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Abstract. Metric k nearest neighbor (MkNN) queries have applications in
many areas such as multimedia retrieval, computational biology, and
location-based services. With the growing volumes of data, a distributed method
is required. In this paper, we propose an Asynchronous Metric Distributed
System (AMDS), which uniformly partitions the data with the pivot-mapping
technique to ensure the load balancing, and employs publish/subscribe com-
munication model to asynchronously process large scale of queries. The
employment of asynchronous processing model also improves robustness and
efficiency of AMDS. In addition, we develop an efficient estimation based
MkNN method using AMDS to improve the query efficiency. Extensive
experiments using real and synthetic data demonstrate the performance of
MkNN using AMDS. Moreover, the AMDS scales sub-linearly with the
growing data size.

Keywords: Metric space � k nearest neighbor query � Publish/subscribe
Query processing � Algorithm

1 Introduction

Metric k nearest neighbor (MkNN) queries find k objects most similar to a given query
object under a certain criterion. Because metric spaces can support various data types
(e.g., images, words, DNA sequences) and flexible distance metrics (e.g., Lp-norm
distance, edit distance), this functionality has been widely used in real life applications.
Here, we give two representative examples below.

Application 1 (Multimedia Retrieval). In an image retrieval system, the similarity
between images can be measured using Lp-norm metric, earth mover’s distance or other
distance metrics between their corresponding feature vectors. Here, MkNN queries in
metric space can help users to locate figures that are similar as a given one.
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Application 2 (Nature Language Processing). In the WordNet, a knowledge graph for
better nature language understanding, the similarity between two words could be
measured by the shortest path, maximum flow or other distance metrics. Here, MkNN
queries can help users to find the words that are closely related to a given one.

With the development of Internet, especially thewidespread use ofmobile devices, the
volume, richness anddiversity of data challenge the traditionalMkNNquery processing in
both space and time. This calls for a scalable MkNN method to provide efficient query
service. Hence, in this paper, we investigate the distributed MkNN queries.

Existing works on distributed processing in metric spaces [1–10] aim to accelerate
MkNN queries in parallelism and try to build a suitable network topology to manage
the large amount of data. However, the existing solutions are not sufficient because of
following two main reasons. First, the ability to process a large quantity of MkNN
queries simultaneously is in need nowadays. Second, the load balancing is also a basic
need for distributed systems [11–13]. Motivated by these, we try to develop a dis-
tributed MkNN query processing system that takes the load balancing into consider-
ation and aims at efficient query processing in large scale.

In order to design such a system, three challenges need to be addressed. The first
challenge is how to ensure the load balancing of a distributed system? To ensure the
load balancing, we uniformly divide the data into disjoint fragments using the pivot
mapping technique, and then distribute each fragment to a computational node. The
second one is how to efficiently process queries in large scale? To support synchronous
process of large scale of queries, we utilize publish/subscribe communication model,
and thus, massive queries can be executed with negligible time loss in message passing.
The third challenge is how to reduce the cost of a single similarity query? We develop
several pruning rules with the minimum bounding box (MBB) to save unnecessary
verifications. In addition, an estimation based MkNN method is employed to further
improve the query efficiency. Based on these, we develop the Asynchronous Metric
Distributed System (AMDS) to support efficient MkNN queries in the distributed
environment. To sum up, the key contributions in this paper are as follows:

• We present a pivot-mapping based data partition method, which first uses a set of
effective pivots to map the data from a metric space to a vector space, and then
uniformly divides the mapped objects into disjoint fragments.

• We utilize the publish/subscribe communication model to asynchronously exchange
messages that saves time in network communication, and thus to support large scale
of MkNN query processing simultaneously.

• We propose an estimation-based method to handle MkNN queries, where pruning
rules with MBB are used to avoid redundant verifications.

• Extensive experiments using real and synthetic data evaluate the efficiency of
AMDS and the performance of distributed MkNN queries using AMDS.

