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Abstract. In this paper, we propose a key-recovery attack on Trivium
reduced to 855 rounds. As the output is a complex Boolean polynomial
over secret key and IV bits and it is hard to find the solution of the secret
keys, we propose a novel nullification technique of the Boolean polyno-
mial to reduce the output Boolean polynomial of 855-round Trivium.
Then we determine the degree upper bound of the reduced nonlinear
boolean polynomial and detect the right keys. These techniques can be
applicable to most stream ciphers based on nonlinear feedback shift reg-
isters (NFSR). Our attack on 855-round Trivium costs time complexity
277, As far as we know, this is the best key-recovery attack on round-
reduced Trivium. To verify our attack, we also give some experimental
data on 721-round reduced Trivium.
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1 Introduction

Most symmetric cryptographic primitives can be described by boolean functions
over secret variables and public variables. The secret variables are often key
bits, the public variables are often plaintext bits for block ciphers and IV bits for
stream ciphers. The ANF (algebraic normal form) representation of the output is
usually very complex by repeatedly executing a simple iterative function, where
the iterative function is a round function for block ciphers or a feedback function
for stream ciphers based on nonlinear feedback shift registers. For stream ciphers,
obtaining the exact output boolean functions is usually impossible. But if its
degree is low, the cipher can not resist on many known attacks, such as higher
order differential attacks [13,15], cube attacks [1,4], and integral attacks [14].
Hence, it is important to reduce the degree of polynomials for cryptanalysis of
stream ciphers.
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Trivium, based on a nonlinear feedback shift register (NFSR), is one of the
finalists by eSTREAM project and has been accepted as ISO standard [2,10].
Trivium has a simple structure, with only bit operations, so that it can be
applicable to source restricted applications such as RFID. By iteratively using
NFSR, the degree increases rapidly and the output is a complex boolean function
over key and IV bits.

There have been lots of cryptanalysis of Trivium since its submission. The
early results include the chosen IV statistical attack [6,7], which was applied to
key-recovery attack on Trivium reduced to 672 rounds. Inspired by the message
modification technique [20,21], Knellwolf et al. invented the conditional differ-
ential tool [11], which was applicable to distinguishing stream ciphers based on
NFSR. In [12], Knellwolf et al. proposed a distinguishing attack on 961-round
Trivium with practical complexity for weak keys.

Cube attacks are the major methods for recent cryptanalysis results of
reduced round Trivium. In [4], Dinur and Shamir proposed a practical full key
recovery on Trivium reduced to 767 rounds, using cube attacks. Afterwards,
Aumasson et al. [1] provided the distinguishers of 790-round Trivium with com-
plexity 23°. Then Fouque and Vannet [8] provided a practical full key recovery
for 784/799 rounds Trivium. Todo et al. [19] proposed a key-recovery attack on
832-round Trivium, where one equivalent bit can be recovered with complex-
ity of around 277, combined with division property [18]. All of these attacks
exploited low degree properties of the ANF of the output bit over IV bits. As
though the degree is not low, i.e., the degree is equal to the number of variables,
there is a possibility to construct distinguishers if there are missing (IV) terms.
In [3,5], Dinur and Shamir exploited the density of IV terms, combined with
nullification technique, and broke the full-round Grainl28. Based on nullifica-
tion technique [3,5], degree evaluation and IV representation techniques were
proposed and the missing IV terms can be obtained with probability 1 [9]. The
degree upper bounds of Trivium-like ciphers were obtained [16] using the degree
evaluation techniques. Then a key-recovery attack on 835-round Trivium was
proposed in [17] using correlation cube attack with a complexity of 27°. Though
the cube attack and cube tester tools can be applied to obtain the low-degree
information, it is restricted by the computing ability. It is hard to execute cube
tester programs of dimension more than 50 on a small cluster of cores.

In this paper, we focus on the cryptanalysis on round-reduced Trivium. We
first propose a novel observation of the Boolean polynomial and invent a new
nullification technique for reducing the output Boolean polynomial. After nulli-
fication, we determine the degree upper bound of the reduced polynomial, which
can serve as the distinguishers. In this process, large quantities of state terms
arise to be processed. We present a series of techniques to help discard mono-
mials, including degree evaluation and degree reduction techniques. Based on
these reduction techniques for boolean polynomials, we propose the first key-
recovery attack on 855-round Trivium with time complexity 277. We summarize
the related results in Table 1.
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Table 1. Some related key-recovery results for reduced round Trivium.

Rounds | Complexity | Ref.
736 230 [4]
767 236 [4]
799 Practical [8]
832 277 [19]
835 27 [17]
855 277 Sect. 4

The rest of the paper is organised as follows. In Sect. 2, some basic related
preliminaries will be shown. The basic techniques used in this paper and the
attack framework will be introduced in Sect. 3. Based on the Boolean polynomial
reduction techniques and IV representation, a key recovery attack on 855-round
Trivium is proposed in Sect.4, combined with a new nullification technique.
Finally, Sect.5 summarizes the paper.

2 Preliminaries

In this section, some basic notations used in this paper are introduced in the
following subsections.

2.1 Notations

ANF the Algebraic Normal Form

IV bit public variables of Trivium

IV term product of certain IV bits

state bit internal state bit in the initialization of Trivium stream cipher

state term product of certain state bits, IV bits or key bits

2.2 Brief Description of Trivium

Trivium can be described by a 288-bit nonlinear feedback shift register s; (1 <
1 < 288). During the initialization stage, s; to sgp are set to 80 key bits, sg4 to
s173 are set with 80 IV bits, sagg, Sos7, Sogs are set to 1s and the other state bits
are set to zeros, i.e.,

(81782,...,893) — (Ko,...,K';g,O,...,O)

(8947895,. . .78177) — (I‘/o, .. .,IV79,0,. .. ,O)

(8178, S1795 -+ 5288) — (O7 cee ,O7 1, 1, 1)
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Then the NFSR is updated for 1152 rounds with the following updating
function, i.e.,
for i+ 1:4-288 do
t1 < Se6 + So1 - S92 + S93 + S171
to < S162 + S175 - S176 + S177 + S264
t3 <= S243 + Sas6 - S287 + S288 + S69

(31752, e ,893) — (t3,81, e 7592)

(594,595, - - -, 8177) « (t1, 504, ..., 5176)

(517855179, - - -, S288) < (l2, 5178, - - ., S287)
end for

After the initialization, the output bits o; can be generated by the following
functions.
for i+ 1: N do
t1 < Se6 + So1 * S92 + S93 + S171
to < S162 + S175 - S176 + S177 + S264
t3 <= S243 + Sas6 - S287 + S288 + S69
0j < 866 + S93 + S162 + S177 + S243 1+ S28s

(51,82,-..,503) < (t3,51,-..,502)

(594,595, - - -, 8177) « (t1, 504, ..., 5176)

(s178, 5179, - - -, S288) « (t2, S178,. .., S287)
end for

Then the message can be encrypted by exclusive-or with o;. To outline our
technique more conveniently, we describe Trivium using the following iterative
expression. We use si, (0 < w < 2) shown in Eq. 1 to illustrate r-round (1 <r <
1152) s1, s94 and sy7s separately. Let z, denote the output bit after r rounds of
initialization. Then the initialization process can be illustrated by the following
formula

