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Preface

This volume (LNCS 10987) and its companion volume (LNCS 10988) contain the
proceedings of the second Asia-Pacific Web (APWeb) and Web-Age Information
Management (WAIM) Joint Conference on Web and Big Data, called APWeb-WAIM.
This joint conference aims to attract participants from different scientific communities
as well as from industry, and not merely from the Asia Pacific region, but also from
other continents. The objective is to enable the sharing and exchange of ideas, expe-
riences, and results in the areas of World Wide Web and big data, thus covering Web
technologies, database systems, information management, software engineering, and
big data. The second APWeb-WAIM conference was held in Macau during July
23-25, 2018. As an Asia-Pacific flagship conference focusing on research, develop-
ment, and applications in relation to Web information management, APWeb-WAIM
builds on the successes of APWeb and WAIM: APWeb was previously held in Beijing
(1998), Hong Kong (1999), Xi’an (2000), Changsha (2001), Xi’an (2003), Hangzhou
(2004), Shanghai (2005), Harbin (2006), Huangshan (2007), Shenyang (2008), Suzhou
(2009), Busan (2010), Beijing (2011), Kunming (2012), Sydney (2013), Changsha
(2014), Guangzhou (2015), and Suzhou (2016); and WAIM was held in Shanghai
(2000), Xi’an (2001), Beijing (2002), Chengdu (2003), Dalian (2004), Hangzhou
(2005), Hong Kong (2006), Huangshan (2007), Zhangjiajie (2008), Suzhou (2009),
Jiuzhaigou (2010), Wuhan (2011), Harbin (2012), Beidaihe (2013), Macau (2014),
Qingdao (2015), and Nanchang (2016). The first joint APWeb-WAIM conference was
held in Bejing (2017). With the fast development of Web-related technologies, we
expect that APWeb-WAIM will become an increasingly popular forum that brings
together outstanding researchers and developers in the field of the Web and big data
from around the world. The high-quality program documented in these proceedings
would not have been possible without the authors who chose APWeb-WAIM for
disseminating their findings. Out of 168 submissions, the conference accepted 39
regular (23.21%), 31 short research papers, and six demonstrations. The contributed
papers address a wide range of topics, such as text analysis, graph data processing,
social networks, recommender systems, information retrieval, data streams, knowledge
graph, data mining and application, query processing, machine learning, database and
Web applications, big data, and blockchain. The technical program also included
keynotes by Prof. Xuemin Lin (The University of New South Wales, Australia),
Prof. Lei Chen (The Hong Kong University of Science and Technology, Hong Kong,
SAR China), and Prof. Ninghui Li (Purdue University, USA) as well as industrial
invited talks by Dr. Zhao Cao (Huawei Blockchain) and Jun Yan (YiDu Cloud). We
are grateful to these distinguished scientists for their invaluable contributions to the
conference program. As a joint conference, teamwork was particularly important for
the success of APWeb-WAIM. We are deeply thankful to the Program Committee
members and the external reviewers for lending their time and expertise to the con-
ference. Special thanks go to the local Organizing Committee led by Prof. Zhiguo Gong.



VI Preface

Thanks also go to the workshop co-chairs (Leong Hou U and Haoran Xie), demo
co-chairs (Zhixu Li, Zhifeng Bao, and Lisi Chen), industry co-chair (Wenyin Liu), tutorial
co-chair (Jian Yang), panel chair (Kamal Karlapalem), local arrangements chair
(Derek Fai Wong), and publicity co-chairs (An Liu, Feifei Li, Wen-Chih Peng, and
Ladjel Bellatreche). Their efforts were essential to the success of the conference. Last
but not least, we wish to express our gratitude to the treasurer (Andrew Shibo Jiang),
the Webmaster (William Sio) for all the hard work, and to our sponsors who generously
supported the smooth running of the conference. We hope you enjoy the exciting
program of APWeb-WAIM 2018 as documented in these proceedings.

June 2018 Yi Cai
Jianliang Xu
Yoshiharu Ishikawa



Organizing Committee

Honorary Chair
Lionel Ni

General Co-chairs

Zhiguo Gong
Qing Li
Kam-fai Wong

Program Co-chairs
Yi Cai

Yoshiharu Ishikawa
Jianliang Xu

Workshop Chairs

Leong Hou U
Haoran Xie

Demo Co-chairs

Zhixu Li
Zhifeng Bao
Lisi Chen

Tutorial Chair

Jian Yang

Industry Chair
Wenyin Liu

Panel Chair

Kamal Karlapalem

Publicity Co-chairs

An Liu
Feifei Li

Organization

University of Macau, SAR China

University of Macau, SAR China
City University of Hong Kong, SAR China
Chinese University of Hong Kong, SAR China

South China University of Technology, China
Nagoya University, Japan
Hong Kong Baptist University, SAR China

University of Macau, SAR China
Education University of Hong Kong, SAR China

Soochow University, China
RMIT, Australia
Wollongong University, Australia

Macquarie University, Australia

Guangdong University of Technology, China

HIT, Hyderabad, India

Soochow University, China
University of Utah, USA



VI Organization

Wen-Chih Peng
Ladjel Bellatreche

Treasurers

Leong Hou U
Andrew Shibo Jiang

Local Arrangements Chair

Derek Fai Wong

Webmaster
William Sio

National Taiwan University, China
ISAE-ENSMA, Poitiers, France

University of Macau, SAR China

Macau Convention and Exhibition Association,

SAR China

University of Macau, SAR China

University of Macau, SAR China

Senior Program Committee

Bin Cui
Byron Choi
Christian Jensen
Demetrios
Zeinalipour-Yazti
Feifei Li
Guoliang Li
K. Sel¢uk Candan
Kyuseok Shim
Makoto Onizuka
Reynold Cheng
Toshiyuki Amagasa
Walid Aref
Wang-Chien Lee
Wen-Chih Peng
Wook-Shin Han Pohang
Xiaokui Xiao
Ying Zhang

Program Committee

Alex Thomo

An Liu

Baoning Niu

Bin Yang

Bo Tang
Zouhaier Brahmia
Carson Leung
Cheng Long

Peking University, China

Hong Kong Baptist University, SAR China
Aalborg University, Denmark

University of Cyprus, Cyprus

University of Utah, USA

Tsinghua University, China

Arizona State University, USA

Seoul National University, South Korea
Osaka University, Japan

The University of Hong Kong, SAR China
University of Tsukuba, Japan

Purdue University, USA

Pennsylvania State University, USA
National Chiao Tung University, Taiwan

University of Science and Technology, South Korea

National University of Singapore, Singapore
University of Technology Sydney, Australia

University of Victoria, Canada

Soochow University, China

Taiyuan University of Technology, China
Aalborg University, Denmark

Southern University of Science and Technology, China

University of Sfax, Tunisia
University of Manitoba, Canada
Queen’s University Belfast, UK



Chih-Chien Hung
Chih-Hua Tai
Cuiping Li
Daniele Riboni
Defu Lian

Dejing Dou

Dimitris Sacharidis

Ganzhao Yuan

Giovanna Guerrini

Guanfeng Liu
Guoqiong Liao
Guanling Lee
Haibo Hu
Hailong Sun
Han Su
Haoran Xie
Hiroaki Ohshima
Hong Chen
Hongyan Liu
Hongzhi Wang
Hongzhi Yin
Hua Wang
laria Bartolini
James Cheng
Jeffrey Xu Yu
Jiajun Liu
Jialong Han
Jianbin Huang
Jian Yin
Jiannan Wang
Jianting Zhang
Jianxin Li
Jianzhong Qi
Jinchuan Chen
Ju Fan

Jun Gao

Junhu Wang
Kai Zeng

Kai Zheng

Karine Zeitouni
Lei Zou

Leong Hou U
Liang Hong
Lianghuai Yang

Organization IX

Tamkang University, China

National Taipei University, China

Renmin University of China, China

University of Cagliari, Italy

Big Data Research Center, University of Electronic
Science and Technology of China, China

University of Oregon, USA

Technische Universitidt Wien, Austria

Sun Yat-sen University, China

Universita di Genova, Italy

The University of Queensland, Australia

Jiangxi University of Finance and Economics, China

National Dong Hwa University, China

Hong Kong Polytechnic University, SAR China

Beihang University, China

University of Southern California, USA

The Education University of Hong Kong, SAR China

University of Hyogo, Japan

Renmin University of China, China

Tsinghua University, China

Harbin Institute of Technology, China

The University of Queensland, Australia

Victoria University, Australia

University of Bologna, Italy

Chinese University of Hong Kong, SAR China

Chinese University of Hong Kong, SAR China

Renmin University of China, China

Nanyang Technological University, Singapore

Xidian University, China

Sun Yat-sen University, China

Simon Fraser University, Canada

City College of New York, USA

Beihang University, China

University of Melbourne, Australia

Renmin University of China, China

Renmin University of China, China

Peking University, China

Griffith University, Australia

Microsoft, USA

University of Electronic Science and Technology
of China, China

Université de Versailles Saint-Quentin, France

Peking University, China

University of Macau, SAR China

Wuhan University, China

Zhejiang University of Technology, China



X Organization

Lisi Chen

Lu Chen

Maria Damiani
Markus Endres
Mihai Lupu

Mirco Nanni
Mizuho Iwaihara
Peiquan Jin

Peng Wang

Qin Lu

Ralf Hartmut Giiting
Raymond Chi-Wing Wong

Ronghua Li
Rui Zhang
Sanghyun Park
Sanjay Madria
Shaoxu Song
Shengli Wu
Shimin Chen
Shuai Ma
Shuo Shang

Takahiro Hara
Tieyun Qian
Tingjian Ge
Tom Z. J. Fu
Tru Cao
Vincent Oria
Wee Ng

Wei Wang
Weining Qian
Weiwei Sun
Wen Zhang
Wolf-Tilo Balke
Wookey Lee
Xiang Zhao
Xiang Lian
Xiangliang Zhang

Xiangmin Zhou
Xiaochun Yang
Xiaofeng He
Xiaohui (Daniel) Tao
Xiaoyong Du

Xike Xie

Wollongong University, Australia

Aalborg University, Denmark

University of Milan, Italy

University of Augsburg, Germany

Vienna University of Technology, Austria

ISTI-CNR Pisa, Italy

Waseda University, Japan

University of Science and Technology of China, China

Fudan University, China

University of Technology Sydney, Australia

Fernuniversitit in Hagen, Germany

Hong Kong University of Science and Technology,
SAR China

Shenzhen University, China

University of Melbourne, Australia

Yonsei University, South Korea

Missouri University of Science and Technology, USA

Tsinghua University, China

Jiangsu University, China

Chinese Academy of Sciences, China

Beihang University, China

King Abdullah University of Science and Technology,
Saudi Arabia

Osaka University, Japan

Wuhan University, China

University of Massachusetts, Lowell, USA

Advanced Digital Sciences Center, Singapore

Ho Chi Minh City University of Technology, Vietnam

New Jersey Institute of Technology, USA

Institute for Infocomm Research, Singapore

University of New South wales, Australia

East China Normal University, China

Fudan University, China

Wuhan University, China

Technische Universitdt Braunschweig, Germany

Inha University, South Korea

National University of Defence Technology, China

Kent State University, USA

King Abdullah University of Science and Technology,
Saudi Arabia

RMIT University, Australia

Northeast University, China

East China Normal University, China

The University of Southern Queensland, Australia

Renmin University of China, China

University of Science and Technology of China, China



Xin Cao

Xin Huang

Xin Wang
Xingquan Zhu
Xuan Zhou
Yafei Li
Yanghua Xiao
Yanghui Rao
Yang-Sae Moon
Yaokai Feng

Yi Cai

Yijie Wang
Yingxia Shao
Yongxin Tong
Yu Gu

Yuan Fang
Yunjun Gao
Zakaria Maamar
Zhaonian Zou
Zhiwei Zhang

Organization

The University of New South Wales, Australia
Hong Kong Baptist University, SAR China
Tianjin University, China

Florida Atlantic University, USA

Renmin University of China, China
Zhengzhou University, China

Fudan University, China

Sun Yat-sen University, China

Kangwon National University, South Korea
Kyushu University, Japan

South China University of Technology, China

National University of Defense Technology, China

Peking University, China

Beihang University, China

Northeastern University, China

Institute for Infocomm Research, Singapore
Zhejiang University, China

Zayed University, United Arab of Emirates
Harbin Institute of Technology, China
Hong Kong Baptist University, SAR China

XI



Keynotes



Graph Processing: Applications, Challenges,
and Advances

Xuemin Lin

School of Computer Science and Engineering,
University of New South Wales, Sydney
lxue@cse.unsw.edu.au

Abstract. Graph data are key parts of Big Data and widely used for modelling
complex structured data with a broad spectrum of applications. Over the last
decade, tremendous research efforts have been devoted to many fundamental
problems in managing and analyzing graph data. In this talk, I will cover various
applications, challenges, and recent advances. We will also look to the future
of the area.



Differential Privacy in the Local Setting

Ninghui Li

Department of Computer Sciences, Purdue University
ninghui@cs.purdue.edu

Abstract. Differential privacy has been increasingly accepted as the de facto
standard for data privacy in the research community. Recently, techniques for
satisfying differential privacy (DP) in the local setting, which we call LDP, have
been deployed. Such techniques enable the gathering of statistics while pre-
serving privacy of every user, without relying on trust in a single data curator.
Companies such as Google, Apple, and Microsoft have deployed techniques for
collecting user data while satisfying LDP. In this talk, we will discuss the state
of the art of LDP. We survey recent developments for LDP, and discuss pro-
tocols for estimating frequencies of different values under LDP, and for com-
puting marginal when each user has multiple attributes. Finally, we discuss
limitations and open problems of LDP.



Big Data, AIL, and HI, What is the Next?

Lei Chen

Department of Computer Science and Engineering, Hong Kong University
of Science and Technology
leichen@cse.ust.hk

Abstract. Recently, Al has become quite popular and attractive, not only to the
academia but also to the industry. The successful stories of Al on Alpha-go and
Texas hold ’em games raise significant public interests on Al. Meanwhile,
human intelligence is turning out to be more sophisticated, and Big Data
technology is everywhere to improve our life quality. The question we all want
to ask is “what is the next?”. In this talk, I will discuss about DHA, a new
computing paradigm, which combines big Data, Human intelligence, and Al
First I will briefly explain the motivation of DHA. Then I will present some
challenges and possible solutions to build this new paradigm.
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Abstract. Achieving fuzzy searching encryption (FSE) can greatly
enrich the basic function over cipher-texts, especially on encrypted
database (like CryptDB). However, most proposed schemes base on cen-
tralized inverted indexes which cannot handle complicated queries with
wild-cards. In this paper, we present a well-designed FSE schema through
Locality-Sensitive-Hashing and Bloom-Filter algorithms to generate two
types of auxiliary columns respectively. Furthermore, an adaptive rewrit-
ing method is described to satisfy queries with wild-cards, such as percent
and underscore. Besides, security enhanced improvements are provided
to avoid extra messages leakage. The extensive experiments show effec-
tiveness and feasibility of our work.

Keywords: Fuzzy searching encryption + Wild-cards searching
CryptDB

1 Introduction

Cloud database is a prevalent paradigm for data outsourcing. In considera-
tion of data security and commercial privacy, both individuals and enterprises
prefer outsourcing them in encrypted form. CryptDB [21] is a typical out-
sourced encrypted database (OEDB) which supports executing SQL statements
on cipher-texts. Its transparency essentially relies on the design of splitting attri-
butions and rewriting queries on proxy middle-ware. Under this proxy-based
encrypted framework, several auxiliary columns are extended with different
encryptions and query semantics are preserved through modifying or appending
SQL statements.
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To enrich basic functions on cipher-texts, searchable symmetric encryp-
tion (SSE) is proposed for keyword searching with encrypted inverted indexes
[4,13,22,24], and then dynamic SSE (DSSE) achieves alterations on various cen-
tralized indexes to enhance applicability [2,11,12,14]. Besides, the studies about
exact searching with boolean expressions are extended in this field to increase
accuracy [3,10]. Furthermore, the researches of similar searching among docu-
ments or words are widely discussed through introducing locality sensitive hash-
ing algorithms [1,7-9,15,18,19,23,25-27]. However, these proposed schemes are
not applicable to OEDB scenario because of the centralized index design and
cannot handle complex fuzzy searching with wild-cards.

____Queries [ Rewrited SQLs,
Plaintext results [ h Matched DET values
-
Different Encryptions '

DET determined cipher-texts >

OPE preserving order of numbers

FSE fuzzy searching with wild-cards

HOM homomorphism for sum,avg

Fig. 1. The client-proxy-database framework synthesizes various encryptions together,
such as the determined encryption (DET) preserves symmetric character for
en/decryption, the order-preserving encryption (OPE) persists order among numeric
values, the fuzzy searching encryption (FSE) handles queries on text, and the homo-
morphic encryption (HOM) achieves aggregation computing.

Therefore, it is meaningful and necessary to achieve fuzzy searching encryp-
tion over outsourced encrypted database. As shown in Fig. 1, the specific frame-
work accomplishes transparency and homomorphism by rewriting SQL state-
ments on auxiliary columns. In this paper, we focus on resolving the functionality
of ‘like’ queries with wild-cards (‘% and ¢_’). Our contributions are summarized
as follows:

— We propose a fuzzy searching encryption with complex wild-cards queries on
encrypted database which extends extra functionality for the client-proxy-
database framework like CryptDB.

— We present an adaptive rewriting method to handle different query cases on
two types of auxiliary columns. The formal column works for similar search-
ing by locality sensitive hashing and the latter multiple columns work for
maximum substring matching by designed bloom-filter vectors.

— We evaluate the efficiency, correctness rate and space overhead by adjusting
the parameters in auxiliary columns. Besides, security enhanced improve-
ments are provided to avoid extra messages leakage. The extensive experi-
ments also indicate the effectiveness and feasibility of our work.

The rest of paper is organized as follows. Section 2 discusses the related work
and Sect. 3 introduces some basic concepts and definitions. Section4 describes
our schema including initialization of auxiliary columns, adaptive rewriting
queries and security enhanced improvements. Section 5 presents the experiments
and a brief conclusion is given in Sect. 6.
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2 Related Work

In recent years, many proposed schemes have been attempting to achieve fuzzy
searching encryption with helps of similarity [1,8,9,15,23,25-27]. The most of
them introduce locality sensitive hashing (LSH) to map similar items together
and bloom-filter to change the method of measuring. Wang et al.’s work [23] was
one of the first works to present fuzzy searching. They encode every words in
each file into same large bloom-filter space as a vector and evaluate similarity of
target queries by computing the inner product for top-k results among vectors.
Kuzu et al.’s work [15] generates similar feature vectors by embedding keyword
strings into the Euclidean space which approximately preserves the relative edit
distance. Fu et al.’s work [8] proposes an efficient multi-keyword fuzzy ranked
search schema which is suitable for common spelling mistakes. It benefits from
counting uni-gram among keywords and transvection sorting to obtain ranked
candidates. Wang et al.’s work [26] generates a high-dimensional feature vector
by LSH to support large-scale similarity search over encrypted feature-rich mul-
timedia data. It stores encrypted inverted file identifier vectors as indexes while
mapping similar objects into same or neighbor keyword-buckets by LSH based on
FEuclidean distance. In contrast to sparse vectors from bi-gram mapping, their
work eliminates the sparsity and promotes the correctness as well. However,
there are many problems in existing schemes including the insufficient metric
conversion, the coarse-grained similarity comparison, the extreme dependency
of assistant programs and the neglect about wild-card queries.

