
Personalized Top-n Influential
Community Search over Large Social

Networks

Jian Xu1(B), Xiaoyi Fu2, Liming Tu1, Ming Luo1, Ming Xu1, and Ning Zheng1

1 Hangzhou Dianzi University, Hangzhou, China
jian.xu@hdu.edu.cn

2 Hong Kong Baptist University, Hongkong, China

Abstract. User-centered analysis is one of the aims of online community
search. In this paper, we study personalized top-n influential community
search that has a practical application. Given an evolving social network,
where every edge has a propagation probability, we propose a maximal
pk-Clique community model, that uses a new cohesive criterion. The
criterion requires that the propagation probability of each edge or each
maximal influence path between two vertices that is considered as an
edge, is greater than p. The maximal clique problem is an NP-hard prob-
lem, and the introduction of this cohesive criterion makes things worse,
as it may add new edges to existing networks. To conduct personalized
top-n influential community search efficiently in such networks, we first
introduce a search space refinement method. We then present pruning
based and heuristic based search approaches. The proposed algorithms
more than double the efficiency of the search performance for basic solu-
tions. The effectiveness and efficiency of our algorithms have been verified
using four real datasets.
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1 Introduction

Online community analysis aims to find communities that have certain relation-
ships with a query node in an online manner. As the communities for different
vertices residing in a network may have very different characteristics, the ability
for personalized community detection, which online community search provides,
is more meaningful.

In this paper, we study modeling and querying of the top-n influential com-
munities to a specific query node, termed as personalized top-n influential com-
munity search. As the influential communities around a user represent the social
contexts for that user, top-n influential community search provides a useful tool
for other analytical tasks, such as influential social community discovery and
accurate community influence modeling. The following is a example.
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Example (User-centered influential community discovery). Users in social net-
works are usually surrounded by many communities. Suppose that Mr. Spike
is a Twitter user. Though he does not belong to any music community yet,
he is surrounded by many music fans. So, to learn which are influential music
communities for Spike we conduct a top-n influential community search.

But we face challenges in this study. The first challenge is how to identify all
communities around a user in evolving and dynamic social networks. The second
is how to calculate the influence of all these communities efficiently.

To address these two challenges, we model a social network as a graph G with
vertices representing individuals and edges representing connections or relation-
ships between any two individuals. While influence is propagated in the net-
work according to a stochastic cascade model, such as Independent Cascade
(IC) model [5], each edge (u, v) in the network is associated with a propagation
probability w(u, v). With cliques [1], we propose the concept of a maximal pk-
Clique community. A k-clique is a complete subgraph that includes at least k
vertices, and is not contained in any other complete subgraph. A maximal pk-
Clique community is a community in a social network that has edges between
nodes u and v in the graph that can either be original edges in the social network
or a path from u to v, and its corresponding maximum influence probability is
greater than p. We argue that, with propagation probability of every edge greater
than a specific value p, users are well-connected with each other in such a com-
munity. A maximal pk-Clique ensures that a discovered community is connected
and cohesive. We also develop pruning based and heuristic search based algo-
rithms to efficiently find top-n influential communities with the support of an
auxiliary data structure. Our contributions can be summarized as follows:

– We propose a novel cohesive criterion to define an explicit community model
in evolving and dynamic social networks;

– A search space that contains all communities surrounding a user is identified.
We also propose two search approaches that reduce time complexity by more
than two times, while preserving the robustness of the search approaches;

– The experimental results from four real datasets confirm that our algorithms
are correct and show that the proposed algorithms significantly outperform
the baseline algorithm (Table 1).

Table 1. Notations

Symbol Description Symbol Description

G(V, E) A graph Cpk, C A pk-Clique

Node set V , edge set E D(Ci, Cj) Diversity of clique Ci, Cj

w(u, v) Propagation probability C A collection of pk-Cliques

Edge (u, v) Pr() Aggregated influence of a node set

Puv A path between u and v Γ (v) The adjacent nodes of v

MIP Maximum Influence Path ε A threshold

s A querying node Vin Nodes with influence ≥ ε

p Propagation probability Vout Nodes with influence < ε
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2 Preliminaries

Consider a directed graph G = (V,E) with an edge labeled w : E → (0, 1],
where V is a set of vertices representing users of a social network and E is a set
of edges between vertices representing user-to-user connections. For every edge
(u, v) ∈ E, weight w(u, v) denotes the propagation probability of the edge, which
is the probability that v is influenced by u through the edge (u, v).