36 — T 66 +Sr 109 r 110 + Sg 111 + SE 69’
81 _ r 66 4 86 91 r 92 + 36 93 4 871‘ 787 (1)
85 _ r 69 + 571” 82 'r 83 + 371‘ 84 + 572” 87

The s7, (0 < w < 2) is denoted as internal state bit in this paper. The
multiplication of state bits H s is denoted as a state term. The output

i€l jet
can be described using the state terms as z, = s + 5092 4 577 4 57783 ¢
5565 4 =110,
52

2.3 Representation of Boolean Functions for Stream Ciphers

Supposing that there are m IV bits, i.e., vg,v1,...,v,m_1 and n key bits, i.e.,
ko, k1,...,kn—1, the Algebraic Normal Form (ANF) of the internal state bit or
output bit s could be written as the following style:

S:ZHUinj’ (2)

1,0 i€l jeJ
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where the sum operation is over field Fo. The [];c; vi[];c;k; is also denoted
as a state term of s and [],.; v; is denoted as its corresponding IV term. Let
IV term t; = Hie] v; be the multiplication of v; whose indices are within I, the
ANF of s can be rewritten as

s = Ztlgf(k)a (3)
I

where g7 (k) is the sum of the corresponding coeflicient function of terms whose
corresponding IV term is t7. The |I| is denoted as the degree of IV term tr,
deg(tr). The degree of s is deg(s) = maxy{deg (t;)}.

2.4 Cube Attack and Cube Tester

Cube attack [4] is introduced by Dinur and Shamir at EUROCRYPT 2009.
This method is also known as high-order differential attack introduced by Lai
[15] in 1994. It assumes the output bit of a cipher is a d-degree polynomial
flko.ooykpn—1,v9...,;m—1) over GF(2). The polynomial can be written as a sum
of two polynomials:

f(koeory kn—1,00.; vm—1) = tr - P+ Q¢; (Koo, kn—1,v0.., Um—1)

tr is called maxterm and is a product of certain public variables, for example
(v, ..y Us—1),1 < s < m, which is called a cube Cy,; P is called superpoly;
Q+;(ko..oy kn—1,v0..., Vm—1) is the remainder polynomial and none of its terms is
divisible by ¢;. The major idea of the cube attack is that the sum of f over all
values of the cube Cy, (cube sum) is:

Z f(ko,...,kn,l,x/,...vm,l) =P

' =(v0,-,v5-1)ECH,

whose degree is at most d-s, where the cube C;, contains all binary vectors of
length s and the other public variables are fixed to constants. In cube attack, P
is a linear function over key bits. The key is recovered by solving a system of
linear equations derived by different cubes Cy,.

Dynamic cube attack [5] is also introduced by Dinur and Shamir in FSE
2011. The basic idea is to find dynamic variables, which depend on some of the
public cube variables and some private variables (the key bits), to nullify the
complex function P = P; - P, + P3, where the degree of Pj3 is relatively lower
than the degree of P and P; - P, is a complex function. Then guess the involved
key bits and compute the dynamic cube variables to make P; to be zero and the
function is simplified greatly. The right guess of key bits will lead the cube sum
to be zero otherwise the cube sums will be random generally.

Cube testers [1] are used to detect non-random properties. Suppose in Eq. 3,
an IV term ¢; does not exist in the ANF of s, e.g. the coefficient g; (k) = 0. Hence,
the cube sum over cube C}, is definitely zero for different key guessing. However,
if the IV term ¢; exists, the value of cube sum g;(k) is dependent on the key
guessing. This property was applied to break full-round Grainl28 [5,9].
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3 Basic Ideas

3.1 New Observation of Boolean Polynomial Reduction

In this paper, we propose a new nullification technique based on a lemma as
follows.

Lemma 1. Suppose z is the output polynomial of a cipher, and
Z=P1P2—|—P3. (4)

Then the polynomial can be reduced to a simpler one (1+ P1)z = (1+ P1)Ps by
multiplying 1 + Py in both sides of Eq. (4) if deg(P1Ps) > deg((1+ P1)P3).

Lemmal can be verified by (P, + 1)z = (P + 1)PiPo+ (P +1)P; = (P, +
1)P3. In our cryptanalysis of Trivium, Pj is a simple polynomial over several IV
bits and key bits, while P, is much more complex than P5. In our nullification
technique, we multiply P; +1 in both sides of Eq. (4) to nullify the most complex
polynomial P5 without changing Ps. The result (1+ P;)z = (1 + P;)Ps could be
analyzed by considering P and 1 + P; independently, and then multiply them
together to get (1 + Py)z.

3.2 Outline of Our Attack

Based on the novel observation in Sect. 3.1, our attack includes two phases, which
are the preprocessing phase and on-line attack phase.
In the preprocessing phase,

1. We apply the new nullification technique by determining P;, then multiply
1+ Py in both sides of Eq. 4 and obtain the reduced polynomial (1 + P;)Ps.

2. We study the polynomial (1+ P;)P3 and prove its upper bound degree to be
d mathematically, then cubes of dimension d + 1 lead to distinguishers.

In the on-line phase, we guess the partial key bits in P;, and compute the
cube sums of (P + 1)z over (d + 1)-degree IV terms:

i For the right key guessing, (P, + 1)z = (P; + 1)P5. Thus the cube sums must
be zero.

ii For the wrong key guessing, the equation becomes (Pj +1)z = (P{+1)P, P+
(P{ + 1) P;, which is more complex and dominated by Py, thus the cube sums
are not always zero.

We focus on constructing the distinguishers in the preprocessing phase and
it costs most computing sources.
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3.3 Constructing Distinguishers

After obtaining the reduced polynomial (1 + P;)Ps, our major work is to study
this polynomial and derive distinguishers. In our analysis, we demonstrate that
the degree of the reduced polynomial is strictly lower than 70. As the degree is
so high, such a result was hard to achieve in previous works. So we introduce
various details of reducing polynomials in an iterative process.

We introduce several techniques to discard monomials in advance during the
iterative computation of the ANF representation of the output bit (1 + P;)Ps.
Suppose we are proving the upper bound degree of (1 + P;)P3’s ANF to be
d, then the following techniques are used to reduce the Boolean polynomial of
(1 4 Py)Ps by discarding monomials in advance. The whole process could be
divided into the following three steps shown in Fig. 1.

— Step 1. We compute forward to express the ANF of some internal state bits
over IV bits and key bits. In Trivium, the internal state bits s! (0 < i < 2,
0 < j < 340) are computed in a PC.

— Step 2. During the iterative computation of the ANF representation of
(1 + P,)P; in the backward direction (decryption), we introduce the fast
discarding monomial technique in Sect. 3.4, which includes the following
two algorithms:

e First, we propose the degree evaluation algorithm to obtain the degree
bounds of internal state bits. As the monomials of (1 + P;)Ps’s ANF is a
product of these internal state bits, the degree of a monomial is bounded
by the sum of the degrees of the multiplied internal state bits, which
is regarded as the degree estimation of the monomial. If the estimated
degrees of monomials are lower than d, they are discarded directly.

e Second, we exploit the iterative structure of Trivium, and find that the
(1 4+ P1)Ps’s ANF contains many products of consecutive internal state
bits. Thus, we pre-compute the degree reductions of those products,
which is dy = >, deg(x;) — deg([ [, z;), where z; is an internal state bit.
Thus, the degree of a monomial is upper bounded by the difference value
between the sum of the multiplied internal state bits and the correspond-
ing degree reduction d;. If it is smaller than d, the monomial is discarded.