Meanwhile, the proposal of CryptDB [21] has attracted world-wide attention
because they provide a practical way to combine various attribution-preserving
encryptions over encrypted database. Then many analogous researches [5,16,17,
20] study its security definitions, feasible frameworks, extensible functions and
optimizations. Chen et al. [5] consider these encrypted database as a client-proxy-
database framework and presents symmetric column for en/decryption and aux-
iliary columns for supporting executions. This framework helps execute SQL
statements directly over cipher-texts through appending auxiliary columns with
different encryptions. It also benefits from the transparency of en/decryption
processes and combines various functional encryptions together. Therefore, it is
meaningful to achieve efficient fuzzy searching with complex wild-cards queries
on proxy-based encrypted database.

3 Preliminaries

3.1 Basic Concepts

A. N-gram. In the fields of computational linguistics and probability, the n-
gram method is proposed for measurement by generating a contiguous sequence
of items from given strings. Essentially, it converts texts to fragments sets
for vectorization while preserving some connotative connections. As shown in
Table 1, various n-gram methods are utilized to preserve different implicit inner
relation from origin strings.
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Table 1. Various n-gram forms in our scheme

N-gram methods Value Description

String secure The original keyword

Counting uni-gram [8] |s1, el, c1, ul, rl, e2 Preserve repetitions

Bi-gram 7#s, se, ec, cu, ur, re, ef# | Preserve adjacent letters
Tri-gram sec, ecu, cur, ure Preserve triple adjacent letters
Prefix and suffix @s, e@ Beginning and ending of sentence

In general, bi-gram is the most common converting method which maintains
the connotative information between adjacent letters. However, each change of
single letter will double influence bi-gram results and cause reduction of matching
probability. The counting uni-gram preserves repetitions and benefits on letter-
confused comparison cases, such as misspelling of a letter, missing or adding a
letter and reversing the order of two letters. However, it reduces the degree of
constraint along with increasing false positives. The tri-gram is a more strict
method which only suits the specific scene like existing judgment. The prefix
and suffix preserve the beginning and ending of data to meet edge-searching.

B. Bloom-Filter. The Bloom-filter is a compact structure reflecting whether
specific elements exist in prepared union. In our schema, we introduce this algo-
rithm to judge existence about maximized substring fragments and represent
the sparse vector through decimal numbers in separated columns. Given words
fragments set S = {eq, ..., exe}, a bloom-filter maps each element e; into a same
[-bit sparse array by k independent hash functions. Positive answer is provided
only if all bits of matched positions are true.

C. Locality Sensitive Hashing. The locality sensitive hashing (LSH) algo-
rithm helps reduce the dimension of high-dimensional data. In our schema, we
introduce this algorithm to map similar items together with high probability.
Besides, the specific manifestation of the algorithm is different under different
measurement standards. However, there is no available method for levenshtein
distance among text. So that a common practice is converting texts to fragment
sets with n-gram methods.

Definition 1 (Locality sensitive hashing). Given a distance metric function
D, a hash function family H = {h; : {0,1}* — {0,1}|i = 1,...,M} is
(11,79, p1,p2)-sensitive if for any s,t € {0,1}? and any h € H satisfies:

if D(s,t) <1y then Prlh;(p) = hi(q)] = p1;

if D(s,t) > ro then Prih;(p) = hi(q)] < p2.

For nearest neighbor searching, p; > ps and r; < 7y is needed. Practically,
feasible permutations are generated through surjective hashing functions with
our security parameter X\. And the minhash algorithm helps map fragment sets
of every separated words which achieves similar searching.
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3.2 Functional Model

Let D = (dy,...,dgp) be sensitive row data (each line contains some words
respectively, as d; Uld |1w ) and C' = {cget, cisn, cor} be the corresponding
cipher-texts. Two types of 1ndexing methods are enforced: the first one achieves
similar searching among words through dimension reductions with locality sensi-
tive hashing (let m be the dimension of LSH, n be the tolerance and £ represents
its conversion); the last one achieves maximum substring matching through bit
operation with bloom-filter (let  be the length of vector space, k be the amount
of hashing functions and B represents its conversion). We consider LSH tokens

set T; = L7, (Uldi‘ Gss(w})) be the elementary ciphers for ¢;sp, and BF vector

V; = BF (U‘d Gmsm(w})) be the ciphers of whole continuous sequence for cyy.
Besides, G represents n-gram methods for similar searching or maximum sub-
string matching.

Definition 2 (Fuzzy searching encryption). A proxzy-based encrypted database
implements fully fuzzy searching with rewriting SQL statements through the fol-
lowing polynomial-time algorithms:

(Kaet, L, BF) « KeyGen(\, m, n, I, k): Given security parameter A,
dimension m of LSH and tolerance n, vector length [ of BF and hash amount k,
it outputs a primary key Kg.; for determining encryption, £ for LSH, Blk for
BF. The security parameter A helps initialize the hash functions and random-
ization processes.

(Cdet; Ti, Vi) «— Index(d;, LT, Blk): Given the LSH function £} and the
BF function l’)’l’C , the plain-text d; is encrypted to determined cipher-texts cget,
ciphers T; for similar searching and ciphers V; for maximum substring matching
respectively.

(caet]|T3]|V;) < Trapdoor(expression): Given the query expression analyzed
from ‘like’ clause, the adaptive rewriting method help generate representing ele-
ments out of different considerations with wild-cards condition. The determined
cipher-texts would return in next step over encrypted database and Kg.; helps
decryption.

As shown in definition of fuzzy searching encryption, we mainly emphasize
transformation processes like building, indexing and executing. There exist other
functional methods such as updating, deleting to achieve dynamically of our
schema. It is applicable for outsourced encrypted database through rewriting
SQL statements including ‘create’, ‘insert’, ‘select” and so on.

3.3 Security Notions

Our security definition follows the widely-accepted security frameworks in this
field [6,12,15,22]. It is summarized in fuzzy query over encrypted database that
the overall security relies on the cryptographic assurance of indexes and trap-
doors. In our schema, we store extra functional ciphers as indexes and rewrite
queries as trapdoors. The security guarantee means there is no additional infor-
mation leaked other than the functional results of fuzzy query.
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4 Proposed Fuzzy Searching Encryption

4.1 Two Types of Functional Auxiliary Columns

The multiple-attributions-splitting design in cloud database synthesizes various
encryptions to preserve query semantics. As shown in Table 2, two types of aux-
iliary columns (¢-LSH and ¢-BF) are appended on cloud database along with a
symmetrical determined column (DET).

Table 2. Storage pattern of multiple functional columns in database

Cdet cish(m = 4, wid = 2) cpp(l) cbf(’VSl—Qb
0x1234 (“I love apple”) 19030024, 01000409, 00020412 | 1077036627 | ... | 1957741388
0x3456 (“lave banana”) 01000409, 00020303 1079642851 | ... | 625017556
0x5678 (“I love coconut”) | 19030024, 01000409, 06000700 | 1626500087 | ... | 1687169793

This schema aims at handling queries with wild-cards on cipher-texts. So that
several appended columns could store different functional ciphers with various
encryptions, such as determination (DET) of data for equality, locality sensitive
hashing (LSH) of words fragments for similar searching, bloom-filter (BF) among
lines for maximum substring matching.

A. c-LSH. The ¢-LSH column, which stores the locality sensitive hashing values
of each sentence, represents a message digest after dimensionality reduction. It

N-gram

Sparse 1{of1|ofof1|o|o|21|2]|21|0f1]0O
vector

IPA: inverted position array(lave)={1,2,4,7,10,11,12,14,17,20}

‘ Permutation Hashing ‘

MinHash

Algorithm [ p1=(83169,5247,121314150011,16 18191720 | [ 3|

[ p2=16131891524101214836,15717,192001) | [ 5 |

[ p3-13515318692416710121419071181201 | [ 8 |

SEEIC [ p4=19136129247,1011,1320151416 517,188} | [ 2|

Encrypted data in DB
DET h1 h2 h3 ha C-LSH

Enc(l lave apple) 13,5 2,51 6,8,1 2,2,4 1262,3582,5114

Enclllove appletoo) 1,354 2512 6912 2,245 1262,3592,5114,4225

Fig.2. A sample with bi-gram method (counting uni-gram as well) to show trans-
forming process: (1) split sentences in line to multiple words; (2) transport a word
to fragments with n-gram and build inverted position array; (3) execute dimension
reduction with LSH and get m features; (4) link features to a token for each word; (5)
combine tokens in line with comma.
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helps map similar items together with probability which equals to the jaccard
distance between their inverted position arrays (IPA for short).

During transforming process, n-gram methods are utilized (such as bi-gram
and counting uni-gram) for dividing texts into fragments and finally to sparse vec-
tors (IPA for short). As shown in Fig. 2, the transforming process maps every rows
to separate signature collections by steps. This process changes measurement from
levenshtein distance on texts to jaccard similarity on IPAs. So that the particular
minhash algorithm could reduce the dimensions of numeric features for each sub-
ject (words). Finally, each word is converted to a linked sequence as a token and
the c-LSH stores tokens set with comma to represent data of whole line.

B. c-BF. The multiple auxiliary c-BF columns, which represents macroscopic
bloom-filter spaces for each row, are implemented on several ‘bigint’ (32-bit)
columns. The database will return the DET ciphers where all ¢c-BF columns cover
the target sequences through native bit arithmetic operation ‘&’. Briefly, these
columns are proposed for maximum substring matching which is a supplement
to the c-LSH column above.

“efficient substring search”| {[e1fLf2i1cLi2,e1,n1,t1) [He,ef fffiicciieennt ]
[eff,fific,ici cie, ien,ent]},
{[s1,u1,b1,52,t1,r1,i1,n1,g1], [#5,50,ub,bs,st,tr, i in,ng,g#],
1.N-gram Methods [sub,ubs,bst,str,tri,rin,ingl},
2.Bloom-Filter Hashing {[s1,e1,al,r1,c1,h1],[#s,se,ea,ar,rc,ch,h#] [sea,ear,arc,rch]}

{[@eh@]}

[a]a]-Te[-Tole[-Ja]a]-JaJo]zJo o a]-Jo]1]

[o]a]-Js]-Jo[a]~JoJo]~Jafo]oJoJo a]~[o]0]

P {Is1,41,r1,i1,n1,g1],[#s,st,trri,in,ng, g#t], [str tririn,ing]}
string 1PA(string)=(2,6,58,..}

|ebf,1 bigmeelebf,z bigin+ RN —)|ebf,n bigint e|

Fig. 3. The maximum substring matching over c-BF vectors which are stored in multi-
ple ‘bigint’ auxiliary columns separately. After mapping fragments from whole sentence
to vectors, queries execute with bit matching.

During mapping process, we respectively generate vectors for each row
through bloom-filter hashing with following n-gram methods: bi-gram, tri-gram,
prefix and suffix. These auxiliary columns are designed for substring matching so
that the implicit information need be maximally persisted from origin strings.
Through matching fragments between target bit vector and stored separated
‘bigint’ numbers, we could obtain all matched rows as shown in Fig. 3.

To meet application scenarios of inextensible cloud database, we accomplish
operations completely through rewriting SQL statements by native bit arith-
metic operation over multiple auxiliary columns, such as select m_det from t
where m_bf0& 1=1 and m_bf1&3=3. We experiment the connection between
length of the sparse vector and correct rate of maximum substring matching
in Sect. 5.
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4.2 Adaptive Rewriting Method over Queries with Wild-Cards

In SQL, wild-card characters are used in ‘like’ expression: the percent sign ‘%’
matches zero or more characters and the underscore ‘.’ matches a single charac-
ter. Usually the former symbol is a coarse-grained comparable delimiter and the
latter could be tolerated by locality sensitive hashing in slightly different cases.
So we construct an adaptive rewriting method over queries with wild-cards as
shown in Fig. 4.

We consider three basic cases according to the number of percent signs to
meet indivisible string fragments. Furthermore in every basic case, we also divide
three sub-cases according to the number of underscore to benefit from different
auxiliary columns. Besides, each query text is considered as whole word and
substring while experiment exhibits the optimal selection.

Lno underscore o o 1.c-LSH(similar searching) or c-BF(maximum substring matching)
Double eg.msg like ‘Y%esubstring% eg. msg_lsh like '%200201202203%'
percent—»| 2.0ne underscore o o 2.c-LSH(n/m part matching with wid=3)
signs ~egumsg like “%substri_g% eg. {%__201202203%',%200__202203%','%200201__203%",'%200201202__%'}
3.multiple underscores 3.c-BF(multiple n-gram methods)
eg.msg like ‘%subs_ri_g%' eg.'%subs_ri_g%'
bigram [#s,su,ri,g#]
Lno u"dee'scrg;eg like “bsubstring’ trigram fsub,ubs] =>IPA=(24,36,78,80,102,408,..)
2.0ne underscore msg_bfl &16777216=16777216 and msg_bf2 &16=16 and msg_bf3 &81920=81920 and ...
A like ‘%substri_g’
) oft 3_mu|t|p‘:gnn;§sclofesosu g A)utilize c-BF co\gmns f.or maximum mgtching . )
Single eg.msg like %su_s_ri_g’ B)hanqle expressions with counting uni-gram, bi-gram and tri-gram.
percen Q)prefix/suffix for single % cases and remove prepared fragments with _.
sign 1.no underscore eg.'%substri_g’
right eg.msg like 'substring%' counting unigram [sLul,bl,52,t1,r1,1,g1]
2.0ne underscore / bigram [#s,5u,ub,bs st tr,ri,g#]
eg.msg like 'substri_g%" trigram [sub,ubs,bst,str,tri]
3.multiple underscores prefix or suffix [g@] =>IPA=(24,36,78,80,102,408,..)
eg.msg like 'su_s_ri_g%' msg_bfl &16777216=16777216 and msg_bf2 &16=16 and msg_bf3 &81920=81920 and ...
1.no underscore
No eg.msg like ‘substring’ ;E)EB'I;: eg.msg_det = 0x1234
2.0ne underscore a . . .
Pesli’;ian eg.msg like ‘substri_g’ —> - {[s1,ul,b1,s2,t1,r1,i1,g1] [#s,su,ub,bs,st tr.ri,g#],[sub,ubs, bst,str,tri], [@s,g @]}
3.multiple underscores - B .
eg.msg like ‘su_s_ri_g’ {[s1,ul,52,r1,i1,g1],[#s,5u,ri,g#],[sub,ubs,bst str,tri],[@s,g @]}

Fig. 4. Adaptive rewriting method over queries with wild-cards. We consider percent
sign as a coarse-grained separator and few underscore could be tolerated according to
similarity.

Firstly, the double percent signs case means that user attempts finding rows
which contains the given string. Because the LSH function could tolerate small
differences naturally, the sub-case with no underscore could accomplish similar
searching among whole words. We achieve the one underscore sub-case with part
matching method. This clever trick helps adjust fineness of similar searching as
shown in Fig.5. The multiple underscores sub-case is achieved by maximum
substring matching on c-BF columns with bloom-filter.

Secondly, the single percent sign case need to consider prefix and suffix.
The occurs of this type of queries reflect more detailed information and we
match them all as substrings with maximum degree of constraint through various
N-gram forms on ¢-BF column. Meanwhile, the prefix and suffix help preserve
beginning and ending information of whole sentences in row. During splitting
process, every fragments with underscore would be abandoned and the rest part
would be mapped to the sparse bloom filter space which represented by IPA.
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Thirdly, in the last no percent sign case, the user might already obtain most
of target information and attempt to match specific patterns with underscore.
Besides no underscore sub-case could be treated as determining equality oper-
ation, the maximum substring matching on c-BF column could meet the rest
sub-cases’ requirements.

Additionally, the tolerance parameter n is proposed as a flexible handler
under the dimension m of locality sensitive hashing auxiliary column. Briefly,
every features of word are set as fixed-length numbers which is filled by zero in
basic scheme. As a linked string with all m features, the token could be con-
verted to different variants where some feature parts replacing with underscores.
We joint every possible cases together for database searching with keyword ‘or’
through a called bubble function as shown in Fig. 5.

L

——n——
Lof-Jo[a]a]]2

Fig.5. The part matching method represents the adjustable fineness in c-LSH col-
umn with the tolerance parameter n and the LSH dimension m. For instance, let
m = 4,n = 3 and the target feature set be {1,2,3,4}, therefore the candidate set is
{-234,1.34,12.4,123_} by this method.

The adaptive rewriting method helps generate trapdoor queries to meet the
wild-cards fuzzy searching encryption in database through similar searching on
c-LSH column and maximum substring matching on c-BF columns.

4.3 LSH-Based Security Improvements

The security of our schema relies on three parts. The symmetric cryptogra-
phy algorithm guarantees the security on determining column and the divided
bloom-filter vectors are presented by unidentifiable hashing ciphers. However,
the content in c-LSH column might leak some extra information such as sizes
and sequences of plain-texts. We present three improvements to enhance security
and an integrated algorithm as followed.

A. Linking Features Without Padding

In basic scheme, we pad each feature with zero by the upper limit wid which
benefits selecting process. To enhance security, we cancel the zero padding before
linking features to a token. Meanwhile, the part matching method is also changed
to an analogous bi-gram form. For instance, a secure enhanced part matching
method is select m_det where m_lsh like ‘%ab%’ or m_lsh like ‘%bc%’ where a,b,c
are multiple features of a word. We discuss the validity with experiments.

B. Modifying Sequences of Tokens
Each line of ¢-LSH auxiliary column stores a tokens set for whole sentence.
Therefore, the sequences of tokens might exhibit the relevancy among words



12 H. Chen et al.

to malicious attacker. To overcome this leakage, we modify the sequences ran-
domly by hashing permutations. Additionally, we implement the permutation
function with P : y = a * x + b mod ¢ where a is relatively-prime to c. This
improvement protects the relation between invisible words and specific tokens.
Since the matching only demands on existing rather than order, so this sequence
modification helps for security protection.

C. Appending Confusing Tokens

The tokens sets in row leak the size of words. Appending tokens is a practical
way for security, but what kind of token content should be added is the target
of our discussion. The first way is appending repeated tokens from itself. It is
simple and effective, but it only improves limited security. The second way is
appending a little random tokens. Because of sparsity and randomization, few
random tokens might not change the matching results. The third way is append-
ing tokens combined from separated features among this tokens set. This way
also influences the matching precision and increases proportion of false positive.
Actually, these ways help greatly enhance security despite of disturbances.

D. Integrated Security Enhanced Algorithm

We present an integrated algorithm for security enhancement which combines all
above implementations. As shown in Algorithm 1, this algorithm transforms the
tokens set in each row to an security enhanced one. It helps prevent information
leakage from c-LSH column.

Algorithm 1. Security Enhanced Improvements

Input: token,, [#word;] which represents the m-dimensional tokens set of
line 7, wid be width of feature with zero padding, amount be the
lower bound for appending tokens

Output: an optimal security enhanced set e_token[amount]

Let t represent token and each ¢ can be split into m features by wid;

2 Generate a permutation function with 7 :y =a*x + b mod ¢ where

¢ = amount and (a,c) = 1;

3 Let ¢ = 0 be the count for permutation;

4 foreach ¢ in token,,|[#word;] do

5 Generate a temporary string et;

=

6 for int j=0; j<m; j++ do

7 Remove the zero prefix of t.substr(j x wid, (j + 1) * wid);
8 Link it to et;

9 | etoken[F(c+ +)]=et;

10 while ¢ < amount do

11 Generate a temporary string et; for int k=0; k<m; k++ do

12 Get a feature token,, [random()].substr(k * wid, (k + 1) * wid);
13 Remove the zero prefix and link it to et;

14 | etoken[F(c+ +)]=et;

15 return e_tokenlamount];
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5 Performance Evaluation

In this section, we evaluate the performance of our work. Firstly, we discuss
the effect of different n-gram methods about matching accuracy in ¢-LSH col-
umn. Secondly, we discuss the effect of bloom-filter length on collision degree
and space usage of maximum substring matching. Thirdly, we discuss perfor-
mance of adaptive rewriting method. Finally, we compare execution efficiency
and space occupancy among efficient proposed schemes. The proposed scheme
is implemented in Core 15-4460 3.20 GHz PC with 16 GB memory, and the used
datasets include 2000 TOEFL words, the leaked user data of CSDN and the

reuters news.

