
Constrained PRFs for NC1

in Traditional Groups

Nuttapong Attrapadung1, Takahiro Matsuda1, Ryo Nishimaki2(B),
Shota Yamada1, and Takashi Yamakawa2

1 National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

{n.attrapadung,t-matsuda,yamada-shota}@aist.go.jp
2 Secure Platform Laboratories, NTT Corporation, Tokyo, Japan

{nishimaki.ryo,yamakawa.takashi}@lab.ntt.co.jp

Abstract. We propose new constrained pseudorandom functions
(CPRFs) in traditional groups. Traditional groups mean cyclic and mul-
tiplicative groups of prime order that were widely used in the 1980s and
1990s (sometimes called “pairing free” groups). Our main constructions
are as follows.

– We propose a selectively single-key secure CPRF for circuits with
depth O(log n) (that is, NC 1 circuits) in traditional groups where n
is the input size. It is secure under the L-decisional Diffie-Hellman
inversion (L-DDHI) assumption in the group of quadratic residues
QRq and the decisional Diffie-Hellman (DDH) assumption in a tra-
ditional group of order q in the standard model.

– We propose a selectively single-key private bit-fixing CPRF in tradi-
tional groups. It is secure under the DDH assumption in any prime-
order cyclic group in the standard model.

– We propose adaptively single-key secure CPRF for NC1 and private
bit-fixing CPRF in the random oracle model.

To achieve the security in the standard model, we develop a new tech-
nique using correlated-input secure hash functions.

1 Introduction

1.1 Background

Pseudorandom functions (PRFs) are one of the most fundamental notions in
cryptography [27]. A PRF is a deterministic function PRF(·, ·) : K × D → R
where K, D, and R are its key space, domain, and range, respectively. Roughly
speaking, we say that PRF is a secure PRF if outputs of PRF(msk, ·) look random
for any input x ∈ D and a randomly chosen key msk ∈ K. Not only are PRFs
used to construct secure encryption schemes but also they frequently appear in
the constructions of various cryptographic primitives.

c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 543–574, 2018.
https://doi.org/10.1007/978-3-319-96881-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_19&domain=pdf

544 N. Attrapadung et al.

Constrained PRF. Boneh and Waters introduced the notion of constrained PRFs
(CRPFs) [16] (Kiayias, Papadopoulos, Triandopoulos, and Zacharias [35] and
Boyle, Goldwasser, and Ivan [10] also proposed the same notion in their concur-
rent and independent works). CPRFs are an advanced type of PRFs. Specifi-
cally, if we have a master secret key msk of a CPRF PRF, then we can generate a
“constrained” key skf for a function f : D → {0, 1}. We can compute the value
PRF(msk, x) from skf and x if f(x) = 0 holds; otherwise cannot. For an input x
such that f(x) = 1, the value PRF(msk, x) looks pseudorandom.1

CPRFs with various types of function classes have been considered. Here,
we explain the classes of bit-fixing functions and circuits since we present new
CPRFs for these functions.

Bit-fixing functions: Let {0, 1}n be the domain of a CPRF. Each function in
this class is specified by a “constraint vector” c = (c1, . . . , cn) ∈ {0, 1, ∗}n,
from which a bit-fixing function fc : {0, 1}n → {0, 1} is defined as follows. If
ci = ∗ or xi = ci holds for all i ∈ [n], then fc(x) = 0; otherwise fc(x) = 1.

Circuits: This class consists of functions {fC} computable by polynomial-sized
boolean circuits C, defined by fC(·) := C(·). We call a CPRF for this function
class simply a CPRF for circuits. If a CPRF supports functions computable
by polynomial-sized boolean circuits with depth O(log n), where n is the
input-length of the circuits, then we call it a CPRF for NC1.

The number of constrained keys that can be released (to a potentially mali-
cious party) is one of the important security measures of CPRFs. If a-priori
unbounded polynomially many constrained keys could be released (i.e., the
number of queries is not a-priori bounded), then a CPRF is called collusion-
resistant. If only one constrained key can be released, it is called a single-key
secure CPRF. Boneh and Waters [16] showed that (collusion-resistant) CPRFs
have many applications such as broadcast encryption with optimal ciphertext
length. (See their paper and references therein for more details.)

Private CPRF. Boneh, Lewi, and Wu [13] proposed the notion of privacy for
CPRFs (Kiayias et al. also proposed policy privacy as essentially the same
notion [35]). Roughly speaking, private CPRFs do not reveal information about
constraints embedded in constrained keys beyond what is leaked from the eval-
uation results using the constrained keys.

Known instantiations. The first papers on CPRFs [10,16,35] observed that the
Goldreich-Goldwasser-Micali [27] PRF yields a puncturable PRF2 (and a CPRF

1 We note that the role of the constraining function f is “reversed” from the definition
by Boneh and Waters [16], in the sense that the evaluation by a constrained key skf

is possible for inputs x with f(x) = 1 in their definition, while it is possible for
inputs x for f(x) = 0 in our paper. Our treatment is the same as Brakerski and
Vaikuntanathan [15].

2 A constrained key in which a set of points is hard-wired enables us to compute an
output if an input is not in the specified set.

Constrained PRFs for NC1 in Traditional Groups 545

for related simple functions). However, it turned out that achieving CPRFs for
other types of function classes is quite challenging. Here, we review some prior
works on CPRFs whose function classes are related to those we focus on in this
study (i.e., bit-fixing functions and NC1 circuits).

Boneh and Waters [16] constructed a left-right CPRF3 in the random oracle
model (ROM) from bilinear maps, and a collusion-resistant bit-fixing CPRF and
collusion-resistant CPRF for circuits from multilinear maps [25] in the standard
model. After that, Brakerski and Vaikuntanathan [15] constructed a single-key
secure CPRF for circuits from standard lattice-based assumptions, without rely-
ing on multilinear maps.

Boneh et al. [13] constructed a collusion-resistant private CPRF for circuits
from indistinguishability obfuscation (IO) [9,26], and a single-key private bit-
fixing CPRF and puncturable CPRF from multilinear maps [13]. After that, a
single-key private puncturable PRF [12], a single-key private CPRF for NC1 [18],
and a single-key private CPRF for circuits [14,37] were constructed from stan-
dard lattice assumptions.

Our motivation. (Private) CPRFs have been attracting growing attention as
above since they are useful tools to construct various cryptographic primi-
tives [13,16]. A number of other types of CPRFs have been constructed [2,8,
23,32,32,33,33]. However, all of known sufficiently expressive (private) CPRFs
(such as bit-fixing, circuits) rely on IO, multilinear maps, or lattices, and there
is currently no candidate of secure multilinear maps.

Very recently, Bitansky [11] and Goyal, Hohenberger, Koppula, and
Waters [28] proposed sub-string match4 CPRFs in traditional groups to con-
struct verifiable random functions. In this paper, by traditional groups we mean
the multiplicative groups of prime order5 that have been widely used to con-
struct various cryptographic primitives such as the ElGamal public-key encryp-
tion scheme, around two decades before bilinear maps dominate the area of
cryptography [7]. (Of course, they are still being used for many cryptographic
primitives.) However, their CPRFs are not expressive enough and do not satisfy
the standard security requirements of CPRFs6. See Tables 1 and 2 for compar-
isons. There is no construction of expressive enough (private) CPRF in tradi-
tional groups. This status might be reasonable since lattices and multilinear maps
are stronger tools.

3 There are left and right constrained keys in which v� and vr are hard-wired, respec-
tively. We can compute outputs by using the left (resp. right) constrained key if the
first (resp. last) half of an input is equal to v� (resp. vr).

4 This is the negation of bit-fixing functions, that is, fc(x) = 0 if there exists an
index i such that xi �= ci (i-th bit of a constraint) and ci �= ∗. It can be seen as a
generalization of punctured predicates.

5 For example, cyclic group H ⊂ Z∗
q of a prime order p such that q = 2p + 1 where q

is also a prime.
6 In their sub-string match CPRFs, adversaries are not given access to the evaluation

oracle, which gives outputs of a CPRF for queried inputs. We call such security
no-evaluation security in this paper.

546 N. Attrapadung et al.

Based on the motivation mentioned above, we tackle the following question:

Is it possible to construct sufficiently expressive (private) CPRFs in traditional
groups?

In this study, we give affirmative answers to this question and show that
traditional groups are quite powerful tools. From the theoretical point of view,
the more instantiations of cryptographic primitives are available, the more desir-
able. One reason is that constructions from different tools can be alternatives
when one tool is broken (like multilinear maps). Another reason is that, gen-
erally, new instantiations shed light on how to construct the studied primitive,
and widen and deepen our insights on it. One remarkable example of this line of
research would be the recent work by Döttling and Garg [22], who constructed
an identity-based encryption (IBE) scheme and a hierarchical IBE scheme in
traditional groups. Another example would be the work by Boyle, Ishai, and
Gilboa [17], who constructed communication-efficient secure two-party proto-
cols in traditional groups. It is also expected that new instantiations provide us
with insights on how to use the studied primitive in applications (in the real
world or in the construction of another primitive as a building block).

1.2 Our Contributions

In this paper, we present new constructions of a CPRF and a private CPRF in
traditional groups as main contributions.

The properties of our CPRFs are summarized as follows.

– Our first CPRF is a selectively single-key secure7 CPRF forNC 1 in tradi-
tional groups. It is secure under the L-decisional Diffie-Hellman inversion
(L-DDHI) assumption8 in the group of quadratic residues QRq and the deci-
sional Diffie-Hellman (DDH) assumption9 in a traditional group G of order
q in the standard model. Here, QRq denotes the group of quadratic residue
modulo q, where q is a prime such that q = 2p + 1 and p is also a prime.
We need to use this specific type of group for technical reasons. See Sects. 1.3
and 4 for the details.

– Our second CPRF is a selectively single-key private bit-fixing CPRF in tradi-
tional groups. Specifically, it is secure under the standard DDH assumption
in any prime-order cyclic group in the standard model.

7 Adversaries commit a function to be embedded in a constrained key at the beginning
of the security experiment and have access to the evaluation oracle, which gives
outputs of CPRFs for queried inputs.

8 The L-DDHI assumption in a group H of order p [4,21] says that it is hard to distin-

guish (g, gα, gα2
, . . . , gαL

, g1/α) from (g, gα, gα2
, . . . , gαL

, gz) where g
R← H, α, z

R←
Zp. See the full version [3] for the rigorous definition.

9 The DDH assumption in a group G of order q says that it is hard to distinguish

(g, gx, gy, gxy) from (g, gx, gy, gz) where g
R← G, x, y, z

R← Zq.

