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Abstract. We provide lattice-based protocols allowing to prove rela-
tions among committed integers. While the most general zero-knowledge
proof techniques can handle arithmetic circuits in the lattice setting,
adapting them to prove statements over the integers is non-trivial, at
least if we want to handle exponentially large integers while working
with a polynomial-size modulus ¢. For a polynomial L, we provide zero-
knowledge arguments allowing a prover to convince a verifier that com-
mitted L-bit bitstrings x, y and z are the binary representations of inte-
gers X, Y and Z satisfying Z = X + Y over Z. The complexity of our
arguments is only linear in L. Using them, we construct arguments allow-
ing to prove inequalities X < Z among committed integers, as well as
arguments showing that a committed X belongs to a public interval [«, 3],
where a and 3 can be arbitrarily large. Our range arguments have log-
arithmic cost (i.e., linear in L) in the maximal range magnitude. Using
these tools, we obtain zero-knowledge arguments showing that a com-
mitted element X does not belong to a public set S using O(n - log |S|)
bits of communication, where n is the security parameter. We finally
give a protocol allowing to argue that committed L-bit integers X, Y
and Z satisfy multiplicative relations Z = XY over the integers, with
communication cost subquadratic in L. To this end, we use our protocol
for integer addition to prove the correct recursive execution of Karat-
suba’s multiplication algorithm. The security of our protocols relies on
standard lattice assumptions with polynomial modulus and polynomial
approximation factor.

1 Introduction

Lattice-based cryptography has been an extremely active area since the cele-
brated results of Ajtai [3] and Regev [58]. In comparison with discrete-logarithm
and factoring-based techniques, it indeed offers numerous advantages like simpler
arithmetic operations, a better asymptotic efficiency, advanced functionalities or
a conjectured resistance to quantum computing. Its development was further
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boosted by breakthrough results of [26,53] showing how to safely use lattice
trapdoors, which have been the cornerstone of many advanced primitives.

While lattices enable powerful functionalities that have no counterpart using
traditional number theoretic tools, they do not easily lend themselves to the real-
ization of certain fundamental tasks, like efficient zero-knowledge proofs. Zero-
knowledge protocols [30] make it possible to prove properties about certain secret
witnesses in order to have users demonstrate their correct behavior while protect-
ing their privacy. For simple statements such as proving knowledge of a secret
key, efficient solutions have been reported in [39,47,50,55]. In order to prove
relations among committed values, the best known methods rely on the extra
algebraic structure [5,8,60] offered by the ring-LWE or ring-SIS problems [51]
and no truly efficient solution is known for standard (i.e., non-ideal) lattices.

In this paper, we investigate the problem of proving, under standard lattice
assumptions, that large committed integers satisfy certain algebraic relations.
Namely, if c,, ¢, and c, are commitments to integers X, Y, Z of arbitrary poly-
nomial bit-size L = poly(n), where n is the security parameter, we consider the
problem of proving statements of the form Z = X +Y and Z = X - Y over Z.
Note that this problem is different from the case of arithmetic circuits addressed
in [8]: here, we are interested in proving relations over the integers. Furthermore,
we would like to design zero-knowledge arguments for various other relations
among large committed integers. As specific applications, we consider the prob-
lems of: (i) Proving that a committed integer X belongs to a publicly known
range [«, 8]; (ii) Proving order relations Y < X < Z between committed integers
Y, X, Z; (iii) Proving that a committed element X does not belong to a public
set (which allows users to prove their non-blacklisting).

While these problems received much attention in the literature, the most
efficient solutions [21,34,48] handling large integers appeal to integer commit-
ments [22,25] based on hidden-order groups (e.g., RSA groups), which are vul-
nerable to quantum computing. In particular, designing a solution based on mild
assumptions in standard lattices is a completely open problem to our knowl-
edge. Even in ideal lattices, handling integers of polynomial length L requires to
work with exponentially large moduli, which affects both the efficiency and the
approximation factor of the lattice assumption. Here, our goal is to realize the
aforementioned protocols using polynomial moduli and approximation factors.

If we were to use known zero-knowledge proof systems [5,8,60] in ideal lattices
to handle additive relations over Z, we would need (super-)exponentially large
moduli. In particular, in order to prove that committed integers X,Y, Z of bit-
size L = poly(n) satisfy Z = X +Y, these protocols would require to prove that
Z = X +Y mod q for a large modulus ¢ = 2P°¥(")_ With current techniques,
this would imply to work with a commitment scheme over rings Iz, for the same
modulus ¢. In terms of efficiency, a single ring element would cost thousand times
L bits to represent since the modulus should contain more than L bits. When it
comes to proving smallness of committed values (in order to prove Z = X +Y
over Z via Z = X +Y mod ¢, the prover should guarantee that X and Y are
small w.r.t. q) together with relations among them, the prover may need to send
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hundreds of ring elements. As a consequence, the communication cost could be
as large as k- L, where k is up to hundreds of thousands. In terms of security, we
note that such approaches may require at least sub-exponential approximation
factors for the underlying ideal-lattice problems. Moreover, ensuring soundness
may be non-trivial as the protocols of [5,8] only guarantee relaxed soundness.

OUR CONTRIBUTIONS. We provide statistical zero-knowledge arguments allow-
ing to prove additive and multiplicative relations among committed integers of
bit-size L = poly(n) under mild assumptions in standard (i.e., non-ideal) lattices.
Our protocols can work with two flavors of the commitment scheme by Kawachi,
Tanaka and Xagawa (KTX) [39]. If we commit to integers in a bit-by-bit fashion,
the modulus ¢ can be as small as (5(71) and the security of our protocols can rely
on the worst-case hardness of SIVP,, with v = O(n), which turns out to be one
the weakest assumptions in the entire literature on lattice-based cryptography.
On the other hand, if we rely on a stronger assumption with v = (’)(\/z n) for
a modulus ¢ = (5(\/Z -n), then we can commit to L bits at once and reduce the
communication cost. For this all-at-once commitment variant, the complexities
of our protocols are summarized as follows.

The protocol for integer additions has communication cost (¢ + 20L) - k bits,
where ¢ = (5(n) + 6Llogq is the cost of proving knowledge of valid openings
for the commitments to X,Y,Z and x = w(logn) is the number of protocol
repetitions to make the soundness error negligibly small. Thus, the actual cost for
proving the additive relation is 20L - k bits. In terms of computation complexity,
both the prover and the verifier only perform O(L) simple operations.

We offer two options for proving integer multiplications. For practically inter-
esting values of L, e.g., L < 8000, we can emulate the schoolbook multiplica-
tion algorithm by proving L additive relations, and obtain communication cost
O(n+ L?) -k as well as computation costs O(L?) for both parties. To our knowl-
edge, all known methods for proving integer multiplications (sometimes implic-
itly) involve O(L?) computation and/or communication complexities. Can we
break this quadratic barrier?

As a theoretical contribution, we put forward the first protocol for multi-
plicative relations that does not incur any quadratic costs. Specifically, by prov-
ing in zero-knowledge the correct execution of a Karatsuba multiplication algo-
rithm [38], we obtain both computation and communication complexities of order
O(Llog2 3) .

Applications. While our protocol for additive relations only handles non-
negative integers, it suffices for many applications, such as arguments of inequali-
ties among committed integers, range membership for public/hidden ranges, and
set non-membership. Moreover, it can also be used in higher-level protocols like
zero-knowledge lists [27].} In particular, for a set of N elements with bit-size
5(71), our protocol for proving non-membership of a committed value only cost

O(n -log N) bits. In the lattice setting, this is the first non-membership proof

! These involve a prover wishing to convince a verifier that a committed list contains
elements {a;}; in a specific order without revealing anything else.
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that achieves communication cost logarithmic in the cardinality of the set. Mean-
while, in our protocol for proving that a committed L-bit integer belongs to a
given range [a, 3], where 3 — a &~ 2F, besides the cost of proving knowledge of
a valid opening for the commitment, the prover only has to send 23L - k bits
to the verifier. In Table 1, we provide the concrete cost of the protocol variant
achieving soundness error 278%, for commonly used lattice parameters.

Table 1. Concrete communication cost of our lattice-based zero-knowledge argument
(Sect. 5.1) for proving knowledge of committed integer X belonging to a given range,
w.r.t. various range sizes. We work with lattice parameters n = 256, ¢ ~ 2'°, m = 4608.
To achieve soundness error 2789 we set x = 137.

Range size 91000 92000 4000 8000
Proving knowledge of committed X | 3.16 3.65 4.63 6.59
Proving range membership of X 0.38 0.75 1.5 3
Total communication cost 3.54MB | 4.4MB | 6.13MB | 9.59 MB

We remark that, if we only had to prove the correct evaluation of binary
addition circuits, MPC-based techniques [20,28,36] could perform slightly better
than our protocols. However, they become much less efficient for the algebraic
parts of the statements we have to prove (in particular, we also need to prove
knowledge of openings of SIS-based commitments). Indeed, the MPC-in-the head
paradigm [36] and its follow-ups [20, 28] have linear complexities in the size of the
circuit, which is much larger than the witness size as the commitment relation
entails @(n(L + m)) additions and multiplications over Z,. In our protocols,
proving knowledge of an opening takes ©((L + m)log q) bits of communication.

OUR TECHNIQUES. We proceed by emulating integer commitments by means
of bit commitments. To commit to an L-bit integer X in an all-in-one fashion,
we generate a KTX commitment c, = ZZ—L:_Ol a;-x; + B-r € Zj to its binary
representation (xp_1,...,Zo)s using public matrices A = [ag | ...|ar_1] € ZT;XL
and B € Zg*™ and random coins r < U({0, 1}™).

