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Abstract. We propose the first zero-knowledge argument with sub-
linear communication complexity for arithmetic circuit satisfiability over
a prime p whose security is based on the hardness of the short integer
solution (SIS) problem. For a circuit with N gates, the communication

complexity of our protocol is O
(√

Nλ log3 N
)
, where λ is the security

parameter. A key component of our construction is a surprisingly simple
zero-knowledge proof for pre-images of linear relations whose amortized
communication complexity depends only logarithmically on the number
of relations being proved. This latter protocol is a substantial improve-
ment, both theoretically and in practice, over the previous results in
this line of research of Damg̊ard et al. (CRYPTO 2012), Baum et al.
(CRYPTO 2016), Cramer et al. (EUROCRYPT 2017) and del Pino and
Lyubashevsky (CRYPTO 2017), and we believe it to be of independent
interest.
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1 Introduction

Zero-knowledge proofs and arguments are used throughout cryptography as a
key ingredient to ensure security in complex protocols. They form an important
part of applications such as authentication protocols, electronic voting systems,
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encryption primitives, multi-party computation schemes, and verifiable compu-
tation protocols. Therefore, designing zero-knowledge protocols with strong secu-
rity and high efficiency is of the utmost importance.

A zero-knowledge argument allows a prover to convince a verifier that a
particular statement is true, without the prover revealing any other information
that she knows about the statement. Statements are of the form u ∈ L, where L
is a language in NP. We call w a witness for statement u if (u,w) ∈ R, where R is
a polynomial time decidable binary relation associated with L. Zero-knowledge
arguments must be complete, sound and zero-knowledge.

Completeness: A prover with witness w for u ∈ L can convince the verifier.
Soundness: A prover cannot convince the verifier when u /∈ L.
Zero-knowledge: The interaction should not reveal anything to the verifier

except that u ∈ L. In particular, it should not reveal the prover’s witness w.

We wish to design a zero-knowledge argument based on the short integer solu-
tion (SIS) assumption. Lattice problems appear to resist quantum attacks, and
possess attractive worst-case to average-case reductions, in stark contrast with
number theoretic assumptions such as the hardness of factoring or computing
discrete logarithms. Moreover, using SIS (and the even more efficient Ring-SIS)
yields better computational efficiency, which is a significant bottleneck in many
zero-knowledge arguments.

1.1 Our Contributions

We provide an honest verifier zero-knowledge argument for arithmetic circuit sat-
isfiability over Zp, for an arbitrary prime p. Our argument is based on the SIS
assumption [Ajt96,MR04], which is conjectured to be secure even against a quan-
tum adversary. Our argument has an expected constant number of moves and
sub-linear communication complexity, as shown in Table 1. Moreover, it achieves
small soundness error in a single protocol execution. Moreover, both the prover
and verifier have quasi-linear computational complexity in the amount of compu-
tation it would require to evaluate the arithmetic circuit directly. The argument
therefore improves on the state-of-the-art in communication complexity for lat-
tice proof systems and is efficient on all performance parameters.

Table 1. Performance of our zero-knowledge argument for arithmetic circuit satisfia-
bility. Here N is the number of gates in the arithmetic circuit, and λ is the security
parameter.

Expected Communication Prover Complexity Verifier Complexity

# Moves (bits) (bit ops) (bit ops)

O(1) O(
√

Nλ log3 N) O(N log N(log λ)2) O(N(log λ)3)
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Techniques. We draw inspiration from the discrete logarithm based arithmetic
circuit satisfiability argument of Bootle et al. [BCC+16], which requires 5 moves
and has square root communication complexity in the number of multiplication
gates. In their argument the prover commits to all the wires using homomorphic
commitments, and embeds the wire values into a polynomial that verifies prod-
ucts and linear relations simultaneously, avoiding the cost for addition gates.

Almost all parts of the original arguments adapt seamlessly to the SIS setting,
except for two important issues:

– To achieve sub-linear communication, we need a technique for proving knowl-
edge of commitment openings in sub-linear space.

– Due to the new algebraic setting, we require new techniques for achieving
negligible soundness in a single run of the protocol.

The first of these issues has been an open problem in a fairly active area of
research, and we sketch our solution below.

Proof of Knowledge. Suppose that we have a linear relation

As = t mod q, (1)

where A ∈ Z
r×v
q , t ∈ Z

r
q are public and s ∈ Z

v
q is a vector with small coefficients,

and we want to give a zero-knowledge proof of knowledge of an s̄ with small
coefficients (the coefficients of s̄ may be larger than those of s) that satisfies

As̄ = t mod q. (2)

We do not currently know of any an efficient linear-communication protocol
for proving knowledge of a single relation of the above form in a direct way. There
are protocols, however, that allow for proofs of many such relations for the same
A but different si (and thus different t i) in linear amortized complexity. We will
mention these previous works in more detail in Sect. 1.2.

In this work, we give a protocol for proving (1) where the proof length is a
factor λ

� · O(log v�λ) larger than the total bit-length of � pre-images s1, . . . , s�

of the relations, where λ is the security parameter. More specifically, to prove
knowledge of � pre-images s1, . . . , s� whose coefficients have log s bits each, the
prover needs to send λ vectors in Z

v
q whose coefficients require O(log v�λs) bits to

represent. Ignoring logarithmic terms, our proof essentially requires a fixed-size
proof regardless of the number of relations being proved. The previously best
results had proofs that were at least linear in the total size of the pre-images.

Surprisingly, the proof of knowledge protocol turns out to just be a parallel
repetition of λ copies of the ZKPoK implicit in the signing protocol from [Lyu12].
In particular, if we write the � relations as AS = T mod q, where S ∈ Z

v×�
q , then

the protocol begins with the prover selecting a “masking” value Y with small
coefficients and sending W = AY mod q. The verifier then picks a random
challenge matrix C ∈ {0, 1}�×(λ+2), and sends it to the prover. The prover
computes Z = SC + Y and performs a rejection sampling step in order to
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make the distribution of Z independent from S , and if it passes, sends Z to the
verifier. The verifier checks that all columns comprising Z have small norms and
that AZ = TC +W mod q. This protocol can be shown to be zero-knowledge
using exactly the same techniques as in [Lyu09,Lyu12].

To show that the protocol is a proof of knowledge, we make the following
observation: if the prover succeeds with probability ε > 2−λ, and she succeeded
for a random C , then there is a probability of ε−2−λ−2 that she would success-
fully answer another challenge C ′ �= C that is constructed such that all rows
except the ith are the same as that of C , and the ith row is picked uniformly at
random. This property follows from an averaging (or “heavy row”) type argu-
ment. The implication is that if the prover succeeds in time t with probability
ε, then the extractor can extract responses to two such commitments C ,C ′ in
expected time O(t/ε). Obtaining two responses Z ,Z ′ for two such challenges
allows the extractor to compute A(Z − Z ′) = T (C − C ′) where C − C ′ is 0
everywhere except in row i. Since C �= C ′, this implies that some position in
row i is ±1. If t i is the ith column of T and z i is the ith column of Z − Z ′,
then we have a solution Az i = ±t i. Repeating this extraction � times, each
time rewinding by fixing all rows in the challenge except for the ith, results in
an algorithm that runs in expected time O(� · t/ε), which is only a factor of �
larger than the expected running time of a successful prover.

In the case that we are proving (1) over the polynomial ring Z[X]/(Xd + 1),
the proof can be even shorter, as we can reduce the number of columns in C
to ≈ λ/ log 2d because we can use challenges of the form ±Xi and prove the
knowledge of s̄ such that As̄ = 2t using the observation from [BCK+14].

Commitment Scheme. Central to the main proof of proving circuit satisfiability
is being able to commit to N values in Zp and giving a ZKPoK for the values such
that the total size of the commitments and the proofs is sub-linear in N . For this,
it is necessary to use a compressing commitment scheme – i.e. one in which we
can commit to n elements of Zp in space less than n elements. The scheme that
we will use is the “classic” statistically-hiding commitment scheme based on the
hardness of SIS that was already implicit in the original work of Ajtai [Ajt96].
The public randomness consists of two matrices A ∈ Z

r×2r logp q
q ,B ∈ Z

r×n
q , and

committing to a message string s ∈ Z
n
p where p < q involves picking a random

vector r ∈ Z
2r logp q
p and outputting the commitment t = Ar + Bs mod q.

Thus the commitment of n elements of Zp requires r log q bits. One can set
the parameters such that n = poly(r) and the commitment scheme will still
be computationally binding based on the worst-case hardness of approximating
SIVP for all lattices of dimension r.

