
On the Exact Round Complexity
of Secure Three-Party Computation

Arpita Patra(B) and Divya Ravi

Indian Institute of Science, Bangalore, India
{arpita,divyar}@iisc.ac.in

Abstract. We settle the exact round complexity of three-party compu-
tation (3PC) in honest-majority setting, for a range of security notions
such as selective abort, unanimous abort, fairness and guaranteed out-
put delivery. Selective abort security, the weakest in the lot, allows the
corrupt parties to selectively deprive some of the honest parties of the
output. In the mildly stronger version of unanimous abort, either all or
none of the honest parties receive the output. Fairness implies that the
corrupted parties receive their output only if all honest parties receive
output and lastly, the strongest notion of guaranteed output delivery
implies that the corrupted parties cannot prevent honest parties from
receiving their output. It is a folklore that the implication holds from
the guaranteed output delivery to fairness to unanimous abort to selec-
tive abort. We focus on two network settings– pairwise-private channels
without and with a broadcast channel.

In the minimal setting of pairwise-private channels, 3PC with selective
abort is known to be feasible in just two rounds, while guaranteed output
delivery is infeasible to achieve irrespective of the number of rounds. Set-
tling the quest for exact round complexity of 3PC in this setting, we show
that three rounds are necessary and sufficient for unanimous abort and
fairness. Extending our study to the setting with an additional broadcast
channel, we show that while unanimous abort is achievable in just two
rounds, three rounds are necessary and sufficient for fairness and guaran-
teed output delivery. Our lower bound results extend for any number of
parties in honest majority setting and imply tightness of several known
constructions.

The fundamental concept of garbled circuits underlies all our upper
bounds. Concretely, our constructions involve transmitting and evalu-
ating only constant number of garbled circuits. Assumption-wise, our
constructions rely on injective (one-to-one) one-way functions.

1 Introduction

In secure multi-party computation (MPC) [19,37,67], n parties wish to jointly
perform a computation on their private inputs in a secure way, so that no adver-
sary A actively corrupting a coalition of t parties can learn more information
than their outputs (privacy), nor can they affect the outputs of the computation
other than by choosing their own inputs (correctness). MPC has been a subject
c© International Association for Cryptologic Research 2018
H. Shacham and A. Boldyreva (Eds.): CRYPTO 2018, LNCS 10992, pp. 425–458, 2018.
https://doi.org/10.1007/978-3-319-96881-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96881-0_15&domain=pdf

426 A. Patra and D. Ravi

of extensive research and has traditionally been divided into two classes: MPC
with dishonest majority [2,12,16,27,28,31,37] and MPC with honest majority
[6–8,10,11,18,25,26,64]. While the special case of MPC with dishonest major-
ity, namely the two-party computation (2PC) has been at the focus of numerous
works [1,42,46,54,59,65–67], the same is not quite true for the special case of
MPC protocols with honest majority.

The three-party computation (3PC) and MPC with small number of parties
maintaining an honest majority make a fascinating area of research due to myr-
iad reasons as highlighted below. First, they present useful use-cases in practice,
as it seems that the most likely scenarios for secure MPC in practice would
involve a small number of parties. In fact, the first large scale implementation
of secure MPC, namely the Danish sugar beet auction [15] was designed for the
three-party setting. Several other applications solved via 3PC include statistical
data analysis [14], email-filtering [52], financial data analysis [14] and distributed
credential encryption service [60]. The practical efficiency of 3PC has thus got
considerable emphasis in the past and some of them have evolved to technologies
[3,13,20,30,33,52,53]. Second, in practical deployments of secure computation
between multiple servers that may involve long-term sensitive information, three
or more servers are preferred as opposed to two. This enables recovery from faults
in case one of the servers malfunctions. Third and importantly, practical appli-
cations usually demand strong security goals such as fairness (corrupted parties
receive their output only if all honest parties receive output) and guaranteed
output delivery (corrupted parties cannot prevent honest parties from receiving
their output) which are feasible only in honest majority setting [22]. Fourth and
interestingly, there are evidences galore that having to handle a single corrupt
party can be leveraged conveniently and taken advantage of to circumvent known
lower bounds and impossibility results. A lower bound of three rounds has been
proven in [35] for fair MPC with t ≥ 2 and arbitrary number of parties, even
in the presence of broadcast channels. [43] circumvents the lower bound by pre-
senting a two-round 4PC protocol tolerating a single corrupt party that provides
guaranteed output delivery without even requiring a broadcast channel. Veri-
fiable secret sharing (VSS) which serves as an important tool in constructing
MPC protocols are known to be impossible with t ≥ 2 with one round in the
sharing phase irrespective of the computational power of the adversary [5,34,62].
Interestingly enough, a perfect VSS with (n = 5, t = 1) [34], statistical VSS with
(n = 4, t = 1) [43,62] and cryptographic VSS with (n = 4, t = 1) [5] are shown
to be achievable with one round in the sharing phase.

The world of MPC for small population in honest majority setting witnesses
a few more interesting phenomena. Assumption-wise, MPC with 3, 4 and 5 par-
ties can be built from just One-way functions (OWF) or injective one-way func-
tions/permutations [17,43,60], shunning public-key primitives such as Oblivious
Transfer (OT) entirely, which is the primary building block in the 2-party set-
ting. Last but not the least, the known constructions for small population in the
honest majority setting perform arguably better than the constructions with two
parties while offering the same level of security. For instance, 3PC with honest

On the Exact Round Complexity of Secure Three-Party Computation 427

majority [43,60] allows to circumvent certain inherent challenges in malicious
2PC such as enforcing correctness of garbling which incurs additional communi-
cation.

The exact round complexity is yet another measure that sets apart the proto-
cols with three parties over the ones with two parties. For instance, 3PC protocol
is achievable just in two rounds with the minimal network setting of pairwise-
private channels [43]. The 2PC (and MPC with dishonest majority) protocols
achieving the same level of security (with abort) necessarily require 4 rounds
[50] and have to resort to a common reference string (CRS) to shoot for the best
possible round complexity of 2 [41].

With the impressive list of motivations that are interesting from both the
theoretical and practical viewpoint, we explore 3PC in the honest majority set-
ting tolerating a malicious adversary. In this work, we set our focus on the exact
round complexity of 3PC. To set the stage for our contributions, we start with
a set of relevant works below.

Related Works. Since round complexity is considered an important measure of
efficiency of MPC protocols, there is a rich body of work studying the round
complexity of secure 2PC and MPC protocols under various adversarial settings
and computational models. We highlight some of them below. Firstly, it is known
that two rounds of interaction are essential for realizing an MPC protocol irre-
spective of the setting. This is because in a 1-round protocol, a corrupted party
could repeatedly evaluate the “residual function” with the inputs of the honest
parties fixed on many different inputs of its own (referred as “residual function”
attack) [41]. In the plain model, any actively secure 2PC is known to require 5
rounds in non-simultaneous message model [50] (under black-box simulation).
The bound can be improved to 4 even in the dishonest majority setting [32] in
simultaneous message model and tight upper bounds are presented in [2,16,40].
With a common reference string (CRS), the lower bound can be further improved
to 2 rounds [41]. Tight upper bounds are shown in [31] under indistinguishabil-
ity obfuscation (assumption weakened to witness encryption by [39]), and in [61]
under a variant of Fully Homomorphic Encryption (FHE) and Non-interactive
Zero-knowledge.

In the honest majority setting which is shown to be necessary [22] and suffi-
cient [10,18,24] for the feasibility of protocols with fairness and guaranteed out-
put delivery, the study on round complexity has seen the following interesting
results. Three is shown to be the lower bound for fair protocols in the stand-alone
model (surprisingly even with access to a CRS), assuming non-private channels
[39]. The same work presents a matching upper bound that provides guaranteed
output delivery, uses a CRS and a broadcast channel and relies on a ‘special’
FHE. Their protocol can be collapsed to two rounds given access to PKI where
the infrastructure carries the public keys corresponding to the ‘special’ FHE. In
the plain model, three rounds are shown to be necessary for MPC with fairness
and t ≥ 2, even in the presence of a broadcast channel and arbitrary number of
parties [35]. In an interesting work, [43] circumvents the above result by consider-
ing 4PC with one corruption. The protocol provides guaranteed output delivery,

428 A. Patra and D. Ravi

yet does not use a broadcast channel. In the same setting (plain model and no
broadcast), [43] presents a 2-round 3PC protocol tolerating single corruption;
whose communication and computation efficiency was improved by the 3-round
protocol of [60]. Both these protocols achieve a weaker notion of security known
as security with selective abort. Selective abort security [44] (referred as ‘secu-
rity with abort and no fairness’ in [38]) allows the corrupt parties to selectively
deprive some of the honest parties of the output. In the mildly stronger version
of unanimous abort (referred as ‘security with unanimous abort and no fairness’
in [38]), either all or none of the honest parties receive the output. An easy
observation concludes that the 3PC of [60] achieves unanimous abort, when its
third round message is broadcasted, albeit for functions giving the same output
to all. The works relevant to honest majority setting are listed below.

3PC has been studied in different settings as well. High-throughput MPC
with non-constant round complexity are studied in [3,30]. [21] studies 3PC with
dishonest majority. Recently, [17] presents a practically efficient 5-party MPC
protocol in honest majority setting, going beyond 3-party case, relying on dis-
tributed garbling technique based on [7].

Ref. Setting Round Network Setting/Assumption Security Comments

[4] t < n/2 ≥ 5 private channel, Broadcast/CRS,

FHE, NIZK

fairness upper bound

[39] t < n/2 3 non-private channel,

Broadcast/CRS, FHE

guaranteed output delivery upper bound

[39] t < n/2 2 non-private channel,

Broadcast/CRS, PKI, FHE

guaranteed output delivery upper bound

[44] n = 5, t = 1 2 private channel/OWF guaranteed output delivery upper bound

[43] n = 3, t = 1 2 private channel/OWF selective abort upper bound

[43] n = 4, t = 1 2 private channel/(injective) OWF guaranteed output delivery upper bound

[60] n = 3, t = 1 3 private channel, Broadcast/PRG unanimous abort upper bound

[39] t < n/2 3 non-private channel,

Broadcast/CRS

fairness lower bound

[35] n; t > 1 3 private channel, Broadcast fairness lower bound

1.1 Our Results

In this paper, we set our focus on the exact round complexity of 3PC protocols
with one active corruption achieving a range of security notions, namely selective
abort, unanimous abort, fairness and guaranteed output delivery in a setting
with pair-wise private channels and without or with a broadcast channel (and
no additional setup). In the minimal setting of pair-wise private channels, it is
known that 3PC with selective abort is feasible in just two rounds [43], while
guaranteed output delivery is infeasible to achieve irrespective of the number
of rounds [23]. No bound on round complexity is known for unanimous abort
or fairness. In the setting with a broadcast channel, the result of [60] implies
3-round 3PC with unanimous abort. Neither the round optimality of the [60]
construction, nor any bound on round complexity is known for protocols with
fairness and guaranteed output delivery.

