GB data with nearly 1000 PB storage space. This
leads to a great waste of storage space.

Moreover, the capacity of the Bitcoin and the number of participating nodes
will increase rapidly with the time continuing. Bitcoin system will consume larger
storage space. When the storage capacity of a full node in system is less than the
capacity of the blockchain, it cannot continue being a member of this blockchain
system. It greatly limits the joining of nodes with small storage capacity. It also
enables the nodes to exit their own blockchain system. When the full nodes in the
blockchain system become fewer, the total computing power of the blockchain
system will be reduced accordingly. And it will indirectly reduce the security of
blockchain that based on the POW (proof-of-work) [5]. If it is not universal for
the full nodes to join in blockchain system, the development and application of
database system based on blockchain technologies will be greatly constrained.

In order to solve the above problems, ElasticChain is presented in this paper.
The major contributions of the paper are the followings:

(1) We present a duplicate ratio regulation algorithm. Nodes store parts of the
complete chain under the premise of ensuring blockchain data safety by
algorithms. It decreases the memory burden for the full nodes in blockchain.

(2) We present a node reliability verification method. We design three roles for
nodes: user role, storage role and verification role. The verification nodes
record and update the stability values of storage nodes in real time. Then,
the high stability nodes are chosen to store the duplicates of each block. It
improves the data stability for blockchain.

(3) The benefits of the ElasticChain are evaluated, which shows that it has the
same stability, fault tolerance and security as the current blockchain system
and greatly improves the storage capacity of blockchain nodes.
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2 Background

A novel method [6] for decentralised peer-to-peer software license validation
using cryptocurrency blockchain technology was proposed to ameliorate soft-
ware piracy, and to provide a mechanism for all software developers to protect
their copyrighted works. Zyskind [7] et al. described a decentralized personal
data management system that ensures users own and control their data. They
implemented a protocol that turns a blockchain into an automated access-control
manager without a third party. Some security models have also been proposed,
such as Blockstack [8] and HotNets [9]. Blockstack a global naming and stor-
age system secured by blockchains, enables the introduction of new functional-
ity without modifying the underlying blockchain. HotNets is a novel quantita-
tive framework to analyse the security and performance implications of various
consensus and network parameters of POW blockchains. Some of the methods
[10,11] were employed to establish the quantization standard of security and
scalability for the systems based on blockchain. Some research propose several
consensuses, not only POW, but also POS (Proof of Stake) [12] and PBFT
(Practical Byzantine Fault Tolerance) [13]. In POS-based cryptocurrencies, the
creator of the next block is chosen via various combinations of random selection
and wealth or age. So there is little cost in working on several chains (unlike
in proof-of-work systems). It saves lots of resources, but anyone can abuse this
rule to attempt to double-spend. Byzantine consensus is a fundamental and well-
studied problem in the area of distributed system, and PBFT efficiently solves
this problem.

When someone attempt to attack the honest blockchain, they must meet the
requirements of consensus. Take the POW as an example, POW’s security relies
on the principle [11] that no entity should gather more than 50% of the processing
power because such an entity can effectively control the system by sustaining the
longest chain. The attacks on POW include double-spending attacks and selfish
mining. Double-spending is the same single coin spent more than once. Recent
studies [14] have shown that double-spending attacks on fast payments succeed
with overwhelming probability and can be mounted at low cost. Selfish mining is
considered that some miners want to increase their relative mining share in the
blockchain. Recent studies [15] show that, as a result of these attacks, a selfish
miner equipped with originally 33% mining power can effectively earn 50% of
the mining power.

3 Duplicate Ratio Regulation Algorithm

In the POW-based blockchain system, if a attacker wants to modify the data in a
block, he needs to compute the hash value of all blocks behind this block quickly.
The attack is successful only if the attacker calculates faster than the actual
blockchain. Therefore, modifying a new block costs less computational pride than
modifying a former block. According to the security of each block in blockchain,
ElasticChain stores each block using the duplicate ratio regulation algorithm. In
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ElasticChain, the new blocks store a large number of duplicates because of their
weak safety, while the former blocks are stored a small number of duplicates
due to their strong security. The duplicate ratio regulation algorithm ensures
the POW’s security and reduces the storage capacity for nodes in blockchain
system.

In the duplicate ratio regulation algorithm, firstly, it calculates the minimum
number of duplicates for each block according to the security analysis. Then, the
algorithm calculates the number of contiguous blocks that need to be grouped
together. The security of these contiguous blocks is similar and they are stored
in the same number of duplicates. Finally, we calculate the number of duplicates
that need to be saved.

3.1 Security Analysis

Nakamoto [16], the founder of blockchain, supposed some attackers produce a
new parallel chain to replace the honest chain, and only successful if the pro-
duction of the parallel chain is faster than the honest one. The probability of
an attacker catching up from a given deficit is analogous to a Gambler’s Ruin
problem. We supposed that p is the probability an honest node finds the next
block and q is probability the attacker finds the next block. When z blocks have
been linked after the attack begins, the attacker’s potential progress will be a
Poisson distribution and the expected value is calculated by Formula 1.