The rest of this paper is organized as follows. Section 3 reviews related works.
Section 3 introduces the definitions of MkNN queries and the publish/subscribe
communication model. Section 4 elaborates the system architecture. Section 5 presents
an efficient algorithm for MkNN searches. Experimental results and findings are
reported in Sect. 6. Finally, Sect. 7 concludes the paper with some directions for future
work.
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2 Related Work

We review briefly related work on distributed kNN queries in Euclidean and metric
spaces.

2.1 Distributed Euclidean kNN Queries

Distributed kNN queries in Euclidean space have attracted a lot of attention since they
are introduced. CAN [14] and Chord [9] build on top of DHT overlay network. LSH
forest [15] uses a set of locality-sensitive hash functions to index data and perform
(approximate) kNN queries on an overlay network. SWAM [16] consists of a family of
distributed access methods for efficient kNN queries, which achieves the efficiency by
bringing nodes with similar contents together. DESENT [17] is an unsupervised
approach for decentralized and distributed generation of semantic overlay networks.
VBI-Tree [18] is an abstract tree structure on top of an overlay network, which utilizes
extensible centralized mapping methods. Mercury [19] is proposed to support multiple
attributes as well as explicit load balancing. NR-Tree [20] is a P2P adaption of R*-Tree
[12] to support kNN queries. FuzzyPeer [21] uses “frozen” technique to optimize query
execution. A general and extensible framework in P2P network builds on the concept
of hierarchical summary structure [12]. More recently, VITAL [22] employs a
super-peer structure to exploit peer heterogeneity. However, all these above solutions
focus on the vector space and they utilize the geometric properties (e.g., locality
sensitive function [15], minimum bounding box [12]) that are unavailable in metric
spaces, to distribute the data on the underlying overlay network and to accelerate the
query processing. Hence, they are unsuitable for distributed MkNN queries.

2.2 Distributed MkNN Queries

Existing methods for distributed MkNN queries can be clustered into two categories.
The first category utilizes basic metric partitioning principles to distribute the data over
the underlying network. GHT* and VPT* [2] use ball and generalized hyperplane
partitioning principles, respectively. Besides GHT* and VPT*, efficient peer splits
based on ball and generalized hyperplane partitioning techniques are also investigated
in [5]. The second category utilizes the pivot mapping technique to distribute the data.
MCAN [23], relying on an underlying structured P2P network named CAN [14], maps
data to vectors in a multi-dimensional space. M-Chord [24], relying on another
underlying structured P2P network named Chord [9], uses iDistance [25] to map data
into one-dimension values. M-Index [8] also generalizes iDistance technique to provide
distributed metric data management. SIMPEER [6] works in autonomous manner, and
uses the generated clusters obtained by the iDistance method to further summarize peer
data at the supper peer level. In this paper, we adopt the pivot-mapping based method.
This is because pivot-mapping based methods outperform metric partitioning based
ones in terms of the number of distance computations [1, 26], one important criterion in
metric spaces. As an example, MCAN and M-Chord utilizing the pivot mapping
perform better than GHT* and VPT* using metric partitioning techniques [3, 4].
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Apart from these, two general frameworks for distributed MkNN search are pro-
posed. One, called MESSIF, is an implementation framework with code reusing of
GHT*, VPT*, MCAN, M-Chord, Chord and Skip-Graphs [27]. The other utilizes a
super-peer architecture, where super-peers are responsible for query routing [10].

However, all these above methods are not sufficient due to two reasons below. First,
they cannot support synchronous processing of large scale of MkNN queries simul-
taneously, which is our main objective. To address it, we develop methods based on
publish/subscribe communication model. Second, they do not take the load balancing
into consideration, which is also important for distributed environment. To ensure the
load-balancing, we develop a pivot-mapping based partition method to distribute the
data uniformly among the computational nodes.

3 Preliminaries

In this section, we review the MkNN queries and publish-subscribe system. Table 1
summarizes the symbols frequently used throughout this paper.

3.1 MkNN Queries

A metric space is denoted by a tuple (M, d), in which M is an object domain and d is a
distance function to measure “similarity” between objects in M. In particular, the
distance function d has four properties: (1) symmetry: d(q, o) = d(o, q);
(2) non-negativity: d(q, o) � 0; (3) identity: d(q, o) = 0 iff q = o; and (4) triangle
inequality: d(q, o) � d(q, p) + d(p, o). Based on these properties, we define MkNN
queries.