Manifestations of Different N-gram Methods on c-LSH Column. Uti-
lizing bi-gram and counting uni-gram, we achieve similar searching on c¢-LSH
column by introducing minhash algorithm based on the jaccard distance of frag-
ments set. Intuitively, every change of character would greatly influence the cor-
responding fragments union over bi-gram method. So we introduce the counting
uni-gram method to balance this excessiveness relativity. In this experiment, we
evaluate the performance of these two n-gram methods and the combined one
respectively.

The dataset we used is a 2000 TOEFL words set and we construct three
variants of them to reveal the efficiency about LSH-based similar searching
under different N-gram methods. The ways getting variants include append-
ing a letter in the middle or in one side for every words, such as ‘word’ into
‘words’,‘wosrd’,‘sword’. We calculate the average matched rows to reflect the
searching results.

As shown in Fig. 6, we choose m = 4, 6, 8 to reveal matched numbers through
part matching method with n. And the accuracy rate has a big promotion when
n is larger than half of m. Besides, the combined method performs well when
m > 6. It is reflected about the variation trend of accuracy that the amount of
false positive reduces while the correct items remain unchanged.

The Bloom-Filter Length on c-BF Columns. In second experiment, we
valuate collision accuracy and space occupancy under impacts of bloom-filter
length and hashing function amount on ¢-BF columns when executing maximum
substring matching. In detail, we attempt to find out an appropriate setting
about the number of hashing function and the vector length of our bloom-filter
structures.

The dataset we used is a leaked accounts set about CSDN, one of the most
famous technical forum websites in China, and contains user name, password
and e-mail. To guarantee effectiveness and avoid collisions, we change the vector
length and keep the sparsity in several degrees such as half, quarter, one-sixth
and one-eighth. Meanwhile different amount of hashing functions in bloom-filter
influence accuracy and collision.
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Fig. 6. The matching size under the tolerance parameter n and the LSH dimension
m over variants of TOEFL words set. The first three graphs show the performance of
different n-gram methods about part-matching respectively. The last graph shows the
LSH dimension only complete-matching when m = n.
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Fig. 7. The experiments show performance of maximum substring searching under
different bloom-filter length [ and different hashing amount k. We utilize fifty thousand
rows of leaked CSDN account data and set several degrees of sparsity about bloom-
filter vector while each row contains 50 characters. The left graph shows matching sizes
of substring ‘163.com’ on [é} auxiliary columns when we build indexes under different
length of bloom-filter. And the right graph represents ‘qq.com’.
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Fig. 8. The experiment shows the performance of adaptive rewriting method under
different combinations, and reveals the most qualified modes for each fuzzy searching
cases. Some expressions are used, such as ‘Y%america%’, ‘Y%am_rica%’, ‘%am_ri_a%’.

Because the bloom-filter length [ corresponds to the amount of c-BF columns,
this experiment discuss relations between matching accuracy and space occu-
pancy under different amount of bloom-filter hashing functions. As shown in
Fig. 7, the amount of matching size drops rapidly in the first place and then gets
stable when sparsity is close to one-sixth.

The Performance of Adaptive Rewriting Method. This experiment aims
at verifying effectiveness of the adaptive rewriting method. After auxiliary
columns storing values as indexes, the ‘like’ clauses with wild-cards are analyzed
by an adaptive rewriting method and rewritten to trapdoors. In this experiment,
we consider the content of expression as a word or substring for comparison,
and execute different types of queries with basic and security enhanced schemes
respectively.

The dataset we used is Reuters-21578 news of 1987 [28]. In this experiment,
we mainly discuss the double ‘%’ cases because the other single ‘%’ and no ‘%’
cases carry out analogous steps. The only difference is that these cases addition-
ally consider the prefix and suffix.

As shown in Fig.8, we compare the matched size under different combi-
nations. We also execute the origin SQL statements on extra stored plain-text
column for contrast. It helps find the best combination modes under various wild-
cards cases. We accomplish this experiment with the sparsity of c-BF columns
being one-sixth and the dimension of ¢-LSH column being six. The graph shows
that ‘W and S’ is fit for double ‘%’ no ‘.’ and double ‘%’ one ‘_’ cases while ‘S’ is
fit for double ‘%’ few ‘_’ case. Besides, we discuss the performance of LSH-based
security enhanced method and the graph confirms its feasibility.

Performance Comparison Among Proposed Schemes. In this section, we
compare the efficiency of proposed schemes about inserting and selecting data.
In general, the inserting process involves generating indexing values in auxiliary
columns, and the selecting process involves decrypting determined cipher-texts.
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Fig. 9. This experiment show the execution efficiency among proposed schemes.

As shown in Fig. 9, our schema verifies this point and performs well comparing
to normal JDBC, Crypt-jdbc and CryptDB.

6 Conclusion

This paper investigates the problem about fuzzy searching encryption with com-
plex wild-cards queries on proxy-based encrypted database, then gives a practi-
cal schema with two types of auxiliary columns and rewriting SQL statements.
Besides, security enhanced implementations and extensive experiments show the
effectiveness. In future, the serialization and compression of functional cipher-
texts would be studied to reduce space overhead.
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Abstract. With the ubiquity of mobile devices and wireless networks,
spatial crowdsourcing (SC) has gained considerable popularity and
importance as a new tool of problem-solving. It enables complex tasks
at specific locations to be performed by a crowd of nearby workers. In
this paper, we study the privacy-preserving travel-time-first task assign-
ment problem where tasks are assigned to workers who can arrive at the
required locations first and no private information are revealed to unau-
thorized parties. Compared with existing work on privacy-preserving
task assignment, this problem is novel as tasks are allocated accord-
ing to travel time rather than travel distance. Moreover, it is challenging
as secure computation of travel time requires secure division which is
still an open problem nowadays. Observing that current solutions for
secure division do not scale well, we propose an efficient algorithm to
securely calculate the least common multiple (LCM) of every workers
speed, based on which expensive division operation on ciphertexts can
be avoided. We formally prove that our protocol is secure against semi-
honest adversaries. Through extensive experiments over real datasets, we
demonstrate the efficiency and effectiveness of our proposed protocol.

Keywords: Spatial crowdsourcing + Privacy-preserving
Task assignment

1 Introduction

Thanks to the ubiquitous wireless networks and powerful mobile devices, spatial
crowdsourcing has gained considerable popularity and importance as a new tool
of problem-solving. It can be applied to simple tasks such as photo-taking where
people act as sensors, or to complex tasks such as handyman service where people
work as intelligent processing units. As an emerging crowdsourcing mode, spatial
crowdsourcing differs from other crowdsourcing modes in that people in spatial
crowdsourcing, also known as workers, must physically move to certain places to
perform those spatial tasks. Recently years have witnessed an upsurge of interest
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in spatial crowdsourcing applications in daily life, ranging from local search-and-
discovery (e.g., Foursquare) to home repair and refresh (e.g., TaskRabbit).

A typical workflow of spatial crowdsourcing consists of four steps:
task /worker registration, task assignment, answer aggregation, and quality con-
trol [1]. Among them, task assignment focuses on allocating a set of tasks to
a set of workers according to a set of constraints such as location, time, and
budget. Typically finding an optimal assignment subject to multiple constraints
is NP-hard, which calls for efficient yet effective algorithms. Based on specific
optimization goals, a variety of approaches have been proposed, for example,
to maximize the total number of completed tasks [2], to maximize the number
of tasks performed by a single worker [3] and to maximize the reliability-and-
diversity score of assignments [4].

The problem of task assignment becomes even tougher when privacy issues
are taken into account. It is not hard to see that the data used for decision
making in task assignment is usually private and thus need to be kept secret
due to the lack of trust among workers, task requesters, and the spatial crowd-
sourcing server. To achieve privacy, these private data should be protected by
for example encryption using mature cryptographical algorithms or perturbation
using emerging privacy-preserving techniques. However, the noise introduced by
these mechanisms will decrease significantly the utility of the data and sometimes
even will make the data useless. It is therefore more challenging to deal with task
assignment with the extra privacy constraint.

Alice:500m from the
destination, but in
a traffic jam

Bob:1000m from the
destination, but in
a smooth traffic

Booking a taxi online

Fig. 1. Spatial crowdsourcing where travel time is more important than travel distance

The above hard problem has been studied by several work recently [5-8]. A
common strategy of task assignment adopted by these work is travel-distance-
first, that is, a task will be assigned to the worker who has the shortest travel
distance to its location. This strategy is simple but sometimes is unreasonable in
practice as it is common for some workers to move faster than others. Consider
a simple example where a user wants to request a car through a spatial crowd-
sourcing platform (e.g., Uber). As shown in Fig. 1, two workers (i.e., drivers)
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named Alice and Bob are available when the task is issued, and their distances
to the user are 500 m and 1,000 m, respectively. Using the aforementioned strat-
egy, the spatial crowdsourcing server will assign this task to Alice as she is nearer
to the user. As shown in the figure, however, Alice is in a traffic jam. On the
other hand, Bob is in a smooth traffic and he can arrive at the users location
before Alice. This simple example motivates us to consider, travel-time-first, a
more effective strategy when allocating tasks to workers in practice.

In this paper, we propose a privacy-preserving task assignment protocol for
spatial crowdsourcing platforms taking travel-time-first strategy, that is, workers
who can first arrive at the location of a given task have priority over others.
While it is more effective than travel-distance-first in practice, travel-time-first
makes privacy-preserving task assignment more challenging due to the required
division operation involved in the computation of travel time. For every user,
his/her location and speed are both private and should be protected. How to
perform division efficiently and accurately on encrypted or perturbed data is still
an open problem. In [9], the authors propose a protocol for secure division based
on ElGamal cryptosystem. However, this protocol does not scale well and cannot
be applied to large spatial crowdsourcing system for the key length should be set
large enough to avoid computation overflow and this will introduce prohibitive
computation cost. To overcome this weakness, we transform the secure division
problem into a secure least common multiple (LCM) problem. We propose an
efficient way to calculate the LCM securely. Through extensive experiments, we
demonstrate the feasibility and efficiency of our solution.

The remainder of this paper is organized as follows: Sect. 2 discusses related
work. Problem definition and background knowledge are presented in Sect. 3.
Section 4 introduces our approach in details. Section 5 analyzes the security and
complexity of our approach theoretically. Section6 evaluates our approach on
real datasets. Section 7 concludes the paper.

2 Related Work

To be consistent with our contributions, we only review the works that are rele-
vant to task assignment and privacy-preserving. Kazemi and Shahabi [2] propose
several solutions to maximize the overall number of assigned tasks under the
constraints of workers. Similarly, The assignment protocol proposed by [10] is to
assign the time-constrained and multi-skill-required spatial tasks with dynami-
cally moving workers. In [11], Zheng et al. take workers’ rejection into consider-
ation and try to maximize workers’ acceptance in order to improve the system
throughput. Tong et al. [12] devise efficient algorithms with provable competitive
radio with online dynamic scenarios. And in [13], Tong et al. propose an online
task assignment framework based on offline guidance to maximize the task allo-
cation while maintaining the efficient task assignment. In [14], Gao et al. design
a two-level-based framework to recommend suitable teams to accomplish a task.
However, these works are all based on a pre-condition that workers do not refuse
to disclose their private information to the SC platform that is hard to achieve
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in reality. Our work focuses on privacy-preserving during an execution of task
assignment.

In recent years, the public concern over privacy has stimulated lots of research
efforts in privacy-preserving. A location based query solution is proposed by
Paulet et al. [15] that employs two protocols that enables a user to privately
determine and acquire location data. In [16], Liu et al. propose an efficient app-
roach to protecting mutual privacy in location-based queries by performing two
rounds of oblivious transfer (OT) extension on two small key sets. A solution
built on the Paillier public-key cryptosystem is presented by Yi et al. [17] for
mutual privacy-preserving kNN query with fixed k and is extended in [18] where
k is dynamic. Unfortunately, these solutions where workers location are private
data of the SC platform are not suitable for our framework for workers loca-
tion should be known to the SC platform in a secret way. Also, in [19], Sun
et al. focus on the privacy-preserving task assignment in SC by presenting an
approach where location privacy of workers can be protected in a k-annoymity
manner. In [5], To et al. propose a framework for protecting location privacy
of workers participating in SC tasks without protecting task location. Liu et al.
[20] propose an efficient solution to securely compute the similarity between two
encrypted trajectories without revealing nothing about the trajectories. How-
ever, their protocols also cannot be applied to our framework for they have too
heavy computation cost to solve large task assignment problems.

3 Problem and Preliminary

In this section, we first present some definitions used in our work and then briefly
introduce some cryptosystems based on which our protocol is built.

3.1 Problem Definitions

Definition 1 (Spatial Task). A spatial task, denoted as T, is a task to be per-
formed Ir.

Definition 2 (Workers). Let W = {wy,--- ,wn} be a set of n workers. Each
worker w has an ID id,,, a location L, a constant speed s,,, and an acceptance
rate AR,, which is the probability that he/she accepts a task assigned to him/her.

As mentioned in the introduction, we mainly consider travel-time-first, a new
task assignment strategy in privacy-preserving spatial crowdsourcing. Ideally, we
only need to find a worker w € W who can first arrive at I and then assign 7' to
w. This works if the worker is certain to accept the assigned task, but sometimes
it is not. Therefore we consider a more general case where every worker w has
an acceptance ratio denoted as AR, for an assignment, and we need to ensure
the probability that a task T is accepted by at least one worker is larger than a
given threshold a. In this case, we need to find a set of workers U C W rather
than a single worker. It is easy to see that the probability that T is accepted by
at least one worker in U is ay = 1 =[], (1—AR,,). Hence the travel-time-first
task assignment problem can be formalized as follows:
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Definition 3 (Travel-time-first Task Assignment Problem). Given a set of
workers W, a task T and its acceptance threshold ar, the travel-time-first task
assignment assigns task T to a set of workers U C W such that:

d(l;,l7) < d(lj,lr)

S; Sj

and ar < oy (1)

forVieU andVj e W\ U.

Privacy-preserving means all the private data should be hidden from unau-
thorized parties in the procedure of task assignment. To accurately define the
ability of unauthorized parties, we adopt a typical adversary model, i.e., the
semi-honest model [21]. Specifically, all parties in this model are assumed to be
semi-honest, that is, they follow a given protocol exactly as specified, but may
try to learn as much as possible about other parties private input from what they
see during the protocols execution. This can be formally defined by the real-ideal
paradigm as follows: for all adversaries, there exists a probabilistic polynomial-
time simulator, so that the view of the adversary in the real world and the
view of the simulator in the ideal world are computationally indistinguishable.
Specifically, the security of a protocol II is defined as follows:

Definition 4. Let p;(1 < i < n) be n parties involved in a protocol 1. For
pi(1 < i < n), its view, private input and extra knowledge it can infer during
an execution of P; are defined as V;,X; and K; respectively. A protocol Pi has a
strong privacy guarantee, that is, p; cannot learn any knowledge except the final
output of p;, if these exists a probabilistic polynomial-time simulator P; such
that:

R(XZ, H(Xl, s 7Xn); Ki)Xl,»-- X, = V;(Xl s 7Xn)X1--~ Xn (2)

and K; = (), where = means computational indistinguishability. However, this
strong guarantee cannot be achieved sometimes for K; # 0. If K; # 0, II is said
to be privacy-preserving with K; disclosure against p; in the sense that it reveals
no more knowledge than K; and the final output to p;.

Now we are ready to define the problem of privacy-preserving travel-time-first
task assignment as follows:

Definition 5 (Privacy-preserving Travel-time-first Task Assignment Problem,).
Given a set of workers W, a task T and its acceptance threshold ar, the travel-
time-first task assignment assigns task T to a set of workers U C W such that
Egs. (1) and (2) hold.

3.2 Cryptosystems

The privacy-preserving property of our protocol is built on several well-known
cryptosystems: PRG [22], Paillier [23] and ElGamal [24]. The details of PRG,
Paillier and ElGamal can be found in the given references and all of them are
proved to be secure. Here we only emphasize some important properties of these
cryptosystems.
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PRG can be implemented by using a one-way hash function denoted as Gy.
For Paillier, its encryption and decryption are denoted as F, and D, respec-
tively. For ElGamal, its encryption and decryption are denoted as E. and D.,
respectively. The important properties of Paillier and ElGamal are listed as fol-
lows:

Homomorphic Properties of Paillier: Given m; and mo are two messages,
we have:

Ep(m1)Ep(mz2) = Ep(ma + ma). (3)
Ep(m)k = Ep(km)' (4)

Commutative-Like Property of ElGamal: Given a message m, we have:

B (Bl (m)) = Bl (B¢ (m)). (5)

4 Proposed Privacy-Preserving Framework

In this section, we will introduce our privacy-preserving framework in details and
explain how to get LCM in a safe and secret way by AP encryption strategy.

4.1 Framework Overview

As Fig. 2 shows, our proposed framework consists of six stages, namely Initializa-
tion, Distance, LCM, Time, Comparison and Verification respectively. Different
colors mean different stages.

The KP The SC Workers
platform

Generate keys § Initialization
Generate keys stage
Spatial (location)
task o Distance
E(distance) tage
E (speed) LCM
LCM LOM stage
o E(time) Time
E(time) stage
E(time) with E(id) EGid) Comparison
D(E(Fime)) E(chosen worker stage
E (chosen worker) with location)
E(id) Verification
E(id) stage
D (E (chosen worker]
with location))
A4 v A4

Fig. 2. Framework overview
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4.2 Detailed Framework

Next, every stage in details is described in this subsection.

Initialization Stage. Firstly, the KP generates a pair of keys for Paillier. Then
the KP keeps the encryption key public and the decryption key private respec-
tively because the computations of the SC platform and workers are based on
encrypted data while the KP has to decrypt data to find the chosen worker.
Besides, the KP generates a cyclic group G for ElGamal based on which the KP
and all workers generate their own pair of keys and keep them secret.

Distance Stage. Given a spatial task 7', the SC platform encrypts task location
l7(xr, yr) with the encryption key of Paillier by calculating E, (22 +y%), E,(z7)
and E,(yr). Then these three ciphertexts are sent to all workers. Without hold-
ing the decryption key of Paillier, every worker w; can calculate the encrypted
square of the distance based on the Euclidean distance and the homomorphic
properties shown in Eqgs. 3 and 4 as follows:

Ep(dQ(lTa li) = Ep(x% + ZJ%)EIJ(xT)ihiEp(yT)72%EIJ(J'%2 + 912) (6)

It should be noted that it also works when every worker encrypts location and the
SC platform calculates E,(d?(Ir,l;)). However, it will cost much more computing
resources for every worker can calculate in parallel. That is to say, our proposed
method is good for reducing the computation cost of the SC platform.

LCM Stage. At first, we explain why we need to get the LCM of all worker’s
speed. As defined in Definition 3, our framework prefers the worker who has the
shortest travel time. To this end, we have to face division operation on ciphertexts
which is still an open problem nowadays during the computation of travel time.
Though we cannot solve the problem of division operation, a transformation can
be employed to avoid the division operation based on the following lemma;:

Lemma 1. Let W = {wy,--- ,w,} be a set of n workers, D = {dy,--- ,d,} be
the distance between task location and the worker w;, Sicm be the LCM of every
worker’s speed s; and s; = Siem/s; where 1 < i < n. So for any two different
workers w;, w; € W, if d;s} < d;s’; holds then we must infer d;/s; < d;/s;.