We now explain the intuition for putting together this commitment scheme
with the zero-knowledge proof system we described above to produce a commit-
ment to N values in Zp such that the total size of the commitments and the
ZKPoK of the committed values is O(

√
Nλ log N). The idea is to create N/n

commitments (for some choice of n which will be optimized later), with each
one committing to n values. Our motivation is that an arithmetic circuit over
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Zp with N gates has 3N wire values in Zp. Now, we can arrange all of the wire
values in the circuit into, for example, a 3N/n × n matrix over Zp, and make
one homomorphic commitment to all of the elements in each row of the matrix.
Then, we can employ techniques from [Gro09a,BCC+16], where checking arith-
metic circuit satisfiability is reduced to checking linear-algebraic statements over
committed matrices, using a homomorphic commitment scheme.

The total space requirement for these commitments is therefore N
n · r logp q.

We now have a linear equation of the form
[
A B

]
[
R
S

]
= T mod q. Using

our new zero-knowledge proof, the communication complexity of proving the

knowledge of a short
[
R̄
S̄

]
∈ Z

(r logp q+n)×N/n
q such that

[
A B

]
[
R̄
S̄

]
= T mod

q requires sending λ vectors of length r logp q + n with coefficients requiring
O(log Nλp) bits, for a total bit-length of n ·λ ·O(log Nλp). Combining the proof
size with the commitment size results in a total bit-size of

N

n
· r log q + n · λ · O(log Nλp).

We minimize the above by setting n =
√

Nr logp q

λ log Nλp , which makes the size

O
(√

Nrλ(logp q)(log Nλp)
)

.

Based on the complexity of the best known algorithm against the SIS prob-
lem, one can set log q, r = O(log N), thus making the proof size of order
O(
√

Nλ log3 N).

1.2 Related Work

Zero-knowledge proofs were invented by Goldwasser et al. [GMR85]. It is useful
to distinguish between zero-knowledge proofs, with statistical soundness, and
zero-knowledge arguments with computational soundness. The most efficient
proofs have communication proportional to the size of the witness [IKOS07,
KR08,GGI+15] and proofs cannot in general have communication that is smaller
than the witness size unless surprising results about the complexity of solving
SAT instances hold [GH98,GVW02]. Kilian [Kil92] showed that in contrast to
proofs, zero-knowledge arguments can have very low communication complexity.
His construction relied on the PCP theorem, and thus incurred a large compu-
tational cost.

Group theoretic zero-knowledge arguments. Schnorr [Sch91] and Guillou and
Quisquater [GQ88] gave early examples of practical zero-knowledge arguments
for concrete number theoretic problems. Extending Schnorr’s protocols, there
have been many constructions of zero-knowledge arguments based on the dis-
crete logarithm assumption, for instance [CD97,Gro09a]. The most efficient dis-
crete logarithm based zero-knowledge arguments for arithmetic circuits are by
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Bootle et al. [BCC+16] and later optimised in [BBB+17], which have logarith-
mic communication complexity and require a linear number of exponentiations.

An exciting line of research [Gro10a,Lip12,BCCT12,GGPR13,BCCT13,
PHGR13,Gro16] on succinct non-interactive arguments (SNARGs) has yielded
pairing-based constructions where the arguments consist of a constant number
of group elements. However, it can be shown that all SNARKs must rely on
non-falsifiable knowledge extractor assumptions [GW11]. In contrast, since our
argument is interactive, we do not need to rely on these strong assumptions.

Lattice-based zero-knowledge arguments. The first zero-knowledge proofs from
lattice-based assumptions were aimed at lattice problems themselves. Goldreich
and Goldwasser [GG98] presented constant round interactive zero knowledge
proofs for the complements of the approximate Shortest Vector Problem (SVP)
and the approximate Closest Vector Problem (CVP). Micciancio and Vadhan
[MV03] later constructed statistical zero knowledge proofs for these problems
which had efficient provers.

Stern’s protocol [Ste94] was one of the first zero-knowledge identification
protocols to be based on a post-quantum assumption, namely, on the hardness
of syndrome decoding for a random linear code, which is essentially proving (1)
where q = 2 and ‖s‖ � √

v. The protocol achieves constant soundness error, and
thus requires many parallel repetitions. Stern’s work prompted many variants
and similar protocols. For example, [LNSW13] adapts the protocol for larger q,
which implies proving knowledge of SIS solutions.

Another technique for creating zero-knowledge proofs is the “Fiat-Shamir
with Aborts” approach [Lyu09,Gro10b,Lyu12]. When working over polynomial
rings R, it gives a proof of knowledge of a vector s̄ with small coefficients (though
larger than those in s) and a ring element c̄ with very small coefficients satisfy-
ing As̄ = c̄t . As long as the ring R has many elements with small coefficients,
such proofs are very efficient, producing soundness of 1 − 2−128 with just one
iteration. While these proofs are good enough for constructing practical digi-
tal signatures (e.g. [GLP12,DDLL13,BG14]), commitment schemes with proofs
of knowledge [BKLP15,BDOP16], and certain variants of verifiable encryption
schemes [LN17], they prove less than what the honest prover knows. In many
applications where zero-knowledge proofs are used, in particular those that need
to take advantage of additive homomorphisms, the presence of the element c̄
makes these kinds of “approximate” proofs too weak to be useful. As of today,
we do not have any truly practical zero-knowledge proof systems that give a
proof of (1).

The situation is more promising when one considers amortized proofs. The
work of [BD10] uses MPC-in-the-head to prove knowledge of plaintexts for mul-
tiple Regev [Reg05] ciphertexts. Damg̊ard and López-Alt [DL12] extend the
[BD10] results to prove knowledge of plaintext in Zp, rather than bits, and
provide a proof for the correctness of multiplications. Combining these together
gives a zero-knowledge proof for the satisfiability of arithmetic circuits with lin-
ear communication in the circuit size.
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Another idea for proving the relation in (1) is to use the above-mentioned
“Fiat-Shamir with Aborts” protocol, but with challenges that come from the
set {0, 1}. The works of [BDLN16,CDXY17,dPL17] gave a series of improved
protocols that were able to employ this technique in the amortized setting. Their
proofs had a small polynomial “slack” (i.e. the ratio between the original commit-
ted s and the extracted s̄) and were of approximate linear size when the number
of commitments was a couple of thousand. The schemes are considerably less
efficient when one is proving fewer relations.

The amortized zero-knowledge proof in the current work improves on the
above series of papers in two important ways. First, the number of relations
necessary before the size of our proof is linear only in λ. But more importantly, if
we have more than λ relations, the communication complexity does not increase
except for small logarithmic factors (i.e. the proof size becomes sub-linear).

Hash-based zero-knowledge arguments. Recently Bootle et al. [BCG+17] used
error-correcting codes and linear-time collision-resistant hash functions to give
proof systems for the satisfiability of an arithmetic circuit where the prover
uses a linear number of field multiplications. Verification is even more efficient,
requiring only a linear number of additions. While their proofs and arguments
are asymptotically very efficient, they are not quite practical as their choices of
error-correcting codes and hash functions involves very large constants.

An another effective way to construct efficient zero-knowledge proofs is to fol-
low the so-called MPC-in-the-head paradigm of [IKOS07]. This approach proved
itself to give very efficient constructions both theoretically and practically. Most
notably, ZKBOO [GMO16] and subsequent optimisation ZKB++ [CDG+17]
use hash functions to construct zero-knowledge arguments for the satisfia-
bility of boolean circuits. Their communication complexity is linear in the
circuit size, but the use of symmetric primitives gives good performances in
practice. Ligero [AHIV17] provides another implementation of the MPC-in-the-
head paradigm and used techniques similar to [BCG+17] to construct sublinear
arguments for arithmetic circuits.

2 Preliminaries

Algorithms in our schemes receive a security parameter λ as input (some-
times implicitly) written in unary. The intuition is that the higher the security
parameter, the lower the risk of the scheme being broken. Given two functions
f, g : N → [0, 1] we write f(λ) ≈ g(λ) when |f(λ) − g(λ)| = λ−ω(1). We say that
f is negligible when f(λ) ≈ 0 and that f is overwhelming when f(λ) ≈ 1. For
any integer N , [N ] denotes the set {0, 1, . . . , N − 1} of integers.

2.1 Notation

Throughout this paper we will consider a ring R, which will be either Z or
the polynomial ring Z[X]/(Xd + 1) for d some power of 2. We will denote ele-
ments of R by lowercase letters, (column) vectors over R in bold lowercase
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and matrices over R in bold uppercase. e.g. A =
[
a1, . . . ,ak

] ∈ Rl×k with
a i = (ai1, . . . , aim)T ∈ Rl. We will consider the norm of elements in R to be
||a||2 = |a| if a ∈ Z, and ‖a‖2 =

√∑
a2

i if a =
∑

aiX
i ∈ Z[X]/(Xd + 1).