On the Exact Round Complexity of Secure Three-Party Computation 429

This work settles all the above questions via two lower bound results and
three upper bounds. Both our lower-bounds extend for general n and t with
strict honest majority i.e. n/3 ≤ t < n/2. They imply tightness of several known
constructions of [43] and complement the lower bound of [35] which holds for
only t > 1. Our upper bounds are from injective (one-to-one) one-way functions.
The fundamental concept of garbled circuits (GC) contributes as their key basis,
following several prior works in this domain [21,43,60]. The techniques in our
upper bounds do not seem to extend for t > 1, leaving open designing round-
optimal protocols for the general case with various security notions. We now
elaborate on the results below:

Without Broadcast Channel. In this paper, we show that three rounds are nec-
essary to achieve 3PC with unanimous abort and fairness, in the absence of a
broadcast channel. The sufficiency is proved via a 3-round fair protocol (which
also achieves unanimous abort security). Our lower bound result immediately
implies tightness of the 3PC protocol of [43] achieving selective abort in two
rounds, in terms of security achieved. This completely settles the questions on
exact round complexity of 3PC in the minimal setting of pair-wise private chan-
nels. Our 3-round fair protocol uses a sub-protocol that is reminiscent of Condi-
tional Disclosure of Secrets (CDS) [36], with an additional property of authen-
ticity that allows a recipient to detect the correct secret. Our implementation
suggests a realisation of authenticated CDS from privacy-free GCs.

With Broadcast Channel. With access to a broadcast channel, we show that it
takes just two rounds to get 3PC with unanimous abort, implying non-optimality
of the 3-round construction of [60]. On the other hand, we show that three
rounds are necessary to construct a 3PC protocol with fairness and guaranteed
output delivery. The sufficiency for fairness already follows from our 3-round
fair protocol without broadcast. The sufficiency for guaranteed output delivery
is shown via yet another construction in the presence of broadcast. The lower
bound result restricted for t = 1 complements the lower bound of [35] making
three rounds necessary for MPC with fairness in the honest majority setting
for all the values of t. The lower bound further implies that for two-round fair
(or guaranteed output delivery) protocols with one corruption, the number of
parties needs to be at least four, making the 4PC protocol of [43] an optimal one.
Notably, our result does not contradict with the two-round protocol of [39] that
assumes PKI (where the infrastructure contains the public keys of a ‘special’
FHE), CRS and also broadcast channel.

The table below captures the complete picture of the round complexity of
3PC. The necessity of two rounds for any type of security follows from [41] via
the ‘residual attack’. Notably, broadcast facility only impacts the round com-
plexity of unanimous abort and guaranteed output delivery, leaving the round
complexity of selective abort and fairness unperturbed.

430 A. Patra and D. Ravi

Security Without
Broadcast

References
Necessity/
Sufficiency

With
Broadcast

References
Necessity/
Sufficiency

Selective Abort 2 [41]/[43] 2 [41]/[43]

Unanimous Abort 3 This paper/This paper 2 [41]/This paper

Fairness 3 This paper/This paper 3 This paper/This paper

Guaranteed
output delivery

Impossible [23] 3 This paper/This paper

1.2 Techniques

Lower Bounds. We present two lower bounds– (a) three rounds are necessary for
achieving fairness in the presence of pair-wise channels and a broadcast channel;
(b) three rounds are necessary for achieving unanimous abort in the presence
of just pair-wise channels. The lower bounds are shown by taking a special 3-
party function and by devising a sequence hybrid executions under different
adversarial strategies, allowing to conclude any 3PC protocol computing the
considered function cannot be simultaneously private and fair or secure with
unanimous abort.

Upper Bounds. We present three upper bounds– (a) 3-round fair protocol; (b) 2-
round protocol with unanimous abort and (c) 3-round protocol with guaranteed
output delivery. The former in the presence of just pairwise channels, the latter
two with an additional broadcast channel. The known generic transformations
such as, unanimous abort to (identifiable) fairness [45] or identifiable fairness
to guaranteed output delivery [24], does not help in any of our constructions.
For instance, any 3-round fair protocol without broadcast cannot take the former
route as it is not round-preserving and unanimous abort in two rounds necessarily
requires broadcast as shown in this work. A 3-round protocol with guaranteed
output delivery cannot be constructed combining both the transformations due
to inflation in round complexity.

Building on the protocol of [60], the basic building block of our protocols
needs two of the parties to enact the role of the garbler and the remaining party
to carry out the responsibility of circuit evaluation. Constrained with just two or
three rounds, our protocols are built from the parallel composition of three sub-
protocols, each one with different party enacting the role of the evaluator (much
like [43]). Each sub-protocol consumes two rounds. Based on the security needed,
the sub-protocols deliver distinct flavours of security with ‘identifiable abort’. For
the fair and unanimous abort, the identifiability is in the form of conflict that
is local (privately known) and public/global (known to all) respectively, while
for the protocol with guaranteed output delivery, it is local identification of
the corrupt. Achieving such identifiability in just two rounds (sometime without
broadcast) is challenging in themselves. Pulling up the security guarantee of these
subprotocols via entwining three executions to obtain the final goals of fairness,
unanimous abort and guaranteed output delivery constitute yet another novelty
of this work. Maintaining the input consistency across the three executions pose
another challenge that are tackled via mix of novel techniques (that consume no

On the Exact Round Complexity of Secure Three-Party Computation 431

additional cost in terms of communication) and existing tricks such as ‘proof-of-
cheating’ or ‘cheat-recovery’ mechanism [21,54]. The issue of input consistency
does not appear in the construction of [60] at all, as it does not deal with parallel
composition. On the other hand, the generic input consistency technique adopted
in [43] can only (at the best) detect a conflict locally and cannot be extended to
support the stronger form of identifiability that we need.

Below, we present the common issues faced and approach taken in all our
protocols before turning towards the challenges and way-outs specific to our con-
structions. Two of the major efficiency bottlenecks of 2PC from garbled circuits,
namely the need of multiple garbled circuits due to cut-and-choose approach
and Oblivious Transfer (OT) for enabling the evaluator to receive its input in
encoded form are bypassed in the 3PC scenario through two simple tricks [43,60].
First, the garblers use common randomness to construct the same garbled cir-
cuit individually. A simple comparison of the GCs received from the two garblers
allows to conclude the correctness of the GC. Since at most one party can be
corrupt, if the received GCs match, then its correctness can be concluded. Sec-
ond, the evaluator shares its input additively among the garblers at the onset of
the protocol, reducing the problem to a secure computation of a function on the
garblers’ inputs alone. Specifically, assuming P3 as the evaluator, the computa-
tion now takes inputs from P1 and P2 as (x1, x31) and (x2, x32) respectively to
compute C(x1, x2, x31, x32) = f(x1, x2, x31 ⊕ x32). Since the garblers possess all
the inputs needed for the computation, OT is no longer needed to transfer the
evaluator’s input in encoded form to P3.

Next, to force the garblers to input encoding and decoding information (the
keys) that are consistent with the GCs, the following technique is adopted. Notice
that the issue of input consistency where a corrupt party may use different inputs
as an evaluator and as a garbler in different instances of the sub-protocols is dis-
tinct and remains to be tackled separately. Together with the GC, each garbler
also generates the commitment to the encoding and decoding information using
the common shared randomness and communicates to the evaluator. Again a
simple check on whether the set of commitments are same for both the gar-
blers allows to conclude their correctness. Now it is infeasible for the garblers to
decommit the encoded input corresponding to their own input and the evalua-
tor’s share to something that are inconsistent to the GC without being caught.
Following a common trick to hide the inputs of the garblers, the commitments
on the encoding information corresponding to every bit of the garblers’ input
are sent in permuted order that is privy to the garblers. The commitment on the
decoding information is relevant only for the fair protocol where the decoding
information is withheld to force a corrupt evaluator to be fair. Namely, in the
third round of the final protocol, the evaluator is given access to the decoding
information only when it helps the honest parties to compute the output. This
step needs us to rely on the obliviousness of our garbling scheme, apart from
privacy. The commitment on the decoding information and its verification by
crosschecking across the garblers are needed to prevent a corrupt party to lie
later. Now we turn to the challenges specific to the constructions.

432 A. Patra and D. Ravi

Achieving fairness in 3 rounds. The sub-protocol for our fair construction only
achieves a weak form of identifiability, a local conflict to be specific, in the
absence of broadcast. Namely, the evaluator either computes the encoded output
(‘happy’ state) or it just gets to know that the garblers are in conflict (‘confused’
state) in the worst case. The latter happens when it receives conflicting copies
of GCs or commitments to the encoding/decoding information. In the composed
protocol, a corrupt party can easily breach fairness by keeping one honest eval-
uator happy and the other confused in the end of round 2 and selectively enable
the happy party to compute the output by releasing the decoding information in
the third round (which was withheld until Round 2). Noting that the absence of
a broadcast channel ensues conflict and confusion, we handle this using a neat
trick of ‘certification mechanism’ that tries to enforce honest behaviour from a
sender who is supposed to send a common information to its fellow participants.

A party is rewarded with a ‘certificate’ for enacting an honest sender and
emulating a broadcast by sending the same information to the other two par-
ties, for the common information such as GCs and commitments. This protocol
internally mimics a CDS protocol [36] for equality predicate, with an additional
property of ‘authenticity’, a departure from the traditional CDS. An authenti-
cated CDS allows the receiver to detect correct receipt of the secret/certificate
(similar to authenticated encryption where the receiver knows if the received
message is the desired one). As demonstrated below, the certificate allows to
identify the culprit behind the confusion on one hand, and to securely trans-
mit the decoding information from a confused honest party to the happy honest
party in the third round, on the other. The certificate, being a proof of correct
behaviour, when comes from an honest party, say Pi, the other honest party who
sees conflict in the information distributed by Pi communicated over point-to-
point channel, can readily identify the corrupt party responsible for creating the
conflict in Round 3. This aids the latter party to compute the output using the
encoded output of the former honest party. The certificate further enables the
latter party to release the decoding information in Round 3 in encrypted form
so that the other honest party holding a certificate can decrypt it. The release of
encryption is done only for the parties whose distributed information are seen in
conflict, so that a corrupt party either receives its certificate or the encryption
but not both. Consequently, it is forced to assist at least one honest party in
getting the certificate and be happy to compute the output, as only a happy
party releases the decoding information on clear. In a nutshell, the certification
mechanism ensures that when one honest party is happy, then no matter how the
corrupt party behaves in the third round, both the honest parties will compute
the output in the third round. When no honest party is happy, then none can
get the output. Lastly, the corrupt party must keep one honest party happy, for
it to get the output.

