
Out-of-Band Authentication in Group
Messaging: Computational,

Statistical, Optimal

Lior Rotem(B) and Gil Segev

School of Computer Science and Engineering,
Hebrew University of Jerusalem, 91904 Jerusalem, Israel

{lior.rotem,segev}@cs.huji.ac.il

Abstract. Extensive efforts are currently put into securing messaging
platforms, where a key challenge is that of protecting against man-in-
the-middle attacks when setting up secure end-to-end channels. The vast
majority of these efforts, however, have so far focused on securing user-
to-user messaging, and recent attacks indicate that the security of group
messaging is still quite fragile.

We initiate the study of out-of-band authentication in the group set-
ting, extending the user-to-user setting where messaging platforms (e.g.,
Telegram and WhatsApp) protect against man-in-the-middle attacks by
assuming that users have access to an external channel for authenticat-
ing one short value (e.g., two users who recognize each other’s voice
can compare a short value). Inspired by the frameworks of Vaudenay
(CRYPTO ’05) and Naor et al. (CRYPTO ’06) in the user-to-user setting,
we assume that users communicate over a completely-insecure channel,
and that a group administrator can out-of-band authenticate one short
message to all users. An adversary may read, remove, or delay this mes-
sage (for all or for some of the users), but cannot undetectably modify it.

Within our framework we establish tight bounds on the tradeoff
between the adversary’s success probability and the length of the out-
of-band authenticated message (which is a crucial bottleneck given
that the out-of-band channel is of low bandwidth). We consider both
computationally-secure and statistically-secure protocols, and for each
flavor of security we construct an authentication protocol and prove a
lower bound showing that our protocol achieves essentially the best pos-
sible tradeoff.

In particular, considering groups that consist of an administrator
and k additional users, for statistically-secure protocols we show that
at least (k + 1) · (log(1/ε) − Θ(1)) bits must be out-of-band authen-
ticated, whereas for computationally-secure ones log(1/ε) + log k bits
suffice, where ε is the adversary’s success probability. Moreover, instan-
tiating our computationally-secure protocol in the random-oracle model
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yields an efficient and practically-relevant protocol (which, alternatively,
can also be based on any one-way function in the standard model).

1 Introduction

Instant messaging is gaining extremely-increased popularity as a tool enabling
users to communicate with other users either individually or within groups. A
variety of available messaging platforms hold an overall user base of more than
1.5 billion active users (e.g., WhatsApp, Signal, Telegram, and many more [Wik]),
and recognize user authentication and end-to-end encryption as key ingredients
for ensuring secure communication within them.

Extensive efforts are currently put into securing messaging platforms,
both commercially (e.g., [PM16,Telb,Wha]) and academically (e.g., [FMB+16,
BSJ+17,CCD+17,KBB17]). The vast majority of these efforts, however, have
so far focused on securing user-to-user messaging, and substantially less atten-
tion has been devoted to securing group messaging. Unfortunately, it recently
turned out that whereas the security of user-to-user messaging is gradually
reaching a stable ground, the security of group messaging is still quite fragile
[CGCG+17,RMS18,Gre18a,Gre18b].

Out-of-band authentication. A key challenge in securing messaging plat-
forms is that of protecting against man-in-the-middle attacks when setting up
secure end-to-end channels. Such attacks are enabled by the inability of users
to authenticate their incoming messages given the somewhat ad-hoc nature of
messaging platforms.1 To this end, various messaging platforms enable “out-of-
band” authentication, assuming that users have access to an external channel
for authenticating short values. These values typically correspond to short hash
values that are derived, for example, from the public keys of the users, or more
generally from the transcript of any key-exchange protocol that the users execute
for setting up a secure end-to-end channel.

For example, in the user-to-user setting, some messaging platforms offer users
the ability to compare with each other a value that is displayed by their devices
(e.g., Telegram [Tela], WhatsApp [Wha] and Viber [Vib]).2 This may rely on
the realistic assumption that by recognizing each other’s voice, two users can
establish a low-bandwidth authenticated channel: A man-on-the-middle adversary

1 Despite the significant threats posed by man-in-the-middle attacks, research on the
security of group messaging has so far assumed an initial authenticated setup phase
(e.g., [CGCG+17,RMS18]), and did not address this security-critical assumption.

2 For example, as specified in WhatsApp’s security whitepaper [Wha, p. 10]: “What-
sApp users additionally have the option to verify the keys of the other users with
whom they are communicating so that they are able to confirm that an unauthorized
third party (or WhatsApp) has not initiated a man-in-the-middle attack. This can
be done by scanning a QR code, or by comparing a 60-digit number. [...] The 60-digit
number is computed by concatenating the two 30-digit numeric fingerprints for each
user’s Identity Key”.
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can view, delay or even remove any message sent over this channel, but cannot
modify its content in an undetectable manner.

Such an authentication model was initially proposed back in 1984 by Rivest
and Shamir [RS84]. They constructed the “Interlock” protocol which enables
two users, who recognize each other’s voice, to mutually authenticate their pub-
lic keys in the absence of a trusted infrastructure.3 More recently, motivated
by the task of securely pairing wireless devices (e.g., wireless USB or Bluetooth
devices), this model was formalized by Vaudenay [Vau05] in the computational
setting and extended by Naor et al. [NSS06,NSS08] to the statistical setting (con-
sidering computationally-bounded and computationally-unbounded adversaries,
respectively).

Given that the out-of-band channel is of low bandwidth, it is of extreme
importance to construct out-of-band authentication protocols with an essentially
optimal tradeoff between the length of their out-of-band authenticated value
and the adversary’s success probability. Vaudenay and Naor et al. provided a
complete characterization of this tradeoff, resulting in optimal computationally-
secure and statistically-secure protocols.

Out-of-band authentication: The group setting. Motivated by the insuffi-
ciently explored security of group messaging, we initiate the study of out-of-band
message authentication protocols in the group setting. We extend the user-to-
user setting to consider a group of users that consists of a sender (e.g., the
group administrator) and multiple receivers (e.g., all other group members): All
users communicate over an insecure channel, and we assume that the sender can
out-of-band authenticate one short message to all receivers.4 As in the user-to-
user setting, this can be based, for example, on the assumption that each user
can identify the administrator’s voice, and having the administrator record and
broadcast a short voice message. As above, we assume that an adversary may
read or remove any message sent over the out-of-band channel for some or all
receivers, and may delay it for different periods of time for different receivers,
but cannot modify it in an undetectable manner.

Equipped with such an authentication protocol, the users of a group can now
authenticate their public keys, or more generally, authenticate the transcript of
any group key-exchange protocol of their choice. As in the user-to-user setting,
given that the out-of-band channel is of low bandwidth, we aim at identifying the
optimal tradeoff between the length of the out-of-band authenticated value and
the adversary’s success probability, and at constructing protocols that achieve
this best-possible tradeoff.

3 Unfortunately, potential attacks on the Interlock protocol were identified later on
[BM94,Ell96].

4 Clearly, one may consider a less-minimal extension where several users are allowed
to send out-of-band authenticated values (i.e., not only the group administrator that
we denote as the sender), but as our results show this is in fact not required.
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1.1 Our Contributions

Modeling out-of-band authentication in the group setting. In this work
we first put forward a realistic framework and strong notions of security for out-of-
band message authentication protocols in the group setting. We consider a group
of users that consists of a sender (e.g., the group administrator) and k receivers
(e.g., all other group members), where for every i ∈ [k] the sender would like
to authenticate a message mi to the ith receiver. We assume that all users are
connected via an insecure channel (over which a man-in-the-middle adversary
has complete control), and via a low-bandwidth “out-of-band” authenticated
channel that enables the sender to authenticate one short message to all receivers.
Adversaries may read or remove this message for some or all receivers, and may
delay it for different periods of time for different receivers, but cannot modify it
in an undetectable manner (we refer the reader to Sect. 3 for a formal description
of our communication model and notions of security).

Identifying the optimal tradeoff: Protocols and matching lower
bounds. Within our framework we then construct out-of-band authentication
protocols with an optimal tradeoff between the length of their out-of-band
authenticated value and the adversary’s success probability. We consider both
the computational setting where security is guaranteed against computationally-
bounded adversaries, and the statistical setting where security is guaranteed
against computationally-unbounded adversaries. In each setting we construct an
authentication protocol, and then prove a lower bound showing that our protocol
achieves essentially the best possible tradeoff between the length of the out-of-
band authenticated value and the adversary’s success probability. Our results are
briefly summarized in Table 1, and we refer the reader to the following section
for a more detailed overview and theorem statements.