λ = z(q/p) (1)

The probability of catching up the honest chain is Pz:

Pz =
∞∑

k=0

λke−λ

k!
×

⎧
⎨

⎩
(
q

p
)(z−k) if k ≤ z

1 if k > z
(2)

To avoid summation of infinite sequences, we convert the Formula (2) to:

Pz = 1 −
z∑

k=0

λke−λ

k!
× (1 − (

q

p
)(z−k)) (3)

We wrote code in the Java language to calculate Pz when q = 0.1, p = 0.9
and z is from 0 to 30. Then, we plotted the cruve of Pz using matlab, as shown
in Fig. 1. The probability of catching an honest chain declines rapidly with the
number of blocks increasing. Moreover, the probability is a big number at the
beginning of attack. It means attackers are likely to attack successfully. However,
it is impossible to complete a successful attack as the number of blocks increased.

Because the decrease rate of Pz is very fast with the increase of z, the value
of Pz cannot be obviously expressed in Fig. 1 when z is larger than 5. Therefore,
when z takes 10 to 15, the cruve of Pz is drawn in Fig. 2.

It can be seen from Figs. 1 and 2 that attackers are becoming more and more
vulnerable to catch up with the honest chain as the number of blocks growing.
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Fig. 1. Cruve of Pz Fig. 2. Cruve of Pz when z takes 10 to 15

The more primitive blocks are, the less likely blockchain can be tampered and
the higher security it is. Therefore, the number of duplicates of each block is
determined by their location. We store a small number of duplicates of the
original blocks and store enough number of duplicates of the new blocks in the
blockchain system. The function relations are shown in Formula (4). M is the
total number of nodes in the blockchain. i is the sequence number of each block.
n is the currently total number of the block and mi is the number of duplicates
to store. Pn−i is the probability that the block i is caught by an attacker. It also
can be considered as a security factor for block i.

mi = � Pn−i × M� (4)

However, the blockchain consensus insists that if more than 50% of the nodes
store the same data, the data is treated as the real one. In other word, if more
than half of the nodes in the network are controlled, the data in the entire
network will be controlled. Therefore, we cannot set the number of duplicates for
each block very small. According to the different security of blockchain system,
we set k is the minimum number of duplicates for each block.

3.2 The Number of Duplicates

Borel’s Law [17] defines that any probability below 1 in 1050 is automatically
zero. According to the Formula (3), we calculated the probability of Pz until it
reduces to 10−50 as z increasing by integer value. At this point, it is impossible
to catch up with the honest node for a attacker. Therefore, each z blocks are
considered as a set of data fragment to store the same number of duplicates.

Finally, the number of duplicates of per block is determinated. The number
of duplicates for block i is named mi, and the minimum number of duplicates is
k. The duplicate ratio regulation algorithm is shown in Algorithm 1.

3.3 Example and Optimization

Here, we take an example, when q = 0.1, we calculate Pz according to Formula
(3) at first. In order to simplify the grouping process, the value of z is an integer
multiple of ten. When z ≥ 100, Pz is smaller than 10−50. Each 100 blocks are
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Algorithm 1. Duplicate ratio regulation algorithm

Input: Pz = 1, z = 1, the total number of nodes in blockchain M , the number of
blocks in the current blockchain n.
Output: duplicate allocation method
1 Estimating q
2 for each block Pz

3 if (Pz > 10−50)

4 Pz = 1 −
z∑

k=0

λke−λ

k!
× (1 − ( q

p
)(z−k))

5 z = z + 1
6 end if
7 end for
8 zmin = z
9 Estimating k (according to M and n)
10 for each block i
11 mi = � Pn−i × M�
12 if(mi < k)
13 Splitting the blockchain. Each zmin blocks are split into a fragment, and each

block i in a same fragment is saved as the same duplicates mi.
14 else
15 Splitting the blockchain. Each zmin blocks are split into a fragment, and the

block i is saved as k duplicates.
16 end if
17 end for

saved in the same number of duplicates as a set of data fragment. Then the
Formula (4) is used to calculate the number of duplicates in each fragment.
The Pz in Formula (4) is calculated by Formula (3), but the Formula (3) is
complex. Therefore, the Weibull function was adopted to fit the cruve of Pz

using MATLAB. We choose Weibull function to fit Formula (3), because its
fitting result is the closest to the cruve of Pz comparing with other functions.
The fitting result is shown as the Formula (5).

f(x) = a × b × x(b−1) × exp(−a × xb) (5)

a = 1.905 (1.886, 1.924), b = 0.723 (0.7154, 0.7307). The fitting variance (SSE)
is 1.215e−5, and the R-square is 0.9997.

