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Abstract. Sequence labeling is one of the key problems in natural lan-
guage processing. Recently, Recurrent Neural Network (RNN) and its
variations have been widely used for this task. Despite their abilities of
encoding information from long distance, in practice, one single hidden
layer is still not sufficient for prediction. In this paper, we propose an
attention architecture for sequence labeling, which allows RNNs to selec-
tively focus on every useful hidden layers instead of irrelative ones. We
conduct experiments on four typical sequence labeling tasks, including
Part-Of-Speech Tagging (POS), Chunking, Named Entity Recognition
(NER), and Slot Filling for Spoken Language Understanding (SF-SLU).
Comprehensive experiments show that our attention architecture pro-
vides consistent improvements over different RNN variations.

1 Introduction

Nowadays, analyzing and extracting useful information from plain text (espe-
cially web content) is one of the most important research areas. For many appli-
cations, sequence labeling is a fundamental pre-processing step. It is also one of
the most well-studied tasks in natural language processing. As shown in Table 1,
sequence labeling tasks aim at automatically assigning words in texts with labels.

Traditionally, Hidden Markov Models (HMM), Conditional Random Fields
(CRFs), and Support Vector Machine (SVM) has been widely used for sequence
labeling tasks [9,10,14,15]. Compared with these models, Recurrent Neural Net-
works (RNNs) are able to capture information from a fairly long distance.
Recently, with the help of extra resources and feature engineering, the com-
bination of RNN and other models achieves state-of-the-art results [3,8,12,13].

For sequence labeling, each target word and its corresponding label are explic-
itly aligned. Previous RNNs predict label solely based on each hidden layer of
the corresponding target word. However, in practice, using one single hidden
layer is not sufficient for prediction, even with sophisticated variations like Bi-
directional Recurrent Neural Network (Bi-RNN) [16], Long Short-Term Memory
(LSTM) [7], and Gated Recurrent Unit (GRU) [4].
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Table 1. An example of sequence labeling tasks.

Words Flight from Boston to New York

POS NN IN NNP TO NNP NNP

Chunking B-NP B-PP B-NP B-PP B-NP I-NP

NER O O B-loc O B-loc I-loc

SF-SLU O O B-dept O B-arr I-arr

This paper proposes an Attention-based Recurrent Neural Network for
Sequence Labeling (ARNN-SL), which allows RNNs to “focus” not only on the
aligned hidden layer, but other informative hidden layers as well.

Different from other tasks such as machine translation [1], image caption [19],
and speech recognition [5], where attention mechanism has been successfully
applied, sequence labeling has its own characteristics for deciding which hidden
layer is informative or not. Intuitively, the closer a hidden layer is to target word,
the more information it contains. Moreover, the aligned hidden layer is always
most important to this end. A windowing technique is introduced by limiting
our model to selectively focus on hidden layers in a small window size, instead of
irrelative hidden layers far way. ARNN-SL explicitly leverages the information
from the aligned and attention-focused hidden layers for prediction.

2 Model

2.1 Simple RNN for Sequence Labeling

Formally, sequence labeling aims at finding the most probable label sequence
y = {y1, ..., yT } for a given input word sequence w = {w1, ..., wT }, where T is
the sequence length.

The overall architecture of simple RNN (sRNN) for sequence labeling is
depicted in Fig. 1. In this figure, wt represents word at time step t and xt ∈ R

n

is wt’s word embedding. yt ∈ R
L is the probability over L labels of word at

position t and is defined as1:

yt = softmax(V ht) (1)

where ht ∈ R
m is the hidden state at time step t. ht encodes the information in

previous time steps and is computed as:

ht = σ(Wxt + Uht−1) (2)

where V , W and U are weight matrices. σ is active function and is often set to
sigmoid.

1 For simplicity, we omit bias terms in all the equations.
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2.2 RNN Variations

Most of the variations of RNN focus on modifying the way of calculating hidden
layer ht in Eq. 2. For example, Long Short-Term Memory (LSTM) [7] and Gated
Recurrent Unit (GRU) [4] introduces additional memory cells and gates to depict
the long-range dependency information much better. For local context window
technique [13], instead of using xt for computing ht, it uses a weighted sum of
all xj in a context window of wn as input:

∑wn
i=−wn Uixt+i, which allows RNN

to consider more local context dependency information.

Fig. 1. Illustration of sRNN and ARNN-SL for sequence labeling.