Constrained PRFs for NC1 in Traditional Groups 547

– Our third and fourth CPRFs are an adaptively10 single-key secure CPRF for
NC1 circuits and an adaptively single-key private bit-fixing CPRF, both in
the ROM. Our standard model and ROM constructions of CPRFs for NC1,
share high-level ideas behind the constructions in common, and the same is
true for our bit-fixing CPRFs. These connections are explained in Sect. 1.3.
Due to the space limit, we omit the constructions in the ROM in this paper.

The main technique that enables us to achieve the above results, is a novel use
of correlated-input secure hash functions. We will explain the technical overview
in Sect. 1.3.

As an application of our results, we can obtain a single-key secret-key
attributed-based encryption (ABE) scheme with optimal ciphertext overhead in
traditional groups. A (multi-key) public-key ABE scheme with optimal cipher-
text overhead was presented by Zhandry [39], but it is based on multilinear maps.
See the full version [3] for more details.

Table 1. Comparison of CPRFs (we omit constructions based on multilinear maps or
IO). In “Function” column, sub-match is sub-string match. Prefix-fixing means that a
constrained key with prefix p enables us to compute outputs for inputs p‖∗. “# keys”
column means the number of issuable constrained keys. “Eval.O” column means the
evaluation oracle is available for adversaries or not. “Tool” column means what kinds
of cryptographic tools are used. GGM, pairing, and group mean the PRF by Goldre-
ich, Goldwasser, and Micali [27], bilinear maps, and traditional groups, respectively.
In “Assumptions” column, OWF, BDDH, LWE, and 1D-SIS mean one-way function,
bilinear Diffie-Hellman, learning with errors, and one-dimensional short integer solu-
tion assumptions, respectively. In “Model” column, Std means the standard model. In
“Misc” column, key-hom means key-homomorphic property.

Reference Function # keys Eval.O Tool Assumptions Model Misc

[16] puncturea N/A N/A GGM OWF Std

[16] left/right multi � pairing BDDH ROM

[35] puncturea N/A N/A GGM OWF Std

[10] puncturea N/A N/A GGM OWF Std

[8] prefix-fixing multi � lattice LWE Std key-hom

[15] circuit single � lattice LWE, 1D-SIS Std

[11] sub-match single no group DDH Std

[28] sub-match single no group L-power DDH Std

[28] sub-match single no group Φ-hiding Std

Ours NC1 single � group DDH, L-DDHI Std
a More precisely, they consider slightly different functions, but we write just “puncture”
for simplicity since their constructions are based on the GGM PRF. See their papers
for details.

10 Adversaries can decide a function for which it makes the key query at any time.

548 N. Attrapadung et al.

Table 2. Comparison of private CPRFs (we omit constructions based on multilinear
maps and IO). See Table 1 for terms.

Reference Predicate # keys Eval.O Tool Assumptions Model

[35] puncturea N/A N/A GGM OWF Std

[12] puncture N/A N/A lattice LWE, 1D-SIS Std

[18] bit-fixing single � lattice LWE Std

[18] NC1 single � lattice LWE Std

[14] circuit single � lattice LWE Std

[37] circuit single � lattice LWE, 1D-SIS Std

Ours bit-fixing single � group DDH Std
a Same as in Table 1.

1.3 Technical Overview

In this section, we provide an overview of our construction ideas. We ignore
many subtle issues in this section and focus on the essential ideas for simplicity.

Basic construction satisfying no-evaluation security. To illustrate our ideas in
a modular manner, we start with a no-evaluation secure CPRF for NC1, that
is, adversaries do not have access to the evaluation oracle. We denote the PRF
by PRFNE. It turns out that even in this simple setting, it is non-trivial to
construct a CPRF for NC1 in traditional groups (or bilinear groups) since known
constructions use some sort of “fully homomorphic” properties of lattices or
multilinear maps, both of which are not available in traditional groups. In the
following, let λ be the security parameter.

The first challenge is how to implement an NC1 circuit constraint in a key.
Our idea is to encode an NC1 circuit f11 into a bit string f = (f1, . . . , fz) ∈
{0, 1}z and then embed this into a secret key. When evaluating a PRF value on
input x = (x1, . . . , xn) ∈ {0, 1}n, we will “homomorphically” evaluate U(·, x) on
the secret key, where U(·, ·) is a universal circuit that outputs U(f, x) = f(x) on
input (f, x). To make the representation of the universal circuit U(·, ·) compatible
with our algebraic setting, we regard U(·, ·) as a degree-D polynomial of the vari-
ables {fi} and {xj}, such that D is some fixed polynomial of λ.12 Furthermore,
we extend the input space of U(·, ·) to be non-binary, where the computation
is done over Zp using the polynomial representation of U(·, ·). Specifically, we
allow the input of the form ((b1, . . . , bz), x) ∈ Zz

p × {0, 1}n.
Now, we give a more detailed description of PRFNE. A master secret key msk

of PRFNE is of the form (b1, . . . , bz, α, g), where bi
R← Zp for each i ∈ [z] and

11 Here, we identify a circuit that computes a function f with f itself.
12 We can construct a universal circuit U whose depth is only constant times deeper

than that of f by the result of Cook and Hoover [20]. It is well known that an NC1

circuit can be represented by a polynomial with polynomial degree (for example,
this fact is used for functional encryption for NC1 [31]).

Constrained PRFs for NC1 in Traditional Groups 549

α
R← Z∗

p, and g is a generator of a traditional group H of order p. (We will
turn to the explanation on this group H later in this subsection.) The evalua-
tion algorithm of PRFNE outputs gx′/α, where x′ = U((b1, . . . , bz), x) ∈ Zp. To
compute a constrained key skf of an NC1 circuit f , we set b′

i := (bi − fi)α−1.
The constrained key is skf = (f, b′

1, . . . , b
′
z, g, gα, gα2

, . . . , gαD−1
).

We then look closer at why this construction achieves the constraint defined
by the NC1 circuit f . When we compute x′ := U((b1, . . . , bz), x) by using bi =
α · b′

i + fi, we can write the computation of U in the following way:

x′ = U((α · b′
1 + f1, . . . , α · b′

z + fz), x) = f(x) +
D∑

j=1

cjα
j ,

where the coefficients {cj}j are efficiently computable from the descriptions of U
and f , {b′

i}i, and x since the degree D is polynomial in the security parameter.
This can be seen by observing that U((α · b′

1 + f1, . . . , α · b′
z + fz), x) should

be equal to f(x) when α = 0 since we have U((f1, . . . , fz), x) = f(x) by the
definition of a universal circuit.

– If f(x) = 0, then we can compute gx′/α = gf(x)/α+
∑D−1

j=0 cjαj

since the
gf(x)/α part disappears and the remaining part is computable from skf =
(f, b′

1, . . . , b
′
z, g, gα, . . . , gαD−1

) and x.
– If f(x) = 1, then gx′/α = gf(x)/α+

∑D−1
j=0 cjαj

looks random since g1/α looks
random even if (g, gα, . . . , gαD−1

) is given, due to the (D − 1)-DDHI assump-
tion in H.

This is a high-level intuition for why PRFNE for NC1 is no-evaluation secure.
This CPRF PRFNE is our base construction, and the idea behind our construction
here is inspired by the affine partitioning function used in the recent construction
of a verifiable random function by Yamada [38].

On the other hand, this construction can be broken by making only one
evaluation query: Suppose that x �= x̂ satisfy f(x) = f(x̂) = 1. Then we can
write PRFNE(msk, x) = g1/α+

∑D−1
j=0 cjαj

and PRFNE(msk, x̂) = g1/α+
∑D−1

j=0 ĉjαj

by
using {cj}j and {ĉj}j that are efficiently computable by an adversary. Then we
have PRFNE(msk, x̂) = PRFNE(msk, x) ·g

∑D−1
j=0 (ĉj−cj)α

j

. Therefore if an adversary
obtains PRFNE(msk, x), then it can efficiently compute PRFNE(msk, x̂) and break
the security of the PRF.

Single-key secure construction in the ROM. To achieve security against adver-
saries making a-priori unbounded polynomially many evaluation queries (i.e.,
the number of queries is polynomial, but not fixed in advance), we consider
using a random oracle as an intermediate step. (This construction is denoted
by PRFrom.) PRFrom is the same as PRFNE except that an output is now com-
puted by H(gx′/α), instead of gx′/α, where H : H → {0, 1}n′

is a cryptographic
hash function. In the ROM where H is modeled as a random oracle, adversaries
make hash queries and obtain outputs of the hash function H. If f(x) = 1, then

550 N. Attrapadung et al.

an adversary cannot compute gx′/α due to the no-evaluation security, and thus
H(gx′/α) seems uniformly random from the view of the adversary. Therefore
evaluation queries from an adversary can be answered with uniformly random
strings, and the adversary cannot notice whether this is a correct behavior of
the evaluation oracle as long as it does not find a collision (x1, x2) such that
gx′

1/α = gx′
2/α where x′

i = U((b1, . . . , bz), xi). Our real construction is slightly
modified from the above construction so that such a collision exists only with
negligible probability (see Sect. 4.1 for the detail).

The second challenge is how to remove the random oracle and achieve security
against a-priori unboundedpolynomially evaluation queries in the standardmodel.

Replacing a random oracle with a correlated-input secure hash function. We
observe that we do not need the full power of random oracles to prove the secu-
rity of CPRFs. Specifically, we can use a correlated-input secure hash function
(CIH) [5,29,30,34]13, instead of random oracles.

Here, we briefly recall the definition of a CIH whose definition is associated
with a class of functions Ψ . At the beginning, the challenger chooses the chal-
lenge bit coin

R← {0, 1}, a function description CIH,14 and a random element r
from the domain of CIH. The adversary is given CIH and access to an oracle
that, upon a query ψi ∈ Ψ from the adversary, answers CIH(ψi(r)) if coin = 1;
otherwise the oracle answers the query with RF(ψi(r)), where RF is a truly ran-
dom function. If it is hard for adversaries to distinguish the case coin = 1 from
the case coin = 0, we say that CIH is correlated-input pseudorandom for Ψ (or
simply, a CIH for Ψ).15

If there exists a CIH for group-induced functions ψΔ : H → H such that
Δ ∈ H and ψΔ(y) := y · Δ (denoted by CIH0) where · is the group operation
of H, then CIH0(PRFNE(msk, x)) is a secure CPRF. This can be seen as follows:
For x satisfying f(x) = 1, PRFNE(msk, x) can be written as g1/α · g

∑D−1
j=0 cjαj

where g1/α is pseudorandom and g
∑D−1

j=0 cjαj

is efficiently computable from the
view of an adversary as discussed above. By applying the security of a CIH by
setting y := g1/α and Δ = g

∑D−1
j=0 cjαj

, we can see that CIH0(PRFNE(msk, x))
is computationally indistinguishable from RF(PRFNE(msk, x)). This is computa-
tionally indistinguishable from a random function as long as PRFNE(msk, x) has
no collision, and the actual construction of PRFNE(msk, x) is made collision-free
as mentioned in the previous paragraph.