— Step 3. For the left monomials of (1 + P;)Ps’s ANF, we introduce I'V rep-
resentation technique in Sect. 3.5 to determine the upper bound degree of
(1+ Py)Ps or find the d-degree missing product of certain IV bits (missing IV
term). In IV representation technique, the symbolic key bits in the internal
state bits are removed and only IV bits are left. Combining with repeated IV
term removing algorithm, we can simplify monomials of (1 + P;)Ps’s ANF
without losing the missing IV term information. If we find an IV term is not
in the IV representation of (1 + P;)Ps, we can conclude that it is also not in
(1 + Pl)P3.
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Fig. 1. Framework of constructing distinguishers

3.4 Fast Discarding Monomial Techniques

In Step 2 of Fig. 1, during the iterative computation of the ANF representation
of (14 P;)Ps in the backward direction (decryption), there arise more and more
state terms. We will give several techniques to simplify the polynomial by dis-
carding monomials in advance. In this Step, repeated state terms arise according
to the Trivium encryption scheme. The repeated state terms are removed using
Algorithm 1. The complexity of Algorithm 1 is O(n), supposing there are n state
terms.

Algorithm 1. Repeated-(state)term Removing Algorithm

Input: The vector T' with n terms, i.e., Ty, T», ..., Ty.
Output: Updated T' with m terms, where m < n.
1: Initialize an empty Hash Set H.
2: for i+—1:n do
3:  Compute the Hash value of T3, i.e., H(T})
if H.contains(T;) is true then
H.delete(T;)
else
H.insert(T;)
end if
end for

Degree evaluation technique. As we are proving the degree of the Boolean
polynomial (1+ P;)Ps to be d, thus many monomials with lower degree produced
during the iterative computation backward (decryption) in Step 3 are deleted
without consideration (we do not need to continue the iterative computation over
those monomials). We estimate those monomials using degree information of
the internal state bits in lower rounds. This section presents a degree evaluation
algorithm for the internal state bits. For example, we are going to estimate the
degree of b; = b;_3 + b; _1b;_o.

deg(b;) = deg(bi—3 + bi—1b;i—2)
= max{deg(b;—3), deg(bi—1b;—2)} (5)
S max{deg(bi_g), deg(bi_l) + deg(bi_g)}
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If we continue to decompose b;, we find

bi—1bi—o = (bi—a + bi—2b;_3)(bi—5 + bi_3bi—4) (6)
= b;—4bi_5 + b;j_3b;_4 + bi_2b;_3b;_5 + b;_2b;_3b;_4,

If deg(bifl) = deg(bifzbifii) and deg(bifg) = deg(bifgbile), then in Eq. (5),
deg(b;—1) + deg(b;—2) may add deg(b;—3) twice. So in order to obtain a more
accurate degree estimation, we are willing to decompose b; for several rounds
backwards. A

For Trivium, the ANFs of s/ (0 <7< 2,0 < j < 340) are exactly obtained in
a PC and their exact degrees can be obtained. For example, in the cryptanalysis
of 855-round Trivium, we compute ANF of s (0 <14 < 2,0 < j < 340) over 75
free IV variables!, the degrees are shown in Table 2. To estimate the degree of s7
for r > 340, we decompose s; until the state terms are the product of internal
state bits sZ for j < end = | 35 x 32 — 128 considering the efficiency tradeoff of
the computation.

Table 2. Degree deg(sg) of 5{ for 0<i<2,0<75<340

[ Jf [0123456789 101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
537" J00000000000 000 0000000000O0O0O00O0O0O0O0O0O0 0 0
7% ft1100111111 1 1 1 1 11101 1 11111111101 111
50 lor112221102 2 2 2 2 2 2 2 2 2 2 2 11 22222222221
$5=25100000000000 000 000000000O0O00O0O00O0O0O0GO0O01 1 1
s{:3511111111111110111111111111111111111
2735 ]1222222222 2 2 2 2 2 2 2 1 1 2 2 2 2 2 22222222222
36:7022211022222222222211222222222211222
71111111111 00011 11 11 111 1111011111111
3770 |22222222222 2 2 2 2 1 1 1 2 2 2 2 2 2 22222222222
5=0%22222222833 3 2 1 1 3 3 3333333333233 333 3 3
51:10511101111111111111111101111111112221
=150 52002222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
33332333333 3 3 3 3 3 3 3 3 3 3 3 2333333333333
11222222222 2 2 2 1 1 2 2 2 2 2 3 3 3 3 2 1 2 3 3 333 3 3
22222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
33333333333 3 3 3 3 3 3 3 3 3 3 3 3 3 3 44 4 4 3 3 4 4 4 4
33333333333 3 3 3 3 3 3 3 3 3 3 3333334455555 3
22222222222 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3444444443 4 4 3 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 3 4 4 4 4
24555555555 5 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
22222222333 3 2 2 3 3 3 3 3 3 3 3 3 333333334435 5
44443444444 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 4 4 4 4 4
55555555555 5 5 5 5 5 5 5 5 5 5 5 5 5 55556 6 6 6 6 5 5
55533455555 5 5 5 5 5 6 6 6 6 6 5 5 6 6 6666666 6 6 6
44444444444 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 4
66666665566 7 7 7 77677777 7777777777777
66667788888 8 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
14555555555 5 6 6 6 6 6 5 5 6 6 6 6 6 6 6
7777777667 T T T T 7T 7T 7777777777
83888888888 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

! The other 5 IV bits are fixed as zero and their positions are given in Sect. 4.1.
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For example, we estimate the degree upper bound of s3!, where end =

L35 x 32 — 128 = 192. We first express s3*! using state bits in less rounds, and
discard the state terms of degree lower than d.

— Step 1. First, we express s3i! = 272 4 52595358 4 257 4 ¢254

Eq. (1).

— Step 2. According to Table2 highlighted in red, let d = max{deg(s?"?),
deg(s25%) + deg(s358), deg(s2°7), deg(s3°4} = max{5,5+5,5,5} = 10.