Table 1. The length of the out-of-band authenticated value in our protocols
and lower bounds. We denote by k the number of receivers (i.e., we consider groups
of size k +1), and by ε the adversary’s forgery probability. Our computationally-secure
protocol relies on the existence of any one-way function (see Theorem 1.1), whereas our
statistically-secure protocol and our two lower bounds do not rely on any computational
assumptions (see Theorems 1.2, 1.3 and 1.4).

Our Protocols Our Lower Bounds

Computational
Security

log(1/ε) + log k log(1/ε) + log k − Θ(1)

Statistical
Security

(k + 1) · (log(1/ε) + log k + Θ(1)) (k + 1) · log(1/ε) − k

Note that our upper bound and lower bound in the computational setting match
within an additive constant term, whereas in the statistical setting they match within
an additive (k + 1) log k + Θ(k) term (however, whenever ε = o(1/k) as one would
typically expect when setting a bound on the adversary’s forgery probability, this
difference becomes a lower-order term).
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Computational vs. statistical security. Our tight bounds reveal a signifi-
cant gap between the possible length of the out-of-band authenticated value in
the computational setting and in the statistical setting: Whereas in the statis-
tical setting we prove a lower bound that depends linearly on the size of the
group, the length of the out-of-band authenticated value in our computationally-
secure protocol depends very weakly on the size of the group. Moreover, when
instantiating its cryptographic building block (a concurrent non-malleable com-
mitment scheme) in the random-oracle model, our approach yields an efficient
and practically-relevant protocol (which, alternatively, can also be based on any
one-way function in the standard model).5

1.2 Overview of Our Contributions

A naive approach to constructing an out-of-band authentication protocol in the
group setting is to rely on any such protocol in the user-to-user setting: Given a
sender and k receivers, we can invoke a user-to-user protocol between the sender
and each of the receivers. Thus, if the length of the out-of-band authenticated
value in the underlying user-to-user protocol is �(ε) bits (where ε is the adver-
sary’s forgery probability), then the length of the out-of-band authenticated
value in the resulting group protocol is k · �(ε/k) bits.6 Thus, the naive approach
yields out-of-band authenticated values whose length is linear in the size of the
group, and the key technical challenge underlying our work is understanding
whether or not this is the best possible.

Concretely, the user-to-user protocols of Vaudenay [Vau05] and Naor et al.
[NSS06] have out-of-band authenticated values of lengths �(ε) = log(1/ε) and
�(ε) = 2 log(1/ε)+Θ(1), respectively. Thus, instantiating the naive approach with
their protocols yields computationally-secure and statistically-secure protocols
where the sender out-of-band authenticates k · (log(1/ε) + log k) bits and 2k ·
(log(1/ε) + log k + Θ(1)) bits, respectively.

Our results show that, unlike in the user-to-user setting, in the group setting
computationally-secure and statistically-secure protocols exhibit completely dif-
ferent behaviors. First, we show that for computationally-secure protocols it is
possible to do dramatically better compared to the naive approach and com-
pletely eliminate the linear dependency on the size of the group. We prove the
following two theorems providing an out-of-band authentication protocol and a
matching lower bound:

5 Concretely, when setting the adversary’s forgery probability ε to 2−30 in a group
that consists of k = 210 users, then in any statistically-secure protocol more than
k · log(1/ε) = 210 · 30 bits must be out-of-band authenticated, whereas in our
computationally-secure protocol only log(1/ε) + log k = 40 bits are out-of-band
authenticated.

6 Note that if the adversary’s forgery probability in the group protocol should be at
most ε, then the user-to-user protocol should be parameterized, for example, with ε/k
as the adversary’s forgery probability (enabling a union bound over the k executions).
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Theorem 1.1. Assuming the existence of any one-way function, for any k ≥
1 there exists a computationally-secure constant-round k-receiver out-of-band
message authentication protocol in which the sender out-of-band authenticates
log(1/ε) + log k bits, where ε is the adversary’s forgery probability.

Theorem 1.2. In any computationally-secure k-receiver out-of-band message
authentication protocol, the sender must out-of-band authenticate at least log(1/ε)
+ log k − Θ(1) bits, where ε is the adversary’s forgery probability.

Then, we show that for statistically-secure protocols the naive approach is
in fact asymptotically optimal, but it can still be substantially improved by a
multiplicative constant factor (which is of key importance given that the out-of-
band channel is of low bandwidth). We prove the following two theorems, once
again providing an out-of-band authentication protocol and a lower bound:

Theorem 1.3. For any k ≥ 1 there exists a statistically-secure k-receiver out-
of-band message authentication protocol in which the sender out-of-band authen-
ticates (k + 1) · (log(1/ε) + log k + Θ(1)) bits, where ε is the adversary’s forgery
probability.

Theorem 1.4. In any statistically-secure k-receiver out-of-band message
authentication protocol, the sender must out-of-band authenticate at least (k +
1) · log(1/ε) − k bits, where ε is the adversary’s forgery probability.

As discussed above, note that here our upper bound and lower bound differ
by an additive (k + 1) · log k + Θ(k) term. However, whenever ε = o(1/k) as
one would typically expect when setting a bound on the adversary’s forgery
probability, this difference becomes a lower-order term.

In the remainder of this section we overview the main ideas underlying our
protocols and lower bounds, first describing our contributions in the computa-
tional setting, and then describing our contributions in the statistical setting.

Computational security: Our protocol. Our computationally-secure proto-
col is inspired by the user-to-user protocol proposed by Vaudenay [Vau05]. In his
protocol the sender S first commits to the value (m, rS), where m is the message
to be authenticated, and rS is a random �-bit string. The receiver R then replies
with a random string rR, followed by S revealing rS and out-of-band authenti-
cating rS ⊕ rR. Finally, the receiver R accepts m if and only if the out-of-band
authenticated value is consistent with his view of the protocol.

When moving to the group setting, however, a man-in-the-middle adversary
has many more possible ways to interleave its interactions with the parties, thus
providing security becomes a much more intricate task. For instance, a naive
attempt to generalize Vaudenay’s protocol to the group setting (while keeping
the out-of-band authenticated value short) might naturally rely on the following
idea: Have the sender choose a single value rS and send each receiver a commit-
ment to (mi, rS),7 and then have each receiver Ri reply with a string rRi

to all
7 Of course, a commitment scheme may be interactive, but we use this terminology

for ease of presentation in the overview.
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other parties.8 The out-of-band authenticated value is then rS ⊕ rR1 ⊕ . . .⊕ rRk
,

and each receiver Ri accepts the message mi if and only if this value is consis-
tent with his view of the protocol. Alas, this protocol is completely insecure –
even when considering just one additional receiver. For example, an adversary
can send R1 a commitment to (m̂1, r̂S) for a message m̂1 �= m1 and an arbi-
trary r̂S . After learning rS and rR2 , the adversary can simply send R1 the value
r̂R2 = rR2 ⊕ rS ⊕ r̂S instead of rR2 . Since rS ⊕ rR2 = r̂S ⊕ r̂R2 , the attack will
go undetected and the receiver R1 will accept a fraudulent message m̂1.

To immune our protocol from attacks as the one described above, the
receivers in our protocol must avoid sending their random strings in the clear.
Rather, they too send commitments of these strings at the beginning of the proto-
col. Informally, our protocol proceeds as follows: (1) Each Ri sends a commitment
to a random �-bit string rRi

; (2) S chooses a random string rS and sends a com-
mitment to (mi, rS) to each Ri; (3) The receivers open their commitments; (4)
S opens her commitments; (5) S out-of-band authenticates rS ⊕ rR1 ⊕ . . . ⊕ rRk

.
One can verify that the additional commitments indeed prevent the aforemen-
tioned attack, but there are clearly many additional attacks to consider given
that an adversary has many possible ways to interleave its interactions with the
parties.