It can be seen from the fitting result that Pz has negative exponential relation
with z. Therefore, in order to simplify the calculation in segmentation process, we
modify the Formula (3) to the Formula (6) to calculate the number of duplicates.
The allocation scheme of duplicates is shown in Fig. 3.

m = 2−� (n−i)
100 � × M (6)

4 Node Reliability Verification Method

The nodes in blockchain can be arbitrarily added, and some nodes may always
fail and produce DATM (data missed). However, ElasticChain proposes the
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Fig. 3. The allocation scheme of duplicates

duplicate ratio regulation algorithm in which a relatively small number of dupli-
cates of the former blocks are stored in the network because of their strong
security. When most of the nodes with the former blocks fail, it will have a great
impact on the recovery of former blocks. Therefore, ElasticChain uses a verifi-
cation method of node reliability to improve the stability of nodes and reduce
the risk of data imperfect recovering.

Fig. 4. The ElasticChain architecture

The framework for node reliability verification method is shown in Fig. 4.
The nodes in network include three roles: the user node, the storage node and
the verification node. A node in network would have one, two or three roles at
the same time. The user node is the owner of the original data, and it can upload
and query blockchain data. The storage node is the holder of the duplicates and
the verification node is the verifier of the stability for storage nodes. And we
establish two new blockchains: the P (Position) chain and the POR (Proofs of
Reliability) chain, as shown in Fig. 5. The P chain is stored in the user nodes
to record the location of the data duplicates. The POR chain is stored in the
verification nodes to record the reliability of each storage node.

The implementation of P chains and POR chains are all based on blockchain
technology. It guarantees the security of location information of duplicates and
the reliability evaluation of storage nodes.
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Fig. 5. The nodes in ElasticChain Fig. 6. ElasticChain stored

4.1 Store

When the node reliability verification method is used for data storage, Elastic-
Chain uses the POR (Proofs of Retrievability) method [18,19] to encrypt the
blockchain data of the user nodes, and obtains the corresponding ciphertext and
key. POR are cryptographic proofs that prove the retrievability of non-local data.
More precisely, POR assume a model comprising of a user, and a service provider
that stores a file pertaining to the user. POR consist basically of a challenge-
response protocol in which the service provider proves to the user that its file
is still intact and retrievable. In ElasticChain, a user node stores the ciphertext
in storage nodes, the verification nodes can check the integrity of the data at
any time. While checking, the storage node will be randomly selected a portion
of the ciphertext data and return it to the verification node. The verification
node calculates the received ciphertext with the key generated by POR. Then,
we can find out whether the data in the storage node is complete. Thus, the
POR method can be used to verify the data integrity in real-time with a little
communication cost.

In the process of data storage, firstly, ElasticChain uses the POR method
to encrypt each block which belongs to the user nodes, and obtains the cor-
responding ciphertext and key. Secondly, the user nodes calculate the number
of duplicates for each block based on the duplicate ratio regulation algorithm.
Thirdly, the user nodes store the key generated by POR method into the local
memory, and send one copy of the key to the verification nodes. Finally, the
storage nodes store the ciphertext.

At this step, the node reliability verification method will access the reliability
information of storage nodes which is stored in the verification nodes, and find
out a few storage nodes with higher reliable values to store the data of each
block. In order to ensure the reliability information of storage nodes avoiding
being tampered with maliciously, the verification nodes store it into POR chain.

Meanwhile, in order to insure the read speed for user nodes, the storage
nodes’ addresses are returned to the user nodes and saved in the P chain. The
P chain ensures the security of these addresses. However, a P chain from a user
node only store the addresses which keep the ciphertext produced by this user
node. The other addresses of storage nodes are not stored in this user node. So,
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the user node can read its own data quickly. The process of ElasticChain storing
data is shown in Fig. 6, and the details of the process are shown in Algorithm 2.

Algorithm 2. ElasticChain store

1 Use POR method to encrypt each block.
2 The user node calculates the number of duplicates for each block.
3 The user node stores the key generated by the POR method into the local memory.
4 The user node sends one copy of the key to the verification nodes.
5 The verification node accesses the reliability of each storage node in the POR chain.
6 Return the storage nodes with the highest reliability to the user node.
7 Store each block in these storage nodes.
8 Return the addresses of storage nodes to the user node and store it in the P chain.

4.2 Retrieve

When a user node reads the data, the user node accesses the P chain in the local
disk to find out the storage location of the data. Then, ElasticChain system
finds the corresponding storage nodes according to the location information,
and asks them to return the ciphertext data to the user node. Finally, The user
node recoveries the ciphertext according to the key which is saved locally and
generated by POR method, and then obtains the initial data. The process of
ElasticChain retrieving is shown in Fig. 7, and the details of the process are
shown in Algorithm 3.

Algorithm 3. ElasticChain Retrieve

1 The user node accesses the P chain to find out the addresses of storage nodes.
2 Storage nodes return the ciphertext data to user node.
3 The user node retrieves the ciphertext according to the key generated by POR, and

obtains the initial data.