Bi-directional Recurrent Neural Network [16] is also commonly used for
improving the performance of sRNN. It computes the forward hidden layer hf

t

and backward hidden layer hb
t using hf

t−1 and hb
t+1 respectively, and concate-

nates these two types of layers to form the final hidden layer ht. In this way,
both past and future information is preserved.

2.3 Proposed Attention Architecture

In practice, ht alone is still not sufficient for encoding all the information needed
for predicting yt, even with sophisticated variations like Bi-RNN, LSTM, and
GRU. In this paper, we propose Attention-based Recurrent Neural Network for
Sequence Labeling (ARNN-SL), which allows RNN to selectively use multiple
hidden vectors’ information instead of using ht alone.

As shown in Fig. 1, ARNN-SL has two types of hidden layers: encoding layer
ht and decoding layer h̃t. The same as most encoder-decoder frameworks, the
last encoding layer is used as the input of the first decoding layer, two sets of
parameters are used for encoder and decoder respectively.

If we ignore the attention component ct and all decoding layers, the archi-
tecture is exactly the same as sRNN and its variations. Attention component
ct is used to selectively gather information from encoding layers for prediction,
which is computed as:

ct =
T∑

j=1

at,jhj (3)
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where at,j is the weight for hj at time step t:

at,j =
exp(et,j)

∑T
k=1 exp(et,k)

(4)

where et,j is attention score. The larger et,j is, the larger at,j becomes and the
more hj contributes to ct and yt. For sequence labeling task, yt is mainly decided
by encoding layer ht. In order to make full use of its information, ht is directly
used for prediction and et,t should be set to 0. Since encoding layers which are far
from current time step may be noisy, we pre-define a window size wn and directly
set et,j to 0 when j is outside the window. To summarize, et,j is calculated as:

et,j =
{

score(h̃t, hj) t − wn < j < t + wn and j �= t
0 else

(5)

the input of the score function is the current time step’s decoding layer h̃t and
hj . As proposed in [11], there are mainly two types of score functions which can
be used:

score(h̃t, hj) =

{
h̃T
t Wehj general

Ve tanh(W̃eh̃t + Wehj) concat
(6)

Finally, the calculation of the output layer yt in Eq. 1 is defined as:

yt = softmax(Vhht + Vcct) (7)

encoding hidden layer ht is most informative for predicting yt and is explicitly
leveraged with attention component ct.

Since our attention architecture does not change the way of computing hidden
layers, it can be directly built upon sRNN and LSTM. When ARNN-SL is built
upon bi-directional RNNs, two sets of weights and variables are used for forward
and backward directions respectively. For example, two attention components
cft and cbt selectively focus on hf

j and hb
j . They are then concatenated to form a

new attention component ct for the final prediction.

3 Related Work

Recently, attention mechanism leads to state-of-the-art results on many complex
tasks such as machine translation [1,11], image caption task [19], and speech
recognition [2,5]. However, due to the characteristics such as align strategy,
directly applying the same mechanism to sequence labeling is not feasible.

The main difference of our specially designed ARNN-SL with attention archi-
tectures in other tasks is the way of calculating the attention component ct, as
shown in Fig. 2. In machine translation [1], a translated word could be aligned
with a word at any position of the sentence. Attention architecture should selec-
tively focus on hidden layers at every position. In image caption task [19], in
order to generate current caption word, hidden layers corresponding to all image
segments should be focused on for the same reason.
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Fig. 2. Attention architectures used in different tasks.

The most similar attention architecture to ARNN-SL is used in speech recog-
nition [2,5]. Instead of using all hidden layers, only the layers corresponding to
the most probable consecutive k acoustic frames are focused on. The same idea
is also implemented in machine translation [11], but it performs worse than
attention for all layers. Compared with these architectures, ARNN-SL does not
dynamically decide which consecutive hidden layers should be used for attention
(Eq. 5). The useful hidden layers are always close to the current position for
sequence labeling.

For sequence labeling, the label is mostly affected by the word and hidden
layer in current time step. To the best of our knowledge, ARNN-SL is the first
attention architecture that explicitly leverages the contribution from the current
hidden layer and attention component (Eq. 7).