13 Several works defined similar notions in different names such as related-key security.
We use the name “correlated-input security” since we think it is the most suitable
name for our usage.

14 In the formal security definition, the function is parameterized by a public param-
eter generated by some setup procedure. We ignore the public parameter in the
explanation below for simplicity. See Sect. 2.2 for the rigorous security definition for
CIHs.

15 The definition of CIHs in this paper can be seen as a hybrid of correlated-input
pseudorandom by Goyal et al. [30] and RKA-PRG by Bellare and Cash [5]. See
Sect. 2.2 for the formal definition.

Constrained PRFs for NC1 in Traditional Groups 551

However, there is one subtle issue: The only known instantiation of CIH for
group induced functions which satisfies our security requirements is the CIH
based on the DDH assumption by Bellare and Cash [5] (denoted by CIHBC). In
CIHBC, we consider the m-dimensional, component-wise group-induced functions
Ψg-indc

m := {ψ�a | �a ∈ (Z∗
q)

m}, where ψ�a : (Z∗
q)

m → (Z∗
q)

m is defined by ψ�a(�r) :=
�a��r and � denotes the component-wise group operation on Z∗

q . Here, the domain
of CIHBC is not compatible with the range of PRFNE (the output is gx′/αi ∈ H).
One might think that m-folded parallel running of PRFNE on H := Z∗

q works, but
this is not the case. This is because if H := Z∗

q , then the L-DDHI assumption
can be easily broken by computing the Jacobi symbol.

We observe that the attack based on the Jacobi symbol does not work if we
consider the group of quadratic residues modulo q, denoted by QRq instead of Z∗

q ,
and it is reasonable to assume the L-DDHI assumption holds on QRq. However,
if we set H := QRq, then we cannot simply use the security of CIHBC since it is not
obvious if the security of CIHBC still holds when we restrict the domain of CIHBC

to QR
m
q . We resolve the issue by proving that the CIH obtained by restricting

the domain of CIHBC to QR
m
q (denoted by CIH

B̃C
) is also secure as a CIH for

component-wise group operations on QRm
q under the DDH assumption on a

group of an order p = q−1
2 if p is a prime. See Sect. 3 for more details of CIH

B̃C
.

We are now ready to explain our CRPF PRF for NC1. It uses multiple
instances of PRFNE and apply a CIH for m-dimensional component-wise group-
induced functions to the outputs from those instances. That is, we define

PRFNC1(msk, x) := CIH
B̃C

(
PRFNE(msk1, x), . . . ,PRFNE(mskm, x)

)
.

Now, we look closer at why correlated-input pseudorandomness helps us
achieve security in the presence of a-priori unbounded polynomially many eval-
uation queries. In PRFNE, when the inputs x with f(x) = 1 are used, we can
view its output as consisting of two separate parts. Specifically, we can write
gx′/α = gf(x)/α+

∑D−1
j=0 cjαj

= Aux(msk) · SEval(skf , x) if we define Aux(msk) :=
g1/α and SEval(skf , x) := g

∑D−1
j=0 cjαj

(where SEval stands for “semi”-evaluation).
The first part is computable only from msk, and the second part is computable
from skf and x. Thanks to the (D − 1)-DDHI assumption, it is now easy to see
that Aux(msk) is indistinguishable from a random element even if skf is given.
Therefore, it holds that

PRFNC1(msk, x) ≈c CIHB̃C

(
r1 · SEval(skf,1, x), . . . , rm · SEval(skf,m, x)

)
,

where ri
R← H for all i ∈ [m] and ≈c denotes computational indistinguishability.

Furthermore, skf,i denotes the secret key associated to f generated from mski.
(Namely, it corresponds to the i-th instance.) Here, φi := SEval(skf,i, x) ∈ H

are adversarially chosen correlated values and fall in the component-wise group-
induced functions Ψg-indc

m due to (φ1, . . . , φm) ∈ Hm. Therefore, by applying the
correlated-input pseudorandomness of CIH

B̃C
, we obtain

CIH
B̃C

(r1 · φ1, . . . , rm · φm) ≈c RF(r1 · φ1, . . . , rm · φm).

552 N. Attrapadung et al.

As long as adversaries do not find a collision (x1, x2) such that (SEval(skf,1, x1),
. . . ,SEval(skf,m, x1)) = (SEval(skf,1, x2), . . . ,SEval(skf,m, x2)), PRFNC1(msk, ·)
is pseudorandom since RF is a truly random function. It is not difficult to see
that a collision is hard to find by the universality of the modified PRFNE (see
Lemma 8 for the detail). Therefore, we can prove the pseudorandomness of
PRF against a-priori unbounded polynomially many evaluation queries in the
standard model by using the security of CIH for (m-dimensional, component-
wise) group-induced functions.

How to achieve private constraint. Here, we give a brief explanation on how
our single-key private CPRF for bit-fixing functions is constructed. The basic
strategy is the same as that of our CPRFs for NC1. That is, we firstly construct a
private bit-fixing CPRF in the ROM, and then convert it into a private bit-fixing
CPRF in the standard model via a CIH for an appropriate function class.

Our single-key private bit-fixing CPRF in the ROM is very simple. This
is slightly different from what we present in the full version of this paper [3],
but we stick to the following construction in this section since it is consis-
tent with the standard model construction in Sect. 5.1. A master secret key
is msk := {si,b}i∈[n],b∈{0,1} and a PRF output for input x is H(

∑n
i=1 si,xi

) where
H is a (standard) hash function. For convenience, we define PRFbf-NE(msk, x) :=∑n

i=1 si,xi
. A constrained key for c ∈ {0, 1, ∗}n is {ti,b}i∈[n],b∈{0,1} where

ti,b := si,b if ci = ∗ or ci = b; otherwise ti,b
R← Zp. If an input does not match

the constraint c, then the sum includes completely unrelated values and we
cannot compute the correct output. Adversaries are given just random values
by the random oracle. Moreover, adversaries cannot distinguish two different
constraints as long as a challenge input does not satisfy the constraints since
both si,b and ti,b are uniformly random values in Zp. This construction satisfies
adaptive single-key privacy in the random oracle model, without relying on any
complexity assumption.

Now we replace the cryptographic hash function (random oracle) H with a
CIH CIHaff for affine functions Φaff = {φ�u,�v : Zm

p → Zm
p } where �u ∈ (Z∗

p)
m,

�v ∈ Zm
p , and φ�u,�v(�x) := �u � �x + �v where � is component-wise multiplication in

Zp. Our private bit-fixing CPRF is defined by

PRFBF(msk, x) := CIHaff

(
PRFbf-NE(msk1, x), . . . ,PRFbf-NE(mskm, x)

)
.

A constrained key skc consists of constrained keys for c with respect to mskj , for
all j ∈ [m]. It is easy to see that the correctness holds. For the security, we set
ti,b,j := si,b,j − αj for ci �= ∗ and b = 1 − ci where αj

R← Zp. Then, we can write
∑n

i=1 si,xi,j = uαj+vj for some u ∈ [n] (especially u �= 0) where vj =
∑n

i=1 ti,xi,j

for an evaluation query x from an adversary, since x is not allowed to satisfy
the constraint. For two different constraints, the adversary cannot distinguish
which constraint is used in a constrained key (that is, si,b,j ≈c ti,b,j + αj) since
ti,b,j is uniformly random. Here, αj ’s are uniformly random and u and vj are
adversarially chosen values. It is easy to see that this falls into the class of affine

Constrained PRFs for NC1 in Traditional Groups 553

functions. Thus, we can use the security of the CIH CIHaff for affine functions,
and obtain

CIHaff(uα1 + v1, . . . , uαm + vm) ≈c RF(uα1 + v1, . . . , uαm + vm).

As long as a collision of (PRFbf-NE(msk1, ·), . . . ,PRFbf-NE(mskm, ·) is not found,
RF(uα1 + v1, . . . , uαm + vm) is indistinguishable from a random value. Further-
more, it is not difficult to show that the condition holds by the universality of
Ft(x) := (uα1 + v1, . . . , uαm + vm). Therefore, we can prove the security of our
private bit-fixing CPRF. See the full version of this paper [3] for the details.

1.4 Other Related Works

While we focus on (private) CPRFs without IO and multilinear maps, many
expressive (private) CPRFs have been proposed based on IO or multilinear
maps: collusion-resistant CPRFs for circuit based on multilinear maps [8,16],
adaptively secure CPRFs based on IO [32,33], collusion-resistant CPRFs for
Turing machines based on (differing-input) IO [2,23], collusion-resistant private
CPRFs for circuits based on IO [13].

Cohen,Goldwasser, and Vaikuntanathan showed a connection between CPRFs
for some class of functions and computational learning theory [19]. See the papers
and references therein for more details.

Organization. The rest of the paper is organized as follows. After introducing
minimum notations, security definitions, and building blocks in Sect. 2, we present
our correlated-input secure hash function in Sect. 3, our CPRFs for NC1 and its
security proofs in Sect. 4, and our private bit-fixing CPRF in Sect. 5. Many materi-
als are omitted in this extended abstract due to the space limit. See the full version
for all details [3].

2 Preliminaries

In this section, we review some notations and definitions, tools, and crypto-
graphic primitives.

Notations. We denote by “poly(·)” an unspecified integer-valued positive poly-
nomial of λ and by “negl(λ)” an unspecified negligible function of λ. For sets D
and R, “Func(D,R)” denotes the set of all functions with domain D and range R.

Group generator. For convenience, we introduce the notion of a “group gener-
ator”. We say that a PPT algorithm GGen is a group generator, if it takes a
security parameter 1λ as input and outputs a “group description” G := (G, p)
where G is a group with prime order p = Ω(2λ), from which one can efficiently
sample a generator uniformly at random.

554 N. Attrapadung et al.

2.1 Constrained Pseudorandom Function

Here, we give the syntax and security definitions for a constrained pseudorandom
function (CPRF). For clarity, we will define a CPRF as a primitive that has
a public parameter. However, this treatment is compatible with the standard
syntax in which there is no public parameter, because it can always be contained
as part of a master secret key and constrained secret keys.

Syntax. Let F = {Fλ,k}λ,k∈N be a class of functions16 where each Fλ,k is a set of
functions with domain {0, 1}k and range {0, 1}, and the description size (when
represented by a circuit) of every function in Fλ,k is bounded by poly(λ, k).