— Step 3. Discarding the state terms of degree lower than 10, we get s3** =
52595258 Tteratively compute s3*1* and discard state terms with degree lower
than 10, there is no state term surviving. We reset d = d — 1 and repeat
the above decomposition and discarding process. We can get the result

according to

3410k _ 166 167 (193 | 167 (168 (192 | (166 167 (168 | 165 167 (168 | (167 (168 (180
Sy T =80 S0 So tSg So So +Sg So So tSo So Sp tSo Spos1T+
166,167 (181

550653075181,

— Step 4. Note that there is still a state bit s1°% in s3*** that is bigger than
end=192. So we continue to iteratively compute and discard state terms with
degree lower than 9, and we get:

341*** _856 57 83 84 101 +S57 58 83 84 100+S56 57 58 83 84+
87 g? 38 33 84+898 26 g? 33 84+8124 36 37 %01 +sé24 37 38 100+
624 56 57 58—}-8624 55 57 58 +S55 57 58 83 84+887 624 57 58
+8988124 56 57_,’_8%7 38832 33 %02 +S58859 82 83 101 +557858 59 32 83_,’_
56 38 59 82 83 +898 58539 82 83 +899857 58 82 83+Sé23857 58 102+
(1)23 38 39 %Ol +5123 37838 294_8(1123 36 38 59 +898 (1)23 38 39
+8998(1)23 57 58 +556 5783 59 101 —‘,—,398 56 57 58 59—‘1—835836 57 58 102+
8358365388398%01 +$§5836537 58 59+598 35 36 38 59 +899 35 36 37 58+
86145378388%02+sél4sgssg9 101 +Sél4 57838839 +sll4 56 58 59 +S(%9 80 578388%00—‘1-
898 (1)14 gS 59+5995114 57 38 +8115 36 37 %01 +S(1)15857 38 %00 _,’_51155363;75;8_’_
S115 55 57 58—‘,—897 615 57 58 +898 (1)15 56 57_,’_589 80 56 57 %01_’_
889580536557858 +8895808355;7858+589 90587337 58+589 80 88 SG 37

(7)

— Step 5. Here, there is no state bit in rounds more than end = 192, the
expression ends and there are still state terms that survive. Then the current
degree d = 9 is the estimated degree of s31!.

— Step 6. Note that, if there is no state item in s3*'*** surviving, which means
the degree added twice or more shown in Eq. (6) happens to the iterative
computation of s3*!. So the degree must be less than 9. We reset d = 8 and

continue the above steps 3-5 to get a more accurate degree bound.

We summarise the above 6 steps as Algorithm 2. We only estimate degree of
sy for r < 665 and list the results in Table 3.

Degree reduction technique. In this part, we formally consider the property
in Eq. (6), that deg(b;—3) is added twice. We call it degree reduction. Define the
degree reduction d; as

dy = Zdeg(mi) - deg(H x;), (8)
el i€l

where z; is a state bit.
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Algorithm 2. Degree Evaluation Algorithm (DEG) of State Bit

Input: The value ¢ and r which indicates the state bit sj.
Output: DEG(s;)=d.
1: Initialize the degree bound d similar to the above Step 2., the end point end.

len — 0

while len = 0 do
Tteratively express s; using state bits sf, where 0 < j < 2and 0 < j < end.
During each expression, discard the state terms of degree lower than d. Let len
be the number of remaining state terms.

5 if len = 0 then

6: d—d—-1

7:  end if

8

9

end while
Return d

We pay attention to the degree reduction of the state term Hl+t ! ] for a
specific 7 € [0, 2]. This state term results from the iteration structure of Trivium
scheme, whose high degree state terms come from the multiplication of sj ] 1
shown in Eq. (1). After several rounds of iteration, the high degree state terms

are in the form HHt ! s7. Define the degree reduction d; = Zl+t ! deg(s 7y —
deg(IT;5 " s)-

Table 3. The estimated upper bound degree DEG(s?) of s! for < 689

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

7 7 8 9 9 9 9 8 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
T 7T 7T T 7T 7 7 7 7 7T 7T 7 8 8 8 8 7 6 7 8 8 8 8 8 8 8 8
10 10 10 10 10 9 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 10 10 11 12 13
11 11 11 11 11 9 10 11 11 11 12 13 14 15 15 15 15 15 13 11 14 15 15 15 15 15 15
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515 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 17 18 18 18 18 19 18 18 19 19 19 19 19 19 19 18
18 17 14 12 15 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 19 20 20 20 20 20 20 20 20
12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
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516 16 17 17 17 17 16 15 16 17 17 17 17 17 17 17 17 17 18 20 21 21 21 20 18 18 20 21 21 21 21 21 21
22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 23 23 23 23 23 23 23 24 24 24 24 24 24
5 26 26 26 26 27 27 27 27 27 27 27 26 27 28 29 29 29 29 29 28 29 29 29 29 29 30 31 31 31 31 31 32 32
21 21 21 21 21 21 22 23 24 26 27 28 28 29 28 25 27 29 29 29 28 29 29 29 30 31 32 33 33 33 33 33 33
26 26 26 26 25 23 25 26 27 27 27 27 27 27 27 26 27 28 29 29 29 29 29 28 29 29 29 29 28 29 29 29 29
32 32 32 33 35 35 35 35 35 35 33 34 35 37 37 37 37 37 37 36 36 38 40 41 41 41 41 40 40 41 41 41 40
33 34 35 36 37 37 37 36 36 36 35 36 36 36 37 38 39 40 40 40 40 40 40 40 40 44 45 45 45 45 45 45 45
29 29 29 29 30 31 31 31 31 31 31 30 30 31 31 31 31 31 31 31 31 31 32 34 36 37 37 37 35 34 36 37 37
41 41 41 41 41 41 41 40 41 41 40 41 41 41 41 41 41 41 41 40 41 41 41 41 42 42 42 41 40 41 42 42 42
45 45 45 45 42 42 42 42 42 42 42 43 44 44 44 44 45 45 46 46 46 48 4T 46 46 48 48 48 48 48 49 49 48
41 42 42 42 42 41 38 39 42 42 43 45 47 50 53 54 54 54 53 49 45 51 54 54 54 54 54 55 56 56 56 56 56
42 42 42 43 44 44 44 45 45 44 45 45 45 45 45 45 45 45 44 45 46 49 50 50 50 50 47 46 48 51 52 52 52
49 49 50 51 51 51 50 51 52 54 54 54 54 54 54 54 56 58 58 58 59 59 59 59 60 62 62 62 62 62 62 60 59
56 56 56 56 56 57 60 62 64 64 64 64 64 64 63 61 63 64 65 67 70 72 73 73 73 73 T4 74 69 72 74 74 75
52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 51 52 52 52 52 52 53 54 57 59 61 62 62 62 59
5 68 69 69 69 69 68 68 69 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 71 71 71 71 71 71 71 69 69
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The degree reduction can help discard state terms of lower degree dramati-
cally, as it can help predict the change of degree before expression operation?.
We take the state term s349s34! as an example to illustrate the process to com-
pute the degree reduction d;. Algorithm 2 is first used to obtain the degree of
state bits as shown in Tables 2 and 3.

Let end be |55] x 32 — 128 = 192, too. The degree bound d is initialized as
d = DEG(5340) + DEG(s34Y) and dy = 0. Express the 53495341 by one iteration
using Eq. (1). Discard the state terms of degree lower than d — dy = d, there is
no state term surviving. Increase the d; by 1, such that d; = 1. Express s340s34!
again and discard the state terms of degree lower than d —d; = d — 1, the result
is 521952505262 | 24842494263 Continue to compute iteratively, the remaining
state terms are s)70s371 38051405141 4 gLTOG1T1 6181139 (140 | (171 G172 0170 4139 3140 4
557188 s48051385139. There is no state bits s} with j bigger than end = 192 in all
the state terms, hence the expression ends. Degree reduction d; = 1 is returned.
Thus the deg(s310s341) < DEG(s340) + DEG(s31) —dy = 7+ 7 —1 = 13. The
degree reduction algorithm is shown in Algorithm 3

Algorithm 3. Degree Reduction Algorithm of State Term

Input: The value ¢, r, ¢ which indicates the state term degree reduction.
Output: The degree reduction d; = ZZH ! deg(s’ ) deg(HHt L.