Integer Additions. To prove additive relations among committed integers, we
come up with an idea that may sound natural for computer processors, but,
to the best of our knowledge, has not been considered in the context of zero-
knowledge proofs. The idea is to view integer additions as binary additions with
carries. Suppose that we add two bits = and y with carry-in ¢;, to obtain a
bit z and carry-out c,.¢. Then, the relations among these bits are captured by
equations

z=a+ Y+ ¢ mod 2, Cout =T Y+ 2 Cin + Cin mod 2,

which is equivalent to a homogeneous system of two equations over Zs. Using
the above adder, we consider the addition of L-bit integers X = (z_1, ..., Z0)2
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and Y = (yr_1, ..., Yo )2 assuming that the committed sum is of length L + 1 and
written as Z = (2,251, ..., 20)2. For each i € {0, ..., L — 1}, we denote by ¢;11
the carry-out of the i-th addition and define ¢, = zy. The equations become

zo + xo + yo = 0 mod 2

c1+ o -yo = 0mod 2
z1+x1+y1 +c1 =0mod 2
co+x1-y1+ 21 ¢c1+c1 =0mod 2

Zp-1+Tp-1+yr—1+cr—1=0mod 2

zr+xr_1-yYrn-1+2r-1-¢cr-1+cr—1 =0mod 2.

We observe that all the terms in the above equations are either bits or products
of two bits. By adapting the Stern-like [59] techniques for hiding secret bits [44]
and handling quadratic relations [42], we manage to prove that the bits of XY, Z
satisfy the above equations modulo 2, which is equivalent to X +Y = Z over Z.
Meanwhile, to prove that those bits coincide with the values committed under
the KTX commitment requires to additionally prove a linear equation modulo gq.
Interestingly, we show that, not only the problem of proving additive relations
among committed integers can be reduced to proving secret bits satisfying linear
and quadratic equations modulo 2 and one linear equation modulo ¢, such type
of reduction is doable for all subsequently considered relations (multiplications,
range membership, set non-membership). To handle the reduced statements in
a modular manner, we thus design (in Sect. 3) a general zero-knowledge protocol
that subsumes all argument systems of this work. In comparison with previous
protocols [39,43,45,47] built on Stern’s framework [59], this general protocol
introduces a technical novelty which allows to reduce the communication cost.

Range Membership and Set Non-Membership. Our techniques for addi-
tions of non-negative integers directly yield a method for proving inequalities of
the form X < Z, where it suffices to show the existence of non-negative integer
Y such that X +Y = Z. This method can be further adapted to handle strict
inequalities. To prove that X < Z, we demonstrate the existence of non-negative
Y such that X +Y +1 = Z, for which only a small additional treatment for the
least significant bits of XY, Z is needed. Then, by combining two sub-protocols
for inequalities, we can obtain range arguments for the statements “X € [«, 5]7,
“X €la,0)”, “X € (a, ] and “X € («, 5)”, where X is committed under the
KTX commitment, and «, 3 can be hidden/committed or public.

Given the techniques for proving inequalities, we can further obtain argu-
ments of non-membership. In order to prove that a committed string X € {0,1}*
does not belong to a public set S = {s1,...,sn}, the prover generates a (pub-
licly computable) Merkle tree [52] whose leaves are the elements of S arranged
in lexicographical order. Then, the prover can use the technique of Libert et al.
[44] — which allows arguing possession of a path in a lattice-based Merkle tree
— to prove knowledge of two paths leading to adjacent leaves for which the cor-
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responding set elements Y, Z € {0,1}* satisfy ¥ < X < Z in lexicographical
order. Here, the adjacency of the leaves Y and Z is argued using our techniques
for integers additions, which allows proving that their labels (i.e., the binary
encoding of the path that connects them to the root) encode integers V, W such
that W=V +1.

Subquadratic Integer Multiplications. Proving multiplicative relations
among L-bit committed integers with subquadratic complexity requires some
additional tricks. Karatsuba’s technique [38] divides integers X,Y into equal
halves X = X;|Xp and Y = Y1]Y), each of which has length L/2. If the length
is odd, the factors must be padded with zeroes in the left halves, which raises
technical difficulties as will be explained below. We have X = 2L/2 . x| + X,
and Y = 2L/2. Y] +Y;, so that X - Y can be written

XY = (28 =2 (X11) + (1 - 25/2)(XoYo) + 25/2(X1 + Xo) (Y1 + Yo). (1)

To prove this equation, we first prove knowledge of 3 partial products and then
prove their correct shifting w.r.t. multiplication by powers of 2 before proving
the correctness of additions. Each of the factors X1, Y7, Xg, Yy, X1 + X0, Y1 + Y
of (1) is recursively broken into 3 smaller products until reaching an easy-to-prove
“base multiplication”. One difficulty is that the length of X7 + Xy and Y7 + Yy
are one bit longer than the length L/2 of X, X1,Yp,Y:. Since L/2 + 1 is odd,
we need to pad with a zero before dividing any further and the same issue arises
when dividing X1, Y7, X, Yp. In the context of zero-knowledge proofs, it makes
it very complicated to keep track of the lengths of witnesses in the underlying
equations and determine where the original bits of X and Y should be.

To address the problems caused by carry-on bits in additions, Knuth [40]
suggested to use subtractions and re-write the product X - Y as

(2F + 252y (X v + (14 282) (X - Yo) — 282 (X — Xo) - (V1 — Yo). (2)

The difference X1 — X is now guaranteed to have length L/2, which allows using
L = 2F and recursively come down to base multiplications of two-bit integers.
However, this modification introduces another problem as X; — X and Y7 — Yj
can now be negative integers, which are more difficult to handle in our setting.
For this reason, we need to make sure that we always subtract a smaller integer
from a larger one, while preserving the ability to prove correct computations.
To this end, our idea is to compare X; and Xy and let the smaller one be
subtracted from the larger one. To do this, we define auxiliary variables X7, X
such that X] > X| and {X], X{} = {X1, Xo}. Letting b be the bit such that
b=11if X{ > X{ and b = 0 otherwise, this can be expressed by the equation:

(X] —Xg)=b- (X1 —Xo)+ (1 -b) - (Xo — X1),

which is provable in zero-knowledge using our techniques for integer additions.
If we repeat the above process and define variables Y{, Yy such that {¥{,Yj} =
{Y1,Y5} and an order control bit ¢ € {0,1}, if we define d = b + ¢ mod 2,
we have
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(X1 = Xo)- (Vi = Yo) = (X} — Xp) - (¥ = Yg)  if d=0
(X1~ Xo)- (Vi — Yo) = ~(X} — Xp) - (¥ ~ ¥§) if d=1.

The term (X7 — Xo) - (Y1 — Y)) appearing in Eq. (2) can thus be written as
(X1—Xo)- (Y1 —Yo) = (1 —d) - (X1 — Xg) - (Y] = ¥5) —d- (X1 = Xp) - (Y] = ¥),

which yields an equation compatible our techniques while avoiding to handle
negative integers. At each recursive step, we further divide the differences X{— X
and Y]/ — Y] and keep track of the control bits b,c¢,d which are part of the
witnesses.

RELATED WORK. The first integer commitment scheme was proposed by Fujisaki
and Okamoto [25] who suggested to use it to prove relation over the integers.
They underlined the importance of zero-knowledge arguments over the integers
in order to be able to prove modular relations when the modulus is not known in
advance, when the commitment key is generated. Damgard and Fujisaki [22] cor-
rected a flaw in the Fujisaki-Okamoto commitment and generalized it to abelian
groups satisfying specific properties.

Lipmaa [48] highlighted the cryptographic importance of the class D of Dio-
phantine sets? [1] and gave improved constructions of zero-knowledge proofs for
Diophantine equations. As special cases, he obtained efficient zero-knowledge
arguments for intervals, unions of intervals, exponential relations and gcd rela-
tions. In [33], Groth suggested another integer commitment scheme based on the
Strong RSA assumption [4] which, like [22,25], relies on groups of hidden order.
Couteau, Peters and Pointcheval [21] recently suggested to combine integer com-
mitments with a commitment scheme to field elements in order to improve the
efficiency of zero-knowledge proofs over the integers. They also revisited the
Damgard-Fujisaki commitment [22] and proved it the security of its companion
argument system under the standard RSA assumption. While our results are not
as general as those of [21,48] as we do not handle negative integers, they suffice
for many applications of integer commitments, as we previously mentioned.

Range proofs were introduced by Brickell et al. [10] and received a permanent
attention [9,12,18,19,21,31,35,48] since then. They served as a building block of
countless cryptographic applications, which include anonymous credentials [14],
anonymous e-cash [13], auction protocols [49], e-voting [34] and many more.

Currently known range proofs proceed via two distinct approaches. The first
one proceeds by breaking integers into bits or small digits [7,10,12,23,31,35],
which allows communicating a sub-logarithmic (in the range size) number of
group elements in the best known constructions [12,31,35]. The second approach
[9,21,34,48] appeals to integer commitments and groups of hidden order. This
approach is usually preferred for very large ranges (which often arise in appli-
cations like anonymous credentials [14], where range elements are comprised of

2 For k,¢ € N, a Diophantine set is a set of the form S = {z € Z* | Jw € Z° :
Ps(x,w) = 0}, for some representing polynomial Ps(X, W) defined over integer
vectors X € Z¥, W € Z*. Any recursively enumerable set is [24] Diophantine.
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thousands of bits) where it tends to be more efficient and it does not require the
maximal range length to be known when the commitment key is chosen.