A CPRF for F consists of the five PPT algorithms (Setup,KeyGen,Eval,
Constrain,CEval) where (Setup,KeyGen,Eval) constitutes a PRF (where a key
msk output by KeyGen is called a master secret key), and the last two algorithms
Constrain and CEval have the following interfaces:

Constrain(pp,msk, f) R→ skf : This is the constraining algorithm that takes as
input a public parameter pp, a master secret key msk, and a function f ∈ Fλ,n,
where n = n(λ) = poly(λ) is the input-length specified by pp. Then, it outputs
a constrained key skf .

CEval(pp, skf , x) =: y: This is the deterministic constrained evaluation algorithm
that takes a public parameter pp, a constrained key skf , and an element
x ∈ {0, 1}n as input, and outputs an element y ∈ R.

As in an ordinary PRF, whenever clear from the context, we will drop pp from
the inputs of Eval, Constrain, and CEval, and the executions of them are denoted
as “Eval(msk, x)”, “Constrain(msk, f)”, and “CEval(skf , x)”, respectively.

Correctness. For correctness of a CPRF for a function class F = {Fλ,k}λ,k∈N,
we require that for all λ ∈ N, pp R← Setup(1λ) (which specifies the input length
n = n(λ) = poly(λ)), msk

R← KeyGen(pp), functions f ∈ Fλ,n, and inputs x ∈
{0, 1}n satisfying f(x) = 0, we have CEval(Constrain(msk, f), x) = Eval(msk, x).

Remark 1. We note that in our definition, the role of the constraining functions
f is “reversed” from that in the original definition [16], in the sense that cor-
rectness (i.e. the equivalence Eval(msk, ·) = CEval(skf , ·)) is required for inputs
x with f(x) = 0, while it is required for inputs x with f(x) = 1 in the original
definition [16].

Security. Here, we give the security definitions for a CPRF. We only consider
CPRFs that are secure in the presence of a single constrained key, for which we
consider two flavors of security: selective single-key security and adaptive single-
key security. The former notion only captures security against adversaries A that

16 In this paper, a “class of functions” is a set of “sets of functions”. Each Fλ,k in F
considered for a CPRF is a set of functions parameterized by a security parameter
λ and an input-length k.

Constrained PRFs for NC1 in Traditional Groups 555

decide the constraining function f (and the constrained key skf is given to A)
before seeing any evaluation result of the CPRF, while the latter notion has no
such restriction and captures security against adversaries that may decide the
constraining function f at any time. Also, in Sect. 4, as a security notion for a
CPRF used as a building block, we will use the notion of no-evaluation security,
which captures security against adversaries that have no access to the evaluation
oracle. The definition below reflects these differences.

Fig. 1. The experiment for defining single-key security for a CPRF.

Formally, for a CPRF CPRF = (Setup,KeyGen,Eval,Constrain,CEval) (with
input-length n = n(λ)) for a function class F = {Fλ,k}λ,k∈N and an adversary
A = (A1,A2), we define the single-key security experiment ExptcprfCPRF,F,A(λ) as
described in Fig. 1 (left).

In the security experiment, the adversary A’s single constraining query is
captured by the function f included in the first-stage algorithm A1’s output.
Furthermore, A1 and A2 have access to the challenge oracle OChal(·) and the
evaluation oracle Eval(msk, ·), where the former oracle takes x∗ ∈ {0, 1}n as
input, and returns either the actual evaluation result Eval(msk, x∗) or the output
RF(x∗) of a random function, depending on the challenge bit coin ∈ {0, 1}.

We say that an adversary A = (A1,A2) in the security experiment
ExptcprfCPRF,F,n,A(λ) is admissible if A1 and A2 are PPT and respect the following
restrictions:

– f ∈ Fλ,n.
– A1 and A2 never make the same query twice.
– All challenge queries x∗ made by A1 and A2 satisfy f(x∗) = 1, and are distinct

from any of the evaluation queries x that they submit to the evaluation oracle
Eval(msk, ·).

Furthermore, we say that A is selectively admissible if, in addition to the above
restrictions, A1 makes no challenge or evaluation queries. Finally, we say that A

556 N. Attrapadung et al.

is a no-evaluation adversary if A1 and A2 are PPT, and they do not make any
queries, except that A2 is allowed to make only a single challenge query x∗ such
that f(x∗) = 1.

Definition 1 (Security of CPRF). We say that a CPRF CPRF for a function
class F is adaptively single-key secure, if for all admissible adversaries A, the
advantage Advcprf

CPRF,F,A(λ) := 2 · |Pr[ExptcprfCPRF,F,A(λ) = 1] − 1/2| is negligible.
We define selective single-key security (resp. no-evaluation security) of CPRF

analogously, by replacing the phrase “all admissible adversaries A” in the above
definition with “all selectively admissible adversaries A” (resp. “all no-evaluation
adversaries A”).

Remark 2. As noted by Boneh and Waters [16], without loss of generality we can
assume that A makes a challenge query only once, because security for a single
challenge query can be shown to imply security for multiple challenge queries
via a standard hybrid argument. Hence, in the rest of the paper we only use the
security experiment with a single challenge query for simplicity.

Remark 3. In some existing works [16,23,24], the term “selective” is used to
mean that A has to make a challenge query at the beginning of the security
experiment. On the other hand, in this paper, “selective” means that A has to
make a constraining query at the beginning of the security experiment, which is
the same definitional approach by Brakerski and Vaikuntanathan [15].

2.2 Correlated-Input Secure Hash Function

Here, we review the definition of a correlated-input secure hash function (CIH)
that was originally introduced in Goyal et al. [30].

Syntactically, a CIH is an efficiently computable deterministic (hash) function
that has a public parameter pp that is generated by using some setup procedure,
and we refer to such a pair of function and setup procedure as a publicly param-
eterized function. In this paper, we will consider a CIH that is associated with
a group generator GGen. Thus, we model its setup algorithm by a “parameter
generation” algorithm PrmGen that takes a group description G generated by
GGen as input, and outputs a public parameter pp.

Formally, a publicly parameterized function CIH with respect to a group
generator GGen, consists of the two PPT algorithms (PrmGen,Eval) with the
following interfaces:

PrmGen(G) R→ pp: This is the parameter generation algorithm that takes as
input a group description G output by GGen(1λ). Then, it outputs a pub-
lic parameter pp, where we assume that pp contains G and the descriptions
of the domain D and the range R.

Eval(pp, x) =: y: This is the deterministic evaluation algorithm that takes a pub-
lic parameter pp and an element x ∈ D as input, and outputs an element
y ∈ R.

Constrained PRFs for NC1 in Traditional Groups 557

When there is no confusion, we will abuse the notation and denote by
“CIH(pp, x)” to mean the execution of Eval(pp, x). Furthermore, when pp is clear
from the context, we may sometimes drop pp from the input of CIH, and treat
as if it is a single function (e.g. “CIH : D → R”) for more intuitive descriptions.

Security of CIHs. The security definition of a CIH that we use in this paper
is a slightly generalized version of correlated-input pseudorandomness [30] (see
Remark 4 for the differences from related works).

Let GGen be a group generator, and CIH = (PrmGen,Eval) be a publicly
parameterized function with respect to GGen. Let F = {Fλ,z}λ∈N,z∈{0,1}∗ be a
class of functions, where each Fλ,z is a set of functions parameterized by λ ∈ N

and z ∈ {0, 1}∗,17 and it is required that for all λ ∈ N, if G R← GGen(1λ) and
pp

R← PrmGen(G), then the domain and the range of functions in Fλ,pp are
identical to the domain of Eval(pp, ·).

For the publicly parameterized function CIH, the group generator GGen,
the function class F , and an adversary A, we define the security experiment
ExptcihCIH,F,A(λ) as described in Fig. 2.

Fig. 2. Left: The security experiment for a CIH. Right: The definition of the oracle
O in the experiment.

Note that in the experiment, the oracle O(·) that A has access to, takes
f ∈ Fλ,pp as input, and returns either the evaluation result CIH(pp, f(x)) or
the output RF(f(x)) of the random function RF, depending on the challenge bit
coin ∈ {0, 1}.

Definition 2 (Security of CIH). Let CIH be a publicly parameterized function
with respect to a group generator GGen, and let F be a function class. We say that
CIH is a CIH for F (or, F-CIH) with respect to GGen, if for all PPT adversaries
A, the advantage Advcih

CIH,GGen,F,A(λ) := 2 · |Pr[ExptcihCIH,GGen,F,A(λ) = 1] − 1/2| is
negligible.
17 For a class of functions F considered for CIHs, we allow each member of F to be

parameterized by not only λ ∈ N but also z ∈ {0, 1}∗. The role of z is to associate
the functions with a public parameter pp generated by Setup(1λ). See the security
experiment in Fig. 2.

558 N. Attrapadung et al.

Remark 4 (On the difference between CIHs and related-key secure PRFs (or
PRGs)). This remark provides additional information for readers who are famil-
iar with related primitives. We note that Definition 2 is essentially the same as
the definition of a related-key secure pseudorandom generator (RKA-PRG) by
Bellare and Cash [5, Sect. 6, Eq. (27)]. A very minor difference is that we explic-
itly consider public parameters in the syntax. An RKA-PRG can be seen as a
generalized version of correlated-input pseudorandomness by Goyal, O’Neill, and
Rao [30, Definition 7]. If A in the security of a CIH must declare functions that
will be queried to the oracle at the beginning of the experiment (i.e., selective
security) and RF(f(x)) is replaced by a uniformly random element in R, then
it is the same as correlated-input pseudorandomness. The reason why we select
the name “CIH” is that it is well-suited for our usage.

Moreover, an RKA-PRF implies an RKA-PRG18. Therefore, the RKA-PRF
(or RKA-PRG) by Bellare and Cash [5, Theorem 4.2] and the RKA-PRF by
Abdalla, Benhamouda, Passelègue, and Paterson [1, Theorem 7] are secure CIHs
under our definition. (Of course, supported function classes are the same as
theirs.)

In Sects. 3 and 5, we introduce two concrete function classes for CIHs used
as building blocks in our proposed CPRFs.

3 Building Block: Correlated-Input Secure Hash

In this section, we construct a CIH for group-induced functions on QR
n
q , Its secu-

rity under the DDH assumption is proven in the full version [3]. The definition
of group-induced functions is given below.

Quadratic Residuosity groups. A safe prime q is a prime such that q = 2p+1 for
some p which is also a prime. We denote by QRq the subgroup of all quadratic
residues in Z∗

q . From an elementary result, we have that QRq is a group of prime
order p. We denote by SPGGen(1λ) a group generator that outputs a group
description (G, q) where q is a safe prime and q = Ω(2λ).