We extend the notation to vectors and matrices ‖a‖2 =
√∑ ‖ai‖22, ‖A‖2 =

√∑ ‖a i‖22. We will also consider the quotient ring Rq = R/qR for odd q. In
the quotient ring, the norm of an element Rq will be the norm of its unique
representative R with coefficients in

[− q−1
2 , q−1

2

]
.

We will also consider the operator norm of matrices over R defined as s1(A) =
max

‖x‖2 �=0

(‖Ax‖2
‖x‖2

)
.

Probability Distributions. Let D denote a distribution over some set. Then,
d ← D means that d was sampled from the distribution D. If we write d

$← S
for some finite set S without a specified distribution this means that d was sam-
pled uniformly random from S. We let Δ(X,Y ) indicate the statistical distance
between two distributions X,Y . Define the function ρσ(x) = exp

(
−x2

2σ2

)
and the

discrete Gaussian distribution over the integers, Dσ, as

Dσ(x) =
ρ(x)
ρ(Z)

where ρ(Z) =
∑

v∈Z

ρ(v).

We will write X ← Dr×m
σ to mean that every coefficient of the matrix X is

distributed according to Dσ.
Using the tail bounds for the 0-centered discrete Gaussian distribution (cf.

[Ban93]), we can show that for any σ > 0 the norm of x ← Dσ can be upper-
bounded using σ. Namely, for any k > 0 it holds that

Pr
x←Dσ

[|x| > kσ] ≤ 2e−k2/2, (3)

and when x is drawn from Dr
σ, we have

Pr
x←Dr

σ

[‖x‖2 >
√

2r · σ] < 2−r/4. (4)

We will abuse the notation x ← Dσ when x ∈ Z[X]/(Xd + 1) to denote the
distribution in which each coefficient of x is taken from Dσ. It is clear that in
this case ||x||2 can be bounded using Eq. 4 with d instead of r.

2.2 Lattice-Based Commitment Schemes

A commitment scheme allows a sender to create commitments to secret values,
which she might then decide to reveal later. The main properties of commitment
schemes are hiding and binding. Hiding guarantees that commitments do not
leak information about the committed values, while binding guarantees that the
sender cannot change her mind and open commitments to different values.
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Formally, a non-interactive commitment scheme is a pair of probabilistic
polynomial-time algorithms (Gen,Com). The setup algorithm ck ← Gen(1λ)
generates a commitment key ck, which specifies message, randomness and
commitment spaces Mck,Rck,Cck. It also specifies an efficiently sampleable prob-
ability distribution DRck

over Rck and a binding set Bck ⊂ Mck ×Rck. The com-
mitment key also specifies a deterministic polynomial-time commitment function
Comck : Mck×Rck → Cck. We define Comck(m) to be the probabilistic algorithm
that given m ∈ Mck samples r ← DRck

and returns c = Comck(m ; r).
The commitment scheme is homomorphic, if the message, randomness and

commitment spaces are abelian groups (written additively) and we have for all
λ ∈ N, and for all ck ← Gen(1λ), for all m0,m1 ∈ Mck and for all r0, r1 ∈ Rck

Comck(m0; r0) + Comck(m1; r1) = Comck(m0 + m1; r0 + r1).

Definition 1 (Hiding). The commitment scheme is computationally hiding if
a commitment does not reveal the committed value. Formally, we say the commit-
ment scheme is hiding if for all probabilistic polynomial time stateful interactive
adversaries A

Pr
[

ck ← Gen(1λ); (m0,m1) ← A(ck); b ← {0, 1};
r ← DRck

; c ← Comck(mb; r) : A(c) = b

]
≈ 1

2
,

where A outputs m0,m1 ∈ Mck.

Definition 2 (Binding). The commitment scheme is computationally binding
if a commitment can only be opened to one value within the binding set Bck. For
all probabilistic polynomial time adversaries A

Pr
[

ck ← Gen(1λ); (m0, r0,m1, r1) ← A(ck) :
m0 �= m1 and Comck(m0; r0) = Comck(m1; r1)

]
≈ 0,

where A outputs (m0, r0), (m1, r1) ∈ Bck.

The commitment scheme is compressing if the sizes of commitments are
smaller than the sizes of the committed values.

Ajtai’s One-Way Function. The standard one-way function used in lattice
cryptography maps a vector Rn to Rr via the function

fA(s) = As,

where A is a fixed, randomly-chosen matrix in Rr×n. Ajtai’s seminal
result [Ajt96] stated that when R = Zq, it is as hard to find elements s with
some bounded norm ‖s‖ ≤ B such that fA(s) = 0 for random A, as it is to find
short vectors in any lattice of dimension r. This is called the short integer solu-
tion (SIS) problem and its hardness increases as r, q increase and B decreases;
but somewhat surprisingly, the hardness of SIS is essentially unaffected by n as
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soon as n is large enough. The independence of the hardness from n holds both
theoretically and in practice.

When solving SIS, one can ignore, if one wishes, any columns of A by set-
ting the corresponding coefficient of s to 0, and solving SIS over the remaining
columns. It was computed in [MR08] that if n is very large, then one should
solve SIS for a submatrix where the number of columns is n′ =

√
r log q/ log δ

for some constant δ.1 With such a setting of n′, one expects to find a vector of
length approximately

min{q, 2
√

r log q log δ}. (5)

Compressing Commitments Based on SIS. The fact that a larger n (after
a certain point) does not decrease the security of the scheme allows one to
construct simple compressing commitment schemes where the messages are ele-
ments in Zp for p < q. The commitment scheme, which was already implicit
in the aforementioned work of Ajtai [Ajt96], uses uniformly-random matrices
A1 ∈ Z

r×2r logp q
q and A2 ∈ Z

r×n
q as a commitment key, where n is the number

of elements that one wishes to commit to. A commitment to a vector m ∈ Z
n
p

involves choosing a random vector r ∈ Z
2r logp q
p and outputting the commitment

vector v = A1r + A2m mod q. By the leftover hash lemma, (A1,A1r mod q)
is statistically close to uniform, and so the commitment scheme is statistically
hiding.2

To prove binding, note that if there are two different (r ,m) �= (r ′,m ′) such
that v = A1r +A2m = A1r

′ +A2m
′ mod q, then A1(r −r ′)+A2(m −m ′) =

0 mod q, and the non-zero vector s =
[
r − r ′

m − m ′

]
is a solution to the SIS problem

for the matrix A = [A1 A2]. As long as the parameters are set such that ‖s‖ is
smaller than the value in (5), the binding property of the commitment is based
on an intractable version of the SIS problem.

The commitment scheme we will be working with in this paper works as
follows:

Gen(1λ) → ck: Select a ring R (either Z or Z[X]/(Xd + 1)), and parameter
p, q, r, v,N,B, σ according to Table 2, and let Rq = R/qR.
Pick uniformly at random matrices A1 ← Rr×r logp q

q and A2 ← Rr×n
q .

Return ck = (p, q, r, v, �,N,B,Rq, A1, A2).
The commitment key defines message, randomness, commitment and bind-
ing spaces and distribution Mck = Rn

q Rck = R2r logp q
q ,Cck = Rr

q,Bck ={
s =

[
m
r

]
∈ Rn+2r logp q

q

∣
∣
∣ ||s|| < B

}
,DRck

= Dr
σ.

1 This constant δ is related to the optimal block-size in BKZ reduction [GN08], which
is the currently best way of solving the SIS problem. Presently, the optimal lattice
reductions set δ ≈ 1.005.

2 For improved efficiency, one could reduce the number of columns in A1 and make
the commitment scheme computationally-hiding based on the hardness of the LWE
problem.
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Comck(m ; r): Given m ∈ Rn
q and r ∈ R2r logp q

q return c = A1r + A2s.

In the following, when we make multiple commitments to vectors m1, . . . ,
m� ∈ Mck we write C = Comck(M ;R) when concatenating the commitment
vectors as C = [c1, · · · , c�]. It corresponds to computing C = A1R + A2M
with M = [m1, · · · ,m�] and randomness R = [r1, · · · , r �].

2.3 Arguments of Knowledge

We aim to give efficient lattice-based proofs for arithmetic circuit satisfiability
over Zp. The strategy we will employ is to commit to the values of a satisfying
assignment to the wires, execute a range proof to demonstrate the committed
values are within a suitable range, and to prove the committed values satisfy
the constraints imposed by the arithmetic circuit. We will now formally define
arguments of knowledge.