The multitude of commitments in our protocol, and the many possible syn-
chronizations an adversary may impose on them in the group setting, make
proving the security of our protocol a challenging task. Nonetheless, we are able
to show that when the commitment scheme being used is a concurrent non-
malleable commitment scheme (see Sect. 2 for a formal definition), our protocol
is indeed secure: Setting � = log(1/ε) + log k guarantees that the adversary’s
forgery probability is at most ε.

Technical details omitted, the intuition behind the security of the protocol is
the following. An adversary A wishing to cause some Ri to accept a fraudulent
message, essentially has to choose between two options. If A delivers all com-
mitments to S and to Ri before Ri reveals rRi

, then Ri accepting a fraudulent
message implies breaking the concurrent non-malleability of the commitment
scheme: The 2k commitments delivered to S and to Ri by the adversary must
define values whose exclusive-or is equal to rRi

⊕ rS . These commitments thus
satisfy a “non-trivial” relation which violates the concurrent non-malleability of
the commitment scheme. On the other hand, if rRi

is revealed before all com-
mitments were delivered to S, then rS is chosen after all commitments were
delivered to S and to Ri. Hence, all other values contributing to the authenti-
cated value sent by S, and to the value Ri is expecting to see as the out-of-band
authenticated value, have already been determined, so the exclusive-or of all rele-
vant values guarantees that the probability of the chosen rS to result in equality
is 2−�.

Computational security: Lower bound. Already in the user-to-user set-
ting, at least log(1/ε) bits must be out-of-band authenticated, where ε is the
8 We do not go into details regarding the possible models of insecure communication in

this high-level overview, and we refer the reader to Sect. 3 for an in-depth discussion.
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adversary’s forgery probability. This can be proved, for example, by analyzing
the collision entropy of the random variable corresponding to the out-of-band
authenticated value (see, for example, [PV06]). We show that such an analysis
can be extended to the group setting, resulting in a stronger lower bound which
depends on the size of the group (and is in fact optimal given our above-described
protocol).

Specifically, we show an efficient attack against any k-receiver protocol that
succeeds with probability roughly k ·2−�, where � is the number of bits the sender
authenticates out-of-band. Given such a protocol π involving a sender and k
receivers, our attacker runs k + 1 independent executions of π, one with each
party taking part in the protocol. In each execution, the attacker independently
chooses k random messages as the input to the sender (the true sender in the
execution with the sender, and the simulated one in the executions with each of
the receivers), and honestly simulates the roles of all other parties. Now, if the
out-of-band authenticated value in the execution with the sender is equal to the
out-of-band authenticated value in one of the k executions with the receivers,
then the attacker combines these two executions by forwarding the out-of-band
authenticated value that is sent by the true sender for replacing the simulated
value in the execution with that receiver.

Observe that the probability of a successful forgery is roughly the probabil-
ity that the out-of-band authenticated value in the execution with the sender
is indeed equal to the out-of-band authenticated value in one of the k execu-
tions with the receivers.9 Hence, in order to analyze the effectiveness of this
attack, it is sufficient to bound the probability of this event. We manage to
provide a Θ(k · 2−�) lower bound on the probability of this event, which yields
Theorem 1.2.

Statistical security: Our protocol. The starting point of our statistically-
secure protocol is the iterative hashing protocol of Naor et al. [NSS06]. Loosely
speaking, in their protocol the parties maintain a joint sequence of values of
decreasing length, starting with the input message of the sender and ending up
with the out-of-band authenticated value. In each round, the parties apply to
the current value a hash function that is cooperatively chosen by both parties:
Half of the randomness for choosing the function is determined by the sender,
and the other half by the receiver.

As noted above, when moving to the group setting, a naive generalization
of the Naor et al. protocol in which the sender executes the user-to-user pro-
tocol with each receiver independently, will result in a blow-up of factor k in
the length of the out-of-band authenticated value. However, we show that it is
possible to exploit the specific structure of the Naor et al. protocol, and in par-
ticular of the out-of-band authenticated value, in order to cut its length in the
group setting roughly by half (compared to the naive generalization). The main
observation underlying our approach is that the k executions of the user-to-user

9 A successful forgery also requires that the input message for that particular receiver
is different in the two executions, but this has little effect on the probability of
forgery when the input messages are not too short.
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protocol need not be completely independent. More concretely, we show that
if in the last round (before sending the out-of-band authenticated value), the
sender contributes the same randomness for all k hash functions, then all k exe-
cutions are “tied together” in a way that permits a significant reduction in the
number of bits that are authenticated out-of-band. Security is now of course not
trivially guaranteed, as this change introduces heavy dependencies between the
executions. We nevertheless manage to prove, carefully adjusting the structure of
our protocol, that the resulting protocol provides an essentially optimal tradeoff
between the length of the out-of-band authenticated value and its security.

Statistical security: Lower bound. We prove our lower bound in the sta-
tistical security setting by providing a lower bound on the Shanon entropy of
the random variable corresponding to the out-of-band authenticated value in
any out-of-band authentication protocol. Intuitively speaking, at the beginning
of any such protocol, the out-of-band authenticated value is completely unde-
termined, while at the end of the execution it is fully determined. We show
that if the forgery probability is to be bounded by ε, this decline in entropy
must adhere to a specific structure: Each party must decrease the entropy of the
out-of-band authenticated value – via the messages it sends during the execu-
tion of the protocol – by at least log(1/ε) − 1 bits on average. It follows that
H(Σ) ≥ (k + 1) · log(1/ε) − k, where Σ is the afore-defined random variable and
k is the number of receivers.

We formalize and prove this intuition by presenting a collection of k + 1
attacks against any k-receiver out-of-band authentication protocol, one per each
participating party. Loosely speaking, the attack corresponding to party P
(where P may be the sender or any of the receivers) consists of running two
executions of the protocol. First, our adversary plays the role of P in an hon-
est execution of the protocol with all other parties, and obtains the out-of-band
authenticated value σ to be sent at the end of this execution. Then, the adversary
runs an execution of the protocol with P , playing the role of all other parties,
while choosing their messages throughout the protocol not only conditioned on
their views, but also conditioned on the out-of-band authenticated value being
σ. We show in our analysis that if we denote by εP the success probability of the
attack corresponding to party P , then it holds that

∏

P εP ≥ 2−H(Σ)−k. Hence,
if the probability of a successful forgery in any attack (and in particular in our
k + 1 attacks) is at most ε, then it holds that

2−H(Σ)−k ≤
∏

P

εP ≤ εk+1,

and our lower bound follows. Our proof technique is inspired by the lower bound
of Naor et al. [NSS06] for statistically-secure user-to-user out-of-band authentica-
tion protocols. In the group setting, however, there are many more “independent”
attacks to consider, adding to the intricacy of the proof.
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1.3 Paper Organization

The remainder of this paper is organized as follows. In Sect. 2 we review the
basic notions and tools that are used in this paper. In Sect. 3 we put forward
our framework for out-of-band message authentication protocols in the group
setting, formally discussing our communication models and notions of security.
Then, in Sects. 4 and 5 we present our protocols and prove our corresponding
lower bounds in the computational and statistical settings, respectively.

2 Preliminaries

In this section we present the notation and basic definitions that are used in
this work. For a distribution X we denote by x ← X the process of sampling
a value x from the distribution X. Similarly, for a set X we denote by x ← X
the process of sampling a value x from the uniform distribution over X . For an
integer n ∈ N we denote by [n] the set {1, . . . , n}. A function ν : N → R

+ is
negligible if for any polynomial p(·) there exists an integer N such that for all
n > N it holds that ν(n) ≤ 1/p(n).

Shannon entropy and mutual information. For random variables X, Y and
Z we rely the following standard notions:

– The entropy of X is defined as H(X) = −∑

x Pr[X = x] · log Pr[X = x].
– The conditional entropy of X given Y is defined as H(X|Y ) =

∑

y Pr[Y = y] ·
H(X|Y = y).

– The mutual information of X and Y is defined as I(X;Y ) = H(X)−H(X|Y ).
– The mutual information of X and Y given Z is defined as I(X;Y |Z) =

H(X|Z) − H(X|Z, Y ).