Yet again, we use garbled circuits to implement the above where a party
willing to receive a certificate acts as an evaluator for a garbled circuit imple-
menting ‘equality’ check of the inputs. The other two parties act as the garblers
with their inputs as the common information dealt by the evaluator. With no

On the Exact Round Complexity of Secure Three-Party Computation 433

concern of input privacy, the circuit can be garbled in a privacy-free way [29,49].
The certificate that is the key for output 1 is accessible to the evaluator only
when it emulates a broadcast by dealing identical copies of the common infor-
mation to both the other parties. Notably, [47] suggests application of garbling
to realise CDS.

Achieving unanimous abort in 2 rounds. Moving on to our construction with
unanimous abort, the foremost challenge comes from the fact that it must be
resilient to any corrupt Round 2 private communication. Because there is no
time to report this misbehaviour to the other honest party who may have got
the output and have been treated with honest behaviour all along. Notably,
in our sub-protocols, the private communication from both garblers in second
round inevitably carries the encoded share of the evaluator’s input (as the share
themselves arrives at the garblers’ end in Round 1). This is a soft spot for a
corrupt garbler to selectively misbehave and cause selective abort. While the
problem of transferring encoded input shares of the evaluator without relying
on second round private communication seems unresolvable on the surface, our
take on the problem uses a clever ‘two-part release mechanism’. The first set
of encoding information for random inputs picked by the garblers themselves is
released in the first round privately and any misbehaviour is brought to notice
in the second round. The second set of encoding information for the offsets of
the random values and the actual shares of the evaluator’s input is released
in the second round via broadcast without hampering security, while allowing
public detection. Thus the sub-protocol achieves global/public conflict and helps
the final construction to exit with ⊥ unanimously when any of the sub-protocol
detects a conflict.
Achieving guaranteed output delivery in 3 rounds. For achieving this stronger
notion, the sub-protocol here needs a stronger kind of identifiability, identifying
the corrupt locally to be specific, to facilitate all parties to get output within an
additional round no matter what. To this effect, our sub-protocol is enhanced
so that the evaluator either successfully computes the output or identifies the
corrupt party. We emphasise that the goals of the sub-protocols for unanimous
abort and guaranteed output delivery, namely global conflict vs. local identifica-
tion, are orthogonal and do not imply each other. The additional challenge faced
in composing the executions to achieve guaranteed output delivery lies in deter-
mining the appropriate ‘committed’ input of the corrupt party based on which
round and execution of sub-protocol it chooses to strike. Tackling input consis-
tency. We take a uniform approach for all our protocols. We note that a party
takes three different roles across the three composed execution: an evaluator, a
garbler who initiate the GC generation by picking the randomness, a co-garbler
who verifies the sanity of the GC. In each instance, it gets a chance to give inputs.
We take care of input consistency in two parts. First, we tie the inputs that a
party can feed as an evaluator and as a garbler who initiates a GC construction
via a mechanism that needs no additional communication at all. This is done by
setting the permutation strings (used to permute the commitments of encoding
information of the garblers) to the shares of these parties’ input in a certain way.

434 A. Patra and D. Ravi

The same trick fails to work in two rounds for the case when a party acts as
a garbler and a co-garbler in two different executions. We tackle this by super-
imposing two mirrored copies of the sub-protocol where the garblers exchange
their roles. Namely, in the final sub-protocol, each garbler initiates an indepen-
dent copy of garbled circuit and passes on the randomness used to the fellow
garbler for verification. The previous trick is used to tie the inputs that a party
feeds as an evaluator and as a garbler for the GC initiated by it (inter-execution
consistency). The input consistency of a garbler for the two garbled circuits (one
initiated by him and the other by the co-garbler) is taken care using ‘proof-of-
cheating’ mechanism [54] where the evaluator can unlock the clear input of both
the other parties using conflicting output wire keys (intra-execution consistency).
While this works for our protocols with unanimous abort and guaranteed output
delivery, the fair protocol faces additional challenges. First, based on whether a
party releases a clear or encoded input, a corrupt garbler feeding two different
inputs can conclude whether f leads to the same output for both his inputs,
breaching privacy. This is tackled by creating the ciphertexts using conflicting
input keys. Second, inspite of the above change, a corrupt garbler can launch
‘selective failure attack’ [51,58] and breach privacy of his honest co-garbler. We
tackle this using ‘XOR-tree approach’ [55] where every input bit is broken into s
shares and security is guaranteed except with probability 2−(s−1) per input bit.
We do not go for the refined version of this technique, known as probe-resistant
matrix, [55,66] for simplicity.

On the assumption needed. While the garbled circuits can be built just from
OWF, the necessity of injective OWF comes from the use of commitments that
need binding property for any (including adversarially-picked) public parameter.
Our protocols, having 2–3 rounds, seem unable to spare rounds for generating
and communicating the public parameters by a party who is different from the
one opening the commitments.

On concrete efficiency. Though the focus is on the round complexity, the concrete
efficiency of our protocols is comparable to Yao [67] and require transmission
and evaluation of few GCs (upto 9) (in some cases we only need privacy-free
GCs which permit more efficient constructions than their private counterparts
[29,49]). The broadcast communication of the optimized variants of our protocols
is independent of the GC size via applying hash function. We would like to draw
attention towards the new tricks such as the ones used for input consistency,
getting certificate of good behaviour via garbled circuits, which may be of both
theoretical and practical interest. We believe the detailed take on our protocols
will help to lift them or their derivatives to practice in future.

1.3 Roadmap

We present a high-level overview of the primitives used in Sect. 2. We present
our 3-round fair protocol, 2-round protocol with unanimous abort and 3-round
protocol with guaranteed output delivery in Sects. 3, 4 and 5 respectively. Our
lower bound results appear in Sect. 6. The security definitions, complete security

On the Exact Round Complexity of Secure Three-Party Computation 435

proofs and optimizations appear in the full version [63]. We define authenticated
CDS and show its realisation from one of the sub-protocols used in our fair
protocol in the full version.

2 Preliminaries

2.1 Model

We consider a set of n = 3 parties P = {P1, P2, P3}, connected by pair-wise
secure and authentic channels. Each party is modelled as a probabilistic polyno-
mial time Turing (PPT) machine. We assume that there exists a PPT adversary
A, who can actively corrupt at most t = 1 out of the n = 3 parties and make
them behave in any arbitrary manner during the execution of a protocol. We
assume the adversary to be static, who decides the set of t parties to be cor-
rupted at the onset of a protocol execution. For our 2-round protocol achieving
unanimous abort and 3-round protocol achieving guaranteed output delivery, a
broadcast channel is assumed to exist.

We denote the cryptographic security parameter by κ. A negligible function
in κ is denoted by negl(κ). A function negl(·) is negligible if for every polynomial
p(·) there exists a value N such that for all m > N it holds that negl(m) < 1

p(m) .
We denote by [x], the set of elements {1, . . . , x} and by [x, y] for y > x, the set
of elements {x, x + 1, . . . , y}. For any x ∈R {0, 1}m, xi denotes the bit of x at
index i for i ∈ [m]. Let S be an infinite set and X = {Xs}s∈S , Y = {Ys}s∈S be
distribution ensembles. We say X and Y are computationally indistinguishable, if
for any PPT distinguisher D and all sufficiently large s ∈ S, we have |Pr[D(Xs) =
1] − Pr[D(Ys) = 1]| < 1/p(|s|) for every polynomial p(·).

2.2 Primitives

Garbling Schemes. The term ‘garbled circuit’ (GC) was coined by Beaver [7],
but it had largely only been a technique used in secure protocols until they
were formalized as a primitive by Bellare et al. [9]. ‘Garbling Schemes’ as they
were termed, were assigned well-defined notions of security, namely correctness,
privacy, obliviousness, and authenticity. A garbling scheme G is characterised by
a tuple of PPT algorithms G = (Gb,En,Ev,De) described below.

– Gb (1κ, C) is invoked on a circuit C in order to produce a ‘garbled circuit’ C,
‘input encoding information’ e, and ‘output decoding information’ d.

– En (x, e) encodes a clear input x with encoding information e in order to
produce a garbled/encoded input X.

– Ev (C,X) evaluates C on X to produce a garbled/encoded output Y.
– De (Y, d) translates Y into a clear output y as per decoding information d.

We give an informal intuition of the notion captured by each of the security
properties, namely correctness, privacy, obliviousness, and authenticity. Correct-
ness enforces that a correctly garbled circuit, when evaluated, outputs the correct

436 A. Patra and D. Ravi

output of the underlying circuit. Privacy aims to protect the privacy of encoded
inputs. Authenticity enforces that the evaluator can only learn the output label
that corresponds to the value of the function. Obliviousness captures the notion
that when the decoding information is withheld, the garbled circuit evaluation
leaks no information about any underlying clear values; be they of the input,
intermediate, or output wires of the circuit. The formal definitions are presented
in the full version [63].

We are interested in a class of garbling schemes referred to as projective in
[9]. When garbling a circuit C : {0, 1}n �→ {0, 1}m, a projective garbling scheme
produces encoding information of the form e =

(
e0
i , e

1
i

)
i∈[n]

, and the encoded
input X for x = (xi)i∈[n] can be interpreted as X = En(x, e) = (exi

i)i∈[n].
Our 3-round fair protocol relies on garbling schemes that are simultaneously

correct, private and oblivious. One of its subroutine uses a garbling scheme that
is only authentic. Such schemes are referred as privacy-free [29,49]. Our protocols
with unanimous abort and guaranteed output delivery need a correct, private
and authentic garbling scheme that need not provide obliviousness. Both these
protocols as well as the privacy-free garbling used in the fair protocol further
need an additional decoding mechanism denoted as soft decoding algorithm sDe
[60] that can decode garbled outputs without the decoding information d. The
soft-decoding algorithm must comply with correctness: sDe(Ev(C,En(e, x))) =
C(x) for all (C, e, d). While both sDe and De can decode garbled outputs, the
authenticity needs to hold only with respect to De. In practice, soft decoding in
typical garbling schemes can be achieved by simply appending the truth value
to each output wire label.