2
1: Initialize the degree bound d = ZZ'H ' DEG(s]) , degree reduction d; = 0, end
point end and number of survived state terms len.
2: while len = 0 do
3:  Express the state term HZ'H ! ] using state bits s{, where 0 < ¢ < 2 and
0 < j < end, discard the state terms of degree lower than d — d;. Let len be the
number of remaining state terms.
if len = 0 then
dt — dt + 1
end if
end while
Return d;

3.5 IV Representation Techniques

In the cryptanalysis of stream ciphers, the output is a boolean function over
key and IV bits. But obtaining the exact expression is hard, thus we propose
IV representation technique to reduce the computation complexity for obtaining
the degree information.

Definition 1. (IV representation) Given a state bit s =31 ;[[;crvillje sk
the IV representation of s is s;y = Y [[;cr vi

For example, if a boolean polynomial is s = vgk1 + vokoks + v1k1ke + vov1 ks,
then its corresponding IV representation is sy = vg + vg + v1 + vov1.

2 The details are given in Sect. 4.2.
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IV representation with repeated IV terms Removing Algorithm. Due
to neglection of key bits, there are lots of repeated IV terms. Here we give an
algorithm to remove the repeated IV terms of s;y-. The details of the algorithm
are shown in Algorithm4. This algorithm is based on a Hash function. First,
an empty hash set is initialized. For each IV term T}, compute the hash value
as H(T;) (Line 3), then determine if T; is already in H. If not, then insert T;
into H (Lines 4-5). Applying Algorithm4 to the above example, the result is
vo + v1 + vov1. Note that this algorithm is slightly different from Algorithm 1. If
we apply Algorithm 1 to sy, the result is v; + vgv.

In the iterative computation process of the output bit of Trivium, it should
be noted that if an IV term exists in s, it must also exist in syy, but not the
opposite. For example, z1 = Uo(k‘lkg + kok‘g) +v1 +voviks, T2 = vokoky +viv2ky
and s = x1xy. We use the IV representations of x7 and x5 to approximate the
IV representation of s. Thus, x1;v = vg + v1 + vov1, Tojy = v + v1v2, and
SIV = T1ryTary = VU2 + v1U2 + vov1va. However, s = x1xo = viva(koky + k1).
So if we find an IV term is not in s;y, we can conclude that it is not
in s etther. We use this to determine the degree upper bound of the output
ANF of Trivium.

Algorithm 4. Repeated-IV term Removing Algorithm
Input: The vector T' with n IV terms, i.e., Ty, To, ..., T),.
Output: Updated T' with m IV terms, where m < n.

1: Initialize an empty Hash set H.

2: for i+—1:n do

3:  Compute the Hash value of T3, i.e., H(T3).

4 if H.contains(T;) is false then
5: H.insert(T;).

6: end if

7: end for

After using I'V representation combined with Algorithm 4, all the existent IV
terms are left by ignoring their repetition. With collision-resistent hash function
H, the time complexity of Algorithm 4 is O(n) for processing n IV terms. It needs
several minutes to apply Algorithm 4 on 1 billion IV terms on a single core.

4 Key Recovery Attack on 855-round Trivium

In the attack on 855-round Trivium, all the 80-bit IV are initiated with free
variables: IV; = v;, i € [0,79].
The output of 855-round Trivium can be described using the internal
state bits:
Zang = 3890 + 8863 4 STBT 4 gTT2 4 G190 | (745 (9)

As a first step of the attack on 855-round Trivium, we need to determine P;.
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4.1 Determining the Nullification Scheme for the Output
Polynomial of 855-round Trivium

For 855-round Trivium, the degree of output bit z is very high, as shown in [19].
So it is not easy to find the missing IV terms in the complex z = P, P, + Ps.
However, based on the new observation of Boolean polynomial introduced in
Sect. 3.1. we can choose P; to reduce the Boolean polynomial (14 P;)z = (1 +
Py)Ps such that the degree of (1+ Py)Ps is lower. The lower, the better. In fact,
the lower the degree of a state term, the less high degree IV terms it can deduce.

Degrees of state bits are obtained first in order to determine the high degree
state terms. The exact Boolean polynomial of s for i € [0,2] and j € [0, 340]
can be obtained. The other degree upper bounds can be obtained by executing
Algorithm 2.

For a search of P;, we use the decomposition of Trivium and preserve the
high degree state terms (bigger than a given bound dependent on our computing
ability in a PC), where the degree of state terms means the sum of degrees of
each state bit in the earlier rounds involved. We decompose until all the state
bits are within the range of [0,276]. The key points to determine P; come from
3 criteria: (1) the frequency of P; is high; (2) the degree of P; is low; (3) the
equivalent key guesses in P; are minimized. We calculate the frequency of state
bits and find that s7'° occurs in about 2 of all the preserved high state terms.
The degree of s319 is 5 and can be reduced to 2 after nullifying the 5 IV bits,
and there are only 3 equivalent key bits to be guessed. So we choose P; = 5210,

The output polynomial can be rewritten as

Z = S%IO.PQ—F.PS7 (10)
where P, and P; do not contain 8%10. Polynomial P, is so complex
that it is hard to compute its degree and density information while
P; is relatively simple. Here P, = 8%10 = VUs9Vg0Vg1 + Us9VUs0U76
+v17Us9V60 + V30U31U59V60 + U320U59U60 + UseUsoUs2 + UsgUsoUrr + UsoUsokao
FU59V61V73V74 + Us9U73V74V76 + V17U59V73V74 + V30U31V59V73V74 + VU32U59V73V74+
UsgUe2U73U74 + Us9U73U74U77 + Us9U73U7ak20 + UsoUsoU7avU75 + Us9Us0U75V76+
V59U73V74V75 T Us9U73VU74V75V76 T Vs9U61 V75 + U59U74 V75 + V17U59V75 +V30VU31 V59 V751
U32Us59075 + UsgUe2V75 + VsgUrs5U77 + UsgUrskao + VeoUe1V72V73 + UsoUr2073076+
V17V60V72V73 + U30VU31V60VU72073 + U32V60U72V73 + Us0V62V72VU73 + Ve0U72073V77+
Ve0UT2U73k20 + V61U72073V74 + Ur2U73V74V76 + V17U720U73V74 + U30U31V72V73V74+
U32U72V73V74 + Vg2U72073V74 + Ur2U73V74V77 + U720730V74k20 + Ve0U72073V74V75+
V60V72073V75V76 +V72073V74V75 V76 + V61 V72VU73 V75 +V17VU72073V75 + V30031 V72073 V75 +
U32V72073V75 + Ve2VU72073 V75 + V72073 V75 V77 +U72U73V75 K20 + V60 V61 V74 + Vs0 V74 V76 +
V17TU60UT4 + V30V31V60UT4 + V32Ve0U74 + Ve0U2U74 + VeoUr4U77 + Ve0Urak20+
V17U73V74 + V30V31U73V74 + V32V73VU74 + Ve2Ur3U74 + Ur3Ur4U77 + U73U74k20+
V16V60V61 +V16V60V74V75 +V16V60V76 +V16V61V73V74 +V16V73V74V75 +-V16V73V74V76 1
V16V61V75 + V16VU740V75 + V16V17 + V16V30V31 + V16V32 + V1gVs2 + V16U77 + Visk20+
V29U30V60V61 +V29V30V60V74V75 +V29V30V60V76 TV29U30V61 V73 V74 +V29V30V73V74V75+
V29V30V73V74V76 +V29U30V61 V75 T V29V30V74 V75 + V17V29V30 + U29V30V31 +V29U30V32+
V293062 + V29U30V77 + V29V30k20 + V31V60Vs1 + U31Ve0U74VTE + U31V0UTET
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V31U1VU73V74 + U31VU73V74V75 + U31V73VU74VU76 + U31V61VU75 + U31V74V75 + V17V31+
V3031 +031V62 + 031077 + 31 k20 +V60V61 + V61075 +V61U74U75 +V17V61 + V30031 V61 +
V32061 + Ve1k2o + VeoU74VU75V76 + VsoU76 + V73U74VU75V76 + V17U76 + VU30V31V76+
U32V76 + V76U77 + Ur6k20 + VeoU61K19 + VeoU74V75K19 + VeoU76 K19 + Ve1073V74 K19+
V730U74075k19 +U73U74076 k19 + V61 V75 K19 + V74075 K19 + V17K 19 +VU30U31 K19 + U2 K19+
ve2k19 + vrrk1g + Kk19koo + V34035 + V34048049 + U34V50 + U35V47V48 + VarUsgVag+
V47V48V50 + U35V49 + VagUag + k57 + Vg + v4Us + Vg + V36 + Us1 + Vo + V7374 +
vrs + k63 + Ve2U74V75 + V74Vr5V77 + Ur5U76 + V18 + U33 + V63 + V78 + k21 + kagkog+
k‘g + k‘go + klz + k‘371€38 + ]i?gg + Vo4.