Non-malleable commitment schemes. In this paper we rely on the notion
of statistically-binding concurrent non-malleable commitments (for basic defini-
tions and background on commitment schemes, we refer the reader to [Gol01]).
We follow the indistinguishability-based definition of Lin and Pass [LP11],
though we find it convenient to consider non-malleability with respect to con-
tent, other than with respect to identities. For simplicity, the definition below
only addresses the one-many setting (which is equivalent to the general many-
many setting [PR05]), as this is enough for our needs. Lin and Pass [LP11]
and Goyal [Goy11] have shown that constant-round concurrent non-malleable
commitment schemes can be constructed from any one-way function (the round
complexity was further improved by Ciampi et al. [COS+17] to just 4 rounds).
From a more practical perspective, such schemes can be constructed efficiently
in the random-oracle model [BR93]. For further information regarding non-
malleable and concurrent non-malleable commitment schemes see, for example,
[DDN00,CIO98,FF00,CF01,PR05,PR08,LPV08] and the references therein.

Intuitively speaking, a (one-many) concurrent non-malleable commitment
scheme has the following guarantee: Any efficient adversary cannot use a com-
mitment to some value v in order to produce commitments to values v̂1, . . . , v̂k
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that are “non-trivially” related to v. More formally, Let Com = (C,R) be a
statistically-binding commitment scheme, and let k = k(·) be a function of the
security parameter λ ∈ N, bounded by some polynomial. Consider an efficient
adversary A that gets an auxiliary input z ∈ {0, 1}∗ (in addition to the security
parameter) and participates in the following “man-in-the-middle” experiment.
A takes part in a single “left” interaction and in k “right” interactions: In the
left interaction, A interacts with the committer C, and receives a commitment
to a value v. Denote the resulting commitment (transcript of the interaction)
by c. In the right interactions, A interacts with the receiver R, resulting in k
commitments ĉ1, . . . , ĉk. We define k related values v̂1, . . . , v̂k in the following
manner. For every i ∈ [k], if ĉi = c, if ĉi is not a valid commitment, or if ĉi can be
opened to more than one value, we let v̂i = ⊥ (note that by the statistical bind-
ing property of Com, the latter case only happens with negligible probability).
Otherwise, v̂i is the unique value to which ĉi may be opened. Let mimA

Com(v, z)
denote the random variable that includes the values v̂1, . . . , v̂k and A’s view at
the end of the afore-described experiment.

Definition 2.1. Let A and D be a pair of algorithms. We define the advantage
of (A,D) with respect to security parameter λ ∈ N as

AdvA,D
Com (λ) def= max

v,v′∈{0,1}λ

{

Pr
[

D(1λ,mimA
Com(v, z)) = 1

]

−Pr
[

D(1λ,mimA
Com(v′, z)) = 1

]}

.

We say that a statistically-binding commitment scheme is concurrent non-
malleable if for any pair of probabilistic polynomial-time algorithms (A,D) there
exists a negligible function ν = ν(·) such that AdvA,D

Com (λ) ≤ ν(λ) for all suffi-
ciently large λ ∈ N.

3 The Communication Model and Notions of Security

We consider the message authentication problem in a setting involving a group
of k +1 users: A sender S and k receivers R1, . . . , Rk. For each i ∈ [k] the sender
would like to authenticate a message mi to the ith receiver Ri. We assume that
the users communicate over two channels: An insecure channel over which a
man-in-the-middle adversary has complete control, and a low-bandwidth “out-
of-band” authenticated channel, enabling the sender to authenticate one short
message to all receivers. In what follows we formally specify the underlying
communication model as well as the notions of security that we consider in this
work (generalizing those of Vaudenay [Vau05] and Naor et al. [NSS06] to the
group setting).

3.1 Communication Model

Our starting point is the framework of Vaudenay [Vau05] and Naor et al. [NSS06]
which considers a sender who wishes to authenticate a single message to a single
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receiver using out-of-band authentication. They modeled this interaction by pro-
viding the sender and the receiver with two types of channels: A bidirectional
insecure channel that is completely vulnerable to man-in-the middle attacks, and
an authenticated unidirectional low-bandwidth channel from the sender to the
receiver (an “out-of-band” channel).

We extend this model to the group setting in the following manner. Similarly
to the framework of Vaudenay and Naor et al. we assume that the parties are
connected via two types of communication channels: An insecure channel and
an authenticated low-bandwidth channel. As for the authenticated channel, we
assume that the sender S is equipped with an out-of-band channel, through
which S may send a short message visible to all receivers in an authenticated
manner (e.g., a voice message in group messaging). The adversary may read
or remove this message for some or all receivers, and may delay it for different
periods of time for different receivers, but cannot modify it in an undetectable
manner. One may also consider a scenario where S, as well as the receivers, may
send multiple messages over the out-of-band authenticated channel throughout
the protocol. However, this is less desirable from a practical standpoint, and in
any case, will not be necessary in our protocols. Furthermore, our lower bounds
readily capture this more general case as well, providing a lower bound on the
total number of bits sent over the authenticated channel throughout the protocol.

As mentioned above, we also assume that the parties are connected among
themselves in a network of insecure channels. These channels are vulnerable
to man-in-the-middle attacks, and the adversary is assumed to have complete
control over them: The adversary can read, delay and stop messages sent by
the parties, as well as insert new messages at any point in time. In particular,
this provides the adversary with considerable control over the synchronization
of the protocol’s execution. Nonetheless, the execution is still guaranteed to be
“marginally synchronized”: Each party sends her messages in the ith round of
the protocol only upon receiving all due messages of round i − 1.

One may consider various possible networks to define the topology of the
insecure channels. Two extremes of that spectrum are the following:

– The star network model: In this model each receiver Ri is connected to
the sender S via a bidirectional insecure channel. In particular, the receivers
cannot send messages directly to each other, and any communication among
them must pass through the sender S.

– The complete network model: In this model every pair of parties (sender
and receiver as well as two receivers) is connected through an insecure channel.

In that respect, our results – both in the computational setting and in the
statistical setting – will be of the strongest form possible. Our protocols will be
articulated, and their correctness and security proven, in the restrictive “star”
network model, which in particular means that they can be implemented in mod-
els richer in channels, and namely in the complete network model (in that case,
some communication efficiency optimizations are possible). Our lower bounds on
the other hand, will assume complete communication networks, and will hence
apply to weaker network models as well.
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3.2 Notions of Security

In what follows we define the security and correctness requirements of out-of-
band authentication protocols, essentially extending those of Vaudenay [Vau05]
and Naor et al. [NSS06] to the group setting in an intuitive manner. In such
protocols, the input to the sender S is a vector of message m1, . . . ,mk which
may be chosen by the adversary. At the end of the execution, each receiver
Ri outputs either a message m̂i or the unique symbol ⊥, implying rejection.
Informally, correctness states that in an honest execution, with high probability
all receivers output the correct message; i.e., m̂i = mi for every i ∈ [k]. As for
security, we demand that an adversary (which is efficient in the computational
setting and unbounded in the statistical setting) cannot convince a receiver to
output an incorrect message; i.e., the probability that m̂i �∈ {mi,⊥} is bounded
by a pre-specified parameter.

For the sake of generality, Definitions 3.1 and 3.2 below are articulated with-
out specific reference to an underlying communication model, and may be applied
to any of the group communication models discussed above. We begin with a
formal definition of out-of-band authentication in the statistical setting.

Definition 3.1. A statistically-secure out-of-band (n, �, k, r, ε)-authentication
protocol is a (k + 1)-party r-round protocol in which the sender S is invoked
on a k-tuple of n-bit messages, and sends at most � bits over the authenticated
out-of-band channel. The following requirements must hold:

– Correctness: In an honest execution of the protocol, for all input messages
m1, . . . ,mk ∈ {0, 1}n to S and for every i ∈ [k], receiver Ri outputs mi with
probability 1.

– Unforgeability: For any adversary and for every adversarially-chosen input
messages m1, . . . ,mk on which S is invoked, the probability that there exists
some i ∈ [k] for which receiver Ri outputs some message m̂i �∈ {mi,⊥} is at
most ε.

A computationally-secure out-of-band authentication protocol is defined sim-
ilarly, except that security need only hold against efficient adversaries, and the
probability of forgery is also allowed to additively grow (with respect to the
statistical setting) by a negligible function of the security parameter λ ∈ N.