4.3 Storage Node Reliability Verification

In ElasticChain, the blocks are saved in storage nodes. However, storage nodes
may fail and produce DATM in some conditions. In order to reduce the instability
of storage nodes, the verification nodes verify the partial ciphertext data in real
time. The validation method requires storage nodes to send the randomly partial
ciphertext back at any time. After that, the verification nodes detect the storage
status of the storage nodes and write the real-time status into the POR chain.
When the user nodes apply for storing data, the verification nodes provide the
latest reliability value of storage node for the user nodes. Then, user nodes can
select the most stable storage nodes to store the block data.
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Fig. 7. ElasticChain retrievable Fig. 8. Storage node reliability verifi-
cation

The process of storage node reliability verification is shown in Fig. 8. Firstly,
ElasticChain sets the same reliability values to each storage node. Then, the
verification nodes check the reliability of data in storage nodes at every same
period of time. If the data in the storage nodes is complete, the reliability value
remains unchanged. If the storage node data is modified or lost, the verification
nodes will reduce its reliability value and store it in the POR chain. The Elas-
ticChain uses the reliability values of each storage node in the POR chain as a
standard to select the highly reliable storage nodes.

4.4 Incentive Mechanism

In bitcoin system, the miners calculate the hash value of the next block, and the
large numbers of calculations ensure the security of bitcoin. Thus, the bitcoin
system will award each successful miner a number of bitcoins. This has inspired
hundreds of miners to mine new bitcoins by consuming their calculation ability of
CPU and large amount of power. In ElasticChain, storage nodes and verification
nodes provide their own large disk space, which guarantees the data security of
the user nodes. For stimulating storage nodes and verification nodes, they can
be user nodes to store data safely or be paid by user nodes in ElasticChain. The
more storage space they provide, the more data they can store in ElasticChain
or the more payments they can get.

5 Evaluation

The experimental environment is a computer with IntelCore i5-6500, 3.20 GHz
of CPU and 16 GB of memory. Experimental nodes are created using VMware
Workstation 12.5.2. Each node has an ubuntu16.04 system with 1 GB of memory
and 60 GB of hard disk space. We built ElasticChain, P chain and POR chain
blockchain projects by use of the open source Hyperledge fabric v0.6.

The experiment established four, eight, twelve and sixteen nodes, respec-
tively. All nodes are storage nodes, user nodes and verification nodes. The exper-
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iments run a transaction code named chaincode example02.go. When each trans-
action is completed, a 5.39 KB broadcast message is generated.

Fig. 9. The average storage space occupied by per node

5.1 Storage Space

Firstly, we experimented on the storage space occupied by ElasticChain. In this
section, we designed 6 experiments, which compare with the ElasticChain and
Hyperledge fabric with the different number of nodes and processing different
amount of data.

When all nodes are running normally and are not attacked, each 500 KB
data is fragmented into a group of slices. The minimum number of duplicates for
each slice is 2, and the number of duplicates is calculated by Formula (6). When
the transaction completes 186 times, 930 times and 1860 times, the broadcast
data 1.00 MB, 5.00 MB, and 10.00 MB are generated, respectively. Figure 9 shows
the average storage space occupied by per node of ElasticChain and blockchain
system based on Hyperledge fabric. We can get the following conclusions.

(1) When few nodes join the network, the average storage space occupied by
each node in the ElasticChain is similar to that of the fabric blockchain.
However, when the number of nodes increases, the average storage space
occupied by ElasticChain nodes is reduced significantly.

(2) When the amount of data stored is small, the average storage space occupied
by the ElasticChain nodes is similar to that of the fabric blockchain. This
is because the location information of the storage nodes is saved in the P
chain, and the reliability evaluation information of storage nodes is saved in
the POR chain. The size of each data in the P chain and POR chain are
both fixed values. Therefore, when the amount of stored data is increasing
continuously, the average storage space occupied by the ElasticChain nodes
is reduced significantly compared with the fabric blockchain system.
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(3) As the stored data increasing, the increment of average storage space of
ElasticChain nodes tends to be flat.

Therefore, ElasticChain has good storage scalability in the multi-node and
large data applications.
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Fig. 10. The processing time of ElasticChain and Hyperledge fabric

Then, the processing time of ElasticChain and fabric are shown in Fig. 10.
The processing time refers to the time from when a transaction was started
to when it finished confirmation and write operation. We can get the following
conclusions.

(1) The processing time of ElasticChain is slightly longer than the time of Hyper-
ledge fabric. It is because that ElasticChain divides the blockchain into slices,
it will take some time to process. And in ElasticChain, the operations on P
chain and POR chain also take a period of time.

(2) With the number of nodes and storage data increasing, the processing time
of ElasticChain increases basically linearly. It is because when ElasticChain
stores each transaction, it will do the same work. ElasticChain will increase
the same length of time when it deal with the new transaction.