Despite three decades of research, all known efficient range proofs (by “effi-
cient”, we mean that the communication complexity should be only logarithmic
in the range size) build on quantum-vulnerable assumptions and the only candi-
dates supporting very large integers rely on groups of hidden order. By proving
knowledge of small secret vectors, lattice-based protocols [39,47] can be seen
as providing a limited form of range proofs: if we can prove that a committed
X € Z™ has infinity norm ||x||cc < B for some basis B < g of a B-ary representa-
tion, we can prove that x encodes an integer X in the range [0, B™ —1]. However,
it is not clear how to deal with arbitrary ranges. Using homomorphic integer com-
mitments, any range [a, 8] can be handled (see [17] and references therein) by
exploiting the homomorphic properties of the commitment scheme and proving
that X —a € [0, 8 — «]. With homomorphic commitments used in the context
of lattice-based cryptography, there is no obvious way to shift the committed
value by an integer o when o > q. Even with a sub-exponential modulus ¢, the
size L of integers can be at most sub-linear in n. To our knowledge, no flexible
solution has been proposed in the lattice setting, let alone under standard lattice
assumptions with polynomial approximation factors and polynomial-size moduli.
Our schemes thus provide a first answer to this question.

In the context of set non-membership, our construction bears resemblance
with a technique used by Nakanishi et al. [56] to handle revocation in privacy-
preserving protocols by proving inequalities over the integers. For a public set
S = {s1,...,sny} arranged in lexicographical order, they rely on a trusted
authority to create Camenisch-Lysyanskaya signatures [16] on all ordered pairs
{Msg; = (shsiﬂ)}i]i]l of adjacent set elements. To prove that a committed
s is not in S, the prover proceeds with a proof of knowledge of two message-
signature pairs (Msg;, sig;), (Msg;,,sigj+1) for which Msg,; = (s;,s;41) and
Msg; i1 = (Sj+1,8j+2) contain elements sj,s;11 such that s; < s < sj41.
While this approach could be instantiated with our technique for proving integer
inequalities, it would require proofs of knowledge of signatures and thus lattice
trapdoors (indeed, all known lattice-based signatures compatible with proofs of
knowledge rely on lattice trapdoors [26,53]). By using proofs of knowledge of a
Merkle tree path [44] instead of signatures, our solution eliminates the need for
lattice trapdoors, which allows for a better efficiency (note that proving inequal-
ities s; < s < s;j41 incurs a complexity £2(log N) in both cases, so that using
Merkle trees does not affect the asymptotic complexity). Moreover, the technique
of Nakanishi et al. [56] involves a trusted entity to sign all pairs (s;,5;+1)}i ;"
in a setup phase whereas no trusted setup is required in our construction.

Other approaches to prove (non-)membership of a public set were suggested
in [12,15,41,46]. However, they rely on a trusted entity to approve the sets
of which (non-)membership must be proven during a setup phase. Setup-free
accumulator-based set membership proofs were described in [11,44], but they
are not known to support non-membership proofs.
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In [6], Bayer and Groth cleverly used X protocols to handle proofs of
non-membership without assuming a trusted setup. Their construction achieves
logarithmic complexity in the cardinality of the set, but it crucially relies on
commitment schemes, like Pedersen’s discrete-log-based commitment [57], with
homomorphic properties over the message space and the randomness space. For
lack of a lattice-based commitment scheme with similar properties, their app-
roach does not seem readily instantiable under lattice assumptions.

2 Preliminaries

NOTATIONS. When working with an integer X € [0,2% — 1], we use the notation
X = (xp—1,...,%0)2 to describe its bits, and use bold lower-case letter x to
denote the representation of X as binary column vector (x7,_1,...,7q) € {0, 1}£.
The column concatenation of matrices A € Z"** and B € Z"*™ is denoted by
[A|B] € Z"*(F+™) When concatenating column vectors x € Z* and y € Z™, for
simplicity, we often use the notation (x||y) € Z*+™ (instead of (x"|ly ") T).

2.1 Lattice-Based Cryptographic Building Blocks

We first recall the average-case problem SIS and its hardness.

Definition 1 (SIS;,, , 5 [2,26]). Given uniformly random matriz A € Zy*™,

find a non-zero vector x € Z™ such that ||x||cc < 8 and A -x = 0 mod q.

If m, 3 = poly(n), and ¢ > 3 - (5(\/71), the SIS}®,, . 5 problem is at least as hard

as worst-case lattice problem SIVP, for some v = - (5(«/nm) (see, e.g., [26,54]).
We will use two SIS-based cryptographic ingredients: the commitment scheme
of Kawachi, Tanaka and Xagawa [39] (KTX) and the Merkle hash tree from [44].

The KTX commitment scheme. The scheme works with security parameter
n, prime modulus ¢ = O(v/L - n), and dimension m = n([log, q] + 3). We will
consider several flavours of the scheme.

In the variant that allows committing to L < poly(n) bits, the commitment
key is (ao, . .., ap_1,B) « U(Z2* ")) To commit to a bitstring o, . .., 211,
one samples r < U({0,1}"™), and outputs ¢ = Zf;ol a;-z;+B-r mod ¢. Then, to
open the commitment, one simply reveals zg,...,zr_1 € {0,1} and r € {0,1}™.

If one can compute two valid openings (xy,...,z7_;,r') and (zf,...,z7 _4,
r’") for the same commitment c, where (z{, ...,25 1) # (xf,..., 2} _;), then one
can compute a solution to the SIS®,, . ; | problem associated with the uniformly

random matrix [ag | ... | B] € Zi™ ) Thus, the scheme is computationally
binding, assuming the worst-case hardness of SIVP5( VIn) On the other hand, by

the Leftover Hash Lemma [29], the distribution of a commitment c is statistically
close to uniform over Zjy. This implies that the scheme is statistically hiding.
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In the special case when L = 1, the scheme becomes a bit commitment
scheme, in which case it can use a small modulus ¢ = O(n) and rely on a weak
SIVP assumption with v = O(n).

Kawachi et al. [39] extended the above fixed-length commitment scheme to a
string commitment scheme COM : {0, 1}* x {0, 1}"™ — Zg. The obtained scheme
is also statistically hiding for the given setting of parameters, and computation-
ally binding assuming that SlVF’@(n) is hard.

Here, we will use the first commitment variant to commit to secret bits and
the string commitment scheme COM as a building block for Stern-like protocols.

Lattice-based Merkle hash tree. The construction relies on the following
collision-resistant hash function. Let n be the security parameter, ¢ = O(n),
k = n[log, q] and m = 2k. Define the “powers-of-2” matrix

G=I,®[124 ... 2Mled-l]eczmxk

Note that for every v € Z}', we have v = G - bin(v), where bin(v) € {0,1}"
denotes the binary representation of v.

For matrix B = [By | By] <= U(Z*™), where Bo, By € Z**, define the
function hg : {0, 1}* x {0,1}¥ — {0,1}* as follows:

(ug,u1) — hg(ug,uy) = bin(Bo -ug + By - u; mod q).

Note that hg(ug,u1) = u < Bg-up + B; - u; = G- umod ¢. This hash
function was shown collision-resistant if SIVP 5, , is hard [2,44]. It allows build-
ing Merkle trees to securely accumulate data. In particular, for an ordered set
S = {dy,...,dy_1} consisting of 2¢ € poly(n) elements of bit-size k, one builds
the binary tree of depth ¢ on top of elements of the set, as follows. First, asso-
ciate the 2¢ leaf nodes with elements of the set, with respect to the order of these
elements. Then, every non-leaf node of the tree is associated with the hash value
of its two children. Finally, output the root of the tree u € {0, 1}’“. Note that,
the collision resistance of the hash function hg guarantees that it is infeasible
to find a tree path starting from the root u and ending with d' ¢ S.

2.2 Zero-Knowledge Argument Systems and Stern-Like Protocols

We will work with statistical zero-knowledge argument systems, where remain
zero-knowledge for any cheating verifier while the soundness property only holds
against computationally bounded cheating provers. More formally, let the set of
statements-witnesses R = {(y,w)} € {0,1}* x {0,1}* be an NP relation. A two-
party game (P,V) is called an interactive argument system for the relation R
with soundness error e if the following conditions hold:

— Completeness. If (y,w) € R then Pr[(P(y,w),V(y =1] =
~ Soundness. If (y,w) € R, then V PPT P: Pr[(P(y, w), V(y )> 1] <e.
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An argument system is called statistical zero-knowledge if there exists a PPT
simulator S(y) having oracle access to any V(y) and producing a simulated
transcript that is statistically close to the one of the real interaction between
P(y,w) and V(y). A related notion is argument of knowledge, which requires
the witness-extended emulation property. For protocols consisting of 3 moves
(i.e., commitment-challenge-response), witness-extended emulation is implied by
special soundness [32], where the latter assumes that there exists a PPT extrac-
tor which takes as input a set of valid transcripts with respect to all possible
values of the “challenge” to the same “commitment”, and outputs w’ such that
(y,w') € R.

The statistical zero-knowledge arguments of knowledge presented in this work
are Stern-like [59] protocols. In particular, they are X-protocols in the general-
ized sense defined in [37] (where 3 valid transcripts are needed for extraction,
instead of just 2). The basic protocol consists of 3 moves: commitment, challenge,
response. If a statistically hiding and computationally binding string commit-
ment scheme, such as the KTX scheme [39], is employed in the first move, then
one obtains a statistical zero-knowledge argument of knowledge (ZKAoK) with
perfect completeness, constant soundness error 2/3. In many applications, the
protocol is repeated k£ = w(logn) times to make the soundness error negligibly
small in n.