Definition 3.2. Let n = n(λ), � = �(λ), k = k(λ), r = r(λ) and ε = ε(λ) be
functions of the security parameter λ ∈ N. A computationally-secure out-of-band
(n, �, k, r, ε)-authentication protocol is a (k + 1)-party r-round protocol in which
the sender S is invoked on a k-tuple of n-bit messages, and sends at most �
bits over the authenticated out-of-band channel. The following requirements must
hold:

– Correctness: In an honest execution of the protocol, for all input messages
m1, . . . ,mk ∈ {0, 1}n to S and for every i ∈ [k], receiver Ri outputs mi with
probability 1.
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– Unforgeability: For any probabilistic polynomial-time adversary there exists
a negligible function ν = ν(·) such that the following holds: For every input
messages m1, . . . ,mk chosen by the adversary and on which S is invoked, the
probability that there exists some i ∈ [k] for which receiver Ri outputs some
message m̂i �∈ {mi,⊥} is at most ε + ν(λ) for all sufficiently large λ ∈ N.

4 The Computational Setting

In this section we prove tight bounds for computationally-secure out-of-band
authentication in the group setting. In Sect. 4.1 we present our computationally-
secure protocol and discuss its possible instantiations (both in the standard
model and in the random-oracle model). The security proof of our protocol is
provided in the full version of the paper [RS18]. In Sect. 4.2 we prove a match-
ing lower bound on the length of the out-of-band authenticated value in any
computationally-secure protocol.

4.1 Our Protocol and Its Instantiations

Let Com = (CCom, RCom) be a concurrent non-malleable commitment scheme
that is statistically binding (see Sect. 2 and Definition 2.1). Our protocol, denoted
πComp, is parameterized by the security parameter λ ∈ N, by the number k = k(λ)
of receivers, by the length � = �(λ) of the out-of-band authenticated value, and
by the length n = n(λ) of the messages that the user would like to authenticate.
The protocol is defined as follows:

1. For every i ∈ [k] the receiver Ri chooses a random �-bit string ri ← {0, 1}�,
and commits to it to the sender S using Com. For every i ∈ [k] denote the
resulting commitment according to the view of Ri by ci, and denote the
commitments received by S by ĉi.10

2. The sender S chooses a random string rs ← {0, 1}�, and executes k (possibly
parallel) executions of Com to commit to the message (mi, rs) to the receiver
Ri for every i ∈ [k]. Denote the resulting commitments, as seen by the sender
S by ci

s, and denote the commitment received by Ri by ̂ci
s.

For every i ∈ [k] the sender S also explicitly appends the following infor-
mation to the first message it sends Ri as part of the commitment: (1) The
message mi, and (2) the (possibly tampered with) commitments (ĉj)j∈[k]\{i}
received from the other receivers in Step 1 of the protocol. We let m̂i

and (ĉj→i)j∈[k]\{i} denote the message and the forwarded commitments as
received by Ri.

10 As a commitment scheme may be interactive, when referring to a commitment, we
mean the transcript of the interaction between the committer and the receiver during
an execution of the commit phase of the commitment scheme. When the scheme is
non-interactive, a commitment is simply a single string sent from the committer to
the receiver.



Out-of-Band Authentication in Group Messaging 77

3. For every i ∈ [k] the receiver Ri sends a decommitment di of her commitment
from Step 1 of the protocol to reveal ri to the sender S. Let ̂di denote the
decommitment received by S from Ri. For every i ∈ [k] the sender S then
checks whether ̂di is a valid decommitment to ĉi. If so, let r̂i denote the
committed value. Otherwise, S sends ⊥ over the authenticated channel, in
which case all receivers output ⊥.

4. For every i ∈ [k], the sender S sends receiver Ri a decommitment di
s to the

corresponding commitment from Step 2 of the protocol, and reveals rs to Ri.
Denote by ̂di

s the decommitment received by Ri. For every i ∈ [k] the receiver
Ri checks if ̂di

s is a valid decommitment to ̂ci
s. If it is, denote the committed

value by (̂m′
i,
̂ri
s). If it is not a valid decommitment or if ̂m′

i �= m̂i (where m̂i

was received in Step 2), then Ri outputs ⊥ and terminates.
For every i ∈ [k] the sender S also sends Ri the (possibly tampered with)
decommitments ( ̂dj)j∈[k]\{i} she received in Step 3. We let (d̂j→i)j∈[k]\{i}
denote the decommitments received by Ri. If for some j ∈ [k] \ {i} it holds
that d̂j→i is not a valid decommitment to ĉj→i received by Ri is Step 2, then
Ri outputs ⊥ and terminates. Otherwise, denote by (r̂j→i)j∈[k]\{i} the values
obtained by opening the commitments.

5. S computes σ = rs ⊕ r̂1 ⊕ . . . ⊕ r̂k and sends σ over the authenticated out-of-
band channel. Every receiver Ri computes σ̂i = ̂ri

s ⊕ r̂1→i ⊕ . . . ⊕ r̂i−1→i ⊕
ri ⊕ r̂i+1→i ⊕ . . . r̂k→i, and then outputs m̂i (received in Step 2) if σ̂i = σ
and outputs ⊥ otherwise.

Theorem 4.1 (when combined with the existence of a constant-round con-
current non-malleable statistically-binding commitment scheme based on any
one-way function – see Sect. 2) implies Theorem 1.1 as an immediate corollary:

Theorem 4.1. Let k = k(·), � = �(·), r = r(·) and n = n(·) be functions of the
security parameter λ ∈ N and let Com be an r-round concurrent non-malleable
commitment scheme. Then, protocol πComp is a computationally-secure out-of-
band (n, �, k,O(r), k · 2−�)-authentication protocol.

The correctness and round complexity of πComp are straightforward. The unforge-
ability of the protocol (according to the parameters of Theorem 4.1) is proven
in the full version of this paper [RS18].

Possible instantiations. Our protocol πComp can be instantiated with Com
being any concurrent non-malleable statistically-biding commitment scheme.
From a theoretical point of view, Lin and Pass [LP11] and Goyal [Goy11] gave
constant-round constructions of such schemes from any one-way function (and
the round complexity was further improved by [COS+17]). Hence, our protocol
can also be instantiated as a constant-round protocol, assuming only the exis-
tence of one-way functions. This assumption is minimal and necessary, since Naor
et al. [NSS06] showed that even in the user-to-user setting, any computationally-
secure out-of-band authentication protocol for which � < 2 log 1/ε−Θ(1) implies
the existence of one-way functions.
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From a more practical standpoint, a non-interactive concurrent non-
malleable statistically-biding commitment scheme can be very efficiently con-
structed in the random oracle model [BR93]. Thus, instantiating πComp with a
cryptographic hash function (e.g., SHA-2) as the random oracle yields a highly
efficient protocol. Given a random oracle H, in order to commit to a value v, one
simply has to send c = H(v, r) for a sufficiently long random string r. Decom-
mitment is done by revealing v and r, and the receiver asserts that c = H(v, r).
Consider a pair of poly-query algorithms (A,D), where A is the man-in-the-
middle adversary and D is the distinguisher (see Definition 2.1). Informally
speaking, assume H is sufficiently length-increasing (say, length-doubling) so
that it is difficult to find an element y in its image without querying H on a
pre-image of y. So the algorithm A, that receives c = H(v, r) and produces
c1 = H(v1, r1), . . . , ck = H(vk, rk), knows v1, . . . , vk with overwhelming proba-
bility. Hence, it can distinguish between the case that c = H(v, r), and the case
that c = H(v′, r′) where the value v′ – when taken together with v1, . . . , vk and
the view of A – does not satisfy the polynomial time relation defined by the
distinguisher D. By a standard argument, this is hard for any adversary making
a polynomial number of queries to the random oracle.

Non-malleable commitment schemes also exist in the common reference string
(CRS) model (see, for example, [CIO98,CKO+01,FF00,CF01,DG03]). However,
assuming a trusted CRS may be somewhat incompatible with the ad-hoc nature
of instant messaging platforms and applications.

4.2 Lower Bound

In this section, we prove a lower bound on the length of out-of-band authen-
ticated value in any out-of-band authentication protocol, as a function of the
desired security level ε and of the number of receivers k. Our bound shows
that the length of the out-of-band authenticated value in our protocol πComp of
Sect. 4.1 is optimal (up to an additive constant). The lower bound is stated by
the following Theorem, which yields Theorem 1.2.