To model the influence process, we adopt the IC model [5] in this paper. For
a path P = 〈v0, v1, . . . , vk〉 in G, we define the propagation probability of the
path as the product of the weights of its constituent edges:

w(P ) =
k−1∏

i=0

w(vi, vi+1) (1)

There may be more than one path between one vertex and the other, and
different paths may have a different propagation probability. We use the Max-
imum Influence Path (MIP) to approximate the real influence from one vertex
to another within the social network. A maximum influence path from vertex u
to vertex v is defined as any path P with a maximal weight w(P ).

Definition 1. (pk-Clique Community)
Given a graph G, and two parameters p and k, a pk-Clique community is an

induced subgraph Cpk = (Vpk, Epk) of G that satisfies the following requirements:

• Any two vertices in Cpk can be reached via an MIP between them in the
subgraph Cpk, and the weight of every MIP is greater than p. And there are
at least k vertices in Cpk.

• A pk-Clique community is maximal if Cpk is not a subgraph of any other
pk-Clique community.

The difference in this study from previous community models [7,12,14] is
that, for the first time, we model the relationship between users in a commu-
nity with an edge as a dynamic propagation probability. We argue this is an
appropriate measurement of cohesiveness in a community.

Existing maximal clique enumeration algorithms suffer from exploring a huge
search space [18]. Though the cohesiveness measurement used in pk-Clique is
reasonable, the introduction of pk-Clique will add more new edges to a network,
thus leading to an increased number and size of cliques. These cliques usually
have high similarity, as many cliques share a large portion of vertices. In order
to obtain comprehensive knowledge of communities around a query node, it is
inappropriate to report all these cliques for this is redundant. We define the
concept of l-diversity for returned cliques.

Definition 2. (l-diversified and l-similar)
Given two maximal cliques Ci, Cj in graph G and a parameter l(0 ≤ l ≤ 1).

We define the diversity of two maximal cliques Ci and Cj as

D(Ci, Cj) =
| Ci ∩ Cj |
| Ci ∪ Cj | (2)
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If D(Ci, Cj) ≥ l, then cliques Ci and Cj are l-diversified, otherwise cliques
Ci and Cj are l-similar.

Given a vertex s and a pk-Clique community in the graph, we will use aggre-
gated influence, which is the weight union of the MIPs from nodes in a com-
munity to s, to estimate the influence from the community to s. We also use a
threshold ε to filter out vertices with little influence.

To calculate the influence of a community, the problem is that a vertex can
be influenced by another vertex through different paths. Many works [12] adopt
a model known as an “expectation model” to simplify the paths by supposing a
dependence between paths, and mostly the MIP is the path that is adopted. In
this work we are mainly concerned with the relationship between two vertices. We
always assume that the paths between a different pair of vertices are independent.
That is, even if two paths that share a sub-path lead to the same destination. We
also assume that there are virtually two independent paths from two sources to
the destination. This approximation simplifies the calculation of the aggregated
influence of a community.

Definition 3. (Aggregated Influence of Community)
Aggregated influence of a maximal pk-Clique community to a vertex s, is

defined as the influence probability that s is influenced by any vertices in this
community, and the weight of every maximum influence path from these vertices
to vertex s is greater than ε. Denote aggregated influence as Pr(v | V (C)) by the
IC model, it is calculated as

Pr(v | V (C)) = 1 −
∏

v∈V (c)

(1 − w(Pv→s))) (3)

Definition 4. (Top-n Influential Community Search)
Suppose C is the set of influential maximal pk-Clique communities around

s. The top-n influential community search can be defined as a query to find n
maximal pk-Cliques in C,

Top-n(s) = 〈C1, C2, . . . , Cn〉 where Pr(C1) Pr(C2) > . . . > Pr(Cn) if | C
|> n.