4 Experiments

4.1 Datasets and Experimental Setup

ARNN-SL is evaluated on four commonly used tasks for sequence labeling: Part-
Of-Speech Tagging (POS), Chunking2, Named Entity Recognition (NER)3, and
Slot Filling for Spoken Language Understanding (SF-SLU) [6,17,18]. Since there
is no pre-defined development data for the datasets of Chunking and SF-SLU
tasks, we randomly choose 20% of training data for validation. AdaDelta is used
to control learning rate [21]. We use the same dropout strategy as that in [20]
and the dropout rate is set to 0.5. Word embedding size and hidden layer size

2 CoNLL 2000 shared task: http://www.cnts.ua.ac.be/conll2000/chunking.
3 CoNLL 2003 shared task: http://www.cnts.ua.ac.be/conll2003/ner.

http://www.cnts.ua.ac.be/conll2000/chunking
http://www.cnts.ua.ac.be/conll2003/ner
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are set to 500. Word embeddings are either randomly initialized or pretrained
using Word2Vec toolkit4 on English Wikipedia (August 2013 dump). Models
are trained for 25 epochs, and we report the results on epoch which achieves
the highest performance on development data. We do not use features which are
derived from lexical resources or other NLP systems. The only pre-processing
we use is lowercasing.

Fig. 3. Illustration of the impact of attention window sizes and score functions. ARNN-
SL is built upon Bi-LSTM. Pretrained word embeddings are used. Attention window
size: “0” indicates that attention architecture is not used, “++” indicates that win-
dowing technique is not used and attention selectively focuses on all encoding layers.
w/o LVRG: (dotted line) traditional attention mechanism. w/LVRG: (solid line)
ARNN-SL which explicitly leverage the contribution from the current hidden layer
and attention component (Eq. 7).

4.2 Main Results

As shown in Fig. 3, compared to traditional attention mechanism (w/o LVRG),
models that explicitly leverage the information from the aligned and attention-
focused hidden layers (w/LVRG) perform consistently better. In most cases,
models without LVRG actually perform worse than Bi-LSTM baselines, espe-
cially on SF-SLU task and when the window size is large. The weighted sum of
all encoding layers (Eq. 3) is likely to bring noises. The current encoding layer
should always be directly used for prediction.

Our proposed attention architecture consistently improves the performance
of Bi-LSTM on all tasks. The best performance is usually achieved at window
size 2 or 3. The performance drops when the window size is bigger than 3 and
reaches the minimum when attention focuses on all encoding layers. Windowing
technique is indispensable for the good performance on sequence labeling.

The trend of the curve for the concat score function is similar to that of
general. However, general score function often performs better than concat.

4 http://code.google.com/p/word2vec/.

http://code.google.com/p/word2vec/
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We highly recommend using general score function in practice, since it’s also
easier to implement and is 2–3 times faster.

Overall, ARNN-SL obtains 1.14%, 2.14%, 3.21% and 0.90% improvement
on POS, Chunking, NER and SF-SLU respectively compared to sophisticated
bi-direction Bi-LSTM baselines.
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Fig. 4. Illustration of which position of encoding layers ARNN-SL focus on. ARNN-SL
is built upon Bi-LSTM and is tested on SF-SLU task. For each window position j, we
sum up variable at,j in all training examples at all time steps. Each bar represents the
percentage of this summed value over corresponding positions.

4.3 Attention Visualization

Since attention window size is crucial for ARNN-SL’s performance, it’s worth
to explore which position of encoding layers the attention really focused on.
As shown in Fig. 4, general and concat score functions both tend to focus on
positions near the center. This explains the performance’s decline when attention
window size is bigger than 3 in the above section. This also further strengthens
our claim: encoding layers which are far from the current time steps are noisy.

Another interesting phenomenon from this figure is that the forward direction
of ARNN-SL mainly focuses on both position −1 and position 1. While the
backward direction mainly focuses only on position −1. This may caused by
that backward RNN’s hidden layers contains only future information, so hidden
layer at position 1 has no information about word at position −1. While word
at this position may contains most useful information.

5 Conclusion and Future Work

This paper presents a novel attention architecture called ARNN-SL, designed for
sequence labeling. We demonstrate its effectiveness on POS, Chunking, NER,
and SF-SLU tasks. More precisely, we conclude that for sequence labeling tasks:
(1) it’s crucial to explicitly leverage the contribution from the current hidden
layer and attention component, (2) general score function is a better choice than
concat, (3) using windowing technique to restrict the attention is indispensable
and the window size should be small.
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The aim of this paper is investigating the impact of the attention archi-
tecture. We keep our model as simple and reproducible as possible. Note that
the state-of-the-art results on POS, Chunking and NER tasks are all obtained
by models combination, extra resources and feature engineering [3,8,12]. In the
future, it’s promising to implement ARNN-SL under the same sophisticated con-
figurations for further improvements on these tasks (e.g. combining ARNN-SL
and CRF/CNN, make using of different features and DBpedia knowledge).
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