Table 1. Symbols and description

Notation Description

O or P A set of objects or pivots
o or p An object or a pivot
/(o) A vector for object o after pivot-mapping
wpi or mpi A worker peer or a master peer
MBB(wpi) or MBB(mpi) The minimum bounding box for wpi or mpi
m A mission used for communication among peers
MkNN(q, k) A metric k nearest neighbor query w.r.t. q and k
d() The distance function in a metric space
RR(q, r) A metric range region centered at q with radius r
q.dk The distance between q to its k-th nearest neighbor

q:dik An estimation of q.dk
degw The number of worker peers that a master peer connects to
degm The number of master peers that a root peer connects to
numwp The total number of worker peers
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DEFINITION 1 (MKNN QUERY). Given an object set O, a query object q, and an integer
k in M, a MkNN query finds k most similar objects from O for q, i.e., MkNN(q, k) = {R |
R � O ^ |R| = k ^ 8oi 2 R, 8oj 2 O - R: d(q, oj) � d(q, oi)}.

An MkNN query can be regarded as a metric range (MR) query if the k-th nearest
neighbor distance if known in advance (i.e., the search radius), as defined below.

DEFINITION 2 (MR QUERY). Given an object set O, a query object q, and a search
radius r in M, a metric range (MR) query finds objects from O with their distances to q
are bounded by r, i.e., MR(q, r) = {o | o 2 O ^ d(q, o) � r}.

3.2 Publish/Subscribe

Publish/subscribe system, also termed as distributed event-bases system [28], is a
system where publishers publish structured events to an event service and subscribers
express interest in particular events through subscriptions [29]. Here, the interest can be
arbitrary patterns over the structured events. Publish/subscribe systems are used in a
wide variety of application domains, particularly in those related to the large-scale
dissemination of events, such as financial information systems, monitoring systems and
cooperative working systems where a number of participants need to be informed of
events of shared interest. Hence, in this paper, we adopt the publish/subscribe com-
munication model to support large scales of MkNN query processing simultaneously,
which is required in real life applications.

Publish/subscribe systems have two main characteristics, heterogeneity and asyn-
chronicity. Heterogeneity means that, components in a distributed system can work
together as long as correct message is published and subscribed. Asynchronicity means
that publishers and subscribers are time-decoupled, and message publishing and sub-
scribing are performed independently. Hence, the asynchronicity, the heterogeneity,
and the high degree of loose coupling suggest that publish/subscribe systems perform
well in dealing with large scale of messages.

4 AMDS Architecture

In this section, we present system organization and data deployment of AMDS system.

1 2 3 4 5

a b c d e f g h i j

MkNN query mission 
publish
subscribe
send results

dk estimation mission 
publish
subscribe
send results

Root Peer 

Master Peers

Worker Peers

Fig. 1. AMDS structure and communications for MkNN processing
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4.1 System Organization

AMDS aims to answer a large scale of MkNN queries in a distributed environment
simultaneously. In the following, we first introduce the system structure, and then
describe the communications in the system.

System Structure. AMDS is a three-layer tree structure on top of the overlay network,
consisting of three types of peers, termed as root peers, master peers and worker peers,
as depicted in Fig. 1. Peers are physical entities with calculation and communication
abilities. They are organized to index objects and to accomplish MkNN queries.
Worker peers (e.g., wpa, wpb) directly index data objects and perform metric similarity
queries locally; while root peers and master peers (e.g., mp1, mp2) manage children
peers and distribute MkNN queries over the system.

In AMDS, degw/degm represent the number of worker peers/master peers that a
master peer/a root peer connects to, respectively. The values of degw and degm depend
on several factors, including the network environment and the storage ability. For
simplify, in this paper, we assume there is one root peer, and each master peer
maintains an equal number of worker peers. Hence, the value of degm equals to the
number of master peers, and the value of degm � degw equals to the total number of
worker peers, e.g., degm = 5 and degw = 2 for the example system depicted in Fig. 1.
For clarity, we name a master peer with all the children worker peers as a peer cluster.