3 A General Zero-Knowledge Argument of Knowledge

This section presents a general Stern-like zero-knowledge argument system that
subsumes all the subsequent constructions in Sects. 4, 5 and 6. Before describing
the protocol, we first recall two previous Stern-like techniques that it will use.

3.1 Some Previous Extending-then-Permuting Techniques

Let us recall the techniques for proving knowledge of a single secret bit z, and
for proving knowledge of bit product z; - 2, from [42,44], respectively. These
techniques will be employed in the protocol presented in Sect. 3.2.

For any bit b € {0,1}, denote by b the bit b = b+ 1 mod 2, and by exta(b)
the 2-dimensional vector (b,b) € {0, 1}2.

For any bit ¢ € {0,1}, define P? as the permutation that transforms the
integer vector v = (vg,v1) € Z? into P?(v) = (ve,vz). Namely, if ¢ = 0 then P2
keeps the arrangement the coordinates of v; or swaps them if ¢ = 1. Note that:

v =exty(b) <<= P2(v)=exty(b+cmod 2). (3)

As shown in [44], the equivalence (3) helps proving knowledge of a secret bit
that may appear in several correlated linear equations. To this end, one extends
x to exty(z) € {0,1}2, and permutes the latter using P2, where c is a uniformly
random bit. Seeing the permuted vector exts(z + ¢ mod 2) convinces the verifier
that the original vector exta(x) is well-formed — which in turn implies knowledge

of some bit x — while ¢ acts as a “one-time pad” that completely hides =x.
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To prove that a bit is the product x; - zo of two secret bits, Libert et al. [42]
introduced the following t echnique. For any two bits by, bo, define

exty(b1,ba) = (b1 - ba, by - ba, by - ba, by - ba) € {0, 1},

which is an extension of the bit product by - by. Next, define a specific type of
permutation associated with two bits, as follows.

For any two bits ¢1, ¢y € {0,1}, define P! _ as the permutation that trans-
forms the integer vector v = (vg0,v0,1,v1,0,v1,1) € Z* into

4 _ 4
Pcl,cz (V) - (U517527U61,E2’U51a527%1’62) S/

For any bits by, bs, ¢1, ca and any vector v = (vg.0,v0.1,v1,0,v1,1) € Z*, we have

vV = ext4(b1, bg) <~ P4

C1,C2

(v) = exty(by + ¢1 mod 2, by + ¢ mod 2). (4)

As a result, to prove the well-formedness of =1 - x2, one can extend it to the
vector exty (1, 22), permute the latter using P!, where ¢1, ¢ are uniformly ran-
dom bits, and send the permuted vector to the verifier who should be convinced
that the original vector, i.e., exts(z1,22), is well-formed, while learning nothing
else about x7 and x5, thanks to the randomness of ¢; and ¢y. Furthermore, this
sub-protocol can be combined with other Stern-like protocols, where one has to
additionally prove that x1, o satisfy other conditions. This is done by using the

same “one-time pads” cj, ¢y at all occurrences of z1 and x4, respectively.

3.2 Our General Protocol

Let N,mj;,ms be positive integers, where m; < N. Let T =
{G1,51), -+, G, 4jry)} be a non-empty subset of [N] x [N]. Define d; =
2(1111 + mg), do = 2N + 4|T| and d = di; + do. Let ny < dy,ns < do and
q > 2 be positive integers. The argument system we aim to construct can be
summarized as follows.

Public input consists of g1,...,8m,,b1,...,bm,, w1 € Zy* and

{her} e m)emaxN]; et} t)emalx [T V1s- -+ Ung € Zo.

Prover’s witness is (N + mg)-bit vector s = (S1,...,8myyc s SNy---,

SN+my ) :
Prover’s goal is to prove in zero-knowledge that:

1. The first m; bits s1,..., Sy, and the last ms bits sy41,. .., SN 4+m, satisfy the
following linear equation modulo q.
Z g s+ Z b; - sy+; = u; mod g. (5)

i€[my] j€ma]
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2. The first N bits s1,...,8m,,.--, Sy satisfy the following ns equations modulo

2 that contain N linear terms and a total of |T'| quadratic terms {s;, - s;, ‘ti‘l.

N 1T
Ve € [no) : Z heg - sk + Z for- (85, - 85,) =vemod 2. (6)
k=1 t=1

Looking ahead, all the statements that we will consider in Sects.4, 5 and 6
can be handled as special cases of the above general protocol, which will serve
as an “umbrella” for all of our subsequent constructions.

As a preparation for the protocol construction, let us first introduce a few
notations and techniques.

Encoding vector ENC(). In the protocol, we will work with a binary vector
of length d that has a very specific constraint determined by N + my bits. For
any b= (by,...,bm,,--.,bN, .., bNim,) € {0,13VF™2 we denote by ENC(b) €
{0,1}¢ the vector encoding b as follows:

ENC(b) = ( exta(by) || ... | exta(bm,) || exta(bns1) || .- .| exta(bntm,)
| exta(by) || ... || exta(bn) || exta(biy, b5,) || . || exta(biz,bj7) ),

where exto () and exty(+,-) are as in Sect. 3.1.

Permutation I'. To prove in zero-knowledge of a vector that has the form
ENC(-), we will need to a specific type of permutation. To this end, we associate
each ¢ = (C1,...,CNy .-y CNom,) € {0, 1}V +™2 with a permutation I, that acts
as follows. When being applied to vector

V= (VlH s val valJrlH s valer2||Vm1+m2+1H s valer2+N||
[V mat vl - ||Vm1+m2+N+|T|) YA

whose first m; +my + N blocks are of length 2 and last |T'| blocks are of length 4,
it transforms these blocks as described below.

Vi P2(vi), Vi€ [m]; Vg P2 (Vi 1), Vi € [mal;
Vi +mo+k PCQ)C (Vm1+m2+k¢)’Vk € [N]7
(Vi +matn+t), VE € [|T]].

4
Vmi+mo+ N+t 77 Pcit,ch

Based on the equivalences observed in (3)—(4), it can be checked that the
following holds. For all b,c € {0,1}¥+™z_all v € Z4,

v =ENC(b) <= TI.(v)=ENC(b+ cmod?2). (7)

Let us now present the protocol, based on the above notations and techniques.
First, we perform the following extensions for the secret objects:

{Vk € [N +my] : s = exta(sy) € {0,112 )

V(it,jt) cT: Yij. = ext4(sit, Sjt) S {0, 1}4.



Lattice-Based Zero-Knowledge Arguments for Integer Relations 713

Now, we will perform some transformations regarding Eq. (5). Observe that,
for each i € [my], if we form matrix G; = [0™ | g;] € Z**?, then we will have
G, -s; = g; - s; mod ¢. Similarly, for each j € [my], if we form B; = [0"* | b;] €
Zg”“, then we will have B; - sy4; = b; - sy4; mod g.

Therefore, if we build matrix M; = [Gy | ... | G, | B1 | ... |
Bu,] € Z;“Xdl, Eq. (5) can be expressed as M; - w; = uj mod ¢, where
w1 = (1] sy s [s34ma) € (0.1}

Next, we will unify all the ny equations in (6) into just one equation modulo 2,
in the following manner. We form matrices

Hy = [0] her] € ZY* V(L k) € [na] x [N];
Foi=[0]0]0]foe] € Zy** V(L t) € [na] x [|T],

and note that Hy p - si, = he - s, mod 2 and Foy - yi, 5, = foe - (sij - 8;,) mod 2.
Thus, (6) can be rewritten as:

Hip-si+...+Hinv-sv+Fii-yo + - +Fuym - Yig 60 =01 mod 2
Hoy-s1i+...+Honv sy +Fou1-yi g0+ +Fo 7 ¥ip 50 = v2 mod 2

Hp,a-s1+ -+ Hpy v sy +Frpn - yig + -+ Fog 1) - Yijp) 6y = Vnp mod 2.
Letting uy = (vy,...,v,,) | € Zy?, the above equations can be unified into
M, - wo = up mod 2, (9)

where matrix My € Z;”Xdz is built from Hy s, F,;, and

wa = (stll ... lIsnlyigll--- | ¥ijzgr) € 0, 132N 4T

Now, let us construct the vector w = (w||wz) € {0, 1}¢, which has the form

(sll--- llsm syl svsmollsa - sn Iyivall -l Yir e

where its components blocks are as described in (8). Then, by our above defini-
tion of encoding vectors, we have w = ENC(s).

The transformations we have done so far allow us to reduce the original
statement to proving knowledge of vector s € {0, 1}¥*™2 such that the compo-
nent vectors wy € {0,1}41, wy € {0,1}92 of w = ENC(s) satisfy the equations
M; - w; = u; mod ¢ and My - wo = uy mod 2. The derived statement can be
handled in Stern’s framework, based on the following main ideas.

— To prove that w = ENC(s), we will use the equivalence (7). To this end, we
sample a uniformly random ¢ € {0,1}¥+™2 and prove instead that I'.(w) =
ENC(s + ¢ mod 2). Seeing this, the verifier is convinced in ZK that w indeed
satisfies the required constraint, thanks to the randomness of c.
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— To prove that equations M7 - w; = u; mod ¢ and M - wy = us mod 2 hold,
we sample uniformly random r; € Zgl, re € Zgl?, and demonstrate that

M; - (wy+r1) =u; + M -r; mod ¢; My - (Wa +13) = uy + My - ry mod 2.
The interactive protocol. Our interactive protocol goes as follows.

— The public input consists of matrices M, My and vectors up, us, which are
constructed from the original public input, as discussed above.