In this work, we explore top-n influential community search, and we also
require that the returned communities are l-diversified.

Example 3 (Top-3 maximal pk-Cliques in Fig. 1). Figure 1 illustrates a subgraph
surrounding a query node s. Suppose the vertices residing in the dark grey area
have influence over s greater than ε (say, 0.2). To simplify the illustration, we
set all their influence to s at 0.3; When calculating aggregated influence of a
clique, we ignore the vertices residing in the light grey area with an influence
of less than ε. But when we check whether a group of vertices is a pk-Clique,
these vertices make sense, since a maximal pk-Clique may include the vertices
where the influence over s is less than ε. Having done the search, we present all
maximal pk-Cliques and their aggregated influence in Table 2. With the setting
l-diversified (l = 0.5), we obtain cliques {2, 3, 5}, {6, 8, 5}, and {6, 8, 9, 7}.
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Fig. 1. A query example of node s.

Table 2. Maximal pk-cliques (example 3)

Clique (k = 3) Pr

{2, 3, 5} 0.657

{6, 8, 5}, {6, 3, 5} 0.51

{6, 8, 9, 7}, {6, 3, 4}, {1, 3, 4} 0.3

{6, 4, 7} 0

3 Basic Solution

3.1 Search Space

In contrast to community detection that aims to find all communities in a graph,
personalized search of top-n influential communities only considers communities
“near” a given vertex in the social graph. We take the word “near” to mean a
vertex that can be reached by a specific community with a probability above
a fixed threshold. So we only examine communities that include at least one
vertex such that the MIP between this vertex and the query node is above the
threshold ε.

We adopt single-source shortest-path algorithms such as Dijkstra algorithm
to find all vertices around a query node where the weight of their MIPs is above
ε. A modified version of Dijkstra algorithm is used that will stop at a vertex
when the propagation probability of the MIP between this vertex and the query
node is less than ε.

We denote the vertices where the propagation probability to a query node
is above ε as Vin. From previous discussions we are also aware that a maximal
pk-Clique community C, said to be influential to a query node, must include
at least one vertex that is included in Vin. If we denote this vertex as v, to
determine whether C is a maximal pk-Clique, we must examine every vertex
where the propagation probability of the MIP between these vertices to v is
greater than p.

We derive the following lemma.

Lemma 1. (Given a maximal pk-Clique that has influence on s, the minimum
propagation probability of an MIP between a vertex in the clique and the query
node s is pε.)

Given a graph G = (V,E) with influence function w : E → (0, 1], probability
p, ε, and a query node s, for any vertex u, if the MIP between vertex u and
node s is less than pε, it will not be included by any maximal pk-Clique that has
influence on s.

Proof. Suppose u is a vertex with w(Pus) < pε. And Pus = 〈u, v1, v2, . . . , vk, s〉
is a maximal influential path from u to s. There will be a node vi(1 ≤ i ≤ k)
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that is the last node along path P with w(Pvis) ≥ ε. In other words, node vi is
the last node in set Vin along path P .

Suppose node vi is included in a maximal pk-Clique denoted by C and path
P can be decomposed into Puvi

and Pvis. We know that sub-paths of a maximal
influential path are maximum influence paths. Then, paths Puvi

and Pvis are
maximum influence paths. Because with w(Pvis) ≥ ε, we have w(Puvi

) < p.
According to Definition 1, vertex u will not be included in C.

With Lemma 1 and Definition 1, we propose Algorithm 1, that returns a can-
didate subgraph G′, including all vertices around a query node s with influence
to s greater than pε.