IV Nullification. The degree of 5319 is 5 and the IV bits involved in s3!° are
shown in Table 4.

Table 4. Count of IV bits in $21° before IV nullification.

IV |vs vs w6 V16 V17 Vi V24 V29 V30 V31 V32 U33 V34 U35 U3e V4T U4s
Count| 1 1 1 14 14 1 1 14 27 26 13 1 3 3 1 3 5

IV |vae vs0 V51 Us9 Veo Vel Ve2 V63 Ve9 Ur2 V73 V74 Urs V76 U7 UTS
Count| 4 2 1 28 44 26 13 1 1 26 56 62 46 26 14 1

In order to simplify 5210 so that it is easier to obtain the degree bound of

(1 + s219) P3, we nullify vr4, veo, V75, V30 and vas.
After nullifying the 5 IV bits, we obtain the simplified boolean function:
st = vigv17 + Vi6Us2 + V16Vs2 + V16U77 + Vick2o + V17U31 + V31062 +
v31077 + v31k20 + V17U1 + V32V61 + Us1kao + V17V76 + V32V76 + Vr6UTT+
v76kao + vi7k19 + V32k1g + Ve2k19 + vrrkig + Kk19k2o + 34035 + v34vs0+  (11)
v35V49 + k57 + V69 + v4U5 + Ve + V36 + Us1 + kg3 + v1s + V33 + ve3+
v7g + ka1 + kogkag + k3 + k3o + k12 + karkss + k39 + vas.

Here, the degree of s31° is 2 and key information equivalent to 3 bits in s?!° are

k19, koo and ks7 + kes + ko1 + kogkog + ks + k3o + k12 + k37ksg + k3g. The IV bits
involved in s?!0 are shown in Table 5.

After determining P; = s?!0, we multiply 1 + s%'° in both sides of Eq. (10),
then (1+s710)z = (1+ s219) P5. Finding the non-randomness in (1 + s319) P; will
help us to construct the cube tester of 855-round Trivium. More specifically, we
will determine the nonexistent IV terms of degree 70 in (1+s31°) P3. First, we will
reduce the polynomial, then IV presentation technique is applied to determine
the nonexistent IV terms. The framework is presented in Fig.2 and details are

shown in the following Sect. 4.2.

210
1
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Table 5. Frequency of IV bits in s21° after IV nullification.

IV |vs vs w6 Vie V17 Vig V24 U31 V32 U33 U4 U3s
Count|1 1 1 5 5 1 1 4 4 1 2 2

IV |v3e va9 V50 Us1 Vel Vs2 V63 Vo V76 UTT VT8
Count|1 1 1 1 3 3 1 1 4 4 1

e UL

e Repeated Term Removing
Discarding Monomials e Degree Evaluation
e Degree Reduction

X D=L X -

IV Representation e Repeat (Algorithm 4)

|
|
|
70-degree IV terms :
|
|

Fig. 2. Framework of determining the missing IV terms

4.2 Determining the Degree Bound of Reduced Polynomial

We are going to iteratively compute (1 + s31°)P3. In each iteration, many state

terms of (1 + s219)P3 are produced. Based on our computing ability, we can
compute the I'V terms of degree around 70. In computing the 70-degree IV terms,
we use a cluster of 6002400 cores. Since we are finding the 70-degree missing IV
terms, state terms with degree less than 70 are removed without consideration,
because they do not contain those 70-degree IV terms certainly. The removing

process could be divided into 2 steps:

1. Deleting state terms according to degree evaluation;
2. Deleting state terms according to degree reduction.

Degree evaluation phase. After nullifying the 5 IV bits in Sect. 4.1, the exact
boolean functions and degrees of state bits s] for 0 < ¢ < 2 and 0 < j < 340
can be updated. Then we execute Algorithm 2 to obtain the degrees of the other
state bits, partially in Tables 2 and 3. For example, given a state term b;bo, we
first find DEG(b1) and DEG(by) in Tables2 and 3, if DEG(b1) + DEG(b2) < 70,
then deg(b1b2) < DEG(b1) + DEG(b2) < 70, delete bybs.
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Degree reduction phase. In the structure of stream ciphers based on NFSR,
degree reduction arises often due to the iterative structure. We use Algorithm 3

to obtain the degree reduction, which is shown in Tables6, 7 and 8 for products

(@) consecutive state DITUS S ) = consecutive state DITS S S S
f 2 tive state bit J“t 2), 3 tive state bits s7s/"'s! T

(t = 3) and 4 consecutive state bits s7s7 s/ 2573 (1 = 4), respectlvely. Note

(2

that we only list the degree reduction When J > 340. The degree reduction for
j < 340 is much easier to obtain in a PC.