— The prover’s witness consists of the original secret vector s € {0, 1}¥+™2 and
vector w = (w1||wz) = ENC(s) derived from s, as described above.

The prover P and the verifier V interact as described in Fig.1. The protocol
uses the KTX string commitment scheme COM, which is statistically hiding
and computationally binding. For simplicity of presentation, for vectors w =
(willw2) € Z? and r = (r1|r2) € Z%, we denote by w H r the operation that
computes z; = wy +ry mod ¢, Zzo = Wy 4+ ry mod 2, and outputs d-dimensional
integer vector z = (z1/|z2). We note that, for all ¢ € {0, 1}V™2 if t = I (w)
and s = I'¢(r), then we have I'.(wHr) =tHs.

The described protocol can be seen as an improved version of a Stern-like
protocol presented in [45], in the following aspect. In the case Ch = 1, instead
of sending I'c(w) = ENC(c*) - which costs d = 2(m; + mz) + 2N + 4|T| bits, we
let the prover send ¢* which enables the verifier to compute the value ENC(c*)
and which costs only NV +my bits. Due to this modification, the results from [45]
are not directly applicable to our protocol, and thus, in the proof of Theorem 1,
we will analyze the protocol from scratch.

Theorem 1. Suppose that COM is a statistically hiding and computationally
binding string commitment. Then, the protocol described above is a statistical
ZKAoK for the considered relation, with perfect completeness, soundness error
2/3 and communication cost (+2+N+mo+2(my+ms)[logy ¢]+2N+4|T|, where
¢ = O(nlogn) is the total bit-size of CMT and two commitment randomness.

Proof. We first analyze the completeness and efficiency of the protocol. Then we
prove that it is a zero-knowledge argument of knowledge.

Completeness. Suppose that the prover is honest and follows the protocol.
Then, observe that the verifier outputs 1 under the following conditions.

1. t Bv = I.(z). This conditions holds, since w = ENC(s), and by equiva-
lence (7), we have t = ENC(c*) = ENC(s + ¢ mod 2) = I'.(ENC(s)) = I.(w).
Hence, t Bv = I.(w) B Ic(r) = T (wHr) = I.(2).

2. M1 X1 —up = M1 I modq and MQ'XQ—u2 = M2 -r2m0d2. These
two equations hold, because x; = w; + r; mod ¢, Xo = Wy + ro mod 2 and
M; - wi = u; mod ¢, My - wy = ug mod 2.

Therefore, the protocol has perfect completeness.
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1. Commitment: P samples ¢ + U({0,1}¥*™2), ry « U(Z3),rs + U(Z$?), and
computes r = (ri||rz), z=wHr.
Then P samples randomness p1, p2, p3 for COM, and sends CMT = (C’l7 Cy, Cg)
to V, where C1 = COM(c¢, M1 - r1 mod ¢, M - r2 mod 2; p1), and

CQ = COM(Fc(r), pg), Cg = COM(FC(Z), pg).

2. Challenge: V sends a challenge Ch + U({1,2,3}) to P.
3. Response: P sends RSP computed according to Ch, as follows:

- Ch =1: RSP = (¢*, v, p2, p3), where ¢c* = s+ cmod 2 and v = I¢(r).
- Ch =2: RSP = (b, x, p1, p3), where b = ¢ and x = z.
- Ch =3: RSP = (e,y, p1,p2), wheree=cand y =r.

Verification: Receiving RSP, V proceeds as follows:

— Ch =1: Let t = ENC(c*). Check that Co = COM(v; p2), Cs5 = COM(tHBv;ps3).
— Ch = 2: Parse x = (x1]|x2), where x1 € Zgl and xo € Zgz, and check that

C1 = COM(b, M -x1 —u; mod ¢, M2 -x2 —u2 mod 2; p1), C3 = COM(Iu(x);p3)-
— Ch = 3: Parse y = (y1l|y2), where y1 € Zgl and y2 € Z§2, and check that

C1 = COM(e,M; - y1 mod ¢, M3 - y2 mod 2; p1), Co = COM(Ie(y);p2).

In each case, V outputs 1 if and only if all the conditions hold.

Fig. 1. The interactive protocol.

Efficiency. Both prover and verifier only have to carry out O(d) simple oper-
ations modulo ¢ and modulo 2. In terms of communication cost, apart from
¢ bits needed for transferring CMT and two commitment randomness, the
prover has to send a vector in {0,1}V*™2 a vector in Zgl and a vector
in Zg2, while the verifier only has to send 2 bits. Thus, the total cost is
C+2+ N+ mg + 2(my + my)[logy q] + 2N + 4|T'| bits. (When COM is the
KTX string commitment scheme, we have ¢ = 3n[log, ¢ + 2m.)

Zero-Knowledge Property. We construct a PPT simulator SIM interacting
with a (possibly dishonest) verifier V, such that, given only the public input, it
outputs with probability negligibly close to 2/3 a simulated transcript that is
statistically close to the one produced by the honest prover in the real interaction.

The simulator first chooses a random Ch € {1,2,3} as a prediction of the
challenge value that VY will not choose.

Case Ch = 1: SIM uses linear algebra over Z, and Zy to find w} € Zgl and
wh € 73 s.t. M} - w) = u; mod ¢ and My - w) = up mod 2. Let v&;’ = (w}||w}).

Next, it samples ¢ « U ({0, 1} *™2), ry «— U(Zd),ry — U(Z3?), and com-
putes r = (rq||r2), 2’ = w/ Br. Then, it samples randomness p1, pa, p3 for COM
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and sends the commitment CMT = (C1, C3, C%) to V, where

C] = COM(c,M; - r1 mod ¢, My - ro mod 2; p1),
Cy = COM(I¢(r); p2), Cy = COM(Ic(2'); p3).

Receiving a challenge C'h from ]7, the simulator responds as follows:

— If Ch = 1: Output L and abort.
— If Ch = 2: Send RSP = (¢, 7/, p1, p3).
— If Ch = 3: Send RSP = (c,r,pl,pg).

Case Ch = 2: SIM samples s’ « U({0,1}"™2) and computes w’ = ENC(s’).
Next, it picks ¢ «— U({0,1}"*™2), and ry « U(Z¥),ry «— U(742), and com-
putes r = (r1||r2), 2’ = w/ B r. Then, it samples randomness p1, pa2, p3 for COM
and sends the commitment CMT = (C1, C3, C%) to V, where

Cl COM(c,M; - r1 mod g, M5 - ry mod 2; p1),
= COM(I¢c(r); p2), C3 = COM(Ic(2); p3).

Receiving a challenge Ch from 17, the simulator responds as follows:

— If Ch = 1: Send RSP = (s’ + ¢ mod 2,Fc(r),p2,p3).
— If Ch = 2: Output L and abort.
— If Ch = 3: Send RSP = (c,r,pl,pg).

Case Ch = 3: SIM prepares CMT = (C{,C}%,C4) as in the case Ch = 2 above,
except that C7 is computed as

C; = COM(c,M; - (W} +11) —u; mod g, My - (W) + 1) — up mod 2; p1).

Receiving a challenge Ch from l//\, it responds as follows:

— If Ch = 1: Send RSP computed as in the case (@ =2,Ch=1).
— If Ch = 2: Send RSP computed as in the case (Ch =1,Ch = 2).
— If Ch = 3: Output L and abort.

In all the above cases, since COM is statistically hiding, the distribution of the
commitment CMT and that of the challenge Ch from V are statistically close to
those of the real interaction. Hence, the probability that the simulator outputs L
is negligibly far from 1/3. Moreover, whenever the simulator does not halt, it
provides an accepting transcript, of which the distribution is statistically close to
that of the prover in a real interaction. We thus described a simulator that can
successfully emulate the honest prover with probability negligibly close to 2/3.

Argument of Knowledge Suppose that we have RSP; = (c*,v Pél)ap:(gl))v

RSPy = (b, x p1 ,p3 ) and RSP3 = (e,y, pgg),pg )), which are accepting tran-
scripts for the three possible values of the challenge and the same commitment
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CMT = (C1,C4,C5). Let us parse x and y as x = (X1||x2), ¥y = (y1]/y2), where
X1,y1 € Zgl and Xo,y9 € Zg? The validity of the given responses implies that:

= COM(b M1 X1 —Uup mod q7M2 Xo — U2 mod 2; ,0(2)),
= COM(e,M; - y; mod ¢, My -y, mod 2,0(1 ))7
= COM(v; p3”) = COM(Ts(v); p3);
03 = COM(t B v; p!)) = COM(I} (x); o),

where t = ENC(c*). Since COM is computationally binding, we can deduce that:

b=¢e; v=1I.(y); tBv=1I(x);
M -x; —u; =M;j-y; mod ¢ My x5 —us =Ms-ys mod 2.
Let s’ = ¢*+e mod 2 and w' = [I,] ~1(t). Since t = ENC(c*), by equivalence (7),
we have that w' = ENC(s’). Furthermore, note that I'e(w') B I'e(y) = le(x),
which implies that w/ By = x.
Now, parse w' as w' = (W} ||w}), where w} € {0,1}% and w} € {0,1}%.