Non-interactive Commitment Schemes. A non-interactive commitment scheme
(NICOM) consists of two algorithms (Com,Open) defined as follows. Given a
security parameter κ, a common parameter pp, message x and random coins r,
PPT algorithm Com outputs commitment c and corresponding opening infor-
mation o. Given κ, pp, a commitment and corresponding opening information
(c, o), PPT algorithm Open outputs the message x. The algorithms should sat-
isfy correctness, binding (i.e. it must be hard for an adversary to come up with
two different openings of any c and any pp) and hiding (a commitment must
not leak information about the underlying message) properties. We need this
kind of strong binding as the same party who generates the pp and commitment
is required to open later. Two such instantiations of NICOM based on sym-
metric key primitives (specifically, injective one-way functions) and the formal
definitions of the properties are given in the full version. We also need a NICOM
scheme that admits equivocation property. An equivocal non-interactive commit-
ment (eNICOM) is a NICOM that allows equivocation of a certain commitment
to any given message with the help of a trapdoor. The formal definitions and
instantiations appear in the full version [63].

Symmetric-Key Encryption (SKE) with Special Correctness. Our fair protocol
uses a SKE π = (Gen,Enc,Dec) which satisfies CPA security and a special cor-
rectness property [48,56]– if the encryption and decryption keys are different,

On the Exact Round Complexity of Secure Three-Party Computation 437

then decryption fails with high probability. The definition and an instantiation
appear in the full version.

3 3-round 3PC with Fairness

This section presents a tight upper bound for 3PC achieving fairness in the
setting with just pair-wise private channels. Our lower bound result showing
necessity of three rounds for unanimous abort assuming just pairwise private
channels (appears in the full version [63]) rules out the possibility of achieving
fairness in 2 rounds in the same setting. Our result from Sect. 6.1 further shows
tightness of 3 rounds even in the presence of a broadcast channel.

Building on the intuition given in the introduction, we proceed towards more
detailed discussion of our protocol. Our fair protocol is built from parallel com-
position of three copies of each of the following two sub-protocols: (a) fairi where
Pi acts as the evaluator and the other two as garblers for computing the desired
function f . This sub-protocol ensures that honest Pi either computes its encoded
output or identifies just a conflict in the worst case. The decoding information is
committed to Pi, yet not opened. It is released in Round 3 of the final composed
protocol under subtle conditions as elaborated below. (b) certi where Pi acts as
the evaluator and the other two as garblers for computing an equality checking
circuit on the common information distributed by Pi in the first round of the
final protocol. Notably, though the inputs come solely from the garblers, they
are originated from the evaluator and so the circuit can be garbled in a privacy-
free fashion. This sub-protocol ensures either honest Pi gets its certificate, the
key for output 1 (meaning the equality check passes through), or identifies a
conflict in the worst case. The second round of certi is essentially an ‘authenti-
cated’ CDS for equality predicate tolerating one active corruption. Three global
variables are maintained by each party Pi to keep tab on the conflicts and the
corrupt. Namely, Ci to keep the identity of the corrupt, flagj and flagk (for dis-
tinct i, j, k ∈ [3]) as indicators of detection of conflict with respect to information
distributed by Pj and Pk respectively. The sub-protocols fairi and certi assure
that if neither the two flags nor Ci is set, then Pi must be able to evaluate the
GC successfully and get its certificate respectively.

Once {fairi, certi}i∈[3] complete by the end of round 2 of the final proto-
col fair, any honest party will be in one of the three states: (a) no corruption
and no conflict detected ((Ci = ∅) ∧ (flagj = 0) ∧ (flagk = 0)); (b) corruption
detected (Ci �= ∅); (c) conflict detected (flagj = 1) ∨ (flagk = 1). An honest
party, guaranteed to have computed its encoded output and certificate only in
the first state, releases these as well as the decoding information for both the
other parties unconditionally in the third round. In the other two states, an
honest party conditionally releases only the decoding information. This step is
extremely crucial for maintaining fairness. Specifically, a party that belongs to
the second state, releases the decoding information only to the party identified
to be honest. A party that belongs to the third state, releases the decoding infor-
mation in encrypted form only to the party whose distributed information are

438 A. Patra and D. Ravi

not agreed upon, so that the encryption can be unlocked only via a valid certifi-
cate. A corrupt party will either have its certificate or the encrypted decoding
information, but not both. The former when it distributes its common informa-
tion correctly and the latter when it does not. The only way a corrupt party can
get its decoding information is by keeping one honest party in the first state, in
which case both the honest parties will be able to compute the output as follows.
The honest party in state one, say Pi, either gets it decoding information on clear
or in encrypted form. The former when the other honest party, Pj is in the first
or second state and the latter when Pj is in the third state. Pi retrieves the
decoding information no matter what, as it also holds the certificate to open the
encryption. An honest party Pj in the second state, on identifying Pi as honest,
takes the encoded output of Pi and uses its own decoding information to com-
pute the output. The case for an honest party Pj in the third state is the most
interesting. Since honest Pi belongs to the first state, a corrupt party must have
distributed its common information correctly as otherwise Pi will find a conflict
and would be in third state. Therefore, Pj in the third state must have found
Pi’s information on disagreement due the corrupt party’s misbehaviour. Now,
Pi’s certificate that proves his correct behaviour, allows Pj to identify the cor-
rupt, enter into the second state and compute the output by taking the encoded
output of honest Pi. In the following, we describe execution fairi assuming input
consistency, followed by certi. Entwining the six executions, tackling the input
consistency and the final presentation of protocol fair appear in the end.

3.1 Protocol fairi

At a high level, fairi works as follows. In the first round, the evaluator shares
its input additively between the two garblers making the garblers the sole input
contributors to the computation. In parallel, each garbler initiates construction
of a GC and commitments on the encoding and decoding information. While
the GC and the commitments are given to the evaluator Pi, the co-garbler,
acting as a verifier, additionally receives the source of the used randomness
for GC and openings of commitments. Upon verification, the co-garbler either
approves or rejects the GC and commitments. In the former case, it also releases
its own encoded input and encoded input for the share of Pi via opening the
commitments to encoding information in second round. In the latter case, Pi

sets the flag corresponding to the generator of the GC to true. Failure to open
a verified commitment readily exposes the corrupt to the evaluator. If all goes
well, Pi evaluates both circuits and obtains encoded outputs. The correctness of
the evaluated GC follows from the fact that it is either constructed or scrutinised
by a honest garbler. The decoding information remains hidden (yet committed)
with Pi and the obliviousness of GC ensures that Pi cannot compute the output
until it receives the correct opening.

To avoid issues of adaptivity, the GCs are not sent on clear in the first round
to Pi who may choose its input based on the GCs. Rather, a garbler sends
a commitment to its GC to Pi and it is opened only by the co-garbler after
successful scrutiny. The correctness of evaluated GC still carries over as a corrupt

On the Exact Round Complexity of Secure Three-Party Computation 439

garbler cannot open to a different circuit than the one committed by an honest
garbler by virtue of the binding property of the commitment scheme. We use
an eNICOM for committing the GCs and decoding information as equivocation
is needed to tackle a technicality in the security proof. The simulator of our
final protocol needs to send the commitments on GC, encoding and decoding
information without having access to the input of an evaluator Pi (and thus also
the output), while acting on behalf of the honest garblers in fairi. The eNICOM
cannot be used for the encoding information, as they are opened by the ones
who generate the commitments and eNICOM does not provide binding in such
a case. Instead, the GCs and the decoding information are equivocated based on
the input of the evaluator and the output.

Protocol fairi appears in Fig. 1 where Pi returns encoded outputs Yi =
(Yj

i ,Y
k
i) (initially set to ⊥) for the circuits created by Pj , Pk, the commit-

ments to the respective decoding information Cdec
j , Cdec

k and the flags flagj , flagk

(initially set to false) to be used in the final protocol. The garblers output their
respective corrupt set, flag for the fellow garbler and opening for the decoding
information corresponding to its co-garbler’s GC and not its own. This is to
ensure that it cannot break the binding of eNICOM which may not necessarily
hold for adversarially-picked public parameter.

Lemma 1. During fairi, Pβ /∈ Cα holds for honest Pα, Pβ.

Proof. An honest Pα would include Pβ in Cα only if one of the following hold:
(a) Both are garblers and Pβ sends commitments to garbled circuit, encoding
and decoding information inconsistent with the randomness and openings shared
privately with Pα (b) Pα is an evaluator and Pβ is a garbler and either (i) Pβ ’s
opening of a committed garbled circuit fails or (ii) Pβ ’s opening of a committed
encoded input fails. It is straightforward to verify that the cases will never occur
for honest (Pα, Pβ). �

Lemma 2. If honest Pi has Ci = ∅ and flagj = flagk = 0, then Yi = (Yj
i ,

Yk
i) �= ⊥.

Proof. According to fairi, Pi fails to compute Yi when it identifies the corrupt or
finds a mismatch in the common information Dj or Dk or receives a nOK signal
from one of its garblers. The first condition implies Ci �= ∅. The second condition
implies, Pi would have set either flagj or flagk to true. For the third condition,
if Pj sends nOK then Pi would set flagk = 1. Lastly, if Pk sends nOK, then Pi sets
flagj = 1. Clearly when Ci = ∅ ∧ flagj = 0 ∧ flagk = 0, Pi evaluates both Cj ,Ck

and obtains Yi = (Yj
i ,Y

k
i) �= ⊥. �

3.2 Protocol certi

When a party Pi in fairi is left in a confused state and has no clue about the
corrupt, it is in dilemma on whether or whose encoded output should be used
to compute output and who should it release the decoding information (that

440 A. Patra and D. Ravi

Fig. 1. Protocol fairi

On the Exact Round Complexity of Secure Three-Party Computation 441

it holds as a garbler) to in the final protocol. Protocol certi, in a nutshell, is
introduced to help a confused party to identify the corrupt and take the honest
party’s encoded output for output computation, on one hand, and to selectively
deliver the decoding information only to the other honest party, on the other.
Protocol certi implements evaluation of an equality checking function that takes
inputs from the two garblers and outputs 1 when the test passes and outputs the
inputs themselves otherwise. In the final protocol, the inputs are the common
information (GCs and commitments) distributed by Pi across all executions of
fairj . The certificate is the output key corresponding to output 1. Since input
privacy is not a concern here, the circuit is enough to be garbled in privacy-
free way and authenticity of garbling will ensure a corrupt Pi does not get the
certificate. certi follows the footstep of fairi with the following simplifications:
(a) Input consistency need not be taken care across the executions implying
that it is enough one garbler alone initiates a GC and the other garbler simply
extends its support for verification. To divide the load fairly, we assign garbler
Pj where i = (j + 1) mod 3 to act as the generator of GC in certi. (b) The
decoding information need not be committed or withheld. We use soft decoding
that allows immediate decoding.