Algorithm 1. Search Space
Input:

A graph G = (V, E), vertex s and probability ε, p
Output:

A graph G′ = (V ′, E′)

1: V in = {v | v ∈ V & w(Pvs) > ε} ; Set influence attribute of nodes with w(Pvs) ;
2: V out = {v | v ∈ V & ε > w(Pvs) > pε} ; Set influence attribute of nodes with 0;
3: Copy G′ = (V ′, E′) from G;
4: for each edge (u, v) ∈ E′ do
5: if w(u, v) < p then
6: Delete (u, v) from G′ ;
7: for each vertex u ∈ V ′ do
8: for each vertex v ∈ {v | v ∈ V ′ & w(Puv) > p} do
9: if (u, v) /∈ E′ then

10: Add (u, v) to G′ ;
11: return G′;

Algorithm 1 obtains all the vertices consisting of Vin and Vout, and any edge
between these vertices remains unchanged in graph G′. Since we use a modified
version of Dijkstra’s algorithm to retrieve influential vertices at lines 1–2, the
time complexity of identifying Vin and Vout is O(| E′ | lg | V ′ |).

3.2 Basic Algorithm

In this and following sections we will use the terms maximal pk-Clique and
maximal clique interchangeably. Using social networks related to a query node
s, the first step of a top-n Influential Community Search (ICS) is to identify
the subgraph, including all candidate cliques, by executing Algorithm1. Then
the ICS enumerates all maximal cliques in this area. Among all these returned
maximal cliques, we filter out those cliques where the size is less than k, calcu-
late the integrated influence of each community, and then push it into a heap.
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Algorithm 2. Basic Top-n ICS
Input:

A graph G = (V, E), parameter n, k, l
Output:

A sorted list of cliques

1: Run Algorithm 1;
2: heap = ∅; list = ∅;
3: C ← MCE(V, ∅, ∅);
4: for each clique C ∈ C do
5: if |C| ≥ k then
6: Push(heap, C);
7: while (list.length() < n | heap �= ∅) do
8: C = Pop(heap);
9: if C l-diversified to list[0 : (list.length() − 1)] then

10: list.append(C);
11: return list;

When all the maximal cliques have been put in the heap, the algorithm selects
l-diversified top-n maximal cliques in the heap and returns the result list.

The procedure of the top-n influential community search is presented in Algo-
rithm2. Algorithm 2 uses the procedure, Maximal Cliques Enumerate (MCE), to
generate all maximal cliques in a graph. MCE is an implementation of maximal
clique enumeration method proposed by Bron-Kerbosch [1]. Its performance is
discussed in [17]. MCE takes G′ as input. Where G′ is originally obtained from
Algorithm 1. But before being fed into Algorithm2, it is transformed into an
undirected graph. After collecting all maximal cliques at line 3, Algorithm2
pushes every maximal clique into a data structure heap. As its name implies,
heap uses the heap to manage maximal cliques during the insertion. The sort
key is the aggregated influence of each clique. Lines 5–6 finish this operation.
After we have the ordered cliques, the next step is to select l-diversified results.
Lines 8–12 check each clique to see whether it is l-diversified with the previous
appended cliques in the list, if it is, it will also be appended to the list.

Algorithm 2 achieves the worst-case time complexity of O(3|V |/3) for a |V |-
vertex graph [17]. Using d-degenerate order in the first-round iteration, the com-
plexity is reduced to O(|V |3d/3) [4].

4 Efficient Influential Community Search

Algorithm 2 is a functionally correct procedure, but we are unlikely to be satisfied
with its performance, particularly with the large social networks that now exist.

4.1 Search Space Refinement

The first possible method for accelerating the entire work is to remove all vertices
where the degree is less than k. From the perspective of each vertex in the graph,
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if a vertex’s degree is less than k, then it absolutely will not be a member of any
maximal pk-Clique. We make the following observation.

Observation 1: A vertex with a degree less than k will not be a member of any
maximal pk-Clique.

Many core decomposition algorithms use a bottom-up approach to determine a
vertex’s class. That is, what kind of maximal clique dose this vertex belong to?
We adopt such a bottom-up approach to remove all vertices, so they will not be
included in any maximal pk-Clique, and conduct search space refinement. We
use Algorithm 3 for this purpose.

With binary sort to order vertices, this refinement can be done in O(|V ′| +
|E′|) time complexity.