5.2 Fault Tolerance

In the practical applications, it is very common that some peers in blockchain
system go down, and the data in these peers cannot be recovered. The integrity
of the data would be affected. In Hyperledge fabric, the data is stored in each
node. When some peers go down, the user can download data from other nodes.
However, the duplicates of data in ElasticChain are less than that in Hyperledge
fabric, and ElasticChain will be more affected than Hyperledge fabric on the
integrity of data.

Our experiment set up 8, 12 and 16 storage nodes, and there were four nodes
of them are unstable nodes. These four unstable nodes were not verification
nodes, and the failure probability of them were 0.8, 0.6, 0.4 and 0.2, respectively.
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When the experiment had completed the transaction 930 times and 1860 times,
we got 5.00 MB and 10.00 MB of data, and the duplicates allocation strategy
was as same as the above experiment. Figure 11 shows the recovery of Elastic-
Chain, the blockchain system which only based on the duplicate ratio regulation
algorithm and Hyperledge fabric.
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Fig. 11. The fault tolerance of ElasticChain, the blockchain system only based on the
duplicate ratio regulation algorithm and Hyperledge fabric

It can be seen from Fig. 11 that the unstable nodes had a negligible effect
on Hyperledge fabric. The blockchain system which only based on the duplicate
ratio regulation algorithm was more affected, and the ElasticChain was less
affected. It is because that ElasticChain chose the better stability of the nodes
to store data through the reliability verification method. It can be seen from the
experiment that as the number of nodes are increased, the data recovery ratio
of ElasticChain increases, and the fault tolerance of the system is enhanced.

5.3 Security

We tested the security of ElasticChain refering to the Blockbench method [20].
When an attacker intentionally modifies the data in storage nodes, the blockchain
will produce a bifurcation. The security of the system can be judged by the num-
ber of blocks generated by the bifurcation blocks. The smaller number of bifur-
cation blocks are generated, the safer this system is. In practice, there are many
nodes to join the blockchain and we want to design the simulation in a pragmatic
way. In our experiments, we just did the experiment with 16 nodes, and did not
establish 4 nodes, 8 nodes and 12 nodes. When running Hyperledge fabric v0.6
and ElasticChain, the attack appeared at 100 s after the system beginning and
ended at 250 s. The running results of the two systems are shown in Fig. 12.

The experiment shows that when Hyperledge fabric and ElasticChain are
attacked, no bifurcation chains are created. It is because ElasticChain is also
based on the Hyperledger fabric system. The consensus of Hyperledger guaran-
tees the security of the blocks when the chains are attacked. However, when the
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Fig. 12. The security of ElasticChain

attack stopped, Hyperledge fabric and ElasticChain needed a period of time to
recover from the attack. As we can see from Fig. 12, ElasticChain has a longer
recovery time than the Hyperledger fabric.

The experiments above show that when the fabric-based ElasticChain is
attacked, the system is of high security, though it needs more processing time.

6 Conclusion

In our study, we present ElasticChain, which can improve storage scalability
under the premise of ensuring blockchain data safety. In ElasticChain, the dupli-
cate ratio regulation algorithm implements that the full nodes with small storage
capacity only store parts of the blockchain instead of the complete chain. The
reliability verification method was used for increasing the stability of storage
nodes and reducing the risk of data imperfect recovering caused by the reduction
of duplicate number. In the future, we can improve the duplicate ratio regulation
algorithm to compute the number of duplicates more accurate and reduce more
storage space under the premise of data security. Moreover, ElasticChain can be
applied to other blockchain systems, such as Ethereum and Parity.
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Abstract. Finding tree patterns hidden in large datasets is an impor-
tant research area that has many practical applications. Unfortunately,
previous contributions have focused almost exclusively on extracting pat-
terns from a set of small trees on a centralized machine. The problem
of mining embedded patterns from large data trees has been neglected.
However, this pattern mining problem is also important for many modern
applications that arise naturally and in particular with the explosion of
big data. In this paper, we propose a novel MapReduce approach to mine
embedded patterns from a single large tree which can handle situations
when either the tree itself or intermediate mining results at low frequency
thresholds cannot fit in the memory of any individual computer node.
Furthermore, we come up with a set of optimizations to minimize inter-
node communication. Experimental evaluation shows that our algorithm
can scale well to trees with over ten million vertices.

Keywords: Tree pattern · MapReduce · Holistic twig-join algorithm

1 Introduction

Nowadays, huge amounts of data are represented, exported and exchanged be-
tween and within organizations in tree-structure form, e.g., XML and JSON
files, RNA sequences, and software traces. Finding interesting tree patterns that
are hidden in tree datasets has many practical applications. The goal is to cap-
ture the complex relations that exist among the data entries. Because of its
importance, tree mining has been the subject of extensive research.

The Problem. Previous contributions have focused almost exclusively on min-
ing patterns from a set of small trees. The problem of mining embedded patterns
from large data trees has been neglected.