Similar to fairi, at the end of the protocol, either Pi gets its certificate (either
the key for 1 or the inputs themselves), or sets its flags (when GC and com-
mitment do not match) or sets its corrupt set (when opening of encoded inputs
fail). Pi outputs its certificate, the flag for the GC generator and corrupt set,
to be used in the final protocol. The garblers output the key for 1, flag for its
fellow garbler and the corrupt set. Notice that, when certi is composed in the
bigger protocol, Pi will be in a position to identify the corrupt when the equality
fails and the certificate is the inputs fed by the garblers. The protocol appears
in Fig. 2.

Lemma 3. During certi, Pβ /∈ Cα holds for honest Pα, Pβ.

Proof. An honest Pα would include Pβ in Cα only if one of the following holds:
(a) Pβ sends inconsistent (sβ ,Wβ) to Pα. (b) Pβ ’s opening of committed encoded
input or garbled circuit fails. It is straightforward to verify that the cases will
never occur for honest (Pβ , Pα). �
Lemma 4. If an honest Pi has Ci = ∅ and flagj = flagk = 0, then, certi �= ⊥.

Proof. The proof follows easily from the steps of the protocol. �

3.3 Protocol fair

Building on the intuition laid out before, we only discuss input consistency that
is taken care in two steps: Inter-input consistency (across executions) and intra-
input consistency (within an execution). In the former, Pi’s input as an evaluator
in fairi is tied with its input committed as garblers for its own garbled circuits
in fairj and fairk. In the latter, the consistency of Pi’s input for both garbled
circuits in fairj (and similarly in fairk) is tackled. We discuss them one by one.

442 A. Patra and D. Ravi

Fig. 2. Protocol certi

We tackle the former in a simple yet clever way without incurring any addi-
tional overhead. We explain the technique for enforcing P1’s input consistency
on input x1 as an evaluator during fair1 and as a garbler during fair2, fair3 with
respect to his GC C1. Since the protocol is symmetric in terms of the roles of
the parties, similar tricks are adopted for P2 and P3. Let in the first round of
fair1, P1 shares its input x1 by handing x12 and x13 to P2 and P3 respectively.
Now corresponding to C1 during fair2, P1 and P3 who act as the garblers use x13

as the permutation vector p11 that defines the order of the commitments of the
bits of x1. Now input consistency of P1’s input is guaranteed if m11 transferred
by P1 in fair2 is same as x12, P1’s share for P2 in fair1. For an honest P1, the
above will be true since m11 = p11 ⊕x1 = x13 ⊕x1 = x12. If the check fails, then
P2 identifies P1 as corrupt. This simple check forces P1 to use the same input in
both fair1 and fair2 (corresponding to C1). A similar trick is used to ensure input
consistency of the input of P1 across fair1 and fair3 (corresponding to C1) where

On the Exact Round Complexity of Secure Three-Party Computation 443

P1 and P2 who act as the garblers use x12 as the permutation vector p11 for the
commitments of the bits of x1. The evaluator P3 in fair3 checks if m11 transferred
by P1 in fair3 is same as x13 that P3 receives from P1 in fair1. While the above
technique enforces the consistency with respect to P1’s GC, unfortunately, the
same technique cannot be used to enforce P1’s input consistency with respect
to C2 in fair3 (or fair2) since p21 cannot be set to x12 which is available to P2

only at the end of first round. While, P2 needs to prepare and broadcast the
commitments to the encoding information in jumbled order as per permutation
string p21 in the first round itself. We handle it differently as below.

The consistency of Pi’s input for both garbled circuits in fairj (and similarly
in fairk) is tackled via ‘cheat-recovery mechanism’ [54]. We explain with respect
to P1’s input in fair3. P2 prepares a ciphertext (cheat recovery box) with the
input keys of P1 corresponding to the mismatched input bit in the two garbled
circuits, C1 and C2 in fair3. This ciphertext encrypts the input shares of gar-
blers that P3 misses, namely, x12 and x21. This would allow P3 to compute the
function on clear inputs directly. To ensure that the recovered missing shares
are as distributed in fair1 and fair2, the shares are not simply distributed but
are committed via NICOM by the input owners and the openings are encrypted
by the holders. Since there is no way for an evaluator to detect any mismatch
in the inputs to and outputs from the two GCs as they are in encoded form,
we use encryption scheme with special correctness to enable the evaluator to
identify the relevant decryptions. Crucially, we depart from the usual way of
creating the cheat recovery boxes using conflicting encoded outputs. Based on
whether the clear or encoded output comes out of honest P3 in round 3, corrupt
garbler P1 feeding two different inputs to C1 and C2 can conclude whether its
two different inputs lead to the same output or not, breaching privacy. Note that
the decoding information cannot be given via this cheat recovery box that uses
conflicting encoded outputs as key, as that would result in circularity.

Despite using the above fix, the mechanism as discussed above is susceptible
to ‘selective failure attack’, an attack well-known in the 2-party domain. While in
the latter domain, the attack is launched to breach the privacy of the evaluator’s
input based on whether it aborts or not. Here, a corrupt garbler can prepare
the ciphertexts in an incorrect way and can breach privacy of its honest co-
garbler based on whether clear or encoded output comes out of the evaluator.
We elaborate the attack in fair3 considering a corrupt P1 and single bit inputs.
P1 is supposed to prepare two ciphertexts corresponding to P2’s input bit using
the following key combinations– (a) key for 0 in C1 and 1 in C2 and (b) vice-
versa. Corrupt P1 may replace one of the ciphertexts using key based on encoded
input 0 of P2 in both the GCs. In case P2 indeed has input 0 (that he would use
consistently across the 2 GCs during fair3), then P3 would be able to decrypt
the ciphertext and would send clear output in Round 3. P1 can readily conclude
that P2’s input is 0. This attack is taken care via the usual technique of breaking
each input bit to s number of xor-shares, referred as ‘XOR-tree approach’ [55]
(probe-resistance matrix [55,66] can also be used; we avoid it for simplicity). The
security is achieved except with probability 2−(s−1). Given that input consistency

444 A. Patra and D. Ravi

is enforced, at the end of round 2, apart from the three states– (a) no corruption
and no conflict detected (b) corrupt identified (c) conflict detected, a party can
be in yet another state. Namely, no corruption and no conflict detected and the
party is able to open a ciphertext and compute f on clear. A corrupt party
cannot be in this state since the honest parties would use consistent inputs and
therefore the corrupt would not get access to conflicting encoded inputs that
constitute the key of the ciphertexts. If any honest party is in this state, our
protocol results in all parties outputting this output. In Round 3, this party can
send the computed output along with the opening of the shares he recovered
via the ciphertexts as ‘proof’ to convince the honest party of the validity of the
output. The protocol fair appears in Figs. 3 and 4.

We now prove the correctness of fair. The intuitive proof of fairness and
formal proof of security are presented in the full version [63].

Lemma 5. During fair, Pj /∈ Ci holds for honest Pi, Pj.

Proof. An honest Pi will not include Pj in its corrupt set in the sub-protocols
{fairα, certα}α∈[3] following Lemmas 1 and 3. Now we prove the statement indi-
vidually investigating the three rounds of fair.

In Round 1 of fair, Pi includes Pj as corrupt only if (a) Pi, Pj are gar-
blers and Pj sets pjj �= xji or (b) Pj sends ppj , cji, oji, xji to Pi such that
Open(ppj , cji, oji) �= xji. None of them will be true for an honest Pj . In Round 2
of fair, Pi includes Pj as corrupt only if (a) Pj is a garbler and Pi is an evaluator
and mjj �= xji or (b) Pi obtains certi = (γ′

j , γ
′
k) and detects Pj ’s input γ′

j in
certi to be different from the information sent by him. The former will not be
true for an honest Pj . The latter also cannot hold for honest Pj by correctness
of the privacy-free garbling used. In the last round of fair, Pi will identify Pj as
corrupt, if it has flagk = 1 and yet receives certk which is same as keyk from Pk.
A corrupt Pk receives keyk only by handing out correct and consistent common
information to Pi and Pj until the end of Round 1. Namely, the following must
be true for Pk to obtain keyk (except for the case when it breaks the authen-
ticity of the GC): (i) γi and γj for certk must be same and (ii) Pk must not be
in the corrupt set of any honest party at the end of Round 1. In this case, flagk

cannot be 1. �

Lemma 6. No corrupt party can be in st1 by the end of Round 1, except with
negligible probability.

Proof. For a corrupt Pk, its honest garblers Pi and Pj creates the ciphertexts cts
using keys with opposite meaning for their respective inputs from their garbled
circuits. Since honest Pi and Pj use the same input for both the circuits, Pk

will not have a key to open any of the ciphertexts. The openings (oij , oji) are
therefore protected due to the security of the encryption scheme. Subsequently,
Pk cannot compute y. �
Definition 1. A party Pi is said to be ‘committed’ to a unique input xi, if Pj

holds (cij , cik, oij , xij) and Pk holds (cij , cik, oik, xik) such that: (a) xi = xij⊕xik

and (b) cij opens to xij via oij and likewise, cik opens to xik via oik.

On the Exact Round Complexity of Secure Three-Party Computation 445

Fig. 3. A Three-Round Fair 3PC protocol

We next prove that a corrupt party must have committed its input if some honest
party is in st1 or st2. To prove correctness, the next few lemmas then show that
an honest party computes its output based on its own output or encoded output
if it is in st1 or st2 or relies on the output or encoded output of the other

446 A. Patra and D. Ravi

Fig. 4. A Three-Round Fair 3PC protocol

honest party. In all cases, the output will correspond to the committed input of
the corrupt party.

Lemma 7. If an honest party is in {st1, st2}, then corrupt party must have
committed a unique input.