Algorithm 3. Search Space Refinement
Input:

A graph G = (V, E), vertex s and probability ε, p
Output:

A graph G′ = (V ′, E′)

1: Same with Algorithm 1 lines 1-12;
2: Sort vertices in G in ascending order of their degree;
3: while (G′ �= ∅) do
4: d = the minimum vertex degree in G′;
5: if d < k then
6: for each v ∈ {v | v ∈ V ′ & v.degree ≤ d} do
7: Delete v and all edges incident to v from G′;
8: Re-sort the remaining vertices in G′;
9: else

10: Break;
11: return G′;

4.2 Pruning Based Algorithm

Recalling Definition 3, the aggregated influence of the community is defined as
the probability that s is influenced by any vertex in a maximal pk-Clique com-
munity. Algorithm2 calculates the aggregated influence of each identified com-
munity. Is it possible to derive an upper bound of aggregated influence of to-
be-found communities in advance? With this bound, can we prune unnecessary
search branches in the graph? To this end, we propose Definition 5, following
Observation 2.

Definition 5. (Aggregated Influence of vertex set)
The aggregated influence of a set of vertices to a vertex s, is defined as the

probability that s is influenced by any vertex in this set. The calculation is the
same as that in Definition 3.
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Suppose a node set Vs and all maximal pk-Clique communities it includes.
Denote all these communities as C, and for any C ∈ C, we have

Pr(v | v ∈ Vs) − Pr(v | v ∈ C )

= 1 −
∏

v∈Vs

(1 − w(Pv→s)) − (1 −
∏

v∈C

(1 − w(Pv→s)))

=
∏

v∈C

(1 − w(Pv→s))(1 −
∏

v∈Vs−C

(1 − w(Pv→s)))

> 0

(4)

With the above inequation, we obtain Observation 2.

Observation 2: The aggregated influence of a vertex set is bigger than any max-
imal clique residing in it.

With Observation 2, we have the upper bound of the aggregated influence of
maximal cliques in a subgraph. This upper bound will help us make the right
decision before exploring the branch of a search tree. The remaining question is
how to calculate this upper bound.

In the previous subsection, Algorithm3 removes the vertices where the degree
was less than k. It is important to notice that it decreases the number of vertices,
leading to a reduced search space, but it does not ensure that there are no
maximal cliques left with a size less than k. Thus we also have a lower size
bound of expected maximal cliques, that is k. Now we have Algorithm 4.

Algorithm 4. Pruning Based Top-n ICS
Input:

A graph G = (V, E), parameter n, k, l
Output:

A sorted list of cliques

1: Run Refined Searching Space;
2: list = ∅; cliquesnew = 0; i = 0;
3: repeat
4: cliquesold = cliquesnew;
5: queue = []; //length fixed
6: MCP(Vin ∪ Vout, ∅, ∅, queue, n2i, k);
7: cliquesnew=clique number in queue;
8: while (list.length() < n | queue == ∅) do
9: C = pop(queue);

10: if C l-diversified to list[0 : list.length() − 1] then
11: list.append(C);
12: i = i + 1;
13: until (list.length() == n|cliquesold == cliquesnew)
14: return list;



114 J. Xu et al.

Algorithm 5. MCP(P,X,C, q, n, k)
Input:

Vertex set P, X, C,parameter q, n, k
Output:

maximal cliques

1: if P ∪ X == ∅ then
2: Insert C into q;
3: Choose a pivot u ∈ P ∪ X;
4: for each vertex v ∈ P \ Γ (u) do
5: T = C ∪ {v} ∪ ((P ∪ X) ∩ Γ (v));
6: if Pr(T ) ≤ Pr(q[n]) & |T | < k then
7: return
8: MCP(P ∩ Γ (v), X ∩ Γ (v), C ∪ {v}, q, n, k);
9: P = P \ {v};

10: X = X ∪ {v};

Algorithm 4, Pruning Based Top-n ICS, calls Algorithm 5, MCP (Maximal
Cliques with Pruning), to complete the top-n influential community search. Then
it selects l-diversified n maximal cliques. If the number of previous returned top-
n maximal cliques is less than n after the selection, Algorithm 5 calls MCP once
again, but this time it will enlarge the result set to twice its previous one. That
is, it will set parameter n to 2n and pass to procedure MCP. Until we have
arrived at n maximal pk-Cliques which are l-diversified in the returned list.