Table 6. Degree reductions dy(s?s ™) of s7s7™" with ¢t = 2

0O 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
J 00 0O0O0OO0OO0OO0OSO0ODO0ODODOODOODSO0OSQDDQO0OO0OSO0OSO0OSO0OSO0TSU0DTU0DO0DO0OTO0OTOOQOTQOTQO0OTO0OTO0O0
J t+1 1111111111111 111 1102 2 222222111111
J 1 3 3 3 3 3 3 2 4 4 4 4 4 4 4 4 4 4 4 3 2 2 2 1 3 3 3 3 3 3 3 3 2 2
Fi 0O 00 O0O0OO0OO0OO0O 2 2 2 2 2 2 2 2 2 2 12 3 46 6 6 6 6 6 6 6 6 6 5 5
J t+ 1111111111111 1111111111 101 1 1 1 1 1 11
J 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Jj= 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3 3 2 1 1 1
Jj= t+ 111111110903 33 333333333333 3 3 3 3 3 3 2 3
Jj = 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2
j= tr 1111110011111 00O0O0O0O0O0O0Z2112 2 21333 3 3 3 3
Jj= 4 4 7 8 8 7 7 7T 7T 7 7T 7T 7 7 7T 7 6 5 4 3 3 3 3 3 3 33 3 2 3 4 4 4 4
Jj = 3 2 2 2 2 2 2 2 2 3 3 3 3 3 3332 11 111 1 1 1 1 1 1 1 1 1 1 1
Jj= 33111003333 3 3 33 3 3 36 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
i= 4 4 4 4 4 4 4 3 4 5 6 8 8 8 8 8 8 8 8 8 8 7 9 9 9 9 9 9 8 10 10 10 10 10
J 11111013 3 3333 3 33 3 3333332 265 77777777
J 33 3 3 33 333 2 2 2 2 2 22222222222 213333211
J 1010101010 9 8 8 8 8 7 9 8 8 8 8 8 8 8 7 8 101010 9 9 9 9 9 9 9 10 11 11
J 7 6 4 3 3 3 3 3 3 3 3 3 2 3 4 4 7 810 9 1111111111 1111111110 9 9 9 9
3 33 3333212 2 2 2 2 2 2 12 2 2 2 2 2 2 2 2 4 6 6 6 6 6 6 6 6
J 11 11 11 10 10 10 10 10 10 10 9 9 12 12 12 11 10 10 10 9 10 12 12 12 12 12 12 12 11 10 12 13 13 13
J 11 11 11 11 11 11 111110 9 8 8 101010 8 8 8 8 8 8 7 7 6 6 7 7 7 7 6 6 6 16 16
J= 6 6 6 6 6 6 6 6 6 6 6 5 4 3 2 0 0 0 00 O0O0O0OOO0OO0OO0OO0OO0OO0OO0OO0O0O0
Jj= 13 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 11 10 12
J = 16 15 15 15 15 15 15 15 15 15 151515 9 9 9 9 9 9 9 10 12 12 12 12 13 12 14 14 14 18 18 17 16
Jj= 00 0O0OO0OO0OSO0ODOTQ ODOSZ 35 5 6 6 6 6 6 6 5 4 5 5 7 1112111010 5 5 5 5 5
j= 12 12 12 12 12 12 12 11 10 10 10 9 11 12 12 12 11 13 13 131210 9 9 9 8 7 7 7 6 5 10 12 12
Jj= 16 13 12 12 11 13 13 13 13 13 13 12 13 15 15 15 14 13 12 16 16 16 16 16 15 15 18 20 19 18 17 16 16 15
Jj= 5 5 5 6 6 4 2 2 4 4 4 4 4 4 4 3 3 7 8 121212 1111101010 8 7 7 9 13 16 18
Jji= 1212121211 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
j= 16 18 18 18 18 18 18 18 17 15 17 19 21 21 21 21 21 21 20 22 21 20 20 20 20 20 20 19 18 18 18 18 18 18

In the cryptanalysis of Trivium, the degree reduction may be more compli-
cated. Further degree reduction for ¢ > 4 is hard to be obtained using PC for
loop executing Algorithm 3. Some man-made work should be involved to obtain
further degree reduction. The degree reduction can help discard state terms
of lower degree dramatically. For example, if the state term bbs goes through
degree evaluation phase, that means DEG(by) + DEG(by) > 70, then we check if
DEG(b1) + DEG(by) — di(b1be) < 70. If yes, deg(b1be) < 70 and delete it.

For example, the Eq. (9) can be expressed furthermore using state bits: zg55 =

ST24 4 gGB0SO8L 4 o679 | oT21 4 (697 | (6530654 4 o652 | (004 4 o721 4 0954696 1

894 + 3709 + s706 { 56805 881 + 5679 + 8694 + 3721 + 3707 708 + 3706 + 3703 + 5070 +
59625663 —l—a(ff’l —|—sg58. Then 5852, 876 5?61, can be dlscarded because their degree
are lower than 68, shown in Table3 highlighted in red, and the total degree of
the multiplication of each one with (1 + s210) is lower than 70. In addition, the
state terms highlighted in blue can be discarded by removing the repeated state
terms. Furthermore, the output can be expressed using state bits in lower rounds

and more state terms can be discarded.
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s77? with t = 3
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After the above 2 steps to reduce (1 + s31°)P3, the degrees of the left state

terms are possibly higher or equal to 70. As the dimension is high, a cube tester

over such a big dimension is far beyond our computing ability. For the left
state terms, we use IV representation for each left state terms and remove the

repeated IV terms using Algorithm 4 in order to determine the missing 70-degree

IV terms. After the above steps, there is no 70-degree IV term in (1 + s310)P.

So the degree of (1 + s319)P; is strictly lower than 70, which is summarized as

the following Lemma 2.

Lemma 2. Set the v74, veo, V75, V39 and vag to zeros, then the degree of
(1 4 5210) 255 is bounded by 70, where zg55 is the output after 855-round ini-

tializations.

According to Lemma 2, we strictly prove that the degree of the reduced poly-
nomial is lower than 70, so the sum over any selected cube of dimension 70 is

zero, such that the distinguishers can be constructed.
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4.3 Online Phase and Complexity Analysis

We first guess the 3 key bits in s210, i.e. k1o, koo and ksy + ke3 + ko1 + koghkag +
ks + k3o + k12 + k3rkss + k3o as shown in Eq. (11), for the right guess the result
is 0 while for wrong guesses, the result is 1 with probability % If the sum over
cubes of dimension 70 is 1, then the key guess is wrong and dropped (Line 7).
After the first cube sum, about half key bits remain, and sum over another cube
again. The remaining guess is the key. The on-line phase is shown in Algorithm 5.

Algorithm 5. On-line Attack

1: Initialize the possible key space K EY with size of 23.
2: for i<—1:3 do

3:  for Each possible key in KEY do

4 Compute the value s3'° so that obtain the value of (1 + s3'%)z,
5 Compute cube sums zsum of (1 4 5320)z,

6: if zsum = 1 then

T Delete key from KEY.

8 end if

9 end for

10: end for

For each guess, we need to sum over a cube of dimension 70, so that the
complexity is 2% - 270 4-22.270 1 21. 970 ~ 274,

After the above process, the bits k’lg, kQO and k57 + kﬁg + kgl + k28k29 + kg +
k3o + k12 +k3rkss + k3o can be determined. k19 and kog are single master key bits.
Let ¢ = k57 + k63 + ]Cgl + ]ﬂggkgg + kd + kg() + k12 + k37k‘38 + k39 (C is 0 or ].)7 then
it can be rewritten as ks; = kg3 + ko1 + kogkog + ks + k3o + k12 + ks7kss + ksg + c.
We guess the other 77 key bits excluding ky9, koo and k57, the value k57 can
be obtained directly. So the other 77 key bits excluding k19, ko¢ and ks7 can be
recovered by brute force. Thus the complexity to recover all the key bits is 277.