Proof. An honest Pi is in {st1, st2} only when Ci = ∅, flagj = 0, flagk = 0 hold
at the end of Round 2. Assume Pk is corrupt. Pk has not committed to a unique
xk implies either it has distributed different copies of commitments (cki, ckj) to
the honest parties or distributed incorrect opening information to some honest
party. In the former case, flagk will be set by Pi. In the latter case, at least one
honest party will identify Pk to be corrupt by the end of Round 1. If it is Pi, then
Ci �= ∅. Otherwise, Pj populates its corrupt set with Pk, leading to Pi setting
flagk = 1 in Round 2. �
Lemma 8. If an honest party is in st1, then its output y corresponds to the
unique input committed by the corrupt party.

On the Exact Round Complexity of Secure Three-Party Computation 447

Proof. An honest Pi is in st1 only when Ci = ∅, flagj = 0, flagk = 0 hold at
the end of Round 2 and it computes y via decryption of the ciphertexts ct sent
by either Pj or Pk. Assume Pk is corrupt. By Lemma 7, Pk has committed
to its input. The condition flagj = 0 implies that Pk exchanges the commit-
ments on the shares of Pj ’s input, namely {cji, cjk}, honestly. Now if Pi opens
honest Pj ’s ciphertext, then it unlocks the opening information for the missing
shares, namely (okj , ojk) corresponding to common and agreed commitments
(ckj , cjk). Using these it opens the missing shares xkj ← Open(ckj , okj) and
xjk ← Open(cjk, ojk) and finally computes output on (xi, xji ⊕ xjk, xki ⊕ xkj).
Next, we consider the case when Pi computes y by decrypting a ct sent by corrupt
Pk. In this case, no matter how the ciphertext is created, the binding property
of NICOM implies that Pk will not be able to open cjk, ckj to anything other
than xjk, xkj except with negligible probability. Thus, the output computed is
still as above and the claim holds. �
Lemma 9. If an honest party is in st2, then its encoded output Y corresponds
to the unique input committed by the corrupt party.

Proof. An honest Pi is in st2 only when Ci = ∅, flagj = 0, flagk = 0 hold at the
end of Round 2. The conditions also imply that Pi has computed Yi successfully
(due to Lemma 2) and Pk has committed to its input (due to Lemma 7). Now
we show that Yi correspond to the unique input committed by the corrupt Pk.
We first note that Pk must have used the same input for both the circuits Cj

and Ck in fairi. Otherwise one of the ciphertexts prepared by honest Pj must
have been opened and y would be computed, implying Pi belongs to st1 and not
in st2 as assumed. We are now left to show that the input of Pk for its circuit
Ck in fairi is the same as the one committed.

In fair, honest Pj would use permutation string pkk = xkj for permuting
the commitments in Dk corresponding to xk. Therefore, one can conclude that
the commitments in Dk are constructed correctly and ordered as per xkj . Now
the only way Pk can decommit x′

k is by giving mkk = pkk ⊕ x′
k. But in this

case honest Pi would add Pk to Ci as the check mkk = xki would fail (mkk =
pkk ⊕ x′

k �= pkk ⊕ xk) and will be in st3 and not in st2 as assumed. �
Lemma 10. If an honest party is in st2, then its output y corresponds to the
unique input committed by the corrupt party.

Proof. Note that an honest party Pi in st2 either uses y of another party in st1

or computes output from its encoded output Yi. The proof for the former case
goes as follows. By Lemma 6, a corrupt Pk can never be in st1. The correctness
of y computed by an honest Pj follows directly from Lemma 8. For the latter
case, Lemma 9 implies that Yi corresponds to the unique input committed by
the corrupt party. All that needs to be ensured is that Pi gets the correct decod-
ing information. The condition flagj = flagk = 0 implies that the commitment
to the decoding information is computed and distributed correctly for both Cj

and Ck. Now the binding property of eNICOM ensures that the decoding infor-
mation received from either Pj (for Ck) or Pk (for Cj) must be correct implying
correctness of y (by correctness of the garbling scheme). �

448 A. Patra and D. Ravi

Lemma 11. If an honest party is in st3 or st4, then its output y corresponds
to the unique input committed by the corrupt party.

Proof. An honest party Pi in st3 either uses y of another party in st1 or com-
putes output from encoded output Yj of Pj who it identifies as honest. For the
latter case note that an honest Pj will never be identified as corrupt by Pi, due
to Lemma 5. The claim now follows from Lemma 6, Lemma 8 and the fact that
corrupt Pk cannot forge the ‘proof’ oij (binding of NICOM) for the former case
and from Lemma 9 and the fact that it possesses correct decoding information
as a garbler for Yj for the latter case. An honest party Pi in st4 only uses y of
another party in st1. The lemma follows in this case via the same argument as
before. �
Theorem 1. Protocol fair is correct.

Proof. In order to prove the theorem, we show that if an honest party, say Pi

outputs y that is not ⊥, then it corresponds to x1, x2, x3 where xj is the input
committed by Pj (Definition 1). We note that an honest Pi belong to one among
{st1, st2, st3, st4} at the time of output computation. The proof now follows
from Lemmas 7, 8, 10, 11. �

4 2-round 3PC with Unanimous Abort

This section presents a tight upper bound for 3PC achieving unanimous abort in
the setting with pair-wise private channels and a broadcast channel. The impos-
sibility of one-round protocol in the same setting follows from “residual function”
attack [41]. Our lower bound result presented in the full version [63] rules out the
possibility of achieving unanimous abort in the absence of a broadcast channel
in two rounds. This protocol can be used to yield a round-optimal fair protocol
with broadcast (lower bound in Sect. 6.1) by application of the transformation
of [45] that compiles a protocol with unanimous abort to a fair protocol via eval-
uating the circuits that compute shares (using error-correcting secret sharing)
of the function output using the protocol with unanimous abort and then uses
an additional round for reconstruction of the output.

In an attempt to build a protocol with unanimous abort, we note that any
protocol with unanimous abort must be robust to any potential misbehaviour
launched via the private communication in the second round. Simply because,
there is no way to report the abort to the other honest party who may have
seen honest behaviour from the corrupt party all along and has got the output,
leading to selective abort. Our construction achieves unanimity by leveraging
the availability of the broadcast channel to abort when a corrupt behaviour
is identified either in the first round or in the broadcast communication in the
second round, and behaving robustly otherwise. In summary, if the corrupt party
does not strike in the first round and in the broadcast communication of the
second round, then our construction achieves robustness.

Turning to the garbled circuit based constructions such as the two-round
protocol of [43] achieving selective abort or the composition of three copies of

On the Exact Round Complexity of Secure Three-Party Computation 449

the sub-protocol fairi of fair, we note that the second round private communi-
cation that involves encoding information for inputs is crucial for computing
the output and cannot transit via broadcast because of input privacy breach.
A bit elaborately, the transfer of the encoding information for the inputs of the
garblers can be completed in the first round itself and any inconsistency can be
handled via unanimous abort in the second round. However, a similar treatment
for the encoding information of the shares of the evaluator seems impossible as
they are transferred to garblers only in the first round. We get past this seem-
ingly impossible task via a clever ‘two-part release mechanism’ for the encoding
information of the shares of the evaluator. Details follow.

Similar to protocol fair, we build our protocol ua upon three parallel execu-
tions of a sub-protocol uai (i ∈ [3]), each comprising of two rounds and with each
party Pi enacting the role of the evaluator once. With fairi as the starting point,
each sub-protocol uai allows the parties to reach agreement on whether the run
was successful and the evaluator got the output or not. A flag flagi is used as
an indicator. The protocol ua then decides on unanimous abort if at least one
of the flags from the three executions uai for i ∈ [3] is set to true. Otherwise,
the parties must have got the output. Input consistency checks ensure that the
outputs are identical. Intra-execution input consistency is taken care by cheat-
recovery mechanism (similar and simplified version of what protocol fair uses),
while inter-execution input consistency is taken care by the same trick that we
use in our fair protocol. Now looking inside uai, the challenge goes back to find-
ing a mechanism for the honest evaluator to get the output when a corrupt party
behaves honestly in the first round and in the broadcast communication of the
second round. In other words, its private communication in the second round
should not impact robustness. This is where the ‘two-part release mechanism’
for the encoding information of the shares of the evaluator kicks in. It is realized
by tweaking the function to be evaluated as f(xj , xk, (zj ⊕ rj) ⊕ (zk ⊕ rk)) in
the instance uai where Pi enacts the role of the evaluator. Here rj , rk denote
random pads chosen by the garblers Pj , Pk respectively in the first round. The
encoding information for these are released to Pi privately in the first round
itself. Any inconsistent behaviour in the first round is detected, the flag is set
and the the protocol exits with ⊥ unanimously. Next, zj and zk are the offsets
of these random pads with the actual shares of Pi’s input and are available only
at the end of first round. The encoding information for these offsets and these
offsets themselves are transferred via broadcast in the second round for public
verification. As long as the pads are privately communicated, the offsets do not
affect privacy of the shares of Pi’s input. Lastly, note that the encoding infor-
mation for a garbler’s input for its own generated circuit can be transferred in
the first round itself. This ensures that a corrupt garbler misbehaves either in
the first round or in the broadcast communication in the second round or lets
the evaluator get the output via its own GC. The formal description and proof
of security of ua appear in the full version [63].

450 A. Patra and D. Ravi

5 3-round 3PC with Guaranteed Output Delivery

In this section, we present a three-round 3PC protocol, given access to pairwise-
private channels and a broadcast channel. The protocol is round-optimal follow-
ing 3-round lower bound for fair 3PC proven in Sect. 6.1. The necessity of the
broadcast channel for achieving guaranteed output delivery with strict honest
majority follows from [23].

Our tryst starts with the known generic transformations that are relevant
such as the transformations from the unanimous abort to (identifiable) fair pro-
tocol [45] or identifiable fair to guaranteed output delivery [24]. However, these
transformations being non-round-preserving do not turn out to be useful. Turn-
ing a 2-round protocol offering unanimous (or even selective) abort with identi-
fiability (when the honest parties learn about the identity of the corrupt when
deprived of the output) to a 3-round protocol with guaranteed output delivery
in a black-box way show some promise. The third round can be leveraged by
the honest parties to exchange their inputs and compute output on the clear.
We face two obstacles with this approach. First, there is neither any known 2-
round construction for selective/unanimous abort with identifiability nor do we
see how to transform our unanimous abort protocol to one with identifiability
in two rounds. Second, when none of the parties (including the corrupt) receive
output from the selective/unanimous abort protocol and the honest parties com-
pute it on the clear in the third round by exchanging their inputs and taking a
default value for the input of the corrupt party, it is not clear how the corrupt
party can obtain the same output (note that the ideal functionality demands
delivering the output to the adversary).