System Communication. To support communications between peers, we introduce
the concept of missions. Missions are text messages exchanged among peers for
communications. Data deployment, object updating operations, or MkNN queries can
be packed into missions. The missions are published by worker peers in a bottom-up
pattern, and subscribed by other worker peers in a top-down pattern, as illustrated in
Fig. 1. More specifically, a worker peer, the owner of a mission, can publish a mission
to its parent master peer and then to the root peer. Then, master peers can subscribe to
the missions from the root peer and worker peers can subscribe to the missions from
their master peers. Every master peer (or root peer) maintains a mission list to keep
track of all the missions published by its children worker peers (or master peers).
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Fig. 2. Pivot mapping
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4.2 Data Deployment

To achieve the load balancing, we divide the source data equally among worker peers,
assuming that worker peers share the same calculation ability and storage capacity. Our
framework of data deployment contains three phases, (i) the pivot-mapping of source
data performed by root peers, (ii) the partitioning of mapped data performed by master
peers, and (iii) the local index building performed by worker peers.

Pivot Mapping. In the first stage, we map the objects in a metric space to data points
in a vector space, using well-chosen pivots. The vector space offers more freedom than
the metric space when performing data partitioning and designing search approaches,
since it is possible to utilize the geometric and coordinate information that is
unavailable in the metric space. Given a pivot set P = {p1, p2, …, pn}, a general metric
space (M, d) can be mapped to a vector space (Rn, L∞). Specifically, an object o in a
metric space is represented as a point /(o) = 〈d(o, p1), d(o, p2), …, d(o, pn)〉 in the
vector space. For instance, consider the example in Fig. 2, where O = {oi | 1 � i
20} and L2-norm is used. If P = {p1, p2}, O can be mapped to a two-dimensional
vector space, in which the x-axis represents d(oi, p1) and the y-axis represents d(oi, p2)
(1 � i � 20). In particular, object o1 is mapped to point 〈10, 15〉.

The quality of selected pivots has a marked impact on the search performance. It is
shown that good pivots are far away from each other and from the rest of the objects in
the database [30]. Based on this observation, we select pivots in a way such that (i) they
are outliers, and (ii) the distances between each other are as large as possible. More-
over, theoretically, pivots do not need to be part of the object set. Consequently, the
quality of pivots is highly related with the data distribution and we have the flexibility
to insert/delete objects without changing the pivot set.

Data Partitioning. The root peer first samples the whole dataset and then maps the
sampled data objects into a set of vectors using selected pivots as discussed above.
After that, the root peer partitions the data objects into degm disjoint parts Pi (1 � i
degm) of equivalent size, with BB(Pi) representing the bounding box corresponding to
each part Pi. Here, BB(Pi) is an axis aligned bounding box and it contains the part Pi

such that 81 � i < j � degm, BB(Pi) \ BB(Pj) = ∅ and [ 1� i� degm BB(Pi) covers

Fig. 3. Sample-based data partitioning
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the entire space. Then, each BB(Pi) (1 � i � degm) is assigned to the corresponding
master peer mpi.

We give an example of sample-based data partition in Fig. 3. As depicted in Fig. 3
(a), we sort sampled objects o (2 O) in the mapped vector space according to their
values on dimension y. In the first iteration, based on degm = 5 and
degm=2d e= degm=2b c ¼ 3=2, we partition the whole sampled dataset into two parts
A = {o1, o3, o13, o16, o18, o20} and B = {o5, o8, o11, o12}. The partition continues until
five equal parts are obtained, i.e., D = {o1, o3}, E = {o5, o8}, F = {o11, o12},
G = {o13, o16} and H = {o18, o20}, with corresponding bounding boxes (i.e., the
dotted rectangle) depicted in Fig. 3(c). In the sequel, each data object o is associated to
the corresponding master peer mi with /(o) 2 BB(Pi). In addition, the minimum
bounding box (MBB), i.e., the light gray rectangles depicted in Fig. 4(a), is built for
each master peer mi accordingly. Specifically, a MBB(mpi) denotes the axis aligned
minimum bounding box to contain all the mapped objects in mpi. After that, each
master peer further divides each Pi into degw disjoined equaled parts in a similar way
and MBBs are also built for all the worker peers. The dark gray rectangles, depicted in
Fig. 4(b), represent the MBBs for worker peers.