CIH for group-induced functions. The notion of (component-wise) group-induced
functions with respect to a group generator GGen is a function class Ψg-indc =
{Ψg-indc

λ,z }λ∈N,z∈{0,1}∗ satisfying the following property for all (λ, z) ∈ N×{0, 1}∗:
If z can be parsed as a tuple (G, n, z′) so that G = (G, q) is a group description
output by GGen(1λ), n ∈ N, and z′ ∈ {0, 1}∗, then we have Ψg-indc

λ,z = {ψ�a :
(Z∗

q)
n → (Z∗

q)
n | �a ∈ (Z∗

q)
n}, where for each �a ∈ (Z∗

q)
n, ψ�a(�x) := �a � �x ∈ (Z∗

q)
n

and � denotes the component-wise multiplication in Z∗
q .

18 If we fix an input of a PRF and view its key as a seed of a PRG, then the former
can be seen as a latter.

Constrained PRFs for NC1 in Traditional Groups 559

Naor-Reingold PRF. We recall the Naor-Reingold PRF [36] denoted by NR. The
setup takes 1λ as input and outputs pp = (G, g, n) where G is a group of prime
order q output from GGen(1λ). The key msk = {xi}n

i=0 is chosen as xi
R← Z∗

q ,
and the evaluation of the function on input (u1, . . . , un) ∈ {0, 1}n is defined as
NR((x0, . . . , xn), (u1, . . . , un)) := gx0

∏n
i=1 x

ui
i . Our PRF used in our CIH, denoted

by NR′, is a variant of NR. NR′ is defined as NR, except that msk = {xi}n
i=0 is

chosen as xi
R← QRq, instead of xi

R← Z∗
q . In particular, the function evaluation

of NR′ matches NR, but its domain is restricted to QR
n+1
q × {0, 1}n.

CIH Construction. We are now ready to describe our CIH for the (component-
wise) group-induced functions with respect to SPGGen. It can be considered as a
variant of the hash function by Bellare and Cash [5], denoted as CIHBC, which we
recall as follows. The public parameter consists of the description of G, which is a
cyclic group of order q, output from the group generator GGen(1λ), a generator
g of G, and a collision-resistant hash function Hcr : Gn+1 → {0, 1}n−2. The
evaluation is defined as follows.

The function is CIHBC : (Z∗
q)

n+1 −→ G and

CIHBC(�x) := NR
(

�x, 11‖Hcr

(
NR(�x, e0), ...,NR(�x, en)

))

where e0 = 0n and ek = 0k−1‖1‖0n−k for k ∈ [n].
Our variant of CIH is exactly the same as CIHBC but the domain is restricted.

In more detail, our CIH is operated on QR
n+1
q → G with exactly the same evalu-

ation as CIHBC. Note that due to our restriction on the domain, the NR evaluation
inside the function is thus restricted to NR′. We denote this CIH as CIH

B̃C
.

Theorem 1. If the DDH assumption holds with respect to SPGGen and Hcr is
a CRHF, then CIH

B̃C
is a secure CIH for the (component-wise) group-induced

functions with respect to SPGGen.

The proof of Theorem 1 is given in the full version [3].

4 CPRF for NC1 Circuits

In this section, we first show a construction of a CPRF for NC1 circuits with
no-evaluation security, where an adversary is not allowed to make evaluation
queries (Sect. 4.1). We then show that by combining the scheme with our CIH
in Sect. 3, we can upgrade the security to the selective single-key security, where
the adversary is allowed to make evaluation queries unbounded times after it is
given the secret key (Sect. 4.2). We also show that the adaptive security can be
achieved in the random oracle model in the full version [3].

560 N. Attrapadung et al.

4.1 Our Basic Constrained PRF

Here, we give a construction of a CPRF for NC1 with no-evaluation security.
We then prove that the scheme has additional properties that we call semi-
evaluability and universality. These properties will be used in security proofs of
our selectively/adaptively secure CPRF for NC1 in the standard/random-oracle
model.

Notations. In the following, we will sometimes abuse notation and evaluate a
boolean circuit C(·) : {0, 1}� → {0, 1} on input y ∈ R� for some ring R. The
evaluation is done by regarding C(·) as the arithmetic circuit whose AND gates
(y1, y2)
→ y1∧y2 being changed to the multiplication gates (y1, y2)
→ y1y2, NOT
gates y
→ ¬y changed to the gates y
→ 1−y, and the OR gates (y1, y2)
→ y1∨y2
changed to the gates (y1, y2)
→ y1 + y2 − y1y2. It is easy to observe that if the
input is confined within {0, 1}� ⊆ R, the evaluation of the arithmetized version
of C(·) equals to that of the binary version. (Here, we identify ring elements
0, 1 ∈ R with the binary bit.) In that way, we can regard C(·) as an �-variate
polynomial over R. The degree of C(·) is defined as the maximum of the total
degree of all the polynomials that appear during the computation.

Class of Functions. Let n = poly(λ), z(n) = poly(n), and d(n) = O(log n) be
parameters. The function class that will be dealt with by the scheme is denoted
by FNC1

= {FNC1

λ,n(λ)}λ∈N, where FNC1

λ,n consists of (Boolean) circuits f whose
input size is n(λ), the description size is z(n), and the depth is d(n). We can set
the parameters arbitrarily large as long as they do not violate the asymptotic
bounds above, and thus the function class corresponds to NC1 circuits with
bounded size. The following lemma will be helpful when describing our scheme.

Lemma 1. Let n = poly(λ). There exists a family of universal circuit {Un}n∈N

of degree D(λ) = poly(λ) such that Un(f, x) = f(x) for any f ∈ FNC1

λ,n(λ) and
x ∈ {0, 1}n.

Proof. Due to the result by Cook and Hoover [20], there exists a universal circuit
Un(·) of depth O(d) = O(log n) and size poly(n, z, d) = poly(λ). Furthermore,
the degree of Un(·) is bounded by 2O(d) = poly(n) = poly(λ). �

Construction. Let FNC1
= {FNC1

λ,k }λ,k∈N be the family of the circuit defined as
above and {Un}n∈N be the family of the universal circuit defined in Lemma 1. Let
the parameter D(λ) be the degree of the universal circuit (chosen as specified in
Lemma 1). Since we will fix n in the construction, we drop the subscripts and just
denote FNC1

and U in the following. We also let HGen be any group generator.
The description of our CPRF CPRFNE = (Setup,KeyGen,Eval,Constrain,CEval)
is given below.

Constrained PRFs for NC1 in Traditional Groups 561

Setup(1λ): It obtains the group description H = (H, p) by running H R←
HGen(1λ). It then outputs the public parameter pp := H.19

KeyGen(pp): It chooses (b1, ..., bz)
R← Zz

p, α
R← Z∗

p, and g, h1, . . . , hn
R← H. Then

it outputs msk := (b1, . . . , bz, α, g, h1, . . . , hn).
Eval(msk, x): Given input x ∈ {0, 1}n, it computes and outputs

X := gU((b1,...,bz),(x1,...,xn))/α ·
∏

i∈[n]

hxi
i .

Constrain(msk, f): It first parses (b1, ..., bz, α, g, h1, . . . , hn) ← msk. Then it sets

b′
i := (bi − fi)α−1 mod p for i ∈ [z]

where fi is the i-th bit of the binary representation of f . It then outputs

skf := (f, b′
1, . . . , b

′
z, g, gα, . . . , gαD−1

, h1, . . . , hn).

CEval(skf , x): It parses (f, b′
1, . . . , b

′
z, g, gα, . . . , gαD−1

, h1, . . . , hn) ← skf . As
proved in Lemma 2 below, it is possible to efficiently compute {ci}i∈[D] that
satisfies

U((b1, . . . , bz), (x1, . . . , xn)) = f(x) +
D∑

i=1

ciα
i (1)

from skf and x. If f(x) = 0, it computes X :=
∏D

i=1(g
αi−1

)ci · ∏n
j=1 h

xj

j and
outputs X. Otherwise it outputs ⊥.

Correctness and semi-evaluability. In order to prove the correctness, it
suffices to show the following lemma.

Lemma 2. Given skf , x, one can efficiently compute {ci}i∈[D] satisfying Eq.
(1).

Proof. The algorithm evaluates the circuit U(·) on input (b′
1Z + f1, . . . , b

′
zZ +

fz, x1, . . . , xn) to obtain {ci}i∈{0,1,...,D} such that

U(b′
1Z + f1, . . . , b

′
zZ + fz, x1, . . . , xn) = c0 +

∑

i∈[D]

ciZ
i (2)

where Z denotes the indeterminant of the polynomial ring Zp[Z]. Note that
the computation is done over the ring Zp[Z] and can be efficiently performed,
since we have D = poly(λ). We prove that {ci}i∈[D] actually satisfies Eq. (1).
To see this, we first observe that by setting Z = 0 in Eq. (2), we obtain c0 =
U(f1, . . . , fz, x1 . . . , xn) = f(x). To conclude, we further observe that by setting
Z = α in Eq. (2), we recover Eq. (1), since we have bj = b′

jα+fj by the definition
of b′

j . This completes the proof of the lemma. �
19 Here, we intentionally use the symbol H and HGen instead of G and GGen. Looking

ahead, in Sect. 4.2, the latter symbols will be used to represent yet another group of
order q and corresponding group generator. There, we should require H to be QRq.

562 N. Attrapadung et al.

The lemma implies an additional property of the CPRF that we call semi-
evaluability, which will be useful in our security proof. We formally state it
in the following lemma:

Lemma 3. There exist deterministic and efficient algorithms SEval and Aux
satisfying the following property. For all FNC1

and x such that f(x) = 1 and for
all possible msk

R← KeyGen(pp), skf
R← Constrain(msk, f), we have

SEval(skf , x) · Aux(msk) = Eval(msk, x),

where “·” indicates the group operation on H. (We refer to this property of our
CPRF as semi-evaluability.)

Proof. We define SEval and Aux as follows.

SEval(skf , x): It first parses (f, b′
1, . . . , b

′
z, g, gα, . . . , gαD−1

, h1, . . . , hn) ← skf .
It then compute {cj}j∈[D] that satisfies Eq. (1). It finally computes X ′ :=
∏D

i=1(g
αi−1

)ci · ∏
j∈[n] h

xj

j and outputs X ′.
Aux(msk): It parses (b1, . . . , bz, α, g, h1, . . . , hn) ← msk and outputs g1/α.

The lemma readily follows from Eq. (1) and f(x) = 1. �

Universality. The following lemma indicates that the above scheme can be
seen as a universal hashing. The only reason why we need h1, . . . , hn in pp is to
ensure this property. Formally, we have the following lemma. The lemma will be
used later in this section.

Lemma 4. For all x, x′ ∈ {0, 1}n with x �= x′ and pp output by Setup(1λ), we
have

Pr[msk
R← KeyGen(pp) : Eval(msk, x) = Eval(msk, x′)] = 1

p .

Proof. Since x �= x′, there exists an index i such that xi �= x′
i. Let us fix

msk except for hi. Then, we can see that there exists a unique hi such that
Eval(msk, x) = Eval(msk, x′) holds. Since hi is chosen uniformly at random from
H, the lemma follows. �

No-evaluation security.