Let R be a polynomial time decidable ternary relation. The first input will
contain some public parameters (aka common reference string) pp. We define
the corresponding language Lpp indexed by the public parameters that consists
of elements u with a witness w such that (pp, u, w) ∈ R. This is a natural
generalisation of standard NP languages, which can be cast as the special case
of relations that ignore the first input.

A proof system consists of a PPT parameter generator PGen, and interactive
and stateful PPT algorithms P and V used by the prover and verifier. We write
(tr, b) ← 〈P(pp),V(pp, t)〉 for running P and V on inputs pp, s, and t and getting
communication transcript tr and the verifier’s decision bit b. Our convention is
b = 0 means reject and b = 1 means accept.

Definition 3 (Argument of knowledge). The proof system (PGen,P,V) is
called an argument of knowledge for the relation R if it is complete and knowl-
edge sound as defined below.

Definition 4 (Statistical completeness). (PGen,P,V) has statistical com-
pleteness with completeness error ρ : N → [0; 1] if for all adversaries A

Pr
[

pp ← PGen(1λ); (u,w) ← A(pp); (tr, b) ← 〈P(pp, u, w),V(pp, u)〉 :
(pp, u, w) ∈ R and b = 0

]
≤ ρ(λ).

Definition 5 (Computational knowledge soundness). (K,P,V) is knowl-
edge sound with knowledge soundness error ε : N → [0; 1] if for all deterministic
polynomial time P∗ there exists an expected polynomial time extractor E such
that for all PPT adversaries A

Pr
[

pp ← PGen(1λ); (u, s) ← A(pp); (tr, b) ← 〈P∗(pp, u, s),V(pp, u)〉;
w ← EP ∗(pp,u,s)(pp, u, tr, b) : (pp, u, w) /∈ R and b = 1

]
≤ ε(λ).

It is sometimes useful to relax the definition of knowledge soundness to hold only
for a larger relation R̄ such that R ⊂ R̄. In this work, our zero-knowledge proofs
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of pre-images will for instance have “slack”. Thus, even though v is constructed
using r ,m with coefficients in Zp, we will only be able to prove knowledge of
vectors r̄ , m̄ with larger norms. This extracted commitment is still binding as

long as the parameters are set such that the vector s̄ =
[
r̄ − r̄ ′

m̄ − m̄ ′

]
has norm

smaller than the bound in (5).3

Concretely, if we would like to make a commitment to N values in Zp, then
to satisfy (5) we need to make sure that q > ‖s̄‖ and

√
r log q log δ > log ‖s̄‖. In

the protocols in our paper, we will have ‖s̄‖ < N2p2 and p < N , which implies
that r = O(log N).

We say the proof system is public coin if the verifier’s challenges are chosen
uniformly at random independently of the prover’s messages. A proof system
is special honest verifier zero-knowledge if it is possible to simulate the proof
without knowing the witness whenever the verifier’s challenges are known in
advance.

Definition 6 (Special honest-verifier zero-knowledge). A public-coin
argument of knowledge (PGen,P,V) is said to be statistical special honest-
verifier zero-knowledge (SHVZK) if there exists a PPT simulator S such that
for all interactive and stateful adversaries A

Pr
[

pp ← PGen(1λ); (u,w, 	) ← A(pp); (tr, b) ← 〈P(pp, u, w),V(σ, u; 	)〉 :
(pp, u, w) ∈ R and A(tr) = 1

]

≈ Pr
[

pp ← PGen(1λ); (u,w, 	) ← A(pp); (tr, b) ← S(pp, u, 	) :
(pp, u, w) ∈ R and A(tr) = 1

]
,

where 	 is the randomness used by the verifier.

Full Zero-Knowledge. In real life applications special honest verifier zero-
knowledge may not suffice since a malicious verifier may give non-random chal-
lenges. However, it is easy to convert an SHVZK argument into a full zero-
knowledge argument secure against arbitrary verifiers in the common reference
string model using standard techniques, and when using the Fiat-Shamir heuris-
tic to make the argument non-interactive SHVZK suffices to get zero-knowledge
in the random oracle model.

3 Amortized Proofs of Knowledge

We will consider amortized proofs of knowledge for preimages of the Ajtai one-
way function. Formally, given a matrix A ∈ Rr×v

q the relation we want to give

3 Commitments over other rings, such as Zq[X]/(Xd + 1) can be done in the same
manner as above based on the hardness of the Ring-SIS problem [PR06,LM06] for
which the bound in (5) still appears to hold in practice.



Sub-linear Lattice-Based Zero-Knowledge Arguments 681

a zero-knowledge proof of knowledge for is

R =

⎧
⎪⎪⎨

⎪⎪⎩

(pp, u, w) = ((q, �, β,R,A, c),T ,S)
∣
∣
∣
∣

(A,S ,T ) ∈ Rr×v
q × Rv×� × Rr×�

q ∧ AS = c · T ∧ [‖si‖2 ≤ β]
i∈[�]

⎫
⎪⎪⎬

⎪⎪⎭

with S = [s1, · · · , s�] where R is implicitly fixed in advance. The multiplier c
depends on the instantiation of the proof: for R = Z our proof achieves c = 1
and is exact, while for R = Z [X] /(Xd + 1) it only guarantees that c = 2.

Fig. 1. Amortized proof for � equations. The ring R can be either Z or Z [X] /(Xd +1),
the challenge set C will be respectively {0, 1} or {0} ⋃ {±Xj

}
j<d

We consider a generalization of Σ-Protocols in which honest instances only
complete with some constant probability 1/ρ, this is to accommodate the fact
that the rejection sampling step described in Lemma 1 only outputs 1 with prob-
ability 1/ρ. In practice such a restriction is not too inconvenient: though the
interactive protocol has to be repeated an average of ρ times to terminate, what
we are interested in is usually the non-interactive protocol obtained by using
the Fiat-Shamir transform, in which case the prover only has to output a proof
when she obtains a challenge which passes the rejection step.

In our zero-knowledge proof, the prover will want to output a matrix Z whose
distribution should be independent of the secret matrix S . During the protocol,
the prover obtains Z ′ = B + Y where B depends on the secret S and Y is a
“masking” matrix each of whose coefficients is a discrete Gaussian with standard
deviation σ. To remove the dependency of Z ′ on B , we use the rejection sampling
procedure from [Lyu12] in Algorithm 1, which has the properties described in
Lemma 1.
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Algorithm 1. Rej(Z ,B , σ, ρ)
u ← [0, 1)

if u > 1
ρ

· exp
(

−2〈Z ,B〉+‖B‖2

2σ2

)
then

return 0
else

return 1
end if

Lemma 1 ([Lyu12]). Let B ∈ Rr×n be any matrix. Consider a procedure that
samples a Y ← Dr×n

σ and then returns the output of Rej(Z := Y + B,B, σ, ρ)
where σ ≥ 12

ln ρ · ‖B‖. The probability that this procedure outputs 1 is within
2−100 of 1/ρ. The distribution of Z, conditioned on the output being 1, is within
statistical distance of 2−100 of Dr×n

σ .

We give a useful lemma for knowledge extraction. In essence this lemma
will be used to show that a prover who can output a verifying output for a
challenge c1, . . . , c� has a high probability of also being able to answer a challenge
c′
1, c2, . . . , c� in which only c′

1 �= c1.

Lemma 2 ([Dam10]). Let H ∈ {0, 1}�×n for some n, � > 1, such that a frac-
tion ε of the inputs of H are 1. We say that a row of H is “heavy” if it contains
a fraction at least ε/2 of ones. Then more than half of the ones in H are located
in heavy rows.

We describe our proof system in Fig. 1. Our first instantiation is with R = Z

in which case the one-way function will rely on the SIS problem and the challenge
set will be C�×n for C = {0, 1}, this solution allows the extractor of the protocol
to obtain exact preimages of the t i and requires n ≥ λ + 2. This ensures that
communication only grows linearly in λ regardless of the size of � (since Z ∈
Z

v×n
q ).

Theorem 1. Let R = Z, C = {0, 1}, v, r = poly(λ), and n ≥ λ+2. Let s > 0 be
an upper bound on s1(S), ρ > 1 be a constant, σ ∈ R be such that σ ≥ 12

ln ρs
√

�n,
and B =

√
2vσ. Then the protocol described in Fig. 1 is a zero-knowledge proof

of knowledge for R.

Proof. We will prove correctness and zero-knowledge here as the proofs are
straightforward and very similar to prior works. We will however defer the proof
of soundness to Lemma 3.