Local Index Construction. Finally, each worker peer builds a local metric index for
all its objects. Here, we use M-tree to index the objects distributed to each worker peer
in the mapped vector space.

5 Distributed Query Processing

In this section, we present how to support MkNN queries in AMDS. We first introduce
the algorithms to support metric range query and metric kNN query, and then present
the asynchronous execution of missions.

Algorithm 1 kNN_WP
Input: MkNN(q, k) issued at wpi
1: if (q) MBB(wpi) then
2:    R:= findkNN(wpi , q, k) 
3: q.dk

i:= d(q,R[k] ) 
  4:    R:= MR(q, q.dk

i, wpi) 
5: else
6:    m := newMission(ID, DEst, q, IPi) 
7:    sendMessage(wpi, m, IP(wpi.parent))  

  8:    msg := receiveMessage() 
  9:    while (msg.ID m.ID and  

msg.type  DEst) 
10:       msg := receiveMessage() 
11:    R:= MR(q, msg.content, wpi) 
12: return findkNN(R , q, k) 

Fig. 4. MBBs after data partitioning
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5.1 MkNN Query Processing

Two solutions exist to answer MkNN query. One possible solution is incrementally
increasing the search radius until k nearest neighbor objects are retrieved [25, 31].
However, in a distributed environment, this method incurs very expensive communi-
cation cost due to too many message exchanges over the network. Alternatively,
AMDS adopts a different approach. It performs a metric range query based on an
estimated search radius with at most two round-trips message exchanges.

A metric range query retrieves the objects enclosed in the range region that is an
area centered at q with a radius r. The range region ofMR(q, r) can also be mapped into
the vector space [32]. Consider, for example, Fig. 5(a), where a blue dotted circle
denotes a range region, and the blue rectangle in Fig. 5(b) represents the mapped range
region using P = {p1, p2}. To obtain MR(q, r), we only need to verify the objects
o whose /(o) are contained in the mapped range region, as stated below.

Lemma 1. Given a pivot set P, if an object o is enclosed in MR(q, r), then /(o) is
certainly contained in the mapped range region RR(r), where RR(r) = {〈s1, s2, …, s|P|〉 |
1 � i � |P| ^ si � 0 ^ si 2 [d(q, pi) − r, d(q, pi) + r]}.

Proof. Assume, to the contrary, that there exists an object o 2 MR(q, r) but /(o) 62 RR
(r), i.e., 9pi 2 P, d(o, pi) > d(q, pi) + r or d(o, pi) < d(q, pi) − r. According to the
triangle inequality, d(q, o) � |d(q, pi) − d(o, pi)|. If d(o, pi) > d(q, pi) + r or d(o,
pi) < d(q, pi) − r, then d(q, o) � |d(o, pi) − d(q, pi)| > r, which contradicts with our
assumption. Consequently, the proof completes. □

According to Lemma 1, if the MBB of a worker peer wpi or a master peer mpi does
not intersect with RR(r), we can avoid performingMR(q, r) on wpi or mpi. For example,
in Fig. 5, the master peer mp5 does not need to perform MR(q, r) as M5 \ RR(r) = ∅.

To obtain a good estimation of q.dk (i.e., the kth nearest neighbor distance), we
perform a local MkNN(q, k) on the worker peer wpi with minimum MIND(MBB(wpi),
/(q)), and use q:dik, the distance between q and the kth nearest neighbor returned by the
local MkNN(q, k) performed by worker peer wpi as an estimation of q.dk. We consider
q:dik as a good overestimation of q.dk. This is because as q is located nearest to worker
peer wpi, the value of MIND(MBB(wpi), /(q)) reflects the likelihood that kNN objects

Fig. 5. MkNN query (Color figure online)
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of q are actually located within wpi. Based on the definition of q:dik, we can convert an
MkNN search into a MR query, as stated in Lemma 2.