Theorem 2. If the (D − 1)-DDHI assumption holds with respect to HGen, then
CPRFNE defined above satisfies no-evaluation security as a CPRF for the circuit
class FNC1

.

Proof. Let A = (A1,A2) be any no-evaluation adversary that attacks the no-
evaluation security of CPRF. We prove the above theorem by considering the
following sequence of games.

Game 0: This is the real single-key security experiment Exptcprf
CPRFNE,FNC1 ,A(λ)

against the no-evaluation adversary A = (A1,A2). Namely,

Constrained PRFs for NC1 in Traditional Groups 563

coin
R← {0, 1}

pp
R← Setup(1λ)

msk
R← KeyGen(pp)

X∗ R← H

(f, stA) R← A1(pp)
skf

R← Constrain(msk, f)
ĉoin

R← AOChal(·)
2 (skf , stA)

Return (ĉoin ?= coin)

where the challenge oracle OChal(·) is
described below.

OChal(x∗): Given x∗ ∈ {0, 1}n as
input, it returns Eval(msk, x∗) if
coin = 1 and X∗ if coin = 0.

We recall that OChal(·) is queried at
most once during the game.

Game 1: In this game, we change the way skf is sampled. In particular, we
change the way of choosing {bi}i∈[z] and {b′

i}i∈[z]. Namely, given the con-
straining query f from A1, the game picks (b′

1, . . . , b
′
z)

R← Zz
p, α

R← Z∗
p, and

sets bi := b′
iα + fi mod p for i ∈ [z].

Game 2 In this game, we change the challenge oracle OChal(·) as follows:
OChal(x∗): Given x∗ ∈ {0, 1}n as input, it returns SEval(skf , x∗) ·Aux(msk) if

coin = 1 and X∗ if coin = 0.
Game 3: In this game, we further change the challenge oracle as follows:

OChal(x∗): Given x∗ ∈ {0, 1}n as input, it first picks ψ
R← H and returns

SEval(skf , x) · ψ if coin = 1 and X∗ if coin = 0.
Game 4 In this game, the oracle is changed as follows.

OChal(x∗): Given x∗ ∈ {0, 1}n as input, it returns X∗ regardless of the value
of coin.

Let Ti be the event that Game i returns 1.

Lemma 5. It holds that Pr[T1] = Pr[T0], Pr[T2] = Pr[T1], Pr[T3] = Pr[T4],
and |Pr[T4] − 1/2| = 0.

Lemma 6. If the (D − 1)-DDHI assumption holds, then |Pr[T3] − Pr[T2]| =
negl(λ).

Therefore, the advantage of A is Advcprf

CPRFNE,FNC1 ,A(λ) = 2 · |Pr[T0] − 1/2| =
negl(λ). See the full version for proofs of these lemmas. �

4.2 Selectively-Secure CPRF in the Standard Model

Here, we give our CPRF for NC1 with selectively single-key security in the
standard model. The scheme is obtained by combining our CPRF CPRFNE =
(SetupNE,KeyGenNE,EvalNE,ConstrainNE,CEvalNE) for the function class FNC1

in
Sect. 4.1 with our CIH CIH

B̃C
= (PrmGen

B̃C
,Eval

B̃C
) constructed in Sect. 3. For

the simplicity of the notation, we will denote Eval
B̃C

(ppCIH, ·) by CIH
B̃C

(·) when
ppCIH is clear. Let SPGGen denote the group generator defined in Sect. 3. The con-
struction of our scheme CPRFNC1-Sel = (Setup,KeyGen,Eval,Constrain,CEval) is
as follows:

564 N. Attrapadung et al.

Setup(1λ): It first runs G0
R← SPGGen(1λ) to obtain the group description G0 :=

(G, q). Recall that G0 also defines the description of the group QRq ⊂ Z∗
q

of prime order p = (q − 1)/2. We denote the description of the group by
G1 := (QRq, p). It then samples ppCIH

R← PrmGen
B̃C

(G0). Let ppNE := G1. It
outputs pp := (ppCIH, ppNE).

KeyGen(pp): It first parses (ppCIH, ppNE) ← pp and runs mski
R← KeyGenNE(ppNE)

for i ∈ [m]. It then outputs msk := (msk1, ...,mskm).
Eval(msk, x): It first parses (msk1, ...,mskm) ← msk and outputs

y := CIH
B̃C

(
EvalNE(msk1, x), ...,EvalNE(mskm, x)

)
.

where we recall that we have CIH
B̃C

: (QRq)m → G and EvalNE(mski, ·) :
{0, 1}n → QRq for i ∈ [m] (for simplicity, we omit writing ppCIH and ppNE

here).
Constrain(msk, f): It first parses (msk1, ...,mskm) ← msk. It then computes

skf,i
R← ConstrainNE(mski, f) for i ∈ [m] and outputs skf := (skf,1, ..., skf,m).

CEval(skf , x): It first parses (skf,1, ..., skf,m) ← skf . It then computes Xi :=
EvalNE(skf,i, x) for i ∈ [m] and outputs CIH

B̃C
(X1, ...,Xm).

Remark 5. In the above, we need m instances of CPRFNE, which may seem redun-
dant. This is necessary because the domain of the CIH constructed in Sect. 3 is
QR

m for m = poly(λ), and thus input of the CIH must be an m-dimensional
vector. If we had a CIH for group-induced function on QR, then the m times
blowup could be avoided.

Remark 6. The algorithm Setup implicitly uses the group generator SPGGen′

that first runs SPGGen to obtain G = (G, q) and then outputs the group descrip-
tion (QRq, p). Here, from the technical reason, we assume that the description of
QRq implicitly contains that of G as well. While our construction in Sect. 4.1 can
be instantiated with any prime-order group generator HGen, our scheme above
requires to instantiate the scheme with the specific group generator SPGGen′.

It is easy to observe that the correctness of the above scheme follows from
that of the underlying schemes. The following theorem addresses the security of
the scheme.

Theorem 3. The above construction CPRFNC1-Sel is a selective single-key
secure CPRF for the function class FNC1

if the (D−1)-DDHI assumption holds
with respect to SPGGen′ (see Remark 6) and the DDH assumption holds with
respect to SPGGen.

Proof. The security of the scheme will be proven by the no-evaluation security,
semi-evaluability, and universality of CPRFNE as well as correlated-input security
of CIH

B̃C
for (component-wise) group-induced functions. Let A = (A1,A2) be

any selectively admissible adversary that attacks the selective single-key security
of CPRF. For simplicity, we assume that A2 never makes the same query twice,
makes a challenge query only once (see Remark 2), and all evaluation queries x

Constrained PRFs for NC1 in Traditional Groups 565

made by A2 satisfy f(x) = 1. In the following, Q denotes the upper bound on
the number of the access to the evaluation oracle Eval(msk, ·) made by A2. We
prove the theorem by considering the following sequence of games.

Game 0: This is the actual single-key security experiment Exptcprf
CPRFNC1-Sel,FNC1 ,A

(λ) against the selective adversary A = (A1,A2) where the coin of the game is
fixed to coin = 1. Namely,

pp
R← Setup(1λ)

msk
R← KeyGen(pp)

(f, stA) R← A1(pp)
skf

R← Constrain(msk, f)
ĉoin

R← AOChal(·),Eval(msk,·)
2 (skf , stA)

Return ĉoin

where we describe Eval(msk, ·) and
OChal(·) below.

Eval(msk, ·): Given x ∈ {0, 1}n as
input, it returns Eval(msk, x).

OChal(·): Given x∗ ∈ {0, 1}n as input,
it returns y∗ = Eval(msk, x∗).
(Recall that we set coin = 1 in this
game.)

Game 1: In this game, we do not differentiate the challenge oracle OChal(·) from
Eval(msk, ·) and identify them. Namely, A2 is equipped with the following
oracle OMerge(·) defined below, instead of OChal(·) and Eval(msk, ·):
OMerge(·): Given the j-th query x(j) ∈ {0, 1}n from A2, the oracle first

computes X
(j)
i := EvalNE(mski, x

(j)) for i ∈ [m], and then returns
y(j) := CIH

B̃C
(X(j)

1 , . . . , X
(j)
m).

(We note that OMerge(·) simply returns Eval(msk, x) given x.) Since we do not
differentiate the challenge query x∗ from the evaluation queries in this game,
we have x∗ = x(j) for some j ∈ [Q + 1].

Game 2: Let Col be the event that there exist j1 �= j2 ∈ [Q + 1] such that
(X(j1)

1 , . . . , X
(j1)
m) = (X(j2)

1 , . . . , X
(j2)
m). If Col occurs, the game immediately

aborts and outputs a uniformly random bit. The rest is the same as the
previous game.

Game 3 In this game, we change the way {X
(j)
i }i∈[m],j∈[Q+1] is created. In par-

ticular, OMerge(·) works as follows:
OMerge(·): Given the j-th query x(j) ∈ {0, 1}n from A2, it proceeds as follows.
There are two cases to consider:

1. For the first query x(1), it first computes

X
(1)
i := EvalNE(mski, x

(1)) for i ∈ [m].

Then, it computes and returns y(1) := CIH
B̃C

(X(1)
1 , . . . , X

(1)
m).

2. To answer queries x(j) with j > 1, it first computes

X
(j)
i := X

(1)
i · SEvalNE(skf,i, x

(1))−1 · SEvalNE(skf,i, x
(j)) (3)

for i ∈ [m]. Then it computes and returns y(j) := CIH
B̃C

(X(j)
1 , . . . , X

(j)
m).

566 N. Attrapadung et al.

Note that during the above phase, as soon as the game finds j1 �= j2 ∈ [Q + 1]
such that (X(j1)

1 , . . . , X
(j1)
m) = (X(j2)

1 , . . . , X
(j2)
m), the game aborts and outputs

a random bit (as specified in Game 2).

Game 4 We define Col′ as the event that there exist j1 �= j2 ∈ [Q + 1] such that

SEvalNE(skf,i, x
(j1)) = SEvalNE(skf,i, x

(j2)) ∀i ∈ [m].

In this game, the game aborts when Col′ occurs instead of Col.
Game 5: In this game, we change the way X

(1)
i is chosen. In particular, the first

item of the description of the oracle OMerge(·) in Game 3 is changed as follows:

1. For the first query x(1), the oracle sets

X
(1)
i

R← QRq for i ∈ [m].

Then, it computes and returns y(1) := CIH
B̃C

(X(1)
1 , . . . , X

(1)
m).