Then, we have wj + y; = x3 mod ¢, w} + y2 = x3 mod 2, and

M; -wi =M; -x; — M; - y; = u; mod g;

MQ'W/QZMQ'XQ_MQ'YQZUQ mod 2.
This implies w' = (w}||wj)) = ENC(s'), as well as M; - wj = u; mod ¢ and
M; - wy = ugmod 2. Let 8" = (s],..., 85,55 8N -5 Snim,) € {0, 1}N+m2,
By reversing the transformations, it can be seen that the bits of s’ satisfy

Z g s+ Z b - sy, ; =u; mod g¢;

i€[my] jE€[ma]
IT|
er n2 Zhek Sk-l-Zfet . -)Z’Ugmodz
Hence, we have extracted s’ = (s1,..., 85 ;.- +, 8N+ 8N 4m,), Which is a valid
witness for the considered relation. O

As we mentioned earlier, all the statements we will consider in the next sections
will be reduced into instances of the presented general protocol. For each of
them, we will employ the same strategy. First, we demonstrate that the consid-
ered statement can be expressed as an equation modulo ¢ of the form (5) and
equations modulo 2 of the form (6). This implies that we can run the general
protocol to handle the statement, and obtain a statistical ZKAoK via Theorem 1.
Next, as the complexity of the protocol depends on m; 4+ my, N, |T|, we count
these respective numbers in order to evaluate its communication cost.

4 Zero-Knowledge Arguments for Integer Additions

This section presents our lattice-based ZK argument system for additive rela-
tion among committed integers. Let m be the security parameter, and let
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L = poly(n). Given KTX commitments to L-bit integers X = (z5_1,...,%0)2,
Y = (yr—1,-.-,%0)2 and (L+1)-bit integer Z = (21, 21,—1, - - -, 20)2, the protocol
allows the prover to convince the verifier in ZK that X +Y = Z over Z.

As discussed in Sects. 1 and 2.1, using different flavors of the KTX commit-
ment scheme, we can commit to all the bits of X,Y, Z at once or a bit-by-bit
fashion. Both approaches are both compatible with (and independent of) our
ZK techniques. Depending on which commitments we use, we obtain different
give trade-offs in terms of parameters, key sizes, security assumptions and com-
munication costs. In the following, we will use the former variant, which yields
communication complexity O(L + n). Our protocol can be easily adjusted to
handle the bit-wise commitment variant, which yields complexity 5(L -n), but
allows smaller parameters, smaller keys and weaker lattice assumption.

Commitments. Let a prime ¢ = O(VL - n) and m = n([log, ¢] + 3). Choose a

commitment key (ag,...,ar_1,az,b1,...,by) < U(ZZX(L'H"H)). To commit
to X,Y, Z, sample 1,1, ...,7m, < U({0,1}), for i € {1,2,3}, and compute

Zf:_ol a; - x; + Z;’;l b, - ri1; = ¢; mod g;
L— ,

Zizol a; -y + Z;HZI bj -2, = ¢, mod ¢; (10)
L

Do zi+ 5L by s =c, mod g,

and output commitments ¢z, ¢y, c, € Zy. The scheme relies on the worst-case
hardness of SIVP.,, for v = O(VL - n).

Before presenting our protocol, we note that the three equations (10) can be
unified into one equation of the form

L—1 L—1 L

Sl Y e s Y b =emody (1)
i=0 i=0 i=0 (i,5)€[3]x[m]
where agl), 352), al(-g) € ZS” are extensions of a;; b;l), b§-2), b;-s) S Zg" are exten-

sions of by; and ¢ = (cg|cyllc.) € Z2". Having done this simple transformation,
we observe that Eq. (11) does have the form captured by Eq. (5) in the protocol
we put forward in Sect. 3. Here, the secret bits contained in the equations are
the bits of X,Y, Z and those of the commitment randomness.

Proving Integer Additions. At a high level, our main idea consists in trans-
lating the addition operation X 4 Y over the integers into the binary addition
operation with carries of (xp_1,...,%0)2 and (yr—_1,...,Y0)2 and proving that
this process indeed yields result (zr,2zr—1,-..,20)2. For the latter statement,
we capture the whole process as equations modulo 2 that contain linear and
quadratic terms, and show how this statement, when combined with the com-
mitment equations (11), reduces to an instance of the protocol of Sect. 3.

Let us first consider the addition of two bits x, y with carry-in bit ¢;,. Let the
output be bit z and the carry-out bit be coy. Then, observe that the relation
among ., Y, z, Cin, Cout € {0, 1} is captured by equations
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z=x+y+ ¢ mod 2 z4+x+y+cp=0mod 2

Cout =T - Y+ 2 Cin + Cinp mod 2 Cout + T Y+ 2+ Cin + cin = 0 mod 2.
Therefore, the addition with carries of (xr_1,...,20)2 and (yr—1,. .., Yo)2 results
in (21,25-1,--.,20)2 if and only if the following equations hold:

20 + xo + yo = 0 mod 2;

c1 + o - Yo = 0 mod 2;

z1+x1+y1 +c1 =0mod 2;

ca+x1-y1 +21- ¢ + ¢ =0mod 2; (12)

21+ Tr-1+Yyr—1+cr—1=0mod 2;
2L +2p—1-Yr—1+zr—1-cp—1+cr—1 =0mod 2.

Here, for each i € {1,...,L — 1}, ¢; denotes the carry-out bit at the i-th step
which is also the carry-in bit at the (i + 1)-th step. (The last carry-out bit is zy,.)

Now, observe that, together with Eq. (11), the 2L equations in (12) lead
us to an instance of the protocol of Sect. 3. It indeed fits the pattern if we let
N := 4L, my; := 3L 4+ 1, my := 3m and denote the ordered tuple of N + my
secret bits (1‘0, s TL—-15Y05---5YL—-15,205- -5 RL5Cly- -5 CL—1,T1,15-- - ,T37m) by
(51, .. .,3N+m2). Then, note that the first m; bits sq,...,Sm, and the last my
bits Sn+1,- .-, SN+m, satisfy the linear equation modulo ¢ from (11), while the
first N bits s1,..., sy satisfy the equations modulo 2 in (12), which contain N
linear terms and a total of |T| := 2L — 1 quadratic terms, i.e.:

Zo Yo, T1 Y1, 21 -C1y --+y, TL-1"YL-1, ZL—-1 " "CL-1-

As a result, our ZK argument system can be obtained from the protocol
constructed in Sect. 3. The protocol is a statistical ZKAoK assuming the security
of two variants of the KTX commitment scheme: the variant used to commit
to X, Y, Z - which relies on the hardness of SIVPé(ﬁAn), and the commitment
COM used in the interaction between two parties - which relies on the hardness of
SIVPa(n). By Theorem 1, each execution of the protocol has perfect completeness,
soundness error 2/3 and communication cost

O(nlogn) 4+ 3m + 2(3L + 1 + 3m)[log, ¢| + 20L

bits, where O(nlogn) is the total bit-size of 3 KTX commitments (sent by the
prover in the first move) and 2 commitment randomness. Here, it is important
to note that the cost of proving knowledge of valid openings for c;,cy,c; is
O(nlogn)+3m+2(3L + 1+ 3m)[log, q] bits. Thus, the actual cost for proving
the addition relation is 20L bits.

We further remark that the protocol can easily be adapted to less challenging
situations such as: (i) The bit-size of the sum Z is public known to be exactly L
(instead of L+1); (ii) Not all elements X,Y, Z need to be hidden and committed.
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Indeed, in those scenarios, our strategy of expressing the considered relations as
equations modulo ¢ and modulo 2 easily goes through. Moreover, it even simpli-
fies the resulting protocols and reduces their complexity because the number of
secret bits to deal with is smaller than in the above protocol.

5 Logarithmic-Size Arguments for Range Membership
and Set Non-Membership

We present two applications of our zero-knowledge protocol for integer additions
from Sect. 4: range membership and set non-membership arguments.

5.1 Range Membership Arguments

Our range arguments build on the integer addition protocol of Sect.4. We
consider the problem of proving in ZK that a committed integer X satisfies
X € o, 0], e, a < X < g, for publicly known integers «, (.

Let L = poly(n), ¢ = O(vVL-n) and m = n([log, q] + 3). Suppose that L-bit
integer X = (xp_1,...,%0)2 is committed via the KTX commitment scheme,
using a public commitment key ag,...,ar—1,b1,..., by € Z; and randomness
71y, "m € {0,1}. Namely, the commitment ¢ € Z7 is computed as

L—1 m
Zai.xi+2bj-rj:cmodq. (13)
i=0 Jj=1

Our goal is to prove in ZK that X € [a, ], for publicly given L-bit integers
a=(ar-1,...,)2 and = (Br-1,---,00)2

The main idea. We observe that X satisfies a < X < g if and only if there
exist non-negative L-bit integers Y, Z such that

a+Y =X and X+Z=4 (14)

We thus reduce the task of proving X € [a, 8] to proving two addition relations
among integers, which can be achieved using the techniques of Sect.4. To this
end, it suffices to demonstrate that the relations among the secret bits of X, Y, Z
and public bits of «, 8 can be expressed as equations modulo 2 of the form (6).

The underlying equations modulo 2. Let the bits of integers Y,Z be
(Yr-1,---,%0)2 and (zr—1,...,20)2, respectively. The addition a« + Y = X
over Z, when viewed as a binary addition with carries, can be expressed as
the following 2L equations modulo 2 which contain L — 1 quadratic terms
r1+Cly.-.,—-1"Cr—1-
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2o + Yo = ap mod 2;
c1+ ag - yo = 0 mod 2; // First carry-bit
1+ y1 + ¢1 = a3 mod 2;

Ccotoy-yYy1+x1-c1+cp = 0 mod 2; // Second carry-bit ( )
15

cr—1+ar_2-Yr—2+Tr_2-cr_2+cr_2 =0mod 2;
Tr—1+yr—1 +cr—1 = ap_—1 mod 2;

ar_1-Yr-1+xrp_1-cr—1+cr—1=0mod 2. // Last carry-bit is 0.