Correctness: If P and V are honest then the probability of abort is exponen-
tially close to 1−1/ρ since ‖SC‖2 ≤ s1(S)‖C‖2 ≤ s

√
�n. The equation verified

by V is true by construction of Z . Since each coefficient of Z is statistically
close to Dσ, then according to (4) we have ‖z i‖2 ≤ √

2vσ with overwhelming
probability.
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Honest-Verifier Zero-Knowledge: We will now prove that our protocol is
honest-verifier zero-knowledge. More concretely, we show that the protocol is
zero-knowledge when the prover does not abort prior to sending Z . The rea-
son that this is enough for practical purposes is that HVZK Σ-protocols can
be turned into non-interactive proofs via the Fiat-Shamir transform. The non-
interactive protocol generates the challenge C as the hash of W and T , and
otherwise repeats the prover’s part of the protocol until a non-abort occurs,
whereupon the prover outputs the transcript (W ,C ,Z ). Only the non-aborting
transcripts will be seen by V, and thus only they need to be simulated. Further
below we will also sketch how to modify our protocol to obtain an interactive
zero-knowledge proof.
Let S(A,T ) be the following PPT algorithm:

1. Sample C ← {0, 1}�×n

2. Sample Z ← Dv×n
σ

3. Set W = AZ − TC
4. Output (W ,C ,Z )

It is clear that Z verifies with overwhelming probability. We already showed
in the section on correctness that in the real protocol when no abort occurs
the distribution of Z is within statistical distance 2−100 of Dv×n

σ . Since W
is completely determined by A,T ,Z and C , the distribution of (W ,C ,Z )
output by S is within 2−100 of the distribution of these variables in the actual
non-aborting run of the protocol.

To turn our proof into a full interactive HVZK proof, one can use the above
simulator together with a standard transformation: in the first message of the pro-
tocol, P will send a statistically hiding commitment of W to the verifier. Later
in the third round, she will then send both the opening and the message Z , given
that the protocol would not abort. The above simulator S(A,T ) can then, in the
beginning of the protocol, flip a coin to determine if the simulation is aborting.
If so, then it can just commit to a uniformly random value, and otherwise to the
correct value W . In order to make the protocol secure against arbitrary verifiers
one can run an interactive coin-flipping protocol to generate C .

Lemma 3 (Knowledge Soundness). For any prover P∗ who succeeds with
probability ε > 2−λ (i.e. ≥ 2−n+2) over her random tape χ ∈ {0, 1}x and the
challenge choice C

$← C�×n, there exists a knowledge extractor E running in
expected time poly(λ)/ε who can extract a witness S′ := (s′

1, . . . , s
′
�) ∈ Rv×�,

such that AS′ = T, and ∀i ∈ [�] ‖s′
i‖2 ≤ 2B.

Proof. For i ∈ [�], let t i ∈ Rn be the ith column of T , and cT
i ∈ R1×n be

the ith row of C (note that cT
i are not the transpose of the columns of C but

really its rows). Note that t ic
T
i ∈ Rr×n and TC =

∑�
i=1 t ic

T
i . For any fixed i,

we describe an extractor Ei who can extract a preimage of t i of norm less than
2B in expected O(1/ε) executions, and the full result follows by running each
extractor (of which there are � = poly(λ)).
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Consider a matrix H i ∈ {0, 1}2n(�−1)+x×2n

whose rows are indexed by the value
of (χ, cT

1 , . . . , cT
i−1, c

T
i+1, . . . , c

T
� ) and whose columns are indexed by the value of

cT
i . An entry of H i will be 1 if P∗ succeeds for the corresponding challenge (i.e.

produces an accepting Z ). We will say that a row of H i is “heavy” if it contains
a fraction of at least ε/2 ones, i.e. if it contains more than 2k ∗ ε/2 > 2 ones.
The extractor Ei will proceed as follow:

1. Run P∗ on random challenges C ′ until it succeeds, and obtains Z ′ that
verifies. This takes expected time 1/ε.

2. Run P∗ on random challenges C ′′ where ∀j �= i, c′′T
j = c′T

j and c′′T
i is freshly

sampled. If after λ/ε attempts P∗ has not output a valid response Z ′′, abort.

The extractor Ei runs in expected time poly(λ)/ε, and aborts with probability
less than 1/2+2−λ. The running time is clear from the definition of Ei. To com-
pute the abort probability note that in step 2 all the challenges C ′′ considered
are in the same row of H i as C ′, if we call Abort the event where Ei aborts and
Heavy the event that C ′ is in a row of H i, we have:

Pr [Abort] = Pr
[
Abort Heavy

]
Pr [Heavy] + Pr

[
Abort ¬Heavy ]Pr [¬Heavy]

According to Lemma 2, Pr [¬Heavy] < 1/2. On the other hand if the row is heavy
then for a random sample in this row P∗ has probability at least ε/2−2−n > ε/4
of outputting a valid answer (the probability is ε/2 − 2−n and not ε/2 because
we want a reply for a challenge different from C ′). Thus the probability that
P∗ does not succeed on any of the λ/ε challenges C ′′ is Pr

[
Abort Heavy

]
<

(1 − ε/4)λε < e−4λ < 2−λ, and therefore Pr [Abort] < 1/2 + 2−λ. By running
Ei O(λ) times we obtain an extractor that runs in expected time poly(λ)/ε and
outputs two valid pairs C ′,Z ′ and C ′′,Z ′′ such that ∀j �= i, c′T

j = c′′T
j , and

c′T
i �= c′′T

i .
Since both transcripts verify we know that AZ ′ = TC ′+W =

∑r
j=1 tjc

′T
j +W

and that AZ ′′ = TC ′′ + W =
∑r

j=1 tjc
′′T
j + W , which implies that

A(Z ′ − Z ′′) =
∑r

j=1 tj(c′T
j − c′′T

j ) = t i(c′T
i − c′′T

i ) If we consider an index
l ∈ [�] such that c′T

i [l] �= c′′T
i [l], and assume w.l.o.g that c′T

i [l] − c′′T
i [l] = 1,

then by only considering the lth column of the previous equation we obtain
A(z ′

l − z ′′
l ) = t i where ‖z ′

l − z ′′
l ‖2 ≤ 2B.

Our second instantiation uses R = Z [X] /(Xd + 1) and C = {0}⋃{±Xj
}

j<d
.

This protocol only proves R with c = 2, i.e. the extractor will only obtain
preimages of 2t i but the number of columns in the response matrix Z can
be reduced by a factor of log(2d + 1) as the soundness now only requires that
n log(2d+1) ≥ λ+2. It is worth noting that in this protocol the values of r and v
would typically be chosen to be around d times smaller than in the instantiation
with R = Z, because A will be a matrix of polynomials of degree d. We first
give a lemma about the difference on monomials in Z [X] /(Xd + 1) which will
be useful in the extraction.
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Lemma 4 ([BCK+14] Lemma 3.2). Let d be a power of 2, let a, b ∈
{±Xi : i ≥ 0} ∪ {0}. Then 2(a − b)−1 mod Xd + 1 only has coefficients
in {−1, 0, 1}. In particular

∥
∥2(a − b)−1

∥
∥
2

≤ √
d.

Theorem 2. Let R = Z [X] /Xd + 1, C = {0}⋃{±Xj
}
, v, r = poly(λ), and

n ≥ (λ + 2)/ log(2d + 1). Let s ∈ R be an upper bound on s1(S), ρ > 1 be a
constant, σ ∈ R be such that σ ≥ 12

ln ρs
√

�n, and B =
√

2mdσ. Then the protocol
described in Fig. 1 is a SHVZK proof of knowledge.

Proof. The proofs for correctness and zero-knowledge are nearly identical to the
ones of Theorem 1. We will prove soundness in Lemma 5.

Lemma 5 (Knowledge Soundness). For any prover P∗ who succeeds with
probability ε > 2−λ(≥ 2−n log(2d+1)+2) over his random tape χ ∈ {0, 1}x and
the challenge choice C ← C�×n there exists a knowledge extractor E who can
extract a witness S′ := (s′

1, . . . , s
′
�) ∈ Rv×�, such that AS′ = 2T, and ∀i ∈ [�]

‖s′
i‖2 ≤ 2

√
dB, in expected time poly(λ)/ε.