Lemma 2. Given a pivot set P, if an object o is an answer object for MkNN(q, k), then
/(o) is certainly contained in the mapped range region RRðq; q:dikÞ.
Proof. Assume, to the contrary, that there exists an object o 2 MkNN(q, k) but
/ðoÞ 62 RRðq; q:dikÞ. According to the fact that /ðoÞ 62 RRðq; q:dikÞ, we have
dðq; oÞ[ q:dik . Meanwhile, according to the definition of q:dik, we have q:dik � q:dk,
and hence d(q, o) > q.dk, which contradicts with our assumption that o 2 MkNN(q, k).
Consequently, the proof completes. □

Based on Lemma 2, MkNN query processing in AMDS can also be partitioned into
two phases, i.e., q.dk estimation phase and MkNN query phase. First, worker peer wpi
with the minimum MIND(MBB(wpi), /(q)) is selected to perform a local MkNN query
to obtain an estimation q:dik of q.dk. Then, MkNN(q, k) is transformed into a MR
(q; q:dik). Note that, k is still needed because at most k objects will be sent back to the
MkNN query poster to reduce the network communication volumes. For worker peers
who receive such MkNN missions, they perform local MR(q; q:dik), but at most
k nearest objects will be sent back to the mission poster. When all the contributors
returned their query results, the poster will obtain the global kNN objects as the final
result.

Algorithm 2 MkNNProcessing
Input: a peer pi who is monitoring the mission publication
1: loop
2: m := receiveMission()/receiveMessage()
3: if m is a DEst mission then
4: if pi is a root peer then
5: pj:= locateNearestMBB(pi.MBBList, m.content)
6:       sendMessage(pi, m, IPj)
7: else if pi is a master peer then
8:          if φ(q) ⊂ MBB(pi) or m.sender = root then
9:  wpj :=locateNearestMBB(pi.MBBList,m.content)

10: sendMessage(pi, m, IPj)
11:          else
12:             sendMessage(pi, m, IP(pi.parent))
13:      else if pi is a work peer
14:          R = findKNN(pi , q, k) 
15:          q.dk

i:= d(q,R[k]) 
16:       sendMessage(pi, (m.ID, DEst, q.dk

i), m.IPw)  

We develop a MkNN_WP Algorithm to publish a mission when a MkNN(q, r) is
issued at the worker peer wpi, with the pseudo-code depicted in Algorithm 1. The
algorithm takes MkNN(q, k) and the issuer wpi as an input. If MBB of wpi contains
/(q), work peer wpi is confirmed to be the one with minimum MIND(MBB(wpi), /(q))
value. A local MkNN search is performed to find the distance q:dik between q and its
local kth nearest object, and then we perform a MR query with radius set to q:dik (lines
1–4). Here, MR query searches on work peers whose MBBs are intersected with
RRðq:dikÞ due to Lemma 1, which is simple, and thus, the codes are omitted. On the
other hand, if the bounding box of the query issuer does not bound the query point, we
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need to find the worker peer wpj with minimum MIND(MBB(wpj), /(q)) value, via a
mission with type = DEst (lines 6–10). Once q:dik is located and returned, a metric
range query based on q and q:dik is issued (line 11). Among the objects that are located
within the search range, the top k objects with minimum distances to q are returned as
the global kNN objects to complete the process.

We also develop an MkNNProcessing algorithm to explain how the estimation of
the search radius can be performed by other peers, with its pseudo code listed in
Algorithm 2. All the actions are triggered by new missions received, and the actions of
different types of peers vary. For MkNN query processing, the objective of actions that
are triggered by missions/messages with type = DEst is to find a good estimation of q.
dk. As mentioned before, a DEst mission is published only when the query object is not
located within the MBB of the query issuer mission. The mission first reaches the
parent master peer of the query issuer. If the parent master peer has its MBB bounding
the query point (the first condition of the IF clause in line 8), it selects a child worker
peer wpj that has the minimum MIND(MBB(wpj), /(q)) value via the function
locateNearestMBB() and then informs wpj to performs the estimation via a direct
message (lines 9–10). Otherwise, the parent master peer is not able to confirm that it
has a shorter MIND to /(q), as compared with other master peers. It has to ask the root
peer for help (lines 11–12). The mission is then propagated to the root peer. The root
peer locates the master peer mpj with minimum MIND distance /(q) again via function
locateNearestMBB() then informs mpj to perform the estimation via a direct message
(lines 4–6). The mission is then propagated to a master peer which might or might not
be the parent master peer. Once a master peer receives the DEst message from the root
peer (the second condition of the IF clause in line 8), it is aware that itself is the nearest
master peer to the query point, and it locates the nearest worker peer and informs the
worker peer to continue the estimation task (lines 9–10). Now, the mission reaches the
destination, the worker peer that is nearest to the query point. The worker peer performs
a local kNN search, and the distance between q and its local kth NN is returned to the
query issuer as an estimation of q.dk. The estimation is ended when a message con-
taining the estimation is sent to the query issuer.