We get around the above issues by taking a non-blackbox approach and
tweaking uai and fairi to get yet another sub-protocol godi that achieves a form of
local identifiability. Namely, the evaluator Pi in godi either successfully computes
the output or identifies the corrupt party. As usual, our final protocol god is built
upon three parallel executions of godi (i ∈ [3]), each comprising of two rounds
and with each party Pi enacting the role of the evaluator once. Looking ahead,
the local identifiability helps in achieving guaranteed output delivery as follows.
In a case when both honest parties identify the corrupt party and the corrupt
party received the output by the end of Round 2, the honest parties can exchange
their inputs and reconstruct the corrupt party’s input using the shares received
during one of the executions of godi and compute the function on clear inputs
in the third round. Otherwise, the honest party who identifies the corrupt can
simply accept the output computed and forwarded by the other honest party.
The issue of the corrupt party getting the same output as that of the honest
parties when it fails to obtain any in its instance of godi is taken care as follows.
First, the only reason a corrupt party in our protocol does not receive its output
in its instance of godi is due to denial of committing its input. In this case it is
detected early and the honest parties exchange inputs in the second round itself
so that at least one honest party computes the output using a default input of
the corrupt party by the end of Round 2 and hands it over to others in Round
3. The protocol and the proof appear in the full version [63].

On the Exact Round Complexity of Secure Three-Party Computation 451

6 Lower Bounds

In this paper, we present two lower bounds– (a) three rounds are necessary for
achieving fairness in the presence of pair-wise private channels and a broad-
cast channel; (b) three rounds are necessary for achieving unanimous abort in
the presence of just pair-wise private channels (and no broadcast). The sec-
ond result holds even if broadcast was allowed in the first round. Our results
extend for any n and t with 3t ≥ n > 2t via standard player-partitioning tech-
nique [57]. Our results imply the following. First, selective abort is the best
amongst the four notions (considered in this work) that we can achieve in two
rounds without broadcast (from (b)). Second, unanimous abort as well as fair-
ness require 3 rounds in the absence of broadcast (from (b)). Third, broadcast
does not help to improve the round complexity of fairness (from (a)). Lastly,
guaranteed output delivery requires 3 rounds with broadcast (from (a)). The
first lower bound appears below. We prove the second lower bound in the full
version [63].

6.1 The Impossibility of 2-round Fair 3PC

In this section, we show that it is impossible to construct a fair 2-round 3PC
for general functions. [39] presents a lower bound of three rounds assuming non-
private point-to-point channels and a broadcast channel (their proof crucially
relies on the assumption of non-private channels). [35] presents a three-round
lower bound for fair MPC with t ≥ 2 (arbitrary number of parties) in the
same network setting as ours. Similar to the lower bounds of [35,39] (for the
function of conjunction of two input bits), our lower bound result does not
exploit the rushing nature of the adversary and hence holds for non-rushing
adversary as well. Finally, we observe that the impossibility of 2-round 3PC
for the information-theoretic setting follows from the impossibility of 2-round
3-party statistical VSS of [62] (since VSS is a special case of MPC). We now
prove the impossibility formally.

Theorem 2. There exist functions f such that no two-round fair 3PC proto-
col can compute f , even in the honest majority setting and assuming access to
pairwise-private and broadcast channel.

Proof. Let P = {P1, P2, P3} denote the set of 3 parties and the adversary A may
corrupt any one of them. We prove the theorem by contradiction. We assume
that there exists a two-round fair 3PC protocol π that can compute f(x1, x2, x3)
defined below for Pi’s input xi:

f(x1, x2, x3) =

{
1 if x2 = x3 = 1
0 otherwise

At a high level, we discuss two adversarial strategies A1 and A2 of A. We
consider party Pi launching Ai in execution Σi (i ∈ [2]) of π. Both the executions

452 A. Patra and D. Ravi

are assumed to be run for the same input tuple (x1, x2, x3) and the same random
inputs (r1, r2, r3) of the three parties. (Same random inputs are considered for
simplicity and without loss of generality. The same arguments hold for distri-
bution ensembles as well.) When strategy A1 is launched in execution Σ1, we
would claim that by correctness of π, A corrupting P1 should learn the output
y = f(x1, x2, x3). Here, we note that the value of f(x1, x2, x3) depends only on
the inputs of honest P2, P3 (i.e. input values x2, x3) and is thus well-defined. We
refer to f(x1, x2, x3) as the value determined by this particular combination of
inputs (x2, x3) henceforth. Now, since A corrupting P1 learnt the output, due
to fairness, P2 should learn the output too in Σ1. Next strategy A2 is designed
so that P2 in Σ2 can obtain the same view as in Σ1 and therefore it gets the
output too. Due to fairness, we can claim that P3 receives the output in Σ2. A
careful observation then lets us claim that P3 can, in fact, learn the output at
the end of Round 1 itself in π. Lastly, using the above observation, we show a
strategy for P3 that explicitly allows P3 to breach privacy.

We use the following notation: Let pr
i→j denote the pairwise communication

from Pi to Pj in round r and br
i denote the broadcast by Pi in round r, where

r ∈ [2], {i, j} ∈ [3]. Vi denotes the view of party Pi at the end of execution of π.
Below we describe the strategies A1 and A2.

A1: P1 behaves honestly during Round 1 of the protocol. In Round 2, P1 waits
to receive the messages from other parties, but does not communicate at all.

A2: P2 behaves honestly towards P3 in Round 1, i.e. sends the messages p1
2→3, b

1
2

according to the protocol specification. However P2 does not communicate
to P1 in Round 1. In Round 2, P2 waits to receive messages from P3, but
does not communicate to the other parties.

Next we present the views of the parties in the two executions Σ1 and Σ2

in Table 1. The communications that could potentially be different from the
communications in an honest execution (where all parties behave honestly) with
the considered inputs and random inputs of the parties are appended with �
(e.g. p2

1→3(�)). We now prove a sequence of lemmas to complete our proof.

Lemma 12. A corrupt P1 launching A1 in Σ1 should learn the output y =
f(x1, x2, x3).

Proof. The proof follows easily. Since P1 behaved honestly during Round 1, it
received all the desired communication from honest P2 and P3 in Round 2 (refer
to Table 1 for the view of P1 in Σ1 in the end of Round 2). So it follows from
the correctness property that his view at the end of the protocol i.e. V1 should
enable P1 to learn the correct function output f(x1, x2, x3). �

Lemma 13. A corrupt P2 launching A2 in Σ2 should learn the output y.

Proof. We prove the lemma with the following two claims. First, the view of
P2 in Σ2 subsumes the view of honest P2 in Σ1. Second, P2 learns the out-
put in Σ1 due to the fact that the corrupt P1 learns it and π is fair. We

On the Exact Round Complexity of Secure Three-Party Computation 453

Table 1. Views of P1, P2, P3 in Σ1 and Σ2

Σ1 Σ2

V1 V2 V3 V1 V2 V3

Initial Input (x1, r1) (x2, r2) (x3, r3) (x1, r1) (x2, r2) (x3, r3)

Round 1 p12→1, p13→1 p11→2, p13→2, p11→3, p12→3, –, p13→1, p11→2, p13→2, p11→3, p12→3,

b12, b13 b11, b13 b11, b12 b12, b13 b11, b13 b11, b12

Round 2 p22→1, p23→1, –, p23→2, –, p22→3, –, p23→1, p21→2(�), p23→2, –, p21→3(�),

b22, b23 b23 b22 b23 b21(�), b23 b21(�)

now prove our first claim. In Σ1, we observe that P2 has received communi-
cation from both P1 and P3 in the first round, and only from P3 in the sec-
ond round. So V2 = {x2, r2, p

1
1→2, b

1
1, p

1
3→2, b

1
3, p

2
3→2, b

2
3} (refer to Table 1). We

now analyze P2’s view in Σ2. Both P1 and P3 are honest and must have sent
{p1

1→2, b
1
1, p

1
3→2, b

1
3} according to the protocol specifications in Round 1. Since P3

received the expected messages from P2 in Round 1, P3 must have sent {p2
3→2, b

2
3}

in Round 2. Note that we can rule out the possibility of P3’s messages in this
round having been influenced by P1 possibly reporting P2’s misbehavior towards
P1. This holds since P3 would send the messages in the beginning of Round 2.
We do not make any assumption regarding P1’s communication to P2 in Round
2 since P1 has not received the expected message from P2 in Round 1. Thus,
overall, P2’s view V2 comprises of {x2, r2, p

1
1→2, b

1
1, p

1
3→2, b

1
3, p

2
3→2, b

2
3} (refer to

Table 1). Note that there may also be some additional messages from P1 to P2

in Round 2 which can be ignored by P2. These are marked with ‘(�)′ in Table 1.
A careful look shows that the view of P2 in Σ2 subsumes the view of honest P2

in Σ1. This concludes our proof. �
Lemma 14. P3 in Σ2 should learn the output y by the end of Round 1.

Proof. According to the previous lemma, P2 should learn the function output in
Σ2. Due to fairness property, it must hold that an honest P3 learns the output as
well (same as obtained by P2 i.e. y with respect to x2). First, we note that as per
strategy A2, P2 only communicates to P3 in Round 1. Second, we argue that the
second round communication from P1 does not impact P3’s output computation
as follows.

We observe that the function output depends only on (x2, x3). Clearly, Round
1 messages {p1

1→3, b
1
1} of P1 does not depend on x2. Next, since there is no private

communication to P1 from P2 as per strategy A2, the only information that can
possibly hold information on x2 and can impact the round 2 messages of P1 is b1

2.
However, since this is a broadcast message, P3 holds this by the end of Round 1
itself. �
Lemma 15. A corrupt P3 violates the privacy property of π.

Proof. The adversary corrupting P3 participates in the protocol honestly by
fixing input x3 = 0. Since P3 can get the output from P2’s and P1’s round 1
communication (Lemma 14), it must be true that P3 can evaluate the function

454 A. Patra and D. Ravi

f locally by plugging in any value of x3. (Note that P2 and P1’s communication
in round 1 are independent of the communication of P3 in the same round.) Now
a corrupt P3 can plug in x3 = 1 locally and learn x2 (via the output x2 ∧ x3).
In the ideal world, corrupt P3 must learn nothing beyond the output 0 as it has
participated in the protocol with input 0. But in the execution of π (in which
P3 participated honestly with input x3 = 0), P3 has learnt x2. This is a clear
breach of privacy as P3 learns x2 regardless of his input. �
Hence, we have arrived at a contradiction, completing the proof of Theorem 2.