Proof. The first part of the proof (obtaining C ′,Z ′ and C ′′,Z ′′) is identical
to the one of Lemma 3 except for the fact that the matrix H i has different
dimensions. Let δ = log(2d + 1). Since for each j ∈ [�], cT

j is sampled from a set

of size 2nδ, we have H i ∈ {0, 1}2nδ(�−1)+x×2nδ

. The heavy rows of H i will contain
2nδε/2 > 2 ones, and the extractor can proceed as in the proof of Lemma 3.
Assume that Ei has extracted C ′,Z” and C ′′,Z ′′ such that ∀j �= i, c′T

j = c′′T
j ,

and c′T
i �= c′′T

i . As previously we have A(Z ′ − Z ′′) =
∑�

j=1 tj(c′T
j − c′′T

j ) =
t i(c′T

i − c′′T
i ) If we consider an index l ∈ [�] such that c′T

i [l] �= c′′T
i [l], since

C = {0}⋃{±Xj
}
0≤j≤d−1

, we have according to Lemma 4 that there exists a

g ∈ R such that 2−1(c′T
i [l]−c′′T

i [l])g = 1 and ‖g‖2 ≤ √
d. Hence A(z ′

l −z ′′
l )g =

2t i · 2−1(c′T
i [l] − c′′T

i [l])g = 2t i, with ‖(z ′
l − z ′′

l )g‖2 ≤ 2
√

dB.

4 Argument for the Satisfiability of an Arithmetic Circuit

In this section, we show how to construct arguments for the satisfiability of an
arithmetic circuit based on the SIS assumption. We take inspiration from the
arguments of [Gro09a,BCC+16] which rely on homomorphic commitments based
on the hardness of discrete logarithm and translate them into the lattice settings.
We obtain sublinear communication arguments with improved computational
efficiency with respect to [Gro09a,BCC+16].

At a high level, [BCC+16] reduces the satisfiability of an arithmetic circuit
to the verification of two sets of constraints: multiplication constraints, arising
from multiplication gates; linear constraints, arising from additions and multi-
plication by constant gates. Then, it shows how to embed each of these sets of
constraints into a polynomial equation over Zp. An argument for the satisfia-
bility of an arithmetic circuit can then be constructed by giving arguments for
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the satisfiability of such polynomial equations, evaluating at random challenge
points and using the Schwarz-Zippel lemma to argue soundness.

We give arithmetic circuit arguments over Zp for much smaller p (e.g. p =
poly(λ)). Therefore, a straightforward translation of the above approach yield
arguments which only have inverse polynomial soundness error, as O(1/p) is
inverse-polynomial in the security parameter in this setting. The soundness error
could be reduced by repeated the protocol multiple times in parallel, resulting
into a significant computational and communication overhead.

Therefore, we devise a more complex embedding technique in order to apply
the Schwarz-Zippel lemma over larger fields. Cramer, Damg̊ard and Keller give
in [CDK14] an amortised proof of knowledge of k commitments over Zp are
embedded into GF (pk), with soundness error O(1/pk). We follow a similar app-
roach and embed the constraints for the satisfiability of the circuit into poly-
nomial equations over an extension field. While [CDK14] only give a proof of
knowledge, we also construct a product argument for the openings of k com-
mitments over Zp embedded into an extension field of degree 2k with soundness
O(1/p2k).

We start by recalling how [BCC+16] embedded the satisfiability of an arith-
metic circuit into a polynomial equations over Zp and then extend it to GF (p2k).

Reduction of Circuit Satisfiability to a Hadamard Matrix Product
and Linear Constraints over Zp . We consider arithmetic circuits with fan-in
2 addition and multiplication gates. Multiplication gates are directly represented
as equations of the form a · b = c, and we refer to a, b, c as the left, right and
output wires, respectively.

The satisfiability of an arithmetic circuit can be described as a system of
equations in the entries of three matrices A,B,C. The multiplication gates define
a set of N equations A ◦ B = C, where ◦ is the Hadamard (entry-wise) product.

The circuit description also contains constraints on the wires between multi-
plication gates. Denoting the rows of the matrices A,B,C as

a i = (ai,1, . . . , ai,n) bi = (bi,1, . . . , bi,n) ci = (ci,1, . . . , ci,n) for i ∈ {1, . . . , m}

these constraints can be expressed as U < 2N linear equations of inputs and
outputs of multiplication gates of the form

m∑

i=1

a i · wu,a,i +
m∑

i=1

bi · wu,b,i +
m∑

i=1

ci · wu,c,i = Ku for u ∈ {1, . . . , U} (6)

for constant vectors wu,a,i,wu,b,i,wu,c,i and scalars Ku. We refer to [BCC+16]
for a more detailed explanation of this process.

In total, to capture all multiplications and linear constraints, we have N +U
equations that the wires must satisfy in order for the circuit to be satisfiable.
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Reduction to Two Polynomial Equations. Let Y be a formal indetermi-
nate. We will reduce the N +U equations above to a two polynomial equations in
Y by embedding distinct equations into distinct powers of Y . In our argument
we will then require the prover to prove that these two equations hold when
replacing Y by a random challenge received from the verifier. More explanation
behind this process can be found in the full version of this paper.

Let us define wa,i(Y ) =
∑U

u=1 wu,a,iY
N+1+u,w b,i(Y ) =

∑U
u=1 wu,b,iY

N+1+u

wc,i(Y ) =
∑U

u=1 wu,c,iY
N+1+u, K(Y ) =

∑U
u=1 KuY N+1+u

Then the circuit is satisfied if and only if

m∑

i=1

a i · wa,i(Y ) +
m∑

i=1

bi · w b,i(Y ) +
m∑

i=1

ci · w c,i(Y ) − K(Y ) = 0 (7)

m∑

i=1

a i ◦ biY
i =

m∑

i=1

ciY
i (8)

Sublinear Communication Product Argument. To give an argument for the satis-
fiability of an arithmetic circuit it is sufficient to give arguments showing that (7)
and (8) are satisfied. For the purpose of constructing sublinear communication
arguments, we craft polynomials which will have particular terms equal to zero
if and only if (7) and (8) are satisfied. This can then be proved by having
the prover reveal evaluations of the polynomials at random points to the ver-
ifier, who can check that the evaluations are correct using the homomorphic
property of the commitment scheme. We define a(X) := a0 +

∑m
i=1 a iy

iXi,
b(X) := bm+1 +

∑m
i=1 biX

m+1−i and c :=
∑m

i=1 ciy
i.

We have designed these polynomials such that the Xm+1 term of a(X)◦b(X)
is equal to

∑m
i=1 ciy

i. We conclude that the Xm+1 term of a(X) ◦ b(X) is
exactly c if and only if (8) is satisfied. A similar approach can followed to embed
the satisfiability of (7) into the constant term of polynomial which is tested at
random challenge evaluation points.

4.1 Amortisation Over Field Extensions

We now show how to extend the previous approach to work over field exten-
sions. This will allow us to give an efficient amortised argument for the product
of openings of commitments. This will be used to give efficient arguments for
the satisfiability of an arithmetic circuit achieving sublinear communication and
O(1/p2k) soundness error.

Let GF (p2k) � Zp[φ]/〈f(φ)〉, where f is a polynomial of degree 2k that is
irreducible over Zp. Our goal is to embed k elements of Zp into the extension
field in a way so that we can multiply two GF (p2k) elements in a way that does
not interfere with the products of the original Zp elements. Let e1, . . . , ek be
distinct interpolation points in Zp (note that in particular, this forces p > k).
Let l1(X), . . . , lk(X) be the Lagrange polynomials associated with the points ei,
which have degree k − 1. Let l0(X) =

∏k
j=1(X − ei), which has degree k.
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Now, suppose that we have a1, . . . , ak, b1, . . . , bk and c1, . . . , ck in Zp such that
aj · bj = cj mod p for each j. By evaluating the expression at each interpolation
point, we see that the following statement about polynomials holds over Zp:(∑k

j=1 aj lj(X)
)

·
(∑k

j=1 bj lj(X)
)

≡
(∑k

j=1 cj lj(X)
)

mod l0(X).

Therefore, there are c′
0, . . . , c

′
k−2 ∈ Zp such that

(∑k
j=1 aj lj(X)

)
·

(∑k
j=1 bj lj(X)

)
=
(∑k

j=1 cj lj(X)
)

+ l0(X)
∑k−2

j=0 c′
jX

j .
The degree of f is 2k, so if we choose the basis B = {l1(φ), . . . ,

lk(φ), l0(φ), φl0(φ), . . . , φk−1l0(φ) for GF (p2k)}, we can perform multiplications
of extension field elements without any overflow modulo f interfering with
the individual product relations aibi = ci in Zp. We can therefore port he

above equality into GF (p2k) as the equality
(∑k

j=1 aj lj(φ)
)

·
(∑k

j=1 bj lj(φ)
)

=
(∑k

j=1 cj lj(φ)
)

+ l0(φ)
∑k−2

j=0 c′
jφ

j .
This allows one multiplication of committed values to be performed without

any overflow modulo f . As we shall see in the next subsection, this is sufficient
for verifying multiplication triples for arithmetic circuit satisfiability.