This can be explained by the increased complexity of this task due mainly
to three reasons: (a) embeddings generate a larger set of candidate patterns and
this substantially increases their computation time; (b) the problem of finding
an unordered embedding of a tree pattern to a data tree is NP-Complete [3].
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Cai et al. (Eds.): APWeb-WAIM 2018, LNCS 10988, pp. 455–462, 2018.
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This renders the computation of the frequency of a candidate embedded pattern
difficult; and (c) mining a large data tree is more complex than mining a set of
small data trees. Indeed, the single large tree setting is more general than the
set of small trees, since the latter can be modelled as a single large tree rooted
at a virtual unlabeled node.

2 Proposed Approach

As a common manner of many existing distributed pattern mining approaches,
our approach: EtpmLtd (Embedded Tree Pattern Miner on Large Tree Data)
iterates between the local mining phase and the global summary phase (Fig. 1.
shows the main framework of our approach).

We present the pesudo code of EtpmLtd with its local mining phase and
global summary phase in Algorithm 1. We assume the input data are prepro-
cessed to a list of occurrences of nodes in order of their depth-first position in
the tree. And inverted lists of each label are also extracted during the prepro-
cessing procedure. We use the list of occurrences of nodes as the input of our
algorithm.

One Iteration of EtpmLtd

Local Mining Phase(Map Phase)

Compute 
Node 2

Compute 
Node 1

Compute Node K

Expand
External

Descendants

TwigStack

MergeJoin Path
Occurrences

Input Tree

Data PartitionsPartition 
1

Partition 
2

Partition 
3

Partition 
K

Distributed Cache

Pattern 
Candidates

Node
Occurrences

Global Summary 
Phase(Reduce Phase)

Compute Node 1

Compute global 
support

Compute 
Node 2

Start

Frequent 
Patterns

Candidate 
Enumeration

Data
Partitioner

candidates 
are empty?false

End
true

Fig. 1. Framework of our proposal.

2.1 Candidate Generation

In order to systematically generate candidate patterns, we adopt the equivalence
class based pattern generation method introduced in [9] outlined next. To min-
imizing the redundant generation of the isomorphic representation of the same
pattern, we use a canonical form for tree patterns.
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Algorithm 1. EtpmLtd
1 Input : data partitions: T = {Ti, · · · }, minimum support threshold: minsup
2 Output : frequent pattern P
3 add T → C, size ← 1, candidates ← ∅, P ← ∅;
4 repeat
5 if size �= 1 then
6 add Enumerate(patterns) → C;

7 ΩP ← LocalMiningPhase(candidates, T);

8 patterns ← GlobalSummaryPhase(ΩP );
9 P ← P ∪ patterns;

10 until patterns is empty;
11 return P;

12 LocalMiningPhase Ti, candidates :
13 if size = 1 then
14 Report(label l, number of nodes with label l);

15 else
16 foreach P ∈ candidates do

17 ΩP
ci

← MergeJoin(Ti∪ Expand(Ti, P, C), P);

18 Report(P, ΩP
ci
);

19 GlobalSummaryPhase ΩP , minsup :

20 if [size = 1 & CountSupport(ΩP ) ≥ minsup] or IsFrequent(ΩP , minsup) then
21 Report(P);

Equivalence Class Expansion Based Candidate Generation. Let P be a
pattern of size k−1. Each node of P is identified by its depth-first position in the
tree. The rightmost leaf of P , denoted rml, is the node with the highest depth-
first position. The immediate prefix of P is the sub-pattern of P obtained by
deleting the rml from P . The equivalence class of P is the set of all the patterns
of size k that have P as the immediate prefix. We denote the equivalence class
of P as [P ].

Let [P ] be a prefix equivalence class of size k patterns, and let pair (x, i)
denote the pattern in the class where x represents the label of the rml, and i
represents the depth-first position of its father node in the pattern. We also use
P i

x represent the pattern. We can join any two patterns P i
x and any other pattern

P j
y (including itself) in [P ] by adding the rml of P j

y to the right most path of
P i

x to produce new patterns. The join operation ⊗ is defined as follows:

(1) If i = j, then pi
x ⊗ pj

y = (pi
x)j

y, only if P is not an empty immediate prefix;
(2) If i ≥ j, then pi

x ⊗ pj
y = (pi

x)k
y .

At the beginning of local mining phase of iteration k + 1, we obtain all pos-
sible frequent pattern candidates of size k + 1 (denoted as Ck+1) by performing
equivalence class expansion of the size k frequent patterns (denoted as Fk) mined
from iteration k (function Enumerate).

2.2 Local Mining Phase

Local mining phase extracts embeddings rooted at each partition for each pat-
tern. It corresponds to the map phase of MapReduce framework. Given a pattern
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P , we use P.al, P.rl and P.ol to represent the label(s) of all nodes, root node
and other nodes (exclude root) of the pattern respectively. We denote the occur-
rences list of label l from data partition distributed to compute node ci as Ol

ci ,
and the occurrences list of label l from data partition distributed to any other
compute nodes except ci as Ol

c−ci (c is the set of all compute nodes). One chal-
lenge of mining a partitioned tree is that a globally frequent pattern P can be
missed due to the fact that certain edges involved in the tree isomorphisms span
different partitions, which will results in false negatives.