�

Acknowledgement. The first author would like to acknowledge partial support
from Google Inc. and SERB Women Excellence Award from Science and Engineering
Research Board of India. The second author would like to acknowledge partial support
from Indian Association for Research in Computing Science (IARCS) and Microsoft
Research India.

References

1. Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation
based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 22

2. Ananth, P., Choudhuri, A.R., Jain, A.: A new approach to round-optimal secure
multiparty computation. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 468–499. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 16

3. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: ACM CCS
(2016)

4. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.:
Multiparty computation with low communication, computation and interaction
via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29011-4 29

5. Backes, M., Kate, A., Patra, A.: Computational verifiable secret sharing revisited.
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 590–609.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 32

6. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

7. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: ACM STOC (1990)

8. Beerliová-Trub́ıniová, Z., Hirt, M.: Efficient multi-party computation with dispute
control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328.
Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 16

9. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: CCS
(2012)

https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-642-55220-5_22
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-319-63688-7_16
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-642-25385-0_32
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/11681878_16

On the Exact Round Complexity of Secure Three-Party Computation 455

10. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC (1988)

11. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 39

12. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption
and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20465-4 11

13. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88313-5 13

14. Bogdanov, D., Talviste, R., Willemson, J.: Deploying secure multi-party compu-
tation for financial data analysis. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol.
7397, pp. 57–64. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32946-3 5

15. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03549-4 20

16. Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computation with-
out setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 645–
677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2 22

17. Chandran, N., Garay, J.A., Mohassel, P., Vusirikala, S.: Efficient, constant-round
and actively secure MPC: beyond the three-party case. In: ACM CCS (2017)

18. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: ACM STOC (1988)

19. Chaum, D., Damg̊ard, I.B., van de Graaf, J.: Multiparty computations ensuring
privacy of each party’s input and correctness of the result. In: Pomerance, C. (ed.)
CRYPTO 1987. LNCS, vol. 293, pp. 87–119. Springer, Heidelberg (1988). https://
doi.org/10.1007/3-540-48184-2 7

20. Chida, K., et al.: Implementation and evaluation of an efficient secure computation
system using ‘R’ for healthcare statistics. J. Am. Med. Inform. Assoc. (2014)

21. Choi, S.G., Katz, J., Malozemoff, A.J., Zikas, V.: Efficient three-party computation
from cut-and-choose. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8617, pp. 513–530. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44381-1 29

22. Cleve, R.: Limits on the security of coin flips when half the processors are faulty
(extended abstract). In: ACM STOC (1986)

23. Cohen, R., Haitner, I., Omri, E., Rotem, L.: Characterization of secure multiparty
computation without broadcast. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016.
LNCS, vol. 9562, pp. 596–616. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49096-9 25

24. Cohen, R., Lindell, Y.: Fairness versus guaranteed output delivery in secure mul-
tiparty computation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS,
vol. 8874, pp. 466–485. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45608-8 25

https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-642-20465-4_11
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-642-32946-3_5
https://doi.org/10.1007/978-3-642-32946-3_5
https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/3-540-48184-2_7
https://doi.org/10.1007/3-540-48184-2_7
https://doi.org/10.1007/978-3-662-44381-1_29
https://doi.org/10.1007/978-3-662-44381-1_29
https://doi.org/10.1007/978-3-662-49096-9_25
https://doi.org/10.1007/978-3-662-49096-9_25
https://doi.org/10.1007/978-3-662-45608-8_25
https://doi.org/10.1007/978-3-662-45608-8_25

456 A. Patra and D. Ravi

25. Cramer, R., Damg̊ard, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multi-
party computations secure against an adaptive adversary. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48910-X 22

26. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

27. Damg̊ard, I., Orlandi, C.: Multiparty computation for dishonest majority: from
passive to active security at low cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 558–576. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 30

28. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

29. Frederiksen, T.K., Nielsen, J.B., Orlandi, C.: Privacy-free garbled circuits with
applications to efficient zero-knowledge. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 191–219. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46803-6 7

30. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 8

31. Garg, S., Polychroniadou, A.: Two-round adaptively secure MPC from indistin-
guishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 614–637. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46497-7 24

32. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round com-
plexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49896-5 16

33. Geisler, M.: Viff: Virtual ideal functionality framework (2007)
34. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifi-

able secret sharing and secure multicast. In: ACM STOC (2001)
35. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty

computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 178–193.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9 12

36. Gertner, Y., Ishai, Y., Kushilevitz, E., Malkin, T.: Protecting data privacy in
private information retrieval schemes. J. Comput. Syst. Sci. (2000)

37. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: ACM STOC (1987)

38. Goldwasser, S., Lindell, Y.: Secure computation without agreement. In: Malkhi, D.
(ed.) DISC 2002. LNCS, vol. 2508, pp. 17–32. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-36108-1 2

39. Dov Gordon, S., Liu, F.-H., Shi, E.: Constant-round MPC with fairness and guar-
antee of output delivery. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 63–82. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48000-7 4

40. Halevi, S., Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Round-
optimal secure multi-party computation. Cryptology ePrint Archive, Report
2017/1056 (2017). https://eprint.iacr.org/2017/1056

https://doi.org/10.1007/3-540-48910-X_22
https://doi.org/10.1007/3-540-48910-X_22
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-642-14623-7_30
https://doi.org/10.1007/978-3-642-14623-7_30
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-662-46803-6_7
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-662-46497-7_24
https://doi.org/10.1007/978-3-662-46497-7_24
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/978-3-662-49896-5_16
https://doi.org/10.1007/3-540-45708-9_12
https://doi.org/10.1007/3-540-36108-1_2
https://doi.org/10.1007/3-540-36108-1_2
https://doi.org/10.1007/978-3-662-48000-7_4
https://doi.org/10.1007/978-3-662-48000-7_4
https://eprint.iacr.org/2017/1056

On the Exact Round Complexity of Secure Three-Party Computation 457

41. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22792-9 8

42. Huang, Y., Katz, J., Kolesnikov, V., Kumaresan, R., Malozemoff, A.J.: Amortizing
garbled circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8617, pp. 458–475. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44381-1 26

43. Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure compu-
tation with minimal interaction, revisited. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 359–378. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 18

44. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal
interaction. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 577–594.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 31

45. Ishai, Y., Kushilevitz, E., Prabhakaran, M., Sahai, A., Yu, C.-H.: Secure protocol
transformations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9815, pp. 430–458. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 15

46. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer
– efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 32

47. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza,
J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol.
8572, pp. 650–662. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43948-7 54

48. Jafargholi, Z., Wichs, D.: Adaptive security of Yao’s garbled circuits. In: Hirt, M.,
Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 433–458. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53641-4 17

49. Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits:
how to prove non-algebraic statements efficiently. In: CCS (2013)

50. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-28628-8 21

51. Kiraz, M.S., Schoenmakers, B.: A protocol issue for the malicious case of Yao’s
garbled circuit construction. In: 27th Symposium on Information Theory in the
Benelux (2006)

52. Launchbury, J., Archer, D., DuBuisson, T., Mertens, E.: Application-scale secure
multiparty computation. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 8–26.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8 2

53. Launchbury, J., Diatchki, I.S., DuBuisson, T., Adams-Moran, A.: Efficient lookup-
table protocol in secure multiparty computation. In: ACM SIGPLAN ICFP 2012
(2012)

54. Lindell, Y.: Fast cut-and-choose based protocols for malicious and covert adver-
saries. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 1

55. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation
in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007.
LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72540-4 4

https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-662-44381-1_26
https://doi.org/10.1007/978-3-662-44381-1_26
https://doi.org/10.1007/978-3-662-48000-7_18
https://doi.org/10.1007/978-3-642-14623-7_31
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-53641-4_17
https://doi.org/10.1007/978-3-540-28628-8_21
https://doi.org/10.1007/978-3-642-54833-8_2
https://doi.org/10.1007/978-3-642-40084-1_1
https://doi.org/10.1007/978-3-540-72540-4_4
https://doi.org/10.1007/978-3-540-72540-4_4

458 A. Patra and D. Ravi

56. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. J. Cryptol. (2009)

57. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann (1996)
58. Mohassel, P., Franklin, M.: Efficiency tradeoffs for malicious two-party com-

putation. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006.
LNCS, vol. 3958, pp. 458–473. Springer, Heidelberg (2006). https://doi.org/10.
1007/11745853 30

59. Mohassel, P., Rosulek, M.: Non-interactive secure 2PC in the offline/online and
batch settings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 425–455. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56617-7 15

60. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation:
the garbled circuit approach. In: ACM CCS (2015)

61. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp.
735–763. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 26

62. Patra, A., Choudhary, A., Rabin, T., Rangan, C.P.: The round complexity of ver-
ifiable secret sharing revisited. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol.
5677, pp. 487–504. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03356-8 29

63. Patra, A., Ravi, D.: On the exact round complexity of secure three-party computa-
tion. Cryptology ePrint Archive, Report 2018/481 (2018). https://eprint.iacr.org/
2018/481

64. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: ACM STOC (1989)

65. Rindal, P., Rosulek, M.: Faster malicious 2-party secure computation with
online/offline dual execution. In: USENIX Security Symposium (2016)

66. Shelat, A., Shen, C.-H.: Fast two-party secure computation with minimal assump-
tions. In: ACM CCS (2013)

67. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: FOCS
(1982)

https://doi.org/10.1007/11745853_30
https://doi.org/10.1007/11745853_30
https://doi.org/10.1007/978-3-319-56617-7_15
https://doi.org/10.1007/978-3-319-56617-7_15
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-642-03356-8_29
https://doi.org/10.1007/978-3-642-03356-8_29
https://eprint.iacr.org/2018/481
https://eprint.iacr.org/2018/481

	On the Exact Round Complexity of Secure Three-Party Computation
	1 Introduction
	1.1 Our Results
	1.2 Techniques
	1.3 Roadmap

	2 Preliminaries
	2.1 Model
	2.2 Primitives

	3 3-round 3PC with Fairness
	3.1 Protocol fairi
	3.2 Protocol certi
	3.3 Protocol fair

	4 2-round 3PC with Unanimous Abort
	5 3-round 3PC with Guaranteed Output Delivery
	6 Lower Bounds
	6.1 The Impossibility of 2-round Fair 3PC

	References