We also need to be able to view single commitments to elements of Zp as
elements of the extension field in a way that helps to verify linear consistency
relations between the elements.

Now, suppose that we have a1, . . . , ak, b1, . . . , bk and c1, . . . , ck in Zp, and
coefficients wa,1, . . . , wa,k, wb,1, . . . , wb,k and wc,1, . . . , wc,k in Zp such that
∑k

j=1 ajwa,j +
∑k

j=1 bjwb,j +
∑k

j=1 cjwc,j = K mod p. By comparing coef-
ficients, we see that the following statement about polynomials holds over
Zp:
(∑k

j=1 ajX
j−1
)

·
(∑k

j=1 wa,jX
k−j
)

+
(∑k

j=1 bjX
j−1
)

·
(∑k

j=1 wb,jX
k−j
)

+
(∑k

j=1 cjX
j−1
)

·
(∑k

j=1 wc,jX
k−j
)

= KXk−1+
∑2k−2

j=0,j �=k−1 KjX
j , where the

Kj are extra terms determined from the a, b, c and w values.
If we choose the basis B′ = 1, φ, φ2, . . . , φ2k−1 for GF (p2k), we can perform

multiplications of extension field elements in a way that always yields a useful
linear relation in the φk−1 term without any overflow modulo f .

By viewing multiplication in GF (p2k) as a linear map over Z
2k
p , we can

simulate arithmetic in the extension field using arithmetic in Z
2k
p .

Let A1, . . . , A2k ∈ C2k be homomorphic commitments to single elements,
a1, . . . , ak ∈ Zp. We can consider the tuple A = (A1, . . . , Ak) to be a commitment
to an element a = (a1, . . . , a2k) of GF (p2k). Now, if we consider x ∈ Z

2k
p as an

element of GF (p2k), then there is a matrix Mx which simulates multiplication
by x in Z

2k
p when we multiply on the left by Mx . Since the Ai are homomorphic

commitments, we can obtain a commitment to x ∗a by computing MxA, where
∗ represents multiplication in GF (p2k).

Reduction of Circuit Satisfiability to a Hadamard Matrix Product
and Linear Constraints over GF (p2k). Let N = mnk be the number of
multiplication gates in the arithmetic circuit. To reduce circuit satisfiability to
constraints over GF (p2k), we can consider the same polynomial equations as
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before, written over GF (p2k) rather than Zp. We consider the rows of matrices
A, B, and C as before, but this time, we label the row vectors of the matrices
a i,j , bi,j and ci,j ∈ Z

n
p , for 1 ≤ i ≤ m and 1 ≤ j ≤ k. Now, we consider the row

vectors a i,1, . . . ,a i,k, which are elements of Zn
p , as an element in GF (p2k)n.

Let ai = (a i,1,a i,2, . . . ,a i,k,0, . . . ,0)T represent this element in GF (p2k)n.
Each column of the matrix represents a separate element of GF (p2k).

Satisfiability conditions over Zp were embedded using scalar products,
denoted by ·, and element-wise products, denoted by ◦. If a and b in Z

2k×n
p repre-

sent elements of GF (p2k)n, then each column represents an element of GF (p2k),
and the scalar products and element-wise products of a and b are computed
using the columns. We denote the element-wise product by a © b and the scalar
product by a

⊙
b to avoid confusion with any other matrix products on a and b.

a =

⎛

⎝v1 v2 . . . vn

⎞

⎠, b =

⎛

⎝w1 w2 . . . wn

⎞

⎠

a © b =

⎛

⎝Mv1w1 Mv2w2 . . . Mvnwn

⎞

⎠

a
⊙

b = Mv1w1 + Mv2w2 + . . . + Mvn
wn

Note that in the verification equations, although the verifier computes high
powers of random challenges x and y , the verifier only computes quadratic
polynomials of values such as a and b which have been sent by the prover. This
is important, because when we expand a and b in terms of their coefficients ai

and bi, we see that the verifier only computes expressions which have degree 2
in the prover’s secret committed wire values, embedded as elements of GF (p2k).
Therefore, considering a field extension of degree 2k with the basis B is sufficient
for our purposes: we only need to ensure that a single multiplication in GF (p2k)
preserves the individual product relations embedded in the GF (p) elements.

When embedding satisfiability conditions into a polynomial over Zp, using
random challenges x, y ∈ Zp, the prover could send linear combinations of vectors
a i ∈ Z

n
p such as a(x) = a0 +

∑m
i=1 a iy

ixi to the verifier.
However, when embedding satisfiability conditions into a polynomial over

GF (p2k), using random challenges x ,y ∈ GF (p2k), the prover sends linear com-
binations of vectors ai ∈ GF (p2k)n such as a(x) = a0 +

∑m
i=1(My )i(Mx )iai.

Committing and Performing Calculations in a Lattice Setting. Com-
mitment schemes based on lattice assumptions often require messages to be
‘small’ elements of the base ring in which the commitment is computed. There-
fore, we consider the wire values in the arithmetic circuit to be integers in [p]
inside a larger ambient ring Zq where the commitments are computed.

We can still simulate the action of GF (p2k) over the integers by applying
the same multiplication matrices over the integers rather than working modulo
p. Whenever the prover and verifier multiply by powers of random challenges
x ∈ [p]2k, they reduce powers of matrices such as Mx and My modulo p before
applying these matrices to commitments or openings. For example, the prover
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will send openings a and b to the verifier: a =
∑m

i=0(M
i
xM i

y mod p)ai and

b =
∑m

i=0(M
(m+1−i)
x mod p)bi.

For this reason, the verification equations will compare quantities that are
congruent modulo p, but not equal over the integers, or in Zq, as the prover and
verifier will have computed and reduced various terms modulo p, but performed
this reduction at different times during the computation. Therefore, the prover
will send an additional commitment D containing a message which is a multiple
of p and corrects the discrepancy.

5 Parameter Selection

In this section we introduce notation for the parameters in our arithmetic circuit
argument, and specify the choice of values in our arguments to ensure asymptotic
security. Due to the large number of different variables used in the arithmetic
circuit argument, and the fact that the arithmetic circuit argument and earlier
proof of knowledge are quite independent of one another, we redefine certain
variable names which were used earlier on for use in the arithmetic circuit argu-
ment. Parameter λ is dictated by the desired security level, and p and N come
from the arithmetic circuit whose satisfiability is to be proven. All other param-
eters are derived from the table below, can be written in terms of λ, p and N ,
and are chosen in order to ensure that the commitment scheme is binding on a
large enough message space for security.

Parameters and Asymptotic Sizes. In order to satisfy the constraints above,
we choose the parameters in Table 2. Let λ be the security parameter, and sup-
pose that we wish to verify an arithmetic circuit with N gates, over Zp.

Table 2. Parameter choices for our arithmetic circuit argument.

Parameter Size Description

λ Security parameter for our arguments

p poly(λ) Underlying field for the arithmetic circuit

N kmn = poly(λ) Number of multiplication gates in the arithmetic circuit

P O(nk2m2p2) Maximum size of elements committed by honest prover

B O(PN) Soundness slack from proof of knowledge

P ′ P ′ = BP Commitment scheme must be binding up to elements in [P ′].

n n ≈
√

Nr log q
λ log Nλp

Controls length of vectors in the SAT argument

k k ≈ λ/ log2 p Controls soundness error of the SAT argument

m m = N/kn Number of commitments in SAT argument is O(mk)

q q ≈ P ′√r Modulus for SIS instances.

r r = O(logn) Commitments lie in Z
d
q .
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6 Product Argument

The following protocol allows the prover to prove that they know N = nmk
triples satisfying multiplicative relations.

We give parameters for our protocol in Sect. 5.
Consider the commitment scheme Comck : Zn

q × Z
n′
q �→ C introduced earlier

in Sect. 2.2, where ck consists of the public matrices used to generate a SIS
instance. Let A ∈ Z

2k×n
q and R ∈ Z

2k×n′
q . Define the extended commitment

scheme Comck
∗ as

Comck
∗(A;R) :=

⎛

⎜
⎜
⎜
⎝

Comck(a1; r1)
Comck(a2, r2)
...
Comck(a2k; r2k)

⎞

⎟
⎟
⎟
⎠

where a i ∈ Z
n
p , r i ∈ Z

n′
p are the row vectors of A and R.

Common Reference String: Commitment key ck. The basis B for the exten-
sion field GF (p2k), which specifies how elements should be multiplied.