Theorem 4.2. For any computationally-secure (n, �, k, r, ε)-authentication pro-
tocol where n ≥ log(1/ε)+log k+3 and ε < 1/6, it holds that � ≥ log 1/ε+log k−3.

Proof. Let π = (S,R1, . . . , Rk) be a k-receiver out-of-band authentication pro-
tocol for messages of length n in the complete network communication model.
We present an efficient adversary A that succeeds in fooling at least one of the
reveivers with probability at least k · 2−�−3, and the theorem follows (for an
intuitive overview of the attack and analysis, see Sect. 1.2).

On input 1λ, A runs the following steps:

1. A samples k input messages (m1, . . . ,mk) ← {0, 1}m×k as the input to the
sender S, and runs an execution with S in which A plays the role of all
receivers. Denote by σ ∈ {0, 1}� the value that S sends over the authenticated
channel at the end of this execution.
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2. For every i ∈ [k], A samples k input messages (̂mi
1, . . . ,

̂mi
k) ← {0, 1}m×k

uniformly at random (independently from the messages sampled in the other
executions), and runs an execution of π with Ri in which A plays the role of
the sender (with input (̂mi

1, . . . ,
̂mi

k)) and all other receivers. For every i ∈ [k]
denote the out-of-band authenticated value the (simulated) sender sends in
the end of the execution with the true receiver Ri by σ̂i.

We first wish to lower bound the probability that there exists some receiver
Ri that outputs ̂mi

i. By the correctness of π, this is at least the probability that
σ̂i = σ. Thus, for every i ∈ [k], it holds that

Pr
[

Ri outputs ̂mi
i

]

≥ Pr [σ̂i = σ] =
∑

v∈{0,1}�

Pr [σ = v] · Pr [σ̂i = v] .

More generally, for any subset I ⊆ [k] of the receivers, it holds that

Pr
[

∀i ∈ I : Ri outputs ̂mi
i

]

≥
∑

v∈{0,1}�

Pr [σ = v] ·
∏

i∈I
Pr [σ̂i = v]

=
∑

v∈{0,1}�

(Pr [σ = v])|I|+1
.

The inequality follows by the fact that the executions A conducts with the
receivers are independent from each other, and the equality holds since σ and
σ̂i are identically distributed for every i ∈ [k]. The inclusion-exclusion principle
now yields that the probability that for at least one receiver it holds that σ̂i = σ
is

Pr
[

∃i ∈ [k] s.t. Ri outputs ̂mi
i

]

≥
k
∑

i=1

(−1)i+1 ·
(

k

i

)

·
⎛

⎝

∑

v∈{0,1}�

(Pr [σ = v])i+1

⎞

⎠.

The above probability is minimized when the distribution of σ over a random
execution of the protocol as described above is uniform; i.e., when Pr [σ = v] =
2−� for all v ∈ {0, 1}�. Hence, it holds that

Pr
[

∃i ∈ [k] s.t. Ri outputs ̂mi
i

]

≥
k
∑

i=1

(−1)i+1 ·
(

k

i

)

· 2−i·�.

In what follows, we make use of the following claim, which bounds the above
expression. For the proof of Claim 4.3, see the full version of this paper [RS18].

Claim 4.3.
∑k

i=1(−1)i+1 · (k
i

) · 2−i·� ≥ min
{

1/3, k · 2−�/4
}

.
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Let ForgeA denote the event in which for some i ∈ [k], Ri outputs ̂mi
i �= mi.

By Claim 4.3,

Pr [ForgeA] = Pr
[

∃i ∈ [k] s.t. mi �= ̂mi
i ∧ Ri outputs ̂mi

i

]

≥ Pr
[

∀j ∈ [k],mj �= ̂

mj
j ∧ ∃i ∈ [k] s.t. Ri outputs ̂mi

i

]

≥ Pr
[

∃i ∈ [k] s.t. Ri outputs ̂mi
i

]

− Pr
[

∃j ∈ [k] s.t. mj = ̂

mj
j

]

≥ min
{

1
3
,
k

4
· 2−�

}

− k · 2−n

≥ min
{

1
6
, k · 2−�−2 − k · 2−n

}

.

The last inequality holds since n ≥ log k + log 1/ε + 3 > log k + 3 and thus
k · 2−n < 1/6. Finally, since ε < 1/6 and n ≥ log k + log 1/ε, it holds that

ε ≥ k · 2−�−2 − k · 2−n ≥ k · 2−�−2 − ε.

Equivalently, ε ≥ k · 2−�−3, which implies � ≥ log 1/ε + log k − 3. �

5 The Statistical Setting

In this section we prove tight bounds for statistically-secure out-of-band authen-
tication protocols in the group setting. First, in Sect. 5.1 we present our
statistically-secure protocol. Then, in Sect. 5.2 we prove the security of our pro-
tocol, and in Sect. 5.3 we prove a matching lower bound on the length of the
out-of-band authenticated value in any statistically-secure protocol.

5.1 Our Protocol

Our protocol, denoted πStat, is parametrized by the maximal forgery probability
ε ∈ (0, 1), integers n, k ∈ N denoting the length of each message and the number
of receivers, respectively, and an odd integer r ∈ N denoting the number of
rounds (we refer the reader to Sect. 1.2 for an intuitive overview of the protocol).

Notation. Denote the Galois field with q elements by GF (q). Then, a message
m of length n can be parsed as a polynomial of degree at most �n/ log q� over
GF (q). Namely, a message m = m1, . . . ,mt ∈ GF (q)t defines a polynomial
in the following manner: For every x ∈ GF (q), we let m(x) =

∑t
i=1 mi · xi.

Then, for two distinct messages m, m̂ ∈ GF (q)t and any two field elements
y, ŷ ∈ GF (q), it holds that the polynomials m(·)+y and m̂(·)+ ŷ are distinct and
thus Prx←GF (q) [m(x) + y = m̂(x) + ŷ] ≤ t/q. Let ε′ = ε/k, and let n1 = n. For
every j ∈ [r−1] let qj be a prime number chosen in a deterministically and agreed

upon manner in the interval
[

2r−j ·nj

ε′ ,
2r−j+1·nj

ε′

)

, and let nj+1 = �2 log qj�.
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Our protocol πStat is then defined by the following steps:

1. For every i ∈ [k], S sends m1
S,i = mi to Ri. Denote by m1

Ri
the string received

by Ri.
2. For j = 1 to r − 2:

(a) If j is odd, then for every i ∈ [k]:
i. S chooses yj

i ← GF (qj) and sends it to Ri.

ii. Ri receives ̂

yj
i , chooses xj

i ← GF (qj) and sends it to S.

iii. S receives ̂

xj
i and computes mj+1

S,i = ̂

xj
i‖mj

S,i(
̂

xj
i ) + yj

i .

iv. Ri computes mj+1
Ri

= xj
i‖mj

Ri
(xj

i ) + ̂

yj
i .

(b) if j is even, then for every i ∈ [k]:
i. Ri chooses yj

i ← GF (qj) and sends it to S.

ii. S receives ̂

yj
i , chooses xj

i ← GF (qj) and sends it to Ri.

iii. Ri receives ̂

xj
i and computes mj+1

Ri
= ̂

xj
i‖mj

Ri
( ̂xj

i ) + yj
i .

iv. S computes mj+1
S,i = xj

i‖mj
S,i(x

j
i ) + ̂

yj
i .

3. For every i ∈ [k], Ri chooses yr−1
i ← GF (qj) and sends it to S.

4. S receives ̂yr−1
1 , . . . , ̂yr−1

k , chooses xr−1 ← GF (qr−1), and for every i ∈ [k]
sends xr−1

i = xr−1 to Ri.

5. For every i ∈ [k], Ri receives ̂xr−1
i and computes σ̂i = mr−1

Ri
(̂xr−1

i ) + yr−1
i .

Denote mr
Ri

= ̂xr−1
i ‖σ̂i.

6. For every i ∈ [k], S computes σi = mr−1
S,i (xr−1) + ̂yr−1

i . Denote mr
S,i =

xr−1‖σi. S sends xr−1‖σ1‖ . . . ‖σk over the authenticated channel.