Proof. d;s; < djsg = d;8;/Siem < djs;/Slcm = d;/s; < dj/s;.

Deforming the formula of travel time can help us avoid the division operation
over ciphertexts, which is the reason why we need to get the LCM. Note that
the product of all speeds is not suitable here for it may cause the overflow of
the multiplication of all speeds [9]. The process of calculating the LCM by AP
encryption strategy in a safe and secret way will be introduced in the next
subsection. In the end, the SC platform will inform the KP and all workers of
the LCM.

Time Stage. Upon receiving the LCM Sj.,,, every worker w; can calculate an
equivalent encrypted travel time t; to replace real encrypted travel time ¢; based
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on the Lemma 1 where t; = d(l;,lr)s, and t; = d(l;,lr)/s;. For no worker holds
the decryption key of Paillier, homomorphic properties of Paillier are used again
as follows:

Ey(t2) = Ey((d(le, 1)s1)?) = Ep((d(le, 1) Siem /5:)%) = Bp(d (I, 1)) Stem /)"
(7)

where E, (d2 (I, ll)) is calculated by Eq. 6 and s; is the speed of worker w;. Then

the worker sends the encrypted equivalent travel time with his own ID to the

SC platform for comparison in the form of (i, E,(t}?)).

Comparison Stage. When receiving the list of (i, E,(¢/*)), the SC platform
adopts a PRG Gy, to encrypt the ID of workers as (Gk(i),Ep(tgk(i))) for the
protection of workers especially the chosen worker. Then the SC platform sends
the list (G (1), Ep(tgk(z‘))) to the KP and sends every Gy (i) to the corresponding

worker w;. With the decryption key of Paillier, the KP can decrypt Ep(t’ék (i))

tt2
to obtain the t’ék(i) and the real travel time ¢, ;) can be computed by ;2’“(')

lem

where Sj.,, is achieved in the LCM. And then the KP can easily find the chosen
worker who has the shortest ¢, (;. Then, the ID of the chosen worker Gy (i)
is encrypted by ElGamal, whose output is EXP(Gy(i*)). At last, the KP sends
EEXP(G(i*)) to the SC platform. This encrypting operation is essential because
the SC platform can infer that who is the chosen worker from Gy (i*). However,
when AR is not always 100%, we will return a set of chosen workers instead of
a chosen worker.

Verification Stage. To ensure only the chosen worker can learn the true
task location, the SC platform hides the true task location by encrypting
EXP(G(i*)) and Ir as follows:

E(lr) = h(EFF (G (i) @ Ir (8)

where function h is a length-match hash function which is used shorten a long
bit-string and it is proved to be semantically secure. We perform exclusive-OR on
the I and the output of function h because an important property of exclusive-
OR is a@b®a = b. Based on this property, only the chosen worker w; can infer
the true task location by I, = E(l5) ® h(EXFP(G(i*))). The detailed procedure
is as follows:

With their own ElGamal, every worker encrypts their own encrypted ID Gy ()
received in the comparison stage as E¥i(Gy(i)) and sends it to the KP. For all
ElGamals are based on the same cyclic group G, commutative-like encryption
can be implemented by EXT(EYi(G(i))) = E¥(EXP (G} (i))) with the same
random number for the consistence of EXF and the result is sent back to workers.
Every worker w; can decrypt it by the decryption key of his own ElGamal and
get EXP(G).(i)). Tt is obvious that only the chosen worker can infer EXP (G (i*))
and thus infer the true task location.
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Algorithm 1. Calculating LCM

Input: the maximal speed Smaz, the speed s; of every worker w;(1 <1i < n)
Output: the LCM of all speeds Sicm,

1: The SC platform and all workers perform the same exclusion algorithm on Sy,eq4
to get a same list L of 2-tuples <p, ¢,> where p is a prime meeting p < Siaee and
¢p is the maximal times of p meeting p? < Spmaz-
Every worker w; computes his own factorization F; of s; by Pollard’s rho algorithm.
AP performs Ep cp P*(cp+1) key generations and assigns these secrets respectively
for each prime p in L do
for number k(0 < k <¢p) do

Every worker w; generates his own flag data f[k], encrypts it by

the assigned AP secrets and sends it to the SC platfrom.
Siem =1
9: for each prime p in L do
10: for number k(c, > k > 0) do

11: The SC platform decrypts the sum of all f[k], denoted as H.
12: if H > 0 then

13: Siem = Siem *pH

14: break

15: return Si.m

4.3 Calculating LCM

To compute the LCM securely, we adopt an aggregation protocol denoted as AP
[25] which can calculate the sum of multiple messages in a privacy-preserving
manner. It works as follows:

Key Generation: Let S be a set of nc random numbers where n is the number
of workers and ¢ is a random number. Then, divide S into n random disjoint
subsets S; with ¢ numbers and define M = 21082721 where A is maximum value
of workers’s data. At last, send k; to w; and the sum kg to the SC platform
where k; = (3., cg, ') mod M and ko = (D _,cgs') mod M.

Encryption E,: For each worker w;, he encrypt data m; by computing:

C; = (k’z + mi) mod M (9)

Encryption D,: The SC platform can decrypt the sum by computing:

SO mi) = (> ¢ — ko) mod M (10)
=1

i=1

Based on a credible assumption that the maximal worker’s speed is limited
and known to all, we explain the Algorithm 1 as follow: In line 1 and 2, exclusion
algorithm is performed to get the list L of 2-tuples <p, c,> whose complexity
is O(nlog(logn)). For example, our maximal speed is 10. Then 3 is one prime
where 3 < 10, and its maximal times is 2 for 32 < 10. So the tuple <3,2> will
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be inserted into the list. Besides, every worker calculates the factorization F;
of his own speed s; by Pollard’s rho algorithm whose complexity is O(n1). For
example, the factorization F of a worker(s; = 6) is F' = 2% 3 for 6 = 2% 3. Based
on the list L, the AP generates Zpe . p* (cp + 1) different keys for same key
may disclose workers’ speed in line 3. In line 4 to 7, each worker w; generates
his flag data f[k](k € [0, c,]) as follows:

A =k
fIk) = {(1)7 otr‘},;gjwise (11)

where AT[p] is the appearance times of p in the corresponding F;. Then,
encrypts and sends flag data. In the above examples, when p = 3, this worker
(s; = 6) generates these flag data f[0] = 0, f[1] = 1, f[2] = 0. In line 9 to
14, the LCM is computed by Sien = HpeL pf. For example, the factorization
of another worker(s; = 9) is 3 3. If p = 3, this worker generates flag data
fl0] =0, f[1] = 0, f[2] = 1. So the maximal times of 3 is 2 for the decrypted sum
of f[2] meets the condition in line 12. Meanwhile, the maximal times of 2,5,7
are 1, 0,0 respectively. So Sjem = 2% # 32 % 59 % 70 = 18 will be returned.

5 Security and Complexity Analysis

Denoting the LCM stage as E4(s;) and Dy (Siem), we will prove the security and
complexity of our framework next.

5.1 Security Analysis

Theorem 1. Our framework is allowed to be privacy-preserving with Ko =
Siem, K_1 = {Slcm,tGk(i)} and K; = Siem (1 < i < n) extra knowledge.

Proof. We firstly consider the SC platform wg with Ko = Sjem. Then
the view is Vo = {EXP(Gi(i*)), Siem: Ea(s)), Ep(tH)} (1 < j < m).
There is a probabilistic polynomial-time simulator P, that generates Vj =
{EEP(21), Sicm, Ea(ys), Ep(2:) } where @1 is random number from a cyclic group
G, y;(1 < i < n) are random numbers distributed in Z and z;(1 < ¢ < n) are
random numbers uniformly distributed in Zy. As Paillier, ElGamal and AP are
all secure, it is clear that Vy = V.

Next we analyze every worker w; with K; = Sj.,. There is a probabilis-
tic polynomial-time simulator P; to simulate worker w;’s view. However, There
are two kinds of workers to be analyzed. The difference between them is that
only the chosen worker can infer the chosen ID is his ID. For the chosen
worker w}, his view is Vi» = {Gi(i), 1%, Siem, Ep(a% + y7), Ep(xr), Ep(yr) }-
So simulator P;- generates V.. = {g,i%, Sicm, Ep(21), Ep(22), Ep(z3)} where
x;(i =1,2,3) are random numbers uniformly distributed in Zy and g is a ran-
dom element uniformly distributed over {0, 1})‘. For others, the view for them
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is V; = {Gr(i), Eve(EX (Gk(i%))), Siem» Ep(@* 4+ y?), Ep(z), Ep(y)} and simu-
lator P; generates V; = {g, Ere(EY (Y)), Siem, Ep(x1), Ep(x2), Ep(x3)} where
x; and g are the same as V. and y is a random number from G. Based on
the semantic security of Paillier, ElGamal and PRG, we can easily verify that
Vi=V/(1<i<n).

Finally, we analyze the KP w_; with K_; = {SlcmatGk(i)} (1<i<n). The
view of the KP is V_1 = {Sicm, ta, (i), B2 (Gi(i))} (1 < i < n). There is a proba-
bilistic polynomial-time simulator P_; that generates V' = {Sjcm, ta,, E¥ (x;)}
where z;(1 < i < n) are random numbers uniformly distributed in G. Due to
the semantic security of ElGamal, V_; = V', is clearly true.

Based on the above proofs, our framework is secure with K disclosure where
K has neglected effects on individual privacy.

5.2 Complexity Analysis

In our framework, every worker computes and communicates in parallel. To this
end, we only need to consider one user. Ignoring some cheap operations, the com-
putation and communication cost are summarized in Table 1 where L;(i = p, e) is
the key size of encryption strategy,e is modular exponentiation and +, — means
sending and receiving. Note that ElGamal encryption and communicative-like
encryption is two and three times longer than L.. Due to the size of ciphertext
by Paillier and ElGamal are larger than plaintext and the ciphertext by AP, we
exclude the latter two from communication cost. In the situation when the AR is
not always 100%, the KP needs |IW*|E, instead of 1FE, in computation cost and
the communication cost changes from |2L.| to 2|W*|L, during the comparison
stage.

Table 1. Computation and communication cost

Computation cost Communication cost

The SC platform|The KP Workers | The SC platform|The KP Workers
Distance 3E, 0 1E, + 2e|+3L, 0 —3L,
LCM D, 0 E, 0 0 0
Time 0 0 3e —L, 0 +L,
Comparison nPRG nDy, 4+ 1E. |0 +nL, — 2L, —nLy, + 2L, 0
Verification |0 nk, FE.+ D. |0 —2nL. +3nLe|+2L, — 3L,

6 Experiment Study

In the first subsection, we introduce our experiment settings and evaluation cri-
teria. Then we show and analyze the experiment results in the second subsection.
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6.1 Experiment Settings

We conduct our experiments on an area in Pennsylvania of Gowalla dataset
with latitude from 39.804250 to 41.787732 and longitude from —80.418515 to
—175.189944 with 3036 workers.

Three criteria are introduced to evaluate our proposed framework, namely
computing time, travel distance, and worker number respectively. For comput-
ing time, we compare our framework with Liu et al.’s framework [9] for all of
them are based on the public-key cryptosystems. In these two frameworks, it is
meaningless to take the computing time of the SC platform and the KP into
consideration because we pay more attention on the workers computing time in
the task assignment and these two parties are the same in these two frameworks.
For travel distance and worker number, we compare our framework with To et
al.’s framework [7] for Liu et al.’s framework has the same values as ours in travel
distance and worker number. Tables 2 and 3 summarize the parameters in these
two comparisons.

Table 2. Computing time

Parameters | Default | Range Description
w 200 100, 200, 300, 400, 500 | The number of workers
Smaz 10 5, 10, 15, 20, 15 The maximal speed

Table 3. Travel distance and worker number

Parameters | Default | Range Description

ARmac 0.6 0.2, 0.4, 0.6, 0.8, 1.0 The maximal AR

« 0.9 0.8, 0.85, 0.9, 0.95, 0.99 | The expected rate of a task

€ 0.6 0.2, 0.4, 0.6, 0.8, 1.0 The privacy budget of To et al.’s
framework

6.2 Performance Analysis

Computing Time. In the computing time comparison, two key sizes (1024 and
2048) of Paillier and ElGamal are considered in our framework and Liu et al.’s
framework.

Firstly, we study the effect of S,,q:- As described in Fig. 3, no matter what
key size is adopted, our framework has much shorter average computing time
than Liu et al.’s framework which means tasks can be assigned more quickly and
thus improve the service quality of all platforms. Also, there is a fault of Liu et
al.’s framework where Sy, is 10 when key size is 1024 because when S,,q; is
larger than 10, theirs framework based on the product of all speeds will face the
overflow of product. Meanwhile, our framework can support these calculations
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for our framework is based on the LCM of all speeds. Note that there is still a
fault where S;,4, is 100 in Liu et al.’s framework when key size is 2048 which
is not shown in the Fig.3. That is to say, the most important meaning for our
framework is to break through the speed limitation of Liu et al.’s framework.
Moreover, within our expectations, the computing time of Liu et al.’s framework
increases as Sy,q, grows while ours is a constant for the same reason as before.

Next, the effect of W is evaluated. Similar performance trend can be observed
in Fig. 4 where the larger W is, the computing time grows. In addition, there are
two obvious faults in Fig.4 where W are 200 and 400 when key sizes are 1024
and 2048 respectively for the same reason as first part. Also, our framework has
much shorter computing time than Liu et al.’s framework. Based on the LCM,
our framework can be applied to more workers and a bigger speed.

Travel Time and Worker Number. In the travel time and worker number
comparison, two functions are used to change the AR of every worker (Linear
and Zipf). As To et al.’s framework does not consider the speed of workers, we
set the speed of all workers is 1.

Firstly, we investigate the effect of AR,,q.. As depicted in Fig. 5, our frame-
work has much shorter travel distance and smaller number of notified workers
than To et al.’s framework because theirs is to choose some grid cells which
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contains a number of workers. Some of them may be far away from task location.
Yet, our framework is to visit the worker sorted by travel distance. In addition,
the travel distance and worker number of our framework decrease when AR,,qz
increases for a larger AR,,,,, means workers are more willing to achieve this task.

Secondly, we study the effect of a. Figure 6 shows that our framework is much
better than To et al.’s framework for the same reason as before. Also the travel
distance and worker number of our framework grow with « increases for a larger
« means a task has a higher expected rate to be accepted and thus more workers
are required to accomplish the task.

At last, we assess the effect of €. The higher € is, the weaker privacy guarantee
To et al.’s framework has. As expected, the change of € only affects To et al.’s
framework for ours is stable which is shown in Fig. 7. Also, with € increases, the
travel distance and worker number of their framework decreases by sacrificing of
privacy. But ours still works better than theirs even in weakest privacy guarantee.

7 Conclusion

In this paper, we have identified a new task assignment strategy, travel-time-first,
when allocating workers to tasks in spatial crowdsourcing. We have presented an
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efficient privacy-preserving task assignment protocol for this new strategy. The
proposed protocol scales well because the expensive secure division operation is
replaced by the secure least common multiple (LCM) computation, for which
we have designed an efficient algorithm based on data aggregation. We have
theoretically proved that our approach is secure against semi-honest adversaries.
We have conducted extensive experiments on real-world datasets. Experimental
results have shown that our protocol is efficient and effective.
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Abstract. Despite the prevalence of multi-core processors and large
main memories, most in-memory databases still universally adopt a cen-
tralized ARIES-logging with a single 1/O channel, which can be a seri-
ous bottleneck. In this paper, we propose a parallel logging mechanism,
named Plover for in-memory databases, which utilizes the partial order
property of transactions’ dependencies and allows for concurrent logging
in scalable storage devices. To further alleviate the performance over-
heads caused by log partitioning, we present a workload-aware log par-
titioning scheme to minimize the number of cross-partition transactions,
while maintaining load balance. As such, Plover can scale well with the
increasing number of storage devices and extensive experiments show
that Plover with workload-aware partitioning can achieve 2Xx speedup
over a centralized logging scheme and more than 42% over Plover with
random partitioning.

Keywords: In-memory database - Parallel logging - Scalability

1 Introduction

The advent of multi-core processors makes low-speed disk a major performance
bottleneck. Owing to the increasing size of main memory, many databases can
host the entire data set in main memory to reduce disk I/Os. Unfortunately,
to ensure the durability of transactions, in-memory systems have to flush logs
to permanent storage regularly. Using a single disk as the permanent storage is
not performant, due to its limited I/O bandwidth. Meanwhile, these systems still
rely heavily on a centralized ARIES-style [1] logging mechanism to guarantee the
global order of log entries. Since the total order property of logging implies the
dependencies among transactions, databases can be reconstructed correctly in
accordance of the order of log entries after failure recovery. However, contentions
for the centralized log buffer and limited synchronous I/Os still exist, which may
become a major overhead as system load increases.
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In this paper, we propose a parallel logging mechanism for the in-memory
database called Plover, which utilizes partial order of transactions’ dependen-
cies. The key idea is to employ distributed logging instead of centralized logging
to mitigate the contention on the centralized data structure, and to use scalable
storage devices to increase the I/O bandwidth. Implementing such a distributed
logging is not trivial, due to two main challenges: (1) how to preserve the tem-
poral order among log entries; (2) how to distribute the log entries across the
storage devices. To address the first challenge, we use a global sequence num-
ber to identify the partial order of log entries, and a persistent group commit
method to ensure all log entries of a transaction are persistent before com-
mitting. To simplify the implementation and accelerate the recovery process, we
adopt tuple-level distributed logging, which partitions log entries by tuples. How-
ever, this leads to the second challenge: cross-partition transactions and work-
load skew, which may significantly deteriorate the performance. To resolve the
potential defects, we propose a workload-aware log partitioning scheme, which
applies a graph partitioning algorithm to find workload balanced partitions,
while minimizing the number of distributed transactions. Finally, we demon-
strate that Plover can achieve linear scalability with an increasing number of
storage devices. In TATP and TPC-C, Plover with workload-aware log parti-
tioning outperformed centralized logging by a factor of 2x and Plover using
random partitioning by a factor of 1.42x on two storage devices.

2 Background and Related Work

Centralized Logging. To recover data from failures, a database system needs
to leverage logging mechanism to guarantee atomicity and durability for trans-
actions. For a in-memory database, the ARIES logging ensures that all REDO
log entries are organized in a global order and a transaction can be commit-
ted only if all of its log entries have been persisted. The log sequence number
(LSN)—which is unique and monotonically increasing— can be used to guaran-
tee the global order of log entries. More specifically, the procedure of logging is
described as follows:

(1) Log entry insertion. Before copying the log entry to the centralized log
buffer, the transaction must acquire an LSN and claim the buffer space it will
eventually fill with the intended log entry by a lock or a mutex. The lock or
mutex will be released once the transaction finishes copying the log entry.

(2) Log entry persistence. The logging subsystem appends the log entries
cached in log buffer to the log file in a single storage device. This can ensure
that the entries are consecutive in the log file.

(3) Transaction committing. The transaction can commit safely after the
log entries whose LSNs are less than or equal to those of its own log entries are
persisted in the storage device.
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However, with the CPU cores increases in a single machine, centralized log-
ging is becoming a main bottleneck, especially in main-memory database sys-
tems, where logging is the only source of synchronous I/Os. Traditional central-
ized logging faces the following challenges: (1) upper limit of generating LSNi;
(2) log buffer contention; and (3) limited synchronous I/0Os.