Example 1. We illustrate the MkNN query processing using the example shown in
Fig. 5, with the corresponding communications depicted in Fig. 1. Suppose that worker
peer wph raises a MkNN query MkNN(q, 2) and it invokes kNN_WP algorithm. As the
query object q locates outside its MBB(wph), wph publishes a q.dk estimation mission
m to its parent master peer mp4. Once mp4 receives m via MkNNProcessing Algorithm,
it checks whether its MBB bounds q. As q falls inside MBB(mp4), it locates wpg, the
nearest worker peer among its children, and informs wpg to continue the estimation via
a direct message. Thereafter, worker peer wpg performs a local MkNN query to obtain
the result set SR and d(q, o5) is returned to wph as an estimation of q.dk. In the sequel,
wph performs a range query with r ¼ q:dik. Once the result objects of the range query
are received, worker peer can return the top-2 objects {o6, o7} nearest to q as the result
to complete the processing of MkNN query.
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5.2 Asynchronous Execution of Missions

AMDS adopts the publish/subscribe communication model, which can support asyn-
chronous execution of queries and thus can avoid waiting for communications with
other peers. In AMDS, there are three types of characters during the query processing,
i.e., the query initiator, the query broker and the query answerer. In particular, a query
initiator is a peer which issues a query, a query answerer is a peer which performs the
query and return the query answer to the query initiator, and a query broker is a peer
that distributes the query to the correct answerers. A query can be divided into four
main phases, query raising, query distributing, query processing and result collecting.
Each of these four phases is processed by these characters independently, i.e., the query
initiator, the query brokers, the query answerers and the query initiator, respectively. It
is obvious that the four phases are loosely coupled, no strong relations between these
phases exist, which is the premise of asynchronous execution.

Consider the example of asynchronous execution shown in Fig. 6. AMDS consists
of two worker peers (i.e., wpx and wpy) and one master peer mp. Each of the worker
peers issues a query (i.e., q1 and q2) that both wpx and wpy are related with the query.
Although q1 is finished earlier in Fig. 6(a) than that in Fig. 6(b), it is obvious that
asynchronous fashion is more efficient overall. Note that, the performance of syn-
chronous fashion will get worse as the number of queries increase.

6 Experimental Evaluation

In this section, we evaluate the effectiveness and efficiency of AMDS and MkNN
queries via extensive experiments, using both real and synthetic datasets. AMDS and
corresponding MkNN query algorithms are implemented in C++ with raw socket API.
All the experiments are conducted on Intel E5 2620 processor and 64G RAM.

We employ two real datasets Title1 and CoPHIR2. Title contains 800K PubMed
paper titles, with strings whose length ranges from 8 to 666, resulting in an average
length equaling to 71. The similarity between two strings is measured using
edit-distance. CoPHIR consists of 1000 K standard MPEG-7 image features extracted

Table 2. Parameter settings

Parameters Value

Cardinality 250K, 500K, 1M, 2M, 4M
The number of
worker peers

1K, 2K, 4K, 8K, 16K

k 1, 3, 9, 27, 81

Table 3. Construction cost of AMDS

Dataset Network

Title 397376 KB
CoPHIR 2157988 KB
VECTOR (250K) 200954 KB
VECTOR (500K) 398878 KB
VECTOR (1M) 792620 KB
VECTOR (2M) 1587004 KB
VECTOR (4M) 3174662 KB

1 Available at http://www.ncbi.nlm.nih.gov/pubmed.
2 Available at http://cophir.isti.cnr.it/get.html.
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from Flickr3, where the similarity between two features is measured as the L2-norm. In
addition, synthetic datasets VECTOR are generated with the cardinality varying from
250K to 4M, where L∞-norm is the distance metric. Every dimension of VECTOR
datasets is mapped to [0, 10000]. Each VECTOR dataset has 10 clusters and each
cluster follows Gaussian distribution. In this paper, the number of pivots for each
dataset is set to 5.