4.4 Experimental Verification

We apply a powerful nullification technique to reduce the output polynomial,
and prove the degree bound of the reduced polynomial theoretically and recover
key bits. To make the attack more clear, we give an attack instance. We give
two attacks on 721-round Trivium: a distinguishing attack and a key-recovery
attack.

Obtain the Degree Upper Bound of Output of 721-round Trivium.
Initial 1V; = v; with ¢ € [0, 79]. In the example attack on 721-round Trivium, we
only use 40 freedom variables, i.e. set vo.;41 = 0 for j € [0, 39] and the other 40
IV bits are freedom variables.
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The exact boolean functions of the first 340 state bits s/ for i € [0,2] and
j € [0,340] can be obtained directly on PC. Hence, the degrees of them can
be obtained directly. Degrees upper bounds of other state bits can be evaluated
using Algorithm 2 and are shown in Table9. Note that in Table 9, the estimated
degrees of some state bits are larger than 40, e.g. DEG(s$5°) = 41, which is
because the accuracy of Algorithm 2 decreases for state bits with large rounds.
Thus we only apply this algorithm to s] for j < 665.

The output of 721-round Trivium is 2721 = 5§76 + 529 4 5§53 4 5838 4 5856 4
sS11. According to Table9, the 6 state terms (bits) highlighted in red are of
degree lower than 40, so the degree of z797 is lower than 40, which can serve as
distinguishers. This result can be obtained easily by rough computing.

Next, we give a more accurate bound of z791. In the following, we will deter-
mine whether z791’s degree is bigger than 37. The 6 state bits are expressed
using state bits in lower rounds again and substituted into z721, which is called
the substitution or expression process in [9]. Then z7y; = 5590 + 3465347+
s315 4 5387 4 5363 4 55195520 | GBI8 4 (860 | GBET | (5615862 4 o560 | 575 | o572
3465347 | gBA5 | G500 4 (BBT | (BT BTA | (5T2 4 569 L o542 | (BIS520 4 (5T | o524
According to degree upper bounds Table9, deg(s3%°) = 27 < 37 highlighted
in blue, so 5% is removed. Then deg(s3%0s3%7) < DEG(s5%6) + DEG(s54T) =
20 + 21 = 41 and 41 > 37, so the degree of s3%6s3*7 is possibly bigger than 36
and left. After discarding all the state terms whose degrees are lower than 36,
2721 |deg>36 = 554665147 4 55{735?74. Continue substitution and expression process
for z721|deg>36 and finally, there remain no state terms with degree bigger than
36, so that the degree bound of z79; is 36. The details of the above step are
shown in Appendix A.

A Key-Recovery Attack on 721-round Trivium. Similar to the IV setting
above for distinguishing 721-round Trivium, we set ve.;41 = 0 for j € [0,39] and
the other 40 IV bits are freedom variables.

According to our attack outline introduced in Sect. 3.2, we need to deter-
mine the nullification scheme first. We express the output of 721-round Trivium
iteratively and calculate the frequency of state bits in the polynomial. Then we
choose s3%0 as Py, the output can be rewritten as 2701 = s7°0 Py + Ps. Multiply
1+ 5390 with 279 such that the result is (14 s3%°)2721 = (1 + s390) P5. We study
the reduced polynomial (1 + s?°°)P;. In order to decrease the number of key
bits in 3%90, we choose to nullify vsg, vg4 and wvr7o, so that there are 37 freedom
variables. Set the degree bound to 32, we express (1+s3°Y) P using internal state
bits furthermore and discard state terms whose degree are lower than 32 + d;,
where d; is the corresponding degree reduction. We use IV presentation, com-
bined with Algorithm 4 in order to obtain the IV terms of degree higher than 32.
Finally, there is no IV term. Hence, we prove that the degree of (1 + 5390)279; is
lower than 32. Then the sum of (14 5%°°)2751 over any selected cube of dimension

32 is zero. This process can be executed in an hour in a PC.
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Guess the key bit involved in s32°°. For right guess, sum over a cube of dimen-
sion 32 is zero while for wrong guesses, the result is 1 with probability % The
key bits involved in s2%° are shown in Table 10. After 19 summations over cubes
of dimension 32, the 19 key bits can be recovered. The complexity is about
2 x 219 x 232 = 252 The other key bits can be recovered using brute force with
a complexity of 261. Hence, the total complexity of recovering all key bits of
721-round Trivium is 261,

Table 10. The key bits involved in s3%°.

Equivalent key bits

kis, k17, ke3, k61, k59, k6o + k16k17, k35 + keoke1 + ke2, k3s + ksskso + keo, k15 + kaokar + ka2,
kackas + Kaa, kag + kr3kra + k75 + ke1kez2, kar + k72k7s + k74 + keoke1 + k62, kae + kr1k72+

k73 + ksokeo, kas + krok71 + k72 + ksskso + keo, ksakss + ksakeoke1 + ksake2 + kssksokeo+
ksokeoke1 + ksoksoke2 + ksske1 + keoke1 + ko1+ kaskar + kag + k36, kszksa + kazksokeo+

kaske1 + ksaksskso + kssksokeo + kssksoke1 + ksakeo + ksokeo + k2o + kaskas + ka7 + k35 + ke2,
kicki7 + k16kackas + kickaa + kirkarkao + karkaskas + ka1kaokas + ki7kas + kaokaz + k3 +
koskag + k3o + kas + kag + krskra + k75 + ke1ke2 + ko, kiskie + kiskairkaz + kiskas + kiekaoka1 +
kaokaikaz + kaokarkas + kickao + ka1kaz + ko + korkas + koo + kaa + ka7 + k72k7s + kra+

keoke1 + ke2, k™ (A complex expression of key bits).

5 Conclusions

In this paper, we propose the Boolean polynomial reduction techniques and
IV representation, which can be applicable to cryptanalysis of stream ciphers
based on NFSRs. These techniques can help obtain more accurate degree bounds.
We apply these techniques to the cryptanalysis of reduced round Trivium. For
recovering the key bits of Trivium, we propose a new nullification technique.
Combined with the distinguishers, we propose a key-recovery attack on 855 round
Trivium, where 3 equivalent key bits can be recovered with complexity of 274.
The other key bits can be recovered by brute force with a complexity of 277.

Furthermore, our flexible methods can be applied to attack more round of
Trivium by adjustment of P;, which is our future work. In addition, the degree
evaluation and degree reduction techniques can be applicable to other encryption
primitives such as Grain family.
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A The Details of Determining the Degree Upper Bound
of Output for 721-round Trivium

For 2721|deg>36 = 5520537 + 57735774, the 4 state bits s3%6, s347, s773, s} can
be expressed using state bits furthermore. Substitute the 4 state bits using
the expression and discard the state terms whose degree is lower than 37,
. _ (463 464 AT8 464 (465 (ATT 481 482 (508
then the resulted z721|deg>36 = $7°°87°%s1™® + s71°%s7°°s17" + s5°'s5%°s0°° +
58253835507 4 538253835195 4 08150825196 Then the state bits involved in
the polynomial can be expressed using state bits, so that we can obtain
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29082918303529253948395820481305 + 5%898%908291829283948395530485’05 + 8%8882905291
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Substitute once again and there remains no state term, so that the degree
of z791 is lower than 37, which can be derived as distinguishers with lower com-
plexity.
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