Related Work. To improve the scalability of centralized logging, there have
been active researches on above bottlenecks to develop new logging protocols.
To alleviate the contention of allocation of LSNs, Kim et al. [3] presented a
latch-free approach and Jung et al. [10] designed a concurrent data structure to
ensure the global order of log entries; to improve the performance of log inser-
tion, Johnson et al. [2] proposed a scalable logging with decoupling log inserts
method so that log entries of different transactions can be copied into the log
buffer in parallel; to eliminate the cost of synchronous log writes, most databases
provided asynchronous commit strategy but at expense of durability. And there
have been active researches to develop new logging protocols [7,9] based on the
arrival of non-volatile memory (NVM) technology; to eliminate the limited I/O
bandwidth of single storage device, Zheng et al. [6] implemented a transaction-
level distributed logging mechanism with multiple storage devices and Wang et
al. [8] proposed a universal distributed logging mechanism on multiple NVMs.

To the best of our knowledge, there are not works that can address all the
issues we proposed. Therefore, we design a novel parallel logging mechanism,
which utilizes partial order property of transactions’ dependencies and adopts
multiple log buffers and storage devices.

3 Parallel Logging

Overview. Plover aims at providing excellent performance and scalability for
transaction logging, by leveraging distributed logging and multiple permanent
storage devices. In our approach, the distributed logging is partitioned under
tuple level, each log partition is processed by a dedicated logger thread and all
of the log partitions can be accessed by all the worker threads. As modifications
from a transaction may be written into many log partitions, there are two main
challenges: (1) how to identify transaction dependencies for log entries over mul-
tiple log partitions; (2) how to protect committed work for a transaction. To
tackle the two challenges, we prefer to employ a global sequence number (GSN),
and propose a variant of group commit method, persistent group commit. The
GSN provides a partial order based on logical clock [4] and guarantees the transac-
tion dependencies among log entries over multiple log buffers. And a transaction
can not safely commit until all of its log entries, along with all the log entries
that logically precede them, have become persistent. Therefore, the persistent
group commit starts a daemon thread to periodically monitor the submission of
all logger threads and ensures that transactions can correctly commit.

Normal Processing. Next, we detailedly describe the logging processing of
transactions (t X 6, t X 7, t X 8) in Plover with two log buffers (partitions) par-
tition A, B, as illustrated in Fig. 1.
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Fig. 1. Overview of parallel logging for main-memory database.

(1) Log entry generation. When a transaction is ready to commit, a worker
thread generates a corresponding number of log entries based on the data parti-
tions modified by the transaction. For the running transactions, t x 6 and t x 8
severally have a log entry, but t x 7 produces two log entries.

(2) Log entry insertion. Before writing the generated log entries into matched
log partitions, the worker thread needs to assign a GSN for all the log entries.
The value of GSN is also maintained in each transaction (t_GSN) and each log
partition (1_GSN). Computing a GSN should get the 1_GSNs of corresponding
partitions and set the value as maxz(1_.GSN;) + 1, where i is the serial number
of corresponding partitions. For tx6 which updates tuple a, it only acquires the
1_GSN of partition A (1_.GSN, = 5) and assigns its GSN as 1.GSN, + 1 = 6, as
step (D). For t x 7 which modifies tuple a and b, it must get the 1_GSN of partition
A and B and computes its GSN as maxz(1_-GSN, = 6,1.GSN, = 4)+1 =7, as
step @. To guarantee the true-dependency (RAW) and anti-dependency (WAR)
among transactions, we also consider the case that read and write operation of a
transaction across over multiple partitions. For t x 8, although it only modifies
tuple b, it also needs to acquire 1_GSN, = 7, 1_GSN, = 7 and sets its GSN as 8, as
step 3. In addition to the GSN, each log entry also stores a LSN, which is used
to indicate the space of an individual log buffer. Moreover, to further improve
performance, we release the buffer latch once a transaction have obtained the
GSN so that many worker threads can copy log entries in parallel.

(3) Log entry persistence. When many log entries are accumulated in log
buffers, each logger thread triggers group commit to force them into disk within
a single I/0, and then updates its thread-local variable (pgsn) as the GSN of the
last log entry that have been persistent, as step @). Subsequently, the persistent
group commit daemon examines the pgsn of all logger threads and computes
the smallest pgsn as min_pgsn, as step (®). The min_pgsn represents the upper
bound of persistent log entries and transactions whose t_GSN < min_pgsn can
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be allowed to commit, as step ©). If a logger thread takes too long to update
its pgsn (perhaps because of the corresponding partition accessed by a long
read-only transaction), the persistent group commit daemon updates the logger
thread’s pgsn as the maximum value among all the pgsn of logger threads.

4 Recovery

Checkpoint. To accelerate data recovery from a failure, the in-memory database
mandates a periodic checkpoint of its state during normal processing. In our
Plover, the checkpoint is also partitioned according to tuples. Each checkpoint
partition relates to a log partition and is processed by a dedicated checkpointer
thread. When launching a new checkpoint, a checkpoint manager records the
current min_pgsn as ¢_GSN which indicates the timestamp for a consistent snap-
shot, and then starts up n checkpointer threads, where n is the number of storage
devices. Each checkpointer thread stores the consistent snapshot into m check-
point files and reports to the checkpoint manager. At last, the manager writes
the ¢c_GSN and checkpoint metadata into a special file.

Failure Recovery. Plover masks outages by loading the most recent check-
points (checkpoints recovery) and then repaying the log entries in log files (log
recovery). In checkpoints recovery phase, a recovery manager thread acquires
the newest metadata and c_GSN, where c_GSN denotes the starting point for log
recovery, and then initiates m * n threads to recovery all the checkpoint files in
parallel. In log recovery phase, all the recovery threads are used to replay the
log entries whose GSNs are larger than c_GSN and less than r_GSN. The r_GSN is
the latest min_pgsn at the database crash, which written into a storage device
by the persistent group commit daemon during transaction processing.

~{J- Plover(2SDD) - K - Plover(4SDD) —{]- Plover(2SDD) - 3K - Plover(4SDD)
—~ 50 — 50
X . X
‘8 40 X ‘8_ 40
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Fig. 2. Impact of distributed transactions and workload skew on throughput.

5 Workload-Aware Log Partitioning

Performance Issues. Recall that the normal processing of our parallel logging,
we find that the execution of a transaction is closely related to log partitioning
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Fig. 3. Performance of parallel logging when running the microbenchmark.

and application workloads. Therefore, there are two subtle performance pitfalls:
distributed transactions and workload skew. For the distributed transactions, as
their GSN generation involves multiple log buffers, it increases computing over-
head and reduces parallelism for logging processing. For the workload skew, it
causes a log partition to suffer significant contention and excessive I/O over-
head. As shown in Fig. 2, we explore the impact of distributed transaction and
workload skew on throughput. We perform Plover with 2 and 4 log partitions
(referred as 2SDD and 4SDD) respectively in microbenchmark and the experimen-
tal setup is shown in Sect. 6.

Partitioning Design. To solve the problems mentioned above, we implement
a workload-aware log partitioning in our distributed logging. Firstly, we model
the workload as a graph, G = (V, E), where each vertex v € V represents a
tuple, and the edge e;; € I/ between v; and v; represents the connected tuples
accessed by a same transaction. Each edge is associated with an edge weight
w, which accounts for the frequency of the transactions. After establishing the
graph, we use a k-way balanced min-cut partitioning [5] to split the graph into
k non-overlapping partitions such that the number of distributed transactions
is minimized, while keeping the partitions within a constant factor perfectly
balanced. To achieve the workload evenly across partitions, we consolidate the
tuple size and access frequencies as a factor and assign the factor to each vertex.

6 Evaluation

Experimental Setup. All of our experiments are run on a single machine
with two Intel Xeon E5-2630 (a total of 20 physical cores). The machine is
equipped with 268GB DRAM and 4 pieces of SATA SSDs. We implemented
a transactional logging prototype Plover in Java and each thread combines
a database worker thread with a workload generator in our implementation.
We compare the performance of our parallel logging equipped with multiple
SSDs (referred to as plover) with two approaches: centralized logging with a
single SSD (classic) and centralized logging equipped with RAID 0 (raid0). And
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Fig. 4. Performance of parallel logging with workload-aware log partitioning.

Table 1. Recovery performance.

Variant | Checkpoint recovery | Log recovery time | Total time
time (seconds) (seconds) (seconds)
Classic | 67.7 163.5 231.2
RAIDO |37.9 87.9 125.8
Plover |34.8 82.6 1174

then we conduct experiment on the logging with the proposed workload-aware
partitioning (plover(opt)) and with random partitioning (plover(random)). We
run a microbenchmark which models a single write transaction with a 100 bytes
log entry, TATP (Insert Call Forwarding) and TPC-C (New Order) on all system
variants. For each benchmark and variant, each point reported in all graphs is
the average throughput of three consecutive 120 s runs.

Effectiveness of Parallel Logging. We first compare the throughput and scal-
ability with Plover, Classic and RAIDO in microbenchmark. Figure 3 illustrates
the experimental results.

Throughput. In this experiment, Plover and RAIDO are equipped with two
SSDs. In Fig. 3(a), as we increase the number of worker threads, the throughput
of both Classic and RAIDO rises steadily at first, but dramatically decreases
when the number is larger than 12. However, Plover achieves linear scalability up
to 20 threads. Owing to two logging simultaneously, Plover avoids the intensive
contention of centralized logging and improves near 2x better performance in
terms of peak throughput than Classic and RAIDO.

Scalability. As shown in Fig.3(b), Plover scales effectively as we increase
the number of SSD drivers. The performance of Plover is proportional to the
number of SSDs, but for RAIDO, the non-linear speed-up is due to contention on
the centralized log buffer.

Overall Performance. Next, we evaluate the performance of our parallel log-
ging with the workload-aware log partitioning scheme in diverse workloads.
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For TATP, both random partitioning and our approach can perfectly avert
distributed transactions. But the random partitioning may suffers workload-
skew. Hence, as shown in Fig.4(a), Plover with the workload-ware partition-
ing plover (opt) has the best performance as increasing the number of worker
threads, which improves 2x better peak throughput than Classic and RAIDO,
and increases performance more than 30 % compared with plover (random).

For TPC-C, “New Order” produces a variable-sized log entry, about from 800
byte to 2250 byte. The larger size per log entry makes the peak throughput of
Classic and RAIDO quickly become saturated as growing the number of worker
threads, as shown in Fig. 4(b). And the throughput of plover (random) does not
further increase when the number of worker threads is larger than 12. That is
because there are distributed transactions and workload skew in the random log
partitioning. But our proposed scheme, plover (opt) achieves the best perfor-
mance, which improves the peak throughput by factor of 2x over Classic and
RAIDO, and more than 42% over plover (random).

Recovery. To investigate the effectiveness of our logging for recovery, we use the
microbenchmark without distributed transactions and workload skew. When the
system fails, we acquire 28 GB checkpoints and 54 GB log files. In this exper-
iment, Plover and RAIDO are equipped with two SSDs. As shown in Tablel,
Classic has the largest total recovery time. This is because all of the check-
point files and log files are stored in a single storage device and the limited
I/0 bandwidth seriously reduces its recovery performance. Owing to the par-
allel load, RAIDO and Plover can respectively improve the recovery time by a
factor of 1.83x and 1.97x speedup over Classic.

7 Conclusion

In this paper, we introduce a parallel logging in the main memory database
named Plover, which replaces the centralized log buffer with multiple tuple-
level distributed log buffers and allows log entries to be simultaneously forced
into multiple storage devices. Our distributed logging relies on a logical global
sequence number to identify the uniqueness of log entries and a persistent
group commit method to ensure a transaction can be safely committed. We
also analyze the impacts of distributed transactions and workload skew on per-
formance and present a workload-aware log partitioning scheme based on a
graph-partitioning algorithm to produce high-quality partitions. Our experimen-
tal evaluations demonstrate that Plover can provide linear scalability with the
growing number of storage devices and the increasing number of worker threads.
Due to the parallel design, our approach significantly alleviates the contention
of centralized logging and the limitation of single I/O bandwidth.
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Abstract. Document Type Definition (DTD) and XML Schema Def-
inition (XSD) are two popular schema languages for XML. However,
many XML documents in practice are not accompanied by a schema,
or by a valid schema. Therefore, it is essential to devise efficient algo-
rithms for schema learning. Schema learning can be reduced to the infer-
ence of restricted regular expressions. In this paper, we first propose
a new subclass of restricted regular expressions called Various CHAin
Regular Expression with Interleaving (VCHARE). Then based on single
occurrence automaton (SOA) and maximum independent set (MIS), we
introduce an inference algorithm GenVCHARE. The algorithm has been
proved to infer a descriptive generalized VCHARE from a set of given
sample. Finally, we conduct a series of experiments based on our data
set crawled from the Web. The experimental results show that VCHARE
can cover more content models than other existing subclasses of regular
expressions. And, based on the data sets of DBLP, regular expressions
inferred by GenVCHARE are more accurate and concise compared with
other existing methods.

1 Introduction

Document Type Definition (DTD) and XML Schema Definition (XSD) are two
popular schema languages for XML recommended by World Wide Web Consor-
tium (W3C) [31]. The presence of a schema has numerous advantages such as
data processing, automatic data integration, static analysis of transformations
and so on [2,11,20,22-24,28]. Besides, the existence of schemas is necessary
when integrating (meta) data through schema matching [30] and in the area
of generic model management [3,26]. However, many XML documents are not
accompanied by a (or valid) schema in practice. A survey [19] shows that XML
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documents on the Web which have schema definitions only account for 24.8% in
2013, of which the proportion of valid schemas is only about 8.9%. Therefore, it
is essential to devise algorithms for schema inference. And schema inference can
be reduced to learning restricted regular expressions from a set of given sample
[6,8,16].

Gold [18] proposed a classical language learning model (learning in the limit
or explanatory learning) and pointed out that the class of regular expressions
cannot be learnable from positive examples only. Furthermore, Bex et al. proved
in [4] that even the class of deterministic regular expressions is too rich to be
learnable from positive data. Consequently, researchers have turned to study the
restricted subclasses of regular expressions [27].

The popular existing subclasses of regular expressions used in XML such as
SORE [6], CHARE (Simplified CHARE) [6], eSimplified CHARE [12], Simple
regular expression (CHARE) [5], cCHARE [25] were renamed as in the brackets
and analyzed together in [21]. These subclasses are all based on standard regular
expressions. In data-centric applications using XML, there may be no order
constraint among siblings [1]. However, the relative order within siblings may be
still important. In [9], Ciucanu and Staworko proposed two schema formalisms
for unordered XML: disjunctive multiplicity expressions (DME) and disjunction-
free multiplicity expressions (ME) where the relative order among siblings was
ignored. These two formalisms do not support the concatenation within siblings.
For example, E; = (a|b)T&c is a DME and Fy = a&b*&c’ is an ME. But
E3 = (atb”)&c* does not satisfy both two formalisms. Peng and Chen in [29)
also focused on the unordered relation among siblings and proposed SIRE. SIRE
supports the concatenation operation within siblings. Therefore F3 is a SIRE.
However, SIRFE does not support union operation. In [17], Ghelli et al. proposed a
restricted subclass defined by grammar T::= |al™™|T+T|T-T|T&T where m €
N\{0} and n € N\{0} U {*}. For this subclass, counters (repetition operation)
can only occur as a constraint for terminal symbols of strings in L(T). For
example, F; = a’(b|c|d)* is not allowed.

In this paper, we focus on learning a restricted deterministic regular expres-
sion considering interleaving from a set of given positive examples. We propose
a new subclass named as Various CHAin Regular FExpression with Interleaving
(VCHARE). VCHARE supports union, concatenation and interleaving opera-
tors together. For example, E5 = a*&bT&c’ and Eg = (a|b’)(c*d’|e*)* are both
VCHAREs.

As for learning algorithms for XML data, Bex et al. [6,7] proposed two infer-
ence algorithms RWR and CRX for SOREs and its Simplified CHARES, respec-
tively. Freydenberger and Koétzing [13] proposed another two inference algo-
rithms Soa2Chare and Soa2Sore based on Single Occurrence Automaton (SOA)
for Simplified CHAREs and SOREs, respectively. These two algorithms can infer
descriptive generalized regular expressions (explained below) while RWR and
CRX can not. Ciucanu and Staworko introduced an algorithms for DMFE based
on maz clique [9]. Peng and Chen [29] proposed an approximation algorithm and
heuristic solution to infer a descriptive generalized SIRE.
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The concept of descriptive generalization [14], is different from Gold-style
language learning. Gold-style learners are required to infer an exact descrip-
tion for the target language in a class. But descriptive generalization views the
hypothesis space and the space of target language as distinct. Here is a for-
mal explanation. For a class D of language representation mechanisms (e.g., a
class of automata, regular expressions, or grammars), a representation « € D
is called D-descriptive for a set of given sample S if the language of « is an
inclusion-minimal generalization of S. It means that there is no § € D such
that S C L(B) C L(«).

In present paper, the inference algorithm (Gen VCHARE) is also based on the
concept of descriptive generalization which aims to infer descriptive generalized
VCHARZEs for a set of given sample S. The main idea of GenVCHARE is based
on SOA and Mazimum Independent Set (MIS). We first construct an SOA for
S. Then replace each non-trival strongly connected component (NTSCC) by the
return value of RepairRE() as one new node. Next, assign each node a level
number. Finally, all nodes of each level will be converted to one or more chain
factors.

The main contributions of this paper are listed as follows.

— We propose a subclass of restricted regular expressions named as Various
CHAin Regular Ezpression with Interleaving (VCHARE).

— We design an inference algorithm GenVCHARE to infer descriptive general-
ized VCHAREs.

— We analyze the coverage proportion of VCHARE compared with other sub-
classes based on the real-world data set. Based on the data sets (DBLP), we
compare the inferred results with other inferrence methods. The experimen-
tal results shows that regular expressions inferred by Gen VCHARE are more
accurate.

This paper is organized as follows. In Sect. 2 introduces some basic definitions.
Section 3 is the inference algorithm GenVCHARE. Section4 gives the experi-
ments. Conclusions are drawn in Sect. 5.

2 Preliminaries

Definition 1. Regular Expression with Interleaving. Let X be a finite
alphabet. X* is the set of all strings over Y. A regular expression with inter-
leaving over X is inductively defined as follows: € or a€X is a regular expres-
sion where a€X. For any reqular expressions Fy and Es, the disjunction E1|Es,
the concatenation Ey - Es, the interleaving E1&Es, or the Kleene-Star EY is
also a regular expression. The language generated by E is defined as follows:
L(®) = 0; L(e) = {e}; L(a) = {a}; L(E}) = L(E)*; L(E1E>) = L(FE1)L(E2);
L(E1|E2) = L(El) U L(EQ), L(El&Eg) = L(ElEQ) U L(EQEl) E? and E+ are
used as abbreviations of E + € and EE*, respectively.

In the specification of XSD, the interleaving operator is used in the form of
ai*&a?& - - - &alr where a;€X and ¢;€{1,?,+,*}. For a,b € X, z,y € X*, we
have a&e = e&a = a and azx&by = a(x&by) U b(ax&y).
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Let S be the set of given sample. POR(S) is the set of all partial order
relations of each string in S. Using POR(S), we can compute the Constraint Set
(CS) and Non-Constraint Set (NCS) for S by the following formula.

1. CS(S) ={< a;,a; > | < aj,a; > POR(S), and < a;,a; >€ POR(S)};
2. NCS(S) ={<a;,a; >| < a;,a; >€ POR(S), but < aj,a; >¢ POR(S)}.

Clearly, for a set of given sample S, CS(S) N NCS(S) = 0. If CS(S1) #
CS(S3) (or NCS(51) # NCS(S3)), then Sy # Ss.