Algorithm 5 MCP takes more inputs than Algorithm 3 MCE. Parameter q
keeps track of currently found top-n influential communities. MCP uses an effi-
cient global priority queue to manage the cliques found while running it.

The second main difference between MCP and MCE is lines 5–7. Vertex set
T denotes a union of vertex sets, including C, {v}, and (P ∪ X) ∩ Γ (v). Set C
includes the vertices that are part of maximal cliques to be found. {v} is currently
an expanding vertex. And (P ∪ X) ∩ Γ (v) includes the vertices to be extended.
According to Observation 2, the aggregate influence of set T is the upper bound
of any pk-Cliques to be retrieved. Thus, if the aggregate influence of set T is less
than the minimum aggregate influential pk-Cliques in the queue, for instance,
clique q[n], there is no need to undergo further searches along this branch. For
the same reason, if the size of T is less than k, there is no need to conduct further
searches either. This is the pruning based top-n influential community search.
When a maximal clique is found, it is inserted into q. This operation is executed
with line 2. At the end of MCP, we have a queue with n maximal pk-Cliques.

Theorem 1. (Correctness of algorithm Pruning Based Top-n ICS)
Given a graph G = (V,E)(V 
= ∅) and a query node s, the algorithm Prun-

ing Based Top-n ICS generates top-n l-diversified maximal pk-cliques without
duplication.

Proof. It has been proofed in [17], that MCE generates all, and only, maximal
cliques without duplication that contain all vertices in C, some vertices in P , and
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no vertices in X, without duplication. MCP follows MCE, and just skips over
some branches that do not lead to top-n maximal cliques. Thus MCP returns
the top-n maximal cliques with input vertex sets P,X,C as well.

With the statements at lines 10–14, the returned cliques in list are
l-diversified.

Now we come to analyze its time complexity. In the best case, MCP finds top-
n maximal pk-Cliques first. Thus the time complexity is O(n). But in the worst
case, MCP finds top-n maximal pk-Cliques at the last moment. If the returned
top-n maximal pk-Cliques are not l-diversified, it will call MCP once again, until
n is greater than |C|. The time complexity in this case is O(3|V |/3)log|C|

2 ).

4.3 Heuristic Based Algorithm

According to Eq. 3, if the probability distribution of each node’s influence in Vin

is uniform, then the more nodes that reside in Vin for a clique, the bigger the
aggregated influence it will acquire. This leads to Observation 3.

Observation 3: It is generally expected that a vertex u ∈ V such that V =
Vin ∪ Vout and u = max{|Vin ∩ Γ (u)|} has a high probability of being included
in an influential maximum clique.

With Observation 3, we propose Algorithm 6, Heuristic MCP(HMCP). To
minimize P \Γ (u), MCP chooses a pivot u ∈ P ∪X that maximizes |P ∩Γ (u)| at
line 3 of Algorithm 5. In contrast to MCP, HMCP chooses a pivot that maximizes
|Vin ∩ P ∩ Γ (u)|. That is, expending of a subtree that has a high probability of
leading to influential maximum cliques becomes a priority.

The heuristic based top-n ICS maintains an additional list which keeps the
sets of all vertices that are in Vin and adjacent to v in G′ = (V ′, E′). Note
that the rather time-consuming calculation at this step is carried out only at
the beginning of the main program and not in HMCP. Therefore, the total time
required to select the pivot is very small.

Algorithm 6. HMCP(P,X,C, q, n, k)
Input:

Vertex set P, X, C,parameter q, n, k
Output:

Maximal cliques

1: if P ∪ X == ∅ then
2: Insert C into q;
3: Choose a pivot u ∈ P ∪ X

where u = max{|Vin ∩ P ∩ Γ (u)|}
4: Same with Algorithm 5 lines 4-10;
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Example 4 (An execution of a heuristic search). With the settings left the same
as in Example 3, it is easy to find a heuristic based search that will perform the
outermost recursive calls in the order of {5, 7, 1}, instead of {6, 2, 1} in MCP.