Eliminating False Negatives via External Descendants. To prevent false
negatives, we propose a technique called external descendant expansion (function
Expand). The main idea is that before computing support for pattern P of
size k, we expand the partition Ti (the tree partition on compute node ci) by
requesting from other partitions the descendant nodes of root nodes of P . That
is, compute node ci has to obtain the occurrences list of P.ol on all other compute
nodes except ci, namely OP.ol

c−ci . So that compute node ci will be able to extract
all embeddings that the root of the pattern occurs on this data partition. To
minimize the occurrences list that compute node ci read from distributed cache,
for each pattern P and any occurrence oP.ol

c−ci from OP.ol
c−ci , we read it into memory

iff oP.ol
c−ci is a descendant of any occurrence oP.rl

ci from OP.rl
ci .

A Holistic Twig-Join Approach for Computing Path Occurrences. We
use a holistic twig-join algorithm TwigStack [2], the state-of-art algorithm for
computing all the occurrences of tree-pattern queries on tree data. Algorithm
TwigStack joins multiple inverted lists at a time to avoid generating intermediate
join results. And finally for any two path occurrences oPi

and oPlj
of path Pli

and Plj , they can be merge joined iff the data nodes do not obey the relations
of their corresponding pattern nodes.

2.3 An Improvement of EtpmLtd: Algorithm EtpmLtd+

Pattern Pruning via Local Support. For a globally frequent pattern P ,
let v∗ ∈ P.V denote the node with the minimum number of mappings. That
is σ(P ) = |Φ(v∗)|. Now, for each partition Ti, let OP

ci be the set of occur-
rences, and let Φi(v) be the corresponding set of mappings for any v ∈ P.V .
We could define the local support of P in partition Ti to be σi(P ) = |Φi(v∗)| =
minv∈P.V ){|Φi(v)|}. And further let v∗

i denote the node with the minimum
number of mappings in partition Ti. We define the maximum local frequency
of P as θ(P ) = maxv∈P.V {|Φi(v)|}. And a pattern is locally frequent iff
its maximum local frequency satisfies the condition that θ(P ) ≥ minsup/K.
Note that suppose P is not locally frequent, which is θ(P ) < minsup/K,
thus: minsup =

∑K
i=1 minsup/K >

∑K
i=1 θ(P ) =

∑K
i=1 maxv∈V {|Φi(v)|} ≥

maxv∈V {∑K
i=1 |Φi(v)|} ≥ minv∈V {∑K

i=1 |Φi(v)|} = minv∈V {|Φ(v)|} = σ(P ).
Which is σ(P ) < minsup. So that a pattern P could be globally frequent only
it’s locally frequent as the primary condition.
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Minimizing Communication via Support Bounding. To eliminate false
negatives, we came up with an external descendant expansion procedure. Now
we divide the occurrence lists of pattern P on partition Ti as two parts: ŌP

ci

and ÕP
ci , denoting the occurrence lists that can be found before the expansion

and the occurrences lists that only can be found after the expansion procedure.
It is obvious that OP

ci = ŌP
ci ∪ ÕP

ci , and ŌP
ci ∩ ÕP

ci = ∅. And on the basis of
ŌP

ci and ÕP
ci , we define the before-expansion local support and after-expansion

local support as σ̄i(P ) and σ̃i(P ). By the relations of OP
ci , ŌP

ci and ÕP
ci , we

can get σi(P ) = σ̄i(P ) + σ̃i(P ). Then global frequency of pattern P satisfies the
following condition: σi(P ) =

∑K
i=1 (σ̄i(P ) + σ̃i(P )) ≥ ∑K

i=1 σ̄i(P ). Hence we can
derive a lower bound estimation for σ(P ) as: σ̄(P ) =

∑K
i=1 minv∈P {|Φ̄i(v)|} =

∑K
i=1

⋃
|OP

ci
| φ̄(v). In which Φ̄i(v) and φ̃(v) represent the set or an instance of

unique mappings for a node in P respectively. For a pattern P , if σ̄(P ) ≥ minsup,
we can say that the pattern P is globally frequent.

3 Experimental Evaluation

Experimental Settings. All our distributed experiments are performed on a
Hadoop cluster with up to 20 nodes. Each node consists of a 12-core 2.6 GHz pro-
cessor, with 256 GB memory for namenode and 128 GB memory for datanodes.
We conduct experiments on the following three algorithms and compare their
performance in terms of running time and communication cost: (1) EtpmLtd; (2)
EtpmLtd+; (3) A baseline approach that partitions pattern candidates among
compute nodes and each compute node reads a complete copy of tree data, which
we call BaselineLtd in short. Baseline approach also works in an iterative way.
It uses the same algorithm to enumerate pattern candidates and count support
with EtpmLtd and EtpmLtd+.