The relation X + Z = f is handled similarly. We obtain the following
2L equations modulo 2, which contain L quadratic terms xg - 29,21 + 21, .-
Trp—1-°2L-1-

*

To + 20 = [p mod 2;

e1 + 2o - 20 = 0 mod 2; // First carry-bit
r1 + 21 + e1 = f1 mod 2;

es+x1-21+01-e1+e =0mod?2; // Second carry-bit

er—1+2r—2 212+ P2 -er—2+er_o=0mod 2
Tr—1+2p—1+er—1 = PBr-1 mod2;

Tr—1*2—-1+ 6L—1 cer—1t+erL—_1 = 0 mod 2. // Last carry-bit is 0.

Combining (15) and (16), we obtain a system of 4L equations modulo 2,
which contain N := 5L — 2 linear terms

Loy TL-1,Y05- -+ YL-1,205-++52L-1,C1,++-,CL-1,€1,...,EL—1,
and a total of |T'| = 2L — 1 quadratic terms

r1-Cly..., -1 "CL-1,%0 " 20,21 *215-++,LL—-1"2L—1-

Putting it altogether. Based on the above transformations, we have translated
the task of proving that committed integer X satisfies X € [a, 8] to proving
knowledge of N + mg = 5L — 2 + m secret bits

Ty ey TL15Y0s -y YL—1y 20+« s ZL—15Cly vy CL_15 €Ly vy €L—1,T1; -+, Tm, (17)

where the first my = L bits and the last mo = m bits satisfy Eq. (13) modulo ¢,
while the first N = 5L — 2 bits satisfy a system of equations modulo 2 containing
N linear terms and |T'| = 2L—1 quadratic terms. In other words, we have reduced
the considered statement to an instance of the general protocol of Sect. 3.2. By
running the latter with the witness described in (17), we obtain a statistical
ZKAoK hardness of based on the hardness of SIVP, with factor v < (’3(\/f - n).
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Each execution of the protocol has perfect completeness, soundness error 2/3
and communication cost

O(nlogn) +m+ 2(L +m)[log, q] + 23L

bits, where O(nlogn) is the total bit-size of 3 KTX commitments (sent by the
prover in the first move) and 2 commitment randomness. Here, the cost of prov-
ing knowledge of a valid opening for ¢ is O(nlogn)+m + 2(L + m)[log, q| bits.
The actual cost for proving the range membership thus amounts to 23L bits.

Variants. Our techniques can be easily adapted to handle other variants of
range membership arguments. To prove a strict inequality, e.g., X < 3 for a
given 3, we can simply prove that X < [ — 1 using the above approach. In the
case of hidden ranges, e.g., when we need prove that Y < X < Z where X,Y, Z
are all committed, then we proceed by proving the existence of non-negative
L-bit integers Y7, Z; such that Y +Y; +1 =X and X + Z; +1 = Z. This can
be done by executing two instances of the protocol for addition relation among
committed integers from Sect. 4.

5.2 Set Non-Membership Arguments

In this section, we construct a protocol allowing to prove that a committed
element is not in a public set Set. The goal is to do this without relying on a
trusted third party to approve the description of Set by signing its elements or
any other means. To this end, we combine our protocols for integer addition
and inequalities with arguments of knowledge of a path in a Merkle tree [44].
While Merkle trees were introduced for proving set membership, we (somewhat
counter-intuitively) use them for dual purposes.

For security parameter n, choose ¢ = (5(71), k = nllogyq] and m = 2k.
Sample uniformly random matrices A, By, By € ZZX’“, and denote their columns
as ag,...,a—1,00,0,-.-,Pok—1,bP10,...,b1x—1 € Z7. These vectors will serve
as public key for the KTX commitment scheme with k-bit committed values,
while matrix B = [By | By] € Z*?* will also serve as the public key for the
Merkle tree from [43]. Let G € Z!** be the “powers-of-2” matrix of Sect. 2.1.

Let X = (Zr—-1,...,%0)2 be a k-bit integer, and let c € Z; be a KTX com-
mitment to X, i.e., we have the following equation modulo g:

k—1
Zal- -z + Z b; ;-7 ; = cmod g, (18)
i=0 (4,5)€{0,1} xk

where bits ro1,...,7m1% € {0,1} are the commitment randomness.

Let Set = {S1,...,Sm} be a public set containing M = poly(n) integers of
bit-size k, where S; < So < ... < Sp;. We wish to prove in ZK that an integer
X, which has been committed to via ¢ € Zj, does not belong to Set. We aim at
communication complexity O(log M), so that the protocol scales well for large
sets. To this end, we will use the lattice-based Merkle hash tree from [44].



Lattice-Based Zero-Knowledge Arguments for Integer Relations 723

Without loss of generality, assuming that M = 2¢ — 2 for some positive
integer £.%> For each i = 0,..., M, let s; € {0,1}* be the binary-vector repre-
sentation of S;. Let sg = (0,...,0) and sp41 = (1,...,1) be the all-zero and
all-one vectors of length k, which represent 0 and 2¥ — 1, the smallest and the
largest non-negative integers of bit-size k, respectively. Using the SIS-based hash
function hp (see Sect.2.1), we build a Merkle tree of depth £ on top of 2¢ vectors
S0,S1,---,SM,Spm+1 and obtain the root u € {0,1}*. For each i € [0, M + 1],
the tree path from leaf s; to root u is determined by the ¢ bits representing
integer 1.

We prove knowledge of two consecutive paths from leaves y € {0,1}* and z €
{0,1}* to the public root u such that the k-bit integers Y and Z corresponding
to y and z satisfy Y < X < Z, where X is the integer committed in c.

Let vy_1,...,v9 and wy_1, ..., wo be the bits determining the paths from the
leaves y and z, respectively, to root u. Then, by “consecutive”, we mean that the
£-bit integers V' = (vp—1,...,v0)2 and W = (wy_1,...,wp)e satisfy V +1=W.

We remark that the truth of the statement — which is ensured by the sound-
ness of the argument — implies that the integer committed in ¢ does not belong
to Set, assuming the collision-resistance of the Merkle hash tree and the secu-
rity of the commitment scheme. This is because: (i) The existence of the two
tree paths guarantees that y,z € Set; (ii) The fact that they are consecutive
further ensures that (y,z) = (s;,8,+1), for some i € [0, M]; (iii) The inequalities
Y < X < Z then implies that either X < S or Sy < X or §; < X < S41, for
some j € [1, M — 1]. In either case, it must be true that X ¢ Set.

The considered statement can be divided into 4 steps: (1) Proving knowledge
of X committed in c; (2) Proving knowledge of the tree paths from y and z; (3)
Proving the range membership Y < Z < X; (4) Proving the addition relation
V 4+ 1 = W. We show that the entire statement can be expressed as one linear
equation modulo ¢ together with linear and quadratic equations modulo 2, which
allows reducing it to an instance of the general protocol from Sect. 3.2. Regarding
(1), we have obtained Eq. (18). As for (2), we use the techniques from [44] to
translate Merkle tree inclusions into a set of provable equations modulo ¢ and
modulo 2. The sub-statement (3) can be handled as in Sect. 5.1. Finally, (4) can
easily be expressed as 2¢ — 1 simple equations modulo 2.

The details of these steps are provided in the full version of the paper. We
finally remark that set elements can have a longer representation than k =
n[logq| bits if we hash them into k-bit string before building the Merkle tree.
For this purpose, a SIS-based hash function Hsis : {0, 1}™ — Zp like [2] should
be used to preserve the compatibility with zero-knowledge proofs.

3 If M does not have this form, one can duplicate S; sufficiently many times until the
cardinality of the set has this property. Our protocol remains the same in this case.
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6 Subquadratic Arguments for Integer Multiplications

For L = poly(n), we consider the problem of proving that committed integers
X =(zp-1,-.-,%0)2, Y = (Yr-1,---,%0)2, Z = (220-1,- - ., 20)2 satisfy the mul-
tiplicative relation Z = XY. This task can be realized by running L instances
of the protocol for integer additions from Sect. 4, but this naive method would
yield complexity at least O(L?). Our target here is to design an asymptoti-
cally more efficient protocol with computation/communication cost subquadratic
in L. From a theoretical point of view, such a protocol is particularly interest-
ing, because its execution must somehow employ a subquadratic multiplication
algorithm. This inspires us to consider for the first time in the context of ZK
proofs the Karatsuba multiplication algorithm [38] that achieves subquadratic
complexity O(L'°#23). Specifically, we will prove that the result of applying
the Karatsuba algorithm to committed integers X,Y is exactly the committed
integer Z.

Commitments. Choose a prime ¢ = O(VL-n) and let m = n([log, q] +3). We
use the KTX commitment scheme with public key (ag, . ..,asr-1,b1,...,by) <«
U(ZZX(2L+m)). Let ¢, ¢y, c. € Z be commitments to X,Y, Z, where

L—-1 m

Doico @i T+ bjrj=c; modg;
L—-1 m

2iico @i Yit+ 5 bj-ra; =cymodyg;
2L-1 m

Do @i %+ ybj-rs3;=c,modg,

where bits {75 ; } (i j)e[3]x[m] are the commitment randomness. Then, as in Sect. 4,
we can unify the 3 equations into one linear equation modulo g:

L-1 L-1 2L—1
Z aEU -~z + Z a?) Y + Z agg) -z + Z bgi) -ri; =cmod ¢q. (19)
i=0 i=0 i=0 (4,5) €[3]  [m)]

6.1 An Interpretation of the Karatsuba Algorithm

Let L = 2* for some positive integer k. We will employ a variant of the Karatsuba
algorithm, suggested by Knuth [40, Sect. 4.3.3]. First, we need to interpret the
execution of the algorithm in a fashion compatible with our ZK technique.