5 Experimental Study

In this section, we study the performance of the proposed algorithms over four
real datasets. All the algorithms are implemented with Python2.7 and run on a
CentOS server (Intel i7-7700 3.6 GHz CPU and 32 GB RAM).

A. Data sets
We used four real social network datasets available at https://snap.stanford.

edu. For each dataset, we selected one of the vertices with the most neighbors,
that is, vertex 2070 in Facebook, vertex 349932090 in Twitter, vertex 104***590
in Google+, and vertex 1 in Epinions as query nodes. For those with no prop-
agation probability with each edge in the original datasets, we set a random
value which uniformly distributed (0, 1) to each edge and took this value as
their propagation probability. Experiments in this work focused on the scenario
when ε = 0.2, p = 0.6, and n = 3.

B. Evaluation of the maximal pk-Clique model
The Label Propagation Algorithm (LPA) is considered to be an accurate

model in detecting communities in social networks [19]. Wang et al. [19] also
proposed that Normalized Mutual Information (NMI) [3] is a popular criterion
for evaluating the accuracy of community detection models. The score of NMI
stands for the agreement of two results. We compute the score of NMI for the
results of our maximal pk-Clique model and the LPA model in this experiment.
The scores we achieved were about 83% for Twttier, 58% for Google+, 67% for
Facebook, and 63% for Epinions.

C. The necessity to l-diversify
Figure 2 presents the redundancy over different maximal pk-Clique sizes. It

indicates that similarity increases as the size of maximal clique increases.

(a) Twitter (b) Google+ (c) Facebook (d) Epinions

Fig. 2. Similarity between communities

D. Evaluation of search space refinement
Given a social network and a parameter k, early removal of vertices where

the degree is less than k will lead to a smaller search space. The results presented

https://snap.stanford.edu
https://snap.stanford.edu
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in Table 3 show that the refinement approach works in different networks, but
the effectiveness varies and depends on the topology of the graph in an actual
situation.

Table 3. Vertices removed in a refined search space

Data Total k 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Twitter 208 0 0 2 2 1 7 8 1 5 4 4 1 1 5 3
Google+ 491 29 55 55 37 35 34 24 44 50 - - - - - -
Facebook 709 14 52 46 55 70 9 9 3 - - - - - - -
Epinions 49112 2.0E4 7936 2855 1491 1071 721 620 507 - - - - - - -

E. Efficiency of proposed algorithms
We implemented a search space refinement in all three algorithms for fair

comparison between results. Tables 4, 5, 6 and 7 illustrate the results (time
in seconds) obtained from different datasets, where PS denotes Pruning based
top-n ICS, HS denotes Heuristic based top-n ICS and BS denotes Basic Search
algorithm.

Table 4. Efficiency over Twitter

k 5 15 25 35 45 55

PS 10.85 10.44 10.21 9.29 8.21 8.07

HS 10.55 10.30 10.26 9.28 8.13 8.01

BS 131 130 130 132 130 129

Table 5. Efficiency over Google+

k 5 15 25 35 45 55

PS 0.79 0.78 0.53 0.20 0.09 -

HS 0.78 0.77 0.52 0.20 0.04 -

BS 1.16 1.17 1.17 1.18 1.21 -

It is clear that proposed pruning based PS and heuristic based HS algorithms
appear far more efficient than the basic solution, both in time and space costs. It
also shows that the HS performs better than the PS in most cases. We notice that
time cost does not decrease dramatically as vertices are progressively removed.