Game 6 In this game, we further change the oracle OMerge(·) as follows:
OMerge(·): Given the j-th query x(j) ∈ {0, 1}n from A2, it picks y(j) R← G and

returns it.
Game 7 This is the real game with the coin being fixed to coin = 0. Namely, A2

is equipped with the oracles OChal(·) and Eval(msk, ·) that work as follows.
(We do not consider OMerge(·) any more.)
Eval(msk, ·) : Given x ∈ {0, 1}n as input, it returns Eval(msk, x).
OChal(·): Given x∗ ∈ {0, 1}n as input, it picks y∗ R← G and returns it. (Recall

that we set coin = 0 in this game.)

Let Ti be the event that Game i returns 1.

Lemma 7. Pr[T1] = Pr[T0].

Proof. Since coin = 1 in Game 0, we have OChal(·) = Eval(msk, ·). Therefore, this
is only the conceptual change. �
Lemma 8. If m ≥ n, |Pr[T2] − Pr[T1]| = negl(λ).

See the full version [3] for the proof of this lemma. This is proved by the union
bound and the universality of CPRFNE (Lemma 4).

Lemma 9. Pr[T3] = Pr[T2].

Proof. We prove that the change is only conceptual. The difference between the
games is that X

(j)
i is computed as EvalNE(mski, x

(j)) in Game 2, whereas it is
computed as the right-hand side of Eq. (3) in Game 3. We show here that they
are actually equivalent. The right-hand side of Eq. (3) equals to

X
(1)
i · SEvalNE(skf,i, x

(1))−1 · SEvalNE(skf,i, x
(j))

= AuxNE(mski) · SEvalNE(skf,i, x
(1)) · SEvalNE(skf,i, x

(1))−1 · SEvalNE(skf,i, x
(j))

= AuxNE(mski) · SEvalNE(skf,i, x
(j))

= EvalNE(mski, x
(j))

Constrained PRFs for NC1 in Traditional Groups 567

where we used our simplification assumption that f(x(1)) = f(x(j)) = 1 and
semi-evaluability (Lemma 3) in the first and the last equations above. �

Lemma 10. Pr[T4] = Pr[T3].

Proof. It suffices to show that the abort conditions Col and Col′ are equivalent.
We have

SEvalNE(skf,i, x
(j1)) = SEvalNE(skf,i, x

(j2)) ∀i ∈ [m]

⇔ AuxNE(mski) · SEvalNE(skf,i, x
(j1))

= AuxNE(mski) · SEvalNE(skf,i, x
(j2)) ∀i ∈ [m]

⇔ X
(j1)
i = X

(j2)
i ∀i ∈ [m].

Hence, the change is only conceptual. The lemma readily follows. �

Lemma 11. If CPRFNE satisfies no-evaluation security when instantiated by the
group generator HGen := SPGGen′, we have |Pr[T5] − Pr[T4]| = negl(λ).

Proof. For the sake of the contradiction, let us assume |Pr[T5] − Pr[T4]| is non-
negligible for the adversary A = (A1,A2). We consider the following hybrid
games for k ∈ {0, 1, . . . ,m}:

Game 4.k: This is the same as Game 4 with the following difference. In this game,
X

(1)
i is set as X

(1)
i = EvalNE(mski, x

(1)) when i > k and X̃i
R← QRq when

i ≤ k.

By the definition, we have Game 4.0 (resp. Game 4.m) is equivalent to Game 4
(resp. Game 5). Therefore, we have

|Pr[T5] − Pr[T4]| = Pr[T4.m] − Pr[T4.0]| ≥
∑

k∈[m]

|Pr[T4.k] − Pr[T4.k−1]|

where Pr[Ti] denotes the probability that Game 4.k outputs 1. By the above
inequality, we have that there exists an index k∗ such that |Pr[T4.k∗] −
Pr[T4.k∗−1]| is non-negligible. We then construct an adversary B = (B1,B2)
that breaks the no-evaluation security of the underlying scheme CPRFNE. The
description of B is as follows.

B1(ppNE): Given the group description ppNE = (QRq, p), B1 first recovers the
group description G0 = (G, q) from (QRq, p) (See remark Remark 6). B1 then
samples ppCIH

R← PrmGen
B̃C

(G0) and sets pp := (ppCIH, ppNE). It then runs
(f, stA) R← A1(pp) and outputs (f, stB := stA).

BOChal(·)
2 (skf , stB): Here, we denote the master secret key of the no-evaluation
security game (played for B) by msk′. The task of B2 is to distinguish
whether OChal(·) corresponds to EvalNE(msk′, ·) or RF(·). First, B2 picks
mski

R← KeyGenNE(ppNE) for i ∈ {k∗ + 1, . . . , m}. B2 then runs A2(skf , stA)
and simulates OMerge(·) for A2 as follows:

568 N. Attrapadung et al.

− To answer the first query x(1) from A2, B2 submits the same x(1) to
its challenge oracle OChal(·). Then, B2 is given R. Then, B2 sets X

(1)
i =

SEvalNE(mski, x
(1)) for i ≥ k∗ + 1, X

(1)
k∗ = R, and samples X

(1)
i

R← QRq

for i ≤ k∗ − 1. Finally, B2 returns y(1) = CIH
B̃C

(X(1)
1 , . . . , X

(1)
m) to A2.

− To answer the query x(j) with j > 1 from A2, B2 first
parses skf → (skf,1, . . . , skf,m) and computes X

(j)
i := X

(1)
i ·

SEvalNE(skf,i, x
(1))−1 · SEvalNE(skf,i, x

(j)) for i ∈ [m]. It then returns
y(j) = CIH

B̃C
(X(j)

1 , . . . , X
(j)
m) to A2.

Note that during the above phase, as soon as B2 finds j1 �= j2 ∈ [Q] such
that (X(j1)

1 , . . . , X
(j1)
m) = (X(j2)

1 , . . . , X
(j2)
m), B2 aborts and outputs a random

bit. When A2 terminates with output ĉoin, B2 outputs ĉoin as its guess and
terminates.

The above completes the description of B. It is straightforward to see that
B makes only single challenge query. It is also easy to see that B simulates
Game 4.(k∗ −1) for A when B’s challenge oracle is EvalNE(msk′, ·) and Game 4.k∗

when B’s challenge oracle is RF(·). Note that in the former case, B implicitly sets
mskk∗ := msk′. Since B outputs 1 if and only if A outputs 1, we have that B’s
advantage is |Pr[T4.k∗−1] − Pr[T4.k∗]|, which is non-negligible. This completes
the proof of the lemma. �
Lemma 12. If CIH

B̃C
is a Ψg-indc-CIH with respect to SPGGen, then we have

|Pr[T6] − Pr[T5]| = negl(λ).

Proof. For the sake of the contradiction, let us assume that |Pr[T6] − Pr[T5]| is
non-negligible for the adversary A = (A1,A2). We then construct an adversary
B that breaks the security of CIH

B̃C
as follows.

BO(·)(ppCIH): At the beginning of the game, B is given the public parameter
ppCIH of the CIH. Then it parses the group description (G, q) from ppCIH

and obtains the description of another group ppNE := (QRq, p). It then sets
pp := (ppCIH, ppNE) and runs (f, stA) R← A1(pp). It further samples mski

R←
KeyGenNE(ppNE) and skf,i

R← ConstrainNE(mski, f) for i ∈ [m]. It then gives
the input skf := (skf,1, . . . , skf,m) and stA to A2 and simulates OMerge(·) for
A2 as follows:
− To answer the first query x(1) from A2, B queries its oracle on input

�φ(1) := (1, . . . , 1) ∈ QR
m
q to obtain y(1). It then passes y(1) to A2.

− To answer the query x(j) with j > 1 from A2, B first parses skf →
(skf,1, . . . , skf,m) and computes φ

(j)
i := SEvalNE(skf,i, x

(1))−1 · SEvalNE

(skf,i, x
(j)) for i ∈ [m]. B then sets �φ(j) = (φ(j)

1 , . . . , φ
(j)
m) and queries �φ(j)

to its oracle. Given the response y(j) from the oracle, B2 relays the same
value to A2.

Note that during the above phase, as soon as B finds j1 �= j2 ∈ [Q] such
that SEvalNE(skf,i, x

(j1)) = SEvalNE(skf,i, x
(j2)) for all i ∈ [m], it aborts and

outputs a random bit. When A2 terminates with output ĉoin, B outputs the
same ĉoin and terminates.

Constrained PRFs for NC1 in Traditional Groups 569

The above completes the description of B. Here, we prove that B simulates
Game 5 when B’s challenge coin coin′ is 1 and Game 6 when coin′ = 0.

We start by proving the former statement. When coin′ = 1, the CIH security
experiment chooses randomness �R := (R1, . . . , Rm) R← QR

m
q during the game

and the oracle O(·) returns CIH
B̃C

(�R � �φ) on input B’s query �φ = (φ1, . . . , φm) ∈
QR

m
q . The view of A2 corresponds to Game 5, with X

(1)
i being implicitly set as

X
(1)
i := Ri for i ∈ [m].

We next show the latter statement. When coin′ = 0, the CIH security exper-
iment chooses randomness �R := (R1, . . . , Rm) R← QR

m
q during the game and the

oracle O(·) returns RF(�R � �φ) on input B’s query �φ = (φ1, . . . , φm) where RF(·)
is a random function. In order to prove that B simulates Game 6, it suffices to
show that all the queries made by B are distinct. We have

φ
(j1)
i = φ

(j2)
i ⇐⇒ SEvalNE(skfi

, x(j1)) = SEvalNE(skf,i, x
(j2))

by the definition. Since B aborts whenever Col′ occurs, this implies that B does
not make the same oracle query twice. �
Lemma 13. We have |Pr[T7] − Pr[T6]| = negl(λ).

Proof. This can be proven by applying the same game changes as that from
Game 0 to Game 6 in a reverse order, with the only difference that the challenge
query x∗ is always returned by a uniformly random group element y∗ R← G. �
We have

Advcprf

CPRFNC1-Sel,FNC1 ,A(λ) = |Pr[T7] − Pr[T0]| ≤
7∑

i=1

|Pr[Ti] − Pr[Ti−1]| = negl(λ).

This completes the proof of the theorem. �

5 Private Constrained PRF for Bit-Fixing

In this section, we construct a single-key private CPRF for bit-fixing. Our scheme
is selectively secure under the DDH assumption. We also construct an adaptively
secure single-key private CPRF for bit-fixing in the ROM in the full version [3].

Bit-fixing functions. First, we define a function class of bit-fixing functions for-
mally. The class BF = {BFn}n∈N of bit-fixing functions is defined as follows20.
BFn is defined to be the set {BFc}c∈{0,1,∗}n where

BFc(x) :=

{
0 if for all i, ci = ∗ or xi = ci

1 otherwise
.