Definition 2. PS(P,s). PS(P,s) is a function in which P is a finite set of
symbols and s is a string. Each symbol s; of s in PS(P,s) is defined as follows:
ws(P,s;) = 8; if s; € P; otherwise ws(P,s;) = €. The return value of PS(P, s) is
a new string s’ with € removed.

For example, let P = {b,c, 7} and s = ebbdfc. s’ = PS(P, s) = bbc.

Definition 3. extended String (eS). Let X be a finite set of terminal symbols.

An eS is a finite sequence s's5? - - sSn, where s; € X and ¢; € {1,7,+, x}.

Definition 4. Various CHAin Regular Expression with Interleaving
(VCHARE). Let X be a finite alphabet. A VCHARE is a reqular expression
with interleaving over X in which each symbol occur once at most. It consists of a
finite sequence of factors of two forms. One form is of aj*&as?& - - - &alr where
n>2, a;€X and ¢;€{1,?,+,%}. The other form is of fifa--- fm where m>1.
Each factor f; is of the form of (bi|ba| - - - |by), (b1|ba|---|bn)", (bi|ba|---[bp)T or

(b1]ba| - - - |bp)* where b; has two forms: 1. terminal symbol a or a™ with |b;] = 1
for the first two forms; 2. for the last two forms, it can be an eS s = a{*as? - - - air

where a;€X and ¢;€{?,*} with n>1.

Clearly, By = a’&b*&ct and Ey =a’(b+cT)(c'd* +¢’)* are both VOHAREs.

3 Inference Algorithm

In this section, we will introduce the inference algorithm GenVCHARE for
VCHARE. The algorithm is based on SOA and MIS.

We use the method 2T-INF [15] to construct a SOA for S. It was proved
that L(SOA(S)) is inclusion-minimal of S. Finding a maximum independent
set from a graph G is a well-known NP-hard problem. Therefore we use the
approximation method clique_removal() [10] to find the approximative results.
all_mis is the set contained all maximum independent sets iteratively obtained
from G using clique_removal(). symbol(A) is the set of all symbols occur in A.
The main procedure of GenVCHARE is described as follows.

— Construct a graph G(V, E) = SOA(S) using method 27-INF' [15].
— For each node v with a self-loop, label it with v and remove the self-loop.
Update the graph G.
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- If G is a strongly connected component, then return the result
v]'&vg?& - - - &vir where v; € V and assign the repetition operator ¢; €
{1,7,+, %} using CRX [6]. Otherwise, continue to run the following steps.

— For each non-trival strongly connected component c;, replace it with the
return value of RepairRE() as one new node. All relations with any node
in ¢; rebuild the relations with the new node.

— Assign level numbers for the new graph and compute all skip levels.

— Nodes of each level are turned into one or more chain factors. If there are
more than one non-letter nodes (label with more than one terminal symbols)
with the same [n, or if In is a skip level, then ? is appended to every chain
factor on that level.

Pseudo code for Gen VCHARE ALT(C) can be found on the web site: http://
les.ios.ac.cn/~zhangxl/.

Algorithm Analysis. For graph G(V, E) = SOA(S), let n=|V| and m=|E|.
It costs time O(n) to find all nodes with self-loops and O(m + n) to find all
NTSCCs. The time complexity of clique_removal() is O(n? + m). For each
NTSCC, computation of all_mis costs time O(n? + m) and the topological sort
for each mis costs time O(m + n). The number of NTSCCs in a SOA is finite.
Therefore computing all_mis for all NTSCCs also costs time O(n®+m). Assign-
ing level numbers and computing all skip levels will be finished in time O(m+n).
All nodes will be converted into specific chain factors of VCHARE in O(n).
Therefore, the time complexity of GenVCHARE is O(n® + m).

Theorem 1. Suppose that o = GenVCHARE(SOA(S)) where S is a set of
given sample. If there exists another VCHARE ( such that S C L(8) C L(«),
then L(3) = L(a).

All detail proofs are omitted due to limited space.

4 Experiments and Analysis

In this section, we first investigate the proportion of VCHARE based on real-
world data, and then analyze our inference algorithm on DBLP downloaded
from the Web!'. DBLP is a Computer Science Bibliography corpus, a data-
centric database of information on major computer science journals and pro-
ceedings. All our experiments were conducted on a machine with Intel Core
i5-5200U@2.20 GHz, 4G memory, OS: Ubuntu 16.04. All codes were written in
python 3.

! http://aiweb.cs.washington.edu/research/projects/xmltk /xmldata/www /repository
html.
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4.1 Usage of VCHARE in Practice

To investigate the proportion of

VCHARE in practice, we crawled MEE = DTD
29414 DTDs, 38554 XSDs and 4526 DME | o

Relax NGs files from the Web and
extracted 118242, 476804 and 509267
regular expressions from them respec-
tively. The coverage proportions of Ghelli
subclasses: VCHARE, SORE, DME, SIRE
ME, Ghelli [17], SIRE are shown in T 20 30 10 o0 60 70 R 83 T0S
Fig.1. Clearly, we can find out that

the proportions of VCHARE are the
highest for XSDs and Relax NG which
are 94.95% and 95.28% respectively.
For DTDs, the proportion (93.54% for VCHARE) is a little lower than SORE
(96.69%). This is because interleaving operator is not supported in DTD. Inter-
leaving is defined in an unlimited manner in Relax NG with any symbol in strings
to interleave in any order while it is limited in XSD with only single symbols
to interleave in any order. For example, (ab*)&(ctd’) is not valid in XSD but
it is allowed in Relax NG. Although interleaving defined in SIRE conforms to
Relax NG, the proportion of VCHARE is still higher than SIRE. This means
that in actual data, interleaving is used mostly in a quite simple and concise
form. Therefore, VCHARE is more practical in real-world applications.

SORE

VCHARE

Fig. 1. Proportions of subclasses

4.2 Analysis of Inference Results Compared with GenVCHARE

In this section, we analyze the inference results by GenECHARE [12] (algorithm
for inferring eSimplified CHARE), Soa2Chare [13], Original Schema, Trang,

Table 1. Results of inference using different methods on inproceedings

Sample size From |Element name ND||RE|
1610138 DBLP | Inproceedings
Methods Regular expression

1. Original Schema | (a1|az|as|as|as|as|az|as|ag|aiolaii|aiz|ais|aia|lais |1 |48

|ais|ai7]ais|aiolazo|azi|azz|azs)”

2. Intelli] IDEA | a3(a1|as|as|as|as|aio|arr|aiz|ais|ais]ais|aiz|ais)™ |1 |31
3. Liquid Studio | (a1|az|as|as|as|as|aio|air|aiz|aiz|ara|ais|aiz|ais)t |1 |30
4. Trang as(a1|as|aslas|as|arolaii|aiz|ais|ais|ais|air]ais)t |1 |31
5. Soa2Chare a3(a1|as|as|as|as|aiolaii|aiz|aislais|ais|air|ais)t |1 |31
6. GenEchare a3(af |asla]|as|as|aiolaii|aiz|ais|af,|atslair|afs) T2 |36
7. conMiner alal,aii&asalianalo&asas&al&ara&als&algaly |1 37
8. GenVCHARE |a}(alal ais]asalsals|aslas|as|ats|aisalialo)™ 2 |40
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conMiner [29] (algorithm for inferring SIRE), IntelliJ IDEA and Liquid Studio
compared with GenVCHARE on inproceedings, incollection, phdthesis, master-
sthesis. Using two indicators: Nesting Depth [21] and length of reqular expres-
sions (the number of symbols together with operators), we only give the analy-
sis of inferred regular expressions on inproceedings due to limited space reason.
Analysis on other elements can be found on the web site: http://lcs.ios.ac.cn/
~zhangxl/.

From Table 1, we can find that as must occur in the first position if it appears.
However, its position is not fixed in regular expressions inferred from methods
1, 3, 7 which lead to over-generalization.

5 Conclusion and Future Work

After a detailed analysis of real-world data, we propose a new subclass VCHARE
of restricted regular expressions considering interleaving operator. Each terminal
symbol in a VCHARE can only occur at most once. Compared with existing sub-
classes, VCHARE can cover more real-world data. This is useful for applications
such as data process and integration and so on. Further, we proposed an infer-
ence algorithm Gen VCHARE for VCHARE based on SOA and MIS. It is proved
that regular expressions inferred by GenVCHARE are descriptive generalized.
Experimental results show that regular expressions inferred by GenVCHARE is
more accurate.

One future work is to consider constructing an automaton for regular expres-
sion with interleaving which is useful for schema inference. In addition, we will
also study SORE extended with interleaving.
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Abstract. Query reverse engineering is getting important in database
usability since it helps users to gain technical insights about the database
without any intentional knowledge such as schema and SQL. In this
paper, we review some existing techniques that focus on join query dis-
covery, and we devise our efficient algorithm to discover the SQL queries
that contain both joins and OLAP-style aggregations which are substan-
tially for querying OLAP data warehouses. We show that our algorithm
is adaptable and scalable for large databases by performing an empirical
study for TPC-H benchmark dataset.

1 Introduction

Since every organization may have its unique data warehouse and it is always
managed and maintained by a team of technical experts, it is rather hard for ordi-
nary users to make full use of these generated data, especially those spreadsheets
from the data warehouse. For a general purpose, database users are required to
learn both schema and query language, which are important for them to invoke
the tuples from the relevant relations precisely. Thus, the SQL join operations
are definitely important for combining the relevant columns from these tables
into a common (denormalized) table. Besides, these combined data are often
associated with OLAP-style aggregations (e.g., basic mathematical operators)
for offering more valuable insights about the numerical data.

Figure 1 illustrates a motivating example. Figure 1(a) is an example spread-
sheet table, and Fig. 1(b) shows are a pair of or even better minimal join graphs
that could regenerate this spreadsheet table through different join tables, projec-
tions, and aggregations. A candidate join graph is akin to a schema graph. Each
node represents a relation, and it is starred if it contains a projection column.
Therefore, from the candidate join graphs, only the validated join graph would
be executed for discovering other SQL classes, e.g., OLAP group-by, aggregations
and selection filters.

1.1 Related Work

Instead of using a keyword query that is made up of several keywords, there are
many proposals have been implemented to discover join queries by using a tabu-
lar list of tuples as the implication of keyword search in relational databases [7].

© Springer International Publishing AG, part of Springer Nature 2018
Y. Cai et al. (Eds.): APWeb-WAIM 2018, LNCS 10988, pp. 53-62, 2018.
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N_NAME L_LINESTATUS [MAX(O_TOTALPRICE)[SUM(L_QUANTITY),
IARGENTINA o 530604.44 2284691.00 [ Nation-Customer-Orders-Lineitem ]
ICANADA F 510061.60 2343191.00
ICANADA o 515531.82 2284164.00 [ Nation-Supplier-Lineitem-Orders ]
FRANCE F 508668.52 2343432.00
IRAN F 522644.48 2276219.00
JAPAN (o] 502742.76 2287464.00
IMOZAMBIQUE |0 508047.99 2348205.00
PERU F 544089.09 2269762.00
IPERU o 522720.61 2264220.00
RUSSIA F 555285.16 2359354.00
|UNITED STATES |O 525590.57 2316886.00 »
VIETNAM F 504509.06 2301689.00

(a) An example spreadsheet table (b) Join candidate graphs

Fig. 1. The different join queries that are possible to generate an example spreadsheet.

Most of the existing solutions (e.g. [10,11,13]) depend on schema-based app-
roach [1,2], and the database schema is illustrated as a graph by taking the
relations as nodes and the foreign key references as edges. In DISCOVER [2]
and its extended works [3,7], given that a set of candidate networks discovered
by a keyword query, the candidate network evaluation needs an optimized execu-
tion plan which is depicted as an operator tree in order to translate each of them
into SQL. Nonetheless, the full-text search is another technique to verify can-
didate queries by emphasizing keyword containments as SQL predicates, which
it is exceptionally useful for text attributes and built-in indexes are required
in advance. Several works [5,6,8] support this full-text search feature, thus the
query discovery is restricted to textual databases in lieu of the OLAP data ware-
houses.

Another critical factor that could optimize the join execution is the index-
ing techniques. In lieu of joining every projection attribute for candidate query
evaluation, the implementation of join indices [12] only require those relevant
primary keys to form a temporal relation so that the overhead memory cost can
be avoided. The well known TALOS framework [10,11] uses the join indices to
build an intermediate join relation and thus applies the decision tree classifier
to classify the tuples for selection predicate generation. In addition, as indicated
in [13], the unique tuple identifiers (tids) within each relation are used to exam-
ine each schema-based connected tree at instance-level in order to invalidate any
schema trees that cannot generate a random output tuple.

Apart from that, besides those fundamental SQL classes which can determine
the schema tables and attributes for query discovery, other classes such as HAVING
and ORDER BY clauses have their specifications to produce the finalized SQL
results. PALEO framework [4] uses the concept of ranked list of tuples to reverse
engineer OLAP queries where each query contains an ORDER BY column.

1.2 Contributions
Our contributions in this paper are presented as follows:

— We provide a solution that generates the candidate join graphs through the
schema and metadata exploration to characterize each distinct column of
query output table.
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— We improve the expressiveness of our solution by discovering SQL HAVING
clause for aggregation queries.

— We prove that our algorithm is adaptable and scalable by conducting an
experimental evaluation over the standard TPC-H dataset.

2 Problem Definition

A relational database D consists of a set of relations and every relation is linked
by referential integrity constraints. The relational schema is defined as a schema
graph SG(R, (), where each R is a table and each ¢ is an fk/pk constraint. A
subgraph J(G) entails a join query where a relation R € SG may appear more
than once as a node in it. The Project-Join (PJ) queries should contain at least
both projection () and join (<) operations where the projection determines the
number of columns and the join determines the number of relations. A subgraph
J(G) connects all the relevant relations through their fk/pk constraints while it
may contain other relations as well as intermediate nodes to interconnect all the
relevant relations. Hence, the schema size is directly proportional to the size of
J(G). To prune the overwhelming unnecessary tuples from the outputted join
table, the selection operation (o) is used as a filter by specifying the necessary
conditions for the query output table Out. The formulated queries with these
three SQL operations are named as Select-Project-Join (SPJ) queries. In our
work, we intend to discover more complex queries than the SPJ queries, i.e.,
the OLAP queries. Given the query output table Out as input, the GROUP BY
operator will correspond to the number of tuples (groups) of Out. Each group
will be used to produce one or multiple aggregations where each aggregation
takes an aggregate operator (e.g. MAX, MIN, AVG, SUM, and COUNT) for a numeric
attribute. Upon the above OLAP specifications, we define the queries as Select-
Project-Join-Aggregation (SPJA) queries.

3 Join Query Discovery

In this section, we discuss how to discover the possible subgraphs based on a given
query output table Out. Its columns are essential to delimit the schema size for
query regeneration. Our join query discovery relies on a graph search algorithm
to determine the possible candidate subgraphs. For instance, the breadth-first
search algorithm in DISCOVER [2] finds the subgraphs where the nodes that
contain the given keywords are taken as the leaf nodes. Apart from just consid-
ering the keywords, our problem is to find out all the possible subgraphs that
can cover all columns in Out. Algorithm 1 indicates the join query discovery.

3.1 Column Mapping Table

Consider a column of Out, it is outputted by the projection operation () for
a schema attribute A, either is operated as group-by or aggregation. An SPJA
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query, that aggregates the output tuples from the sets of grouped tuples; there are
some columns whose aggregate values cannot be directly mapped to any schema
attributes. Due to the possibility of unidentified /anonymous schema attribute(s),
the column mapping details may be incomplete. To solve this problem, for each
unmapped column, it can match a set of covering attributes; otherwise it has
to be an integer column that can be corresponded to COUNT aggregation. These
covering attributes are discovered due to different mathematical properties that
are possessed by different aggregate functions. However, it is non-trivial to deter-
mine the set of covering attributes intuitively if the unmapped column tuples
are far beyond any minimum/maximum values of schema attributes which the
only possibility is the SUM computation that relates with both COUNT and AVG.

3.2 Candidate Subgraph Generation

By assuming the schema graph is undirected, the current (in)complete column
mapping table is used to search for the (partial) candidate subgraphs. The
mapped relations are set as leaves so that they must be contained in the candi-
date subgraph generation. A set of partial subgraphs is generated due to incom-
plete column mapping. Given a partial subgraph, it will be either explored or
expanded to find the covering attribute(s) for the unmapped column(s) of column
mapping table. In Fig. 1, the relations named Nation, Lineitem and Orders are
the leaves because the schema attributes Nation.name, Lineitem.linestatus,
and Orders.totalprice are mapped. When exploring the discovered partial sub-
graph, the attribute Lineitem.quantity can be the covering attribute for the
last column of Out.

Partial Subgraph. Consider a set of leaves, the least connected leaf node is
selected as root to connect other leaves to form a subgraph through the undi-
rected schema graph via breadth-first search exploration. If there exists a pair
of same leaf nodes, the node duplication is allowed where a node can be visited
for twice. The schema size thus is determined by the total number of visited
nodes. To control the schema size as well as the cost complexity, the number
of intermediate nodes should be kept as fewer as possible. By heuristically, the
candidates are sorted by the schema size for evaluation.

Join Table Size Estimation. Upon a partial subgraph, by doing schema
exploration, the utmost task is to complete the column mapping table. Once
every column in Out has its corresponding schema attribute(s), the partial sub-
graph thus becomes the complete candidate subgraph. For an unmapped column
that contains aggregation results, the idea is to find the corresponding numeric
attributes. Among the possible candidates, the priority is to quickly prune the
inappropriate ones by inferring its join size. For a partial subgraph, its join size,
T is determined by the total number of tuples to generate Out. In addition, its
schema is equivalent to a set of attributes, denoted as A. If an unmapped column
A contains only natural numbers, its total number is considered the estimated
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Algorithm 1. Join Query Discovery

input : SG: schema graph, Out: query output table
output: {J(G)}: set of candidate subgraphs

//Column Mapping
mapping table ¢ = 0
covering table ¢ = 0
foreach column X\ € Out do
if ¢(\) = schema attribute A then
| update ¢(X) — A
else

L insert X\ into ¢
//Candidate Subgraph Generation
foreach mapping ¢ do
find partial subgraphs from SG
foreach partial subgraph do
if ¢ # 0 and ¢(\) = schema attribute A then

update ¢(\) «— A

{J(G)} < partial subgraph
else if ¢ # 0 and !p(\) = schema attribute A then

find set of neighbour nodes { R}

while ezpandPartialSubgraph(R) do

if ¢(\) = schema attribute A then
update ¢(\) «— A
{J(G)} < partial subgraph

{J(G)} « partial subgraph

join size, I' = > A, where A € . The estimated I" should be within the range of
axT and T where « is the selectivity factor that delimits the number of tuples
to generate Out as the impact of applied selection conditions. We assume the
default value of « as 0.1 and all data are in normal distribution. If the statement
is true, then it can be delineated as the computation of COUNT(*). However, for
the implication of SUM (A), given that A is a schema attribute where A € A and
an unmapped numerical column A, the estimated join size, I' can be calculated
by a simple formula as below.

AVG(A)

ZL/LAZ’_F axT <I'<T true
otherwise false

An attribute A € A is acceptable if the estimated I is between a7 and 7.