Datasets. We used two main datasets in our experiments, namely, Treebank1,
and xml. The properties of the datasets are shown in Table 1. The xml datasets
(xmlf1, xmlf5, xml10 and xmlf20) are generated by XMark [6], which is a XML
document generator that produces scaled documents according to the DTD spec-
ified in The XML Benchmark Project. The factor f decides the scaling of the
document. We set f to 1, 5, 10 and 20 to obtain XML documents and prepro-
cessed them to single large tree datasets by their xml elements.

Performance Results. We study the performance of the distributed algo-
rithms by varying one of the two different parameters, namely user defined
parameter minimum support (minsup) and the number of partitions (K), while
keeping the other fixed. In the plots which X axis represents the parameter
minsup, the value s on the X axis indicates minsup of s% with respect to
number of nodes |V |, i.e., we are using relative support for each pattern.
1 http://www.cis.upenn.edu/∼treebank.

http://www.cis.upenn.edu/~treebank
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Table 1. Datasets properties.

Dataset # V # Labels # Paths Size (KB)

Treebank 2,437,666 250 1,392,231 122,949

xmlf1 1,666,315 74 1,211,774 82,351

xmlf5 8,353,141 74 6,073,932 427,654

xmlf10 16,703,050 74 12,147,169 874,926

xmlf20 33,423,024 74 24,305,687 1,777,761
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Fig. 2. Running time and communication cost on 2 datasets under different thresholds.

Varying Minsup. In this section, the number of partitions K is set as 130. Figure 2
shows the running time and communication cost for xmlf1 and Treebank. We
calculate the communication cost by the HDFS communication by all compute
nodes. We observe that our algorithms EtpmLtd and EtpmLtd+ can run even
at a very low minsup. On xmlf1, BaselineLtd would crash down for threshold
lower than 1%. And on both datasets, we can conclude that EtpmLtd+ can run
faster than EtpmLtd, and with far more less communication cost. For the reason
that xmlf1 are relatively small tree data, it can be fit into an individual node
memory, so that BaselineLtd, which need no more information once the data
partitions are assigned, can run faster than our algorithms. But it would turn
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out to be infeasible for lower threshold setting or larger scale data. And we can
see that for Treebank, BaselineLtd crashes down even at the highest support
level in the experimental settings.

Varying Number of Partitions. In this section, we will compare the influence
on EtpmLtd and EtpmLtd+ by setting different number of data partitions on
Treebank. We set the number of partitions from 220 to 40, with 30 step size.
Figure 3 shows the running time. Results reveal that too many or too little data
partitions are both not good for the performance of our MapReduce approaches.

Scalability. We use xml1, xmlf5, xmlf10 and xmlf20 to evaluate the scalability of
EtpmLtd, EtpmLtd+ and BaselineLtd. The numbers in their names are almost
equal to the ratio of their dataset scale. The minimum support threshold setting
is 1.0%. We conduct an experiment on a centralized machine with our sequential
version of EtpmLtd, and results show that running on xmlf5, xmlf10 and xmlf20
would crash down with an OutOfMemory Exception. Figure 4 shows the running
time of EtpmLtd, EtpmLtd+ and BaselineLtd on the four datasets. Even for a
dataset with scale of more than 10 million vertices, EtpmLtd and EtpmLtd+
can work well. But BaselineLtd would fail for the lack of memory.

4 Related Work

The problem of mining tree patterns has been studied since the last decade.
Among many such algorithms, sleuth [9] is the representative one for mining
unordered embedded patterns. And EmbTPMBit [8] is the first sequential algo-
rithm for mining unordered embedded patterns from a large single tree. It com-
pactly encodes embedded occurrences of the patterns into lists of occurrences for
the nodes of the patterns. The experimental results of [8] show that EmbTPM-
Bit greatly outperforms sleuth. We employee the same idea of EmbTPMBit for
computing pattern support.

DistGraph [7] is a distributed approach for mining induced patterns from
large single graph data. The distributed system it uses can directly do commu-
nication between compute nodes. The optimizations designed in this paper are
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partially inspired by the work of DistGraph. Several other algorithms are mining
patterns from a set of small graphs. For instance, FSM-H [1] and MRFSE [5]
are two iterative approach based on MapReduce to mine unordered patterns.
MRFSM [4] is a two-step filter-and-refinement MapReduce framework for fre-
quent subgraph mining.

5 Conclusion

In this paper, we proposed and studied a MapReduce-based approach for fre-
quent embedded pattern mining: EtpmLtd and its optimized version EtpmLtd+.
They ensure no false negatives by expand local data to obtain external descen-
dants. EtpmLtd+ uses local support bounding to minimize the communication
cost, which can result in an evident speedup.

We conduct experiments to compare the properties of these two algorithms
and evaluate the performance against the BaselineLtd approach that uses the
pattern candidates partition scheme. The result shows that our two algorithms
both can work well on large datasets with minsup set extremely low while Base-
lineLtd crashes.
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