Statement: Description of a set of N = kmn multiplication relations over Zp.
Prover’s Witness: Values Ai, Bi, Ci ∈ Z

k×n
p , 1 ≤ i ≤ m, such that ∀i, Ai◦Bi ≡

Ci mod p.
Argument:
P Since ∀i, Ai ◦ Bi ≡ Ci mod p, then for 1 ≤ i ≤ m, we can write

[
Ai

0k×n

]
©
[

Bi

0k×n

]
=
[

Ci

C ′
i

]
mod p

for some C ′
i ∈ [p]k×n, 1 ≤ i ≤ m, by our choice of basis B.

The prover randomly selects A0, Bm+1 ← D2k×n
σ1

.
The prover selects αi and βi uniformly at random from [p]k×n′

and γi uni-
formly at random from [p]2k×n′

for 1 ≤ i ≤ m, and selects α0, βm+1 ←
D2k×n′

σ1
.

For 1 ≤ i ≤ m, the prover computes

Ai = Comck
∗
([

Ai

0k×n

]
;
[

αi

0k×n′

])
C i = Comck

∗
([

Ci

C ′
i

]
; γi

)

B i = Comck
∗
([

Bi

0k×n

]
;
[

βi

0k×n′

])

Note that by definition, Ai and B i ∈ C2k consist of k commitments and k
trivial commitments in the k final components. The prover also computes

A0 = Comck
∗ (A0;α0) , Bm+1 = Comck

∗ (Bm+1;βm+1)

The prover sends {Ai}m
i=0, {B i}m+1

i=1 , {C i}m
i=1 to the verifier.
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V The verifier picks y ← [p]2k, and sends y to the prover.
P The prover computes polynomials A(X ), B(X ), which have matrix coeffi-

cients, in the indeterminate X ∈ Z
2k
q , and also computes C.

A(X ) = A0 +
m∑

i=1

M i
X (M i

y mod p)
[

Ai

0k×n

]

B(X ) = Bm+1 +
m∑

i=1

Mm+1−i
X

[
Bi

0k×n

]

C =
m∑

i=1

M i
y

[
Ci

C ′
i

]
mod p

The prover computes A(X ) © B(X ) mod p.

A(X ) © B(X ) mod p = Mm+1
X C +

2m∑

l=0,l �=m+1

M l
XHl mod p

where Hl ∈ [p]2k×n.
For 0 ≤ l ≤ 2m, l �= 0, the prover selects ηl uniformly at random from [p]2k×n′

,
and computes H l = Comck

∗(Hl; ηl).
The prover sends {H l}2m

l=0,l �=m to the verifier.
V The verifier picks x ← [p]2k, and sends x to the prover.
P The prover computes the following values modulo p.

A = A0 +
m∑

i=1

(M i
xM i

y mod p)
[

Ai

0k×n

]

α = α0 +
m∑

i=1

(M i
xM i

y mod p)
[

αi

0k×n′

]

B = Bm+1 +
m∑

i=1

(Mm+1−i
x mod p)

[
Bi

0k×n

]

β = βm+1 +
m∑

i=1

(Mm+1−i
x mod p)

[
βi

0k×n′

]

Note that A ≡ A(x ) mod p and B ≡ B(x ) mod p.
The prover computes

D = (A © B mod p) −
m∑

i=1

(M i
y mod p)

[
Ci

C ′
i

]
−

2m∑

l=0,l �=m+1

(M l
x mod p)Hl

The prover randomly selects δ ← D2k×n′
σ2

and computes D = Comck
∗(D; δ).

The prover randomly selects E ← p · D2k×n
σ3

, ε ← D2k×n′
σ4

and computes
E = Comck

∗(E; ε). Note that E is 0 modulo p.
The prover sends D and E to the verifier.
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V The verifier picks z ← [p]2k, and sends z to the prover.
P The prover runs Rej((A||α||B||β), (A||α||B||β)− (A0||α0||Bm+1||βm+1), σ1, e),

and aborts according to the result.
The prover computes the following

ρ =
m∑

i=1

(Mm+1
x M i

y mod p)γi +
2m∑

l=0,l �=m+1

(M l
x mod p)ηl + δ

The prover runs Rej(ρ, ρ − δ, σ2, e).
The prover computes D̄ = (Mz mod p)D + E and δ̄ = (Mz mod p)δ + ε.
The prover runs Rej(D̄/p,D/p, σ3, e).
The prover runs Rej(δ̄, δ, σ4, e).
The prover sends A,α,B, β, ρ, D̄, δ̄ to the verifier.

V The prover and the verifier engage in a proof-of-knowledge, as shown in Fig. 1,
including every commitment sent from the prover to the verifier.
The verifier accepts if and only if

Comck
∗(A; α) =

m∑
i=0

(M i
xM i

y mod p)Ai

Comck
∗(B; β) =

m+1∑
i=1

(Mm+1−i
x mod p)B i

Comck
∗(A © B mod p; ρ) =

m∑
i=1

(Mm+1
x M i

y mod p)C i

+
2m∑

l=0,l�=m+1

(M l
x mod p)H l + D

Comck
∗(D̄; δ̄) = (Mz mod p)D + E

D̄ = 0 mod p
∥∥D̄

∥∥
2

≤ 2
√

knσ3p

‖(A||α||B||β)‖2 ≤ 4
√

knσ1 ‖ρ‖2 ≤ 2
√

knσ2

∥∥δ̄
∥∥
2

≤ 2
√

knσ4

and the proof-of-knowledge is accepting.

Sizes of Standard Deviations

σ1 = 48
√

knkmp2, σ2 = 72
√

2knkmp,

σ3 = 24
√

2knkp(1 + 6kmp), σ4 = 24
√

2k2pnσ2

Security Analysis

Theorem 3. Given the statistically hiding, computationally binding commit-
ment scheme based on SIS, the argument for multiplication triples has statistical
completeness, statistical special honest verifier zero-knowledge and computational
knowledge-soundness.

The proof of Theorem 3 can be found in the full version of this paper.
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Efficiency. The above argument uses 7 moves of interaction and results in
an overall 9 move argument when combined with the proof-of-knowledge sub-
protocols. For the product argument, the prover must send 8mk + 6k commit-
ments to the verifier, and 14nk integers as commitments openings, plus the com-
munication for the proof-of-knowledge. Sub-linear communication is achieved by
setting parameters as in Table 2. This gives communication of approximately
O(

√
N log N) elements of Zq.

For q = poly(λ), the prover’s computational costs are given by
O(N log N(log λ)2) bit operations for the prover. The verifier’s computational
costs are dominated by computing the same types of linear combinations as the
prover, giving computational costs of O(N(log λ)3) bit operations.

7 Linear Constraint Argument Description

Using similar ideas to those in the multiplication protocol, in the full version of
this paper, we give a protocol which allows the prover to prove that N = nmk
committed values satisfy the linear consistency relations

m,k∑
i=1,j=1

ai,j · wu,a,i,j +

m,k∑
i=1,j=1

bi,j · wu,b,i,j +

m,k∑
i=1,j=1

ci,j · wu,c,i,j = Ku for u ∈ {1, . . . , U}

(9)

Without loss of generality, we pad the linear consistency relations so that U
is divisible by k.

The protocol, security proof, and complexity analysis are very similar to that
of the argument for proving multiplication triples in the previous section.

We select parameters for our protocol in Sect. 5.

Security Analysis

Theorem 4. Given the statistically hiding, computationally binding commit-
ment scheme based in SIS, the argument for linear consistency constraints has
statistical completeness, statistical special honest verifier zero-knowledge and
computational knowledge-soundness.

The proof of Theorem4 can be found in the full version of this paper.

Efficiency. The above argument uses 7 moves of interaction and results in
an overall 9 move argument when combined with the proof-of-knowledge sub-
protocols. For the product argument, the prover must send 7km + 9k − 1 com-
mitments to the verifier, and 10nk + 2k integers as commitment openings, plus
the communication for the proof-of-knowledge. The asymptotic costs of the pro-
tocol are the same as for the argument for multiplication triples in the previous
section. Combined with the proof of knowledge, this gives an arithmetic circuit
argument with the stated efficiency.
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8 Arithmetic Circuit Argument

The product protocol given in Sect. 6 and the linear consistency protocol given in
Sect. 7 imply an arithmetic circuit protocol with the same asymptotic efficiency
as the two subprotocols, in which the prover forms O(mk) commitments, each
to n wire values in p, and runs both subprotocols in order to prove that they
satisfy the arithmetic circuit, reusing the same commitments Ai,B i,C i to the
wires in both subprotocols.

This yields a zero-knowledge argument for arithmetic circuit satisfiability
with communication costs O(

√
N log N) elements of Zq, computational costs of

O(N log N) for the prover, and approximately O(N) for the verifier.
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