Expanding Neighbour Nodes. If it still does not have any covering attribute
for any unmapped column of Out, the partial subgraph cannot establish as a
candidate subgraph. An alternative approach is to expand the current partial
subgraph by adding one of its neighbour nodes to form a new subgraph for
schema exploration. If every column of Out is being mapped or covered, the new
subgraph is added to the set of candidate subgraphs; otherwise, another new
subgraph is generated by adding another selective neighbour node. This process
is iterated until the set of candidate subgraphs is found.
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4 Group-By Discovery, Aggregates Pruning and Filter
Discovery

After determining the possible joins, the next step is to determine the group-by
candidates for query discovery. According to the mapping columns, a group-by
lattice is built where its nodes are the group-by candidates and its edges are
the superset-subset relationships. The invalid nodes are pruned by exploring
the lattice, and the remaining nodes are the possible candidates for subsequent
aggregates pruning. The rule-based aggregation checking is used to generate a
set of group-by key-aggregation pairs. Besides, the candidate SQL queries may
contain any possible selection filters. A selection filter is illustrated as a fuzzy
bounding box that can be cross-validated over a group of multi-dimensional
matrices, which corresponds to a conjunction of selection predicates. The full
implementation is depicted in REGAL [9)].

5 Group Selection

Ideally, any constructed SPJA query Q' should reproduce the given output table
Out, or at least Out C Q'(D). Since the Out itself may have been skimmed by
source query Q for a summarized version, it contains only some groups whose
corresponding aggregate values are passed a threshold. However, this threshold
is considered as an additional SQL functionality, and it is less being discussed
in the query reverse engineering. The SQL HAVING clause is a specific term can
be used to decide whether a set of groups will be outputted in Out based on
the current query result Q'(D). The HAVING clause contains a condition which
involves one or two output columns. For all groups within current query result
Q'(D), a satisfied HAVING condition will separate them into two distinct subsets,
where one subset is similar as those groups in Out and another subset is taken as
Q'(D)—Out. On the one hand, if the HAVING condition involves only one column,
the current query result Q'(D) is examined by all its groups are arranged based
on one of the numeric columns. On the other hand, if the HAVING condition takes
two columns, where these columns are being compared so that the Out exists a
specified relationship between them, such as one column whose values are always
larger than those from another column. A candidate query Q' for the motivating
example in Fig.1 is given as:

select  N.name, L.linestatus, max(O.totalprice), sum(L.quantity)

from Nation N, Customer C, Orders O, Lineitem L

where  N.nationkey=C.nationkey and C.custkey=0.custkey and
O.orderkey=L.orderkey and L.linenumber > 1

group by N.name, L.linestatus

The generated table Q'(D) contains 50 tuples (groups). However, Out contains
only 12 tuples (groups), and it is a subset of Q'(D). By searching through
the aggregation candidates, e.g., maz(O.totalprice) and sum(L.quantity), the
twelve tuples can be discerned by formulating a HAVING condition, as having
max(O.totalprice) > 500000.
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6 Experimental Evaluation

Implementation and Dataset. We implemented our proposed algorithm in
Java with MySQL server as DBMS. The experiments were conducted on an
Ubuntu machine with 2.40 GHz Intel CPU and 16 GB RAM. TPC-H benchmark
is the dataset that used for experiments, with a scale factor of 1 and size of 1 GB.

TPC-H Test Queries. There are a total of 22 test queries for TPC-H bench-
mark. Most of them include different number of joins, except for TQ1l and
TQ6, with the absence of join. We neglect the complex join query discovery,
i.e. the nested joins, fk/fk joins, and equijoins, which are exhibited in TQ5 (e.g.,
S_nationkey = C.nationkey) and TQ21 (e.g., L1_orderkey = L2_orderkey)
respectively. We test for the remaining join queries and scale them based on the
number of joins, i.e. from 1 to 5.

Query Output Table Generation. Given that a test query 9, we execute it
over TPC-H dataset D to generate the query output table Q(D) = Out which
later the Out will be used as the input of our proposed algorithm to discover
for such a query Q' where Q'(D) = Out. As we have selected those TPC-H
benchmark queries, however, except for the join relations and join predicates are
remained, other SQL operations are altered. We set several parameters for the
experiments to control the variety of query output tables. For example, we will
produce the query output table Out with the cardinality of m and the arity of
n, and the test query Q contains a AV-dimensional filter.

6.1 TPC-H Join Queries

For each of these test queries, we generate a query output table with moder-
ate row size m and column size n = 4 where it must contain both group-by

Table 1. Effect of number of joins.

# Joins | TQ Tables Runtime (s) # Graphs
min-max min-max
1 4, 12 L, 0 144.189-281.529 | 1
13,22 |c, 0
14,17, 19 L, P
15 L, S
2 11 PS, S, N 60.937-294.624 |1
16 P, PS, S
3,18 C, 0, L
3 10 N, C, O, L 313.882 1
2 R, N, S, PS, P 68.648-338.248 | 1-2
20 N, S, L, PS, P
5 7 Ni, S, L, 0, C, N2 417.508-443.197 | 2
9 N, S, L, 0, PS, P
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statements and aggregations which the number of group-by columns is set at
most two while the other columns are used for aggregations. Each query contains
one-dimensional filter as A/ = 1. Table 1 records the experimental results based
on the number of joins of TPC-H benchmark test queries. First, the inferred join
table size is essentially crucial as it will impact the time cost for a table scan.
Some of these test queries like TQ2, TQ11, and TQ20 contain the least inferred
join table size (0.8 million tuples), which take less than 70s for discovering these
queries. Second, the number of join graphs is directly proportional to the total
execution time. For example, test queries like TQ7, TQ9 and TQ20, they need
to evaluate two join candidates to generate the discovered queries.

400 Filter discovery 400 Filter discovery

M Grouping and aggregates pruning M Grouping and aggregates pruning

300 ™ Group-by discovery 300 ™ Group-by discovery

=
g200
£
B I I I I b II lI II
0 I I- I-
1 2 3 4

Time (s)
N
o
o

0
sumavg max ~ sumavgmax  sumavg max
Number of joins 1-join 2-join 3-join

Fig. 2. Average time for query discovery = Fig. 3. Individual phase performances
against number of joins. for different aggregations.

6.2 Individual Phase Performances vs. Joins

In order to further analyze the important factors that influence the total exe-
cution time besides the join operations, those TPC-H benchmark queries under
similar considerations (i.e. the same inferred join table size) are examined. As
there are multiple test queries for each number of joins, we run those queries
individually and take their average running time. To avoid the cost of exploring
all candidate queries, the execution time is taken once the least complex Q' is
returned for a given test query Q. The experimental results are illustrated as
shown in Fig. 2. According to the experimental results, the total execution time
is proportional to the number of joins. As the number of joins is increased, it
indulges more schema tables/attributes for the query discovery and takes longer
time for evaluation. Furthermore, all three individual phases involve table scans.
In the phase of group-by discovery, the Out tuples are verified at instance-level
to validate the group-by nodes. Second, during the phase of grouping and aggre-
gates pruning, the inferred join instance is partitioned by the group-by nodes to
find out the possible aggregations based on the derived constraint rules. Third,
the schema attributes are used to construct the A/-dimensional matrices, so that
the selection filter(s) can be found within these matrices.
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6.3 Joins vs. Aggregations

Figure 3 shows the experimental results by comparing the selected aggregations
for test queries w.r.t. different number of joins. Among five basic aggregate opera-
tors that we have discussed, three of them are chosen for this experiment, namely
MAX, SUM and AVG, since MIN and MAX are symmetrical whereas COUNT is assumed
as another SUM operation of a special attribute whose each of its values is set to
1. For the experiment settings, we set the parameters to output every Out with
n = 4, where there must be one aggregation column that is selected between MAX,
SUM and AVG with three group-by columns. First, by looking at each individual
aggregation w.r.t. joins, as the number of joins is increased, the total running
time is also increased. By comparing these aggregations, it is apparent that MAX
takes the largest running time in the phase of group-by discovery regardless
the number of joins if compared to both SUM and AVG aggregations. The size of
group-by lattice for MAX is 24 = 16 nodes whereas the size of group-by lattice for
SUM or AVG is smaller, which is 23 = 8 nodes. However, AVG takes more time in
the phase of filter discovery as compared to SUM and MAX, since the computation
for AVG is more complex than that SUM. Thus, AVG takes the second largest time
for the query discovery.

7 Conclusion

In this paper, we bring these two main features together by integrating the
promising approaches from both existing works with optimizations. Our empir-
ical study has shown that our proposed solution can work in practice with the
TPC-H benchmark dataset.
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Abstract. With the popularity of Location-based Services, LBS
providers have been obtaining more data, by analyzing which they
may infer users’ real locations and patterns of behavior. Unfortunately,
most previous schemes using k-anonymity can hardly resist such fiercer
side information-based privacy attacks. To address existing problems,
we design a novel metric to accurately measure the resulted privacy
level. Additionally, Dual Cloaking Anonymity (DCA) and enhanced-DCA
(enDCA) algorithms, which are based on our metric, are also proposed.
The former (DCA) constructs a k-anonymity set via carefully selecting
k-1 users according to various query probabilities of each area and corre-
lations between users’ query preferences. Then, enDCA further employs
caching and location blurring to enhance the privacy preservation. Evalu-
ations show that our proposals can significantly improve the privacy level.

Keywords: LBS privacy * k-anonymity - Confusion degree

1 Introduction

Location-based services are springing up around us, whereas leakages of users’
privacy are inevitable during these services. Even worse, adversaries may ana-
lyze intercepted service data, and extract more privacy like hobbies, health and
property. Hence, privacy preservation is an indispensable guarantee on LBS.

Among existing privacy preservation approaches, ones based on k-anonymity
are widely researched. However, some privacy concern will be aroused if these
schemes are adopted directly. For example (in Fig.1), an area is divided into
4 x 4 cells, where a target user U, issues a query “Find the nearest hotel” (his
privacy profile k = 4). DLS algorithm [6] selects four blue cells to construct a
cloaking set because their gross query probabilities are similar. Although such
a set reached the maximum entropy, experienced adversaries can exclude some
© Springer International Publishing AG, part of Springer Nature 2018
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cells if they have richer side information, such
as features of each cell and users in the cells.

According to querying features of differ- ) b
ent cells and U;’s query content, adversaries o
may exclude cell b & d from the set. With the [c @ -
help of further analyses of query preferences, .2 [ J—
if adversaries learn that U, is a businessman, @ i‘g@
they can confidently locate U;. Thus, location
privacy of Uy is invaded.

To address those defects, we propose a
novel privacy metric which first takes into

(L)

Target User U,

Fig. 1. An example of a cloaking

) X ' X set. More queries about hotels and
account the impact of richer side informa- transport occur in cell a & ¢, while

tion on privacy. Then, DCA and enDCA more queries about entertainment
algorithms are designed. They both fulfill and shopping occur in cell b & d.
our objectives while either one has different U; prefers to query for hotels and

advantages. Major contributions are summa- conference centers via LBS. Uy and
rized as follows: Uz mainly search for entertainment.

e A newly-proposed entropy-based privacy metric may measure the privacy
level, and depict the impact of richer side information on privacy.

e We design DCA algorithm, which considers richer side information (query
probabilities & preferences) when constructing k-anonymity sets.

e Based on DCA, location blurring and caching are introduced to enDCA.
These techniques impede invading location privacy, promote the low band-
width overhead and resist the disclosure of users’ preference privacy.

e We adopt a novel Wi-Fi access point based Peer-to-Peer structure.

2 Related Work

Recently, many research efforts have been concentrated in LBS privacy.

Among cryptography based techniques, Ghinita et al. [2] used Computational
PIR, which needs two stages to retrieve POI data. Papadopoulos et al. [10]
proposed cPIR which reduces computational overhead.

Kido et al. [3] cloaked user’s real location by generating k — 1 dummy loca-
tions, but side information is ignored. Casper [5] provided cloaking regions
according to user’s privacy profile and minimum area, whereas maintaining the
pyramid structure leads to high costs. Niu et al. [6,7] designed AP-based k-
anonymity schemes considering query probabilities and caching. However, con-
structing cloaking sets and caching data need high computational and storage
overhead for APs, and k-anonymity isn’t effectively guaranteed due to negligence
in the variety of queries.

Palanisamy et al. [9] constructed adaptive mix-zones centered at road inter-
sections, which replace actual query time with shifted ones, to resist timing
attacks. However, these schemes limit the submissions of queries in Mix-zones.

Miguel et al. [1] migrated differential privacy to LBS privacy preservation by
adding Laplace noise to users’ coordinates.
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3 Preliminaries

3.1 Basic Concepts

Query Probabilities. We classify LBS queries into m types with respect to
contents of queries. Then we define various query probabilities in Eq. 1. For sim-
plicity, an m-dimensional vector P; is used to represent respective probabilities
of all m types of queries in cell;.

# of type-j queries in cell;

(1)

Pi=(plp2,....p"), p= 2
i = (pi, i ) P # of total queries over all cells

Users’ Query Preferences. Different users have various query preferences,
which are closely related to their life patterns. We use a vector W; to describe
the query preference of user U; (see Eq.2). Preference vectors will be updated
periodically using Aging Algorithm.

i # of Ujs type-j queries (over all cells)

W, = (wh,w?, ..., w™), w 2
i = (wi,w; ) ! # of U!s total queries (over all cells) @)
Moreover, we use standardized preference vector W, = (will,wf/, ..,wlm,)

instead to preserve users’ preference privacy (Different preference vectors may

i o,
mean and the standard deviation of W; respectively). Then, the correlation
coefficient between arbitrary two LBS users Uy, U, is defined in Eq. 3.

i wi—pw, (

have the same standardized vector), where w tw,, o, are the

DU, Uy) = covariance(Wy, W) _ covariance(W., W;) 3)
ow,, - Uwy

3.2 Adversary Model

In this paper, we resist eavesdropping attack performed by passive adversaries
via applying SSL on communication channels. We consider LBS servers, who own
global data, as active adversaries. Even worse, those untrusted servers may col-
lude with malicious users to infer normal users’ query preferences and behavior
patterns by exchanging extra information and analyzing obtained data.

3.3 Privacy Metrics

In order to demonstrate the impact of query preferences and various query prob-
abilities on privacy quantitatively, we improve the definition of entropy [6].

Supposing a user U, issues a type-j query in cell; under the protection of a k-
anonymity set. The query preference of Uy is Wy, and the type-j query probability
of cell; is pl. In addition, k — 1 other users are located in celly, cella, . .., cell_y
(type-j query probabilities of these cells are p],pl,...,p}_;). So the confusion
degree (€) of the k-anonymity set is defined in Eq. 4.

k i

k
. | . o .
==Y pUU)-q logaa] ==Y ri-q] logaa] (¢ = W) (4)
i=1 i=1 s=1Ps
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Our Proposed Schemes

4.1 System Model

Figure 2 shows our novel AP-based P2P structure. APs' are designed to under-
take such light workloads as collecting query probabilities, forwarding data,
locating users, and storing caches. Maintenance of users’ query preference vectors
and calculations are conducted by users locally. Besides, LBS users may com-
municate with APs anonymously (i.e. using pseudonyms) to preserve privacy
against APs.

4.2 Schemes Overview

We introduce how APs work via the example in Fig. 2. Suppose that Peter issues
a query @ in cell;. APs construct an anonymity set by taking following steps.

(1)

After an AP receives Q and Peter’s real location cell; (together with Wi,
and some other parameters), it will determine the query type of Q.

If Q is a type-j query, APs will search for nearby cells with similar type-j
query probabilities to cell;. (subject to probability threshold ).

APs forward Wp,,,,. to users in cells found in step (2).

Any user U, who has received W}eter computes the correlation coeflicient
p(U,, Peter) between his preference vector and Peter’s. U, will reply APs
with the coefficient if the value is greater than the preference threshold 6.
APs reply Peter with users who have similar query preferences, together with
coefficient values, indexes of probability differences, and indexes of distance
between Peter and them. The distance can be measured by # of hops on
the grid-based map (e.g. In Fig. 1, the distance between U; and Us is 2).
Peter filters out £ — 1 optimal users locally according to side information
above. Then, he will construct a k-anonymity set and issue the formal query.

o Various Query Probabilities

o Lightweight Data (e.g. caches)

Step. 1 Query & Real Location 7 AN

________________ > W .
Step. 5 A Candidate Set R4 RN
€m i Se

@ oreymysasouy MW TTTT -7
1 *‘ APs search for v
1\ Proper candidatesa v
[ [

o Historical Query Data /R ’ LBS
' \ ’ B ¢
1 v -7

© Query Preference I // POI Data
v 7 ° a

% v

o Users' Basic Info.
& Historical Query Data

Fig. 2. Schemes overview (data owned by each role is shown in gray blocks)

1 AP-based schemes [4,6-8] have been widely applied to LBS in mobile environments.
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Algorithm 1. Client: DCA Sub-algorithm (issuing a query)

Input: target user U;’s standardized preference vector W,; , an LBS query
Q(qtype, qdetail), real location cell:, privacy profile k¢, distance
preference p, # of sets ns

Output: an optimal k-anonymity set AS

send (Wt/, Q, celly, ki, p) to AP (run Algorithm 2);

wait until AP returns C'S to it; //Alg. 2 (Line 9) shows data structure of C'S

for (i = 0;4% < min(ns, (k?;kjl)), 1+ +) do

L construct set C; with U; and k; — 1 other users (in set C'S) at random;

scorec; = Zf‘zl (index_prdif fij - index_dis;j - 1i5);

Uk W N

[«

return arg maxc, (scorec;,);

4.3 The Dual Cloaking Anonymity Algorithm

According to the division of work, we implement our schemes in three sub-
algorithms. Algorithms 1 and 3 run on clients, and Algorithm 2 runs on APs.
Algorithm 1 demonstrates DCA Sub-algorithm which runs on the client of
target user U; (who issues the query actually). It corresponds to Step 1, 6 in last
section.
Next, we present Algorithm 2 running on APs. This process corresponds to
Step 2, 3, 5 in Sect. 4.2. Index of differences in type-j query probability between

the real location cell; and other cells can be achieved by index_prdiff =1 —
—patvre " . . ; . (dis—p)?
ler=p "y addition, we use the index of distance index_dis = e~ 2 4o

describe users’ distance preference. If there aren’t enough candidates in C'S, AP
will extend searching areas (Line 2).
Algorithm 3 computes correlation coefficient between query preferences.

Algorithm 2. AP: DCA Sub-algorithm (forwarding information)

Input: U;’s standardized preference vector W,;, an LBS query Q(qtype, qdetail),
real location cell:, privacy profile k;, distance preference
Output: a candidate set C'S

1 OS=NULL;
2 for (d =1;CS.size() < 3ki;d+ +) do
3 searching for cell, in d-hop area around cell;, s.t.Vz, |p?*¥? —pitvre| < 3,
4 send W, to users who are located in these found cells (run Algorithm 3);
5 while 3 tuples (user, r) returned from users do
; . _d=p)?
6 index_dis = e 8
7 pr = getPr(user, gtype); //retrieve the query probability of a cell
8 index_prdiff =1— Mﬂ;
9 add tuples (user, r, index_dis, index_prdiff) to CS;

10 return CS;




68 J. Hua et al.

4.4 The Enhanced Dual Cloaking Anonymity Algorithm

We introduce more advanced techniques: location blurring and caching to
enDCA, which may upgrade users’ privacy at the expense of limited compro-
mise in QoS.

Location Blurring. When applying k-anonymity, the real location is likely to
be inferred if k is large, as all dummies are distributed around the real one.

Algorithm 3. Client: compute_corr

Input: Uy’s standardized preference vector W;, other’s preference vector W,
Output: Pearson correlation coefficient between Uy and himself(herself)

1 standardize the vector W, as W;;

2 if (r = covariance(W,, W,)) > 0 then

3 L return (user, r); //user’s ID will be replaced by a pseudonym

To address that privacy issue, location blurring is introduced into enDCA.
Target user’s real location will be shifted to a cell which is randomly selected from
the nearby ones (in the 1-hop area) with similar same-type query probabilities.