Table 6. Efficiency over Facebook

k 4 8 12 16 20 24

PS 2.94 2.93 2.79 2.70 2.50 2.16

HS 2.75 2.70 2.72 2.11 2.06 1.82

BS 15.24 14.92 15.17 15.30 14.94 14.73

Table 7. Efficiency over Epinions

k 4 8 12 16 20 24

PS 9.06 8.92 8.83 8.84 8.53 8.42

HS 9.00 8.79 8.68 8.75 8.45 8.37

BS 20.41 19.94 19.37 19.36 19.36 18.76

Tables 8, 9, 10 and 11 compare the space cost (in kbytes) of different algo-
rithms. The results show that the PS and the HS require less memory than the
BS in each case.
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Table 8. Space cost over Twitter

k 5 15 25 35 45 55

PS 725 721 712 696 406 <10

HS 720 704 672 634 303 <10

BS 2.0E6 2.0E6 2.0E6 2.0E6 34271 315

Table 9. Space cost over Google+

k 5 15 25 35 45 55

PS 602 <10 <10 <10 <10 -

HS 613 <10 <10 <10 <10 -

BS 11280 885 573 500 <10 -

Table 10. Space cost over Facebook

k 4 8 12 16 20 24

PS 704 705 18 32 <10 <10

HS 646 610 16 <10 <10 <10

BS 2.1E5 1.9E5 6935 4739 5722 5673

Table 11. Space cost over Epinions

k 4 8 12 16 20 24

PS 18165 <10 <10 <10 <10 <10

HS 13656 <10 <10 <10 <10 <10

BS 1.0E5 213 <10 <10 <10 <10

F. Evaluation of scalability
To further test the performance of proposed algorithms, we enlarged the

search space over Facebook and Epinions datasets. The results are presented in
Tables 12 and 13. The cost increases as the number of vertices increases in both
cases.

Table 12. Scalability over Facebook

Vertices 97 147 616 744

PS 0.0027 0.005 4.61 1189.98

HS 0.0023 0.004 4.54 1179.98

BS 0.0048 0.108 31.75 24583.70

Table 13. Scalability over Epinions

Vertices 4104 20151 43892 65169

PS 6.22 9.00 9.24 9.54

HS 6.19 8.86 9.11 9.27

BS 14.84 20.22 20.63 21.25

G.Case Study
We built a co-author network from the DBLP (DataBase systems and Logic

Programming) data set for this case study. The diameter of the network is 6. A
vertex represents an author and an edge is added between two authors if they are
co-authors. The propagation probability is calculated according the frequency
of co-authorships. We performed a top-3 ICS (ε = 0.2, p = 0.8, k = 5) query for
“Alexanderm T”, the results are shown in Table 14.

Table 14. Top-3 influential communities for Alexanderm T

n Pr Members

1 0.92 Chad D, Djoerd H, Ivan K, Jaap K, Julia K, ller, Lucas B

2 0.83 Chi W, Clare R.V, Fangbo T, Heng J, Jialu L, Jiawei H, Lance M.K, Xiang R

3 0.79 Bo Z, Jiawei H, Jing G, Lu S, Qi L, Wei F, Yaliang L
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6 Related Work

The detection of community, which is defined as natural divisions of network
nodes into densely connected subgroups [15], has been widely studied in biolog-
ical networks and social networks [8,15,16,20].

Concepts relating to graph properties like k-clique, k-core and so on have
been extensively studied in random graphs. Recently, implicit community models
k-core [14], kr-Clique [12] have been proposed to discover communities.

An online community search, which finds communities around a query vertex
online, recently attracted a lot of attentions, for example, [2].

In considering models for the spread of influence through a social network,
a dynamic cascade model called the Independent Cascade (IC) model, was first
investigated by Goldenberg et al. [5]. Granovetter et al. [6] were among the first
to propose another Linear Threshold (LT) model. Kempe et al. [9] discussed
maximizing the spread of influence problem with these models in social network
analysis. Based on these works, there appears to be a lots of proposals focusing
on the spread of influence problem, for example, [10,11,13].

7 Conclusions

In this paper, we study the personalized top-n influential community search
problem in social networks. In particular, we propose a novel community model
based on the maximal pk-Clique concept which uses a new cohesive criterion.
We first present search space refinement. Then we introduce a pruning approach
and a heuristic search approach. Extensive experiments over real social networks
verify the effectiveness and efficiency of our search algorithms.
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