7. For every i ∈ [k], if mr
S,i = mr

Ri
(i.e., if xr−1 = ̂xr−1

i and σi = σ̂i), Ri outputs
m1

Ri
. Otherwise, Ri outputs ⊥.

The following theorem (when the protocol is invoked with at least log∗ n
rounds) implies Theorem 1.3 as an immediate corollary:

Theorem 5.1. Let n, k ∈ N, let r ≥ 3, and let ε ∈ (0, 1). Then, protocol πStat

is a statistically-secure out-of-band (n, �, k, r, ε)-authentication protocol, where
� = (k + 1) ·

(

log 1
ε + log k + log(r−1) n + O(1)

)

.

The correctness of our protocol is straightforward. In Lemma 5.2 we bound
the length � of the out-of-band authenticated value as stated in Theorem 5.1,
and the proof of unforgeability is given in Sect. 5.2, yielding Theorem 5.1. A
corollary of Lemma 5.2 is that when invoked with r = Ω(log∗ n), the sender in
protocol πStat has to authenticate at most (k +1) · (log(1/ε) + log k + O(1)) bits.

Lemma 5.2. Let n, k ∈ N, let r ≥ 3, and let ε ∈ (0, 1). Then, in protocol πStat

it holds that � ≤ (k + 1) ·
(

log 1
ε + log k + log(r−1) n + O(1)

)

.

The proof of Lemma 5.2 will make use of the following two claims.
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Claim 5.3. If nj > 2r−j/ε′ for every j ∈ [r − 2], then nj+1 ≤ max{4 log(j) n
+4 log 5 + 3, 27} for every j ∈ [k − 2].

Proof. The proof is by induction on j. Since nj > 2r−j/ε′ for every j ∈ [r − 2],
it holds that for every j ∈ [r − 2],

qj <
2r−j+1

ε′ · nj ≤ 2n2
j .

This implies that for every j ∈ [r − 2], it holds that

nj+1 = �2 log qj� < �2 log
(

2n2
j

)� ≤ 4 log nj + 3.

For j = 1, the claim indeed yields: n2 < 4 log n + 3. For 2 ≤ j ≤ r − 2, if
nj ≤ 27, then nj+1 < 4 log 27 + 3 < 23. Otherwise, by the induction hypothesis,
it holds that

nj+1 ≤ 4 log nj + 3 ≤ 4 log
(

4 log(j−1) n + 4 log 5 + 3
)

+ 3.

Consider the following two cases:

1. If log(j−1) n ≤ 4 log 5 + 3, then nj+1 ≤ 4 log(20 log 5 + 15) + 3 < 27.
2. If log(j−1) n > 4 log 5 + 3, then nj+1 ≤ 4 log

(

5 log(j−1) n
)

+ 3 = 4 log(j) n +
4 log 5 + 3.

�

Claim 5.4. If nj ≤ 2r−j/ε′ for some j ∈ [r−2], then for every j′ ∈ {j, . . . , r−2},
it holds that nj′ ≤ 2r−j′

/ε′.

Proof. Assume nj ≤ 2r−j/ε′ for some j ∈ [r − 3]. We prove nj+1 ≤ 2r−j−1/ε′

and the claim follows. By the assumption on nj , it holds that

nj+1 = �2 log qj�

≤
⌈

2 log
(

2r−j

ε′ · nj

)

⌉

≤
⌈

4 log
(

2r−j

ε′

)

⌉

≤ 4 ·
(

r − j + log
1
ε′

)

+ 1

≤ 2r−j+log 1
ε′ −1

=
2r−j−1

ε′ .

The last inequality follows by the fact that 4x + 1 ≤ 2x−1 for any x ≥ 6 (if
r − j + log(1/ε′) < 6 then the parties can jump to Step 3 of the protocol and
complete it, while S only has to send (k + 1) · O(1) bits over the out-of-band
channel, which implies Lemma 5.2). �
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We are now ready to prove Lemma 5.2.

Proof of Lemma 5.2. Informally speaking, we prove that qr−1 is at most
roughly 1/ε′, and then the lemma follows, since S authenticates to k + 1 ele-
ments in GF (qr−1), which can be encoded using �(k + 1) · log qr−1� bits.

More formally, we consider two separate cases. First we consider the case
where nj > 2r−j/ε′ for every j ∈ [r − 2]. By Claim 5.3, it holds that nr−1 ≤
max

{

4 log(r−2) n + 4 log 5 + 3, 27
}

. If nr−1 ≤ 27, then qr−1 < 4·27/ε′, and then

� = �(k + 1) · log qr−1�
≤ (k + 1) ·

(

log
1
ε′ + O(1)

)

= (k + 1) ·
(

log
1
ε

+ log k + O(1)
)

.

Otherwise, it holds that nr−1 ≤ 4 log(r−2) n + 4 log 5 + 3. Hence,

� = �(k + 1) · log qr−1�

=

⌈

(k + 1) · log
(

4
ε′ · nr−1

)

⌉

≤ (k + 1) ·
(

log
1
ε

+ log k + log(r−1) n + O(1)
)

.

We now turn to consider the case where there exists some j ∈ [r − 2] such
that nj ≤ 2r−j/ε′. By Claim 5.4, this means that nr−2 ≤ 4/ε′. Therefore,

nr−1 = �2 log qr−2� ≤
⌈

2 log
23

ε′ · nr−2

⌉

≤ 4 log
1
ε′ + 11.

Where this is the case, the parties can set qr−1 = Θ(1/ε′), and the security of
the protocol is preserved. This is due to the fact that our proof of security (see
Sect. 5.2) only relies on the fact that two distinct polynomials over GF (qr−1)
defined by nr−1-bit strings evaluate to the same value on at most ε′/2 field
elements; i.e., qr−1

−1 · �nr−1/ log(1/ε′)� ≤ ε′/2. If qr−1 = Θ(1/ε′), then indeed

� ≤ (k + 1) ·
(

log
1
ε

+ log k + log(r−1) n + O(1)
)

,

concluding the proof. �

5.2 Proof of Security

In this section, we prove the unforgeability of our protocol πStat, proving Theorem
5.1. For an adversary A, let ForgeA,i denote the event in which Ri outputs
m̂i �∈ {mi,⊥} in an execution of πStat with A, and let ForgeA =

⋃

i∈[k] ForgeA,i.
The following Lemma captures the unforgeability of πStat.
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Lemma 5.5. For any computationally unbounded adversary A, it holds that
Pr [ForgeA] ≤ ε.

Proof. We prove that for every i ∈ [k], any computationally unbounded adver-
sary A succeeds in making Ri output a fraudulent message with probability at
most ε′ = ε/k and the theorem thus follows by union bound. Note that if A
fools Ri this in particular means that m1

S,i �= m1
Ri

but mr
S,i = mr

Ri
. Hence, there

exists a round j ∈ [r − 1] such that mj
S,i �= mj

Ri
but mj+1

S,i = mj+1
Ri

; denote this

event by Collji . We will prove that for every j, Pr
[

Collji

]

≤ ε′/2r−j , and then
by taking a union bound over all rounds, the probability of ForgeA,i is at most
∑r−1

j=1 Pr
[

Collji

]

≤ ∑r−1
j=1 ε′/2r−j < ε′.

We denote by T (v) the time in which a message v in the protocol is sent and
fixed. We analyze separately the case where the round index j is odd, and the
case that it is even. We start by bounding Pr

[

Collji

]

in case j is odd (Ri picks
the evaluation point of the polynomial and S chooses the shift), and consider
three possible attack timings:

1. T ( ̂xj
i ) < T (xj

i ): In this case, Ri chooses xj
i at random from the field only after

̂

xj
i was fixed and sent to S. Recall that ̂

xj
i is the first part of mj+1

S,i and xj
i is

the first part of mj+1
Ri

. Hence,

Pr
[

Collji

]

≤ Pr
xj

i ←GF (qj)

[

xj
i = ̂

xj
i

]

=
1
qj

≤ ε′

2r−j
.