Caching. Different from previous work [7,11], we propose the idea of caching the
anonymity sets. Supposing an LBS user U, (privacy profile is k,) issues a query
Q(gtypeq, qdetail,). A cached set t can be used to preserve U,’s location privacy
if Eq. 5 holds. Caching may relieve the workload of APs, reduce the bandwidth
overhead, and preserve query preference privacy (reducing transmission of users’
preferences). Cache will be maintained by APs in background.

It € AS, s.t. (1) t.qtype = qtypeq; (2) t.k > kq; (3) i € [1,k], t.U; = U,. (5)

The data structure of the cached anonymity sets is as follows:
AS(qtype, k, expire, Ui, Us, ..., Ux), where expire is the lifetime of a set.

Algorithm 4. Client: enDCA Sub-algorithm (issuing a query)

Input: U:’s standardized preference vector W;, an LBS query Q(qtype, gdetail),
real location cell, privacy profile k;, distance preference u, # of sets ns
Output: an optimal k-anonymity set AS (or a cached set CAS)
send (W,;, Q, celly, ki, p) to AP (run Algorithm 5);
wait until C'S or CAS returned from AP ;
if CAS = NULL then
| return CAS or a subset of CAS according to ki;

L

else
L run Lines 3-6 in Algorithm 1 (Client: DCA Sub-Algorithm);

[
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Algorithm 4 presents enDCA Sub-algorithm which runs on clients. If there
exists an appropriate cached set, it’ll call Algorithm 1 to construct the set
(Line 6).

Algorithm 5. AP: enDCA Sub-algorithm (forwarding information)

Input: Uy’s standardized preference vector Wt,, an LBS query Q(qtype, qdetail),
real location cell:, privacy profile k;, distance preference p
Output: a candidate set C'S or a cached anonymity set C AS

1 CS=NULL, T=NULL; //T stores cached anonymity set temporarily
2 foreach ¢ in cache[qtype] do

3 | if t.k >k and (Ji € [L,t.k], t.U; == U,) then

4 | T=TU{t}h

5 if T' /= NULL then

(=]

L return arg maXtET(logiitt.k); //return the set with highest confusion degree

7 run AP: DCA Sub—Algorithm(V\/t/7 Q, shiftLocation(cell;), k¢, 1); //run
Algorithm 2

Algorithm 5 illustrates enDCA Sub-algorithm running on APs. After AP
receives U,’s query, it will check in cache whether there exist appropriate
anonymity sets. Otherwise, Algorithm 5 shifts U,’s real location first, and then
follows ordinary steps to construct a candidate set C'S (Line 7).

4.5 Security Analysis (Resistance to Colluding and Inference
Attacks)

Adversaries try to infer U;’s real location in the way described in Sect. 3.2. How-
ever, the idea of maximizing confusion degree and randomization in our schemes
will obstruct their conspiracies. Compared with DCA, caching in enDCA reduces
exposure of query preferences. Location blurring and standardized preference
vectors may frustrate their inference of real locations when constructing new
anonymity sets.

5 Performance Evaluation

5.1 Simulation Setup

The trajectory data of taxis (From http://soda.datashanghai.gov.cn, involving
about 10,000 trajectories) is used to describe the mobility patterns of LBS users
in a 10km x 8km area in downtown Shanghai. The area is divided into 8,000
cells, with the size of each being 100m x 100 m. The real deployment of APs in
that area will also be simulated. Query probabilities are computed as the users’
density in each cell, and the query preferences of users are randomly assigned
under normal distribution. Parameters used in our simulation are as follows:
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Privacy profile k is set from 2 to 15. # of query types m = 5, # of sets
ns = 100. Threshold § = 0.0015, § = 0.2.

We select Random [3] as the baseline scheme. DLS (enhanced-DLS) [6], one
of state-of-the-art methods, is also chosen as a comparison.

5.2 Evaluation Results

k vs. Privacy Metrics. Figure3(a) and (b) show the relation between k and
entropy. Gross query probability is used in Fig. 3(a), so that all schemes except
for Random perform well. On the contrary, various query probability highlights
the advantages of our schemes in Fig. 3(b).
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Fig. 3. Effect of k on privacy metrics

As to confusion degree (Fig. 3(c)), DC'A edges out enDCA, as enDC A sacri-
fices some confusion degree to decrease bandwidth overhead. Our schemes have
high but not theoretically optimal results because finding k£ — 1 nearby users
having approximately the same query preferences is quite tough.

Other Performance Evaluations. Figure4 depicts that bandwidth over-
head of enDC A outperforms DCA, since caching can serve users’ requests for
anonymity sets. Figureb illustrates the relation among k, cache hit ratio and
simulation time t. The hit ratio increases gradually with the ¢, and smaller k
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usually results in higher ratio. Figure 6 confirms that schemes without location
blurring have the theoretical k-anonymity. enDCA, equipped with location blur-
ring, owns significantly lower probabilities of successful guesses. Figure 7 shows
the running time of all schemes. Our schemes consume moderate time to con-
struct a k-anonymity set, and enDC A costs less time than DC' A with the help
of caching.

6 Conclusion

We propose two different LBS privacy-enhancing schemes, and a novel metric
to measure the privacy level. DCA constructs a k-anonymity set via carefully
selecting k—1 users according to various query probability and users’ query pref-
erences. Based on that, caching and location blurring are introduced to enDCA,
which reduce exposure of query preferences, and decrease the bandwidth over-
head. Simulations confirm the effectiveness of our schemes.

Acknowledgment. Our research is supported by the National Key Research and
Development Program of China (2016YFB1000905), NSFC (61772327, 61370101,
61532021, U1501252, U1401256 and 61402180), Shanghai Knowledge Service Plat-
form Project (No. ZF1213), Shanghai Science and Technology Committee Grant
(15110500700).

References

1. Andrés, M.E., et al.: Geo-indistinguishability: differential privacy for location-
based systems. In: 2013 ACM SIGSAC, pp. 901-914 (2013)

2. Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.L.: Private queries
in location based services: anonymizers are not necessary. In: ACM SIGMOD
(2008)

3. Kido, H., Yanagisawa, Y., Satoh, T.: An anonymous communication technique
using dummies for location-based services. In: ICPS, pp. 88-97 (2005)

4. Luo, W., Hengartner, U.: VeriPlace: a privacy-aware location proof architecture.
In: ACM SIGSPATIAL GIS, pp. 23-32 (2010)

5. Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new casper: query processing for
location services without compromising privacy. In: VLDB, pp. 763774 (2006)

6. Niu, B., Li, Q., Zhu, X., Cao, G.: Achieving k-anonymity in privacy-aware location-
based services. In: IEEE INFOCOM, pp. 754-762 (2014)

7. Niu, B., Li, Q., Zhu, X., Cao, G.: Enhancing privacy through caching in location-
based services. In: IEEE INFOCOM, pp. 1017-1025 (2015)

8. Okamoto, M., Fujita, N., Inomae, G., Tate, H.: Wi-Fi LBS: information delivery
services using Wi-Fi access point location. NTT Tech. Rev. 11(9) (2013)

9. Palanisamy, B., Liu, L.: MobiMix: protecting location privacy with mix-zones over
road networks. In: IEEE ICDE, pp. 494-505 (2011)

10. Papadopoulos, S., Bakiras, S., Papadias, D.: pCloud: a distributed system for prac-
tical PIR. IEEE TDSC 9(1), 115-127 (2012)

11. Shokri, R., Theodorakopoulos, G., Papadimitratos, P., Kazemi, E.: Hiding in the
mobile crowd: locationprivacy through collaboration. IEEE TDSC 11(3), 266-279
(2014)



Data Streams



q

Check for
updates

Discussion on Fast and Accurate Sketches
for Skewed Data Streams: A Case Study

Shuhao Sun' and Dagang Li!2E0
! School of ECE, Peking University Shenzhen Graduate School,
Shenzhen 518055, China
shuhaosun@pku. edu. cn, dgli@pkusz. edu. cn
% Institute of Big Data Technologies, Peking University,
Shenzhen 518055, China

Abstract. Sketch is a probabilistic data structure designed for the estimation of
item frequencies in a multiset, which is extensively used in data stream pro-
cessing. The key metrics of sketches for data streams are accuracy, speed, and
memory usage. There are various sketches in the literature, but most of them
cannot achieve high accuracy, high speed and using limited memory at the same
time for skewed datasets. Recently, two new sketches, the Pyramid sketch [1]
and the OM sketch [2], have been proposed to tackle the problem. In this paper,
we look closely at five different but important aspects of these two solutions and
discuss the details on conditions and limits of their methods. Three of them,
memory utilization, isolation and neutralization are related to accuracy; the other
two: memory access and hash calculation are related to speed. We found that the
new techniques proposed: automatic enlargement and hierarchy for accuracy,
word acceleration and hash bit technique for speed play the central role in the
improvement, but they also have limitations and side-effects. Other properties of
working sketches such as deletion and generality are also discussed. Our dis-
cussions are supported by extensive experimental results, and we believe they
can help in future development for better sketches.

Keywords: Sketch - Skewed data - Data structure

1 Introduction

Estimating the frequency of each item in a multiset is one of the most classic tasks in
data stream applications. In many networking scenarios such as real-time IP traffic, IP
phone calls, videos, sensor measurements, web clicks and crawls, massive amount of
data are often generated as high-speed streams [3, 4], requiring servers to process such
stream in a single-pass [5]. Calculating exact statistics (e.g., using hash tables) is often
impractical, because the time and space overhead of storing the whole data stream is
too high. Therefore, it is popular and widely accepted to estimate the frequencies of
each item by the probabilistic data structure [6-8].

Sketches are a family of probabilistic data structure designed for the estimation of
item frequencies in data streams [9, 10], which is extensively used in data stream
processing. They use counters to store frequencies and have two primary operations:
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insertion and query. By using multiple hash functions, sketches summarize massive
data streams within a limited space, which means there might be two or more items
sharing the same counter(s). Sketches can also be applied to other fields, such as
compressed sensing [11], natural language processing [12], and data graph [13].

Conventional sketches (CM sketch [7], CU sketch [14], Count sketch [8], and
Augmented sketch [6]) use a number of counters of fixed size. The size needs to be
large enough to accommodate the highest frequency. However, according to the lit-
eratures [6] and confirmed by our experiments on real datasets, the items in real data
streams often have unbalanced distribution, such as Zipf [15] or Power-law [16]. This
means that most items have low frequency (called cold items), while a few items have
high frequency (called hot items). Such data streams are often called skewed data
streams. Therefore, the high-order bits in most counters of conventional sketches are
wasted, as hot items are much fewer than cold items in real data streams. This kind of
memory inefficiency reduces the number of counters, causing the accuracy of the
conventional sketches to drop drastically. Besides, conventional sketches cannot per-
fectly catch up with the high speed of data streams because they need three or more
hash computations and memory accesses for each insertion or query. Overall, con-
ventional sketches fall short handling skewed data streams, and the goal of this paper is
to discuss how to design better sketches for this matter.

Two novel sketches have been proposed recently, the Pyramid sketch [1] and the
OM sketch [2], which can achieve both high accuracy and high speed using limited
memory, especially for skewed data streams. These two sketches bring new ideas that
are specifically designed for skewed data. For example, automatic enlargement and
hierarchy can greatly improve the accuracy when summarizing skewed datasets, and
word acceleration and hash bit technique can significantly improve the speed for each
insertion or query operation. However, we found that many aspects need to be further
considered when using these techniques, therefore in this paper we will discuss the
strategies of automatic enlargement, the side-effect of hierarchy, the use conditions of
word acceleration and hash bit technique. Furthermore, we found that there are two
other aspects to improve accuracy, which are barely scratched in the original papers [1,
2]. We name these two methods as isolation and neutralization. The usage of them
depends on the specific target application scenario. Moreover, when designing the
sketch, other requirements and constraints brought by the target application scenario
should also be considered, such as deletion and generality [17]. These are also dis-
cussed in this paper.

Our contributions can be summarized as follows.

e We sort out five important aspects to design an accurate and fast sketch for skewed
data streams. Three of them, memory utilization, isolation, and neutralization are to
help improve accuracy, and the other two: memory access and hash computation are
important for speed. Their role in an effective and efficient solution are analyzed.

e The specific methods proposed from the latest work [1, 2] are discussed in details,
including the strategies of automatic enlargement, the side-effect of hierarchy, the
usages of isolation and neutralization, the use conditions of word acceleration and
hash bit technique. We also discuss the deletion and generality of the sketch. These
discussions will help better understanding and further utilization of these new ideas.
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2 Related Work

2.1 Conventional Sketches

Typical sketches include CM sketch [7], CU sketch [14], Count sketch [8], and
Augmented sketch [6]. A CM sketch consists of d arrays: A;...A;, and each array
consists of w counters. There are d hash functions, 4. ..k, in the CM sketch. When
inserting an item e, the CM sketch first computes the d hash functions and locates the
d counters: Aj[hi(e)]...Aq[ha(e)]. Then it increases all the d hashed counters. When
querying an item e, the CM sketch reports the minimum of the d hashed counters as the
estimated frequency of this item. The CU sketch has a slight but effective modification
to the CM sketch, that is, conservative update. It only increases the smallest one(s)
among the d hashed counters during insertions while the query process keeps
unchanged. The Count sketch is similar to the CM sketch except that each array uses an
additional hash function to smooth the accidental errors. The Augmented sketch aims
to improve the accuracy by using one additional filter to dynamically capture hot items,
suffering from complexities, slow insertion and query speed. Among these sketches,
the CU sketch achieves the best performance in terms of both accuracy and speed.
More sketches are detailed in the survey [18].

Unfortunately, the sketches above have two shortcomings for skewed data streams:
(1) the accuracy is poor when using limited memory; (2) requiring multiple memory
accesses and hash computations for each insertion or query thus slow the speed.

2.2 The OM Sketch

The key techniques of OM sketch are hierarchical counter-sharing, word acceleration
and fingerprint check.

,j High layer

B B Lov ver

Fig. 1. Basic structure of OM sketch.

As shown in Fig. 1, the OM sketch is organized as a two-layer structure in which
the high layer possesses less memory. The low layer with small counter sizes mainly
records the information of cold items, while the high layer with relatively large counter
sizes mainly records the information of hot items. When one or more counters overflow
at the low layer, the OM sketch uses the high layer to record its number of overflows.
Based on this structure, the OM sketch significantly improves the memory efficiency,
thus improving accuracy. Moreover, the OM sketch constrains the hashed counters
within one or several machine words by using the word acceleration technique. It also
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leverages the hash bit technique [19] to locate multiple hashed counters within one or
several machine words at each layer through a 64-bit hash value by one hash function.
Therefore, the OM sketch achieves close to one memory access and one hash com-
putation for each insertion or query. Besides, the OM sketch records the fingerprints of
the overflowed items in their corresponding machine words at the low layer in order to
distinguish them from non-overflowed items during queries.

Insertion: When inserting an item, the OM sketch first computes the low layer hash
function to locate the low layer hashed counters, and then increases the smallest
counter(s). This method makes the low layer counters of each item always overflow
concurrently. If an item overflows, the OM sketch first sets all its low layer hashed
counters to zero, and then uses the fingerprint technique to distinguish it from
non-overflowed items. Finally, the OM sketch computes the high layer hash function to
locate the high layer hashed counters and increases the smallest counter(s).

Query: When querying an item, the OM sketch first gets the value of the smallest
hashed counter(s) at the low layer, denoted by V;. Then it checks if the item overflows.
If it is, the OM sketch queries the high layer and gets the value of the smallest hashed

counter(s) at the high layer, denoted by Vj,. The OM sketch returns V; 4+ V}, x 2% as the
estimated size of the item, and J; is the counter size at the low layer.

2.3 The Pyramid Sketch

The key techniques of the Pyramid sketch are counter-pair sharing, word acceleration
and Ostrich policy.

left flag right flag L, L]

counting part WA
AN - L[ T
parentcounter/. L\.\.‘ / i ]
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Fig. 2. Basic structure of Pyramid sketch.

As shown in Fig. 2, the Pyramid sketch employs a pyramid-shaped data structure.
The i layer L; is associated with the i + 17 layer L; | in the following way: the left
child counter and the right child counter at L; are associated with the parent counter at
L; 1. When the child counter overflows, the Pyramid sketch uses its parent counter to
record its number of overflows. In Pyramid sketch, the first layer is composed of pure
counters, only used for recording frequencies. The other layers are composed of hybrid
counters, which can be split into three parts: the left flag, the counting part and the right
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flag. The flag parts indicate whether its child counters are overflowed. Based on this
counter-pair sharing technique, the Pyramid sketch dynamically assigns the appropriate
number of bits for different items with different frequencies, thus improving the
memory efficiency. Like OM sketch, the Pyramid sketch uses word acceleration and
hash bit technique to improve its speed.

The Pyramid sketch can be applied to conventional sketches (CM, A, C and CU),
and the results are denoted as Pcm, Pa, Pc and Pcu. It uses a novel strategy, Ostrich
policy, to improve the insertion speed of sketches that need to know the values of the
d mapped counters during each insertion. Here, we take Pcu as an example. The key
idea of Ostrich policy is ignoring the second and higher layers when getting the values
of the d mapped counters, only increases the smallest first layer counter(s).

Insertion: When inserting an item, the Pyramid sketch first computes the hash func-
tion to locate the hashed counters at layer L,. Different sketches will perform different
increase operations on these counters. If any of the counters overflows, the Pyramid
sketch sets the counter to zero, and assigns its parent counter according to its index.
Then, the left/right flag of its parent counter will be set to 1. These operations are called
carryin. The Pyramid sketch repeats the carryin operation at layer L, and the operation
will be performed layer by layer until there is no overflow.

Query: When querying an item, the Pyramid sketch first locates the hashed counters at
the first layer, and then gets the values of the d mapped counters by accumulating the
values of corresponding counters of each layer. Finally, the Pyramid sketch produces
the query output based on the specific sketch under use.

3 Analysis and Discussion

In this section, we will discuss from five different aspects on how to design an accurate
and fast sketch for skewed data streams. We use the OM sketch and the Pyramid sketch
as latest examples, discussing their methods handling these important aspects. At the
end of this section, we will discuss two more aspects, namely the support for deletion
and generality. Depending on the target scenarios they might also become as important
as the former ones.

3.1 Accuracy Improvement of Sketch for Skewed Datasets

Accuracy is one of the most important indicators of the sketch. We can try tackle the
problem from three different aspects: (1) higher memory utilization, (2) isolation, and
(3) neutralization to improve the accuracy of the sketch. In the following we will
discuss the solutions from the literatures and our findings.

Improvement of Memory Utilization

Improvement of memory utilization means increasing the number of counters in the
same memory, so as to reduce the probability of collision. Automatic enlargement and
hierarchy are techniques that can be used to improve memory utilization.
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Automatic Enlargement Technique

In the process of the automatic enlargement, it’s unnecessary to allocate enough bits to
each counter in advance. When the counter overflows, the sketch enlarges the initial
counter space automatically. In view of the characteristics of skewed data streams, this
technique can greatly improve memory utilization of the sketch.

When using the automatic enlargement technique, the enlargement strategy
depends on the type of counter overflows. There are two types of overflows, one is
called simultaneous overflow and the other is called non-simultaneous overflow.
Simultaneous overflow means that all counters of an item overflow at the same time,
and needs only one enlargement, while non-simultaneous overflow means that not all
counters of an item overflow at the same time, so multiple enlargements are often
necessary. What’s more, if the initial counter space is separated from its enlarged space,
during the automatic enlargement, the non-simultaneous overflow needs to establish
the corresponding relationship between each initial counter space and its enlarged
space, otherwise the sketch cannot be queried. However, it is unnecessary to do so for
the simultaneous overflow. When querying an item, the sketch only needs to query the
two spaces separately. Compared to the non-simultaneous overflow, the simultaneous
overflow has fewer enlargements and relatively simp