The First Iteration. For the first application of Karatsuba algorithm, we break
X and Y into their “most significant” and “least significant” halves:

X=XV XxOand Y = [yD,y©)], (20)

where XM, X(© y(D) vy are L/2-bit integers. Then, as suggested by Knuth,
the product Z can be written as:
Z=XY =2V +2?) . xWy® 4 (2L/2 4 1). x(Oy ()
_9L/2 | (X(l) — X(O))(y(l) — y(O))_ (21)
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The advantage of Knuth’s approach over Karatsuba’s is that it allows working
with the differences (X — X(©)) (Y1) — y(©) that guarantee to have bit-
size L/2, rather than working with the sums (XM + X(©), (Y 4 Y(©) that
cause a burden of carry-on bits. However, this modification introduces a new
issue as these differences may be negative, which are more difficult to handle in
our setting. For this reason, we need to make sure that we always subtract a
smaller integer from a larger one, while preserving the ability to prove correct
computations. R R R R

Let X, X(©) such that XM > X©) and {X®) X1 = {XB) X O Tf we
use an order control bit b /‘Ehat isAassigned value 1 if XM > X (0), or value 0
otherwise, and let X = X1 — X() > 0, then we have the relations

KO —p. XD 5. X0, RO 5. xM 4. xO, x@ L RO — g0 (99)

Conversely, if non-negative intAegersAX(l),X(O),)A((l),)?(o),X(Ql and bit b sat-
isfy (22), then it holds that {X™ X©} = {XM X1 and X > X©) and
x@ — x@) _ x(0)

Similarly, we can obtain YO, YO guch that Y > VO non-negative Y@
such that Y® =Y — Y ©) a5 well as a control bit d satisfying

YO —g.yW 4 3. yO®, $O —G.yD 4 q.y©. y@ L §0) — ) (93)

Relations (22)—(23) essentially establish a “bridge” that allows us to work (in
the subtractions X — X and YY" — Y (©) incurring in (21)) with non-negative
integers X(® and Y instead of possibly negative integers. Indeed, letting s =
b+ d mod 2, we have

(XM = xO)yy® _yO)=35. x@Py@ _ 5. xQy@),
Then, Eq. (21) can be expressed as
Z =Xy = (2L 428220 4 (2L/2 4 1)2O) 4 oL/2(5. 22y — 2L/2(5. 7)),
(24)

where Z) = XMy M) 70) = xOy©) and 23 = X@ Y@ are L-bit integers.
These values are computed based on recursive applications of the Karatsuba
algorithm until we reach integers of bit-size L/2¥~1 = 2, as described below.

The Recursion. For t = 1 to k — 2, and for string a € {0, 1,2}, on input of
L/2'-bit integers X (@) and Y(® | we recursively obtain L /21 bit integers

X(al). X(aO); )?(al); )/(\'(QO); X(a2); Y(al); Y(on); i}(al); i}(a[)); Y(a2)’

)
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and bits b(®), d(®) () satisfying the following relations.

X (o) — [X(ocl)vX(aO)};

K1) — pla) . x(o1) L 3 x(a0), F@0) — 5l x(a1) | ple) . x(a0),
x(02) 4 X (a0) — g(o),

y(a) — [Y(al),y(aO)}; (25)
Pla) — gl . y(a) 4 g y(e0). pa0) — g y(a1) L gl . y(a0),
y(e2) 4 (a0) — o).

5@ = p(@) 4 d(@) mod 2.

Let Z(el) = x(e)y(al)  7(a0) — x(a0)y(a0) 7(a2) — x(o2)y(a2) Note that
these L/2!-bit integers satisfy the equation:

z(a) . x(a)y(a) _ (2L/2*‘ + 2L/2t+1) S ACTNE (2L/2‘+1 +1) .20
4+ oL/2 (S(a) . Z(fX?)) _gL/2"t (g(a) .Z((X?))' (26)

We remark that the number of secret bits contained in the integers
{x (e, x(@0). x(), x(0), x(2}y  where a € {0,1,2},Vt=0,...,k—2,

derived from X in the above process is

-2 k—2 t+1 k
L 5L 3 10L 3 10
5-§ ) == = =—.(2) —5L=— 3L _5[
t:O( 2t+1> 3 = (2) 3 (2) 3

That is also the number of secret bits in the integers derived from Y. Meanwhile,
the number of control bits b(®), d(®) s(®) is 3. Zf;oz 3t = (382 L —3)/2. In total,
the process gives us O(31°82 L) = O(L!°823) secret bits.

6.2 Representing All Relations as Equations Modulo 2

As shown in Sects. 4 and 5, to prove that committed integers satisfy some state-
ment, it suffices to demonstrate that the statement can be expressed as one
linear equation modulo g together with linear and quadratic equations modulo
2, which effectively reduces it to an instance of the general protocol of Sect. 3.2.
We have already obtained the linear equation modulo ¢ from (19). Our main task
is now to show that all the relations among O(L!°%23) secret bits obtained in
Sect. 6.1 can be expressed in terms of linear and quadratic equations modulo 2.

We observe that, apart from the linear equations s(® = b(® 4 d(®) mod 2,
there are several common types of relations among the secret objects derived in
Sect. 6.1, for which we handle as follows.

The first type is relation of the form X (@) = [X (o) x(20)] hetween an L/2!-

bit integer X (@ and its halves X(@) and X (@0 Let X(@ = (&) L2l

L 100
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and X (1) = (x(;Ll) e ,xéal))z, X(@0) — (g (;0) e :z:(()ao)) . This type of
relation can be expressed as the following linear equations modulo 2:
_ L @0 (@) ey (@)
VZ—O,...,F—l.xi +2z,  =0mod 2; z; +xi+2f+1_0m0d2'

The second type is relation of the form
XD — pla) . x(a1) L 3 x(a0). ga0) _ 3l y(a1) | pla) . x(a0)

reflecting how L/2+1-bit integers X1, X (@) are computed from X (@1 x(0)
based on a control bit 5(®). This type of relation can be translated into the
following equations modulo 2, with respect to the bits of those integers

) a0)

Vi=0,... L2 1 3o p@ g0 L3l @0 g p6d 9,
Vi=0,... L2 =1 200 45 20D 4 pe) 500 g mod 2,

that contains 4 - ?% quadratic terms.

The third type is the addition relation X (@2 4 X(20) = X (1) among L /20+1-
bit integers. This can be handled using our techniques from Sect. 4, resulting in
equations modulo 2 with less than 2 - Qt% quadratic terms in total.

The fourth type of relations appears when we reach the base multiplication
of 2-bit integers: e.g., Z(@1) = XDy (@D where a € {0,1,2}F2. Let X(o) =
(@5 af™)s, YO = (g ™)y and Z1) = (24 7 2, ),
This relatlon can then be expressed by the following equations modulo 2, which
contain 6 quadratic terms.

z(()al) + a?(()al) . y(()al) = 0 mod 2;
tg?col) s (al) (al)

t(al) (al) (al)
0,1

=0mod 2; // assign value :rgal) yéal) to tg

éal) (od) to t(al)

al)

+ xy =0mod 2; // assign value x
A )+t§0)+tgl) 0 mod 2;

( )+t§0) tél) 0O mod 2; // carry bit

t(al) + x(al) (al) =0mod 2; // assign value xgal) -y§a1) to tg?‘ll)
(“1) +t§ D+ 5”‘” — 0mod 2;

;(), )+t§71) 5 ):0m0d2,

The other types of relations come into the scene when we add up partial products
and their shifts to compute the Z(®)’s and finally reach Z, which are reflected
by equations (26) and (24). To handle the shifts, e.g., left-shifting integer Z(1)
by L/2!T1 positions, we assign an auxiliary variable Z(@1) = 9L/2" . 7(a1) and
express the relations between bits of 7@l and Z(@D as linear equations mod-
ulo 2, as is done for the first type of relation considered above. After performing
all the shifts, we will need to handle a few additions of integers to compute a par-
tial product such as Z(®) in (26). There, the subtraction by 22/27" . (3() . Z(a2))
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can be transformed into an equivalent addition relation. Then, we can repre-
sent each of the addition operations in (26) as linear and quadratic equations
modulo 2.

Based on the above discussion, it can be seen that the whole execution of the
Karatsuba algorithm can be expressed as linear and quadratic equations modulo
2. Combining with the linear equation modulo ¢ from (19), we thus obtain an
instance of the general protocol from Sect. 3.2. As a result, we achieve a statistical
ZKAoK of committed integers X,Y, Z satisfying XY = Z. The security of the
argument system relies on the binding of the COM used in the interaction and
the binding of the commitment variant used for committing to X,Y, Z. Overall,
the protocol is secure assuming the hardness of SIVP5( VEn):

We remark that, in our process of translating the relations in Sect.6.1 into
equations modulo 2, for each type of relations, the number of secret bits and
the number of quadratic terms we need to handle are only a constant times
larger than those before translating. Thus, the final numbers N and |T'| are of
order O(L'°23). Meanwhile, from Eq. (19), we obtain that m; + mg = 4L + 3m.
Therefore, when repeating the protocol k = w(logn) times to achieve negligible
soundness error, the total communication cost is of order ((’)(L + m) log q) +
O(L'°#23)) - k. In terms of computation cost, the total number of bit operations
performed by the prover and the verifier is of order O(L!°223), i.e., subquadratic
in L.
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