We investigate the performance of AMDS and MkNN algorithms under various
parameters as summarized in Table 2. In each set of experiments, only one factor
varies, whereas the others are fixed to their default values. As discussed in Sect. 4.2, if
the number of worker peers is fixed, then the number of master peers will affect the
efficiency of AMDS. Hence, in our experiments, the number of master peers is set as
32, 64 and 128 to evaluate the impact of the number of master peers. The main
performance metrics include the CPU time and the network communication volume.

6.1 Construction Cost

The first set of experiments verifies the AMDS construction cost, i.e., the cost of data
deployment of AMDS. Here, the network communication volume is used as the per-
formance metric. We collected the construction cost on both real and synthetic datasets,
with the results demonstrated in Table 3. The number of worker peers is set to 4 K as
default, and the number of master peers is set to 64 as default. The first observation is
that the data deployment in AMDS is efficient in terms of the network communication
volume. This is because, the content of source dataset only copied twice in the data
deployment process. It is first copied by root peer when passing data to master peers,
and then copied by master peers when passing objects to worker peers. The second
observation is that the larger dataset is, the higher construction cost is. This is because
the network communication volume depends on the cardinality of dataset.

6.2 Evaluation of Metric Similarity Queries

The second set of experiments evaluates the performance of MkNN queries using real
and synthetic datasets. We study the influence of several parameters, including (i) the
value k, (ii) the number of worker peers numwp, and (iii) the cardinality of dataset.

Fig. 6. Comparisons between execution modes

3 Available at http://www.flicker.com.
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Effect of k. First, we investigate the performance of MkNN queries using real datasets.
The CPU time and the network communication volume of MkNN queries are shown in
Fig. 7 under various k values ranging from 1 to 81. The first observation is that the
query cost increases with the growth of k. This is because, the search space grows as
k increases, resulting in more related master peers and worker peers. Note that, on
CoPHIR, the CPU time and the network communication volume grows rapidly when
k exceeds 9 due to the corresponding distance distribution of the dataset.

Effect of Number of Worker Peers. Then, we evaluate the influence of number of
worker peers. Figure 8 shows the results under various numbers of worker peers numwp

using synthetic datasets. Note that, the number of master peers is set to 64 as default.
The first observation is that the query cost first decreases from 0.5K to 1K and then
increases from 1K to 16K. This is because, with more worker peers, the objects
managed by each worker peer become less, and thus the MkNN cost on each worker
peer decreases. However, at the same time, more query cost is consumed on the
managing of a larger number of peers and communications between peers. In this case,
1K worker peers performs the best for VECOTOR on AMDS.

Effect of Cardinality. After that, we study the impact of cardinality of using synthetic
datasets, with the results depicted in Fig. 9. Here, we use 64 master peers as default. As
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expected, the query cost including CPU time and the network communication volume
increases with the growth of cardinality.

7 Conclusions

In this paper, we present the Asynchronous Metric Distributed System (AMDS), which
aims at dealing with a large scale of MkNN queries simultaneously. In the data
deployment, AMDS uniformly partitions the data using the pivot-mapping technique to
ensure the load balancing. During the MkNN query processing, AMDS utilizes the
publish/subscribe communication model to support asynchronous processing and
achieve the robustness at the same time. In addition, pruning rules are developed with
the MBB technique to reduce the query cost. Furthermore, MkNN queries are solved
using estimation to avoid high network communication cost. Finally, extensive
experiments on real and synthetic datasets verify the efficiency of AMDS construction
and MkNN search in both computational and communicational cost. In the future, we
intend to use AMDS to support various metric queries, e.g., metric skyline queries.
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