By an abuse of notation, we often write c to mean BFc when the latter is given
as an input to an algorithm.
20 According to the definition given in [3], we should give BFλ,n for all λ ∈ N and

n ∈ N. However, since BFλ,n is the same for all λ if n is fixed in the case of the
bit-fixing, we use this simpler notation.

570 N. Attrapadung et al.

CIH for affine functions. We introduce the notion of affine functions for CIH
since it is used in our private CPRF for bit-fixing. The class of affine functions
with respect to a group generator GGen, denoted by Φaff = {Φaff

λ,z}λ∈N,z∈{0,1}∗ , is
a function class satisfying the following property for every (λ, z) ∈ N × {0, 1}∗:
If z can be parsed as a tuple (G,m, z′) so that G = (G, p) is a group description
output by GGen(1λ), m ∈ N, and z′ ∈ {0, 1}∗, then we have Φaff

λ,z = {φ�u,�v : Zm
p →

Zm
p | �u ∈ (Z∗

p)
m, �v ∈ Zm

p }, where for each �u,�v, φ�u,�v(�x) := �u � �x + �v ∈ Zm
p and �

denotes the component-wise multiplication in Zp.
We will use the following theorem that is implicitly proven by

Abdalla et al. [1] (see also Remark 4).

Theorem 4. (implicit in [1, Theorem 7]) Let GGen be a group generator. If
the DDH assumption holds with respect to GGen, then for any polynomial m =
m(λ) ∈ Ω(λ), there exists a Φaff-CIH CIHaff = (PrmGenaff ,Evalaff) with respect to
GGen, with the following property: For all λ ∈ N, if G = (G, p) R← GGen(1λ) and
pp

R← PrmGenaff(G), then pp can be parsed as (G,m, z′) for some z′ ∈ {0, 1}∗,
and furthermore Evalaff(pp, ·) is a function with domain Zm

p and range G.

This theorem is derived from the following facts. (1) Abdalla et al. [1] con-
structed RKA-PRF for affine functions based on the DDH assumption. (2) Bel-
lare and Cash [6] showed that RKA-PRF for a function class implies RKA-PRG
for the same function class. (3) Our definition of CIH is the same as that of
RKA-PRG (See Remark 4).

5.1 Construction in the Standard Model

Construction. Here, we give a construction of a selectively secure private
CPRF for bit-fixing. Our CPRF is built on a Φaff -CIH, which is known
to exist under the DDH assumption [1]. Let GGen be a group generator
that given 1λ, generates a description of group of an �p-bit prime order,
and CIHaff = (PrmGenaff ,Evalaff) be a Φaff -CIH. For simplicity, we denote
EvalCIH(ppCIH, ·) by CIHaff(·) when ppCIH is clear. Our scheme CPRFpriv,std =
(Setup,KeyGen,Eval,Constrain,CEval) is described as follows. Let n(λ) (often
denoted as n for short) be an integer, which is used as the input length of
CPRFpriv,std.

Setup(1λ) : It generates G R← GGen(1λ) to obtain the group description G :=
(G, p), and runs ppCIH

R← PrmGenaff(G) to obtain ppCIH := (G,m, z′). Recall
that ppCIH specifies the domain Zm

p and the range R of CIHaff . It outputs
pp := (ppCIH, 1n).

KeyGen(pp) : It chooses si,b,j
R← Zp for i ∈ [n], b ∈ {0, 1} and j ∈ [m], and

outputs msk := {si,b,j}i∈[n],b∈{0,1},j∈[m].
Eval(msk, x) : It parses {si,b,j}i∈[n],b∈{0,1},j∈[m] ← msk. It computes Xj :=∑n

i=1 si,xi,j for j ∈ [m]. Then it computes y := CIHaff(X1, ...,Xm) and outputs
it.

Constrained PRFs for NC1 in Traditional Groups 571

Constrain(msk, c ∈ {0, 1, ∗}n): It parses {si,b}i∈[n],b∈{0,1} ← msk, picks αj
R← Zp

for j ∈ [m]. Then it defines {ti,b,j}i∈[n],b∈{0,1},j∈[m] as follows. For all i ∈ [n],
b ∈ {0, 1} and j ∈ [m], it sets

ti,b,j :=

{
si,b,j If ci = ∗ or b = ci

si,b,j − αj If ci �= ∗ and b = 1 − ci

.

Then it outputs skc := {ti,b,j}i∈[n],b∈{0,1},j∈[m].
CEval(skc, x): It parses {ti,b,j}i∈[n],b∈{0,1},j∈[m] ← skc, computes Xj :=

∑n
i=1

ti,xi,j for j ∈ [m] and y := CIHaff(X1, ...,Xm), and outputs y.

Theorem 5. If CIH is a Φaff-CIH and 22n−m�p is negligible, then the above
scheme is a selectively single-key secure CPRF for BF with selective single-key
privacy.

We prove the correctness and Theorem 5 in the full version [3].

Acknowledgement. We thank Keita Xagawa for letting us know the relation between
CIH and RKA-PRG. The first, second, and fourth authors were supported by JST
CREST Grant No. JPMJCR1688. The fourth author was supported by JSPS KAK-
ENHI Grant Number 16K16068.

References

1. Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key security
for pseudorandom functions beyond the linear barrier. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 77–94. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44371-2 5

2. Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Constrained PRFs for unbounded
inputs. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 413–428. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-29485-8 24

3. Attrapadung, N., Matsuda, T., Nishimaki, R., Yamada, S., Yamakawa, T.: Con-
strained PRFs for NC1 in traditional groups. IACR Cryptol. ePrint Arch. 2018,
154 (2018)

4. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 4

5. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure
against related-key attacks. IACR Cryptol. ePrint Arch., 397 (2010). Version
20150729:233210. Preliminary Version Appeared in CRYPTO 2010

6. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure
against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 666–684. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 36

7. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

https://doi.org/10.1007/978-3-662-44371-2_5
https://doi.org/10.1007/978-3-319-29485-8_24
https://doi.org/10.1007/978-3-540-24676-3_4
https://doi.org/10.1007/978-3-642-14623-7_36
https://doi.org/10.1007/978-3-642-14623-7_36

572 N. Attrapadung et al.

8. Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-
homomorphic constrained pseudorandom functions. In: Dodis, Y., Nielsen, J.B.
(eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 31–60. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46497-7 2

9. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 601–648
(2012)

10. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

11. Bitansky, N.: Verifiable random functions from non-interactive witness-
indistinguishable proofs. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10678, pp. 567–594. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70503-3 19

12. Boneh, D., Kim, S., Montgomery, H.: Private puncturable PRFs from standard
lattice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part
I. LNCS, vol. 10210, pp. 415–445. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 15

13. Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately.
In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 494–524. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7 17

14. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs
(and mode) from LWE. In: TCC 2017 (2017)

15. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from stan-
dard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II.
LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46497-7 1

16. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol.
8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-42045-0 15

17. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part I. LNCS,
vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53018-4 19

18. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from LWE.
In: EUROCRYPT 2017, Part I, pp. 446–476 (2017)

19. Cohen, A., Goldwasser, S., Vaikuntanathan, V.: Aggregate pseudorandom func-
tions and connections to learning. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015,
Part II. LNCS, vol. 9015, pp. 61–89. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46497-7 3

20. Cook, S.A., Hoover, H.J.: A depth-universal circuit. SIAM J. Comput. 14(4), 833–
839 (1985)

21. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-Cash. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 18

22. Döttling, N., Garg, S.: Identity-based encryption from the diffie-hellman assump-
tion. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp.
537–569. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7 18

https://doi.org/10.1007/978-3-662-46497-7_2
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/978-3-319-70503-3_19
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-662-54388-7_17
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-53018-4_19
https://doi.org/10.1007/978-3-662-46497-7_3
https://doi.org/10.1007/978-3-662-46497-7_3
https://doi.org/10.1007/11426639_18
https://doi.org/10.1007/978-3-319-63688-7_18

Constrained PRFs for NC1 in Traditional Groups 573

23. Deshpande, A., Koppula, V., Waters, B.: Constrained pseudorandom functions for
unconstrained inputs. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016,
Part II. LNCS, vol. 9666, pp. 124–153. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49896-5 5

24. Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of
constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II.
LNCS, vol. 8874, pp. 82–101. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45608-8 5

25. Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 1

26. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput. 45(3), 882–929 (2016)

27. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

28. Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to con-
structing and proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.)
TCC 2017. LNCS, vol. 10678, pp. 537–566. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-70503-3 18

29. Goldenberg, D., Liskov, M.: On related-secret pseudorandomness. In: Micciancio,
D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 255–272. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11799-2 16

30. Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19571-6 12

31. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 11

32. Hofheinz, D., Kamath, A., Koppula, V., Waters, B.: Adaptively secure constrained
pseudorandom functions. IACR Cryptol. ePrint Arch. 2014, 720 (2014)

33. Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseudo-
random functions in the standard model. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015, Part I. LNCS, vol. 9452, pp. 79–102. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48797-6 4

34. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

35. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. ACMCCS 2013, 669–684 (2013)

36. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM 51(2), 231–262 (2004)

37. Peikert, C., Shiehian, S.: Privately constraining and programming PRFs, the LWE
way. In: Abdalla, M., Dahab, R. (eds.) PKC 2018. LNCS, vol. 10770, pp. 675–701.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5 23

https://doi.org/10.1007/978-3-662-49896-5_5
https://doi.org/10.1007/978-3-662-49896-5_5
https://doi.org/10.1007/978-3-662-45608-8_5
https://doi.org/10.1007/978-3-662-45608-8_5
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/978-3-319-70503-3_18
https://doi.org/10.1007/978-3-642-11799-2_16
https://doi.org/10.1007/978-3-642-19571-6_12
https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-662-48797-6_4
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-319-76581-5_23

574 N. Attrapadung et al.

38. Yamada, S.: Asymptotically compact adaptively secure lattice IBEs and verifiable
random functions via generalized partitioning techniques. In: Katz, J., Shacham,
H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 161–193. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63697-9 6

39. Zhandry, M.: How to avoid obfuscation using witness PRFs. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016, Part II. LNCS, vol. 9563, pp. 421–448. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49099-0 16

https://doi.org/10.1007/978-3-319-63697-9_6
https://doi.org/10.1007/978-3-662-49099-0_16

	Constrained PRFs for NC1 in Traditional Groups
	1 Introduction
	1.1 Background
	1.2 Our Contributions
	1.3 Technical Overview
	1.4 Other Related Works

	2 Preliminaries
	2.1 Constrained Pseudorandom Function
	2.2 Correlated-Input Secure Hash Function

	3 Building Block: Correlated-Input Secure Hash
	4 CPRF for NC1 Circuits
	4.1 Our Basic Constrained PRF
	4.2 Selectively-Secure CPRF in the Standard Model

	5 Private Constrained PRF for Bit-Fixing
	5.1 Construction in the Standard Model

	References