2. T ( ̂xj
i ) ≥ T (xj

i ) and T ( ̂yj
i ) ≥ T (yj

i ): In this case, if the adversary chooses
̂

xj
i �= xj

i , then Pr
[

Collji

]

= Pr
[

mj+1
S,i = mj+1

Ri

]

= 0. So for the remainder of

the analysis of this case, we assume ̂

xj
i = xj

i . Since j is odd, it is always

the case that T (xj
i ) > T ( ̂yj

i ); i.e., Ri chooses xj
i after receiving ̂

yj
i . Since we

are also in the case where T ( ̂yj
i ) ≥ T (yj

i ), this means that Ri chooses xj
i

when mj
S,i,m

j
Ri

, yj
i and ̂

yj
i are all fixed. In particular, if mj

S,i �= mj
Ri

, then

the polynomials mj
S,i(·) + yj

i and mj
Ri

(·) + ̂

yj
i are two distinct polynomials of

degree at most �nj/ log qj�. Hence,

Pr
[

Collji

]

= Pr
xj

i ←GF (qj)

[

mj
S,i �= mj

Ri
∧ mj

S,i(x
j
i ) + yj

i = mj
Ri

(xj
i ) + ̂

yj
i

]

≤ 1
qj

·
⌈ nj

log qj

⌉

≤ ε′

2r−j
.

3. T ( ̂xj
i ) ≥ T (xj

i ) and T ( ̂yj
i ) < T (yj

i ): As before, if ̂xj
i �= xj

i , then Pr
[

Collji

]

= 0,

so we assume ̂

xj
i = xj

i . In this case, S chooses yj
i and Ri chooses xj

i when the
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adversary has already chosen ̂

yj
i . Since yj

i and xj
i are chosen independently,

we may assume without loss of generality that T (yj
i ) > T (xj

i ), meaning yj
i is

chosen when mj
S,i,m

j
Ri

,
̂

yj
i and xj

i are already fixed (and thus also ̂

xj
i , since

we assume ̂

xj
i = xj

i ). It follows that

Pr
[

Collji

]

= Pr
yj

i ←GF (qj)

[

yj
i = mj

Ri
(xj

i ) + ̂

yj
i − mj

S,i(x
j
i )
]

≤ 1
qj

≤ ε′

2r−j
.

We now turn to bound Pr
[

Collji

]

in case j is even (S picks the evaluation
point of the polynomial and Ri chooses the shift). The proof is very similar to
the case where j is odd, and considers the same three cases:

1. T ( ̂xj
i ) < T (xj

i ): In this case, S chooses xj
i at random when ̂

xj
i is fixed. There-

fore,

Pr
[

Collji

]

≤ Pr
xj

i ←GF (qj)

[

xj
i = ̂

xj
i

]

=
1
qj

≤ ε′

2r−j
.

2. T ( ̂xj
i ) ≥ T (xj

i ) and T ( ̂yj
i ) ≥ T (yj

i ): As in the analysis for odd values of j,

we can assume ̂

xj
i = xj

i , and we know that S chooses xj
i when mj

S,i,m
j
Ri

, yj
i

and ̂

yj
i are all fixed (in the last round, this follows also by the fact that S

chooses xr−1 after receiving all ̂yr−1
i ’s). In particular, if mj

S,i �= mj
Ri

, then

the polynomials mj
S,i(·) + ̂

yj
i and mj

Ri
(·) + yj

i are two distinct polynomials of
degree at most �nj/ log qj�. Hence,

Pr
[

Collji

]

= Pr
xj

i

[

mj
S,i �= mj

Ri
∧ mj

S,i(x
j
i ) + ̂

yj
i = mj

Ri
(xj

i ) + yj
i

]

≤ ε′

2r−j
.

3. T ( ̂xj
i ) ≥ T (xj

i ) and T ( ̂yj
i ) < T (yj

i ): As before, we assume ̂

xj
i = xj

i , and we
know that Ri chooses yj

i and S chooses xj
i when the adversary has already cho-

sen ̂

yj
i . Since yj

i and xj
i are chosen independently, we may assume without loss

of generality that T (yj
i ) > T (xj

i ), meaning yj
i is chosen when mj

S,i,m
j
Ri

,
̂

yj
i

and xj
i are already fixed. Hence,

Pr
[

Collji

]

= Pr
yj

i ←GF (qj)

[

yj
i = mj

S,i(x
j
i ) + ̂

yj
i − mj

Ri
(xj

i )
]

≤ ε′

2r−j
.

Let Colli =
⋃

j∈[r−1] Coll
j
i . By taking a union bound over all rounds, it follows

that for every i ∈ [k],

Pr [Colli] ≤
r−1
∑

j=1

Pr
[

Collji

]

≤
r−1
∑

j=1

ε′

2r−j
< ε′.
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Since for every i ∈ [k], it is the case that ForgeA,i implies Colli, it holds that for
every i ∈ [k], Pr

[

ForgeA,i

] ≤ Pr [Colli] ≤ ε′. By taking a union bound over all
receivers it holds that Pr [ForgeA] ≤ k · ε′ = ε. �

5.3 Lower Bound

In this section we present a lower bound on the number of bits the sender has to
out-of-band authenticate in the group setting. We prove the following theorem:

Theorem 5.6. For any statistically-secure out-of-band (n, �, k, r, ε)−
authentication protocol, if n ≥ (k + 2) · log(1/ε) then � ≥ (k + 1) · log(1/ε) − k.

Proof. Let π = (S,R1, . . . , Rk) be a statistically-secure out-of-band (n, �, k, r, ε)-
authentication protocol. We assume without loss of generality that r ≡ 1
mod (k + 1) and that π has the following structure. For every j ∈ [r − 1], in
round j there exists a single “active” party that sends a message (over the inse-
cure channels) to each of the other parties, and all other parties do not send any
messages in that round. If j ≡ 1 mod (k + 1), then the sender S is the active
party in round j. Otherwise, if j ≡ i + 1 mod (k + 1) for some i ∈ [k], then
receiver Ri is the active user in round j. Denote the vector of messages sent in
round j by xj−1 and the random variable describing that vector by Xj−1 (so the
vectors of messages sent over the insecure channels are x0, . . . , xr−2). Finally, in
round r, the sender S sends the short out-of-band authenticated value σ, and
we denote the random variable describing it by Σ. We also denote the random
variable describing the vector of input messages to S by M .

Observe, that we can write the Shannon entropy of Σ as

H(Σ) = H(Σ) − H(Σ|M,X0) +
∑

j∈[r−2]

(H(Σ|M,X0, . . . , Xj−1)

−H(Σ|M,X0, . . . , Xj)) + H(Σ|M,X0, . . . , Xr−2)

= I(Σ;M,X0) +
∑

j∈[r−2]

I(Σ;Xj |M,X0, . . . , Xj−1)

+H(Σ|M,X0, . . . , Xr−2)

= I(Σ;M,X0) +
∑

i∈{0,...,k}

∑

j∈[r−2]:
j≡i mod (k+1)

I(Σ;Xj |M,X0, . . . , Xj−1)

+H(Σ|M,X0, . . . , Xr−2).

To bound the above expression, we make use of the following two lemmata,
proofs for which are provided in the full version of the paper [RS18]. Intuitively
speaking, Lemma 5.7 shows that the messages of the sender S during the execu-
tion of π need to reduce, on average, roughly log(1/ε) bits of entropy from the
out-of-band authenticated value.
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Lemma 5.7. If n ≥ 1/k · log(1/ε), then

I(Σ;M,X0) +
∑

j∈[r−2]:
j≡0 mod (k+1)

I(Σ;Xj |M,X0, . . . , Xj−1)

+ H(Σ|M,X0, . . . , Xr−2) ≥ log(1/ε) − 1.

In a similar fashion, Lemma 5.8 shows that for any i ∈ [k], the messages of
receiver Ri during the execution of π need to reduce, on average, roughly log(1/ε)
bits of entropy from the out-of-band authenticated value.

Lemma 5.8. If n ≥ (k + 2) · log(1/ε) and � ≤ (k + 1) · log(1/ε), then for every
i ∈ [k],

∑

j∈[r−2]:
j≡i mod (k+1)

I(Σ,Xj |M,X0, . . . , Xj−1) ≥ log(1/ε) − 1.

Now, if � > (k+1)·log(1/ε), then the theorem follows. Otherwise, by Lemmata
5.7 and 5.8 it holds that, � ≥ H(Σ) ≥ (k +1) · log(1/ε)− k, concluding the proof
of Theorem 5.6.
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